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a b s t r a c t 

Visual recognition with deep learning has recently been shown to be effective in robotic vision. 

However, these algorithms tend to be build under fixed and structured environment, which is 

rarely the case in real life. When facing unknown objects, avoidance or human interactions are 

required, which may miss critical objects or be prohibitively costly to obtain on robots in the 

real world. We consider a practical problem setting that aims to allow robots to automatically 

discover novel classes with only labelled known class samples in hand, defined as open-set clus- 

tering (OSC). To address the OSC problem, we propose a framework combining three approaches: 

1) using selfsupervised vision transformers to mitigate the discard of information needed for clus- 

tering unknown classes; 2) adaptive weighting for image patches to prioritize patches with richer 

textures; and 3) incorporating a temperature scaling strategy to generate more separable feature 

embeddings for clustering. We demonstrate the efficacy of our approach in six fine-grained image 

datasets. 

 

 

 

 

 

 

 

 

1. Introduction 

In recent years, the integration of deep learning techniques with robotic vision has revolutionized the capabilities of autonomous

systems, enabling robots to perceive and understand their surroundings better. Central to this paradigm shift is the application of

deep learning models for object recognition, which empowers robots to identify and localize objects of interest in real-time. Deep

learning-based object recognition systems leverage largescale datasets and powerful neural network architectures to extract high-level 

features from visual data, enabling robots to perform a wide range of tasks. 

Despite the tremendous success of deep learning object recognition in controlled environments, deploying these systems in open- 

world scenarios poses significant challenges. In open-world environments, robots encounter dynamic and unstructured surroundings 

where the types and configurations of objects may vary widely. Traditional deep learning approaches, trained on static datasets with

predefined classes, often struggle to generalize to novel objects and adapt to changing conditions. Moreover, factors such as variations

in lighting, object occlusions, and clutter further exacerbate the robustness and reliability of object recognition systems in open-world

settings. 

To address the inherent risks of this open world challenge, numerous techniques have been introduced to empower models to

discern and differentiate between unknown and known classes. Notable among these are open-set recognition (OSR) [ 1 ; 9 ; 33 ]
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Fig. 1. The OSC problem is exemplified on the left-hand side. In this setting, only labeled samples of known classes are available in the training set. 

During inference, a model needs to perform clustering on samples coming from both known and unknown classes. The right-hand side flow chart 

illustrates the learning process of humans. Our setting mimics steps 1 to 4 of the process. 

Table 1 

Differences between OSC and other settings. 

NCD/GNCD aims to detect and uncover novel classes. In the standard 

Task 

No Training on 

Unknown Classes 

Known Class 

Classification 

Unknown Class 

Clustering 

OSR 
√ √

✗ 

NCD/GNCD ✗ 
√ √

OSC 
√ √ √

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and novel class discovery (NCD) [ 13 ]. When samples from unknown classes are detected, subsequent human intervention might be

necessary to either eliminate these samples from the unknown classes (in cases where a closed-set classification setup is desired) or

to assign labels to the previously unknown samples, thus forming new classes. Despite these efforts, the aforementioned techniques 

exhibit notable limitations. OSR aims to classify samples from known classes while also identifying samples from unknown classes. 

However, OSR treats all unknown classes as a single category, akin to anomaly detection. In the realm of robotic vision, encountering

unknown objects often presents two options: avoidance or the need for additional human intervention through alerts or relearning.

However, neither option is optimal. Avoidance may not always be feasible in certain scenarios, while relearning necessitates manual

labeling or instructions, introducing a time gap in the process. 

NCD/GNCD setup, the model is expected to be trained or finetuned on both known and unknown classes whenever novel classes

emerge. In the field of robotic vision, acquiring samples from unknown classes or comprehending their distributions is typically

impractical. Retraining models each time they encounter new objects is expensive and can potentially impact the performance of

subsequent tasks. 

To overcome these prior limitations, we embrace a more formidable challenge labeled as Open Set Clustering (OSC) , aiming at

generalized novel class discovery without the need to train on novel classes . The setting is shown in Fig. 1 . This novel setting differentiates

OSC from earlier contexts, as highlighted in Table 1 . OSC aspires to cluster all classes, thus acquiring aggregating the unknown classes

for downstream tasks —a facet that often eludes Open Set Recognition (OSR). 

Furthermore, OSC sets itself apart from NCD/GNCD by exclusively utilizing samples from known classes throughout training. This 

design choice obviates the requirement for model retraining upon the emergence of new classes. Distinct from prior methodologies,

OSC unfurls the potential for real-time, on-demand clustering. This empowers OSC with the ability to proactively perform clustering.

In doing so, OSC streamlines the path to newfound class revelation for robots and diminishes the intricacies of subsequent human

instructions. 

To address the challenge of OSC, it is imperative to discern the conditions under which it can be effectively tackled. In the context

of NCD, Chi et al. [ 6 ] establish that high-level semantic attributes imply inherent connections between known and unknown classes.

This fundamental insight is transferable to the realm of OSC, given its shared objective. Capitalizing on this premise, we narrow our

focus to fine-grained datasets for OSC. Building upon this foundation, we present a OSC framework characterized by three pivotal

concepts: (1) We employ an approach involving the joint training of a vision transformer, encompassing both supervised and self-

supervised tasks. This strategy harnesses the limited information inherent in labeled known classes while concurrently mitigating the 

loss of vital data. (2) Recognizing the pivotal role of image patches rich in textures for effective categorization, we introduce adaptive

weighting per image patch. (3) Temperature scaling is harnessed to temper the model’s overconfidence, yielding more discernible 

clusters. Furthermore, our empirical investigation delves into the overlap between the pretrained dataset (ImageNet [ 24 ]) and our

test dataset. By manipulating the dataset split, we elucidate the negligible influence of class overlap on our model’s performance and
192
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underscore the absence of label leakage. Moreover, our findings show the pronounced impact of the proximity between known and

unknown classes on OSC performance. 

