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Abstract— Controlling access to data is essential in ensuring 

data is only accessed by authorised and trusted users. For these 
reasons, zero-trust frameworks have been in the centre of 
interest in the past few years. Zero-Trust frameworks assume 
that users and systems have been compromised and deal with 
them as untrusted entities that requires multiple levels of 
authorisation and security attributes to be compliant in order to 
be considered trusted. The most used zero trust frameworks use 
static thresholds to grant levels of access to systems which could 
introduce false positives and incorrect access privileges to 
systems/networks. This research paper proposes a machine-
learning (ML)-based zero-trust framework that utilises an 
anomaly detection algorithm. The output of the anomalous 
detection would inform the observers the trustworthiness of 
systems in their environments. Moreover, performance, 
complexity and impact of our proposed scheme is compared 
against a static threshold zero-trust framework. 

Keywords— Zero-Trust, Industrial Control Systems (ICS), 
Industrial Internet of Things (IIoT), Internet of Things (IoT), 
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I. INTRODUCTION 

The Industrial IoT (IIoT) model started to be utilized widely 
across organizations to enhance monitoring and connectivity 
between organization assets [1]. IIoT involves the 
replacement of currently deployed Industrial Control 
Systems (ICS) environments with smarter and more 
interactive devices to communicate with next-generation IT 
systems. IIoT systems are deployed in critical infrastructures 
serving multiple sectors. In Australia and other 
Commonwealth governments, critical infrastructures are 
defined as [2]: 

 
‘Those physical facilities, supply chains, information 

technologies and communication networks which, if 
destroyed, degraded or rendered unavailable for an extended 
period, would significantly impact the social or economic 
wellbeing of the nation or affect Australia’s ability to conduct 
national defence and ensure national security’. 

 
A common security model used to secure critical 

infrastructure environments and systems is called Defence in 
Depth. The main assumption in this model is that entities 
contained within these zones are always trusted with respect 
to the devices in the same zones and in zones with lower 

security levels [3]. Therefore, the use of security zoning 
can allow malicious actors to traverse defences and move 
laterally within the trusted zones easily using trusted 
systems in the environment.  

 
To assist in controlling and stopping sophisticated threats 

and attacks in the environment, zero-trust frameworks have 
been developed where any asset in an environment is 
assumed to be compromised. This assumption allows the 
continuous evaluation of attributes of users and systems and 
enforcement of appropriate controls. In our previous research 
[4], we focused on implementing a zero-trust framework that 
relied on static thresholds with different access level provided 
based on different security attributes and security events. 
However, this method can lead to multiple false positive 
enforcements due to the hardcoded thresholds that do not 
change and hence not consider important contextual 
information about the environment dynamics. 

 
Therefore, this research paper proposes an ML-based 

zero-trust framework that rely on anomaly detection to 
determine the change of trust of systems. Specifically, the 
degree of anomaly relates proportionally to the degree of 
trust systems are given and hence their levels of access. 
This paper evaluates multiple anomaly detection algorithms 
such as Isolation Forest, k-nearest neighbours (KNN), 
Connectivity-based Outlier Factor (COF), Local Outlier 
Factor (LOF) on the TON_IoT network dataset produced by 
UNSW [5]. The best evaluated algorithm is then used within 
the proposed zero-trust framework to apply the right level of 
enforcements/access grants based on the resultant anomaly 
score. 

 
The remaining of this paper is organised into six sections. 

Section II provides an overview on the concepts of trust and 
zero-trust frameworks and briefs on anomaly detection 
algorithms. Section III explains and discusses the existing 
issues with various trust evaluation models and existing 
proposed zero-trust frameworks along with our research 
questions. Section IV provides an in-depth explanation of our 
proposed evaluation approaches of the anomaly detection 
algorithms and the access levels the zero-trust framework will 
be enforced using these algorithms. Section V describes the 
experimental setup and implementation of the proposed ML-



based zero-trust framework and compares its performance 
and complexity to a standard static zero-trust framework 
setup. Section VI provides an analysis of the observed results 
and the impact of these results on IIoT environments. Finally, 
Section VII draws conclusions from the results and outcomes 
on the use of machine learning and anomaly detecting in zero-
trust frameworks and discusses future work with potential 
improvements. 

