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A B S T R A C T   

3D concrete printing (3DCP) attracts significant attention as an innovative manufacturing technology for the 
construction industry. As one of the challenges in 3DCP, failure mechanisms of 3D printed concrete structures 
were not well understood yet and hard to predict. The three-dimensional finite element (FE) method is an 
effective method to simulate such a layer-by-layer process. However, some existing technical issues in FE 
modelling, including additional initial deformations, failure identification, selection of material models, concrete 
foundation interactions and initial imperfections, need to be addressed for accurate simulation of 3DCP. In this 
study, FE models using a novel tracing element approach are developed to capture mechanical behaviours and 
failure modes of typical 3D printed concrete structures. The developed FE models was validated by comparing 
the obtained numerical results with those data available in literature. Furthermore, four material constitutive 
models are investigated analytically and numerically to compare their applicability in modelling 3D printed 
concrete structures. The obtained results show that the Mohr-Coulomb and Concrete Damage Plasticity (CDP) 
models can accurately predict failure behaviours of 3D printed concrete structures.   

1. Introduction 

3DCP is a process of successive layer-by-layer extrusion of fresh 
concrete materials to build structures without having to use the form-
work as in the traditional manufacturing of concrete structures. It has 
environmental and economic benefits when compared with traditional 
cast-in-place concrete processes. Furthermore, without using formwork, 
more freedoms in design can be acquired, along with accelerating the 
construction processes and saving on-site labour work [1–3]. Hence, in 
recent years, research on 3DCP technology for building up concrete 
structures has dramatically attracted a wide range of interests from both 
academia and engineers in the construction industry worldwide [4,5]. 

In the 3DCP process, the printed object must self-support from the 
moment of deposition onwards due to no formwork. This requires that 
3D printed cementitious materials have a good enough ‘buildability’, 
which is their ability to keep geometrical stability subject to increasing 
gravitational loads during the layer-by-layer process [6]. Roussel [7] 
developed analytical models to predict the maximum printing height of 
a 3D printed product. The results suggested that satisfactory buildability 
for the 3D printed materials can be achieved via high yield stress and 
structuration rate. Le et al. [8] and Bong et al. [9] evaluated the 

buildability of 3D printable materials through qualitative buildability 
trials where regular cross-sectional columns were printed without 
noticeable deformations as high as possible. However, it remains very 
challenging to predict whether a product of 3DCP can be printed without 
excessive deformations and failures [10]. 

To determine the appropriate buildability of 3D printable materials, 
numerical modelling and simulations have been employed to simulate 
the 3DCP processes, which can avoid the expensive and time-consuming 
trial and test. Its prerequisite is to select a proper elastoplastic material 
model to characterise the early-age mechanical behaviour of concrete 
used in 3DCP. Di Carlo [11] utilized the Drucker–Prager yield criterion 
and time-dependent material properties to characterise the mechanical 
behaviours of concrete used in contour crafting, which was cured within 
288 min after deposition. Xiao et al. [12] established a FE model by 
taking advantage of the CDP model and the traction-separation law to 
explore the effects of interfacial bond properties on the anisotropic 
mechanical behaviour of 3D printed concrete. Wolfs et al. [13] devel-
oped a numerical model to analyse the mechanical behaviour of fresh 3D 
printed concrete in the range of 0 to 90 min after material deposition. 
The model was based on a time-dependent Mohr-Coulomb failure cri-
terion and linear stress–strain behaviour up to failure. After the research 
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reported in [13], the Mohr-Coulomb constitutive model was widely 
employed to characterise the plasticity of cementitious material in 3DCP 
because the parameters in the model are relatively simple to measure 
[14]. Despite this, only a few constitutive models were investigated, and 
a comprehensive understanding of the applicability of various consti-
tutive models to 3D printed concrete is lacking. 

To simulate the 3D concrete printing process and predict the failure 
height of 3D printed concrete structures accurately, Wolfs et al. [13] 
developed FE models based on their experimental work, where the 
model change function was employed to simulate the layer-by-layer 3D 
printing process. However, they ignored the influences of compressive 
behaviours of concrete specimens in material tests, leading to large 
discrepancies between numerical and experimental results. Jayathilak-
age et al. [15] experimentally investigated the failures of 3D printed 
concrete structures and developed a finite difference model (FDM) to 
simulate the process. They proposed a buildability criterion with high 
accuracy, but it may not be suitable for lower aspect ratios existing in 
3DCP layer geometries. On top of the numerical work from Wolfs et al. 
[13,16], Ooms et al. [17] devised a parametric modelling strategy to 
simulate the 3DCP process. The technical issue of additional initial 
deformation caused by tie constraint was pointed out (more details can 
be found in Section 2.5). To solve this problem, the contacted-based 
interaction, instead of the tie constraint, was used to simulate the 
inter-layer contact condition. However, damping was introduced in the 
implicit analysis, decreasing the reliability of the FE model. Recently, 
Liu and Sun [18] devised a numerical model to predict the buckling 
failure of a 3DCP cylinder, where the interfacial area was proposed to 
simulate the cross-section shape of the printed layer. However, their FE 
model required enormous computing resources due to its complexity. 
Moreover, the modelling methods of concrete foundation interactions 
and initial imperfections, as well as identifying failures of 3D printed 
concrete structures, were various and even vague in existing limited 
studies [13,15–19]. Related optimal modelling methods and their un-
derlying mechanisms have yet to be deeply investigated [20,21]. Hence, 
a comprehensive understanding of the modelling of 3DCP needs to be 
improved, and numerical methods need to be developed to accurately 
simulate the 3DCP process and capture the mechanical behaviours of the 
3D printed concrete. Specifically, in this research, a new tracing element 
approach will be devised to mitigate the unwanted additional initial 
deformations in 3DCP’s FE modelling to improve accuracy. 

This study aims to sort out main technical issues in FE modelling and 
simulations of 3DCP, including additional initial deformations, failure 
identification, selection of material models, concrete foundation in-
teractions and initial imperfections. 3D FE models are devised to accu-
rately simulate the layer-by-layer 3DCP processes considering various 
material properties and boundary conditions. The tracing element 
approach is developed to mitigate the influences of initial deformations. 
The developed models are further used to investigate the failure mech-
anisms and behaviours of typical 3D printed concrete structures. Four 
3D printed concrete structures are selected to investigate numerically to 
demonstrate the effectiveness of the devised 3-D FE models. The nu-
merical results are compared with those reported in literature to validate 
those models. Four constitutive models are investigated analytically and 
numerically to compare their applicability in characterising mechanical 
behaviours of fresh concrete used in 3DCP. 

