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A B S T R A C T

Remaining Useful Life (RUL) prediction in lithium-ion batteries is crucial for assessing battery performance.
Despite the popularity of deep learning methods for RUL prediction, their complex architectures often
pose challenges in interpretation and resource consumption. We propose a novel approach that combines
the interpretability of a convolutional neural network (CNN) with the efficiency of a bat-based optimizer.
CNN extracts battery data features and characterizes degradation kinetics, while the optimizer refines CNN
parameters. Tested on NASA PCoE data, our method achieves exceptional results with minimal computational
burden and fewer parameters. It outperforms traditional approaches, yielding an R2-score of 0.9987120, an
MAE of 0.004397067 Ah, and a low RMSE of 0.00656 Ah. The proposed model outperforms traditional deep
learning models, as confirmed by comparative analysis.
Introduction

The proliferation of essential portable equipment such as electric
cars, mobile phones, and laptops has significantly increased the usage
of lithium-ion batteries (LIBs). This rise in using a large number of
LIBs can lead to increased unwanted incidents associated with these
batteries. In particular, the malfunction of batteries may lead to the
sudden failure of heavy-duty and portable machinery, resulting in
substantial financial losses for industries. Consequently, it has become
crucial for researchers to concentrate on battery status prediction, man-
agement systems, and Remaining Useful Life (RUL) assessment. RUL
can be defined as the remaining number of discharging and charging
cycles it can undergo before becoming unusable. Predictive approaches
for estimating RUL are crucial in determining the battery’s remaining
effective time and minimizing system downtime by monitoring cell
health [1] (see Tables 1 and 2).

LIBs offer several advantages, such as a longer lifetime, high energy
density, lightweight design, and low self-discharge rates [2]. These
characteristics have contributed to their widespread adoption across
various applications. However, ensuring the reliability and usability of
LIBs throughout their life cycle requires extensive research in battery
management technologies, RUL prediction, and a good understanding
of capacity degradation characteristics. This paper explores the current
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state of the art of RUL prediction for LIBs, considering the growing
importance of battery management technologies and the need for an
accurate assessment of remaining useful life. In Fig. 1, we provide a
step-by-step process of the RUL prediction method for LIBs using a deep
learning method. In general, to generate the battery data, the capacity,
resistance, temperature, voltage, etc. a LIB cell is run in various op-
erating conditions. During these operations, several side reactions can
occur, leading to material aging and capacity degradation. These may
lead to battery failure and system malfunctions in certain situations [3].
Therefore, accurate prediction of the RUL of LIBs is crucial for electrical
systems to prevent battery failures and mitigate potential unwanted
consequences [4,5].

By keeping LIBs operating within safe and ideal temperature ranges,
efficient thermal management reduces degradation mechanisms, im-
proves performance, and makes it possible to predict RUL more pre-
cisely [6]. To optimize thermal management, a novel diagonal-type
cooling channel design for large-format lithium iron phosphate batter-
ies is introduced in [7]. It performs better than previous studies when
evaluating parameters such as channel width, coolant temperature, and
flow rate. It does, however, point out shortcomings in the model’s
mechanical and electrochemical reaction assumptions, suggesting di-
rections for further investigation. In order to mitigate performance
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Fig. 1. A deep learning-based approach for RUL prediction of lithium-ion batteries by selecting features: capacity, resistance, temperature, voltage, and reliability tests.
Table 1
Nomenclature.

Symbol Description

𝐴𝑖 Loudness of bat 𝑖
𝑟𝑖 Pulse emission rate of bat 𝑖
𝐴min Minimum loudness
𝐴max Maximum loudness
𝛼 Constant
𝛾 Constant
𝑄𝜅 Battery capacity at iteration 𝜅
𝑣 Gaussian noise
𝜎1 to 𝜎7 Variances of random variables
𝜃𝜅 Parameter vector at iteration 𝜅
𝑄′

𝜅 Result of CNN degradation model at iteration 𝜅
𝑖 Index for bats
𝑛 Iteration number
𝜅 Iteration number

degradation caused by high temperatures, the importance of thermal
management was highlighted in [8]. Additionally, an analytical algo-
rithm to estimate battery life in vehicle-level testing was also presented.
Though useful, it may have drawbacks due to assumptions based on
models and the need for more extensive validation in a wider range of
operational scenarios and battery chemistries.

To effectively control thermal conductivity errors, especially at high
discharging rates, Ref. [9] emphasizes the significance of accurate
thermal modeling for electric vehicle battery systems. To optimize vehi-
cle performance and manage batteries efficiently, precise temperature
predictions are essential. Still, two important limitations of the study
are that it only looked at one type of battery and that more research
is needed to apply the results to different battery compositions and
operating situations. For preventing thermal runaway (TR) in lithium-
ion batteries intended for electric vehicles, Ref. [10] looks into the
application of phase change materials (PCMs). The volatile content of
PCM implies that even though PCM submersion effectively delays TR
triggers, fire propagation may still occur. This suggests that thermal
insulation is necessary to stop TR from spreading within battery packs.

The increasing number of publications in various journals related to
RUL prediction of LIBs over the past 12 years (2010–2022) is illustrated
in Fig. 2(a), and Fig. 2(b) illustrates the publication percentage in
prominent journals from 2010 to 2022.
2

Table 2
Abbreviations.