II. LITERATURE REVIEW 

A. Trust 
Trust has been defined as the belief in the reliability and 
honesty of the behaviour of another entity. Trust is formed 
using the following attributes [6,7]:  
• Reputation: formed by intel generated by previous and 

historical interactions with other entities. This includes 
but not limited to case-studies, customer references in 
addition to historical bad and good events associated. 

• Recommendations: forms an indirect trust relationship 
with an entity by a trusted third party.  

• Sensor & behavioural data: this attribute is formed by 
collecting data from different assets in an environment. 
This includes but not limited to authentication 
information, network and system logs and device health 
information.  

Using these attributes, trust can be defined as the following:  

𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠	 × 	𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟	 = 	𝑡𝑟𝑢𝑠𝑡	(1)		

A common illustration of Trust is the chaining of certificate 
issuers in a certificate given to a website issued by trusted a 
Certificate Authority (CA) [8]. 
 
B. Zero-Trust 
The Zero Trust concept was first presented in 2004 by Jericho 
Forum [9] to the expanding utilisation of cloud computing 
along with the increase of mobility in IT. Zero Trust consists 
of a series of theories and concepts that aim to lower the 
likelihood of unnecessary access in the network. The zero-
trust model treats all hosts as if they are in compromised 
networks [6]. It enforces continuous authentication and 
authorisation to access resources in the network. Zero-Trust 
have the following fundamental assumptions [10]:  
• Threats exist at all times externally and internally with 

respect to the network. 
• Location is not enough for determining the trust level of 

subjects. 
• Every asset in the environment has to be authenticated and 

authorised with traffic flows between different assets 
encrypted at all times. 

• Zero-Trust uses dynamic trust evaluation and calculation 
from using different data source to apply policies. 
 

C. Anomaly Detection 
An anomaly can be defined as: 

• “An outlying observation, or outlier, is one that 
appears to deviate markedly from other members of 
the sample in which it occurs” [11] 

Anomalies can be considered to be any of the following 
anomalies [12]: 

• Point Anomaly: represent a single abnormal data 
instance from the rest of the data. 

• Context Anomalies: anomalies only found in a 
specific scenario/use-cases. 

• Collective Anomalies: revealed data points only 
considered to be anomalous in a collection and not 
otherwise 

 
There are different types of anomaly detection classes broken 
down into the following types [12]: 

• Supervised anomaly detection:  based on supervised 
machine learning techniques that rely on training 
labelled data to classify and determine anomalies. 

• Unsupervised anomaly detection: based on 
unsupervised machine learning algorithms, data 
does not rely on training data. 

• Semi-supervised: based on semi-supervised 
techniques, requires labels only for a normal class 
data. 

The existence of anomalies in data drove the use of 
anomalous detection in analytics for applications such as 
detecting unauthorised access [13]. 

III. CURRENT STATE OF RESEARCH & RESEARCH 
QUESTIONS 

Zero-Trust is still a new and evolving concept that’s still 
being explored and examined by multiple organisations and 
security vendors around the world. There are still new models 
and frameworks that are being developed that follow the 
zero-trust principles. Authors in [14] also proposed a 
dynamic trust model that utilises fuzzy logic to derive the 
trust value. In addition, one of the early contributors of the 
zero trust architectures proposed in the industry is the Google 
Zero Trust approach called BeyondCorp for enterprise 
environments [8]. In addition, NASA proposed a zero-trust 
architecture that could suit their environments and facilities 
[15]. 
 
