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Abstract—We present a refined approach to biomedical
question-answering (QA) services by integrating large language
models (LLMs) with Multi-BERT configurations. By enhancing
the ability to process and prioritize vast amounts of complex
biomedical data, this system aims to support healthcare pro-
fessionals in delivering better patient outcomes and informed
decision-making. Through innovative use of BERT and BioBERT
models, combined with a multi-layer perceptron (MLP) layer, we
enable more specialized and efficient responses to the growing
demands of the healthcare sector. Our approach not only ad-
dresses the challenge of overfitting by freezing one BERT model
while training another but also improves the overall adaptability
of QA services. The use of extensive datasets, such as BioASQ
and BioMRC, demonstrates the system’s ability to synthesize
critical information. This work highlights how advanced language
models can make a tangible difference in healthcare, providing
reliable and responsive tools for professionals to manage complex
information, ultimately serving the broader goal of social good
through improved care and data-driven insights.

Index Terms—biomedical question-answering, large language
models, BERT, multi-layer perceptron, clinical decision support

I. INTRODUCTION

The biomedical field is currently experiencing a flood of
data, making it more important than ever to develop question-
answering (QA) systems that can help healthcare professionals
make quick, informed decisions [1]–[3]. The sheer volume
and complexity of this information can feel overwhelming,
especially when lives are on the line. That’s why we need
advanced systems capable of rapidly processing and under-
standing this data, ensuring healthcare workers can focus on
what really matters—caring for patients [4], [5]. In recent
years, artificial intelligence (AI) and machine learning (ML)
have brought about incredible breakthroughs, particularly in
natural language processing (NLP). Large language models
(LLMs) have shown an impressive ability to understand and
generate human language, offering new hope for making
sense of this vast sea of biomedical information [6]–[9]. By
harnessing these technologies, we aim to not only improve
decision-making for clinicians but also create more equitable
healthcare systems that can reach underserved communities,
ensuring that everyone benefits from these advancements, no
matter where they are.

Among the most prominent NLP technologies are BERT
(Bidirectional Encoder Representations from Transformers)

and its biomedical variant, BioBERT [10]. BERT-base, a
general-purpose language model developed by Google, has
set new benchmarks in various NLP tasks due to its ability
to understand context by processing text bidirectionally [11].
BioBERT, pre-trained on a vast corpus of biomedical literature,
further enhances this capability, making it exceptionally well-
suited for biomedical text mining and QA tasks [6]. Despite
these advancements, integrating these models effectively to
handle the vast and nuanced biomedical data remains a sig-
nificant challenge [12].

The primary challenges in developing efficient biomedical
QA services are multifaceted [13], [14]. Firstly, the sheer vol-
ume of biomedical data is overwhelming, requiring robust data
management and processing capabilities [15], [16]. Secondly,
QA models often suffer from overfitting, where the model
performs well on training data but fails to generalize to new,
unseen data [17]–[19]. This is particularly problematic in the
biomedical domain, where the language is highly specialized
and diverse. Lastly, integrating outputs from multiple models
without introducing significant computational overhead or
sacrificing performance is a complex and critical task [20],
[21]. Traditional QA systems often fall short in these areas,
struggling to deliver accurate and relevant answers within the
stringent performance requirements of real-world applications.

In response to these challenges, we propose a novel ap-
proach to optimize biomedical QA services by leveraging
large language models (LLMs) and integrating multiple BERT
models with a multi-layer perceptron (MLP) layer. Our ap-
proach not only addresses the data management and processing
demands but also tackles the issue of overfitting by employing
a strategic model training method. By freezing one BERT
model during training and dynamically training another, we
effectively balance model specialization and generalization,
thus enhancing performance across various metrics. Further-
more, the integration of an MLP layer for feature synthesis
and prioritization ensures that the combined model outputs
are efficiently processed, leading to superior QA service
performance. Our key contributions are as follows:

• We develop an advanced QA service architecture that
seamlessly integrates BERT-base and BioBERT models
using an MLP layer, optimizing their combined perfor-
mance for complex biomedical queries.



• We introduce a novel training strategy that involves freez-
ing one BERT model while training another, significantly
reducing overfitting and enhancing model specialization,
thereby improving generalization.

• Utilizing datasets such as BioASQ and BioMRC, we
conduct extensive evaluations to demonstrate substantial
improvements in performance metrics, validating the ef-
fectiveness of our approach.

• Our QA service design is tailored for practical deploy-
ment, supporting healthcare professionals in efficiently
managing and interpreting biomedical data to enhance
clinical decision-making and patient care.

• We provide a detailed analysis of feature integration
strategies, highlighting the critical role of the MLP layer
in synthesizing and prioritizing information from multiple
sources for enhanced decision-making.

The paper is structured as follows: Section II reviews
related work in biomedical QA systems and NLP technologies.
Section III outlines our proposed method, detailing BERT
model integration and MLP layer implementation. Section
IV describes the experimental setup, including datasets and
evaluation metrics. Section V presents the results and discusses
them in the context of existing research. Section VI concludes
with our contributions and future research directions.