Abbreviation Definition

AR Auto Regressive
BA Bat Algorithm
BMS Battery Management System
BTMS Battery Thermal Management System
CAVE Conditional Variational Auto-Encoder
CALCE Center for Advanced Life Cycle Engineering
CC Constant Current
CNN Convolutional Neural Network
CV Constant Voltage
EIS Electrochemical Impedance Spectroscopy
EOL End-of-Life
EV Electric Vehicle
ECM Electrochemical Model
fLsm Fractional Order Lévy Stable Motion
GNN Grey Neural Network
HEV Hybrid Electric Vehicle
HI Health Indicator
ICS Incident Command System
LIB Lithium-ion Battery
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MSE Mean Squared Error
NASA National Aeronautics and Space Administration
NN Neural Network
OCV Open Circuit Voltage
PCM Phase Change Material
PCoE Prognostics Center of Excellence
PDF Probability Density Function
PF Particle Filter
R2 Coefficient of Determination
RMSE Root Mean Squared Error
RUL Remaining Useful Life
RVM Relevance Vector Machine
SOC State of Charge
SVM Support Vector Machine
UKF Unscented Kalman Filter

RUL prediction methods can be broadly classified into two cat-
egories: data-driven and model-based techniques. Currently, there is
a growing trend towards hybrid approaches that combine both data-
driven and model-based methodologies [11]. Data-driven approaches
leverage historical battery metrics, such as voltage, current, and tem-
perature, along with degradation features. Machine learning methods
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Fig. 2. (a) Evolution of Li-ion battery remaining useful life prediction research: 3D column chart depicting publication trends from 2010 to 2022. (b) Analysis of publications on
RUL of lithium-ion battery in prominent journals from 2010 to 2022.
are then applied to predict the RUL and estimate battery degrada-
tion [12]. However, a major challenge with data-driven methods is the
requirement for a large amount of historical data to train the models.

RUL prediction approaches that are based on mathematical models
have also garnered considerable interest among researchers. These
models can be categorized into empirical models [13] and the physics
of failure models [14]. The physics of failure models are developed
based on an understanding of battery material properties, loading sce-
narios, and failure mechanisms. However, constructing the physics of
failure models is challenging due to the need for specialized equipment
and conducting complex electrochemical tests to determine model pa-
rameters [15]. Consequently, their acceptance for onboard applications
is limited. For this data, data-driven approaches are considerably more
convenient, and deep learning-based approaches are gaining the inter-
est of researchers. In a recent publication [16], the author proposed a
hybrid approach for RUL prediction, combining an adaptive Levy Flight
Optimized PF with a Long Short-Term Memory (LSTM) network.

Enhancement of battery voltage models is necessary to improve
speed, handling of discontinuities, generalization to real-world condi-
tions, robustness across battery types, and accuracy [17]. To improve
LSTM battery voltage models, two novel techniques were presented
in [18]: sequence training and data shuffling. These techniques re-
sulted in a significant 22% reduction in voltage estimation error (from
28.5 mV to 22.3 mV RMS error) across various conditions (−20 ◦C
to 25 ◦C). The study’s shortcomings, however, may lie in its primary
voltage prediction focus, which may have obscured other aspects of bat-
tery behavior and possible differences in efficacy across various battery
chemistries and operating conditions. In [19], a unique PF framework
incorporating a gray neural network (GNN) for RUL prediction of LIBs
was introduced. The utilization of CNNs in the prediction of RUL can
handle the dynamic degradation and nonlinear characteristics exhibited
by LIBs. To better understand battery thermal management in electric
vehicles, Ref. [20] looks into how temperature and depth of discharge
(DoD) affect heat generation in Li-ion batteries. However, the emphasis
on a single battery type and the requirement for additional validation
across various battery chemistries and configurations are drawbacks.

Lithium iron phosphate (LFP) and lithium nickel cobalt aluminum
oxide (NCA) cells are pivotal in predicting the RUL of LIBs due to their
distinct electrochemical characteristics [21]. Due to strong hysteresis
effects, the first order resistor capacitor (1RC) with hysteresis model
performed best for LFP and NCA cells, according to [22], although all
three equivalent circuit models (ECMs) showed low errors in battery
voltage prediction across tested lithium-ion battery chemistries. The
study’s focus on a small number of chemicals and conditions is one of its
3

Fig. 3. A summary on different RUL prediction methods.

limitations, though, as it may limit the applicability of its conclusions
to more diverse contexts and applications.

Effective cooling of Li-ion batteries is crucial for extending their
lifespan and predicting RUL accurately [23]. Considering this, the per-
formance of a magnetohydrodynamic (MHD) pump-based microchan-
nel cooling system is examined in [24]. It is found that while efficiency
decreases, applied voltage and Hartmann number increase velocity,
heat removal rate, and Nusselt number. In terms of heat transfer
performance, Cu–water nanofluid performs better than TiO2-water and
Al2O3-water nanofluid. A thorough understanding of the MHD pump’s
suitability in various cooling scenarios could be obtained by investigat-
ing the thermal performance under different conditions, such as fluid
flow rate and channel geometry, which is not done in this study.

