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A B S T R A C T

This study introduces a cloud-based platform designed for real-time monitoring and comprehensive analysis
of lithium-ion battery performance, incorporating a digital twin Battery Management System (BMS). This
system overcomes the limitations of traditional local BMS, especially in historical data analysis. It employs
advanced data processing and analytics to improve battery performance and enhance prediction accuracy.
Key components include a energy measurement correction method, an coulombic efficiency (CE) estimation
technique, and SOC estimation using an optimizer algorithm. These strategies are crafted to address sensor
errors and dynamically adjust estimations to minimize inaccuracies. The use of sophisticated algorithms to
optimize the objective function has led to significant experimental outcomes, notably in reducing the Mean
Square Error (MSE) in estimations. The paper also introduces various novel methods for estimating irregular
battery data, using the Central Limit Theorem for improved precision. Experimentally, the system identified
a battery CE of 0.978 for a specific battery, demonstrating its capability in monitoring battery health. These
advancements offer substantial scholarly insights and pave the way for broader application of advanced digital
twin BMS technologies in residential battery storage and other areas. The synergy of this system with other
smart grid technologies envisions a future where energy storage and management are not only more efficient
and reliable but also finely optimized, enhancing the tracking and management of battery life cycles.
1. Introduction

The transition towards renewable energy sources necessitates in-
novative solutions for efficient and effective energy storage and man-
agement. At the heart of this transition, lithium-ion batteries have
emerged as a pivotal technology due to their superior energy density,
longevity, and rechargeability. However, these batteries pose a set of
unique challenges, including the optimization of their performance in
life cycle, and the prediction of their State of Health (SOH). Traditional
Battery Management Systems (BMS) struggle to cope with these chal-
lenges, particularly given the limitations in handling historical data that
can inform performance improvements due to the smaller capacity of
on-board computer system.

In this context, this study introduces a novel cloud-based system
designed to address these challenges. By utilizing a digital twin model
of the BMS in a real-time online environment, this research pioneers
a transformative approach to the management and analysis of lithium-
ion battery performance by utilizes cloud resources. It detail the use
of advanced data processing and analysis techniques, along with inno-
vative mechanisms such as a energy measurement correction method
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and a SOC estimation method. These techniques not only optimize
the performance but also enhance prediction accuracy by accounting
for sensor errors and adapting to minimize estimation inaccuracies,
thereby setting a foundation for more advanced data analysis.

This paper also presents experimental results, demonstrating the
effectiveness of the proposed system. For instance, it showcase how
adaptive error correction led to a significant reduction in SOC estima-
tion. It further introduce a novel method of estimating irregular pattern
data using the Central Limit Theorem (Levin, 2023) and report on the
identification of a battery CE equating to 0.978 in one of the batteries.

This research contributes significantly to the academic discourse
around lithium-ion battery management. Moreover, it holds substantial
practical potential, opening new avenues for the broader application of
advanced digital twin BMS in residential battery storage sectors. By in-
tegrating this system with other smart grid technologies, move towards
a future where energy storage and management become increasingly
efficient, reliable, and highly optimized.
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2. Literature on smart batteries solutions

The increasing reliance on renewable energy has bolstered the need
for efficient energy storage, bringing lithium-ion batteries into the spot-
light (Chen et al., 2018). Recognized for their superior energy density,
rechargeability, and longevity, lithium-ion batteries have triggered an
influx of research on smart battery solutions (Peters et al., 2017).

The conventional Battery Management Systems (BMS) have been
the mainstay for managing lithium-ion battery operations (Manwell and
McGowan, 1993). However, traditional BMS have encountered chal-
lenges in managing the performance and life cycle of these batteries,
particularly in accurate State of Charge (SOC) prediction. A widely-used
method for SOC prediction is the Coulomb Counting Method (Zhou
et al., 2018), but its inherent simplicity has led to errors when charging
and discharging conditions are not consistent. This has necessitated the
exploration of novel methods that account for these inconsistencies,
and in the study propose using statistical methods to calculate and
correct these accumulated errors for precise outcomes.

