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Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to 
overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The path-
ways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. 
Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven 
ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 
and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochon-
drial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by 
mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization 
induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the 
clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The 
role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor 
and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms 
of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining 
inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mito-
chondrial pathways and their potential to transform lung cancer treatment.

Keywords  Caspase-independent cell death · Lung cancer · Ferroptosis · Necroptosis · Mitochondrial dysfunction · 
Autophagy

Introduction

Cellular death is an intrinsic cellular mechanism essential 
for preserving tissue equilibrium, removing impaired cells to 
combat infection and subsequent cancer, and restricting the 
proliferation of cancerous cells, which is key to treating and 
healing cancer (Loftus et al. 2022). Among the mechanisms 
of cell death, apoptosis and CICD hold unique functions 
under healthy and pathological circumstances (Galluzzi 
et al. 2018). Caspases, a family of cysteine proteases, are 
most widely studied for orchestrating apoptosis (Lam and 
Pozo 2000). Cellular events involved include the formation 
of apoptotic bodies, DNA fragmentation, chromatin conden-
sation, and phagocyte clearing (Prokhorova et al. 2015). One 
hallmark of cancer is dysregulation of apoptosis, the process 

by which a cell’s fate is dictated even when it is not func-
tional and cells are not kept viable with continuous delivery 
of oxygen and nutrients (He et al. 2024). Conversely, CICD 
depicts a path of cell elimination independent of the failure 
of apoptotic machinery (Tait and Green 2008). This mode 
of cellular death encompasses mechanisms like necroptosis, 
ferroptosis, and autophagy-dependent cellular death (Gao 
et al. 2022). These bypasses differ in the distinct molecular 
routes they share without activating the caspase (Laukens 
et al. 2011). CICD-related mechanisms have gained interest 
in cancer biology, including in lung cancer, where apoptotic 
resistance remains a large obstacle to effective treatment 
(Cao et al. 2024).

The intrinsic route is regulated by the Bcl- 2 proteins 
activated by cellular stress, typically DNA damage and 
oxidative stress (Susnow et al. 2009). When ligands attach 
to death receptors, the extrinsic route is started, affecting 
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the activation of caspases (Kumar et al. 2005). However, 
while these pathways are important, they are often disabled 
in cancers by mutations in master regulators such as TP53 
and Bcl- 2, which allow for unbridled proliferation (Hemann 
and Lowe 2006). In addition, mitochondrial dysfunction, the 
underlying cause of many cancers, enhances resistance to 
apoptosis and fuels tumor progression by modifying energy 
redox homeostasis and cytochrome c release (Hsu et al. 
2016). These apoptotic barriers are circumvented by CICD 
pathways to provide alternative routes for cancer cells resist-
ant to apoptosis to exhibit cell death (Wang et al. 2020). 
Necrosis is controlled by iron and is called ferroptosis and 
is characterized by lipid peroxidation and oxidative damage 
(Li et al. 2020). Ferroptosis is regulated by GPX4 and SLC7 
A11 and has recently been recognized as a potential treat-
ment target in drug-resistant cancer, especially in NSCLC 
(Chen et al. 2023a). Another CICD pathway, necroptosis, 
is created by RIPK1, RIPK3, and MLKL and can trigger 
inflammatory responses that promote anti tumor immunity 
(Galluzzi et al. 2017). Similarly, the lysosomal breakdown 
of cellular components and autophagy-dependent cell death 
play two roles in cancer, resulting in either the promotion 
or suppression of tumor growth depending on context (Yun 
et al. 2020).

CICD mechanisms are critical in overcoming therapeu-
tic resistance in pulmonary carcinoma (Xiang et al. 2024a). 
In NSCLC, the predominant subtype of lung cancer, muta-
tions in apoptotic regulators, such as TP53, allow tumors to 
escape conventional therapies (Canale et al. 2022). Inhib-
iting GPX4 or depleting glutathione triggers ferroptosis, 
while necroptosis activation via RIPK1 and RIPK3 cell 
death pathways potentiates anti-tumor immune responses 
(Tong et al. 2022). Additionally, mitochondrial pathways 
are central to CICD, as many cases of mitochondrial stress 
cause the release of DAMPs reactive nodes of inflammation 
and immunity within the TME (Kuo et al. 2024). Apopto-
sis and CICD are central to developing new therapies for 
lung cancer (Paul and Jones 2014). Targeted therapies that 
include Bcl- 2 inhibitors have improved apoptosis, yet the 
development of resistance has constrained the utility of these 
therapies (Lampson and Davids 2017). Complementary 
strategies based on CICD targeting circumvent the limita-
tions of the apoptosis-focused strains and provide additional 
possible avenues in combination therapy (Hersey and Zhang 
2009). Furthermore, CICD influences immune modulation 
and may have beneficial synergistic effects when combined 
with immunotherapies to augment anti-tumor effects (Var-
ayathu et al. 2021).

This review identifies ferroptosis, necroptosis, autophagy, 
and mitochondrial dysfunction-related pathways during 
CICD in lung cancer and their implications in therapeutics. 
This review also aims to summarize the therapeutic strate-
gies designed to overcome the resistance and improve the 

efficacy of treatment in this complicated disease by explor-
ing the interplay of CICD and lung cancer progression.

Role of CICD in lung cancer

One characteristic of lung carcinoma is the avoidance of 
apoptosis, which plays a critical role in its progression, 
therapeutic resistance, and poor prognosis (Fernald and 
Kurokawa 2013; Bhat et al. 2022). Much of the disruption 
of the apoptotic function of lung cancer occurs by means 
including mutations in the TP53 gene, overexpression of 
Mcl- 1 and Bcl- 2, and others (Chen et al. 2025). Through 
the intrinsic apoptotic pathway, a crucial tumor suppressor 
called TP53 raises Bax and Bak levels while lowering anti-
apoptotic proteins (Wong 2011). Still, mutations in the TP53 
gene decrease its capacity to trigger apoptosis, permitting 
carcinoma cells to escape apoptosis (Muller and Vousden 
2014). Furthermore, overexpressing the Bcl- 2 proteins fam-
ily in parallel inhibits MOMP, an essential step for apoptosis, 
exacerbating resistance to cell death (Lalier et al. 2022). This 
resistance cripples the effectiveness of conventional thera-
pies, chemotherapy, and radiation, which invariably induce 
apoptosis, the process by which cancer cells die (Shahar 
and Larisch 2020). As a result, the mechanism of CICD has 
become a promising strategy against therapeutic resistance 
in lung cancer (Kang et al. 2024).

CICD provided alternative pathways for inducing cellu-
lar death in lung carcinoma cells. Unlike apoptosis, CICD 
includes several mechanisms, including necroptosis, ferrop-
tosis, and autophagy-dependent cell death, independent of 
caspase activation (Peng et al. 2022; Wang et al. 2023a). 
RIPK1, RIPK3, and MLKL mediate Necroptosis, which 
releases Damage-associated molecular patterns (DAMPs) 
into the TME, causing an inflammatory reaction (Kaczmarek 
et al. 2013). GPX4 and SLC7 A11 govern ferroptosis, which 
occurs through lipid peroxidation dependent on iron and can 
potentially overcome the inability to respond to targeted 
treatments like chemotherapy (Ma et al. 2022). ATG proteins 
mediate autophagy-dependent cell death, a stress survival 
versus cell death switch (Liu et al. 2023).