II. RELATED WORK

The field of biomedical question-answering (QA) has seen
significant advancements, driven by the need to efficiently
process and interpret vast amounts of biomedical data [22].
Early QA systems in the biomedical domain focused primarily
on information retrieval techniques, extracting relevant docu-
ments or passages in response to user queries. However, these
systems often struggled with accurately answering specific
questions due to the complexity and variability of biomedical
language. Recent advancements in natural language processing
(NLP) and machine learning (ML) have introduced more
sophisticated approaches, leveraging models such as BERT
and its variants. BERT (Bidirectional Encoder Representations
from Transformers) has revolutionized NLP by allowing mod-
els to understand context through bidirectional processing of
text [11]. BioBERT, a specialized version of BERT pre-trained
on large-scale biomedical corpora, has further improved the
performance of QA systems in this domain by effectively
handling biomedical terminology and context [6].

Significant work has also been done in enhancing the
architectures of these models to better suit the QA task. For
instance, Seo et al. proposed using a bidirectional attention
flow mechanism to improve the comprehension of text and
questions simultaneously, which is a core principle in many
QA systems today [4]. Similarly, the integration of multi-layer
perceptron (MLP) networks has been explored to enhance
the processing of complex features extracted by models like
BERT. Studies have shown that MLPs can effectively handle
non-linear feature transformations and improve the accuracy of
QA systems by prioritizing and synthesizing information from
multiple sources [23]. Moreover, the AoA Reader, proposed

by Cui et al., introduced a dual attention mechanism to en-
hance the understanding of context in reading comprehension
tasks, further demonstrating the potential of advanced attention
mechanisms in QA systems [24]. Despite these advancements,
challenges such as overfitting, efficient model integration, and
handling the specialized language of biomedical texts remain.
Our work builds on these foundations by integrating multiple
BERT models with an MLP layer, addressing these challenges
and optimizing the performance of biomedical QA services.

III. PROPOSED METHOD/FRAMEWORK

Our proposed model structure for optimized biomedical
question-answering services leverages the integration of mul-
tiple BERT models with a multi-layer perceptron (MLP) layer.
This integration aims to enhance the synthesis and prioritiza-
tion of information, ultimately improving the performance of
QA services. The architecture diagram of the model is shown
in Figure 1. Questions and answers are processed by two
language models, whose outputs are then fused by assigning
appropriate weights through the MLP layer to compute the
final score. This modular design allows for flexibility in
replacing the language models and the weighting layer to suit
different processing scenarios.

Firstly, we selected BioBERT as the core of Language
Model 1 due to its exceptional ability to handle biomedical
text. Pre-trained on a vast corpus of biomedical data, BioBERT
can accurately interpret context and specialized terminol-
ogy, making it ideal for question-answering tasks within the
biomedical domain.Secondly, we incorporated BERT-base as
the core of Language Model 2. While it is a general-purpose
model pre-trained on a diverse range of texts, BERT-base
provides a high degree of flexibility and performs well with
general text. Although it may not match BioBERT’s efficiency
in specialized domains, it complements the system by handling
more general language structures effectively.

The integration of these models is facilitated by an MLP
layer, which assigns weights based on learned preferences to
compute the final score. This weighted layer is crucial for
balancing the strengths of both models.In this model structure,
the combination of BERT-base and BioBERT provides a
balanced approach. BioBERT excels in the biomedical domain,
while BERT-base performs well in more general contexts.
This synergy alleviates the domain-specific insensitivity of
BERT-base and enhances the holistic contextual understanding
provided by BioBERT. Consequently, this integrated model
overcomes the limitations of using a single model, leading to
superior performance in biomedical QA tasks. The weighted
layer further improves accuracy by optimizing the output from
both models, making it a powerful tool for delivering high-
quality biomedical question-answering services.

A. Method 1: Models with BERT and UniLM

For the Factoid-type question dataset from BioASQ 10b,
preliminary data analysis revealed that answers could not be
extracted from the context for 25% of question-answer pairs.
Therefore, a generative approach was deemed more suitable



Fig. 1. The architecture diagram of the model

than extraction from the text. Traditional BERT models face
limitations when applied directly to generative question an-
swering. To address this, we employed the UniLM method,
which has demonstrated superior performance in text genera-
tion tasks. The basic language models were updated to UniLM
mode, as shown in Figure 2. UniLM, a model applicable to
various tasks such as text generation and machine translation,
features a shared transformer architecture that combines en-
coders and decoders, enabling it to perform multiple tasks
within a single model. UniLM excels in generative tasks by
generating accurate and high-quality text, making it highly
beneficial for biomedical question-answering systems.

