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Abstract—Alzheimer’s disease (AD) is a widespread neurolog-
ical condition affecting millions globally. It gradually advances,
leading to memory loss, cognitive deterioration, and a substantial
decline in overall quality of life for those affected. AD patients
experience memory decline, eroding cherished memories and
straining relationships, while daily tasks become challenging.
Numerous investigations have been conducted in this field, as
the timely identification of Alzheimer’s disease at its initial
stage is of the utmost importance. A major limitation in this
field is the predominant emphasis on using single fine-tuned
CNN architecture or comparing pre-trained and custom CNN
models for Alzheimer’s detection, often on small datasets, which
neglects a more comprehensive approach. Using smaller datasets
can negatively impact deep learning modeling accuracy due to
overfitting, limited representation, and poor generalization. This
study addresses the current research problems and proposes
an ensemble approach that combines predictions from various
pre-trained models, including DenseNet-121, EfficientNet B7,
ResNet-50, VGG-19, and also from a Custom CNN. The model
averaging ensemble method was applied, a subset of the Stacking
Ensemble, to two ADNI datasets, with Dataset-I being the larger.
The goal was to assess the efficacy of this ensemble approach
for accurate multiclass classification on ADNI datasets, where
it successfully identified all classes despite differing sample
volumes. A vast experiment was conducted on two distinct and
widely recognized real-world datasets, resulting in accuracies of
99.96% and 98.90% respectively. Finally, the outcome of the
research compared with recent research findings demonstrates
the potential of our approach in advancing Alzheimer’s disease
detection by outperforming other benchmark approaches by a
significant margin.

Index Terms—ADNI, Model Averaging, Predictions, Ensemble,
DenseNet-121, EfficientNet B7, ResNet-50, VGG-19.

I. INTRODUCTION

The complex workings of the human brain have intrigued
researchers and scientists for a significant duration, providing
a glimpse into the intricacies of cognition, memory, and
personality. Alzheimer’s disease is only one of the numerous
difficulties that the brain may encounter, serving as a sobering
reminder of its frailty. Detecting Alzheimer’s at an early stage
can be challenging due to the subtle fear many patients have
about the disease, often attributing memory loss to normal

aging, fearing societal judgment and discrimination, and valu-
ing their independence, which can lead to delayed medical
treatment. From 1990 to 2019, there was a noticeable increase
in both the incidence and the occurrence rates of Alzheimer’s
disease and other forms of dementia, with a respective rise
of 147.95% and 160.84%.[1]. Based on current estimations,
the global prevalence of dementia is approximately 50 mil-
lion individuals, with the United States accounting for ap-
proximately 6.5 million of these cases. AD patients display
decreased memory network activity and reduced occipital
alpha activity, indicating impairment in memory processes and
visual processing regions [2]. Neuroimaging has transformed
Alzheimer’s disease understanding by detecting early brain
changes before symptoms. The majority of studies on the
detection of Alzheimer’s disease use a binary classification
system, with the categories AD (Alzheimer’s Disease) and
CN (Cognitively Normal). The task of multiclass classification
involves the classification of several categories, including
MD (Mild Demented), ND (Non-Demented), MOD (Moderate
Demented), and VMD (Very Mild Demented). These four
classes are the extensions of two foundation classes AD and
CN. The three classes used by the other fields of research
are AD, CN, and MCI, where MCI stands for Mild Cognitive
Impairment and can be further subdivided into EMCI, LMCI,
and MCI.

Alzheimer’s disease (AD) develops in stages, starting with
Cognitively Normal (CN), or no cognitive impairment. Certain
individuals may experience a transition from CN to Early
Mild Cognitive Impairment (EMCI). This stage signifies a
gradual deterioration in cognitive functioning. As the disease
progresses, Late Mild Cognitive Impairment (LMCI) emerges,
when deficiencies are increasingly severe as cognitive changes
become apparent. Mild Cognitive Impairment (MCI) eventu-
ally develops, causing serious cognitive deterioration. In the
final stage, people with Alzheimer’s (AD) develop moderate
to severe dementia, severe communication difficulties, weight
loss and need intensive care.

This paper is structured into the following sections: Section



II provides a comprehensive overview of the existing liter-
ature on Alzheimer’s disease. Section III presents a concise
description of the methods and datasets related to our proposed
approach. Section IV elaborates on the experimental design
and provides a detailed comparative analysis of our proposed
ensemble approach. Finally, some conclusions were stated
based on the performance of our method in Section V.