This paper is structured with five sections. Section 2 introduces the 
FE modelling of 3DCP using the tracing element approach. Section 3 
conducts the FE analysis based on the FE modelling of four typical 3D 
printed concrete structures, including validation of models, failure 
analysis and identification, the effectiveness analysis of the proposed 
tracing element approach, and investigating the influence of bottom 
boundary conditions. Section 4 carries out the theoretical study of 
various constitutive models used to characterise the early-age mechan-
ical behaviours of 3D printed concrete. Section 5 draws conclusions, lists 
the limitation of the current modelling method, and makes recommen-
dations for future work. 

2. FE modelling using novel tracing element approach 

In this study, a series of 3D FE models were developed to simulate 
layer-by-layer 3DCP processes using the novel tracing element 
approach. To improve the accuracy of the simulation of 3DCP, five key 
aspects, including additional initial deformations, identification of fail-
ure, selection of material models, concrete foundation interactions, and 
initial imperfections in 3D FE models were carefully considered. The 3D 
FEA process and methodology using the tracing element approach are 
depicted in Fig. 1, where those five aspects mentioned above are 
underlined. The 3D FEA process includes three steps: a) pre-processing 
(preparation); b) processing (solution); and c) post-processing (anal-
ysis). The pre-processing step includes defining geometric models, ma-
terial models and boundary conditions. The processing step is to solve 
equilibrium equations based on adding elements for simulating layer-by- 
layer 3DCP processes. In the post-processing step, the failures of 3D 
printed concrete structures can be identified and their mechanical be-
haviours can be captured accurately. 

2.1. Geometric models 

In pre-processing step, the 3D printed object is built as a ‘part’ ac-
cording to its geometry. By ‘partition’, the part is divided into slices, 
which are used to simulate printed layers or their portions – segments. 
To precisely simulate the 3D printing process, the FE model was 
developed using a segment-by-segment addition process using the well- 
known element birth and death technology, in which the elements are 
added into the simulation process set by set. Every layer of 3D printed 
object is divided into four segments to balance simulation accuracy and 
computational cost [17]. When virtual printing starts, the 3D printed 
object is removed using the model change function available in Abaqus/ 
Standard [22]. Then each segment is added in a single step following the 
printing sequence along a pre-defined print path. 

2.2. Material models 

Table 1 lists the values of crucial material parameters of 3D printed 
concrete. To formulate the elastoplastic behaviours of the concrete 
materials, the Mohr-Coulomb criterion [23] was commonly adopted 
[13,15–18], which is 

τy = C(t)+ σn • tanφ (1)  

where, C(t) is the cohesion yield stress between particles bonded by 
cement, and φ is the internal friction angle caused by the frictional 
resistance and interlocking between internal particles. The shear yield 
stress and acting normal stress are given by τy and σn, respectively. 

To characterise the elastic behaviours of concrete before failure, the 
Young’s modulus E(t) and Poisson ratio ν are employed. It’s important to 
note that time-dependent material models for Young’s modulus E(t) and 
cohesion yield stress C(t) were adopted to describe the thixotropic be-
haviours of concrete, where t denotes the time elapsed after extrusion. 
The thixotropy of cementitious materials enables the strength and 
stiffness to increase over time, with the rate of increase known as the 
“structuration rate,” dependent on material compositions. In this model, 
each printed segment is characterised by an amplitude function using a 
field variable to simulate the material evolution in the 3D printing 
process. In addition, three other constitutive models, including the von 
Mises model, Drucker-Prager model, and CDP model, are investigated in 
Section 4 to compare their applicability in characterising the early-age 
mechanical behaviours of 3D printed cementitious materials. 

2.3. Boundary conditions 

The fixed bottom and contact-based interaction are commonly used 
to define the boundary condition between the print bed and the first 
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layer [17,18,20]. In the latter case, the normal behaviour is defined as 
‘hard’ contact and the tangential behaviour can be defined as rough or 
penalty with a friction coefficient. Slip in the first concrete layer was 
observed in [13], suggesting that the contact-based interaction might be 
more suitable for 3DCP simulation. 

Initial imperfections are artificially introduced to simulate the geo-
metric nonlinearity of actual 3D printed structures. Specifically, a 
bifurcation analysis of the 3D printed object is performed to derive its 
buckling modes. By editing the “imperfection” keyword available in 
Abaqus/Standard [22], the first buckling mode is typically integrated 
into the model to serve as the initial imperfection profile, and a small 
imperfection amplitude, such as 0.1 %, can be applied. 

2.4. Processing 

The choice of analysis type depends on the underlying assumptions. 
For simulating the printing process with tie constraints (or the common 
node technology) applied, static, implicit analysis is employed. In this 
scenario, automatic stabilization with default settings is used, elimi-
nating the need for significant numerical damping present in dynamic 

implicit analysis [17]. The numerical equation of equilibrium is 

K × ΔD = ΔF (2)  

where, K is the material stiffness matrix, dependent on the material 
properties, ΔD is the incremental displacement based on boundary 
conditions of printing system, and ΔF is the incremental loading based 
on existing element force. 

However, if the tie constraint is simply used, the bottom of the added 
segment would suffer additional initial deformations, decreasing the 
accuracy of incremental displacement ΔD, as shown in Fig. 2. More 
specifically, when the new segment is added, its bottom nodes would be 
pulled down towards the deformed model due to the common node 
technology. In contrast, its top nodes would be activated in the unde-
formed position of the predefined print path. As a result, the bottom 
elements would be severely distorted and suffer additional initial de-
formations. In such a case, the stress state of 3D printed concrete cannot 
be accurately predicted, whether the reactive type is activating with 
strain or strain-free [13,16,17]. 

Essentially, the issue of additional initial deformation is involved 
with boundary conditions. Let L̃n be the domain of the nth concrete layer 
with the boundary ∂L̃n, as shown in Fig. 3 (a). In this case, when the nth 

concrete layer is added to the model, the equation of equilibrium and 
boundary conditions are 
{

K × ΔD = ΔFinL̃n
BCon∂L̃n

(3)  

where BC represents boundary conditions. In the y direction, BC should 
be 

Fig. 1. FE Model methodology on 3DCP using tracing element approach.  

Table 1 
Crucial material parameters of the time-dependent concrete materials 
[13,15,16].  