CICD pathways in lung cancer are regulated, and efficacy 
is not only influenced but is also significantly influenced 
by the TME (Wang et al. 2023b). Indeed, hypoxia, a defin-
ing characteristic of the TME in solid tumors, stimulates 
therapeutic resistance by activating adaptive responses by 
hypoxia-inducible factors (HIFs) (Emami Nejad et al. 2021). 
These factors modulate key CICD regulators, for example, 
SLC7 A11 and Beclin1, to allow cancer cells to resist fer-
roptosis and autophagy-dependent cell death (Li et  al. 
2024a). The HIF-dependent increased SLC7 A11 expres-
sion increases glutathione synthesis and cystine uptake 
to suppress ferroptosis (Koppula et al. 2021). Although 
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hypoxia-induced autophagy, like autophagy, helps cancer 
cells adjust to nutritional shortage, excessive autophagy 
can result in cell death dependent on autophagy (Zaarour 
et al. 2021). Consequently, CICD may increase lung cancer 
cells’ susceptibility to pathways linked to hypoxia (Chen 
et al. 2023b).

The mechanisms by which CICD is conducted in the 
TME are also modulated by metabolic stress in the TME 
(Czajka-Francuz et al. 2023). Metabolic phenotypes of lung 
cancer cells show increased reliance on aerobic glycolysis 
and glutaminolysis to meet their biosynthetic and energetic 
demands (Huang et al. 2024). These metabolic adaptations 
modulate CICD pathways, mainly ferroptosis and necrop-
tosis (Fu et al. 2024). Glutaminolysis would help produce 
glutathione, the key antioxidant, and prevent lipid peroxida-
tion and ferroptosis (Xu et al. 2021). Enhancing ferroptosis 
and suppressing tumor growth via inhibiting glutaminolysis 
or targeting metabolic vulnerabilities, such as cystine trans-
port, have been demonstrated (Lei et al. 2022). In addition, 
autophagy committed in the setting of metabolic stress pro-
motes intracellular recycling of nutrients, which is crucial 
for cancer cell survival. However, excessive activation may 
trigger autophagy-dependent cell death (Altman and Rath-
mell 2012). Redox homeostasis within the TME dictates 
the behavior of CICD mechanisms tightly. Within the organ 
system, ROS generation can worsen to either excess or defi-
ciency, for example, in cases of mitochondrial dysfunction or 
ferroptosis, which tip the balance from survival to cell death 
(Lewerenz et al. 2018). This is exemplified by lipid ROS 
that, in ferroptosis, induce tumor cell death and regulate 
immune responses by oxidizing tumor signaling lipid and 
protein (Shi et al. 2022). In addition, autophagy is critical to 
clear damaged mitochondria to buffer oxidative stress, but 
its dysregulation might shift redox equilibrium and promote 
CICD (Schirrmacher 2020). These oxidative dynamics are 
shown to modulate the sensitivity of CICD cells to stress 
conditions and the fate of cancer cells. Directly, lung can-
cer’s metabolic rewiring, including enhanced glutaminolysis 
and lipid synthesis, alters the sensitivity to CICD (Xiong 
2024). The loss of glutathione plays an important role in 
sustaining glutaminolysis and fuelling glutathione produc-
tion, whereas glucose deprivation may lead to an autophagy-
dependent cell death (Lin et al. 2012). SLC7 A11 and HIF- 
1α are hypoxic conditions that modulate SLC7 A11 and 
HIF- 1α to confer resistance to ferroptosis (Fan et al. 2021). 
Intracellular metabolites such as fumarate and succinate alter 
redox sensitive CICD pathways through affecting intracel-
lular ROS levels (Chen et al. 2009). Therefore, targeting 
metabolic dependencies may indicate CICD induction and 
may restrict tumor progression.

CICD pathways are also affected by the other hall-
mark of the TME, immune evasion (Galassi et al. 2024). 
Cancer cells evade immune surveillance by recruiting 

immunosuppressive cells, including Myeloid-derived sup-
pressor cells (MDSCs) and Treg, and upregulating immu-
nological check point markers like PD-L1 (Hou et  al. 
2020). CICD pathways, including necroptosis, can over-
come immune evasions and release DAMPs, like ATP and 
HMGB1, to trigger dendritic cells and cytotoxic T cells to 
promote anti-tumor immunity (Sprooten et al. 2020). Nev-
ertheless, necroptosis-associated inflammation may join in 
with promoting tumor progression via angiogenesis and 
metastasis (Hsu et al. 2020). Consequently, necroptosis-
induced inflammation must be carefully modulated to har-
ness its therapeutic potential (He et al. 2021). The interplay 
between CICD and the TME holds significant therapeutic 
implications for lung cancer (Katic et al. 2024). Immune 
checkpoint inhibitors and ferroptosis inducers have been 
shown to work in concert in preclinical models to enhance 
anti-tumor immunity and cancer cell death (Cai et  al. 
2023). As such, modulation of autophagy or necroptosis 
has been demonstrated to make lung carcinoma cells resist-
ant to chemotherapy and radiotherapy (Roy et al. 2022). 
Necroptosis-mediated RIPK3 activation of dendritic cells 
can increase maturation and improve immune responses 
(Zhao et al. 2020). In addition, exploiting metabolic vul-
nerabilities present in the TME by targeting glutaminolysis 
or cystine transport may further promote ferroptosis while 
retaining little ability to resist therapy (Zheng and Conrad 
2020). CICD mechanisms such as necroptosis and ferropto-
sis play dual roles in immune modulation within the TME. 
Release of DAMPs such as HMGB1 and ATP via necrop-
tosis activates antigen-presenting cells and CD8 + T cells, 
promoting the elevation of anti-tumor response (Garg and 
Agostinis 2017). Yet, persistent necroptosis-induced inflam-
mation may attract MDSC and Tregs for immunoevasion by 
engendering an immunosuppressive niche (Awadasseid et al. 
2021). Furthermore, ferroptosis-induced lipid peroxidation 
produces oxidized phospholipids that could diminish den-
dritic cell maturation, thereby enhancing immune escape. 
This dynamic interplay shapes the immunogenicity of the 
tumor and its immunotherapies (Xu et al. 2021).