To address the broader challenges faced by BMS, a number of
studies have focused on improving BMS’s data processing capabilities
and refining SOC estimation methods (Zhang et al., 2019). The rise
of cloud computing and the Internet of Things (IoT) has led to new
opportunities in the field of battery management (Shafiee et al., 2020).
Specifically, digital twin technology, which creates a virtual replica of
the physical BMS, has shown promise in enabling real-time tracking
and analysis of battery performance (Dinh et al., 2020). The potential of
digital twin technology in enhancing lithium-ion batteries’ performance
and life span has been explored in a range of studies (Tao et al., 2019).

Nevertheless, the effective use of historical data for performance
optimization and SOC prediction remains a significant challenge for
many BMS (Gao et al., 2021). This has catalyzed research on innovative
data analysis techniques that can harness historical data for predictive
maintenance and improved operational efficiency (Wang et al., 2017b).

This research unfolds within the context of an evolving academic
dialogue. It presents an innovative cloud-based BMS that utilizes a dig-
ital twin model. This system is designed to overcome the shortcomings
of conventional BMS approaches by leveraging historical data (Vazquez
et al., 2019). By addressing the challenges of random and irregular data
from real-world applications, this study introduces an energy measure-
ment correction method and an adaptive SOC estimation technique.
Furthermore, it proposes a novel method to overcome the limitations
inherent in the Coulomb Counting Method. Collectively, these advance-
ments represent significant contributions to the discourse on intelligent
battery solutions.

3. System architecture design

The architecture of system is devised to harness the potential of IoT,
cloud computing, and digital twin technology, bringing forth an inno-
vative battery management solution. This unique architecture aims to
transcend traditional BMS’s limitations and effectively utilize historical
battery data for improved operational efficiency.

The system architecture consists of three core components: the local
battery management system, the cloud server, and the digital twin
model (Xia et al., 2021; Grieves and Vickers, 2017).

Here is a breakdown of the design’s key components and layers:
Data Acquisition Layer: The smart BMS circuit board, a core com-

ponent of this layer, is a highly advanced lithium battery protec-
tion board specifically developed for home solar energy storage. It
boasts voltage balancing for 16 cells, current sensing, and extensive
charging/discharging protections. Centered around the Local Battery
Management System, plays a pivotal role in the architecture by fa-
cilitating the seamless transmission of data. It utilizes IoT-enabled
sensors to collect a wide array of real-time battery information, such
as charge/discharge current, temperature, voltage, and Geo-location.
Once gathered, this data is promptly transmitted to the central system
3615
Fig. 1. A Digital Twin Battery BMS System, comprising data storage, alert generation,
analysis, and prediction components.

for processing and analysis. The transmission is designed to be swift
and secure, ensuring the real-time data is consistently available for
accurate SOC calculations and further analysis. This layer’s efficient
data transmission capabilities are crucial, providing the foundational
data flow required for effective monitoring and management of battery
performance.

Communication Module: This module ensures seamless data flow,
employ a combination of wired and wireless communication proto-
cols to ensure uninterrupted data transmission. Through the Message
Queuing Telemetry Transport (MQTT) protocol, the board transmits
real-time data to the cloud via WiFi, broadband, or Ethernet con-
nections. Moreover, data is stored on an embedded micro-SD card
and is automatically uploaded to the cloud when the internet con-
nection is restored. In this system, the MQTT protocol is used as
the standard protocol over TCP/IP through the internet for IoT data
transmission (Joonam Park et al., 2020; Tanizawa et al., 2015). This is
because IoT messages are small, optimizing network bandwidth. MQTT
clients are lightweight and require minimal resources, which is ideal for
embedded microprocessors. Battery information usually does not need
to be sent very frequently. For instance, a real-world BMS for solar
energy storage collects battery data only once per minute, reducing
energy consumption.

Cloud Digital Twin: The Cloud Digital Twin constitutes the central
structure of the system, orchestrating data storage, processing, and
analysis. This sophisticated component utilizes digital twin technology
to establish a virtual counterpart of the local BMS on the cloud server.
This virtual model accurately reflects the real-time conditions of the
battery, facilitating immediate monitoring, analysis, and intervention.

As fresh data is relayed from the local BMS, the digital twin is
consistently updated to maintain a precise and current representation of
the battery’s status. It employs advanced machine learning techniques
to refine predictions and understandings of the battery’s behavior and
potential issues. This continuous flow of data and analysis ensures that
the cloud digital twin offers an accurate, real-time depiction of the
battery’s condition, making it an invaluable tool for proactive manage-
ment and decision-making. Fig. 1 provides a visual representation of
this sophisticated interplay between the real and virtual components,
illustrating the cloud digital twin’s role in the broader system.