II. RELATED WORKS

In 2023, Shamrat et al. [3] mri employed a comparative
study of several pretrained models on an ADNI dataset of six
classes (AD-EMCI-MCI-LMCI-SMC-CN). InceptionV3 was
proven to be optimal and later finetuned with RMSprop opti-
mizer resulting in an accuracy of 98.67%. Data augmentation
was used to transform the dataset to a balanced dataset of
60000 images of 6 classes.

Garg et al. [4] performed classification on a 4-D dataset
transformed into a 2-D dataset through grayscale image con-
versation. The acquired accuracy was around 97.52%. Rathore
[5] performed a 4-way classification with DenseNet-121,
DenseNet-169, and DenseNet-201. The obtained accuracy was
91.83%, 93.045%, and 94.079%.

Janghel [6] performed a 3-D to 2-D conversion on the ADNI
dataset of two classes and used the VGG-16 model. The study
demonstrates a classification accuracy of 99.95% on average
for the fMRI dataset and achieves a mean accuracy of 73.46%
for the PET dataset.

In 2023, Mujahid et al. [7] employed several ensemble
approaches on a four-class dataset. They used augmentation to
mitigate the class imbalance issue. On the augmented balanced
dataset they acquired accuracies of 97.35% with learning rate
of .0001 with the VGG-16+EfficientNet-B2 ensemble. VGG-
16-DenseNet-121 ensemble model achieved a 95.56 accuracy
in their case.

Tanveer et al. [8] used a ’Deep Transfer Ensemble’ tech-
nique for Alzheimer’s disease detection in 2022. An accuracy
of 99.09% on CN-AD AND 98.71% on MCI-AD binary
classification was received. A dataset comprising 813 3D-MRI
scans was utilized here. The foundational architecture for this
transfer-learned approach was built upon the pre-trained model
VGG-16.

Jathinsai et al. [9] developed a CNN technique for multiclass
classification on an ADNI dataset of 6400 MRI images that
is labeled as Dataset-II in our study. Data augmentation was
avoided here and they achieved an accuracy of 94.92%.

In 2023, Nagaranjan et al. [10] employed an ensemble strat-
egy on the Dataset-II and obtained an accuracy of 98.40%. Im-
age Augmentation was used to augment the number of images
from 6400 to 12800. The prediction of the weighted ensemble
technique was performed using Inception V3, DenseNet-121,
and AlexNet. The model accuracies ranged from 88% to 92%
before the ensemble.

The main contributions of this study are as follows: a novel
highly efficient approach called model averaging ensemble is
proposed to classify the five and four classes of Alzheimer’s

disease in the ADNI Datasets. Our strategy combines pre-
trained models with a Custom Convolutional Neural Network
(CNN) model. In this context, we apply transfer learning to
pre-trained models such as DenseNet-121, ResNet-50, Effi-
cientNet B7, and VGG-19. These models undergo fine-tuning
as feature extractors to adapt their knowledge from pre-training
to specific image-related tasks, thereby enhancing their perfor-
mances. This approach leverages the models’ expertise learned
from large datasets like ImageNet for improved performance
on our target classification task. The majority of research
undertaken on this particular topic is primarily centered around
a singular model-based accuracy, with a notable absence of
the Ensemble approach. The absence of the employment of
the Custom CNN model alongside pre-trained models for
classification tasks was also identified as a gap in the existing
literature.

III. METHODOLOGIES

A. Dataset Description

The ADNI database was the most prevalent during our
analysis. Two ADNI datasets were used in our approach due
to their larger size to maximize accuracy. ADNI data are
typically accessible via the LONI Image and Data Archive
(IDA), a secure repository for research data. Furthermore, due
to the nature of our task being a classification challenge rather
than a segmentation problem, we were compelled to utilize
preprocessed magnetic resonance imaging (MRI) images. The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a
multisite longitudinal observational research of Alzheimer’s
disease, mild cognitive impairment, and healthy elderly people
[11]. Axial plane MRI scans were utilized from ADNI as they
enable the identification of lesions, ventricular enlargement,
and global brain changes. The MRI scans were T1-weighted,
with enhanced fatty tissue signals while suppressing water
signals, resulting in black fluid shading.