Mechanisms of caspase‑independent cell 
death

Mitochondrial pathways

CICD, an apoptosis-like mode of cell death, goes through 
a caspase-independent route engaged by mitochon-
drial dysfunction (Pradelli et  al. 2010). This process 
includes Mitochondrial outer membrane permeabilization 
(MOMP), the release of apoptosis-inducing molecules 
such as EndoG and AIF, and the production of ROS, as 
shown in Fig. 1 (Yapryntseva et al. 2024). CICD occurs 
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in caspase-dependent apoptosis when classical apoptotic 
signaling pathways are inhibited, as occurs, for example, 
when viral infections or caspase inhibitors are used (May 
and Madge 2007; Bhat et al. 2024). CICD is critical in can-
cer biology and, most notably, in lung cancer progression 
and therapy by exploiting alternative death pathways in 
apoptosis-resistant cells (Gong et al. 2019). The MOMP is 
a critical and central step in developing CICD, initiating the 
discharge of AIF and EndoGo from mitochondria (Wang 
and Youle 2009). Following the release, AIF moves into 
the nucleus, where it causes chromatin condensation and 
extensive DNA breakage, followed by EndoG amplifying 
DNA degradation (Sevrioukova 2011). Oxidative damage 
caused by hydrogen peroxide is induced when ROS saturate, 
and they act as a signaling molecule at lower levels (Jomova 
et al. 2023). MOMP and pro-death signaling cascades are 
initiated by ROS (Wu and Bratton 2013). Yang et al. dem-
onstrated that curcumin induces ROS-mediated apoptosis 
in SCLC by disrupting mitochondrial membrane potential, 
upregulating Bax, and decreasing Bcl-xL and Bcl- 2 (Yang 
et al. 2012). Similarly, bortezomib, a proteasome inhibitor, 
enhances ROS production, destabilizes mitochondrial mem-
branes, and induces cytochrome c release in lung cancer 

cells (Ling et al. 2003). Other regulators of CICD include 
key signaling molecules such as p38MAPK (Koul et al. 
2013). Song et al. showed that Baohuoside I induces apop-
tosis in NSCLC by activating the ROS/p38MAPK pathway, 
disrupting mitochondrial membrane potential, and triggering 
caspase activation (Song et al. 2012). Additionally, Li et al. 
revealed that swainsonine triggers mitochondrial apoptosis 
in A549 cells by promoting PARP cleavage and activating 
pro-apoptotic signaling, further linking mitochondrial dys-
function with DNA repair processes (Li et al. 2012).

Mitochondrial metabolic reprogramming plays a sig-
nificant role in CICD (Fan et al. 2024). Dysregulated genes 
involved in energy metabolism and OXPHOS contribute 
to cancer progression and therapy resistance (Tufail et al. 
2024). Ye et al. analyzed MMRGs in lung carcinoma, identi-
fying 43 differentially expressed genes, including GAPDHS, 
linked to a bad prognosis (Ye et al. 2021). Another critical 
regulator is SLC25 A4, an ATP/ADP exchanger (Rupre-
cht and Kunji 2020). Hertweck et al. demonstrated that 
altered SLC25 A4 expression in NSCLC is linked to tumor 
growth and survival, highlighting its therapeutic potential 
(Hertweck et al. 2023). Bioenergetic phenotypes further 
influence CICD (Hill et al. 2019). Han et al. revealed that 

Fig. 1   Illustrates the mitochondrial outer membrane permeabilization 
(MOMP) process and its role in cell death through the release of vari-
ous mitochondrial proteins. Upon MOMP induction, toxic proteins 
such as EndoG and cytochrome C are released, leading to apoptotic 
or necrotic pathways. Cytochrome C release is associated with the 

loss of mitochondrial function, while apoptosis-inducing factor (AIF) 
contributes to mitochondrial dysfunction. Smac/Diablo and Htr2 A/
Omi promote prolonged mitochondrial fission and inhibit fusion, fur-
ther exacerbating mitochondrial instability
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OXPHOS phenotypes determine metabolic dependencies 
and therapeutic outcomes in NSCLC, suggesting a direct 
link between mitochondrial bioenergetics and cancer pro-
gression (Han et al. 2023). Additionally, Zhang et al. showed 
that mitochondria-targeted honokiol (Mito-HNK) combined 
with lonidamine (Mito-LND) disrupts oxidative phospho-
rylation, leading to an 83% reduction in tumor burden in 
murine models (Zhang et al. 2022a).

It has been demonstrated that several synthetic and natu-
ral substances can cause CICD in lung carcinoma by focus-
ing on mitochondrial pathways. Vitexin, a plant-derived 
flavonoid, inhibits PI3 K/Akt/mTOR signaling, promotes 
apoptosis, and reduces mitochondrial membrane potential 
in NSCLC (Liu et al. 2019). Piperine, another natural com-
pound, selectively induces mitochondrial apoptosis in A549 
cells by activating Bax and caspases while sparing normal 
fibroblasts, demonstrating its potential as a selective chem-
otherapeutic agent (Lin et al. 2014). Similarly, Dioscin, a 
steroidal saponin, triggers mitochondrial structural changes 
and S-phase arrest, further emphasizing the importance of 
mitochondrial signaling in lung cancer (Wei et al. 2013). 
In addition to natural compounds, Zhao et al. highlighted 
the efficacy of dehydrobruceine B (DHB) in inducing mito-
chondrial dysfunction and apoptosis in NSCLC cells via 
caspase- 9 activation (Zhao et al. 2016a). Kim et al. showed 
that Trichostatin A (TSA) induces apoptosis in NSCLC cells 
by simultaneously triggering extrinsic and intrinsic cascade, 
underscoring its potential for targeting multiple apoptotic 
mechanisms (Kim et al. 2006).

Mitochondrial adaptation is a key contributor to therapy 
resistance in lung cancer. Nicotine, for instance, impairs 
chemotherapy-induced apoptosis in A549 cells by stabilizing 
mitochondrial membrane potential and activating Akt-medi-
ated anti-apoptotic proteins (Zhang et al. 2009). Zhou et al. 
developed mitochondrial-targeting paclitaxel liposomes that 
selectively accumulate in mitochondria, overcoming resist-
ance in cisplatin-resistant A549 cells by promoting Bax acti-
vation and suppressing Bcl- 2 (Zhou et al. 2013). Emerging 
therapeutic strategies also target regulators like Bcl-XL, 
a prominent anti-apoptotic protein (Valentini et al. 2022). 
Doi et al. showed that FR901228 downregulates Bcl-XL and 
enhances caspase activation, thus becoming a viable choice 
for overcoming therapy resistance in SCLC (Doi et al. 2004).

Targeting mitochondrial pathways offers significant thera-
peutic potential but poses challenges, including therapy 
resistance and off-target toxicity (Li et al. 2024b). Combin-
ing ROS modulators with mitochondrial-targeted agents may 
improve efficacy (Okon and Zou 2015). For example, Liu 
et al. demonstrated that HSP-III induces the generation of 
ROS and mitochondrial apoptosis in NSCLC cells, high-
lighting the promise of ROS-modulating therapies (Liu et al. 
2017). Furthermore, Han et al. identified the role of dysfunc-
tional mitochondria in EMT, linking it to metastasis and 

suggesting therapeutic interventions to reverse these pheno-
types (Han et al. 2018). Gao et al. additionally disclosed that 
the downregulation of GSDMD suppresses tumor growth by 
promoting mitochondrial apoptosis and inhibiting EGFR/
Akt signaling, identifying GSDMD as a promising thera-
peutic target (Gao et al. 2018) (Fig. 1).