Our past paper [4] focused on implementing a zero-trust 
framework that relied on static thresholds with different 
access levels provided based on different security attributes 
and security events. From a security perspective, the zero-
trust framework we proposed provides the capability required 
to respond to advanced threats in IIoT environments. 
However, as the trust is defined solely based on static defined 
attributes always be a chance of false positives occurring. 
Also, a disadvantage in the proposed design was the long 
verification process required to authorise the IIoT device 
traffic to the cloud IIoT server. In order to enhance the 

(1) 



accuracy and simplicity of the proposed zero-trust 
framework, Machine Learning will be used to enhance our 
zero-trust framework. Particularly, Machine Learning 
will be used to perform anomalous detection on the 
selected labelled network dataset. The anomalous 
detection scoring will be used to determine the evaluated 
trust level of devices in the network. Therefore, this paper 
covers the following research questions: 
 

1. How can anomaly detection algorithms be used to 
evaluate trust in zero-trust frameworks? 

2. Can machine learning improve the performance 
accuracy of Zero-Trust frameworks for IIoT 
environments? 

3. Does the use of ML-based zero-trust frameworks 
reduce the operational impact on IIoT systems 
compared to static threshold zero-trust frameworks? 

IV. PROPOSED MACHINE LEARNING EVALUATION FOR ZERO 
TRUST FRAMEWORK 

A. Machine Learning algorithms 
In order to implement machine-learning-based zero-trust 
framework, we have evaluated the following algorithms to 
choose the highest accuracy and using the TON_IoT network 
dataset: 

• Isolation Forest 
• KNN 
• COF 
• LOF 

a) Isolation Forest 
Isolation forest is an algorithm that utilises the use of binary 
tree to determine anomalies and normal data. The algorithm 
constructs a binary search tree for every N random sample of 
size of M. The anomalous score is calculated from the 
anomaly score it inserts into each of the binary search trees. 
The mean insertion depth is used to drive the anomaly score 
[16]. Isolation Forest has been used in various ways in 
research such as in Paper [17] where it was used to detect 
deviation and anomalies of employee behaviours. Authors in 
[18] implemented an isolation forest algorithm for streaming 
data using a sliding window. Isolation forest consists of two 
phases: 

• The training phase involves the construction of the 
forest of random trees. 

• The second phase is the anomaly scoring phase of 
the observations using the constructed tree. 

The anomaly score 𝑠(𝑥)  of an observation x is computed 
using the isolation forest algorithm by normalising the path 
length h(x): 

𝑠(𝑥) = 2!
"[$(&)]
)(*)  

 
 
 

Where: 
• 𝑠(𝑥): an anomaly is indicated a score value close to 

1 where a score value between 0.5 and 0 indicates a 
normal observation. 

• 𝐸[ℎ(𝑥)]: isolation trees average path length in the 
isolation forest 

• 𝑐(𝑥): unsuccessful searches’ average path length in 
a binary search tree of 𝑥 observations 

b) LOF 
Breunig et al. [19] introduced the local outlier factor (LOF) 
algorithm, which assigns an anomaly score to each data 
instance. This score represents the ratio of the average local 
density of the k nearest neighbours of the instance to the local 
density of the instance itself. To compute the local density of 
a data instance, the authors determine the radius of the 
smallest hyper-sphere centred at the instance that 
encompasses its k nearest neighbours. The local density is 
then calculated by dividing 𝑘 by the volume of this hyper-
sphere. LOF aims to assign a level of outlierliness to each 
data point in a multidimensional dataset. The local outlier 
factor of a data point 𝑥 is computed as the ratio of its local 
density to that of its k-nearest neighbours. That is, the local 
outlier factor of observation 𝑥 is: 
 

𝐿𝑂𝐹+(𝑥) =
1

|𝑁+(𝑥)|
3

𝑙𝑟𝑑+(𝑜)
𝑙𝑟𝑑+(𝑥),∈.!(&)

 

 
Where: 

• 𝐿𝑂𝐹+(𝑥) : the local reachability density of an 
observation 𝑥 

• 𝑁+(𝑥) : represents the k-nearest neighbors of 
observation 𝑥. 