1) Data acquisition: A five-class classification system con-
sisting of the following classes: Alzheimer’s Disease (AD),
Cognitively Normal (CN), Mild MCI (MCI), Late MCI
(LMCI), and Early MCI (EMCI) was employed. About 18775
Brain MRI images were obtained from Dataset-I from the
ADNI database [11]. There were 8346 AD cases, 8650 CN
cases, 1155 MCI cases, 480 EMCI cases, and 144 LMCI
cases. 6400 MRI Scans were acquired from Dataset-II for
four-class classifications, which was a public dataset collected
from ADNI by various contributors [12]. About 896 were for
cases of mild demented (MD), 64 were for cases of moderate
demented (MOD), 2240 were for cases of very mild demented
(VMD), and 3200 were for cases of non-demented (ND).
Data augmentation can distort brain MRI images, potentially
compromising the accuracy of disease detection and progres-
sion monitoring. Our study avoided augmentation because
we wanted to construct an ensemble on imbalanced datasets,
which are more prevalent in real-world practical data.

2) Data Preprocessing: Preprocessed T1-weighted MRI
images were selected from ADNI as they are essential for
identifying gray and white matter in brain scans, detecting



abnormalities, and estimating brain volume. Initially, the im-
ages were of 224*224 size, but they were resized to 150*150
as resizing MRI images to 150x150 in Alzheimer’s detection
studies offers computational efficiency, reduces noise, and
strikes a balance between accuracy and resource efficiency.

B. Convolutional Neural Network

Deep learning models known as Convolutional Neural Net-
works (CNNs) are specifically crafted for the processing of
images and videos They comprise distinct layers: convolution,
pooling, dense (fully connected), dropout, and fully connected
layers. Convolution layers execute convolutions, a specific
linear operation for feature extraction. This involves using
a small numerical array called a kernel on an input rep-
resented as a tensor [13]. After convolution, an activation
function introduces non-linear transformations for capturing
intricate data patterns and relationships. [14]. The pooling
layer gradually reduces input image spatial size to simplify
network computations. Pooling reduces space and provides
only important data to CNN layers [15]. A dense layer, known
as a fully connected layer is used in the latter stages of a
neural network to change the dimensionality of the output from
the previous layer. Dropout is ignoring neurons during ran-
dom neuron training. Ignoring means not passing these units
during forward or backward pass. Our study used five CNN-
based models: four pre-trained on ImageNet (DenseNet-121,
EfficientNet B7, VGG-19, and ResNet-50) and one Custom
CNN model.

C. DenseNet-121

DenseNet, a deep learning architecture developed by Huang
et al. [16], has greatly influenced computer vision research.
DenseNet addresses the challenge of vanishing gradients dur-
ing deep network training by incorporating dense connections.
It is a 121-layer deep architecture with around 7 million pa-
rameters which signifies the total number of learnable weights
and biases within the network. In our research, DenseNet-
121 was fine-tuned by rendering its layers non-trainable,
followed by the addition of a dropout layer for feature extrac-
tion and overfitting prevention. Afterward, feature maps were
compressed into singular values for each channel through a
global average pooling layer, and classification was executed
by incorporating a dense layer with softmax activation. The
model underwent transfer learning to adapt its classification
capabilities to datasets containing five and four classes.

D. EfficientNet B7

EfficientNet B7 is an 813-layer architecture with around
64 million parameters. The compound scaling approach of
EfficientNet B7 involves simultaneous adjustments of the
model’s depth, width, and resolution. The inverted bottleneck
structure optimizes computing efficiency and representation
power for feature extraction. In the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), EfficientNet B7
excelled with an accuracy of 85.8% for the first category and
98.8% for the fifth category [17]. The base EfficientNet B7

model was fine-tuned with these custom layers, employing
the Adam optimizer and categorical cross-entropy loss, and
performance was assessed using specified metrics.

E. Custom CNN

The model began with a Convolutional Layer using 64
filters to extract initial features like edges, corners, and simple
textures. A MaxPooling Layer followed downsampling data
and maintaining essential traits while controlling complexity.
A second Convolutional Layer with 32 filters enhanced the
model’s ability to recognize complex patterns indicative of
early signs of Alzheimer’s disease, such as subtle changes
in the shape or size of specific brain structures or the pres-
ence of abnormal structures like amyloid plaques. Another
MaxPooling Layer further sharpened the focus on important
features. The third Convolutional Layer, with 32 filters, was

Fig. 1: Custom CNN Architecture

used to catch more advanced disease patterns like biomarkers
or unique spatial correlations among diseased brain regions.
After flattening the data, two dense layers with 100 neurons,
50 neurons, and ReLU activation facilitated complex feature
combinations and pattern recognition. The last dense layer
incorporated the softmax activation function for our classifi-
cation task. Fig.1 illustrates the model architecture along with
its filter size and layer dimensions.