Fig. 3 provides a visualization of various categories of RUL pre-
diction techniques. There are classical statistical methods and physics-
based methods to predict the RUL of LIBs, as well as modern AI, DL, and
hybrid methods. These techniques encompass the use of CNNs, particle
filtering, and hybrid approaches to handle the complex nature of RUL
prediction for LIBs. Applications of ANN, SVM, LSTM, and GNN are
examples of artificial intelligence-based methods for RUL prediction
of LIBs. Additionally, computational intelligence-based methods such
as improving the Wiener process, and experience-based methods such
as health indicators are also prominent for RUL prediction of LIBs.
However, hybrid methods such as NN with UKF are gaining more
popularity among researchers.
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Optimization techniques are important in deep learning for improv-
ing training efficiency, updating parameters, avoiding local minima,
regularization, and hyperparameter tuning. A meta-heuristic algorithm
named bat algorithm inspired by bats is presented by Yang [25]. The
bat algorithm demonstrates superior adaptive ability and convergence
precision compared to traditional particle swarm optimization algo-
rithms. Combining the bat algorithm with intelligent PF holds great
potential for the future of PF technology. Wu et al. [26] hypothesized
in 2019 that a combination of neural networks (NN) and bat-based PF
could be utilized for RUL prediction of LIBs. Similarly, Lian et al. [27]
described an RUL prediction approach for LIBs using bat-based PF with
a semi-empirical model. However, those methods require additional
feature extraction from the data sets to predict the RUL properly, which
may require complex calculation and preprocessing. In our proposed
methodology, we have used the CNN architecture to predict the RUL of
the LIBs, and it has given us a way of extracting features automatically,
which also saves additional calculation steps for manual feature ex-
tracting and permits us to predict the RUL conveniently. Furthermore,
the proposed methodology also allows us to achieve a greater result
in predicting the RUL in a shorter period. As mentioned earlier, the
traditional RUL techniques may not be sufficient to get a satisfactory
result in predicting the RUL because of their data handling capabilities
and computational power limits. The proposed methodology not only
gives an upper hand in predicting the RUL of LIBS by proving a
significant result but also its adaptability to various battery models.

In this paper, we propose a novel approach for intelligent battery
RUL prediction by combining bat-based optimization and a Convolu-
tional Neural Network (CNN) model. Our method improves the accu-
racy of existing particle filter (PF)-based RUL prediction techniques in
two key ways.

• Firstly, we introduce a CNN architecture specifically designed
for capacity degradation modeling. Unlike traditional empirical
models, the CNN architecture offers enhanced precision in captur-
ing diverse degradation trends. This enables more accurate RUL
prediction, thereby improving the overall prediction performance.

• Secondly, we employ the Bat-optimization technique to update
the weights and biases of the CNN architecture. Inspired by the
movement patterns of bats, this optimization technique guides the
particles towards areas of higher probability based on updated
capacity information. As a result, the Bat-optimization technique
improves the particle distribution in a robust manner, leading to
enhanced prediction accuracy even in challenging scenarios.

The rest of the paper is organized as follows: Section ‘‘Dataset’’ de-
cribes the dataset that has been used in this research with the proposed
NN capacity degradation model. Section ‘‘Methodology’’ discusses the
ethodology of this research and the Bat-optimization theory with

he recommended approach for RUL prediction. Experimental results
re analyzed and compared with other prediction methods in Section
‘Results’’. Further analysis of the results and the relevant discussion
s given in Section ‘‘Discussions’’. Finally, the paper is concluded in
ection ‘‘Conclusion’’ with some future remarks.

ataset

RUL prediction of LIBs relies on two critical factors: the battery’s
ycle count and its known capacity. As the battery undergoes succes-
ive charging and discharging cycles, its capacity gradually decreases.
mpedance tests provide insights into the internal properties of the
attery that change as it degrades, while frequent cycling accelerates
attery aging. In this study, we utilize a CNN model to elucidate
he mechanism behind battery capacity degradation, specifically how
atteries gradually lose their supply of lithium ions. Fig. 4 illustrates
he capacity degradation of different battery models at various ambient
emperatures, highlighting the significant impact of temperature on ca-
4

acity degradation and battery lifecycle. Capacity degradation is rapid i
in higher ambient temperatures (43 ◦C) compared with low ambient
temperatures (4 ◦C). Consequently, it can be inferred that discharging
batteries at elevated temperatures accelerates the degradation of bat-
tery life. C-rate, denoted as C, is a measurement of the charge and
discharge current concerning the nominal capacity of a battery. It is
commonly used in battery technology to express the rate at which a
battery is charged or discharged relative to its capacity. For example, a
C-rate of 1C indicates that the current is equal to the nominal capacity
of the battery. In contrast, a C-rate of 0.5C implies that the current is
half of the nominal capacity.

The technical specifications of the battery cell used in this work are
as follows:

• Nominal voltage: Around 3.7 V for LIBs.
• Nominal capacity: For the LiCoO2 commercial battery, it is ap-

proximately 2 Ah.
• Anode material: Lithium Cobalt Oxide (LiCoO2)
• Cathode material: Graphite.
• Electrolyte material: Lithium hexafluorophosphate (LiPF2) dis-

solved in a mixture of ethylene carbonate (EC) and dimethyl
carbonate (DMC).

The dataset utilized in this study is collected from the Prognostics
enter of Excellence (PCoE), a division of NASA that specializes in
rognostic research. The dataset comprises experimental data obtained
rom the LIBs, specifically the 18,650 LiCoO2 commercial battery [28].
rom the available LIB experimental data, a careful selection process
as conducted to choose specific batteries for testing the proposed al-
orithm. Battery005, Battery006, Battery007, Battery018, Battery029,
attery030, Battery031, Battery041, and Battery055 were chosen based
n a preliminary analysis of their cell capacity degradation data and
xperimental conditions [29]. The threshold capacity for defining the
nd-of-life point was set at 1.4 Ah, considering that each of the selected
ells has a nominal rated capacity of 2 Ah (with a slightly varied
ischarge cycle). The capacity failure criteria were established at 70%
f the original rated capacity. These choices were made to ensure
onsistency across the experiments and enable effective evaluation of
he proposed algorithm. The dataset possesses various characteristics
nd encompasses the following experimental conditions [29]:

• The impedance is documented in the data set as a degradation
indicator with charging–discharging at various temperatures.

• The dataset is provided in MATLAB file format as a sophisticated
3D array.

• Run the charge, discharge, and impedance operating profiles
three times at room temperature.