This work contributes in the following ways: 

• We formalize the problem setting of generalized novel class discovery without novel data as OSC, which is more practical for

robotic vision. • We present a comprehensive OSC pipeline and assess its efficacy across six fine-grained classification datasets. 

• Through rigorous experimentation, we demonstrate that a well-crafted pipeline can enable the OSC method to achieve comparable 

or even superior performance compared to GNCD methods on the same datasets. • We reveal key findings and hands-on experience

of developing OSC models through comprehensive analysis, offering useful insights for future research. 

2. Related work 

Open set recognition. The OSR problem was proposed by Scheirer et al. [ 25 ]. OpenMax [ 1 ] tackles OSR by using an OpenMax layer

and the Extreme Value Theory (EVT). G-OpenMax [ 9 ] was the first method to use the generative model GAN to train an OSR and shows

the effectiveness of reconstruction loss in OSR. CROSR [ 33 ] utilizes the reconstruction of latent space features and discriminative

learning. C2AE [ 23 ] uses class conditional auto-encoders and EVT to separate unknown classes from known classes. Recently, Chen

et al. [ 4 ] and Chen et al. [ 3 ] use reciprocal points to distinguish unknown classes from known classes, and Zhang et al. [ 34 ] use a

network architecture search to find an optimal architecture for OSR. Finally, Vaze et al. [ 30 ] shows the positive correlation between

closed-set accuracy and OSR performance. 

Novel category discovery. AutoNovel [ 11 ; 12 ; 14 ] established a pipeline for NCD. The model was first trained with self-supervised

learning on both labeled and unlabeled datasets. The model was then trained on the labeled set to learn higher-level features. Finally,

the model was jointly trained on both the labeled and unlabeled sets. Rank statistics was applied during the joint training to transfer

the learned knowledge from known classes to unknown classes. The K-means method was modified to leverage the labels in the

training set to further improve the clustering accuracy. Vaze et al. [ 29 ] formalized generalized novel category discovery (GNCD).

Compared to NCD, GNCD removes the unknown class only assumption on the samples of the unlabeled set to include both known

classes and unknown classes in the training set. However, GNCD still assumes that the unknown classes at inference time must be

available during training. In this paper, we aim to tackle the problem of OSC, where only known classes are available at the training

stage but a model will need to cluster on both known and unknown classes during the inference. 

Transductive Zero-Shot Learning. Transductive Zero-Shot Learning (ZSL) has emerged as an important variation of zero-shot learning 

(ZSL) that leverages unlabeled data from unseen classes to improve performance. Traditional ZSL models (inductive ZSL) rely solely

on seen class information during training and apply knowledge transfer techniques based on semantic information such as attributes

or word embeddings to classify unseen classes. In contrast, transductive ZSL addresses the domain shift problem by exploiting the

distribution of unseen test data to enhance model adaptation. One of the early studies that explored the benefits of transductive

learning in ZSL was conducted by [ 8 ]. They proposed a transductive multi-view embedding approach that aligns the visual features

of seen classes with the semantic descriptions of unseen classes while using unlabeled data from unseen classes to better generalize to

novel categories. [ 32 ] extended the Generalized ZeroShot Learning (GZSL) framework with a transductive setting by incorporating

generative models. It synthesized feature representations for unseen classes using both seen class data and the unlabeled test data

from unseen classes, significantly improving performance in the ZSL and GZSL settings . [ 5 ] introduced a transductive approach that

incorporated self-training strategies, using pseudo-labels generated from the unlabeled test data of unseen classes to iteratively refine 

the model’s predictions. This transductive method helped reduce the domain shift between seen and unseen classes . [ 35 ] presented

a novel graph-based method for transductive ZSL that constructed a graph to propagate information from seen to unseen classes

by leveraging the unlabeled test data. The graph convolutional network (GCN) framework exploited both the relationships between 

classes and the visual feature distribution to improve zero-shot classification accuracy . [ 20 ] introduced a Transductive Bi-Directional

Mapping framework that improved ZSL by mapping both semantic attributes and visual features between seen and unseen classes 

using unlabeled test data. 

Even though transductive ZSL and OSC are both approaches for handling scenarios with unseen or unknown classes, but they

differ in their assumptions, data, and objectives. Unlike transductive ZSL, OSC assumes no prior knowledge of the unseen classes and

no access to any semantic information or attributes that describe them. It works solely based on the feature space and the inherent

structure of the data to form clusters of novel classes. Furthermore, OSC does not have access to any unknown classes during training,

which significantly relax the data limitation. Finally, transductie ZSL is primarily a classification task where the goal is to assign each

instance to a known or unseen class while OSC is a class discovery task where the model aims to identify and group previously unseen

or novel classes from the data, and doesn’t necessarily assign labels to the newly discovered classes but rather creates clusters that

correspond to these unknown categories. 

3. Problem formulation 

We first differentiate the OSC task from the existing settings. The only available knowledge for the model is a set of images with

known labels. The task is to cluster arbitrary images that may or may not be seen in the training set. Compared to OSR which only

aims at identifying unknown classes, OSC further requires assigning correct class labels to samples of unknown classes. The goal is

similar to GNCD. However, the difference from GNCD is that OSC only relies on data from known classes for training, and unknown

classes will only appear at the inference stage. Table 2 details the comparisons of closed-set classification, OSR, NCD, GNCD, and

OSC. 
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Table 2 

Comparisons of open set problem settings. K and U represent the set of known 

and unknown classes. 