Necroptosis

Necroptosis differs from apoptosis because it is caspase-
independent (Bertheloot et al. 2021). RIPK3 and RIPK1 
mediate the formation of a necrosome complex, which 
primarily mediates necroptosis (Morgan and Kim 2022). 
RIPK3 phosphorylates MLKL, which causes the protein to 
oligomerize and translocate to the plasma membrane, dis-
rupting the integrity of the membrane (Wang et al. 2014). 
This mechanism causes inflammation by inducing cell lysis 
and releasing intracellular substances (Rock and Kono 
2008). Through dysregulation, necroptosis in cancer can 
lead to tumor growth, inflammation, and immunological 
suppression, in addition to serving as a fallback mechanism 
when apoptosis is suppressed (Della Torre et al. 2021; Thapa 
et al. 2023). However, it contains therapeutic potential in 
exploiting its pathways to overcome apoptosis resistance 
and augment immune response in cancer therapies (Baig 
et al. 2016). Necroptosis initiation and execution depend on 
RIPK1 and RIPK3 (Grootjans et al. 2017). Park et al. dem-
onstrated significantly reduced MLKL, RIPK3, and RIPK1 
levels in NSCLC cells, correlating with poor prognosis 
and early recurrence, especially in adenocarcinoma (Park 
et al. 2020). Wang et al. highlighted that RIP3 promoter 
methylation limits necroptosis, reducing chemotherapy effi-
cacy. Restoring RIP3 expression sensitized NSCLC cells to 
chemotherapeutics such as cisplatin and etoposide (Wang 
et al. 2020a). MLKL, the terminal effector of necroptosis, 
plays a pivotal role in disrupting membrane integrity (Zhan 
et al. 2021). Jing et al. revealed phosphatidylinositol trans-
fer protein alpha (PITPα) promotes membrane translocation 
and MLKL oligomerization in cisplatin-induced necroptosis 
(Jing et al. 2018).

Necroptosis significantly impacts the TIME (Zhao et al. 
2022). Zhao et al. identified necroptosis-related pheno-
types in LUAD, developing a NecroScore that strati-
fies patients based on survival, immune response, and 
therapy sensitivity (Zhao et al. 2022). Duangthim et al. 
observed that high RIP3 expression correlates with bet-
ter prognosis but creates an immunosuppressive TIME, 
marked by reduced CD8 + T cells and increased mac-
rophages (Duangthim et  al. 2024). Long et  al. identi-
fied NO.0449–0145, an APE1 inhibitor, as a necroptosis 
inducer, apoptosis, and pyroptosis in NSCLC cells. This 
substance also overcame cisplatin and erlotinib resistance 
(Long et al. 2021). Zhao et al. explored isobavachalcone 
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derivatives, finding that compound 16 induces necropto-
sis alongside apoptosis through ROS accumulation and 
mitochondrial dysfunction (Chen et al. 2024a). Tan et al. 
reported that ID1 overexpression enhances gefitinib sensi-
tivity by promoting RIP1/RIP3/MLKL-dependent necrop-
tosis (Tan et al. 2020).

Necroptosis-related genes and miRNAs emerge as prog-
nostic tools in NSCLC (Hong et al. 2022a). Lim et al. iden-
tified low expression of RIPK3 and PELI1 as indicators of 
poor survival in squamous cell carcinoma (Lim et al. 2021). 
Dai and Fu developed a six-gene necroptosis-related signa-
ture, including RIPK3 and MLKL, stratifying patients based 
on prognosis and immune activity (Dai and Fu 2022). Hong 
et al. constructed a miRNA-based nomogram incorporating 
necroptosis-related risk scores for LUAD, improving sur-
vival predictions (Hong et al. 2022b). Zhu et al. analyzed 
necroptosis-associated genes in GEO and TCGA datasets, 
linking necroptosis signatures to chemotherapy sensitivity 
and prognosis (Zhu et al. 2022).

Several substances have been demonstrated to cause 
necroptosis in NSCLC (Chen et al. 2016). Shikonin trig-
gers RIP1-dependent necroptosis, and Kim et al. demon-
strated enhanced efficacy when combined with autophagy 
inhibitors like ATG5 siRNA, 3-MA, or bafilomycin A (Kim 
et al. 2017). Acetylshikonin induces necroptosis through 
phosphorylation of MLKL, RIPK3, and RIPK1, accompa-
nied by mitochondrial dysfunction and ATP depletion (Lin 
et al. 2023). Deoxypodophyllotoxin (DPT) inhibits NSCLC 
cell proliferation and induces necroptosis via mitochondrial 
dysfunction and ROS generation, proving effective in drug-
sensitive and resistant cells (Wu et al. 2013). Similarly, cit-
ronellol promotes necroptosis through TNF-α and biphasic 
production of ROS, inhibiting tumor growth in xenograft 
models (YU et al. 2019). LGH00168, a novel CHOP acti-
vator, induces RIP1-dependent necroptosis via ROS-medi-
ated NF-κB inhibition and ER stress, significantly reducing 
tumor growth in vivo (Ma et al. 2016). HS- 173 selectively 
activates RIP3 and MLKL, inducing necroptosis in RIP3-
expressing NSCLC cells and suppressing tumor growth in 
mouse models (Park et al. 2019). Silibinin (SiL) also triggers 
apoptosis and necroptosis via RIPK1, RIPK3, and MLKL 
activation, significantly reducing NSCLC tumor growth 
in vivo (Guoqing et al. 2024).

The dual roles of necroptosis in cancer offer both chal-
lenges and opportunities. Novel strategies combining 
inducers of necroptosis, like MAM (2-methoxy- 6-acetyl- 
7-methyljuglone), with immunotherapy may enhance anti-
tumor responses (Sun et al. 2019). NecroLncSig models, as 
proposed by Lin et al., represent a promising approach for 
integrating necroptosis biomarkers into personalized treat-
ment strategies (Lin et al. 2024). Lastly, dexmedetomidine-
induced PARP1 activation can potentially target necroptosis 
pathways for NSCLC treatment (Liu et al. 2024).

Autophagic cell death (ACD)

ACD is a CICD in which cellular death culminates through 
excessive autophagy (Kroemer and Levine 2008). ACD dif-
fers from apoptosis, which is mainly caspase-dependent, in 
that it is mediated by the accumulation of autophagosomes 
and autolysosomes elicited by cellular stressors, including 
nutrient deprivation, hypoxia, or therapeutic agents (Mariño 
et al. 2014). ACD can serve as a tumor suppressor, which 
clears damaged cells, but dysregulated autophagy can also 
convey tumor progression or therapy resistance (Patra et al. 
2022). Pivotal roles of regulators, including Beclin- 1, ATG 
proteins, and the PI3 K/AKT/mTOR cascade, in regulat-
ing ACD are indicated, offering therapeutic possibilities, 
especially in cancers resistant to caspase-related therapies 
(Pang et al. 2021; Thapa 2024). Autophagy is an example 
of autophagy’s dual nature because of the critical function 
ATG5 (Pua et al. 2007). Rao et al. showed that ATG5 dele-
tion in a KRasG12D-driven lung cancer model impaired 
tumor progression by inducing oxidative stress and mito-
chondrial dysfunction. However, loss of ATG5 accelerated 
early tumor onset through regulatory T-cell involvement, 
highlighting the complex role of autophagy in tumor devel-
opment (Rao et al. 2014). Similarly, p62/SQSTM1 plays 
a multifaceted role in cancer (Tang et al. 2021). Liu et al. 
reported that curcumin-induced autophagy in NSCLC cells 
reduced p62 levels, downregulated the PI3 K/AKT/mTOR 
cascade, and enhanced apoptosis (Liu et al. 2018).