• Until the cell potential reached 4.2 V, charging was conducted
at 1.5 A in a constant current (CC) mode. Afterward, the charge
current was held in a constant voltage (CV) mode until it reached
20 mA. Cells 5, 6, 7, and 18 were discharged at a constant current
(CC) level of 2 A until their potentials reached 2.7 V, 2.5 V, 2.2
V, and 2.5 V, respectively.

• Electrochemical impedance spectroscopy (EIS) was applied to
assess impedance using a frequency change from 0.1 Hz to 5 kHz.

• Impedance tests give insight into the internal battery properties
that alter as aging occurs, while recurrent charge and discharge
cycles accelerate the aging of the batteries. When the batteries
met the end-of-life (EOL) threshold, which was a 30% decline in
rated capacity, the tests were terminated (starting at 2 Ahr to 1.4
Ahr).

The feature co-relation matrix of the LIB data set is shown in
ig. 5 and from the co-relation score, we can see some of the features
re highly correlated, such as capacity, the temperature measured,
oltage load, the voltage measured, and others that can be seen from
he correlation score. The correlation values can vary from −1 to 1.
n general, 1 means a strong correlation, 0 means neutral, and −1

ndicates a correlation that may not be strong enough.
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Fig. 4. (a) The slope of the capacity degradation rises when the temperature increases; (b), (c), and (d) the visual plot of the capacity degradation of batteries in various ambient
temperatures.

Fig. 5. A co-relation matrix among all the data features of LIB.
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Fig. 6. Data generation to RUL prediction procedure of LIBs for proposed RUL prediction algorithm.
Fig. 7. 1D CNN architecture employing a 1D kernel.
Methodology

CNN degradation model

In this study, we employ a CNN architecture to simulate battery
degradation under various operating conditions. The proposed ap-
proach involves integrating a bat-inspired particle filter to iteratively
update the parameters of the CNN model. By leveraging the bat al-
gorithm, the particle distribution is optimized, effectively guiding the
particles toward high-likelihood regions. Conventionally, a CNN con-
sists of three layers: convolutional, pooling, and fully connected layer.
Fig. 6 explains the RUL prediction process, starting from data acqui-
sition to RUL prediction for LIBs. Here, experimental battery data is
collected through sensors or transducers, and this data is utilized for
capacity degradation analysis, followed by the RUL prediction process.
Fig. 7 illustrates the architecture of the 1D-CNN algorithm, where the
input layers are transformed into a 1D convolutional layer, and after
pooling and convolution steps, a fully connected layer is created to
ultimately generate the output layer.

CNNs are a specialized type of Deep Neural Network commonly
employed for analyzing visual data by automatically extracting high-
level features [30]. However, the applicability of CNNs has expanded,
and they are now extensively used for regression and classification tasks
involving time-series tabular data. Three types of CNNs are found in the
literature: 3D CNNs, 2D CNNs, and 1D CNNs. In the domain of natural
language processing and sequence modeling, 1D CNNs are commonly
utilized. This is particularly relevant for battery capacity data, which
is represented as a one-dimensional time series analysis, necessitating
6

the use of 1D CNNs. The following equations demonstrate the activation
function calculation and the convolution operation applied to the input
data (a 1D vector) within the one-dimensional convolutional layer [31].
Fig. 8 gives an illustration of the CNN architecture used in this research.
The inputs are ‘‘Cycle No’’, ‘‘Voltage measured’’, ‘‘Current measured’’,
‘‘Temperature measured’’, ‘‘Current load’’, ‘‘Voltage load’’, and ‘‘Time
vector’’. The model’s output is ‘‘Capacity’’ for RUL prediction. The
model architecture consists of a convolutional neural network (CNN),
and dense layers. The first convolutional layer uses the ReLU activation
function and 256 filters with a kernel size of 6, padding the input to
preserve its shape. The data is then reshaped using a flattening layer
and a max-pooling layer with a pool size of 1. The next seven dense
layers are fully connected and have ReLU activation. They contain 256,
128, 64, 32, 16, 8, and 4 neurons in each layer, respectively. Without
an activation function specified, the output layer of the model consists
of a single neuron that represents the regression output, allowing the
model to predict continuous output values.

x𝑙𝑡 =
𝑁𝑙−1
∑

𝑖=1
𝑐𝑜𝑛𝑣1𝐷(w𝑙−1

𝑖𝑡 , s𝑙−1𝑖 ) + b𝑙𝑡 (1)

where, 𝑥𝑙𝑡 represents the input given to layer 𝑙 for the 𝑡th neuron, 𝑏𝑙𝑡 is
the bias of the 𝑡th neuron in layer 𝑙, 𝑤𝑙−1

𝑖𝑡 symbolizes the convolution
kernel connecting the 𝑖th neural node in layer 𝑙 − 1 to the 𝑡th neural
node in layer 𝑙, 𝑠𝑙−1𝑖 stands for the output of the 𝑖th neural node in
layer 𝑙−1, 𝑁𝑙−1 indicates the number of neural nodes in layer 𝑙−1, and
the conv1D refers to the one-dimensional convolution operation. The
output of a neural node after applying an activation function is given
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Fig. 8. CNN architecture used in this research to predict the LIBs RUL.
by (2).

s𝑙𝑡 = 𝑓 (x𝑙𝑡) (2)

Here, we proposed and assessed the accuracy of the degradation
model. However, for accurate RUL prediction, it is crucial to update
the model parameters at each cycle. One effective approach to address
the parameter adjustment is through the use of PF and other related
methods. In the following section, we introduce an enhanced optimiza-
tion technique for PF, known as the Bat-optimization algorithm. This
meta-heuristic algorithm improves the parameter adjustment process in
PF, leading to more accurate RUL prediction. Furthermore, we provide
a detailed description of our RUL prediction method that relies on
the Bat-optimization algorithm. We explain how the Bat-optimization
algorithm enhances the performance of PF, enabling us to achieve more
reliable and precise RUL prediction.