Initially, the input biomedical text is encoded using the
BioBERT and BERT-base models to generate feature vec-
tors. These feature vectors are then processed by a convo-
lutional neural network (CNN) for further feature extraction
and weighted combination. The processed feature vector is
subsequently passed to UniLM, which generates the answer
through its decoder. The decoder produces one word at a time
until the entire answer is complete, ensuring coherency and
accuracy through an autoregressive generation method. The
process of generating feature vectors by BERT in UniLM
mode involves several steps. Firstly, the model reads raw
data from a JSON file, converting it into a processable form
with ’long answer’ filtered to serve as the answer to the
question. Next, the input text is segmented into subwords,
allowing the model to handle out-of-vocabulary words. The
text sequence is tagged, with ’[CLS]’ marking the beginning
and ’[SEP]’ separating the question from the context. The text
is then converted into a unique index within the corresponding
vocabulary. A word embedding matrix transforms each word
index into a high-dimensional word vector, rich in semantic
information. Positional encoding provides additional details
regarding the word’s position in the sentence. By summing the
word embedding vector and the positional encoding result, the
model can effectively handle the order information within the
sentence.

The BERT model features several transformer encoder
layers, each comprising a multi-head attention mechanism
and a feedforward neural network. The multi-head attention
mechanism allows the model to consider each word in relation

Fig. 2. The architecture diagram of Method 1 (Model with BERT and UniLM)

to all other words, while the feedforward neural network
layer performs a nonlinear transformation on the multi-head
attention output. These processes generate feature vectors rich
in semantic information and contextual relationships, crucial
for subsequent decoding and generation tasks in UniLM mode.
UniLM, acting as the decoder, generates text based on the
contextual representation created by the encoder. Generation
in UniLM is autoregressive, predicting each step based on the
current context and previously generated text. The decoder
receives the contextual representation from the encoder and
uses attention and feedforward neural network mechanisms to
predict the next word. This iterative process continues until
the complete answer is generated.

In this method, CNN is used as the model weighting layer.
Feature vectors from BioBERT and BERT-base are concate-
nated and processed by the convolutional neural network. The



Fig. 3. The architecture diagram of Method 2 (Model with AoA Reader and
MLP)

1D convolutional layer (Conv1d) processes the concatenated
feature vector, capturing spatial relationships in the feature
data. Multiple convolution and pooling layers enable the model
to learn complex patterns, enhancing prediction accuracy.
Global average pooling reduces the feature vector size without
losing important information, preventing overfitting. The out-
put from the fully connected layer generates two weight values
representing the importance of the two models. The input layer
accepts the feature vector from the last convolutional layer,
with a size of 128. The dropout layer zeroes the output of some
neurons during training to generalize and prevent overfitting.
GeLU introduces nonlinearity, and the output layer contains
two neurons corresponding to the weights of each BERT
model output. The coefficients are normalized by the softmax
function to sum to 1. During training, the cross-entropy loss
function quantifies the difference between the predicted and
actual answers, updating the model weights accordingly. The
AdamW optimizer, combining the moving average of the
gradient, enhances the training process efficiency. Finally, a
weighted combination of features is performed, applying the
weight values to each BERT model’s output to obtain the final
feature representation. This feature vector is then decoded to
generate the final answer.

B. Method 2: Model with AoA and MLP

In the second method, we utilized the BioMRC dataset,
which is a cloze question-answering dataset specific to the
biomedical field. In this task, the model needs to choose the
most appropriate word or phrase to fill in the blank in a given
context. Due to the nature of cloze tasks, we selected the

AoA Reader (Attention-over-Attention Reader) to enhance the
model’s performance on the BioMRC dataset. This method
combines BioBERT and BERT-base through MLP weighted
integration. AoA Reader employs a two-layer attention mech-
anism—document to question and question to document—to
improve the model’s contextual understanding, enabling it to
more accurately locate and select answers. This mechanism
is particularly effective for cloze tasks that require a deep
understanding of the complex relationship between the text and
questions. In our model structure, the AoA Reader first uses
BioBERT as the source of its contextualized word embeddings
to convert each token in the document and question into
a context-related embedding representation. BioBERT, pre-
trained on a large corpus of biomedical literature, provides
a deep understanding of complex biomedical terms and con-
cepts. This embedding method captures word meanings and
contextual relationships more accurately than simple one-hot
encoding or embeddings trained on a smaller corpus.

The AoA Reader employs a bidirectional attention mecha-
nism. The first layer, query-to-document attention, helps the
model determine which words in the question are relevant
to the text. The second layer, document-to-query attention,
helps the model identify which parts of the text are relevant
to the question. Additionally, the ”attention stacking” mech-
anism, another layer of attention on top of the bidirectional
attention, allows the model to finely evaluate the importance
of each token in the document for answering the question.
This enables the model to focus on the most critical parts
of the context, thereby improving the accuracy of the cloze
task. Through these mechanisms, the AoA Reader effectively
handles cloze tasks, provides accurate answer predictions, and
demonstrates strong adaptability and robustness in processing
complex biomedical texts. The AoA Reader model, combined
with BioBERT, first identifies text fragments related to the
cloze, focusing on parts of the article that help determine the
answer. The model scores each candidate answer based on the
match between the candidate answer and the aggregated text
fragment embedding representation, selecting the candidate
word with the highest score as the final answer. This scoring
mechanism represents the ”probability” that the model assigns
to each candidate word being the correct answer. In this
method, MLP serves as the weighting strategy for feature
fusion and weight distribution. MLP automatically learns how
to combine outputs from different models to enhance cloze
task performance on the BioMRC dataset. The architecture
diagram of the model is shown in Figure 3.