The mTOR signaling cascade is a central regulator of 
autophagy, providing therapeutic targets for intervention 
(Zou et al. 2020). Wang et al. reported that ursolic acid 
(UA) hindered the mTOR pathway, inducing apoptosis 
and autophagy in NSCLC cells. Autophagy antagonist co-
treatment increased UA’s anticancer properties (Wang et al. 
2020b). Peng et al. found that alpha-lipoic acid suppressed 
tumor growth in NSCLC by activating mTOR-mediated 
inhibition of autophagy (Peng et al. 2020). Furthermore, 
Kim et al. reported that RAD001 (everolimus), an mTOR 
inhibitor, enhanced radiosensitivity by promoting autophagy 
in NSCLC models (Kim et al. 2008).

Autophagy-related ROS production links autophagy to 
cell death mechanisms (Filomeni et al. 2015). Kaminskyy 
et al. reported that autophagy inhibition increased ROS 
levels, amplifying cisplatin-induced apoptosis in NSCLC 
(Kaminskyy et al. 2012). Similarly, Xie et al. demonstrated 
that acid-induced autophagy, facilitated by ROS and ER 
stress, promoted cell survival in NSCLC, while autophagy 
inhibition enhanced apoptosis (Xie et al. 2015). miRNAs that 
regulate autophagy have been identified as potential thera-
peutic targets (Bhat et al. 2023). Rezaei et al. highlighted 
miRNAs that modulate autophagy and influence NSCLC 
progression, offering novel avenues for therapy (Rezaei et al. 
2020). Zhao et al. reported that gefitinib-induced autophagy 
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contributed to resistance in glucocorticoid-resistant NSCLC 
cells (Zhao et al. 2016b). Zou et al. demonstrated that the 
autophagy inhibitor chloroquine enhanced the efficacy of 
erlotinib in NSCLC with wild-type EGFR by inhibiting 
cytoprotective autophagy, as shown in Fig. 2 (Zou et al. 
2013). Additionally, Wang et al. explored how mTOR and 
PI3 K/AKT regulate autophagy in NSCLC, highlighting 
their therapeutic potential (Wang et al. 2022a).

Therapeutic targeting of autophagy has shown poten-
tial for overcoming drug resistance (Chang and Zou 2020). 
EGFR-TKIs such as gefitinib and erlotinib activate cyto-
protective autophagy, limiting their efficacy (Fung et al. 
2012). Han et al. revealed that inhibiting autophagy with 
chloroquine or ATG5/ATG7 siRNAs significantly enhanced 
EGFR-TKI-induced cytotoxicity in NSCLC cells (Han et al. 
2011). Similarly, Tang et al. demonstrated that combining 
dacomitinib with cepharanthine, an autophagic inhibitor, 
enhanced tumor suppression in NSCLC (Tang et al. 2018). 
Furthermore, TUDC increased cisplatin-induced apoptosis 
by mitigating autophagy and ER stress, as reported by Shi 
et al. (Shi et al. 2016). Hypoxia-induced autophagy is a sig-
nificant therapy resistance mechanism (Hill et al. 2023). Wu 
et al. reported hypoxia-enhanced autophagy through HIF- 
1α and HIF- 2α, promoting cisplatin resistance in NSCLC. 

Inhibiting autophagy with 3-MA or ATG5 siRNA restored 
drug sensitivity (Wu et al. 2015). Similarly, Lee et al. dem-
onstrated that hypoxia-induced autophagy contributed to 
cisplatin resistance, which was reversed by LC3B knock-
down (Lee et al. 2015). Radiation-induced autophagy has 
also been linked to resistance mechanisms (Classen et al. 
2019). Karagounis et al. showed that silencing LC3B and 
LAMP2a autophagy inhibition enhanced both radiosensitiv-
ity and chemosensitivity in NSCLC cells (Karagounis et al. 
2016). Wang et al. demonstrated that cardiac glycosides 
promoted autophagy through AMPK and ERK1/2 activa-
tion, inducing tumor suppression in NSCLC cells (Wang 
et al. 2012). SQSTM1/p62 and ATG7-dependent pathways 
have been explored for their roles in therapeutic resistance 
(Ma et al. 2019). Zhang et al. revealed that w09, an inves-
tigational autophagy inducer, caused autophagy that was 
both ATG7-independent and dependent, which encouraged 
apoptosis in NSCLC (Zhang et al. 2021a; Lou et al. 2024).

Several novel compounds have been identified as 
autophagy inhibitors (Konstantinidis et al. 2019). Zhang 
et al. identified CA- 5f, a curcumin-derived compound, 
as a late-stage autophagy inhibitor that caused NSCLC 
cells to undergo selective apoptosis by producing ROS in 
the mitochondria (Zhang et al. 2019). Chen et al. showed 

Fig. 2   Illustrates Erlotinib’s mechanism of action in inhibiting EGFR 
signaling in cancer cells. An untreated cancer cell with constitutively 
active EGFR undergoes phosphorylation, activating the PI3 K/AKT/
mTOR pathway and increasing cell proliferation, survival, angiogene-
sis, tumorigenesis, and genomic instability. Erlotinib treatment inhib-

its EGFR phosphorylation, blocking downstream signaling. This sup-
pression of the PI3 K/AKT/mTOR pathway results in decreased cell 
proliferation and increased apoptosis, demonstrating Erlotinib’s role 
in cancer therapy by targeting EGFR-dependent survival mechanisms
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that juglanin, derived from Polygonum aviculare, induced 
apoptosis and autophagy via TRAIL/DR activation and 
ROS modulation, suppressing NSCLC tumor progression 
(Chen et al. 2017). In NSCLC, autophagic cell death is a 
multifaceted process that serves as a mediator of resistance 
and a tumor suppressor. Targeting autophagy through inhibi-
tors, modulation of mTOR and ROS pathways, or miRNA 
modulation can potentially improve treatment results and 
overcome medication resistance. Continued research into 
the molecular underpinnings of autophagy will provide new 
opportunities for therapeutic innovation in NSCLC (Fig. 2).

