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Abstract—Deep learning is being extensively utilized across
various domains, with deep learning-based recommendation sys-
tems gaining prominence due to their exceptional performance.
However, these systems are vulnerable to data poisoning attacks,
where adversaries introduce carefully crafted fake user ratings
to compromise the integrity of the recommendation model. We
propose a dual defense to address this threat. The first line of
defense, termed active defense, preemptively reduces the system’s
vulnerability to poisoning attacks by incorporating crafted reg-
ularization into the loss function. This approach diminishes the
attacker’s impact while preserving system performance, thereby
lowering the success rate of targeted attacks. To further enhance
the system’s robustness, we introduce a GAN (Generative Ad-
versarial Network)-based detection model as a passive defense
strategy to accurately identify and filter out poisoned data. Em-
pirical evaluations on three distinct datasets demonstrate that our
dual defense approach significantly enhances both the proactive
defense and passive detection capabilities of recommendation
systems, effectively countering data poisoning attacks.

Index Terms—Deep learning, recommendation systems, data
poisoning attacks, dual defense

I. INTRODUCTION

With the rapid development of the internet, the overwhelm-
ing amount of data presents significant challenges in extracting
needed information [1]. The application of deep learning in
recommendation systems effectively addresses this issue [2]
[3]. Its powerful feature learning and pattern recognition capa-
bilities enable more accurate, personalized recommendations,
significantly enhancing user satisfaction and experience [4].

The development of deep learning in recommendation sys-
tems brings opportunities and challenges, and these systems
are vulnerable to data poisoning attacks, threatening credibil-
ity, with scarce defense methods available [5] [6] [7]. Recent
research has highlighted active defense approaches in machine
learning security, focusing on proactive measures to address
various adversarial threats. They propose novel mechanisms
to counter data poisoning in deep learning, neural Trojans in
pre-trained networks, and attacks on IoT intrusion detectors,
demonstrating significant effectiveness in preserving model
performance and security across diverse attack scenarios [8]
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[9] [10]. Additionally, some studies focus on passive defense
approaches in network security, emphasizing detection over
prevention. These include using data complexity metrics to
address causal attacks, employing machine learning classi-
fiers for DDoS (Distributed Denial of Service) attacks on
financial systems, and identifying vulnerabilities in industrial
protocols like DNP3, demonstrating high accuracy in threat
identification [11] [12] [13]. And other studies introduce dual
defense frameworks for other areas: for example, one against
face swapping via adversarial watermarking [14]. Another
mitigating membership inference attacks [15], both balancing
security and model utility effectively.

Previous defense research has primarily focused on either
active or passive defense strategies in isolation. The existing
dual defense applied to fields other than deep learning-based
recommendation systems. And related defense methods in
tabular data-based deep learning recommendation systems
show limitations and inefficiencies, we need to consider all
three factors simultaneously:

a) Proactive Defense: active defense, the necessity of
preemptive defense measures before an attack succeeds.

b) Model integrity: requiring to protect the original rec-
ommendation system model’s performance when using the
defense methods.

c) Effective Anomaly Detection: passive defense, im-
proving the detection accuracy rate of anomaly detection
methods for this data attack.

In this paper, we propose a dual defense mechanism to
combat data poisoning attacks on deep learning-based recom-
mendation systems. Our approach includes both active and
passive defenses for comprehensive protection. Experiments
on MovieLens-100K (ML-100K), MovieLens-1M (ml-1m)
and Last.fm show our strategy reduces the attack hit rate
HR(t) of target items by up to about 60% in the active
defense, and enhances the accuracy of fake user detection by
about 90% in the passive defense.

• We propose a first-line defense for deep learning-based
recommendation systems: an active defense mechanism
using crafted regulation. This preserves original recom-



mendation system performance while effectively reducing
data poisoning attack hit rates HR(t).

• We propose a second-line defense, a post-poisoning safe-
guard that effectively detects fake users. The addition of
this line of defense improves the accuracy of fraudu-
lent account identification and creats a comprehensive,
dual-layered defense mechanism against data poisoning
attacks.

• Experiments on three real-world datasets validate our
dual-defense mechanism’s effectiveness. Results confirm
effective mitigation of data poisoning attacks in recom-
mendation systems.