F. ResNet-50

ResNet-50 is a 50-layer-deep network trained on 23 mil-
lion parameters. It was pre-trained on the ImageNet Dataset.
Unique features include a residual block that allows informa-
tion to avoid utilizing skip connections or shortcuts. ResNet-50
steps in to solve the vanishing gradient issue since VGG-19
is unable to. Also, it possesses a less complex architecture
than VGG-19. ResNet-50 was also finetuned like the previous
models for our specific classification tasks.

G. VGG-19

VGG-19 consists of 16 convolutional layers and 3 fully
connected layers. The layers were made non-trainable for



feature extraction, integrated into a sequential model with
flattening, softmax dense layer, and optimized using Adam
with categorical cross-entropy loss. The problem with VGG-19
was the vanishing gradient problem (when gradients become
too small during deep neural network training, hindering
effective weight updates in early layers).

Fig. 2: Proposed Averaging Ensemble Prediction Model

H. Ensemble Learning

Ensemble learning leverages multiple diverse models to
generate a more accurate and robust prediction [18]. The final
prediction is achieved using predictions from the base models
and the corresponding target values. It learns to combine
these predictions into a single forecast that surpasses the
aggregate. Harnessing the collective strengths of multiple CNN
architectures, we employed a model averaging ensemble to
finalize predictions for each test set example, assigning equal
importance to each prediction from the four best-performing
models. This process involved taking the average prediction
for each instance in our test dataset for each model. For
each example, we chose the class exhibiting the highest
average probability, a selection subsequently validated by the
predictions made by the models. Each model used in the final
ensemble under this ensemble technique holds an equivalent
and substantial role. Fig. 2 illustrates the model averaging
ensemble technique employed in our study and also specifies
the top four predictions used in our case.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup

In this study, version 3.7 of the Python programming
language was utilized, and the Kaggle Cloud platform was
utilized to run the GPU Tesla P-100.

B. Experimental Design

The default batch size, 32 was used in our case. The
models were trained for 50 epochs because larger epochs can
assist neural networks in catching intricate patterns in difficult

datasets, improving accuracy and generalization. A dropout
rate of 0.5 was chosen to compel neural networks to learn
more robust and broad features by randomly deactivating half
of their neurons during training. To prevent overfitting, the cat-
egorical cross-entropy was chosen as the loss function. Adam
(Adaptive Moment Estimation) optimizer was utilized with
a default learning rate of 0.001. This optimization algorithm
is employed for training machine learning models, especially
neural networks. It adapts the learning rate for each parameter
by considering both its prior gradients and squared gradients,
leading to quicker convergence and efficient management of
various feature scales. For the two datasets, a fully connected
layer was added with five and four neurons to all our models
to finetune them for five and four-class classifications.

C. Performance metrics

Five performance metrics were employed for a compre-
hensive performance evaluation. Precision and Recall were
used to examine the balance between true positives and false
positives/negatives in the evaluation, assessing the compro-
mises between these outcomes. Recall evaluated the model’s
capacity to identify true positives, whereas Precision evaluated
the accuracy of positive predictions. Additionally, the F1 Score
provided a fair evaluation of a model’s performance because it
combines Precision and Recall into a single metric. In addition,
the Loss metric, which was mainly used during training,
measured prediction errors and directed attempts to reduce
them, ultimately improving model accuracy.

D. Result Analysis

A split of 80:10:10 was employed on Dataset-I, with 80%
of images going to training, 10% to testing, and the rest to
validation. An 80:20 train-test split was employed on Dataset-
II and in this case, 10% of the train data went into the
validation set. Conversely, the test set has no influence on
training and is entirely independent. Shuffling was used to
randomly organize training data before feeding it to a model
to avoid biases. The final predicted values on Dataset-I are
depicted below. TABLE I shows that ResNet-50 was the best-
performing model in our case. Although ResNet-50 is 50
layers deep whereas EfficientNet B7 is 813 layers deep and
DenseNet-121 is 121 layers deep and they both are more
deeper and complex architectures. Both DenseNet-121 and
EfficientNet couldn’t outperform ResNet-50 as they are known
for achieving high performance on large and varied datasets.
Our Custom CNN model was 9 layers deep and simple in
architecture.