Ferroptosis

Iron-dependent lipid peroxidation drives ferroptosis, a con-
trolled form of CICD (Tang et al. 2021a). Ferroptosis differs 
from apoptosis because it involves ROS accumulation and 
oxidative membrane damage of polyunsaturated fatty acids 
(Stockwell 2022). GSH depletion and GPX4 inhibition cause 
enhancement of oxidative stress, which are key drivers (Li 
et al. 2022). It is regulated intricately by pathways in which 
iron homeostasis, lipid metabolism, and antioxidant defence 
pathways perform a crucial part. While preventing the for-
mation of tumors by eliminating malignant cells, cancer cells 
develop resistance to ferroptosis, which is an additional ther-
apeutic challenge (Zhou et al. 2024; Sun et al. 2023). The 
cystine/glutamate antiporter SLC7 A11, a crucial ferropto-
sis regulator, preserves redox equilibrium and shields cells 
from oxidative damage (Lee and Roh 2022). Ferroptosis is 
regulated by the RNA-binding protein RBMS1, according 
to Zhang et al., which enhances SLC7 A11 translation and 
promotes ferroptosis resistance in lung cancer—targeting 
RBMS1-sensitized cells to radiotherapy, highlighting it as 
a therapeutic target (Zhang et al. 2021). Similarly, It has 
been demonstrated that SOX2 protects cancer stem-like cells 
against ferroptosis by upregulating SLC7 A11. Oxidation at 
SOX2’s Cys265 site disrupted its activity, sensitizing cells to 
lipid peroxidation and ferroptosis (Wang et al. 2021).

GPX4 inhibition is central to ferroptosis induction, mak-
ing it a critical therapeutic target (Pan et al. 2022). Wu et al. 
demonstrated that dihydroisotanshinone I (Danshen) causes 
ferroptosis and inhibits GPX4 expression in lung carcinoma 
models, as shown in Fig. 3 (Wu et al. 2021). Similarly, bufo-
talin (BT) targets GPX4, inducing ferroptosis by increas-
ing Fe2⁺ levels and lipid ROS in pulmonary carcinoma cells 
(Zhang et al. 2022b). Kim et al. further emphasized how sus-
ceptible GPX4-overexpressing cells are to RSL3 and other 
ferroptosis stimulants, revealing a therapeutic strategy for 
NSCLC (Kim et al. 2023). Ferroptosis modulation is another 
important function of the NRF2 signaling cascade (Dod-
son et al. 2019; Lin et al. 2016). Hsieh et al. demonstrated 
that ZVI-NPs degrade NRF2 and promote ferroptosis while 
reprogramming the TME to strengthen immunity against 

tumors (Hsieh et al. 2021). Conversely, KEAP1 mutations 
lead to constitutive NRF2 activation, driving ferroptosis 
resistance (Scalera et al. 2022). The CoQ-FSP1 axis was 
found by Lei et al. to be a crucial modulator of resistance 
in lung tumors with KEAP1 mutations, with its inhibition 
sensitizing tumors to radiation (Koppula et al. 2022).

Targeting lipid metabolism also enhances ferroptosis 
(Liang et al. 2022). According to Tang et al., curcumin 
causes ferroptosis in NSCLC cells by boosting lipid per-
oxidation and controlling GPX4 and ACSL4 via autophagy 
activation (Tang et al. 2021b). Wang et al. revealed that 
KRAS-mutant lung cancers are dependent on lipid remod-
eling, with FASN inhibition inducing ferroptosis (Bartolacci 
et al. 2022). LncRNAs also perform an important function in 
ferroptosis regulation. LINC00336 suppresses ferroptosis by 
working as a ceRNA, stabilizing cystathionine-β-synthase 
expression via miRNA sponging (Wang et al. 2019). Simi-
larly, NEAT1 modulates ACSL4 expression, affecting fer-
roptosis sensitivity in NSCLC (Wu and Liu 2021; Nie et al. 
2020). Zhang et al. revealed that miR- 27a- 3p promotes 
NSCLC progression by regulating ferroptosis through SLC7 
A11. Overexpression of miR- 27a- 3p suppressed ferropto-
sis, while its inhibition increased lipid ROS and cell death, 
identifying the miR- 27a- 3p/SLC7 A11 axis as a possible 
target for treatment (Lu et al. 2021). Bartolacci et al. con-
firmed the role of lipid remodeling in KRAS-mutant lung 
cancers, where blocking the Lands cycle-induced ferroptosis 

Fig. 3   Illustrates the crosstalk between ferroptosis and apoptosis, 
highlighting the role of Danshen (dihydroisotanshinone I) in modulat-
ing these cell death pathways. PI3 K/Akt signaling activates TRIP-
Br1, which inhibits ROS accumulation. Excess ROS triggers ferropto-
sis through lipid ROS production, while GPX4 inhibits ROS-induced 
lipid peroxidation. PUFA enhances ferroptosis via PPARγ/SDC- 1, 
which also promotes apoptosis. p53 induces ferroptosis by inhibiting 
SCL7 A11 and promotes apoptosis by upregulating Bax, Apaf- 1, and 
PUMA. Danshen directly enhances apoptosis and suppresses GPX4, 
amplifying oxidative stress to drive cell death
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offers a therapeutic vulnerability (Bartolacci et al. 2022). 
By connecting ferroptosis regulation to patient survival out-
comes, Liu et al. discovered a five-gene profile associated 
with ferroptosis as a predictive tool for NSCLC (Liu et al. 
2021).

Ferroptosis also intersects with immune modulation 
(Tang et al. 2024). Jo et al. demonstrated that plasma-acti-
vated medium (PAM) induces ferroptosis by depleting fer-
roptosis suppressor protein 1 (FSP1), enhancing tumor cell 
death and immune response (Jo et al. 2022). Huang et al. 
further revealed that AKR1 C1 correlates with ferroptosis 
suppression and reduced immune cell infiltration, highlight-
ing its capacity as an NSCLC prognostic indicator (Huang 
et al. 2021).

Emerging compounds such as erianin and curcumenol 
also induce ferroptosis. Erianin has the potential to be a 
natural medicinal agent since it causes ferroptosis in lung 
cancer cells through Ca2 +/calmodulin signaling (Chen 
et al. 2020; Jiang et al. 2024). Likewise, curcumenol reduces 
tumor development in vivo by inducing ferroptosis through 
modulation of the lncRNA H19/miR- 19b- 3p/FTH1 axis 
(Zhang et  al. 2022c). Additional therapeutic strategies 
have emerged for enhancing ferroptosis induction (Chen 
et al. 2024b). Yuan et al. identified YTHDC1 as a tumor 
suppressor that modulates ferroptosis by regulating FSP1 
mRNA stability, suggesting it as a novel therapeutic target 
for NSCLC (Yuan et al. 2023). Tang et al. demonstrated 
that USP35 stabilizes ferroportin and regulates ferroptosis, 
inhibiting lung cancer cells from chemotherapy (Tang et al. 
2021c; Li et al. 2024c). TRIM6 was also identified as a sup-
pressor of ferroptosis through SLC1 A5 targeting, highlight-
ing its role in chemoresistance (Zhang et al. 2023).