Model name E(t) (kPa) v C(t) (kPa) φ (◦) Ψ (◦) 

Wall 1 and Wall 2 1.705t + 39.48  0.3 0.0636t + 2.6 3 13 
Ring 1 1.2t + 77.9  0.3 0.058t + 3.05 20 13 
Ring 2 7.4t + 51.6  0.3 0.002t + 0.3 42 0.7  
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uy = ΣD(t) (4)  

where, uy refers to the displacement boundary condition, and ΣD(t) re-
fers to the vertical accumulated compressive deformation of previously 
printed layers. 

However, the displacement boundary conditions of the nth concrete 
layer in the y direction in previous conventional methods simulating 
3DCP (see Fig. 3 (b)) are 
{

uy = ΣD(t)on∂L̃n,b

uy = 0on∂L̃n,¬b
(5)  

where ∂L̃n,b refers to the bottom boundary and ∂L̃n,¬b refers to the 
boundary except the bottom. The uy = ΣD(t) on ∂L̃n,b is caused by the tie 
constraint between the adjacent layers. The uy = 0 on ∂L̃n,¬b is because 
the concrete layer L̃n is added to its undeformed position of the pre-
defined print path. The difference in boundary conditions leads to 
additional initial deformation. 

2.5. Tracing element approach 

The tracing element approach is developed to address the issue of the 
additional initial deformations. It allows the newly activated concrete 
segments to be added above the already-deformed printed concrete 
without additional initial deformations. The “tracing element” is the 
duplicated element for elements of the 3D printed object. By editing the 
keywords “Element copy” in the input file [22], tracing elements are 
created and share the same nodes with elements of 3D printed object but 
have different element numbers. Besides, the sole material property 
essential for tracing elements is an extremely low elastic modulus, e.g., 
10− 5 times of the initial Young’s modulus E(t) (t = 0) of fresh concrete. 
This minimal stiffness ensures that the presence of these tracing ele-
ments has no impact on the calculation results of the original structure 
[24]. There is no need to define the density for those tracing elements, 
mitigating the influence of gravity. However, when modelling 3D 
printed concrete structures with complex geometries, such as a dome, 
the small Young’s modulus may result in conditioning issues for stiffness 
matrices, leading to substantial alterations in stress distribution. Hence, 
the current tracing element approach is only a priori limited to 

structures with simple geometries, such as wall and ring structures. 
The proposed tracing element approach involves two steps: (a) 

before printing the concrete layer and (b) after printing the concrete 
layer, as shown in Fig. 4. At the end of the step of printing the (n-1)th 

layer L̃n− 1, the displacement boundary conditions ∂L̃n− 1 in y direction is 
uy = ΣD(t). For tracing element of the nth layer T̃n, it has the same 
displacement boundary condition in the y direction with L̃n− 1 due to the 
tie constraint (or common node technology). When printing the nth 

concrete layer L̃n, L̃n inherits the displacement boundary conditions of ̃Tn 
as they share the element nodes. 

Fig. 5 provides a comparison on the FE modelling with and without 
using the tracing element approach. As shown in Fig. 5 (b), there are 
three parts in a FE model of a 3D printed concrete structure: the tracing 
elements, the printed bed, and the concrete elements of the 3D printed 
structure. When the printing begins, all concrete elements are removed 
by model change, leaving the print bed and tracing elements. Then, the 
concrete elements are added to the model segment-by-segment and 
deformed under gravity. Meanwhile, the tracing elements move down-
wards with the already-added concrete elements. The newly added 
concrete elements would be activated at the position of responding 
tracing elements since the tracing elements and concrete elements share 
the same nodes. In such a case, the tracing elements prevent the 

Fig. 2. The additional deformation of the newly printed layer [17].  

Fig. 3. Illustration of a domain of one concrete layer with its boundary.  

Fig. 4. The principle of the tracing element approach.  
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additional initial deformations and calibrate incremental displacements 
ΔD of concrete elements. 

3. Finite element analysis of 3DCP 

3.1. 3D printing of typical concrete structures 

Four 3D printed concrete structures reported in literature, including 
two straight wall structures (namely Wall 1 and Wall 2) [16] and two 
ring structures (namely Ring 1 and Ring 2) [13,15], were selected as 
typical concrete structures to investigate the mechanical behaviours of 
3D printed concrete structures and investigate the advantages of the 
presented modelling techniques. Their dimensions are given in Table 2. 

Figs. 6, 7, and 8 show the pictures and 3-D FE models of Wall 1, Ring 
1, and Ring 2 (the picture of Wall 2 was not shown in [16]). The FE 
models were developed using 8-node 3-D solid elements (C3D8), with a 
mesh size of 10 mm. The mesh size was determined through mesh 
sensitivity analyses, utilizing mesh sizes of 5, 10 and 15 mm. The results 
depicting strain energy with respect to the mesh size of Wall 1 are 
illustrated in Fig. 9 (a). It is evident that three mesh sizes exhibit com-
parable strain energy before and at the point of failure. A discrepancy 
emerges at the 24th layer, indicating the effects of mesh sizes on post- 
buckling behaviours. However, it is important to note that this varia-
tion does not compromise the efficacy of the proposed FE models in 
accurately capturing and identifying failure. Consequently, it can be 
concluded that the mesh size adopted in the manuscript is representative 
and suitable for the intended analysis. 

Additionally, a sensitivity analysis was performed on the Young’s 
modulus of the tracing elements to assess its impact on the modelling 

accuracy. Three different values, 10− 4, 10− 5 and 10− 6 times of the 
initial Young’s modulus of fresh concrete, were employed for this 
analysis. The relationships between strain energy and printing layers are 
depicted in Fig. 9 (b). Notably, three curves corresponding to the 
different Young’s modulus exhibit a high degree of overlap throughout 
the entire printing process, indicating the negligible effect of Young’s 
modulus for tracing elements. 

3.2. Validations of FE models and discrepancy analysis 

Using the FE modelling techniques mentioned earlier, the printing 
processes of four 3D printed structures were simulated. Table 3 shows 
their failure layers in experiments and numerical simulations from the 
current model and other researchers. The FE simulation results from the 
current model agree well with the experimental results. Fig. 10 (a)-(c) 
show the comparison between experimental and numerical results of the 
failure modes of Wall 1, Ring 1 and Ring 2. Evidently, the numerical 
model can capture the failure behaviours effectively, and the failure 
modes in the FE models are also in good agreement with the experi-
mental results, such as the lateral collapse of Wall 1, buckling of Ring 1 
and the extreme crush at the bottom of Ring 2. Specifically, regarding 
Ring 1, the maximum lateral displacement of printed ring structures 
occurred at the 12th-13th layer within a range of approximately 12–18 
mm, and the maximum printed height reached approximately 270 mm 
by the 29th layer [13]. In the proposed FE model of Ring 1, the predicted 
maximum lateral displacement is 13 mm on the 12th layer, while the 
maximum printed height is 262,6 mm on the 28th layer. (Detailed in-
formation for Ring 2, Wall 1, and Wall 2 was not provided in [15,16].) 
The harmonious concordance between the experimental and numerical 
results indicates that the developed FE model with the novel tracing 
element approach can simulate the 3DCP processes accurately. 