II. PRELIMINARY

A. Neural Matrix Factorization

This study builds upon the Neural Matrix Factorization
(NeuMF) algorithm, a prominent neural collaborative filtering
(NCF) approach for recommendation systems, with multi-layer
perceptron (MLP) architectures [16]. As illustrated in Fig. 1.
This algorithm operates on a dataset comprising m users u
and n items i, from which a user-item interaction matrix Y is
derived based on observed interaction records {u, i, yui}.

NeuMF uses one-hot encoded vectors for users and items,
projecting them into dense NeuMF and MLP latent vectors.
The model combines a linear NeuMF component (inner prod-
uct of NeuMF vectors) and a nonlinear MLP component
(ReLU activation across X layers). Final predictions ŷui in-
tegrate both outputs. After training, it predicts missing entries
in Y to create Ŷ for personalized recommendations [17].

Fig. 1. Neural matrix factorization model (NeuMF).

B. Defensive Strategies for Recommendation Systems

Research indicates that recommendation systems are vul-
nerable to various attacks aimed at manipulating outcomes
by introducing low-quality information [5]. Shilling attacks
involve creating multiple copies of an item to enhance its
visibility, relying on favorable remarks to boost its recommen-
dation [18]. Furthermore, poisoning attacks, as described by

[7], involve malicious data modifications intended to influence
system outcomes.

In addition to data quality rules, clustering, outlier detection,
L2 regularization [11], Slab, and loss defense [8], various
approaches have been explored to mitigate data poisoning
attacks. Each of these methods has its limitations. Liu et al.
attempted to neutralize poisoning attacks through input data
preprocessing [9]. Pang Wei Koh et al. proposed three attack
methods that evade data sanitization, it has shown that using
multiple models for fusion and voting or averaging results
can reduce the impact of attacks on a single model [10].
Vasiliki Kelli and Islam Umar et al. have also suggested a
defense strategy based on multi-model fusion for the data
poison attacks [12] [13].

C. Problem Formulation
We begin by analyzing the threat model and attack method,

which encompasses the attacker’s intentions, capabilities, and
expertise. This analysis is crucial for developing effective
defense techniques. We scrutinize the threat model considering
the attack capabilities and strategy.

Attack capability: Recent research has shown that deep
learning is commonly used in recommendation systems to
enhance accuracy. However, injecting fake data with metic-
ulously designed ratings into these systems can compromise
their performance and accuracy [17]. Utilizing NeuMF, a
deep learning-based recommendation system framework, data
poisoning attacks can be initiated. Attackers manipulate a
small portion of the training data to influence the behavior of
learning algorithms, leading to biased recommendations [19].

Attack strategy: This attack strategy approximates the
optimization problem, constructs a ”poison model” to simulate
the compromised recommendation system.

G[y(v)] = ∥y(v)∥22+η ·
∑
u∈S

max{min
i∈Lu

log[ŷui]−log[ŷut],−κ}

(1)
Here, y(v) is rating vector of user, η is a coefficient, S is

unrated users, Lu is u’s recommendations, ŷui and ŷut are
predicted ratings, and κ enhances robustness.

Iteratively selects filler items for fake users using predicted
ratings and dynamic probabilities, injecting generated ratings
to promote the target item [17]. The attacker proposes this loss
function:

l = L+ λ ·G
[
ŷ(v)

]
(2)

It includes the original recommendation system loss function
L to ensure model effectiveness, and G[ŷ(v)], which is related
to the attack objective. Here, ŷ(v) represents the predicted
rating vector for fake user v, and λ is a positive coefficient
that balances the weight between model effectiveness and the
attack objective.

III. DUAL DEFENSE FRAMEWORK

A. Overview
Our design presents a dual-defense approach against data

poisoning attack in deep learning-based recommendation sys-
tems. Following a comprehensive attack analysis, we develop



dual-defense mechanism: the first line of defense, active
defense that crafts the original recommendation system loss
function before training, reducing attack hit rates HR(t) while
maintaining system performance. And second line of defense,
passive defense using a GAN-based model to detect fake users.
We will discuss our scheme based on the following section B
and C.

B. Active Defense

It is well-designed that L2 regularization (Tikhonov reg-
ularization) can enhance the stability of machine learning
algorithms and help mitigate the effects of poisoning attacks
[20]. Consequently, we propose the use of a carefully crafted
L2 regularization (CLR) as a response to data poisoning
attacks. For the data poisoning attacks of deep learning-based
recommendation systems, our goal is to mitigate the data
poisoning attacks and improve the privacy and security of
the entire recommendation system. Figure 2 illustrates the
comprehensive attack mitigation scenario after incorporating
the carefully crafted L2 regularization (CLR).