Innovative delivery systems have also been developed to 
enhance ferroptosis induction (Xiang et al. 2024b). Dihy-
droartemisinin (DHA) and calcium phosphate were co-
loaded into an inhalable liposome by Wang et al., which 
causes ferroptosis via a cyclic Ca2 + -burst-ER stress-fer-
roptosis mechanism (Fu et al. 2023; Zhao 2025). Feng et al. 
further advanced nebulized nanocatalytic therapy using iron 
nanoparticles to target cancer stem cells, enhancing their 
sensitivity to ferroptosis (Feng et al. 2023). Zhang et al. 
demonstrated that artemisinin derivatives like artesunate and 
dihydroartemisinin target ferroptosis by modulating xCT and 
TFRC, offering effective strategies against NSCLC (Zhang 
et al. 2021b) (Fig. 3; Table 1).

Challenges and future directions

Translation of CICD therapies into clinical practice remains 
met with several challenges, which holds immense prom-
ise for lung cancer therapy targeting CICD pathways. 
CICD pathways such as ferroptosis, necroptosis, and 

autophagy-dependent cell death are subject to complex 
and context-dependent complex and context-dependent 
regulation (Zhou et al. 2020; Dong and Jiang 2024). These 
processes have been demonstrated to exhibit dual charac-
teristics in cancer biology, either promoting or suppressing 
tumor development based on variables such as the TME, 
genetic changes, and metabolic context (Sever and Brugge 
2015; Zhang 2024). In addition to triggering immunological 
responses by generating DAMPs, necroptosis also creates an 
environment conducive to inflammation, advancing tumor 
growth and metastasis. Autophagy, traditionally viewed 
as a cancer cell survival mechanism during stress under 
metabolic or therapeutic conditions, also complicates the 
exploitation of autophagy as a therapeutic target. Its exces-
sive activation also provides a selective advantage for cancer 
cell survival (Yang et al. 2011; Pu et al. 2024). The major 
challenge is to balance activating CICD pathways without 
inducing harmful responses, such as inflammation, immune 
evasion, and therapy resistance (Zhao et al. 2021). A major 
limiting factor is the lack of reliable biomarkers for monitor-
ing CICD activity in lung cancer. However, effective bio-
markers are required to identify patient subpopulations likely 
to benefit from CICD-targeted therapies and assess therapeu-
tic efficacy (Renfro et al. 2016; Hu et al. 2022). However, 
while RIPK1, RIPK3, and MLKL as potential necroptosis 
makers and GPX4 and SLC7 A11 as potential ferropto-
sis markers have been used in preclinical studies, they are 
not broadly applicable in the clinical context (Nicolè et al. 
2022). Application to widespread use is inhibited by the 
variability of their expression across different tumor sub-
types, stages, and microenvironments (Zhang et al. 2022 d). 
Additionally, the spatio-temporal nature of CICD pathways 
necessitates biomarkers to reflect the time and intensity of 
activity in pathways (Gim et al. 2024). Real-time monitoring 
with personalized treatment could be possible with noninva-
sive diagnostic tools, like liquid biopsies or imaging-based 
approaches (Adhit et al. 2023).

However, advances in emerging technologies and inno-
vative therapeutic approaches to targeting CICD pathways, 
coupled with the fact that some of their targets remain drug-
gable, point to the possibility of more effective targeting of 
CICD pathways in lung cancer. The molecular mechanisms 
of CICD are being illuminated by advances in omics tech-
nologies, including transcriptomics, proteomics, and metab-
olomics, and new therapeutic targets are being discovered 
(Dai and Shen 2022). Methods to screen for small molecules 
that modulate CICD, such as ferroptosis, autophagy, and 
necroptosis inducers and inhibitors, are greatly accelerated 
by high-throughput screening (Luo et al. 2024). The dis-
covery expands the therapeutic landscape and opens new 
possibilities to overcome resistance to conventional treat-
ments (Siqueira-Neto et al. 2023). Preclinical studies have 
suggested promise in the use of combination therapies 
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Table 1   This table summarizes studies exploring therapeutic compounds targeting mitochondrial pathways, necroptosis, autophagy, and ferrop-
tosis in lung cancer

Study type Name of the compound Outcome Mechanism CICD References

Mitochondrial path-
ways

Curcumin Increased Bax, reduced 
Bcl- 2

ROS-mediated mito-
chondrial effects

ROS-based strategies Yang et al. 2012)

Baohuoside I Bax/Bcl- 2 ratio 
increased

ROS/JNK/p38MAPK 
pathway

Antioxidant develop-
ment

Song et al. 2012)

Vitexin Reduced viability, 
increased apoptosis

PI3 K/Akt/mTOR 
signaling inhibition

Therapy potential Liu et al. 2019)

Piperine Activated caspase- 9 
and caspase- 3

p53-dependent mito-
chondrial pathway

Selective tumor target-
ing

Lin et al. 2014)

Honokiol and Lonid-
amine

83% tumor reduction 
observed

Mitochondrial com-
plex inhibition

Chemoprevention 
strategy

Zhang et al. 2022a)

Trichostatin A (TSA) Dual pathway apopto-
sis was observed

Mitochondrial dys-
function in NSCLC

Therapeutic potential Kim et al. 2006)

Cold atmospheric 
plasma (CAP)

Apoptosis via 
cytochrome c release

Mitochondrial apopto-
sis modulation

Novel therapeutic 
strategy

Wang et al. 2022b)

Dehydrobruceine B 
(DHB)

S-phase arrest, apopto-
sis induced

Mitochondrial intrinsic 
pathway

Therapeutic agent 
potential

Zhao et al. 2016a)

Dioscin S-phase arrest, DNA 
damage induced

Mitochondrial apopto-
sis activation

Anticancer agent 
potential

Wei et al. 2013)

Necroptosis Shikonin RIP1-mediated death 
enhanced

Autophagy-necroptosis 
synergy

Combination strategies Kim et al. 2017)

NO.0449–0145 Induced necroptosis 
and apoptosis

APE1 inhibition 
mechanism

Overcomes drug 
resistance

Long et al. 2021)

Citronellol Increased TNF-α, 
RIP1, and RIP3

TNF-α pathway activa-
tion

Necroptosis-based 
therapy

YU et al. 2019)

Acetylshikonin Promoted RIPK1/
RIPK3/MLKL 
necroptosis

ROS and mitochon-
drial stress

Necroptosis-targeted 
therapy

Lin et al. 2023)

LGH00168 ER stress and RIP1 
necroptosis

ROS-mediated necrop-
tosis

Necroptosis-based 
strategy

Ma et al. 2016)

Silibinin Enhanced necroptosis, 
mitochondrial stress

RIPK1/RIPK3 path-
way activation

Dual pathway induc-
tion

Zhang et al. 2024)

Autophagic cell death EGFR-TKIs Reduced drug effec-
tiveness

PI3 K/Akt/mTOR 
pathway effects

TKI therapy improve-
ments

Han et al. 2011)

Cisplatin Increased apoptosis 
with inhibitors

Autophagy-apoptosis 
synergy

Cisplatin resistance Shi et al. 2016)

Piperlongumine Enhanced apoptosis 
with inhibitors

PI3 K/Akt/mTOR 
pathway inhibition

Chemoresistant cell 
targeting

Kim et al. 2008)

CA- 5f Selectively inhibited 
autophagy

Autophagosome-
lysosome fusion 
inhibition

NSCLC treatment 
potential

Zhang et al. 2019)