The MLP in this method comprises three layers. The input
layer receives feature vectors from the AoA Reader and BERT
models, each with a dimension of 40, representing word
embeddings, context-related encodings, and other features.
The hidden layer, with 64 neurons, extracts and transforms
input data features, enabling the model to recognize higher-
level abstract concepts and patterns. The Tanh activation
function introduces nonlinearity, helping the model learn and
simulate complex function mappings. The output layer, with
20 neurons corresponding to the 20 possible candidate answers



in the cloze task on the BioMRC dataset, represents the
model’s confidence score for each candidate answer. The MLP
model adjusts weights and biases between layers through back-
propagation to minimize the difference between predicted and
true labels. This automatic weight assignment identifies which
features are most important for predicting the correct answer.
The highest score generated by the output layer determines the
most likely correct answer. During MLP training, the cross-
entropy loss function measures the difference between model
predictions and actual answers, updating weights accordingly.
The Adam optimizer, combining the advantages of momentum
and RMSprop, enhances training efficiency. Hyperparameter
tuning, particularly the learning rate, is adjusted based on
model performance on the BioMRC data to find optimal
settings. Accuracy and F1 Score are used as evaluation metrics
in the validation and testing stages.

IV. EXPERIMENTS AND RESULTS

This section presents a comprehensive overview of the
experiments and results obtained from the evaluation of the
proposed biomedical question-answering system. We detail
the datasets used, experimental settings, model configurations,
and performance metrics. The focus is on demonstrating the
effectiveness of the integrated models, particularly those incor-
porating multi-layer perceptron (MLP) layers, across various
datasets.

A. Data

1) BioASQ 10b Factoid: The BioASQ 10b dataset, sourced
from the PubMed/Medline databases, includes a comprehen-
sive collection of biomedical literature. The dataset used in
this study comprises 1,252 training instances and 166 test
instances, specifically targeting factoid-type questions. These
questions require precise, fact-based answers, emphasizing the
ability to extract and understand biomedical texts [22].

2) BioMRC Dataset: The BioMRC dataset, available on
Hugging Face, is designed for large-scale machine reading
comprehension in the biomedical domain. It utilizes abstracts
and titles from PubMed, annotated with the PUBTATOR tool.
The Lite version A, chosen for this study, consists of 100,000
question-paragraph pairs, with 87,500 instances for training
and 6,250 each for validation and testing [25].

B. Experiments

For the experiments, we divided the data into training,
validation, and test sets to ensure model performance on
unseen data. An early stopping mechanism was implemented
to prevent overfitting. Performance evaluation used metrics
such as accuracy, F1 score, ROUGE-1, and ROUGE-2.

1) Method 1: Ensembled BERT with MLP on BioASQ: The
first method involved ensembling BERT models with an MLP.
Eight configurations were tested on the BioASQ 10b dataset,
including single and dual BERT models, with and without
MLP adjustments. The results are summarized in Table III.

Fig. 4. Line chart of Ensembled BERT and MLP

Fig. 5. Line chart of BERT and AoA reader

The results indicate significant improvements with the MLP-
integrated models. The configuration BioBERT(F)+BERT-
base+MLP achieved the highest F1-score of 0.480, highlight-
ing the effectiveness of MLP in enhancing model performance.
The line chart in Figure 4 visualizes the performance improve-
ments of various configurations. The BioBERT(F)+BERT-
base+MLP and BERT-base(F) + BioBERT + MLP configu-
rations show significant gains, emphasizing the importance of
integrating MLP for improved results.

2) Method 2: BERT with AoA Reader on BioMRC: The
second method utilized the BioMRC dataset with an AoA
Reader combined with BioBERT. The AoA Reader’s dual
attention mechanism improved the model’s performance on
cloze-type questions. The results are presented in Table III.
The MLP-based model achieved the highest accuracy and F1-
score, demonstrating its effectiveness in integrating outputs
from the AoA Reader and BERT models. Figure 12 shows
the comparative performance of different models. The MLP-
based model outperformed others, confirming the benefits
of using MLP for feature integration. The radar charts in
Figure 11 provide a visual comparison of different model
configurations across various metrics like Rouge-1, Rouge-2,
BLEU, precision, recall, and F1-score. The area covered by
each model configuration illustrates the overall effectiveness,



TABLE I
ENSEMBLED BERT MODEL RESULTS

Models Rouge-1 Rouge-2 Rouge-L Bleu Precision Recall F1-score
BERT-base(F) + BioBERT 0.473 0.333 0.454 0.228 0.455 0.451 0.453
BERT-base(F) + BioBERT + MLP 0.487 0.348 0.471 0.241 0.475 0.469 0.472
BioBERT 0.234 0.111 0.222 0.055 0.364 0.153 0.216
BioBERT(F) + BERT-base 0.458 0.323 0.439 0.224 0.448 0.431 0.439
BioBERT(F) + BERT-base + MLP 0.5 0.363 0.483 0.249 0.492 0.469 0.48
BioBERT + BERT-base 0.403 0.259 0.386 0.167 0.409 0.37 0.388
BioBERT + BERT-base + MLP 0.489 0.348 0.469 0.238 0.464 0.453 0.458
BERT-base 0.0407 0.007 0.0056 0.012 0.032 0.043 0.0385