Fig. 2. CLR (crafted L2 regularization) against data poisoning attacks.
The scheme begins with user-item interaction data as input. Defenders then
proceed by constructing and training a model based on L with crafted L2.
Next, they predict ratings and select filler items for users, generating fake
users with high ratings for the target item, resulting in updated rating data.
Finally, the defenders incorporate this updated data into new training data to
produce a recommendation model capable of mitigating data poisoning. This
approach is designed to proactively defend against data poisoning attacks
while preserving system performance integrity.

To mitigate unknown data poisoning attacks while preserv-
ing the recommendation system performance, we incorporate
crafted L2 regularization into the original model’s loss func-
tion, L. This approach aims to alleviate the impact of data
poisoning without compromising the system’s effectiveness.
Thus, the new loss function is:

L = L+ (Nr − 1/2) ∗ 10 + eλ

2
∥ω∥22 (3)

Here, Nr is random noise-enhancing robustness. The expo-
nential form ensures positive regularization, aiding in learning
λ. Thus, the poisoned model’s loss function becomes:

l′ = L+ λ ·G
[
ŷ(v)

]
(4)

Here our goal is to covertly protect the recommendation
system before data poison attacks. Algorithm 1 uses heuristic
active protection against data poisoning.

Algorithm 1: Active Guard: Crafted L2 Regularization
on Training (CLR)

Input: User-item interaction matrix Y , Crafted L2, initial loss
function L, pre-train epochs Tpre, learning rate η, tested
model update schedule S

Output: detection model θ̂
1 begin
2 # STEP 1: Get Training Data Dtrn.
3 Dtrn←Y ;
4 # STEP 2: Polish the initial model loss function L.
5 Using the item Approximating Hit Ratio as L;
6 Get polished model loss function L using Eq. (2);
7 L← Crafted L(Nr, L2);
8 # STEP 3: Pre-train model Mt on Dtrn with L.
9 Start initial training to get the mitigatory poisoning model Mt

based L.
10 Get mitigatory poisoning model θt←Mt;
11 Initialize L⇐= 0, model θt, and random optimizer
12 for t = 1...Tpre do
13 θt←θt − η▽ L(Dtrn, θt)
14 end
15 return mitigatory poisoning model θt
16 # STEP 4: detection model training for data poisoning defense:
17 Get tested model θ̂;
18 for t = Tpre + 1...T do
19 if t ∈ S then
20 θ̂ ← update θt(Dtrn, l′) based on Eq. (3)
21 end
22 end
23 end
24 return θ̂

C. Passive Defense

To bolster deep learning recommendation systems against
data poisoning attacks, we introduce passive defense as a
secondary safeguard. This approach identifies and filters out
fake users in training data, mitigating attack impacts and
enhancing the security of the recommendation system.

We employ a Generative Adversarial Network (GAN)-based
detection method to identify fake users Df by comparing
prediction results. The target model trained on real data DT

is compared with a simulated model to measure prediction
differences and detect fake users Df within the dataset Dd =
Df +DT . Figure 3 presents the GAN-based defense detection
framework.

Data processing. The sparsity of user-item interaction data
presents a significant challenge to the efficacy of recommen-
dation algorithms, as illustrated in Figure 1. We find that
Word2Vec, by representing words as dense vectors, captures
the semantic relationships between them. Making it widely
applicable in Natural Language Processing (NLP) tasks. And
since the traditional one-hot encoding method in the recom-
mendation system generates sparse data, which may adversely
affect the performance of the detection model. Here, we
leverage the advantages of Word2Vec and the need for dense
data, we employ Word2Vec to convert sparse data into dense
vectors in the data processing phase, mapping users and items
into a common vector space to capture their relationships. It
shows in Figure 4.

Data enhancement. We recognize the scarcity of reliable



Fig. 3. A framework for defense detection based on Generative Adversarial Network (GAN). In the first step, defenders will use Word2Vec for data processing.
In the second step, defenders use data enhancement based on crGAN to compensate for the scarcity of real data. In the third step, defenders use synthetic
data to build a test model based on cWGAN-GP. In the last step, using the constructed test model to detect and analyze fake users. It aims to enhance the
detection accuracy of fake users by constructing detection models using GAN.