The noticeable discrepancy among the predicted results of Ring 1 
using various numerical methods can be observed in Table 4. Wolfs et al. 
[13] suggested that this discrepancy could be explained by the geometry 
being sensitive to imperfections and overestimating the material prop-
erties. To further investigate various modelling methods and find the 
optimal strategies, a comparison of the current model with FE models 
available in literature [13,17,18] is provided in Table.4. Two factors 

Fig. 5. The comparison between without and using the tracing element approach in simulations of 3DCP.  

Table 2 
The dimensions of 3D printed concrete structures.  

Model Length (mm) Diameter (mm) Width (mm) Layer Height (mm) 

Wall 1 1000 – 60 9.5 
Wall 2 5000 – 60 9.5 
Ring 1 – 500 40 10 
Ring 2 – 320 40 10  
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could be attributed to the disparity among different numerical pre-
dictions. The first one is the additional initial deformation. The current 
study mitigated it by the tracing element approach (see Sections 2.5 and 
3.3). 

Another reason is the identification of the failure. In practice, once 
the buckling initiates at the structure, it will collapse rapidly due to the 
second-order effect of the bending moment and its low stiffness. In the 
current study, the mutations of strains are employed to identify the 
failure. When the elastic buckling happens, the mutations of strains can 
be captured simultaneously (see Section 3.2). However, in [13,17], the 
failure was identified when (out of plane) deformations were equal to a 
predefined threshold. This means the printing process would only stop 
once a more considerable deformation occurs, even though the elastic 
buckling happens. Moreover, no artificial initial imperfection was 
defined in their model, further extending the buckling development and 
delaying the more considerable deformation. 

3.3. Failure analysis and identification 

The two typical failure modes of 3D printed concrete structures are 

elastic buckling and plastic collapse [14,25]. Fig. 11 (a)-(d) show me-
chanical states (including stresses and deformations) of four 3D printed 
concrete structures before and after failures with and without initial 
imperfection. It can be found that the failure modes of Wall 1, Wall 2 and 
Ring 1 are elastic buckling, while Ring 2 is plastic collapse. 

Elastic buckling is defined as a loss of equilibrium of forces and 
moments, initiating uncontrolled deformations or displacements, 
whereas plastic collapse occurs when the material stress reaches the 
yield stress, resulting in plastic strain. Fig. 12 shows the plastic strain 
(PE) distribution of Ring 2 and Wall 2 when failures occur. No PE was 
found in Wall 2, although it collapsed laterally with a 38.3 mm 
displacement at the top, meaning the wall failed due to geometric 
nonlinearity. Conversely, a maximum PE of 3.2 × 10− 4 is found in the 
bottom elements in Ring 2 without any structural buckling, which 
means the material nonlinearity contributes to the failure. Thus, the PE 
of concrete elements at failure time can be used in post-processing to 
identify failure modes of 3D printed structures. 

Fig. 13 shows the development of von Mises stresses, logarithmic 
strains, and plastic strain of bottom elements in Wall 1 and Ring 2. It can 
be observed that the 3D printing process can be divided into the linear 

Fig. 6. The picture and FE model of Wall 1 [16].  

Fig. 7. The picture and FE model of Ring 1 [13].  

Fig. 8. The picture and FE model of Ring 2 [15].  
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and failure stage, regardless of the failure mode. The linear phase refers 
to the period from the start of printing to the occurrence of failure. 
During the linear stage, the von Mises stresses and logarithmic strains of 
the bottom elements develop almost linearly, and no plastic strain 
generates. When printing the failure layer (the 23rd layer for Wall 1 and 
the 11th layer for Ring 2), stresses and logarithmic strains increase 
sharply, and the plastic strains are generated. Hence, the mutations of 
strains, including logarithmic and plastic strains, can be considered a 
critical index to identify the failure of 3D printed concrete structures for 
both elastic buckling and plastic collapse. 

Introducing the initial imperfections can change the failure- 
deformation shapes of 3D printed concrete structures failing in elastic 
buckling. As shown in Fig. 11, when introducing the initial imperfec-
tions, the failure-deformation shapes of Wall 1, Wall 2, and Ring 1 
changed from symmetrical vertical compression and lateral bulge to 
sizeable out-of-plane deformation, closer to the experimental phenom-
enon. However, no apparent change in the failure-deformation shape of 
Ring 2 can be observed since plastic collapse is not sensitive to the 
geometrical change - initial imperfections. Essentially, initial imperfec-
tions exist in actual structures and cause the p-δ effect during the loading 
stage, reducing the buckling strength of the structures. 

3.4. Effectiveness analysis of the tracing element approach 

The effectiveness of the tracing element approach in mitigating the 
effects of additional initial deformations is investigated in three aspects: 
avoiding the occurrence of additional initial deformations, the stress 
distribution when the structures fail and the predicted failure layer. 

Fig. 14 shows each layer thickness of Wall 1 when printing the 22nd and 
23rd layers, which is the time just before the failure and the occurrence 
of the failure, respectively. It can be found that when printing the 22nd 

layer, initial deformations exist in the top 10 layers of Wall 1 using the 
traditional tie method: their thicknesses are much more than 9.5 mm, 
the original thickness of one layer. While using the tracing element 
approach, the thicknesses of printed layers are close to or less than 9.5 
mm, which is closer to the reality that the printed layers are in 
compression due to the gravitational load from themselves and the 
newly printed layers. Similarly, when printing the 23rd layer, the addi-
tional initial deformations also happen in the top six layers of the model 
using the traditional tie method. While using the tracing element 
approach, each layer is thinner than 9.5 mm. Consequently, the tracing 
element approach can effectively avoid the appearance of initial defor-
mation. It also can be observed that the thicknesses of the bottom layers 
of the model using the tracing element approach are more continuous, 
which matches reality more. It is meaningful to note that the influence of 
the initial deformation exists in each layer of FE models, but its influence 
on the bottom layers is covered up because they are subjected to more 
pressure from the upper layers. 