TABLE II
AOA READER WITH BERT MODEL RESULTS

Models Accuracy F1-score
BioBERT 0.7329 0.7215
AoA-Reader 0.8241 0.8145
BERT-base 0.7086 0.6989
MLP-based Model 0.8406 0.8289

Fig. 6. Radar Plots of Different Model Outcomes

showcasing the superiority of ensembling two BERT models
over using a single BERT and further improvements when
these ensembles are combined with an MLP.

C. The Effect of Frozen Models

Freezing one of the BERT models typically improves per-
formance by maintaining a stable representation of linguistic
features while allowing the other model to adapt dynamically.
This approach prevents overfitting and enhances generalization
to new data. As shown in Figure 7, configurations with
frozen models, such as ‘BioBERT(F)+BERT-base’, exhibit
significant improvements in metrics like F1-score, ROUGE-
1, and ROUGE-2. This balanced approach ensures robust
performance on unseen data.

In the first set of models, freezing a model is particularly
effective. For example, configurations such as BioBERT(F) +
BERT-base and BERT-base(F) + BioBERT show significant
improvements in metrics such as F1 scores, Rouge-1, and
Rouge-2 compared to BioBERT+BERT-base. This significant
performance improvement can be attributed to freezing one
model to enable it to maintain a consistent and broad linguistic
representation, while the other model is fine-tuned for specific
features of the training data. This balanced approach reduces
the risk of overfitting and ensures that the model performs
well on unseen data. Additionally, freezing a model reduces
computational overhead and focuses the learning process on
tuning the dynamic model to complement the static knowledge
of the frozen model. This synergy between stable and flexible
models creates a more robust and efficient system.

However, in the second set of models introduced into the
MLP layer, the benefits of freezing a model are not as obvious.
For example, while the BioBERT(F)+BERT-base+MLP and
BERT-base(F)+BioBERT+MLP configurations still perform
well, their improvement over the non-frozen BioBERT+BERT-
base+MLP configurations is not as clear. The MLP layer itself
plays a crucial role in integrating and prioritizing information
from multiple sources. By effectively combining features ex-
tracted from different models, the MLP layer addresses some
of the overfitting issues and optimizes the decision-making
process [26]. The inherent ability of the MLP layer to act
as an integrator reduces the additional benefit that freezing
a model may provide, as the MLP already offers a form of
regularization and integration that stabilizes the performance
of the model.

These observations suggest that while freezing a model is
beneficial in simpler integration scenarios, the introduction
of more complex integration mechanisms such as MLP can
independently enhance model performance by optimizing fea-
ture synthesis. This highlights the importance of choosing
an appropriate feature integration strategy in model design.
The MLP layer excels at combining features into a coherent
output that effectively exploits the strengths of each model
component. This layered integration approach reduces the
reliance on freezing the model as a means of achieving
stability and generalization.

D. Weight Performance of MLP and Effects on BERT Model

Figures 8 and 9 illustrate the key role of the MLP layer
in integrating outputs from different BERT models. The MLP



Fig. 7. Model Metrics Comparison
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Fig. 8. F1-score comparison based on BioASQ
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Fig. 9. F1-score comparison based on BioMRC

layer significantly improves performance on both BioASQ and
BioMRC datasets, validating its effectiveness in enhancing
model generalization and stability.

In the BioASQ dataset, the F1 scores of the MLP output
were significantly higher than those of the two individual
BERT model outputs. The F1 scores of the MLP output were
stable between 0.4 and 0.5, while those of the BERT 1 and
BERT 2 outputs ranged between 0.1 and 0.4, respectively.
Similarly, in the BioMRC dataset, the F1 scores of the MLP
outputs were stable between 0.8 and 0.85, while the F1
scores of BERT 1 and BERT 2 were between 0.6 and 0.8,
respectively. These results show that the MLP layer signifi-
cantly improves the overall system performance by integrating
features from different BERT models, and this improvement
is validated on different datasets.

E. Discussion

The integration of the MLP layer into our QA system ad-
dresses significant challenges in biomedical question answer-
ing by enhancing generalization and stability across multiple
datasets. While BERT models demonstrate high performance
on specific tasks, their ability to generalize and resist overfit-
ting is often limited. The MLP layer facilitates the effective
combination of outputs from two distinct BERT models,
leveraging their individual strengths while mitigating the lim-
itations inherent in single-model approaches. This integrated
architecture not only enhances the overall performance but also
significantly reduces the risk of overfitting during training,
ensuring robust performance on unseen data. The high F1
scores achieved with the MLP configuration underscore its
effectiveness, demonstrating its capacity to improve accuracy
and reliability in biomedical QA systems. By prioritizing the
integration of diverse information sources, the MLP layer en-
sures the system can handle complex and variable biomedical
data, providing precise and contextually relevant answers.