The boundary conditions that were taken into account during the
model development process are as follows:

• Operating Temperature Range: The battery degradation data used
for model development were collected and analyzed within an
operating temperature range of 24 ◦C. This temperature range
corresponds to the ambient conditions for battery models B0005,
B0006, B0007, and B0018, ensuring consistency and relevance in
the data analysis.

• The voltage limits considered in the model were set at 3.7 V,
reflecting the typical operating voltage range for Lithium-ion
Batteries.

• The capacity failure criteria were established at 1.4 Ah, corre-
sponding to 70% of the original rated capacity. This threshold
value serves as a critical boundary condition for determining the
end of the battery’s useful life.

• Constant current: During the data collection process, a constant
current of 2 A was applied to the batteries to simulate realistic
operating conditions.

• EIS Frequency Range: EIS data were collected over a frequency
range of 0.1 Hz to 5 kHz. This frequency range ensures a compre-
hensive characterization of the battery’s electrochemical behav-
ior.

at-optimizer

The Bat optimization is based on a meta-heuristic algorithm, namely
he Bat algorithm. Certain multimodal and complex problem types
7

are challenging for traditional methods to handle [32]. When aiming
to achieve optimal or suboptimal solutions in intricate multimodal
scenarios, a nature-inspired population-based algorithm named the Bat
algorithm (BA) can be useful due to its stochastic-based variation and
intensification abilities [25,33]. The BA draws inspiration from the
echolocation and bio-sonar traits of microbats [34], using them as a
guide for their hunting techniques. Bats use echolocation to identify
potential prey, navigate their surroundings, and return to their roosts
while flying through dense vegetation. When a bat employs echoloca-
tion, it constructs a three-dimensional representation of its environment
using sound pulses. Bats emit stronger pulses at a lower frequency to
scan for prey, and when they detect prey, they emit softer pulses at a
higher frequency.

Overview of Bat Algorithm
Echolocation is a technique widely used by many bat species. It

involves emitting sound pulses to navigate and locate prey in the
dark. Microbats emit high-frequency sound pulses and listen for echoes
reflected from nearby objects [35]. They can produce 10 to 20 sound
bursts per second, which increases to 200 pulses per second when they
are hunting. The ultrasonic frequencies used by microbats typically
range from 25 kHz to 150 kHz due to the speed of sound in air, which
is approximately 𝑣 = 340 m∕s. This results in wavelengths (𝜆) ranging
from 2 mm to 14 mm, with a constant frequency 𝑓 , given by 𝜆 = 𝑣

𝑓 .
Interestingly, these wavelengths are similar in size to those of their
prey. We can relate aspects of echolocation to the objective function of
an optimization method, leading to the Bat Algorithm [25]. Fig. 9 gives
an illustration of the Bat algorithm, specifying every step and operation.

The Bat Algorithm incorporates key features of echolocation to
enhance the optimization process. For clarity, we focus on certain
aspects of echolocation and formulate the following three idealized
rules:

1. Bats use echolocation to measure distance and distinguish be-
tween food/prey and background obstacles.

2. Bats fly randomly with velocity 𝑣𝑖 at position 𝑥𝑖, utilizing a
frequency 𝑓𝑚𝑖𝑛, variable wavelength 𝜆, and loudness 𝐴𝑖 to search
for prey. Depending on their proximity to the target, they can
adjust both the wavelength (or frequency) and the rate of pulse
emission (𝑟) in the range of [0, 1].

3. Loudness can vary widely, but for our purposes, we assume it
ranges from a large positive value 𝐴𝑖 to a minimum constant
value 𝐴 .
𝑚𝑖𝑛
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Although ray tracing is a computationally intensive technique that
ould enhance the algorithm, we exclude it here for simplicity. The
hoice between frequency and wavelength depends on the problem
ontext [36].

at motion
At each iteration 𝑛, we record the positions 𝑥𝑛𝑖 and velocities 𝑣𝑛𝑖 of all

ats in the search space. We denote the currently optimal bat solution
s 𝑥∗. The three rules mentioned above can be expressed as equations
or the rate of change of 𝑥𝑛𝑖 and velocities 𝑣𝑛𝑖 :

𝑖 = 𝑓𝑚𝑖𝑛 +
(

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛
)

𝜂 (3)

𝑖(𝑛) = 𝜈𝑖(𝑛 − 1) +
(

𝑥𝑖(𝑛 − 1) − 𝑥*) 𝑓𝑖 (4)

𝑖
𝜅 (𝑛) = 𝑥𝑖𝜅 (𝑛 − 1) + 𝜈𝑖(𝑛) (5)

Here, 𝜂 ∈ [0, 1] is an arbitrary scalar with a uniform distribution.
𝑖
𝜅 (𝑛) represents the position of bat 𝑖 along the 𝜅-th dimension in the
earch space at iteration 𝑛. 𝜈𝑖(𝑛) represents the velocity of bat 𝑖 at
teration 𝑛, which influences how the position of the bat changes in

the 𝜅-th dimension.
We can implement either wavelengths or frequencies, depending on

the context. For instance, with 𝑓𝑚𝑖𝑛 = 0 and 𝑓𝑚𝑎𝑥 = 100, the choice of
frequency range depends on the problem’s domain size. Initially, each
bat is assigned a random frequency from [𝑓 , 𝑓 ]. Thus, the bat
8

𝑚𝑖𝑛 𝑚𝑎𝑥 A
lgorithm can be seen as a frequency-tuning technique that balances ex-
loration and exploitation. Local search involves small random changes
round the current optimal solution, as described by:

new = 𝑥old + 𝜀𝐴(𝑛) (6)