Fig. 4. Word2Vec framework in recommendation system.

real data. The second part of our defense detection process
generates synthetic training data matching DT distribution.
Using a consistent regularization Generative Adversarial Net-
work (crGAN)-based framework, the generator (G) produces
realistic synthetic samples, enhancing dataset diversity and
representativeness for improved model training and analysis.
while the discriminator (D) distinguishes between real and
synthetic data, helping improve the generator output quality.

During training, the generator (G) and discriminator (D) en-
gage in simultaneous learning to achieve consistency between
the augmented data T (x) and the original data x, optimizing
the following objectives:

minDLcr = minD
∑

j = mnλj ∥Dj(x)−Dj(T (x))∥2

(5)
Adversarial training generates synthetic data, with the discrim-
inator assessing quality. Objective functions are:

L
(i)
cr = ∥D(x)−D(T (x))∥2

L
(i)
D = D(G(z))−D(x)

(6)

Constructing a simulation model for detection. Here,
using the conditional Wasserstein Generative Adversarial Net-
work (cWGAN-GP), we construct a simulation model to
enhance training data distribution, addressing overfitting in
deep learning due to data insufficiency.

cWGAN-GP uses wasserstein distance to evaluate real-
simulated sample distribution discrepancies, incorporating
conditional information. wasserstein distance is defined as:

W(pdata, pg) = infγ∈Π(pdata,pg) E(x,y)∼γ [∥x− y∥] (7)

Here, pdata, pg denote the true data distribution and the
generated data distribution, respectively.

∏
(pdata, pg) repre-

sents the joint probability that all edge distributions conform
to pdata and pg.

The cWGAN-GP generator learns to produce synthetic
data matching real data distributions, incorporating conditional
information y for personalized simulations. The discriminator
combines pdata, pg and y in a joint hidden expression. The
generator links condition y to pg similarly. This enables
conditional data generation:

minG maxD V (D,G) = Ex∼pdata(x)[D(x | y)]−
Eg̃∼pg(g)[D(g̃ | y)]− λEx̂∼PX̂

[
(∥∇x̂D(x̂ | y)∥2 − 1)

2
]
(8)

The objective optimization functions of cWGAN-GP are:

L(D) = −Ex∼pdata(x)[D(x | y)] + Eg̃∼pg(g)[D(g̃ | y)]+
λEX̂∼Px̂

[
(∥∇x̂D(x̂ | y)∥2 − 1)

2
]

L(G) = −Eg̃∼pg(g)[D(g̃ | y)]
(9)

The cWGAN-GP aims to minimize L, reducing the distri-
bution gap between generated and real data. Post-training,
the discriminator network serves as our simulation model,
leveraging its ability to differentiate real from synthetic data
effectively.

Fake user detection. Our aim is to identify fake users and
prevent their inclusion in the recommendation system’s train-
ing data. The simulation model employs a detection threshold
to classify users: outputs below the threshold indicate fake
users, while those above signify authentic users.

Algorithm 2 summarizes the four-part detection mech-
anism. Crucially, the detection threshold requires rigorous
evaluation to ensure high accuracy and reliability in practical
applications.



Algorithm 2: Passive Guard: detection mechanism via
GAN

Input: Trusted user data DT , fake user data Df ,
perturbation vector δ

Output: Detection decision of each user using detection
model Md

1 begin
2 # STEP 1: Get trusted data of dense features D

′
T .

3 D
′
T←DT ( using Word2Vec);

4 # STEP 2: Get augmented training data Daug on crGAN.
5 if Synthetic user Dsy exist then
6 load DSy

7 else
8 Generate DSy using crGAN
9 load Generate DSy

10 end
11 Daug ← D

′
T +DSy .

12 # STEP 3: Constructing detection simulation model Md.
13 clean data Dc ← Daug;
14 DG

G← δ.
15 for each training iteration do
16 Update D ( D loss (Dc, DSy))
17 Update G ( G loss)
18 end
19 Get detection simulation model Md ← D.
20 # STEP 4: Detecting fake user using Md.
21 for user u in tested dataset do
22 if Md(u) ≥ boundary then
23 u =⇒ clean
24 else
25 u =⇒ fake
26 end
27 end
28 return 0
29 end

IV. EXPERIMENT

A. Experimental Design

Selecting datasets and models. Our dual- defense experi-
ment on MovieLens-100K (ML-100K), MovieLens-1M (ml-
1m), and Last.fm datasets, detailed in Table I. Especially,
Last.fm preprocessing includes binarizing interactions, remov-
ing duplicate tags, and filtering to avoid cold start. We target
NeuMF for defense, as it effectively models implicit feedback
by capturing both linear and nonlinear user-item relationships,
enhancing recommendation quality.