Task Train Test Set # Target Classes 

labeled Unlabeled 

CS K K NK 

OSR K K + U NK + 1 
NCD K U K + U NK + NU 

GNCD K K + U K + U NK + NU 

OSC K K + U NK + NU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, OSC is defined as follows. Given two datasets 𝐷train = {(𝑥𝑖 , 𝑦𝑖 )}𝑁 

𝑖 =1 and 𝐷test = {(𝑥𝑗 , 𝑦𝑗 )}𝑀 

𝑗=1 , where N and M represent the

number of images in the training and test datasets respectively, and x and y represent an image and the corresponding class label.

Individual labels in training and test sets ( i.e., yi and yj ) should satisfy the following conditions: yi ∈ K and yj ∈ K ∪ U while K ∩ U = ∅,

where K and U are the known class set and unknown class set. Given only the labeled known classes at training, the model needs to

assign class labels to all samples from known and unknown classes at the inference stage. The evaluation criteria of OSC are defined

as the clustering accuracy for all classes. 

4. Method 

Self-supervised pretrained backbone. We use a vision transformer (ViT-B-16) as the backbone network. Since the datasets we use

are small-scale finegrained datasets, we initialize the model’s backbone with large-scale dataset pretrained weights to improve the 

generalization of the model. The ideal candidates are the ImageNet pretrained weights. To prevent label leakage, we choose self-

supervised ImageNet weights. 

More specifically, we use the DINO [ 2 ] pretrained weights on ImageNet. The main reason is that DINO is a strong nearest neighbor

classifier, which makes the model much more transferable to solve a clustering task. Secondly, since the final goals of OSC and GNCD

are same, using DINO pretrained weights allows us to make a fair comparison of our model against the method in GNCD [ 29 ]

(which uses the same pretrained model) and determine whether having samples from unknown classes would affect the clustering 

performance. 

Adaptive weighted reconstruction. To reduce the bias toward known classes and retain important features for clustering unknown 

classes, we use a selfsupervised training objective for the model. Self-supervised training has been proven to learn robust low-level

features [ 18 ] without the requirement of additional annotations. 

We use the reconstruction loss and masking patches from Mask AutoEncoder (MAE) [ 15 ]. We apply it to reduce the amount of

information loss when projecting an image to a feature space. This property makes it ideal for OSC since we do not know what

information might be useful to cluster unknown classes. 

In a ViT model, an input image x is split into P patches: {𝑝𝑖 }𝑃 𝑖 =1 . Each patch is then projected to a patch token so that the tokens

are {𝑡𝑖 }𝑃 𝑖 =1 . In MAE, a certain percentage of the patches are randomly masked before entering the encoder (ViT structure). Assume

50 % of the patches will be masked and the number of patch tokens generated is 𝑝 ∕2 . Then for each masked patch, a learned masked

token is inserted into the location where the patch belongs. This restores the number of patch tokens to P . The P patch tokens pass

through the decoder and for each patch token, a reconstructed patch is generated {𝑝𝑖 }𝑃 𝑖 =1 . The reconstruction loss is then calculated

between the original patches and the reconstructed ones, i.e. , ℒ 𝓇 ℯ 𝒸 =
1 
𝑃 

𝑃 ∑
𝑖 
(𝑝𝑖 − 𝑝𝑖 ) 

2 
. In MAE, with 75 % of the patches masked, the

model can still reconstruct the original image with good quality. However, we observe that details of objects are missing after the

reconstruction. Since we work on fine-grained tasks, the details of objects play a big role in clustering. Thus we first reduce the

percentage of patches masked to 50 % to keep more information. We think each patch has a different richness of information, which

deserves a different importance rating. For example, given a bird flying in the sky, all patches that intersect the bird should have

more texture information, and therefore more important. In contrast, patches of the background sky are mainly blue and white and

lack useful information. 

Thus, we apply weights 𝑤 = {𝑤𝑖 }𝑃 𝑖 =1 to different patches and modify the masking procedure. The whole process is shown in the

middle part of Fig. 2 . At the start of the training, due to initialization, the patches are masked randomly. After reconstruction, the

softmax normalized w is multiplied by the reconstruction loss of each patch and then summed as the weighted reconstruction loss

for back-propagation. The rationale behind this is that if a patch has a larger reconstruction loss, it means that the model needs to

focus more on that patch. To reduce the reconstruction loss, the weight of the patch would be reduced. During the training iterations,

patches with higher wi would be masked as they are easier to reconstruct by the model. 

By introducing patch weighting to the model, there is an importance priority among the patches, and patches with richer in-

formation would not be masked. We generate the w by adding a separated fully-connected layer to process the class token. And w

are softmax normalized which prevents the trivial solution of setting all weight values to zero. This allows the class token to focus

not only on the most discriminative patches of known classes but also on other less discriminative and still descriptive patches that

contain object parts. 
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Fig. 2. The proposed method. Our method is jointly trained with supervised and selfsupervised learning. The clustering results are obtained through 

non-parametric clustering on feature embedding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Softened model prediction with temperature scaling. Unlike GNCD, where there is a labeled set and an unlabeled set during training,

the only information available to the model is the labeled set consisting of samples only from known classes. Thus we follow the

common design of object classification models and use a parametric classification head as well. A classification head trained by the

cross-entropy loss will encourage the backbone model to discover the most discriminative features among the known classes. 