• |𝑁+(𝑥)|: is the number of observations in 𝑁+(𝑥). 
 
Normal observations are indicated by 𝐿𝑂𝐹+(𝑥) values that 
less than or close to 1 whereas anomalies are indicated with 
𝐿𝑂𝐹+(𝑥) values greater than 1. 
 

c) KNN 
The kNN is a general non-parametric supervised learning 
technique utilized in classification tasks. It involves 
predicting the class or label of a new observation by 
examining the labels of its closest k neighbours within the 
training dataset [20]. In essence, the one-class kNN rule 
operates on the premise that similar observations tend to have 
close neighbours in the training data, while dissimilar ones 
(anomalies or outliers) are distant from their nearest 
neighbours. Thus, anomalies exhibit significantly greater 
distances to their nearest neighbouring training samples 
compared to normal observations. There are different 
methods used to calculate distance between observations but 
the one that was used in this research is Euclidean distance 
which measures a straight distance between different points. 
The normalised Euclidean distance is calculated by the 
following formula: 

(3) 

(2) 



 
 

𝑑(𝐴, 𝐵) = ;∑ (𝑥/ − 𝑦/)01
/23

𝑚  

Where: 
• 𝐴: feature space consisting of (𝑥3, 𝑥0, …	, 𝑥1)	 
• 𝐵: feature space consisting of (𝑦3, 𝑦0, …	, 𝑦1)		 
• 𝑚: is the size of the of the feature space 

Normalised Euclidean distance values less than or equal to 1 
are classified as anomalies whereas Normalised Euclidean 
distance values close to 0 are classified as normal. 
 

d) COF 
Tang et al. [20] introduced a variant of the LOF method, 
termed Connectivity-based Outlier Factor (COF). The 
primary distinction between LOF and COF lies in the 
approach used to determine the k neighbourhood for each 
data instance. In COF, the neighbourhood for a given instance 
is calculated incrementally. Initially, the nearest instance to 
the given one is included in the neighbourhood set. 
Subsequently, additional instances are added to the 
neighbourhood set based on their minimal distance to the 
existing set among all remaining data instances. The distance 
between an instance and a set of instances is defined as the 
minimum distance between the given instance and any 
instance within the set. This incremental growth process 
continues until the neighbourhood reaches the size of k. Once 
the neighbourhood is established, the anomaly score is 
computed using the same method as LOF. The COF 
algorithm computes the connectivity-based outlier factor for 
observations through comparing the neighbouring 
observations with observation 𝑥  that is subject to outlier 
scoring. This is shown in the following formula computing 
connectivity-based outlier factor at observation 𝑥  with 
respect to its k-neighbourhood 𝐶𝑂𝐹+(𝑥) [21]: 
 

𝐶𝑂𝐹+(𝑥) =
𝑎𝑐 − 𝑑𝑖𝑠𝑡.!(&)∪&(𝑥)

1
𝑘 ∑ 𝑎𝑐 − 𝑑𝑖𝑠𝑡.!(,)∪,(𝑜),∈.!(&)

 

 
Where 𝑎𝑐 − 𝑑𝑖𝑠𝑡.!(&)∪&(𝑥) : average chaining distance 
between observations 𝑥+  and 𝑁+(𝑥)  is the set of 𝑘 
nearest neighbours (k-NN). 
 
B. Trust Access Grant Levels 

Systems in IT and OT environments are installed and 
connected to the network using different authentication 
protocols. Similarly, IIoT devices are installed and connected 
to the network sending and receving data as part of their 
functionality. Devices connected to the network are assumed 
and operating as fully trusted systems. In order to control 
traffic and access of these IIoT systems, our proposed zero-
trust framework consists of the following access grants 
similarly described in our past paper [4]: 

 

• Full Access grant: authorised access to resources in the 
environment with full permissions based on the IIoT 
client role.  