TABLE I: Model performance metrics (Dataset-I)

Model F1 Score Recall Precision Accuracy
DenseNet-121 0.995495 0.989498 0.987203 0.987961
Custom CNN 0.997670 0.994175 0.994218 0.994175
EfficientNet B7 0.997410 0.996276 0.995084 0.995293
ResNet-50 0.998291 0.995728 0.996291 0.995728
VGG-19 0.986175 0.965437 0.966175 0.965437



Compared to pre-trained models, our Custom CNN achieved
the third-best accuracy of 99.41% proving custom structures
can be advantageous in some situations. Additionally,
VGG-19 produced poor performance, therefore it was not
included in the final prediction. Fig. 3 and Fig. 4 depict the
accuracy curves of Custom CNN and ResNet-50.

Fig. 3: Training and validation accuracy of Custom CNN
model (Dataset-I)

Fig. 4: Training and validation accuracy of ResNet-50 model
(Dataset-I)

The validation accuracy exhibits minor oscillations in both
models, but these fluctuations diminish over time, indicating
a convergence toward the optimal solution after 50 epochs.
Because our models responded likewise, we decided to adopt
a model averaging ensemble method rather than a weighted
averaging ensemble. This process involved averaging the
predicted probabilities for each class from the four models.

We selected the class with the highest average probability for
each example, representing the most likely class as validated
by all the models in the ensemble After the merging of
predictions of the four models, the final prediction on the
test dataset obtained an astonishing 99.96% accuracy on
Dataset-I which surpassed all the five initial models and
also the approaches from related works. Fig. 5 depicts the
confusion matrix of the final ensemble on Dataset-I.

Fig. 5: Ensemble Confusion Matrix(Dataset-I)

Fig. 6: Ensemble Confusion Matrix(Dataset-II)

In the scenario of Dataset-II, it was observed that all
the models exhibited comparable behavior, resulting in a
final ensemble accuracy of 98.90% which is higher than the
resultant accuracies from the related studies that have been
conducted on the same dataset after augmenting the dataset.
The performance of our models was superior on Dataset-I
due to the availability of a bigger training set, which allowed



for better model fitting. Fig. 6 depicts the confusion matrix
of the final ensemble on Dataset-II. The confusion matrix
validates the accuracy. Table II shows a comparison table with
relevant research, and it is crystal clear from this table that
our approach has outperformed all approaches in terms of
accuracy. The majority of the relevant papers were restricted
to classifying only three classes whereas we ran classification
tasks on five (AD-LMCI-MCI-EMCI-CN) and four (MD-
MOD-ND-VMD) classes.

Method Classes Accuracy
Shamrat et al. [3] (AD-EMCI-MCI-

LMCI-SMC-CN)
98.67%

Garg et al. [4] (AD-CN) 97.52%
Rathore [5] (AD-LMCI-MCI-NC) 94.08%
Janghel [6] (AD-CN) 99.95%
Tanveer et al. [8] (AD-CN) 99.09%
Mujahid et al. [7] (MD-MOD-ND-

VMD)
97.35%

Jathinsai et al. [9] (MD-MOD-ND-
VMD)

94.92%

Nagaranjan et al. [10] (MD-MOD-ND-
VMD)

98.40%

Ensemble Approach
(Dataset-II)

(MD-MOD-ND-
VMD)

98.90%

Ensemble Approach
(Dataset-I)

(AD-MCI-LMCI-
EMCI-CN)

99.96%

TABLE II: Comparision of performances among our
proposed approach and existing approaches

V. CONCLUSION

In this study, ADNI datasets were utilized. The obtained ac-
curacy scores for the models DenseNet-121, Custom CNN, Ef-
ficientNet B7, ResNet-50, and VGG-19 were 98.79%, 99.41%,
99.52%, 99.57%, and 96.54%, correspondingly. The ResNet
50 model exhibited superior performance, while the VGG-
19 model revealed comparatively inferior performance on the
datasets. In this study, a model-averaging ensemble method-
ology was employed by incorporating the top four models.
The resultant accuracy achieved was an astounding 99.96%
on Dataset-I with five classes and 98.90% on Dataset-II
with four classes. After comparing with the related works it
was clear that our final ensemble approach had outperformed
all the benchmark approaches. Also, our research proposes a
unique approach, as pre-trained CNN models were evaluated
with a Custom CNN model on two datasets, then combining
the best predictions created the optimal ensemble accuracy that
outperformed the studies conducted on ADNI. For future work,
there is a new window of research opportunity if we conduct
our research with T2-weighted images, as ours was conducted
on T1-weighted images only. Also, To create a more reliable
system, clinical data from patients can be added in addition to
imaging data and multimodal data. Addressing the overfitting
issue is also a part of our future research plan.