Since the datasets we use are fine-grained classification datasets, the known and unknown classes share many high-level semantic

similarities. For example, birds from the same ancestors may share very close beaks or claws. Using cross-entropy loss allows direct

supervision from label knowledge to the representation learning. However, training classification heads with crossentropy loss only 

on known classes make them biased towards the known classes and output overconfident probabilities [ 10 ]. To alleviate this issue,

we apply a common technique used in OSR: temperature scaling [ 10 ]. Temperature scaling is a post-processing technique to soften

the predicted probabilities of a model, which divides prediction logits of a model by a scalar parameter. 

Given an input image x , denoting the backbone as E which projects x into a feature vector (the class token) z:z = E ( x ) ,z ∈ RZ ,

where Z is the length of the feature vector. The feature vector z enters the classifier head f to generate the output logits ̂ y . Therefore,

the temperature scaling is applied as: 

�̂� =
exp ( 𝑓 ( 𝑧) ∕𝑇 ) 

∑𝑍 
𝑖 exp ( 𝑓 ( 𝑧) ∕𝑇 ) 

(1) 

where T denotes the temperature and the cross-entropy loss is calculated as: 

When temperature scaling is applied, it operates by dividing these logits by a temperature value T , effectively modifying the scale

of the logits before they are passed through the softmax function. When T is at 1, the model behaves as usual. When T > 1, the logits

are scaled down, which softens the softmax outputs, producing more uniform probabilities across classes. And when T < 1, the logits

are scaled up, making the softmax output more peaked, thereby increasing confidence. 

Temperature scaling can also influence the clustering process in OSC. First of all, by reducing the confidence in predictions for

outliers or ambiguous inputs (those potentially from unknown classes), temperature scaling encourages the clustering algorithm to 

treat these inputs as separate from the known class clusters. This helps in forming distinct clusters for novel classes, improving the

model’s ability to discover new classes in OSC. Secondly, when logits are overconfident, the differences between logits for different

classes may be extreme, leading to tight clusters within known classes but poor separation for outliers. Temperature scaling smooths

these differences, allowing a clustering algorithm to find more reasonable distances between points and better balance cluster sizes.

This is especially important for clustering algorithms that rely on distance measures. Finally, the scaled logits, when used for clustering,

provide a better representation of uncertainty in the feature space. Instead of forcing ambiguous inputs into tight clusters, the softened

probabilities encourage the clustering algorithm to consider a wider distribution of possibilities, which can lead to more accurate 

clustering of novel or unknown data. 

The cross-entropy loss with temperature scaling is: 

ℒ ce = − 1 
𝑁 

𝑁 ∑

𝑖 =1 
𝑦𝑖 log 

(
𝑦𝑖 
)

(2) 

where N is the number of samples in the dataset and y is the ground truth label. 

5. Experiment 

5.1. Experimental setup 

Dataset. We perform extensive experiments across six fine-grained classification datasets: CUB [ 31 ], NABird [ 28 ], Stanford Dog

[ 17 ], Stanford Car [ 19 ], FGVC-Aircraft [ 22 ], and HERB19 [ 26 ]. Specifically, CUB, NABird, and Stanford Dog datasets encompass
195
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Table 3 

Results on the evaluated fine-grained datasets. OffShelf-ImNet and OffShelfDINO utilize the off-the-shelf ImageNet-supervised and DINO self- 

supervised image representations. Ours∗ represents our method on non-overlapping split datasets. 

CUB SCAR NABird Aircraft SDOG 

Method K U All K U All K U All K U All K U All 

OffShelf-ImNet 63.6 59.9 53.4 14.9 16.8 12.4 45.9 62.1 42.5 18.3 .17.7 14.6 60.7 73.8 43.2 

OffShelf-DINO 38.7 40.4 34.2 13.3 13.1 11.3 26.5 38.7 25.1 17.7 18.0 14.7 51.5 61.3 39.8 

Baseline(ViT-B-16) 66.7 61.8 54.6 64.0 50.5 47.5 53.1 61.9 48.1 63.8 54.7 44.8 61.7 72.0 46.4 

Ours 69.5 63.3 60.2 75.5 57.0 55.6 55.6 63.0 50.7 73.1 59.3 51.0 63.2 74.1 46.7 

Ours∗ 67.6 63.8 59.8 54.0 67.4 50.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

animals, with CUB and NABird being dedicated to bird species. In contrast, Stanford Car and FGVC-Aircraft comprise distinct sub-

types of vehicles and aircraft respectively. Lastly, HERB19 serves as a herbarium species dataset. These six datasets collectively span

varying degrees of class similarity: sub-classes under the same super-class (CUB and NABird), sub-classes within the same domain

(animals and transportation), and classes from diverse domains. Each dataset is partitioned into training, validation, and test sets. 

Notably, a subset of classes is randomly selected to serve as the known classes. The test set amalgamates 𝐷𝐾 
𝑡𝑒𝑠𝑡 and 𝐷𝑈 

𝑡𝑒𝑠𝑡 . Details of

datasets are shown in Table 9 . 

Evaluation protocol. For each dataset, we train the model on Dtrain . At the inference stage, we evaluate the performance of the

model using the clustering accuracy, the same criteria used in NCD [ 11 ; 12 ] and GNCD [ 30 ]: 

𝑐 𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔_𝑎𝑐 𝑐 = max 
𝑢 ∈𝑈 

1 
𝑁 

𝑁 ∑

𝑖 =1 
{𝑦𝑖 = 𝑦𝑖 } (3) 

where yi is the ground truth label of an image, ̂ yi is the predicted label of the image, N is the number of possible classes, and U is the

set of all permutations of possible classes. We report three clustering accuracy: on known classes in the test set, on unknown classes

in the test set, and on all classes in the test set. 