• Partial Access grant: IIoT devices with partial access 
will report their metrics and status to the IIoT platform but 
not be able to interact with the environment fully. 

• Limited Access grant: IIoT devices with limited access 
will not report their status and metrics to the IIoT platform 
nor interact with the environment. It will only be 
accessible by central management. 

These access grant levels have been evaluated using static 
thresholds in our previous paper [4]. However, the use of 
static thresholds defined in detection rules/conditions have 
been observed to be ineffective and/or inaccurate in various 
applications in different industries. Static thresholds are built 
to monitor enormous number of vectors that can contain false 
positives which can lead to threat alert fatigue [22]. Cisco 
produced a report [23] which stats that around 44% of 
triggered alerts are ignore by security operators as they 
receive a lot of alerts that required analysis. 
 
With this in mind, the approach for measuring access grant 
levels have been shifted to rely on detected anomalous 
behavior of IIoT systems. The more anomalous behavior is 
observed from an IIoT system, the less trusted the IIoT 
system is. This is because IIoT systems are design and 
deployed to be performing certain and defined static actions. 
Hence, anomalous behaviour in such environments is 
considered to be an indicator of compromise (IoC). The use 
of ML-based anomalous detection will dynamically score the 
anomalous behavior observed from IIoT network traffic.  The 
anomaly scores are normalised to reflect the numeric range 
from 0 to 1 where 1 is an extremely high anomaly and scores 
close to 0 are defined as normal/insignificant unusual 
behaviour. The evaluated trust score will reflect the access 
grant using the following score ranges to apply the access 
grant level. This approach creates an access level for these 
IIoT devices relatable to their trust levels based on the 
potential of them being compromised. 
 

𝑇"*5/56(𝑥) = G𝑇"*5/56(𝑥 − 1) − 𝑠(𝑥)	G 
 

• 𝑇"*5/56(𝑥) : The evaluated trust value of the IIoT 
entity based on the current observation 𝑥  

• 𝑇"*5/56(𝑥 − 1): The evaluated trust value of the IIoT 
entity based on the previous observation 𝑥 − 1 

• 𝑠(𝑥): anomaly score 𝑠(𝑥)  of an observation 𝑥 from 
the IIoT entity 

Table 1 below describes the access grant levels and their 
associated anomaly scores. 

TABLE I.  ANOMALY SCORE RANGES PER ACCESS GRANT LEVEL  

Anomaly Score Anomaly Level Access Grant 
0.67 – 1 High Limited 

0.34 – 0.66 Medium Partial 
0 – 0.33 Low Full 

(4) 

(5) 

(6) 



 
Figure 1 shows a slop diagram visualising the relationship 
between anomaly score 𝑠(𝑥) and the trust level  𝑇"*5/56(𝑥) 
where the higher the anomaly score the lower the trust is 
limiting access and vice versa. 

 
Fig. 1. Slope of Trust vs Anomaly Score with access grant levels 

V. EXPERIMENTAL IMPLEMENTATION 

The main objective of this experimental implementation is 
to measure and compare the performance, complexity 
and impact between the proposed ML-based zero-trust 
solution and the static zero-trust solution in our previous 
paper [4]. With this in mind, the ML classification 
algorithms mentioned in the previous section were evaluated 
to choose the best algorithm to be used in the ML-based 
zero-trust solution based on the chosen dataset. The 
network dataset used in this research was extracted from one 
of the UNSW datasets labelled as 'TON_IoT'. The dataset 
consists of virtual IoT devices that have been deployed in a 
virtual lab in which device and network activities are 
gathered. The traffic records contained in this dataset have 
been labelled to denote normal and attack instances, where '0' 
signifies normal behavior and '1' indicates attacks. [5]. The 
experimental implementation of the solution consists of: 