Furthermore, the consistent performance of the MLP layer,
evidenced by stable F1 scores with low fluctuations, high-



lights its superior capability in maintaining performance under
varying test conditions. This stability is crucial for real-
world applications, where the QA system must consistently
deliver high-quality answers across different types of queries.
Traditional biomedical QA systems, which typically rely on
a single model for feature extraction and answer generation,
often struggle with complex biomedical data. By introducing
the MLP layer, features from multiple BERT models are
effectively integrated, resulting in more comprehensive and
accurate responses. The integration approach not only op-
timizes outputs from different models but also significantly
improves the system’s accuracy and reliability, effectively
compensating for the shortcomings of traditional systems.
These findings provide a valuable reference for future model
design, highlighting the critical role of the MLP layer in
enhancing feature integration and optimizing overall system
performance in complex biomedical question answering tasks.

F. Model Results Display

1) Method 1: Ensembled BERT with MLP on BioASQ: The
integration of BERT models with MLP in the BioASQ dataset
demonstrates notable performance improvements across sev-
eral metrics, particularly with configurations employing dy-
namic training and MLP optimization. The BERT-base(F) +
BioBERT + MLP model configuration achieved a Rouge-1
score of 0.487 and a Rouge-2 score of 0.348, indicating its pro-
ficiency in capturing unigrams and bigrams, essential for high-
quality summarization. Meanwhile, the BioBERT(F)+BERT-
base+MLP model scored highest in Rouge-L (0.483) and
BLEU (0.249), showcasing its superior handling of longer text
sequences and contextually accurate summaries. The F1-score,
a critical indicator of model performance, was highest in the
BioBERT(F)+BERT-base+MLP model at 0.480, underscoring
the balanced capability of the model to produce accurate
and comprehensive summaries. In contrast, the standalone
BERT-base model exhibited the lowest performance across all
metrics, highlighting the substantial benefits of model ensem-
bling and MLP optimization. The detailed exploration of these
metrics underscores the distinct capabilities and limitations of
each configuration, with the results clearly favoring the MLP-
integrated models for enhanced QA services in the biomedical
domain.

2) Method 1: Detailed Results of Ensembled BERT: The
detailed results of the Ensembled BERT with MLP approach,
as illustrated in Figure 10, reveal a systematic improvement
across various configurations. The BERT-base model, with an
F1-score of 0.038, performed significantly below the bench-
mark F1-score of 0.387, underscoring its inadequacy when
used in isolation. However, the addition of another BERT
model or the integration of an MLP led to substantial per-
formance gains. Configurations like BERT-base(F)+BioBERT
and BioBERT+BERT-base achieved F1-scores of 0.376 and
0.388, respectively, highlighting the effectiveness of model
ensembling. The most pronounced improvements were ob-
served in models utilizing MLP optimization, such as BERT-
base(F)+BioBERT+MLP and BioBERT(F)+BERT-base+MLP,

Fig. 10. Line chart of Ensembled BERT and MLP

Fig. 11. Rader Plots of Different Model’s Outcome

which achieved F1-scores of 0.472 and 0.480, respectively.
These models not only surpassed the benchmark but also
demonstrated the critical role of MLP in refining com-
bined outputs for enhanced summary quality. Notably, the
BioBERT+BERT-base+MLP configuration achieved the high-
est F1-score of 0.499, illustrating the efficacy of combining
multiple BERT models with MLP optimization in producing
contextually and linguistically aligned summaries.

3) Method 1: Model Combination Results: The radar charts
in Figure 11 provide a comprehensive analysis of different
model configurations’ performance across multiple metrics,
including Rouge-1, Rouge-2, BLEU, precision, recall, and F1-
score. The standalone BERT-base model shows the smallest
area on the radar chart, indicating its limited performance
compared to more complex configurations. Configurations
involving two BERT models, such as BioBERT+BERT-base
and BERT-base(F)+BioBERT, show notable expansions in the
radar chart areas, demonstrating the effectiveness of model en-
sembling. The addition of an MLP to these dual BERT setups,
as seen in models like BioBERT+BERT-base+MLP and BERT-



TABLE III
ENSEMBLED BERT MODEL RESULTS

Models Rouge-1 Rouge-2 Rouge-L Bleu Precision Recall F1-score
BERT-base(F) + BioBERT 0.473 0.333 0.454 0.228 0.455 0.451 0.453
BERT-base(F) + BioBERT + MLP 0.487 0.348 0.471 0.241 0.475 0.469 0.472
BioBERT 0.234 0.111 0.222 0.055 0.364 0.153 0.216
BioBERT(F) + BERT-base 0.458 0.323 0.439 0.224 0.448 0.431 0.439
BioBERT(F) + BERT-base + MLP 0.5 0.363 0.483 0.249 0.492 0.469 0.48
BioBERT + BERT-base 0.403 0.259 0.386 0.167 0.409 0.37 0.388
BioBERT + BERT-base + MLP 0.489 0.348 0.469 0.238 0.464 0.453 0.458
BERT-base 0.0407 0.007 0.0056 0.012 0.032 0.043 0.0385