The additional initial deformation would be pronounced when 
printing the failure layer because of the accumulation of the deforma-
tion of each layer and the instantaneous downward displacement at the 
time of failure. Fig. 15 shows the comparison of the deformation of Wall 
1 by using the tracing element approach or not. In the case of the 
traditional method, the elements of the newly added layer are severely 
distorted, and their displacements are not continuous with previously 
printed layers due to the excessive initial deformation. While using the 
tracing element approach, no prominent distorted element can be 
observed, and the displacement field is more coordinated. 

In predicting the failure layer, the advantage of using the tracing 
element approach is also evident. Table 5 shows the predicted failure 
layers of four 3D printed concrete structures using the tracing element 
approach or not. It can be found that the predicted layers using the 
tracing element approach are closer to the experimental results and 
almost higher than that of models using the traditional method. This is 
because the additional initial deformations mean increasing thicknesses 
of layers, and the accumulation of the increasing thicknesses of all layers 
causes a higher height of 3D printed concrete structures, leading to the 
underestimation of the predicted failure layer. 

3.5. The influence of concrete foundation interactions 

To investigate the influence of the concrete foundation interaction 

Fig. 9. Strain energy sensitivity analyses.  

Table 3 
The failure layer derived by different methods.   

Wall 1 Wall 
2 

Ring 1 Ring 2 

Experimental finding 21 and 
22 

27 29 10 and 
11 

Numerical prediction from current 
study 

23 25 28 11 

Numerical prediction from Wolfs et al. 
[13,16] 

20 23 46 – 

Numerical prediction from 
Jayathilakage et al. [15] 

– – – 10 

Numerical prediction from Ooms et al. 
[17] 

22 – 48 and 
49 

– 

Numerical prediction from Liu and 
Sun [18] 

24 – 29 –  

D. An et al.                                                                                                                                                                                                                                       



Engineering Structures 299 (2024) 117104

8

Fig. 10. Comparisons between experimental and numerical results of deformations of 3D printed concrete structures.  

Table 4 
A comparison of the current model with FE models available in literature [13,17,18].  

Model Ring 1 in this study Ring 1 in [13] Ring 1 in [17] Ring 1 in [18] 

Predicted failure 
layer 

28 46 48 / 49 29 

Initial deformation Removed by tracing element 
approach 

Exist Exist/ Removed by contact-based 
interaction 

Removed by contact-based 
interaction 

Identification of 
failure 

Mutations of strains Out of plane deformation Deformation Out of plane deformation 

Initial imperfection 1 % of the width of the printed 
segment 

No initial imperfection An asymmetric loading 1 % of the width of the printed 
segment 

Interaction of layers Tie constraint Tie constraint Tie constraint/ Contact-based 
interaction 

Contact-based interaction 

Boundary condition Rough contact Fixed bottom in the axisymmetric FE 
model 

Rough contact Not mentioned in [18]  
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on the failure behaviours of 3D printed concrete structures, three types 
of boundary conditions, including (a) a fixed bottom, (b) a frictional 
interaction with a friction coefficient of 0.6, and (c) a rough interaction 
with an infinite friction coefficient, are used in Wall 1 and Ring 2. The 
numerically predicted results are given in Table 6. 

It can be found that the failure layer of Wall 1 is the 23rd layer 
regardless of boundary conditions. Moreover, Fig. 16 shows the 
maximum von Mises stresses and the average displacement amplitudes 
of corner nodes of Wall 1 using three boundary conditions. It can be 

found that there is a negative correlation between stress value and 
released displacement. The stress of the fixed bottom, 5.49 kPa, is about 
11.7% higher than those of the other two conditions. In terms of 
displacement, no displacement could be observed in the fixed bottom, 
while a small number of displacements are found at the corners of the 
frictional and rough bottoms, reflecting the rheological behaviours of 
fresh concrete materials. The different constraint conditions of the 
bottom cause the difference in stress. Due to the displacement of the 
bottom layer restrained by the fixed boundary condition, stress cannot 

Fig. 11. Mechanical states of four 3D printed concrete structures before and after failure with and without initial imperfection.  
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Fig. 12. Two failure modes of 3D printed concrete structures.  

Fig. 13. The stress and strain variations of the bottom elements in 3D printed concrete structures.  

Fig. 14. The thicknesses of the printed layers before and after failure.  
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be relieved, reaching the higher stress at the corner sooner. 
For Ring 2, the negative correlation between stress value and 

released displacement was still valid. The failure layers of Ring 2 with 
the boundary conditions (a), (b) and (c) are the 10th, 11th, and 11th 

layers, respectively. This is also because strongly constrained bound-
ary condition leads to less displacement, higher stress, and lower 

failure height. 

4. Comparative analysis of constitutive models 

The choice of constitutive models depends mainly on the mechanical 
properties of the material, the stresses that the material is likely to 
experience in the application, and the experimental data available for 
calibration of the model parameters. Considering these factors and the 
relevant constitutive models used in previous studies, four constitutive 
models, including the von Mises model, Mohr-Coulomb model, Drucker- 
Prager model, and CDP model, are investigated numerically and 
analytically to compare their applicability in characterizing the early- 
age mechanical behaviours of 3D printed cementitious materials. 

4.1. Theoretical comparison among four plastic constitutive models 

von Mises model [21] is a classical model commonly used for ductile 
materials. The theory states that yielding occurs when the maximum 
distortion energy in a material is equal to the distortion energy at 
yielding in a uniaxial tensile test. It can be given as: 

σv =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ1 − σ2)
2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
√

(6)  

where, σv denotes the equivalent von Mises stress, σ1, σ2, σ3 are the 
maximum, intermediate, and minimum principal stress, respectively. 

Mohr-Coulomb criterion [22] is suitable for granular materials under 
monotonic loading, and it states that the material yields when the ratio 
of shear stress to normal stress at the shear plane reaches a maximum. It 
is given as Eq. (1). 

Drucker-Prager model [26] is another pressure-dependent shear 
theory, and it can consider the influence of intermediate principal stress 
on the strength of materials compared with the Mohr-Coulomb criterion. 
The linear Drucker-Prager criterion can be written as: 

F = t − ptanβ − d = 0 (7)  

where t = 1
2 q

[

1+1
K −

(
1 − 1

k
)(r

q

)3
]

, is a type of deviatoric stress 

considering the influence of intermediate principal stress; β is the slope 
of the linear yield surface in the p-t stress plane and is commonly 
referred to as the friction angle of the material; d is the cohesion of the 
material; and K is the ratio of the yield stress in triaxial tension to the 
yield stress in triaxial compression and, thus, controls the dependence of 
the yield surface on the value of the intermediate principal stress. 