Here, the random number 𝜖 is drawn from [−1, 1], while 𝐴(𝑛) is the
verage loudness of all the bats at the current time step. This equation
orms the primary update mechanism in the optimization algorithm.

oudness and pulse rate variations
To regulate exploration and exploitation effectively, it is essential

o adjust loudness 𝐴𝑖 and pulse emission rate 𝑟𝑖 during iterations.
oudness typically decreases when a bat finds prey, while the pulse
mission rate increases. Loudness can be set to any value between 𝐴𝑚𝑖𝑛
nd 𝐴𝑚𝑎𝑥, with 𝐴𝑚𝑖𝑛= 0 representing the moment when a bat has found
rey and temporarily stops emitting sound. With these assumptions, we
escribe:

𝑖(𝑛 + 1) = 𝛼𝐴𝑖(𝑛) (0 < 𝛼 < 1) (7)

𝑖(𝑛 + 1) = 𝑟𝑖(0)[1 − exp(−𝛾𝑛)] (𝛾 > 0) (8)

Here, 𝛼 and 𝛾 are constants, with 𝛼 being analogous to the cooling
actor in simulated annealing. Given the conditions 0 < 𝛼 < 1 and 𝛾 >
, we can conclude that:

(𝑛) → 0, r (𝑛) → r (0), as 𝑛 → ∞ (9)
𝑖 𝑖 𝑖
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RUL prediction

The RUL of LIBs can be predicted in real-time by combining the
bat optimization algorithm and the CNN degradation model. A state-
space model based on the CNN degradation model is constructed using
historical battery capacity degradation data, and the states are fine-
tuned using the bat optimization algorithm. To determine the RUL, the
updated degradation model is then projected to the failing threshold.
The process is described in detail below.

Construction of the state-space model
The biases and weights of the two-neuron CNN models are desig-

nated as the system states, i.e., [IW1, IW2, b11, b12, LW1, LW2, b2],
where biases are b11, b12, b2 and weights are IW1, IW2, LW1, LW2. It
is presumed that the random walk mode applies to these seven states.
It is important to note that the cell capacity is the actual vector being
measured. This allows us to design the following state-space model. The
details of this model can be found in [26].

𝜃𝜅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IW1,𝜅

IW2,𝜅

𝑏11,𝜅
𝑏12,𝜅
LW1,𝜅

LW2,𝜅

𝑏2,𝜅

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IW1,𝜅−1

IW2,𝜅−1

𝑏11,𝜅−1
𝑏12,𝜅−1
LW1,𝜅−1

LW2,𝜅−1

𝑏2,𝜅−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑤1 ∼  (0, 𝜎21 )
𝑤2 ∼  (0, 𝜎22 )
𝑤3 ∼  (0, 𝜎23 )
𝑤4 ∼  (0, 𝜎24 )
𝑤5 ∼  (0, 𝜎25 )
𝑤6 ∼  (0, 𝜎26 )
𝑤7 ∼  (0, 𝜎27 )

(10)

′
𝜅 = CNN(𝜃𝜅 , 𝜅) + 𝑣, 𝑣 ∼  (0, 𝜎2𝑣 ) (11)

here 𝜃𝜅 represents a parameter vector, and 𝜃𝜅−1 represents the pre-
ious parameter vector. The variables 𝑤1 through 𝑤7 are random
ariables following Gaussian distributions with variances 𝜎21 through
2
7 , respectively. 𝑄′

𝜅 is the result of the CNN degradation model with
arameters 𝜃𝜅 and iteration 𝜅, and 𝑣 represents Gaussian noise.

The working procedure for the proposed RUL prediction approach
s shown in Fig. 10. The process starts with the collection of battery
egradation data and then processing the data for CNN. After the
onstruction of the degradation model, the bat-based particle filter is
sed for better particle distribution, and later, the state space model
s updated to calculate the battery capacity for predicting the RUL.
ython was used to create the state space model for this study, taking
dvantage of its strong numerical computation and modeling capabili-
ies. Python made it easier to build a versatile and adaptable model for
ssessing the system’s dynamics and forecasting future states from the
vailable data.

pdating the states depending on Bat PF
The database containing previous batteries with identical specifica-

ions to the test battery is employed to acquire prior state information
or the PF algorithm. By using historical sample data to train the
eterioration model, the CNN model parameters are initialized. The pa-
ameters can then be adjusted depending on the test battery’s available
apacity data by employing the state-space model and bat optimiza-
ion. Upon obtaining the posterior distribution of the model variables
𝜃i𝜅 , 𝜔

i
𝜅
}𝑛
𝑖=1, the capacity at 𝜅 can be predicted as:

𝜅 =
𝑛
∑

𝑖=1
𝜔𝑖
𝜅𝑄

𝑖
𝜅 =

𝑛
∑

𝑖=1
𝜔𝑖
𝜅CNN

(

𝜃𝑖𝜅 , 𝐶𝜅
)

(12)

By projecting out the CNN degradation model, the capacity at 𝜅 +
can be estimated as:

𝜅+𝑙 =
𝑛
∑

𝑖=1
𝜔𝑖
𝜅𝑄

𝑖
𝜅+𝑙 =

𝑛
∑

𝑖=1
𝜔𝑖
𝜅CNN

(

𝜃𝑖𝜅 , 𝐶𝜅+𝑙
)

(13)

s such, the RUL of the 𝑖-th particle at 𝜅, (RUL𝑖
𝜅) can be predicted in

ine with:
( 𝑖 𝑖 )
9

NN 𝜃𝜅 , 𝐶𝜅 + RUL𝜅 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (14) f
Table 3
Experiment results of various models with same data.
Model RMSE (Ah) MAE (Ah) R2

Linear Regression 0.04321 0.04254 0.69
SVR 0.03429 0.02828 0.85
Ridge 0.04037 0.03625 0.65
ANN 0.02061 0.01937 0.93

Approximating the RUL’s posterior pdf at 𝜅 can be done with the
following formulas:

𝑝
(

RUL𝜅 |𝑄1∶𝜅
)

≈
𝑛
∑

𝑖=1
𝜔𝑖
𝜅𝛿

(

RUL𝜅 − RUL𝑖𝜅
)

(15)

𝛿(.) is the Dirac delta function, which is used to model an impulse or
spike at a specific point. In this context, it acts as an impulse function.