TABLE I
THE SUMMARY OF THREE DATASETS.

Details Datasets
ML-100K ml-1m Last.fm

Users 5943 6040 1892
Items 1682 3706 17,632

Ratings 100,000 1,000,209 186,479

Evaluation metrics. In active defense line, we use the hit
rate HR(t) of the target item as the main evaluation metric

for defending against data poison attacks. The formula for
calculating the hit rate HR(t) is as follows:

HR(t) =

∑n
i=1I {ti ∈ Top Ki}

n
(10)

The indicator function I is defined as 1 when the condition
ti ∈ Top Ki is satisfied, and 0 otherwise. Here, n represents
the total number of items.

In the second passive defense line, evaluating GAN detector
against poisoning, we use accuracy, recall(TP/(TP+FN)),
and F1. F1 balances precision and recall for overall perfor-
mance:

F1 =
Precision×Recall

2× (Precision+Recall)
(11)

Where precision is TP/(TP + FP ), TP is the number of
correctly identified fake users, FN is the number of fake
users misclassified as real, and FP is the number of real users
misclassified as fake.

Implementation specifics. In our active defense, we con-
ducted simulation experiments on NeuMF, primarily using
crafted L2 regularization (CLR) as a defense mechanism.
Various regularization parameters (λ = 0.01, 0.1, 1.0, 3.0)
were tested, comparing hit rates HR(t) of target item un-
der raw data poisoning (no defense) [17], local differential
privacy [21], and HINT defense [22] methods to evaluate the
CLR method’s effectiveness. In our passive defense, primarily
utilizing Word2vec to process the data, we addressed user-
item matrix sparsity with output dimensions of 10x10 for ML-
100K, 16x16 for ml-1m, and 20x20 for Last.fm.

B. Results and Analysis

1) First Line of Defense (Active Defense):
Proactive defensive guarantee. Experimental results

demonstrate that incorporating a well-crafted L2 regularization
into the original recommendation system model effectively
mitigates the hit rate of target item on data poisoning attacks.
As shown in Table II, with the insertion of only 0.5% fake
users in the ML-100K dataset, our defensive approach reduces
the hit rate HR(t) for random target items by 0.08%. This
performance surpasses existing defense methods, including
HINT, which only achieved a 0.02% reduction in the poisoning
hit rate HR(t) for target items. These findings underscore the
efficacy of our proposed first line of defense mechanism.

Our proposed defense mechanism demonstrates superior
performance compared to existing methodologies, even in
scenarios where attackers possess knowledge of only partial
common user ratings. Comprehensive experiments conducted
on two distinct datasets reveal that when merely 30% of
the original matrix is scored, the attack hit rate significantly
diminishes to 0.0092. Furthermore, our novel defense strategy
effectively reduces this rate to a mere 0.0020 for randomly
selected target items. As illustrated in Table III.

Model integrity guarantee. Incorporating crafted L2 reg-
ularization (CLR) into our recommendation system’s original
loss function serves as an active defense line without com-
promising performance. We validate this by comparing the



TABLE II
DEFENSIVE RESULTS FOR THE ACTIVE DEFENSE METHOD.

Dataset Methods
Attack size

Random target items Unpopular target items
0.5% 1% 3% 5% 0.5% 1% 3% 5%

Data poisoning attack 0.0034 0.0046 0.0100 0.0151 0.0007 0.0019 0.0111 0.0206

ML-100K LDP 0.0030 0.0035 0.0065 0.0087 0.0001 0.0002 0.0012 0.0022
HINT 0.0032 0.0035 0.0069 0.0080 0.0001 0.0004 0.0014 0.0033
CLR 0.0026 0.0031 0.0044 0.0049 0.0001 0.0002 0.0010 0.0021

Last.fm Data poisoning attack 0.0047 0.0068 0.0144 0.0243 0.0012 0.0026 0.0086 0.0161
LDP 0.0034 0.0050 0.0120 0.0210 0.0005 0.0017 0.0058 0.0118
HINT 0.0032 0.0055 0.0069 0.0163 0.0006 0.0014 0.0047 0.0117
CLR 0.0031 0.0040 0.0121 0.0183 0.0005 0.0011 0.0061 0.0108

TABLE III
DEFENSE RESULTS OF PARTIAL KNOWLEDGE FOR ATTACKER.