CDP model [27] is a compressive model proposed for concrete 

Fig. 15. The deformations of Wall 1 using different methods.  

Table 5 
The failure layers predicted by the FE models using different methods.   

Wall 1 Wall 
2 

Ring 
1 

Ring 2 

Experiment 21 and 
22 

27 29 10 and 
11 

FE model using the tracing element 
approach 

23 25 28 11 

FE model using the traditional method 23 23 23 9  

Table 6 
The predicted failure layers of Wall 1 and Ring 2 using various boundary 
conditions.  

Model Boundary condition Failure layer 

Wall 1 (a) fixed 23 
(b) frictional 23 
(c) rough 23 

Ring 2 (a) fixed 10 
(b) frictional 11 
(c) rough 11  

Fig. 16. The stress and the average displacement amplitude of corner nodes 
using various boundary conditions. 
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material. The evolution of its yield surface is controlled by two hard-
ening variables, compressive equivalent plastic strain ε̃pl

c and tensile 
equivalent plastic strain ε̃pl

t . In terms of effective stresses, the yield 
function takes the form 

F =
1

1 − α
(
q − 3αp+ β

(
ε̃pl)

〈σ̂max〉 − γ〈 − σ̂max〉
)
− σc

(
ε̃pl

c

)
= 0 (8)  

where, α, β and γ are dimensionless constants; σ̂max is the maximum 

principal effective stress and σc

(
ε̃pl

c

)
is the effective compressive cohe-

sion stress, and it is defined as 

σc

(
ε̃pl

c

)
= E0

(
εc − ε̃pl

c

)
(9)  

where, E0 is the initial undamaged elastic stiffness of the material, and εc 
is the compressive strain. 

To compare the four plastic models more clearly, the meridional 
plane (p, q) and the deviatoric plane (q, θ) are also employed to 
formulate their yield conditions, and the conversion relationship is: 

p =
1
3
(σ1 + σ2 + σ3) (10)  

q =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(σ1 − σ2)
2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2

2

√

(11)  

cosθ = ( − 2σ1 + σ2 + σ3)/2q (12)  

where, p denotes the effective stress or mean stress, which can also be 
understood as hydrostatic pressure; q represents the deviatoric stress or 
shear stress, indicating the stress difference that leads to shear defor-
mation; σ1 ≥ σ2 ≥ σ3, and 0◦

≤ θ ≤ 60◦ . 
Their yield conditions can be summarised in Table 7 as follow: 
where, σc is the compressive stress value, and ϕ is the internal friction 

angle of concrete materials. 
During the 3D printing process, the 3D printed concrete is subjected 

to the gravitational load, and its mechanical state is uniaxial compres-
sion. When the concrete material starts to yield, the stress state can be 
described by the following equations: 

σ1 = σ2 = 0; σ3 = − σc (13)  

p =
1
3

σc; q = σc (14)  

θ = 0◦ (15)  

The mechanical state can satisfy all the four yield conditions listed in 
Table 7. However, it is evident that the von Mises model ignores the 
influence of the hydrostatic pressure p, while the 3D printed cementi-
tious materials are mostly brittle materials, the failure of which is sen-
sitive to hydrostatic pressure. By contrast, in the Mohr-Coulomb and 
Drucker-Prager models, the hydrostatic pressure p is incorporated by 
applying trigonometric functions of the internal angle ϕ. Meanwhile, the 
CDP model integrates hydrostatic pressure p using a coefficient α that 
considers the increasing strength under biaxial compressive conditions. 

Regarding flow rules, the von Mises model adopts the associated flow 

rule and the dilation angle ψ is determined by the yield function: ψ =

tan− 1
(

dq
dp

)
= 0◦ . This means the plastic volume strain is zero, and plastic 

volume expansion is ignored. In contrast, the other three plastic models 
adopt the non-associated flow rule, enabling the specification of the 
dilation angle and accounting for plastic volume expansion. 

Furthermore, the constitutive relationship of fresh concrete evolves 
from brittle to ductile (strain softening) behaviours [28,29]. This tran-
sition imposes limitations on the applicability of the von Mises criterion, 
which assumes symmetrical behaviours between pure compression and 
pure tension, an assumption that holds true for the fresh state [30]. 
However, this criterion proves inadequate for the hardened state, 
wherein concrete exhibits notably reduced tensile strength when 
compared to its compressive strength. In contrast, the other three plastic 
models offer distinct definitions for tensile behaviours.Consequently, 
the von Mises model may be unsuitable for predicting the mechanical 
behaviour of fresh 3D printed concrete. 

4.2. Analytical calculations of yield stresses and failure layers 

The analytical calculation of yield stresses and failure layers was 
carried out to investigate the usefulness of various constitutive models in 
characterizing the mechanical behaviours of fresh 3D printed concrete. 

For the Mohr-Coulomb model and Drucker-Prager model, the yield 
conditions in terms of principal stresses under triaxial compression are 
employed as given below, respectively, 

for the Mohr-Coulomb model: 

σ1 − σ3 +(σ1 + σ3) sinφ − 2ccosφ = 0 (16)  

and for the Drucker-Prager model: 

σ1 − σ3 +
tanβ

2 + 1
3 tanβ

(σ1 + σ3) −
1 − 1

3 tanβ
1 + 1

6 tanβ
σ0

c = 0 (17)  

As the uniaxial compression can be seen as a particular situation of 
triaxial compression, where σ1 = 0, Eqs. (16) and (17) are converted as: 

for the Mohr-Coulomb model: 

( sinφ − 1) σ3 − 2ccosφ = 0 (18)  

and for the Drucker-Prager model: 
⎛

⎜
⎝

tanβ
2 + 1

3 tanβ
− 1

⎞

⎟
⎠ σ3 −

1 − 1
3 tanβ

1 + 1
6 tanβ

σ0
c = 0 (19)  

Considering the conversion relationship between the Mohr-Coulomb 
model and Drucker-Prager model, given as below, 

tanβ =
6sinφ

3 − sinφ
(20)  

σ0
c = 2c

cosφ
1 − sinφ

(21)  

Eqs. (18) and (19) can be merged as one equation below: 

Table 7 
Yield conditions of various constitutive models.  