Implementation details. The model backbone used across all experiments is a ViT-B-16 backbone. We initialize the backbone with

DINO pretrained weights on ImageNet, except for the ablation experiments where we compare supervised pretrained weights with 

DINO pretrained weights. The learning rate starts at 1 × 10− 4 and decays by a cosine annealed schedule. The batch size is 8 and

the input image size is 224 × 224 × 3. We use padding, random crop, random flip, rotation, translation, and shearing for data

augmentation. The temperature scaling factor T is determined by grid search on CUB dataset and is set to 1.5. The weights of the

cross-entropy loss and the reconstruction are 1 and 0.001. After the training, we extract the class tokens as the feature vectors and

directly apply k -means clustering to them to obtain the predicted classes. The number of unknown classes is assumed to be known in

advance. 

5.2. Backbone comparison 

We test the clustering accuracy of four backbones (ResNet [ 16 ], EfficientNet [ 27 ], ViT [ 7 ], and Swin transformer [ 21 ]) on two

datasets (CUB and SCAR). Following the fine-grained classification procedure, we initialize the backbone with trained weights on 

ImageNet. Then the models are finetuned on the train set. ViT and Swin transformers have much higher clustering accuracy than

ResNet and EfficientNet on both datasets. This may suggest that Vision Transformers are comparably better than ConvNets at retaining

subtle information which could be used to distinguish between the fine-grained classes. We choose ViT-B-16 as our backbone because

it has a performance comparable to Swin transformer but requires significantly fewer resources to train, and also because ViT-B-16

is a widely used backbone with DINO pretrained weights. 

5.3. Comparisons with the baseline 

As OSC is new, there are no existing methods designed to solve OSC. Methods for OSR do not focus on clustering unknown classes

while methods for NCD and GNCD require the usage of unknown sets during training. Therefore, our OSC baseline is a ViT-B-16

finetuned on the target dataset. In Table 3 , we report results of two additional baselines, i.e. , running K-means directly on 1) the

off-the-shelf DINO image representation (OffShelf-ImNet) and 2) off-the-shelf ImageNet-Supervised image representation (OffShelf- 

DINO). 

We can see that OffShelf-ImNet has a biased performance on different datasets. The performance on CUB, NABird, and SDOG (all

animal datasets) are numerically higher than that from SCAR and Aircraft (transportation). The same bias is observed on OffShelf-

DINO. Due to the lack of supervised labels, the performance of OffShelf-DINO is lower than that of OffShelf-ImNet. 

The difference between OffShelf-ImNet and Baseline(ViT-B-16) shows that by simply finetuning on the known classes of the target

dataset, the overall clustering accuracy increases significantly. The clustering accuracy of known and unknown sub-sets both increase 

but the unknown set gain is relatively smaller. This suggests that the unknown classes do share significant high-level semantic features

with the known classes. Finally, our methods outperform the baseline on all clustering accuracy across all datasets with a substantial

gain varies from 2.5 % to 8 % except a marginal 0.3 % on SDOG. The comparison suggests that our method produces a better feature

representation for clustering for both known and unknown classes. 
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Table 4 

Numbers of overlapping classes between target datasets and ImageNet. 

Dataset Total Overlapping Non-overlapping 

CUB 200 55 145 

NABird 400 199 201 

SCAR 196 0 196 

FGVC 102 0 100 

SDOG 120 120 0 

HERB19 683 0 683 

Table 5 

Subclass clustering accuracies of known classes in CUB. 

Class # of classes # of samples Clustering accuracy 

Cowbird 2 59 1.0 

Gull 8 238 0.962 

Auklet 4 97 1.0 

Blackbird 4 119 0.992 

Crow 2 60 1.0 

Oriole 4 119 0.983 

Grosbeak 4 120 0.992 

Cuckoo 3 78 0.987 

Merganser 2 60 0.983 

Jay 3 90 0.967 

Cormorant 3 89 0.989 

Jaeger 2 60 1.0 

Bunting 3 78 1.0 

Finch 2 59 1.0 

Hummingbird 3 90 1.0 

Goldfinch 2 59 1.0 

Kingbird 2 58 1.0 

Catbird 2 60 1.0 

Albatross 3 89 0.989 

Flycatcher 7 187 0.925 

Grebe 4 119 0.992 

Kingfisher 5 149 1.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Effect of class overlap 

Since our model uses the DINO pretrained weights, which are trained on the whole ImageNet dataset, there is the potential for

class overlap be-tween the test sets and ImageNet. We calculate the numbers of overlapping classes between our target datasets and

ImageNet and show them in Table 4 . For NABird, since there are hierarchical class labels, we use them to make sure classes with

parent classes in ImageNet are also considered overlapping classes. Since SDOG is a subset of ImageNet, there is a 100 % overlap

rate. For SCAR, FGVC, and HERB19, there are no exact overlap classes between them and ImageNet. And for CUB and NABird, there

are some overlappings. Thus we resplit CUB and NABird to make sure the unknown classes are from the non-overlapping classes.

The results are reported in Row Ours∗ in Table 3 . By comparing Row Ours and Ours∗ , we see a drop in clustering accuracy in known

classes, an increase in unknown classes, and no difference in all classes. The clustering accuracies are still higher than the baselines in

all sets. Furthermore, even though SDOG is a subset of ImageNet and has a lower number of classes to cluster than CUB and NABird,

the clustering accuracy is higher for CUB and NABird than SDOG. This shows the existence of unlabelled unknown images in the

pretrained set does not affect the clustering performance. 