TABLE IV
AOA READER WITH BERT MODEL RESULTS

Models Accuracy F1-score
BioBERT 0.7329 0.7215
AoA-Reader 0.8241 0.8145
BERT-base 0.7086 0.6989
MLP-based Model 0.8406 0.8289

base(F)+BioBERT+MLP, results in even larger areas, indicat-
ing superior performance across all metrics. This enhancement
is particularly evident in precision and F1-score, where the
MLP integration improves both the accuracy of predictions and
the balance between precision and recall. Furthermore, models
with one frozen BERT, such as BERT-base(F)+BioBERT and
BERT-base(F)+BioBERT+MLP, perform robustly, suggesting
that freezing one model can contribute to more stable and
effective outputs when paired with dynamic training of the
other model. The data validates the hypothesis that ensembling
multiple BERT models and adding MLP layers significantly
optimizes model performance, highlighting the critical role of
advanced architectures like MLPs in achieving high precision
and effectiveness in NLP tasks.

4) Method 2: Detailed Results of BERT with AoA Reader on
BioASQ: The BioASQ dataset’s results reveal the performance
across different model configurations, including BioBERT,
AoA Reader, BERT-base, and an MLP-based model, evaluated
on accuracy and F1-score (see Table IV). The standalone
BioBERT model achieves an accuracy of 73.29% and an
F1-score of 72.15%, establishing a baseline for single-model
effectiveness. Combining BioBERT with the AoA Reader
significantly enhances performance, with accuracy rising to
82.41% and F1-score to 81.45%, illustrating the synergistic
benefits of integrating AoA Reader’s dual attention mechanism
for improved text understanding. In contrast, the BERT-base
model shows lower metrics, with an accuracy of 70.86% and
an F1-score of 69.89%, highlighting its relative inadequacy
compared to BioBERT and AoA Reader combinations. The
highest performance is achieved by the MLP-based model,
with an accuracy of 84.06% and an F1-score of 82.89%,
indicating the significant advantage of MLPs in handling non-
linear problem spaces and optimizing feature integration. This
configuration effectively balances precision and recall, demon-
strating superior decision-making capabilities over simpler
transformer-based models.

Fig. 12. Line chart of BERT and AoA reader

5) Method 2: Visualization of BERT and AoA Reader:
The visualization in Figure 12 offers a clear comparison
of performance metrics across various models, emphasizing
both accuracy and F1-scores against a benchmark accuracy
of 0.699. The BERT-base model, with an F1-score of 0.71
and an accuracy of 0.70, performs adequately but does not
significantly surpass the baseline, suggesting the need for
further optimization. The BioBERT model shows a slight
improvement in accuracy to 0.73 but a minor drop in F1-
score to 0.72 compared to BERT-base, indicating marginal
enhancements. Notably, the combination of AoA Reader with
BioBERT achieves substantial performance gains, with ac-
curacy and F1-score rising to 0.82 and 0.81, respectively,
highlighting the effective synergy of these models in enhancing
contextual understanding. The MLP-based model outperforms
all configurations, with the highest accuracy of 0.84 and
F1-score of 0.83, demonstrating the significant benefits of
integrating advanced neural network structures like MLPs.
These results underscore the importance of combining multiple
technologies for higher accuracy and balanced performance,
validating the superiority of integrated and complex model
configurations for advanced QA services.

V. CONCLUSION

This study set out to create powerful question-answering
(QA) services designed to support healthcare professionals by
processing complex biomedical information. We used BERT
and BioBERT models, but instead of relying on a single model,



we found that integrating multiple models through a multi-
layer perceptron (MLP) approach greatly enhanced the sys-
tem’s performance. By working with datasets like BioASQ and
BioMRC, we were able to show that this integration not only
improved accuracy but also made the system more adaptable
and effective in diverse medical scenarios. A key breakthrough
was freezing one BERT model while training another, which
prevented overfitting and allowed the system to specialize in
certain tasks. The MLP layer played a vital role in synthesizing
and prioritizing data, which could be critical for healthcare
professionals making high-stakes decisions. These innovations
are about more than just technical improvements—they are
part of a broader mission to create tools that genuinely
support healthcare providers, helping them make faster, better-
informed decisions that can lead to better patient outcomes.
This work highlights how advanced AI systems can contribute
to the common good by making complex medical data more
manageable and actionable, ensuring that technology works to
benefit everyone in society.

REFERENCES

[1] G. Kell, A. Roberts, S. Umansky, L. Qian, D. Ferrari, F. Soboczenski,
B. Wallace, N. Patel, and I. J. Marshall, “Question answering systems
for health professionals at the point of care–a systematic review,” arXiv
preprint arXiv:2402.01700, 2024.

[2] M. Neves and U. Leser, “Question answering for biology,” Methods,
vol. 74, pp. 36–46, 2015.

[3] J. Akram, M. Aamir, R. Raut, A. Anaissi, R. H. Jhaveri, and A. Akram,
“Ai-generated content-as-a-service in iomt-based smart homes: Person-
alizing patient care with human digital twins,” IEEE Transactions on
Consumer Electronics, pp. 1–1, 2024.