Models Yield conditions 

von Mises f = q − σc = 0 
Mohr-Coulomb 

f =
( 1

̅̅̅
3

√
cosϕ

sin
(

2π
3

− θ
)

+
1
3

tanϕcos
(

2π
3

− θ
))

q − ptanϕ −
1 − sinϕ
2cosϕ

σc = 0 

Drucker-Prager 
f = q − p

6sinϕ
3 − sinϕ

−
(

1 −
2sinϕ

3 − sinϕ

)

σc = 0 

Concrete Damage Plasticity σ1 ≤ 0 : f = q − 3αp + γσ1 − (1 − α)σc = 0σ1 > 0 : f = q − 3αp + βσ1 − (1 − α)σc = 0  
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σ3 =
2ccosφ

sinφ − 1
(22)  

When it comes to the CDP model, in Eq. (8), σ̂max = σ1 = σ2 = 0.
Therefore, Eq. (8) is rewritten as: 

F =
1

1 − α (q − 3αp) − σc

(
ε̃pl

c

)
= 0 (23)  

Substituting Eq. (14) into Eq. (23), we obtain 

σ3 = − σc

(
ε̃pl

c

)
(24)  

According to Eq. (9), the effective compressive cohesion stress σc

(
ε̃pl

c

)

can be considered as the critical stress before the concrete material be-
comes plastic and damaged under uniaxial compression loading. 

Therefore, for the Mohr-Coulomb model and Drucker-Prager model, 
according to Eq. (22), the yield stresses can be derived based on the 
cohesion stress c and internal friction angle φ. For the CDP model, ac-
cording to Eq. (24), the yield stress depends on the effective compressive 

cohesion stress σc

(
ε̃pl

c

)
. 

The values of key material parameters used in four plastic constitu-
tive models are given in Table 8. Since these values are significant to the 
accuracy of analytical and FE models, the specific derivations of crucial 
values are given and discussed in Section 4.3. 

By substituting the values of material properties from Table 8, 
including dilation angle φ, cohesion yield stress c and effective 

compressive cohesion stress σc

(
ε̃pl

c

)
, into Eqs. (22) and (24), the 

analytical yield stresses of concrete material using various constitutive 
models are derived. Table 9 compares the numerical failure stresses of 
two FE models and analytical failure stresses of concrete using various 
constitutive models. It can be found that the analytical yield stresses 
derived by the Mohr-Coulomb model and Drucker-Prager model are 
identical due to the consistency of their formulations. For wall 1, the 
stress when elastic buckling occurs, 1.75 kPa, is much lower than all 
analytical yield stresses derived by different models. This means that the 
choice of plastic constitutive model is not critical for predicting elastic 
buckling as the elastic buckling happens before the material yield. 

As for Ring 2, it can be found that the analytical yield stresses of 
different constitutive models, 1.71 and 1.73 kPa, are close to each other 
and about 16% higher than the numerical results, 1.48 kPa. Further-
more, the analytical results of material yield stresses are converted to the 
failure layers of 3D printed concrete structures according to the pro-
portional relationship between the failure stress and failure layer, as 
shown in Table 10. The analytically predicted failure layer, the 13th 

layer, is also about 16% higher than the numerical and experimental 
results of the 10th and 11th layers. The main reason for the discrepancies 
in yield stresses and failure layers between analytical and experimental 

results may be that the analytical models use idealised assumptions and 
cannot consider specific conditions of experiments, such as the geometry 
of the 3D printed concrete structure, which influences the stress distri-
bution and even causes stress concentrations. Another reason could be 
the adopting value of friction angle from the literature [15], and its exact 
value should be obtained via experimental testing. Despite this, the 
consistency of analytical results using different constitutive models and 
the slight discrepancy from the experimental value prove that the four 
analytical models can be used to estimate the failure layer of 3D printed 
concrete structures failing in plastic collapse preliminarily. 

4.3. Numerical simulations using various constitutive models 

To select appropriate constitutive models to characterise the elas-
tic–plastic behaviours of the 3D printed concrete, five constitutive 
models, including the pure elastic model and four above-mentioned 
plastic models, were employed in the FE models to predict the failure 
layers of Ring 2 and Wall 1. The following is the specific derivation of 
crucial values of various models in Table 8. 

The pure elastic model, including two parameters, Young’s modulus 
E(t) and Poisson’s ratio ν, was utilized as the control group to analyse the 
influences of various plastic models on failure behaviours of 3D printed 
concrete structures. The values of Young’s modulus E(t) and Poisson’s 
ratio ν are given in Table 1. 

In the von Mises model, the uniaxial yield stress of material should be 
employed as the input data. In this study, the yield stress of concrete is 
defined as the critical stress when plastic strain occurs. For Wall 1, ac-
cording to the strain–stress curve of the triaxial compressive test where 
the σ1 = σ2 = 0 [16], when the stress reached 5.75 kPa, the plastic strain 
εp = ε − σ/E occurred, which means the concrete yielded. As for Ring 2, 
however, only direct shear tests were carried out in [15], where the yield 
stress cannot be obtained. To obtain the yield stress, the FE model of the 
concrete cylinder using the Mohr-Coulomb model was developed to 
conduct the uniaxial compressive test. The cylinder dimensions were 
designed according to the ASTM D2166 [31]. The diameter of d = 100 
mm is large enough to eliminate the size effect due to particle size and 
distribution, while the height h is 200 mm so that h/d = 2 to allow a 
diagonal shear failure plane to form, as shown in Fig. 17. The strain–-
stress curve of the concrete under the axial loading can be found in 
Fig. 18 and the yield stress can be determined as 1.71 kPa. 

For the Mohr-Coulomb model, the cohesion yield stresses when the 
failure occurs are adopted instead of using the time-dependent material 

Table 8 
The values of key material parameters of four constitutive models [13,15].  

Models Parameters Wall 1 Ring 2 

von Mises Yield stress (kPa) 5.75 1.71 
M− C Cohesion yield stress (kPa) 3.77 0.39 

Friction angle (◦) 20 42 
Dilation angle (◦) 13 0.7 

D-P Compressive yield stress (kPa) 5.75 1.71 
Angle of friction (◦) 37 59 
Dilation angle (◦) 13 0.7 
Flow stress ratio 0.778 0.778 

CDP Compressive yield stress (kPa) 5.75 1.71 
Dilation angle (◦) 13 0.7 
Eccentricity 0.1 0.1 
fb0/fco 1.16 1.16 
K 0.6667 0.6667 
Viscosity parameter 0.00001 0.00001  

Table 9 
The failure stresses derived by numerical simulations and analytical 
calculations.  