Another potential overlapping is due to some classes’ parent classes being in ImageNet. For example, even though there are no

exact classes from FGVC and SCAR exist in ImageNet, the classes airplane and car are in ImageNet. However, since we only use

DINO pretrained weights to have a better initialization, and the pretrained weights are trained self-supervised, there is no class

information leakage. Furthermore, to make sure our model performs well in subclasses, we aggregate the 200 classes from CUB to 70

parent classes and calculate the clustering accuracy in each parent class. After training on 100 known classes, we check the subclass

clustering accuracies in each parent class. We ignore parent classes with only one subclass. The results are reported in Table 5 an

Table 6 . In all parent classes, the intra-parent class clustering accuracies are higher than 65 %. This means that even if the parent

class appears in ImageNet and gives the model extra information on separating the parent class from other classes, our model is able

to learn to separate the subclasses. 

5.5. Proximity between known and unknown classes 

One assumption in OSC is that the known and unknown classes need to exhibit similar discriminative features learnable by models.

In Table 7 , we show the transferability of learned image representation as a function of clustering accuracy on a set of datasets using
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Table 6 

Subclass clustering accuracies of unknown classes in CUB. 

Class # of classes # of samples Clustering accuracy 

Raven 2 50 1.0 

Waxwing 2 60 1.0 

Sparrow 21 581 0.907 

Thrasher 2 59 1.0 

Warbler 25 738 0.794 

Woodpecker 6 178 0.944 

Wren 7 206 0.951 

Shrike 2 60 1.0 

Tern 7 208 0.957 

Vireo 7 194 0.943 

Waterthrush 2 60 1.0 

Swallow 4 119 0.681 

Tanager 2 56 1.0 

Table 7 

Effect of proximity between known and unknown classes measure by the 

surrogate of clustering accuracy. 

Training Set CUB SCAR NABird Aircraft SDOG 

OffShelf-DINO 34.2 11.3 25.1 14.7 39.0 

CUB 60.2 11.5 36.2 15.4 51.0 

SCAR 19.7 55.6 13.7 16.6 28.1 

Table 8 

Ablation studies. MAE stands for using the original reconstruction loss with 

masking proposed in MAE. WRE denotes the adaptive weighted reconstruction 

loss and TS denotes the temperature scaling. CS stands for closed-set classifica- 

tion accuracy. 

MAE WRE TS CUB SCAR 

CS K U All CS K U All 

81.7 66.7 61.8 54.6 86.7 64.0 50.5 47.5 √
80.4 67.6 60.2 54.8 87.4 64.9 51.6 48.5 √
81.5 67.7 64.4 56.0 86.9 66.0 52.1 49.4 √
83.5 68.9 62.6 57.9 87.4 71.3 54.0 54.0 √ √
83.0 69.5 63.3 60.3 89.1 75.5 57.0 55.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the model trained on a foreign dataset. We choose two datasets as the training set, CUB and SCAR. Row 1 of Table 7 shows the

clustering accuracy on OffShelf-DINO as the baseline. Row 2 and row 3 report the clustering accuracy on five datasets by models

trained on CUB and SCAR. When the model was trained on CUB, the performance on CUB, NABird, and SDOG improves compared

to Row 1. It is expected since NABird also contains classes of birds. The relatively smaller improvement in the SDOG data may be

a result of the shared highlevel semantic features between dogs and birds ( i.e. , they are both animals and shared features such as

fur vs . feathers and have common body parts such as the eyes). We see no distinct improvement in SCAR and Aircraft datasets, as

birds and transportation are not related to each other. Similar observations can be made when we compare Row 3 and Row 1, i.e. ,

car finetuned image representations do not help cluster airplanes, nor do they for the animal datasets. In fact, the animal dataset

clustering performance is lower as the finetuning may have “erased ” the model’s discriminative power between the animal classes 

obtained during the DNIO pretraining stage. 

Based on these observations in Table 7 , we demonstrate the necessity of the fine-grained assumption in our OSC setting. 

5.6. Ablation study 

In Table 8 , we evaluate the effect of two components of our method: adaptive weighted reconstruction and temperature scaling. 

Adaptive weighted reconstruction Row 1 and Row 3 show the effect of adding weighted reconstruction loss with masking.

Improvements are seen across clustering accuracy on CUB and SCAR. The overall clustering accuracy is increased by 2.5 % on CUB

and by 1.8 % on SCAR respectively. This shows that our reconstruction loss allows the learned features to include more descriptive

information so that the feature space is more suitable for clustering on both known and unknown classes. By comparing Row 2 and

Row 3, we show the modified reconstruction loss improves the model’s clustering accuracy on CUB and SCAR. 

Temperature scaling Row 1 and Row 3 show the effect of temperature scaling. By using the temperature scaling to reduce

the model’s overconfidence in known classes, we observe a 3.3 % and 6.5 % increase in overall clustering accuracy on CUB and
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Table 9 

Datasets used in our experiment. We show the number of known and un- 

known classes, NK and NU in the first two rows. We also show the number 

of images in the training, validation, and test set (both known&unknown 

proportions), and test unknown class set as D train, D val, D test K, and D testU 

respectively. 

CUB NABird SCAR Aircraft SDOG 

NK 100 304 50 60 

𝑁𝑈 100 100 98 50 60 

Dtrain 2.4K 16.3K 3.3K 2.7K 5.9K 

Dval 0.6K 4.1K 0.8K 0.7K 1.5K 

Dtest K 2.9K 18.7K 4.1K 1.7K 2.1K 

Dtest U 2.9K 5.9K 4.0K 1.6K 4.3K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SCAR respectively. On the CUB dataset, the increase in unknown clustering accuracy is small while the increase in overall clustering

accuracy is larger which could imply that the improvement is from separating the known classes and unknown classes. This makes

sense as the temperature scaling is used in OSR to induce lower confidence in the class predictions and promote descriptive features

to be kept. 