Safety and Security Features: The system is engineered with a
comprehensive safety mechanism that vigilantly tracks any anomalies
like overcharging, excessive heat, or short circuits. It is programmed
to promptly respond to these irregularities, safeguarding the battery
system and averting potential damage. Additionally, an information
system is in place to display alerts on the user’s dashboard or send email
notifications for further user action.

Energy Collection and Usage Optimization: The system’s design
integrates methods for capturing renewable energy, including solar
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Fig. 2. A depiction of an Advanced Battery Digital Twin System: This setup showcases
numerous batteries, each integrated with a distinct Battery Management System (BMS)
responsible for sending live data to a digital twin platform hosted in the cloud. The
illustration features a cloud server equipped with data storage capabilities and assorted
tools designed for analyzing historical data. The image also includes a display of various
applications, like real-time data visualization, all developed on this sophisticated
technology platform. This visual emphasizes the cutting-edge application of digital twin
technology in the field of battery management and data analysis.

power harvesting. Smart load management is employed to maintain
an ideal balance between energy storage and consumption. Advanced
algorithms are utilized to determine when to switch to grid power,
helping to even out peak demand periods on the grid.

Scalability and Flexibility: Central to the system’s design is its
inherent scalability, enabling it to effectively handle increasing energy
requirements. The architecture’s versatility suits a wide array of appli-
cations, from residential energy storage solutions to the management
of batteries in electric vehicles. It facilitates real-time, simultaneous
access for numerous users, allowing for efficient monitoring and control
of battery status. For instance, users can remotely manipulate the
local BMS, including the ability to disable the battery if necessary,
demonstrating the system’s adaptability and user-centric approach. This
scalability and flexibility ensure the system remains robust and relevant
in various scenarios and as energy demands evolve.

This system architecture design provides a comprehensive, intelli-
gent, and adaptive solution for managing smart batteries in solar energy
storage systems and electric vehicles (Friansa et al., 2017; Stroe et al.,
2018). By employing data-driven algorithms, integrating with IoT and
digital twins and ensuring safety, this architecture paves the way for
future advancements in smart battery technology. See Fig. 2.

4. Estimations method

A range of data analysis techniques were employed in the estimation
study.

SOC is a critical parameter in battery management as it indicates
the current energy level in the battery compared to its maximum
capacity (1). In this paper, propose a novel method for SOC estimation
that employs both the Coulomb Counting method and an adaptive
3616
model-based approach. This innovative method enhances accuracy and
accounts for various factors that typically impact the SOC estimation.

To begin with, the SOC is mathematically defined as the ratio of the
current battery charge to its fully charged capacity:

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 + 100 ∗ 𝑄
𝑄𝑚𝑎𝑥

(1)

Additionally, the State of Health (SOH) of a battery, which is a
measure of its current maximum capacity relative to its rated capacity,
is defined as (2):

𝑆𝑂𝐻 = 100 ∗
𝑄𝑚𝑎𝑥
𝐶𝑟

(2)

Here, 𝑄𝑚𝑎𝑥 represents the current maximum capacity of the battery,
𝐶𝑟 is the nominal battery capacity, and SOH signifies the current state
of the battery’s health.

In the Coulomb Counting method, a simple yet widely-used tech-
nique, the SOC is estimated by integrating the current flowing through
the battery over time. However, this method can incur errors due to
measurement noise and sensor drift. To address these shortcomings, re-
search introduces a modified version of the Coulomb Counting method
with error correction. The equation for the Coulomb Counting method
is:

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 +
𝜖 ⋅ 𝛥𝐶𝑡
𝐶𝑟

(3)

where 𝑆𝑂𝐶𝑡 is the SOC at time t, 𝑆𝑂𝐶𝑡−1 is the SOC at the previous
time step, and 𝛥𝐶𝑡 = 𝐼𝑐 (𝑡)𝛥𝑡 represents the change in charge during
the time step, it is a measure of how much electric charge has been
added to or removed from the battery between two consecutive time
steps. 𝜖 represent charging efficiency. In this formula, the SOC is
updated by adding to the previous SOC the proportion of the battery’s
rated capacity that has been charged (or discharged) during the time
interval 𝛥𝑡. The charging efficiency modifies this addition to account for
energy losses in the process. This method is commonly used in battery
management systems for tracking SOC over time.