REFERENCES

[1] X. Li, X. Feng, X. Sun, N. Hou, F. Han, and Y. Liu, “Global, regional,
and national burden of alzheimer’s disease and other dementias, 1990–
2019,” Frontiers in Aging Neuroscience, vol. 14, p. 937486, 2022.

[2] Y. Aoki, R. Takahashi, Y. Suzuki, R. D. Pascual-Marqui, Y. Kito,
S. Hikida, K. Maruyama, M. Hata, R. Ishii, M. Iwase et al., “Eeg resting-
state networks in alzheimer’s disease associated with clinical symptoms,”
Scientific Reports, vol. 13, no. 1, p. 3964, 2023.

[3] F. J. M. Shamrat, S. Akter, S. Azam, A. Karim, P. Ghosh, Z. Tasnim,
K. M. Hasib, F. De Boer, and K. Ahmed, “Alzheimernet: An effective
deep learning based proposition for alzheimer’s disease stages classi-
fication from functional brain changes in magnetic resonance images,”
IEEE Access, vol. 11, pp. 16 376–16 395, 2023.

[4] R. Garg, R. R. Janghel, and Y. Rathore, “Enhancing learnability of
classification algorithms using simple data preprocessing in fmri scans
of alzheimer’s disease,” in Advances in Automation, Signal Processing,
Instrumentation, and Control: Select Proceedings of i-CASIC 2020.
Springer, 2021, pp. 1055–1063.

[5] Y. K. Rathore and R. R. Janghel, “8 prediction of stage of alzheimer’s,”
Next Generation Healthcare Systems Using Soft Computing Techniques,
vol. 8, p. 4, 2022.

[6] R. Janghel and Y. Rathore, “Deep convolution neural network based
system for early diagnosis of alzheimer’s disease,” Irbm, vol. 42, no. 4,
pp. 258–267, 2021.

[7] M. Mujahid, A. Rehman, T. Alam, F. S. Alamri, S. M. Fati, and T. Saba,
“An efficient ensemble approach for alzheimer’s disease detection using
an adaptive synthetic technique and deep learning,” Diagnostics, vol. 13,
no. 15, p. 2489, 2023.

[8] M. Tanveer, A. H. Rashid, M. A. Ganaie, M. Reza, I. Razzak, and
K.-L. Hua, “Classification of alzheimer’s disease using ensemble of
deep neural networks trained through transfer learning,” IEEE Journal
of Biomedical and Health Informatics, vol. 26, no. 4, pp. 1453–1463,
2022.

[9] D. Jathinsai, S. Narisetti, A. V. Pilla et al., “Cnn technique for detecting
alzheimer’s disease by using mri images,” 2022.

[10] V. Nagarajan, L. Venkataramana, V. Prasad, V. Narasimhan, and S. San-
thanakrishnan, “Deployable and weighted ensemble-based deep learning
model for alzheimer’s disease detection,” 2023.

[11] C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander,
D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell, C. Ward et al.,
“The alzheimer’s disease neuroimaging initiative (adni): Mri methods,”
Journal of Magnetic Resonance Imaging: An Official Journal of the
International Society for Magnetic Resonance in Medicine, vol. 27,
no. 4, pp. 685–691, 2008.

[12] Alzheimer’s Dataset—Kaggle Available online: https://www.kaggle.
com/datasets/tourist55/alzheimers-dataset-4-class-of-images [Accessed:
july 6,2023].

[13] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional
neural networks: an overview and application in radiology,” Insights into
imaging, vol. 9, pp. 611–629, 2018.

[14] R. Tharsanee, R. Soundariya, A. S. Kumar, M. Karthiga, and S. Soun-
tharrajan, “Deep convolutional neural network–based image classifica-
tion for covid-19 diagnosis,” in Data Science for COVID-19. Elsevier,
2021, pp. 117–145.

[15] V. Lakkavaram, L. Raghuveer, C. Satish Kumar, G. Sai Sri, and
S. Habeeb, “A review on practical diagnostic of tomato plant diseases,”
Suraj Punj J Multidiscip Res, vol. 9, pp. 432–435, 2019.

[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[17] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[18] M. A. Ganaie, M. Hu, A. Malik, M. Tanveer, and P. Suganthan, “En-
semble deep learning: A review,” Engineering Applications of Artificial
Intelligence, vol. 115, p. 105151, 2022.


	2021 IEEE
	ICAIIHI_350.pdf