An prediction of RUL can be obtained by:

RUL𝜅 =
𝑛
∑

𝑖=1
𝜔𝑖
𝜅RUL𝑖𝜅 (16)

Results

The developed RUL prediction algorithm has undergone rigorous
testing to evaluate its accuracy and robustness, utilizing NASA datasets.
Additionally, a comparative analysis is conducted by combining the
CNN model with bat optimization (CNN+bat optimization) to further
assess its superiority. The effectiveness of the proposed strategy is eval-
uated based on three key metrics: root mean square error (RMSE), R2
score (coefficient of determination), and mean absolute error (MAE).
Various performance metrics are commonly employed to evaluate the
CNN model, including mean squared error (MSE), root mean squared
error (RMSE), R2 score, and MAE. Lower values of MSE, RMSE, and
MAE indicate better performance, whereas a higher R2 score indicates
a stronger ability to predict outcomes. The prediction accuracy is
enhanced when RMSE and MAE approach zero, while an R2 score value
close to 1 signifies a more accurate prediction outcome. The expressions
of performance metrics are as follows:

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=1
(𝑦𝑘 − �̂�𝑘)2 (17)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑘=1

|

|

|

|

(𝑦𝑘 − 𝑦𝑘)
𝑦𝑘

|

|

|

|

(18)

2 = 1 −
∑𝑛

𝑘=1(𝑦𝑘 − �̂�𝑘)2
∑𝑛

𝑘=1(𝑦𝑘 − �̄�𝑘)2
(19)

Here 𝑦𝑘 denotes the rated battery capacity, �̂�𝑘 represents the pre-
iction of battery capacity, and �̄�𝑘 is the mean or average value of the
ated battery capacity 𝑦. In this paper, the proposed model resulted
n an RMSE of 0.00656015, an MAE of 0.00439, and an R2 value of
.998712 for the full dataset of the B005 battery model. The result is
etter when compared to other methods that use PFs and is far better
han conventional prediction methods.

Experiments were conducted using NASA’s dataset, where various
achine-learning models were initially implemented on the same data,

nd their results were observed. Table 3 illustrates various experimental
esults. Among these models, the Artificial Neural Network (ANN)
ielded the best performance, achieving an RMSE value of 0.02061,
n MAE of 0.0197, and an R2 score of 0.93. However, the proposed
odel introduced in this research surpasses the performance of all

mplemented models.
There were a total of 11 battery model data sets available in the

atasets. The capacity prediction illustration can be found in Fig. 12
or the batteries that have remaining useful cycles left under the failure
hreshold capacity of 1.44 (Ah). From Fig. 4, it is noted that except

or the battery models B0005, B0006, B0007, and B0018, which are
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Fig. 10. Working procedure of the proposed RUL prediction model based on CNN and Bat-based optimizer.
Table 4
Prediction result of battery B0005, B0006, B0007, and B0018.

Battery model RMSE (Ah) R2 Score MAE (Ah)

B0005 0.00656015 0.998712 0.004397067
B0006 0.00884308 0.998572 0.005815670
B0007 0.00635205 0.998279 0.00428309
B0018 0.00810393 0.997305 0.005490191

in the ambient temperature of 24 ◦C, the other batteries have already
reached the failure threshold or do not have data in the range of 1.44
(Ah) capacity threshold. Therefore, they do not have any RUL available.
Table 4 illustrates the LIBs RUL prediction results with a complete
evaluation of the proposed method.

Fig. 12 shows various battery model capacity prediction graphs with
CNN and bat optimizer. The vertical axis and horizontal axis represent
the capacity and the number of cycles, respectively. In the figures,
we can see that the expected and predicted graphs are close but not
overlapping each other. In Fig. 13, the RUL of the batteries that stay
within the range of the failure threshold is illustrated. Battery B0005
is almost at its end of life, having only 2 actual remaining charge
or discharge cycles above the failure threshold of 1.44 (Ah) capacity,
and the predicted number of remaining cycles is 3. Battery B0006 and
B0018 also have a low number of remaining useful life. The battery
model B0007 has almost 31 cycles of remaining useful life in actual and
predicted results. Table 5 provides a comparison of various optimizer
results, where the Bat optimizer gives the lowest MSE of 0.000043035
Ah and RMSE of 0.0065601 Ah for the anticipated battery models.

In Table 9, the results of different RUL prediction models utilizing
CNN architecture are presented. A comparison between the findings of
Tables 4 and 9 reveals that our proposed model surpasses all others in
performance.

Discussions

Table 6 carries the comparison of various RUL prediction methods
results using PFs, while Table 8 shows the comparison of different deep
10
Table 5
Simulation results using different optimizers.
Optimizer MSE Ah RMSE Ah

Bat 0.000043035 0.0065601
Adam 0.0015 0.0387298
RMSProp 0.0030 0.054772
SGD 0.0042 0.064807
Adagrad 0.0066 0.0812403
Adadelta 0.6605 0.8127

learning algorithms of RUL prediction. For the dataset provided by the
NASA PCoE, the proposed method is capable of giving a lower RMSE
value of 0.00656 in comparison to SGM-LORPF [37]. From Table 6,
it is noted that the Semiempirical model with Bat-PF [27] provides a
lower RMSE value for different datasets provided by the CALCE battery
research group. However, the lack of transferability of this method
limits its application to novel or untested compounds, as the dataset
by CALCE consisted of tested compounds only. Fig. 11(a) shows the
learning curve of the mode. It can be seen that the model earns stability
in around 819 epochs. The figure indicates that the model is learning
the training data properly and the model is not overfitting. Fig. 11(b)
illustrates the error histogram that shows the difference between the
actual and predicted output.