• Data Preparation 
• Anomaly Detection Evaluation 
• Zero-Trust Experimental Implementation 
• Zero-Trust Framework Evaluation 

A. Data Preparation 
Before starting the evaluation steps of this experimental 
implementation, we defined the scenario in which we were 
interested to filter the data according and make it relevant to 
our zero-trust framework. The scenario is focused on IIoT 
devices being the target of attempted security attacks in the 
network on different ports and protocols. This is relevant to 
our framework as the more a device is targeted in IIoT 
network, the higher the likelihood this device could get 
compromised in some shape or form. Therefore, we focused 
on filtering the 'TON_IoT' network dataset associated with 
the virtual IoT devices where they were the target through 
filtering the dataset with their destination IP addresses. We 
then sampled the data to help us implement anomaly 
detection on 15 minutes samples. With this approach, we had 
the following dataset associated with 5 IIoT devices shown in 

Table 2. This dataset will be used the evaluation of the 
anomaly detection algorithm and the input of the ML-based 
zero-trust framework. 

TABLE II.  AUC VALUE MEASUREMENTS PER ALGORITHM 

IIoT 
Devices 

No. 
Records 

No. Normal 
Records 

No. Attack 
Records 

Dev 1 2612 2599 13 
Dev 2 249 242 7 
Dev 3 2609 2598 11 
Dev 4 328 323 5 
Dev 5 2609 2595 14 

 
B. Anomaly Detection Evaluation 
The TON_IoT network dataset used in this research was 
broken down between training and test with different ratios. 
This is to evaluate the performance of the anomaly detection 
algorithm used for Zero-Trust evaluations. The following 
ratios of used data are as follows: 

• 90% Train – 10% Test 
• 80% Train – 20% Test 
• 70% Train – 30% Test 
• 60% Train – 40% Test 
• 50% Train – 50% Test 
• 40% Train – 60% Test 

When evaluating the performance of various classification 
techniques, it's essential to gauge how accurately a 
classification model assigns records to their respective 
classes. Area under the ROC curve (AUC) serves as a popular 
metric for ranking which was used to reflect the overall 
ranking performance of a classifier. AUC value is 
theoretically and empirically superior to accuracy in 
evaluating classifier performance and identifying optimal 
solutions during classification training [28,29]. Table 3 below 
shows the AUC value measurements for each algorithm. 

TABLE III.  AVERAGE AUC VALUE MEASUREMENTS PER ALGORITHM 

Algorithm MIN MAX AVERAGE 

KNN 0.4492 0.7670 0.5959 
LOF 0.3352 0.7370 0.5570 
COF 0.2376 0.6943 0.4932 

IForest 0.3545 0.8679 0.6759 

 
Based on the highest AUC measurements, we have chosen 
Isolation Forest to be the anomaly detection algorithm for 
the zero-trust framework with TON_IOT network 
dataset. 
C. Zero-Trust Experimental Implementation 

In our experimental set-up we used Python to simulate 
network communication between a client and a server. Figure 
2 below shows the zero-trust evaluation flow for the proposed 
ML-based zero-trust framework using Isolation Forest 
deriving access grant levels. 

 



 
Fig. 2. ML-based zero-trust evaluation flow deriving access grant levels 

Figures 3 and 4 show layouts of the static threshold zero-
trust architecture and the ML-based zero-trust architecture. 

 

 
Fig. 3. The static threshold zero-trust architecture 

 

 
Fig. 4. The proposed ML-based zero-trust architecture 

D. Zero-Trust Framework Evaluation 
Impact Evaluation is performed by comparing the number 

of trust value degradation along with the access grant changes 
for each lab setup. Out of the attack records identified, Table 
4 below shows a breakdown of the applied grant levels per 
device for the ML-based zero-trust lab and the static 
threshold zero-trust lab. As observed, the static zero-trust lab 
has more grant level changes than the ML-based zero-trust 
lab which leads to more impact. 