When both the weighted reconstruction loss with masking and the temperature scaling are used (Row 4), there is a further increase

in clustering accuracy compared to using either. This shows that the two components are complementary and overall, our method

boosts the clustering accuracy by 

5.7 % on CUB and 8.1 % on SCAR. 

5.7. OSR methods 

Let ACCK , ACCU , and ACCAll be the clustering accuracy on known, unknown, and all classes respectively. Assume we have NK 

samples in the known classes and NU samples in the unknown classes, then if samples from known classes and unknown classes are

perfectly separated, which is the goal of OSR, we have: 

𝐴𝐶𝐶𝐴𝑙𝑙 =
𝑁𝐾 

𝑁𝐾 +𝑁𝑈 

𝐴𝐶𝐶𝐾 +
𝑁𝑈 

𝑁𝐾 +𝑁𝑈 

𝐴𝐶𝐶𝑈 (4) 

A more common calculation equation would be: 

𝐴𝐶𝐶𝐴𝑙𝑙 =
1 

𝑁𝐾 +𝑁𝑈 

(
𝐴𝐶𝐶𝐾 ∗ 𝐶𝐾 + 𝐴𝐶𝐶𝑈 ∗ 𝐶𝑈 

)
(5) 

where CK is the number of samples that are correctly classified as from known classes and CU is the number of samples that are

correctly classified as from unknown classes. If the OSR method perfectly separates known and unknown classes, CK and CU would 

equal NK and NU correspondingly, and Eq. (5) would become Eq. (4) . Note that in Eq. (5) , any misclassified samples during the OSR

step are considered to be clustering wrong. 

Based on Table 8 , we can easily see samples from known and unknown classes are not separated well, as ACCAll is always lower

than both ACCK and ACCU . Even though with more classes, the clustering accuracy is inclined to be lower, it is obvious OSR method

may be useful in OSC. [ 30 ] shows that a model with a good closed-set classification accuracy also has high OSR performance. We

have reproduced experiments on general coarsegrained image datasets and obtained similar results. However, we do not get the same

results on fine-grained datasets. In Fig. 3 , we plot the max logits of the known classes of CUB, unknown classes of CUB, SDOG, and

SCAR. The shift of the max logit distribution is significant between CUB and DOG, and CUB and SCAR. On the other hand, the shift

of max logit distribution on unknown classes from CUB is not large enough to generate good OSR results. Assuming the OSR binary

classification accuracy is ACCOSR , which is between 0 and 1, if the clustering algorithm is applied on predicted known and predicted

unknown sets after the OSR method is applied, ACCOSR would be the ceiling of the clustering accuracy. Due to this accumulation of

errors, the OSR performance is crucial if OSR is applied. 

We show the clustering accuracy on different datasets when OSR is combined into our pipeline. The process is as follows: 1) we

train the model and extract the features of images in the test dataset 2) Following the common OSR process, we use the max logit of

True Positive Rate (TPR) 95 % on known classes to get the threshold 𝜏 of separating known and unknown classes. Images with max

logit lower than 𝜏 are considered to be from unknown classes. 3) We use k-means to cluster on the predicted known class sample

sets, assuming the number of classes is the number of known classes. Any sample that is classified wrong during the OSR step is

automatically categorized as a wrong prediction. The same process is applied to the predicted unknown class sample sets with the

number of classes equal to the number of unknown classes. Then we use formula 4 to get the total clustering accuracy. The results

are reported in Table 11 . We can see that due to the similarity in max logit distribution between known and unknown classes, the

recall rate is low on all datasets. This results in a large percentage of unknown classes classified wrong at the OSR step and the final

clustering accuracy is lower on all datasets. 

Clustering accuracies on CUB when using different %TPR thresholds in OSR are calculated. The highest clustering accuracy is at

55 % TPR. However, in reality, 55 % TPR is too low and is unlikely to be chosen. 
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Fig. 3. Max logit outputs of our model on different datasets. There is a large shift in the distribution of max logits between CUB and SDOG or SCAR. 

The difference between max logits of known classes and unknown classes of CUB is not big enough as there are still some overlaps. 

Table 10 

Comparison with GNCD. 

Method CUB SCAR FGVC HERB19 K U All K U All K U All K U All 

GNCD 64 50 57 53 29 42 60 37 49 51 27 35 

Ours 70 63 60 76 57 56 73 59 51 47 31 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We consider another commonly used OSR method, which is the difference between the reconstruction loss of known and unknown

classes. Even though our method uses a reconstruction loss, its purpose is to retain information of the original information. Even if an

image from an unknown class is given to the model, we still want the model to be able to reconstruct the image well as information

loss can be vital in clustering unknown classes. Furthermore, OSR methods that use reconstruction loss, [ 9 ; 23 ; 33 ; 34 ] require

additional class tokens to reconstruct images conditionally. In these cases, an input image is reconstructed NK times, where NK is the 

number of known classes, and the minimum reconstruction loss is used. In our datasets, we have 56 to 304 classes, which makes it

computationally expensive to apply these methods to fine-grained datasets. Due to the reasons mentioned above, our method chooses 

to directly apply a clustering algorithm on the extracted features, without any OSR classification in advance. 

5.8. Comparing to GNCD 

OSC shares a similar objective as GNCD. The difference is that OSC does not rely on any knowledge and data of unknown classes

during training. In Table 10 , we show the comparison of our model under the OSC setting and the method (GNCD) under the GNCD

setting. Both methods use the ViTB-16 as the backbone and the initialization weights are the DINO pretrained weights. We can see

that for the evaluated datasets, our model performs even better on CUB, SCAR, and FGVC-Aircraft than GNCD despite no knowledge

of unknown classes being available in training. In addition, with the usage of a classification head, our method shows a much higher

clustering accuracy than GNCD for both known and known classes. This affirms that the similarity between known and unknown

classes can serve as a catalyst, enabling a well-honed representation of known classes to enhance the clustering performance of

unknown classes. 