Based on the results presented in Table 8, the proposed model,
which utilizes CNN and is fine-tuned with the Bat optimizer, demon-
strated the most accurate performance in predicting the RUL of LIBs,
with the lowest RMSE recorded at 0.656%. The obtained result con-
firms that the proposed model serves as a valuable tool to achieve
methodological balance, effectively mitigating issues related to over-
fitting and underfitting. After thorough analysis, it is evident that the
model developed in this study achieved a state of perfect equilibrium,
characterized by the optimal selection of activation functions, learning
rates, optimizers, and other pertinent variables.

The precise result in the training data ensures that the proposed
model is not underfitted. From the validation metrics, including loss,
RMSE, and R2 score, it can be seen that the model has not overfitted ei-
ther. Both L1 and L2 regularization techniques are implemented in the
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Fig. 11. (a) CNN model learning curve with best epoch.(b) Error Histogram Plot.
Fig. 12. Capacity prediction of different battery models: (a) Battery model B0005, (b) Battery model B0006, (c) Battery model B0007, (d) Battery model B0018.
Table 6
Comparison of various methods for estimating remaining useful life using particle filters.
Method Dataset/

Battery model
Test condition Result Publication

year
Ref.

Exponential
model + PF

NASA PCoE
B005

Starting cycle is 100 Absolute error 8 2018 [38]

NN + Bat-PF NASA PCoE
RW11

100.02 prediction
days

Absolute error 2.19 2019 [26]

Semi-empirical
model + Bat-PF

CALCE – RMSE 0.00024 and
Absolute error 15

2020 [27]

SGM-LORPF NASA PCoE
B0005

Starting cycle is 2/3
of whole life cycle

RMSE 0.0229 and
Absolute error 5

2020 [37]

CNN + Bat
optimization

NASA PCoE
B0005

167 cycles RMSE 0.00656 and
MAE 0.0043

– –
11
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Fig. 13. RUL prediction of different battery models: (a) Battery model B0005, (b) Battery model B0006, (c) Battery model B0007, (d) Battery model B0018. On the vertical axis,
the capacity is in Ah unit, and on the horizontal axis, the cycle numbers.
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Table 7
Model training time and complexity.

Metric Value

Training time per epoch 0.00856 s
Number of parameters 22 977
Estimated number of operations in forward pass 80740480.0

dense layers, as the model performs well and does not exhibit an over-
fitting issue. Table 7 represents the data associated with the proposed
model’s training time per epoch and computational complexity.

Conclusion

This study presents a novel approach for predicting the RUL of LIBs
by combining the Bat optimization technique with a CNN degradation
model. This method demonstrates superior performance compared to
traditional empirical models, leveraging the CNN model’s adaptability
to dynamic trends and avoiding sole reliance on degradation patterns.
It outperforms traditional deep learning methods and achieves excep-
tional results with less computational burden and fewer parameters.
With an RMSE of 0.0065601 Ah, the approach surpasses other optimiz-
ers employing CNN architecture. Additionally, the model achieves an
impressive R2 score of 0.998712 and a minimal MAE of 0.004397067
Ah, highlighting its superior performance in RUL estimation.

Moreover, the quantitative evaluation using diverse cycling datasets
confirms the effectiveness of the approach in accurately predicting
RUL and modeling capacity degradation trends. In Fig. 14, the future
research scopes in battery management systems have been illustrated.
Looking ahead, future research can explore the practical applications
of the prediction method in real-time battery management for electric
vehicles, drones, and consumer electronics. Addressing the limitations
of operating conditions in dataset availability will be crucial for further
enhancing the reliability and applicability of the approach.
12
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Fig. 14. Future research scopes in battery management.
Table 8
RUL prediction result in comparison for different deep learning algorithms.
Algorithm RMSE (Ah) Publication year Ref.

GRU-GPR 0.0079 2018 [11]
DCNN 0.01986 2020 [39]
DNN 0.0159 2020 [40]
DCNN-ETL 0.01114 2020 [39]
DCNN-TL 0.01361 2020 [39]
ADLSTM-MC 0.033 2021 [41]
DeTransformer 0.0802 2022 [42]
LSTM-Attention Mechanism. 0.0178 2023 [43]
CLDNN 0.8218 2024 [44]
CEG 0.0136 2024 [45]
CNN + Bat optimization 0.00656% – –
Table 9
RUL prediction result in comparison for other CNN models.
Algorithm Battery

model
RMSE (Ah) MAE (Ah) R2/ Accuracy Publication

year
Ref.

CEEMDAN-CNN
BiLSTM

B0005 0.0166 0.0082 – 2023 [46]

CEEMDAN-CNN
BiLSTM

B0006 0.0274 0.0101 – 2023 [46]

CNN-LSTM-DNN B0005 0.0145 0.00826 0.98313 2021 [47]

CNN-LSTM-DNN B0006 0.0199 0.00892 0.96096 2021 [47]

CNN-LSTM-DNN B0007 0.01722 0.01199 0.96900 2021 [47]

CNN-LSTM-DNN B0018 0.02033 0.00966 0.74686 2021 [47]

Auto-CNN-LSTM – 4.84 – 0.9516 2020 [48]
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