TABLE IV.  APPLIED GRANT LEVELS FOR ML-BASED & STATIC 
THRESHOLD ZERO-TRUST LABS PER DEVICES 

IIoT 
Device ML-Based Zero-Trust Lab Static Threshold Zero-

Trust Lab 
Dev 1 Full Access Grant: 13 

Partial Access Grant: 0 
Limited Access Grant: 0 

Full Access Grant: 10 
Partial Access Grant: 3 
Limited Access Grant: 0 

Dev 2 Full Access Grant: 7 
Partial Access Grant: 0 
Limited Access Grant: 0 

Full Access Grant: 4 
Partial Access Grant: 3 
Limited Access Grant: 0 

Dev 3 Full Access Grant: 11 
Partial Access Grant: 0 
Limited Access Grant: 0 

Full Access Grant: 3 
Partial Access Grant: 8 
Limited Access Grant: 0 

Dev 4 Full Access Grant: 5 
Partial Access Grant: 0 
Limited Access Grant: 0 

Full Access Grant: 2 
Partial Access Grant: 3 
Limited Access Grant: 0 

Dev 5 Full Access Grant: 14 
Partial Access Grant: 0 
Limited Access Grant: 0 

Full Access Grant: 11 
Partial Access Grant: 3 
Limited Access Grant: 0 

This can also be visualised by the following trust value 
T_Entity(x) over time for Dev 3 where Figure 5 shows the 
ML-based zero-trust chart and Figure 6 shows the static 
threshold zero-trust chart. 

 

 
Fig. 5. The evaluated trust value change of Dev 3 using the ML-based 
zero-trust framework 

 
Fig. 6. The evaluated trust value change of Dev 3 using the static 
threshold zero-trust framework 

Machine Learning Performance Evaluation is 
performed by evaluating the performance of the machine 
learning algorithm modelling to emphasise the accuracy of 
the ML-based zero-trust framework. The following 
evaluation metrics and their formulas are used for evaluating 
the Isolation Forest model built on the used dataset [26]: 



• Accuracy: percentage of correction classifications 
produced by the anomaly algorithm. 

• Precision: measurement of the correctly predicted 
positive patterns from the total predicted patterns. 

• F1-score: measurement of the accuracy of testing. 
• Recall: ratio of false positives categorised as 

attacks. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

𝐹3𝑠𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

 
Where: 

• True Positive (TP): percentage of attack records 
correctly categorised as attack data 

• False Negative (FN): percentage of attack records 
incorrectly categorised as normal data 

• False Positive (FP): percentage of the normal 
records incorrectly categorised as attack data. 

• True Negative (TN): percentage of the normal 
records correctly categorised as normal data. 
 

Table 5 below shows the performance evaluation metric 
measurements for the Isolation Forest model build using a 
70%-30% data split of the dataset. 

TABLE V.  MACHINE LEARNING EVALUATION METRIC 
MEASUREMENTS FOR THE ISOLATION FOREST MODEL 

Device Accuracy Precision Recall F1_Score 

Dev 1 91.33% 99.58% 91.66% 95.40% 

Dev 2 85.33% 98.46% 86.49% 92.09% 

Dev 3 90.04% 99.70% 90.25% 94.75% 

Dev 4 83.83% 97.65% 85.57% 91.21% 

Dev 5 90.20% 99.86% 90.52% 94.96% 

 
Complexity Evaluation is performed by comparing the 

number of hops for the ML-based and the static-based Zero-
Trust implementations to perform analysis and provide trust 
outcomes. The following interactions for the static threshold 
and the ML-based zero-trust implementations are shown as 
follows: 

Static threshold zero-trust interactions [7] 
1. IIoT client → Policy Enforcement Point (PEP) 
2. PEP → ZT-Engine (Policy Admin [PA]) 
3. Verification Request 

a. PA → Policy Engine (PE) 
b. PA → Endpoint Detection & Response (EDR) 