Ursalic acid (UA) Induced autophagy and 
apoptosis

mTOR pathway inhibi-
tion

Therapeutic combina-
tion

Wang et al. 2020b)

Cepharanthine Enhanced autophagy-
apoptosis combina-
tion

Autophagy inhibition 
synergy

Combined therapeutic 
strategy

Tang et al. 2018)

Ferroptosis Curcumin Increased lipid peroxi-
dation

Autophagy-ferroptosis 
activation

Synergistic apoptosis Tang et al. 2021b)

Dihydroisotanshinone I Apoptosis and ferrop-
tosis induced

Apoptosis-ferroptosis 
effects

Dual-action therapy Wu et al. 2021)

Artesunate and dihy-
droartemisinin

Downregulated xCT, 
increased ROS

Ferroptosis and apop-
tosis synergy

Drug-resistance target-
ing

Zhang et al. 2021b)

Erianin Suppressed cell growth 
and migration

Ca2⁺/CaM-mediated 
ferroptosis

Ferroptosis induction Chen et al. 2020)

Bufotalin Induced ferroptosis via 
GPX4

GPX4 ubiquitination 
mechanism

Ferroptosis enhance-
ment

Zhang et al. 2022b)
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using CICD targeting agents with established treatments, 
such as chemotherapy, radiotherapy, or immune checkpoint 
inhibitors (Yu et al. 2022). Several preclinical and early-
phase clinical studies targeting CICD have been conducted 
in lung cancer. Ferroptosis inducers, including erastin and 
RSL3, have shown efficacy in NSCLC models, especially 
against resistance to EGFR inhibitors. Combining erastin 
with osimertinib increased tumor regression in xenograft 
models of resistant lung adenocarcinoma. The proteasome 
inhibitor bortezomib has also been studied in clinical trials 
(NCT00431210) for NSCLC. Given its mitochondrial dys-
function and ROS accumulation mechanism, it is a managea-
ble toxicity with preliminary efficacy (Voortman et al. 2007). 
Hydroxychloroquine (HCQ) inhibitors, as well as autophagy 
inhibitors, are under investigation in combination with 
chemotherapy or EGFR-TKIs (e.g. NCT02521051) as treat-
ments to overcome therapy resistance through autophagy 
inhibition (Liu et al. 2020). Necroptosis-related therapies 
are being explored in immune-oncology, as RIPK3 expres-
sion has been associated with better immune infiltration and 
outcomes in patients treated by immune checkpoint inhibi-
tors, suggesting they are prognostic and therapeutic targets 
of necroptosis pathways (Thapa et al. 2024).

In some cases, immune checkpoint inhibitors combined 
with ferroptosis inducers have shown synergistic effects in 
which tumor cell killing is improved while increasing anti-
tumor immunity (Zheng et al. 2023). Similarly, autophagy 
modulator medications have made lung cancer cells more 
sensitive to chemotherapy and radiosensitivity. Such com-
binations may accelerate therapeutic efficacy or reduce 
the mechanisms by which single-agent therapies produce 
resistance (Pritchard et al. 2012). In addition, progress in 
drug delivery systems allows greater precision and effec-
tiveness of CICD modulation (Adepu and Ramakrishna 
2021). CICD-targeting drugs are being developed in nan-
oparticle-based delivery systems and tumor-targeted thera-
pies that improve the pharmacokinetics and biodistribution 
of CICD-targeting drugs, decrease off-target effects, and 
improve therapeutic outcomes (Peng et al. 2024). These 
platforms facilitate the co-delivery of the CICD inducer 
and conventional or immune modulation agents to combat 
lung cancer using a combinatorial strategy (Boone et al. 
2022). Recent studies in CICD targeting have highlighted 
the potential synergistic opportunity of combining them with 
standard therapies. Specifically, NSCLC cells are sensitive 
to chemotherapy when they are sensitized with ferroptosis 
inducers. RSL3, in combination with cisplatin, increased 

lipid peroxidation and decreased tumor growth in the pre-
clinical model (Yuan et al. 2025). The autophagy inhibitors 
chloroquine and chloroquine analogues increased radiosen-
sitivity in NSCLC xenograft studies, showing that inhibi-
tors disrupt cytoprotective autophagy in radiotherapy (Saleh 
et al. 2016). Combining erlotinib with autophagy inhibition 
using ATG5 siRNA or chloroquine significantly increased 
cytotoxicity in EGFR mutant NSCLC (Zou et al. 2013). The 
pairing of CICD modulation with immunotherapy has been 
very promising as well. Luo et al. showed that a combi-
nation of ferroptosis inducers and anti-PD-L1 checkpoint 
blockade potentiated its anti-tumor immune response and 
T-cell infiltration in murine lung cancer models (Luo and 
Xu 2022). These findings support the proposed rationale of 
combinatorial regimens of CICD modulation and existing 
strategies in lung cancer.

Conclusion

In conclusion, this review focuses on key CICD mechanisms, 
including cell death pathways, necroptosis, ferroptosis, and 
autophagy-dependent cell death, that can achieve apoptosis-
resistant cancer cell elimination. These mechanisms operate 
independently of caspases and represent unique therapeutic 
opportunities. RIPK1, RIPK3, and MLKL, coordinated by 
necroptosis, stimulate anti-tumor immunity. Similar to fer-
roptosis, drug resistance may be overcome by the process of 
radical-mediated ferroptosis, especially targeting GPX4 and 
SLC7 A11. Autophagy has dual therapeutic promise in lung 
cancer because, although it is a survival mechanism under 
stress, over-activation of it can result in cell death. CICD 
has the potential to overcome the limitations of standard 
lung cancer treatments through anti-apoptotic bypass and 
modulation of the TME, providing a therapeutic target. 
For example, the co-administration of ferroptosis inducers 
with immune checkpoint inhibitors or co-administration of 
necroptosis modulators with chemotherapies causes syn-
ergistic effects in preclinical models that simultaneously 
increase both cell death and anti-tumor immunity. Similarly, 
it has been demonstrated that altering autophagy can make 
cancer cells more sensitive to chemotherapeutics and radia-
tion. While progress has been made, there are still barriers 
to adapting CICD pathways into clinical practice. However, 
since specific pathways, like necroptosis and autophagy, 
operate in dual roles, immoderate regulation can lead to ther-
apeutic benefits over adverse effects. Necroptosis improves 

Table 1   (continued)

Study type Name of the compound Outcome Mechanism CICD References

Nortriptyline hydro-
chloride

Reduced RBMS1 pro-
moted ferroptosis

SLC7 A11 ferroptosis 
evasion

Ferroptosis-based 
therapy

Zhang et al. 2021)
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immune activation at the expense of potentially proinflam-
matory effects that inadvertently promote tumor progression. 
Therefore, targeting autophagy also must be precise enough 
to regulate the balance to encourage cell death rather than 
survival. Furthermore, a critical barrier to clinical imple-
mentation is the lack of robust biomarkers to monitor CICD 
activity and predict treatment responses.
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