Knowledge level Methods Random target items
Data poisoning attack 0.0092

30% LDP 0.0086
HINT 0.0090
CLR 0.0072

recommendation system’s common evaluation indicators, Nor-
malized Discounted Cumulative Gain (NDCG), which show
negligible impact for the original recommendation system’s
performance. Under the condition that the default epoch and
other parameters remain constant, from Table IV, it is evident
that incorporating CLR into the original recommendation
system model does not significantly affect its performance, as
indicated by the NDCG values. The impact on NDCG across
the three datasets remains within 0.002.

TABLE IV
IMPACT OF THE FIRST DEFENSE LINE ON RECOMMENDATION SYSTEM

PERFORMANCE.

ML-100K ml-1m Last.fm
Non-CLR 0.31287 0.35960 0.38990
CLR-ed 0.31371 0.35779 0.38912

NDCG Change +0.00084 -0.00181 -0.00078

2) Second Line of Defense (Passive Defense):
Effective detection guarantee. To comprehensively defend

against data poisoning attacks in deep learning-based rec-
ommendation systems, we employ a second line of defense,
passive defense. This involves evaluating the effectiveness of
a GAN-based detection model. such as the ML-100K dataset,
we conducted experiments to ensure efficient detection of fake
users generated at various scales, critical for countering data
poisoning attacks.

Accuracy of GAN detection. For the ML-100K, ml-
1m, and Last.fm datasets, we evaluated the accuracy of our
second line of defense detection method. Previous rating-based
methods had a detection accuracy of only 70% [17], but our
GAN detection method achieved around 90%, as shown in

Figures 5(a), 5(d), and 5(g), significantly improving defense
efficiency against data poisoning attacks.

F1 score of GAN detection. To fully validate our defense
detection’s effectiveness, we also tested the F1 score. As
shown in Figures 5(b), 5(e), and 5(h), our method achieved
an average F1 score of about 85%, while the previous de-
tection method’s F1 score was around 65%. This significant
improvement demonstrates the superiority of our approach in
accurately identifying fake users, combining both precision
and recall to provide a more reliable and robust detection
mechanism across different datasets.

Recall of GAN detection. Additionally, in fake users’
detection, recall is used to evaluate the performance of the
detection model. We measure our defense model’s ability to
correctly identify fake users. As shown in Figures 5(c), 5(f),
and 5(i), our model achieved a recall of around 90%, indi-
cating highly effective detection of fake users across different
datasets. This demonstrates the robustness and reliability of
our approach to maintaining the integrity of the recommenda-
tion system against fake users.

C. Ablation Study
1) First Line of Defense (Active Defense):
The impact for different number of fake users. After

implementing active defense, we examined the impact of
different numbers of fake users on defense results. Increasing
fake users raised the target item’s HR(t) across all datasets.
For example, in the ML-100K dataset (Table II), injecting
0.5% random fake users resulted in an HR(t) of 0.0026, while
5% increased it to 0.00049. Despite this, our method remains
effective in reducing losses, as shown in Table II.

The impact for different numbers of recommended list.
Table V illustrates the defense results under varying recom-
mendation list sizes K. We observe that as K increases, the
evaluation metric HR(t) also increases. However, our defense
method effectively mitigates the impact of data poisoning
attacks. For instance, when K = 15, the HR(t) on the ML-
100K dataset is reduced to approximately 30% of the original
attack’s effectiveness. Notably, even at K = 5, our defense
strategy successfully neutralizes the poisoning attack on the
Last.fm dataset, resulting in an HR(t) of 0.0003.



(a) Accuracy of detector on ML-100K. (b) F1 score of detector on ML-100K. (c) Recall of detector on ML-100K.

(d) Accuracy of detector on ml-1m. (e) F1 score of detector on ml-1m. (f) Recall of detector on ml-1m.

(g) Accuracy of detector on Last.fm. (h) F1 score of detector on Last.fm. (i) Recall of detector on Last.fm.

Fig. 5. Accuracy-F1 score-recall evaluation.

TABLE V
THE DEFENSE RESULTS FOR DIFFERENT RECOMMENDED LIST SIZE K .