4. Valid Verification Response 
a. PE → PA 
b. EDR → PA 

5. PEP → IIoT Cloud Firewall 
6. IIoT Cloud Firewall → Cloud IIoT Server 

ML-Based zero-trust interactions 
1. IIoT Client → ML Zero-Trust Engine 
2. ML Zero-Trust Engine → IIoT Cloud Firewall 
3. IIoT Cloud Firewall → Cloud IIoT Server 

 Processing Performance Evaluation is performed by 
sending over 25 data packets from the IIoT client to the zero-
trust server utilising both implementations to measure and 
comparing their processing time. As the static threshold zero-
trust implementation has more hops and interactions required 
to verify and authorise IIoT device, we expect a lower latency 
from the ML-based implementation than the zero-trust lab. 
We observed that the ML-based zero-trust setup had a nearly 
half the processing time of the static zero-trust 
implementation. Table 6 summarises the results observed 
from our analysis and tests. 

TABLE VI.  PROCESS PERFORMANCE EVALUATION RESULTS 

Metrics ML-Based Zero-
Trust Lab 

Static Zero-
Trust Lab 

No. of interactions 3 6 
Min. processing (ms) 114.1698 357.340008 
Max. processing (ms) 44.0998 52.0102081 
Avg. processing (ms) 55.2124 98.9972172 

VI. ANALYSIS 

From a security perspective, the proposed ML-based 
zero-trust framework provides the capability required to 
respond to advanced threats and apply restrictions 
dynamically based on the behaviour of IIoT systems. As 
anomalies in the behaviours of systems are considered to be 
key indicators of compromise (IoCs), these anomalies can 
also be used as indicators of mistrust of which is what has 
been used here in our zero-trust framework. Particularly as 
IIoT systems are industrial systems that are programmed to 
be working in a specific set of patterns, there will be a very 
high chance of an occurrence of compromise whenever any 
change of behaviour occurs.  
 
In addition, as observed from the results, the use of static 
zero-trust framework can have great impact on the 
availability and functionality of critical services delivered 
by IIoT devices. Limiting access to IIoT devices in any way, 
shape or form can cause safety hazards to humans and 
hence the frequency of these limited accesses has to be 
kept low at all times. On the other hand, the ML-based zero-
trust framework has applied trust value degradation on the lab 
IIoT devices while maintaining appropriate level of accuracy 
and precision of classification of normal vs attack traffic. This 
can allow security engineers to respond to alerts raised based 

(7) 

(8) 

(9) 

(10) 



on the trust value of these IIoT systems in a safe and accurate 
manner. 
 
Moreover, the ML-based zero-trust framework exceeded the 
static zero-trust framework through its enhanced 
performance and simplicity. However, more exploration is 
needed to experiment with the use of unsupervised machine 
learning to remove the dependency for training datasets. 
Moreover, relating the anomalous detections to the severity 
of security alerts raised can provide more context and weight 
to the evaluated trust of IIoT system. For this proposed ML-
based to succeed in IIoT environments, the framework is 
required to be integrated within a Fog Computing solution 
to improve the performance of the overall IIoT solution 
and correlate security findings to improve the evaluated 
trust values of systems within the environment. 

VII. CONCLUSION 

The convergence of IT and critical industrial environments 
is becoming more apparent as the need for advanced 
technologies and integrations increases. Zero-trust is one of 
the new concepts that are being studied and explored in 
various avenues. With the use of machine learning within 
zero-trust, improved security and performance can be applied 
on IIoT solutions as observed. However, further performance 
enhancements can be sought with the use of fog computing 
to reduce the latency via changing the trust evaluation process 
of the framework. Moreover, incorporation of context 
awareness gained from insights of access control events and 
security alerts that can enrich the zero-trust evaluation 
process and apply more accurate access grants on IIoT 
systems in the environment. 
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