5.9. Feature-level analysis 

Utilizing T-SNE, we visualize the feature-level representations in Fig. 4 . To enhance clarity, we randomly select 20 classes from

the extensive array of fine-grained classification datasets. Our results clearly demonstrate that following fine-tuning, our method 

effectively delineates clusters with distinct boundaries for both known and unknown classes. Moreover, distinct boundaries are 

evident in CUB v.s. SCAR and CUB v.s. SDOG, affirming our method’s proficiency in segregating samples from dissimilar classes

rather than those originating from the same superclass. The model’s ability to cluster dog breeds while facing challenges with car

classes in SCAR can be attributed to the shared resemblances between dogs and birds, in contrast to the lack thereof between cars

and birds. 

We further show the TSNE visualization on the full CUB datasets and full CUB datasets combined with SDOG/SCAR in Fig. 5 . On

the top row, we compare the known and unknown classes, and on the bottom row, we compare subclasses. Comparing Fig. 5 a and

Fig. 5 b, we see that after finetuning, the known and unknown classes in CUB are more separated while each class forms a tighter and

more separated cluster. In Fig. 5 c and Fig. 5 d, the known classes are from CUB and the unknown classes are from SDOG and SCAR.

The top row shows that when the known and unknown classes are from different superclasses, they are perfectly separated. If we

look at the bottom row, we see that the model can cluster some classes in SDOG but not in SCAR. The reason can be the closeness
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Fig. 4. T-SNE Visualization. Different colors and shapes represent different classes. We show four settings: OffShelf-DINO, our method on CUB 

(known vs . unknown), our method on CUB and SDOG, and our method on CUB and SCAR. 

Fig. 5. TSNE visualization on full CUB and full CUB with SDOG/SCAR. The bottom and top row show visualization of the same features but with 

different colors. The top row compares the known and unknown classes, while the bottom row shows all classes. For c and d , in the bottom row, we 

do not show subclasses under CUB as they are shown in b . 

Table 11 

Effect of applying OSR in OSC setting on different datasets. 

CUB SCAR NABird Aircraft SDOG 

AUROC 78.4 83.4 43.1 70.4 62.2 

Recall 27.9 35.2 14.8 13.8 24.1 

Clu Acc w OSR 38.4 39.5 41.0 34.7 25.7 

Clu Acc wo OSR 60.2 55.6 50.7 51.0 46.7 

 

 

 

 

 

between CUB and SDOG as birds and dogs are both animals. Cars and birds share fewer high-level semantic features, resulting in

no useful feature extracted by our model to cluster classes from SCAR. Another reason can be due to the SDOG being a subset from

ImageNet, so the loaded DINO pretrained weights include information about dogs. 

5.10. Estimating the number of classes 

Following the procedure in GNCD [ 29 ], we estimate the number of total classes. We combine the training set with the test set and

apply k-means to the combined set with different numbers of classes. We calculate the clustering accuracy on the training set and

choose the number of classes with the highest accuracy as the predicted number of total classes. The results are reported in Table 12 .
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Table 12 

Estimation of the total number of classes in different datasets. 

CUB SCAR NABird Aircraft SDOG 

Ground truth 200 198 400 112 120 

Predicted 146 153 307 58 98 

Error rate 27 % 23 % 24 % 48 % 18 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On most datasets, there is a 20− 30 % error rate, and on FGVC-Aircraft [ 22 ], the error rate is 48 %. We speculate the reason behind

this is the similarity between the known and unknown classes. This causes the known and unknown classes to be close in feature

space. 

6. Conclusion 

In this study, we address the challenge of autonomous novel class discovery in open world without human interactions, a concept

termed as OSC. Unlike GNCD, OSC introduces a more practical scenario, marking a significant step forward in facilitating continuous

learning for robotic systems. By autonomously uncovering novel classes, OSC empowers robotic systems to seamlessly execute tasks 

without experiencing interruptions or slowdowns. Our empirical experiments on fine-grained categorization datasets demonstrate 

the feasibility of OSC. Moreover, our approach integrates supervised learning with adaptive weighted reconstruction, enabling the 

learning of distinctive features from known classes while preserving potential information about unknown classes. Notably, our 

method outperforms GNCD despite lacking access to the novel classes. 

Yet OSC has some limitations. One limitation is its reliance on finegrained datasets, where class distinctions are subtle and well-

defined. This specificity can hinder performance when applied to more diverse or less finegrained datasets, where class boundaries

may be more ambiguous or the variation within classes is higher. In such cases, the methods developed for OSC may struggle to

distinguish novel classes or could misclassify dissimilar instances as the same class due to no guidance on what features used to

distinguish classes. Addressing these challenges may require more robust feature extraction techniques to better handle broader, 

more heterogeneous data distribution. Another limitation of Open Set Clustering (OSC) is the challenge of estimating the number of

unknown classes. In many cases, the true number of novel or unseen classes is not known in advance, making it difficult for OSC

algorithms to effectively determine how many clusters to form. Incorrect estimation can lead to over- or under-clustering, where the

model either splits a single class into multiple clusters or merges distinct unknown classes into one. This uncertainty complicates the

discovery of new classes and can impact the overall performance of the clustering process. 

Future work will focus on integrating open-set recognition and incremental learning into the system to enable robotics to au-

tonomously discern new objects, cluster them into groups, and augment the existing knowledge base with new classes. A primary

challenge lies in mitigating error propagation by automatically rectifying misclassified objects in subsequent stages. 
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