Model Critical stress von 
Mises 

M-C D-P CDP 

Wall 1 Yield stress of concrete material 
(kPa)  

5.75  7.95  7.95  5.75 

Stress when elastic bulking occurs 
(kPa)  

1.75  

Ring 2 Yield stress of concrete material 
(kPa)  

1.71  1.73  1.73  1.71 

Stress when plastic collapse occurs 
(kPa)  

1.48  

Table 10 
The analytical calculation of failure layers of Ring 2 using various constitutive 
models.   

von Mises M-C D-P CDP 

Analytical results 13 13 13 13 
Experimental results 10 and 11  
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model to control the parameter. The values 3.77 Pa and 0.39 kPa are 
derived by the time-dependent model of C(t) in Table 1. The sensitivity 
analysis of considering material time-dependence or not was conducted, 
and the results showed that the difference in failure heights derived from 
the two methods was within one layer. 

In the Drucker-Prager model, the values 5.75 kPa and 1.71 kPa are 
employed as the compressive yield stresses for Wall 1 and Ring 2, 
respectively. As for the friction angles and flow stress ratios, they are 
converted from the data of the Mohr-Coulomb model by Eqs. (20) and 
(21) as well as k =

3− sinφ
3+sinφ. 

Regarding the CDP model, the compressive yield stresses adopt the 

same values as those of the Drucker-Prager model. The parameters fb0/ 
fco and K are set as the default values, as they have a few influences on 
the failure behaviours of 3D printed concrete structures under gravita-
tional loading. A small value of viscosity, e.g., 0.00001, was used to 
reduce convergence difficulty. 

Based on the above values of parameters and FE models developed in 
this study, the numerically predicted failure layers are obtained and 
given in Table 11. For Wall 1, the numerically predicted failure layer is 
the 23rd layer regardless of the constitutive model used. Moreover, the 
contours of plastic strains of Wall 1 using the pure elastic model and 
Mohr-Coulomb model are shown in Fig. 19. It can be observed that when 
using the pure elastic constitutive model, the elastic buckling can 
happen without any plastic strain. However, when using the Mohr- 
Coulomb model, plastic strains can be seen at the bottom of Wall 1. 
By comparison, elastic buckling has no relationship with the definition 
of plastic material properties. Therefore, when the failure height is 
investigated without considering post-yield behaviour, an excessively 
detailed definition of material plasticity is a waste for the 3D printed 
concrete structures that fail in the elastic buckling mode. 

Regarding plastic collapse, FE models of Ring 2 with various 
constitutive models fail at different layers. The numerical results of the 
Mohr-Coulomb model (the 11th layer) and CDP model (the 10th layer) 
agree with the experimental results. This means that the two models can 
simulate the concrete in 3DCP. As for the von Mises model, the failure 
layer of the 13th layer is higher than the experimental results. This 
discrepancy may be caused by the reason discussed in Section 4.1. 
Regarding the Drucker-Prager model, the failure layer of the 18th layer is 
much higher than the experimental results. This can be attributed to the 
high friction angle of the concrete used. It is known that in the linear 
Drucker-Prager model, the value of K should be higher than 0.778 for 
the yield surface to remain convex, which implies a friction angle φ ≤

22◦. However, the friction angle of the material used in Ring 2 is 59◦. In 
such a case, the approaches to matching Mohr-Coulomb and Drucker- 
Prager model parameters, including Eqs. (20) and (21), provide poor 
matching. 

5. Conclusions 

In this study, some aspects of FE modelling of 3DCP, including 
additional initial deformations, identification of failure, material model 
selection, concrete foundation interactions and initial imperfections, 
have been investigated. Those 3-D FE models using the proposed novel 
tracing element approach have been developed successfully to simulate 
layer-by-layer 3DCP processes accurately and then used to investigate 
failure mechanisms and behaviours of 3D printed concrete structures. 
The effectiveness of the developed FE models was demonstrated by 
comparing the obtained numerical results with the data available in 
literature. Moreover, four constitutive models have been investigated 
analytically and numerically for their applicability in characterising the 
early-age mechanical behaviours of 3D printed concrete. 

Based on the obtained results, the following conclusions can be 
drawn.  

• The developed FE model using the novel tracing element approach 
can accurately predict the failure height of 3D printed concrete 
structures, regardless of whether their failure modes are elastic 
buckling or plastic collapse.  

• The developed tracing element approach can effectively prevent 
additional initial deformations, improving the accuracy of numerical 
prediction.  

• The mutation of the strains, including logarithmic and plastic strains, 
of the bottom elements in 3D printed concrete structures can be used 
as a critical index to identify the structural failure.  

• Introducing initial imperfections can obtain more accurate failure- 
deformation shapes of 3D printed concrete structures failing in 
elastic buckling. 

Fig. 17. The diagonal shear failure of concrete cylinder under axial loading.  

Fig. 18. The strain–stress curve of the concrete in the uniaxial compressive test.  

Table 11 
The numerically predicted failure layer using various constitutive models.  

Model Pure elasticity von Mises M- 
C 

D- 
P 

CDP Experimental data 

Wall 1 23 21 and 22 
Ring 2 – 13 11 18 10 10 and 11  
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• Compared with fixed bottom, rough or frictional interaction can 
reflect the rheological behaviour of fresh concrete. Strongly con-
strained boundary condition leads to less displacement, higher stress, 
and lower failure height.  

• Compared with the von Mises model, the Mohr-Coulomb model and 
CDP model can accurately characterise the mechanical behaviours of 
3D printing fresh concrete. The Drucker-Prager model got poor 
predictions due to its ineffective conversion relationship with the 
Mohr-Coulomb model when the friction angle exceeds 22◦. 

Overall, the developed FE models sort out the main technical issues 
in the numerical simulation of 3DCP and can predict the failure height 
accurately. However, the proposed FE model cannot reflect the rheo-
logical behaviours of the early-age 3D printed concrete. For example, 
rheological properties, such as yield stresses and viscosity, can be 
employed to predict the final cross-section shape of the 3D printed 
concrete layer [32,33]. However, to the author’s best knowledge, the 
mechanical and rheological behaviours have yet to be considered in one 
model simultaneously due to its complexity. The authors are currently 
working on the development of a coupled Smooth Particle Hydrody-
namics (SPH)/Computational Fluid Dynamics (CFD) - Finite Element 
Analysis (FEA) analysis process. 
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