Dataset Methods K
5 10 15 20

Data poisoning attack 0.0012 0.0019 0.0033 0.0042

ML-100K LDP 0.0006 0.0012 0.0024 0.0026
HINT 0.0006 0.0010 0.0022 0.0028
CLR 0.0004 0.0006 0.0010 0.0019

Data poisoning attack 0.0007 0.0026 0.0042 0.0061

Last.fm LDP 0.0006 0.0017 0.0029 0.0040
HINT 0.0004 0.0021 0.0034 0.0046
CLR 0.0003 0.0021 0.0023 0.0037

2) Second Line of Defense (Passive Defense):
The impact of poison rates on detection accuracy. Addi-

tionally, as observed in Figures 5(a), 5(d), and 5(g), a lower
poisoning rate for target items corresponds to higher detection
accuracy. For instance, in the ML-100K dataset, when HR(t)
is 0.005, the detection accuracy peaks at approximately 93%.
This is because fewer fake users make it easier for the model
to identify fake users and distinguish them from real users.

The impact of poison rates on F1-score. Figures 5(b),
5(e), and 5(h) illustrate the variation in F1-score results with
different poisoning rates. We observed interesting trends: First,
an optimal F1 score exists for each dataset and poisoning rate.
Secondly, increasing the poisoning rate does not consistently

lead to higher or lower F1 score. For the ML-100K dataset,
the F1 score peaks at a poisoning rate of 0.05, while for the
ml-1m and Last.fm datasets, the maximum F1 score occurs
at poisoning rates of 0.2 and 0.1, respectively. This non-
linear impact indicates varying sensitivity to poisoning attacks
across datasets, likely due to differing characteristics and user
behavior patterns.

The impact of poison rates on Recall. Figures 5(c),
5(f), and 5(i) illustrate the variations in recall across different
data poisoning rates. A notable trend is observed where recall
generally increases as the poisoning rate escalates. Signif-
icantly, across all three datasets, the highest Recall values
are consistently achieved at a poisoning rate of 0.2. This
phenomenon indicates that even in environments with high
poisoning rates, the model maintains a robust capability to
correctly identify a substantial proportion of fake users.

V. RELATED WORK

Data poisoning attacks have garnered significant attention in
recent recommendation system research, yet defense strategies
against them remain underexplored. However, there is exten-
sive research on defenses against widespread data poisoning
attacks [21] [22] [23]. Here, we primarily compare our ap-
proach with related works, specifically the Local Differential



Privacy (LDP) defense scheme and the Healthy Influential-
Noise based Training (HINT) defense scheme.

Bebensee [24] highlights that Local Differential Privacy
(LDP) is a state-of-the-art approach enabling statistical com-
putation while preserving user privacy. As the LDP protocol
requires each user to locally obfuscate their raw data before
submitting it to the aggregator, it remains susceptible to
output poisoning attacks. Consequently, Song et al. propose a
practical solution to enhance the reliability of the LDP protocol
in real-world applications. Their methods have been validated
for effectiveness against data poisoning attacks in practical
scenarios.

HINT (Healthy Influential-Noise based Training), a novel
defense against data poisoning attacks. HINT uses influence
functions to identify training samples that significantly affect
model loss, adding ”healthy influential noise” to these sam-
ples. This approach mitigates harmful impacts and enhances
beneficial ones, improving robustness against attacks. And
HINT’s effectiveness is validated through sensitivity analysis
and computational time comparisons [25].

We looked into Huang et al.’s statistical analysis approach
to compare methods for spotting fake user data [17]. They
extracted key features from the dataset and generated cor-
responding feature values for each user to train a fake user
classifier. However, this detection mechanism is not foolproof,
as attackers can evade detection by modifying the method used
to create fake users.

VI. CONCLUSION

In this paper, we propose a dual defense mechanism against
data poisoning attacks in deep learning-based recommendation
systems. The first line of defense, active defense, is imple-
mented through crafted L2 regularization (CLR). We found
that our CLR method effectively reduces the poisoning attack
hit rate under various attack intensities, with a negligible
impact on the recommendation system model. Additionally,
the second line of defense, passive defense, employs a de-
tection model using Generative Adversarial Network (GAN),
significantly improving the accuracy of fake user detection. To
further enhance the defense capability of the detection model,
incorporating real synthetic data can expand the training
dataset, thereby training the simulation model more effectively
to identify predictive differences. Future research can explore
developing new fake user detection methods and designing
more robust recommendation systems to against data poison-
ing attacks.
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