[4] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirec-
tional attention flow for machine comprehension,” arXiv preprint
arXiv:1611.01603, 2016.

[5] L. Gorenstein, E. Konen, M. Green, and E. Klang, “Bert in radiology: a
systematic review of natural language processing applications,” Journal
of the American College of Radiology, 2024.

[6] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“Biobert: a pre-trained biomedical language representation model for
biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240,
2020.

[7] M. Hu, J. Qian, S. Pan, Y. Li, R. L. Qiu, and X. Yang, “Advancing
medical imaging with language models: featuring a spotlight on chatgpt,”
Physics in Medicine & Biology, vol. 69, no. 10, p. 10TR01, 2024.

[8] J. Akram and A. Tahir, “Lexicon and heuristics based approach for
identification of emotion in text,” in 2018 International Conference on
Frontiers of Information Technology (FIT), pp. 293–297, 2018.

[9] A. U. Rehman, Z. Rehman, J. Akram, W. Ali, M. A. Shah, and
M. Salman, “Statistical topic modeling for urdu text articles,” in 2018
24th International Conference on Automation and Computing (ICAC),
pp. 1–6, 2018.

[10] S. S. Li, V. Balachandran, S. Feng, J. Ilgen, E. Pierson, P. W. Koh, and
Y. Tsvetkov, “Mediq: Question-asking llms for adaptive and reliable
medical reasoning,” arXiv preprint arXiv:2406.00922, 2024.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[12] J. Singh and R. Banerjee, “A study on single and multi-layer perceptron
neural network,” in 2019 3rd International Conference on Computing
Methodologies and Communication (ICCMC), pp. 35–40, IEEE, 2019.

[13] R. Yang, T. F. Tan, W. Lu, A. J. Thirunavukarasu, D. S. W. Ting,
and N. Liu, “Large language models in health care: Development,
applications, and challenges,” Health Care Science, vol. 2, no. 4,
pp. 255–263, 2023.

[14] D. Pascual, S. Luck, and R. Wattenhofer, “Towards bert-based au-
tomatic icd coding: Limitations and opportunities,” arXiv preprint
arXiv:2104.06709, 2021.

[15] Z. Liu, A. Braytee, A. Anaissi, G. Zhang, L. Qin, and J. Akram,
“Ensemble pretrained models for multimodal sentiment analysis using
textual and video data fusion,” in Companion Proceedings of the ACM
on Web Conference 2024, pp. 1841–1848, 2024.

[16] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao,
M. Zhou, and H.-W. Hon, “Unified language model pre-training for
natural language understanding and generation,” Advances in neural
information processing systems, vol. 32, 2019.

[17] M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib,
M. M. J. Mim, J. Ahmad, M. E. Ali, and S. Azam, “A review on large
language models: Architectures, applications, taxonomies, open issues
and challenges,” IEEE Access, 2024.

[18] A. W. Yu, D. Dohan, M.-T. Luong, R. Zhao, K. Chen, M. Norouzi, and
Q. V. Le, “Qanet: Combining local convolution with global self-attention
for reading comprehension,” arXiv preprint arXiv:1804.09541, 2018.

[19] R. S. Rathore, R. H. Jhaveri, and A. Akram, “Galtrust: Generative
adverserial learning-based framework for trust management in spatial
crowdsourcing drone services,” IEEE Transactions on Consumer Elec-
tronics, vol. 70, no. 1, pp. 2285–2296, 2024.

[20] C. Zhang, X. Pan, H. Li, A. Gardiner, I. Sargent, J. Hare, and P. M.
Atkinson, “A hybrid mlp-cnn classifier for very fine resolution remotely
sensed image classification,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 140, pp. 133–144, 2018.

[21] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin,
and X. Hu, “Harnessing the power of llms in practice: A survey on
chatgpt and beyond,” ACM Transactions on Knowledge Discovery from
Data, vol. 18, no. 6, pp. 1–32, 2024.

[22] A. Nentidis, G. Katsimpras, E. Vandorou, A. Krithara, and G. Paliouras,
“Overview of bioasq tasks 10a, 10b and synergy10 in clef2022.,” in
CLEF (Working Notes), pp. 171–178, 2022.

[23] R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, and M. Steinbrecher,
“Multi-layer perceptrons,” in Computational intelligence: a methodolog-
ical introduction, pp. 53–124, Springer, 2022.

[24] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu, “Attention-over-
attention neural networks for reading comprehension,” arXiv preprint
arXiv:1607.04423, 2016.

[25] D. Pappas, P. Stavropoulos, I. Androutsopoulos, and R. McDonald,
“Biomrc: A dataset for biomedical machine reading comprehension,” in
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language
Processing, pp. 140–149, 2020.

[26] M. Pavanello and J. Neugebauer, “Modelling charge transfer reactions
with the frozen density embedding formalism,” The Journal of chemical
physics, vol. 135, no. 23, 2011.


	2021 IEEE
	Biomedical_ICDM.pdf