The Coulombic efficiency, CE, is calculated using the following
function:

𝐶𝐸𝑘 =
𝑄𝑑𝑖𝑠,𝑘

𝑄𝑐ℎ𝑎,𝑘
(4)

In this equation, 𝑄𝑑𝑖𝑠,𝑘 represents the discharge capacity, and 𝑄𝑐ℎ𝑎,𝑘
denotes the charge capacity of the battery within cycle 𝑘.

The degradation index (𝜂) quantifies the decline in a battery’s ca-
pacity resulting from degradation over time. Additionally, 𝜂 is broadly
employed to denote the overall efficacy of a process, extending beyond
just electrochemical applications. It is calculated as the proportion of
the actual useful output of a process to its theoretical maximum output,
under the assumption of perfect efficiency. 𝜂 is close refers to a measure
or index that reflects the overall health and efficiency of a battery,
considering various factors such as capacity fade, power fade, increase
in internal resistance, and other aging mechanisms. It take into account
the Coulombic Efficiency as one of its components, among other factors.
While Coulombic Efficiency is a direct and specific measure of charge
transfer efficiency, the battery degradation index is a broader term that
encompasses CE along with other parameters to give a more holistic
view of the battery’s health and performance over time. Nevertheless,
the terms Coulombic Efficiency (CE) and degradation index (𝜂) are
often used synonymously to refer to battery efficiency and an indicator
of battery degradation.

In the study, calculate CE by merging the Coulomb Counting method
with a Gaussian curve fitting technique, the Coulomb Counting method
is used to compute the charging and discharging capacity. Applying the
curve fit function to fit the charging and discharging capacity data with
a Gaussian curve. This fitted Gaussian curve is then used to determine
the peak charging and discharging capacities, denoted as 𝑄𝑐ℎ𝑎,𝑚𝑎𝑥 and
𝑄𝑑𝑖𝑠,𝑚𝑎𝑥, respectively. Utilize this curve to calculate the Coulombic
Efficiency for the current cycle k as per Eq. (4). The central point of
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the Gaussian fit, represented by (𝜎), corresponds to the most prevalent
value of Coulombic Efficiency.

The estimated CE values provide vital insights about the battery’s
health and performance. A decreasing trend in CE over time signifies
increased parasitic reactions and battery degradation. SOH has positive
correlations with CE but it is not linear (Ng et al., 2009), this can be
further explore using battery life cycle data.

In light of the inherent inaccuracies posed by factors such as thermal
energy dissipation, the historical degradation of batteries, and the
intermittent nature of data in Coulomb Counting methods, a more
robust approach is necessitated. To this end, a third-degree polynomial
function has been employed to better capture the complex relationship
between the dependent variable P(x), indicative of energy levels, and
the independent variable 𝑥, representing the original value:

𝑃 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 (5)

In this context, P(x) represents the corrected energy levels, and 𝑥
represents the cumulative energy discrepancy between charging and
discharging processes over time. The coefficients a, b, c, and d intri-
cately determine the shape of the polynomial curve, with a non-zero a
ensuring a cubic characteristic.

The cubic term allows for the modeling of data with two inflection
points, providing a nuanced fit capable of adapting to more intricate
data behaviors than linear or quadratic models. This refined model is
instrumental in detrending energy data, thereby enhancing the fidelity
of energy measurement and prediction. This is particularly useful for
adapting to intricate patterns in battery energy data, enhancing the
accuracy of energy measurements and predictions.

Additionally, this research employs Broyden–Fletcher–Goldfarb–
Shanno (BFGS) for SOC estimation (Mesbahi et al., 2017). The BFSG
method is a heuristic search algorithm that is used for minimizing a
function in a multidimensional space. This method considers maintains
a simplex of n+1 points for an n-dimensional space. The method then
iterative performs a series of operations that reflect, expand, contract,
or shrink the simplex in search of a minimum. In the context of
searching for the minimal MSE in SOC estimation using the charge
coefficient (nc) and discharge coefficient (dc), the method can be quite
effective.

𝑆𝑂𝐶𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑆𝑂𝐶𝑛−1 +
𝑛𝑐⋅𝐼𝑐 (𝑡)⋅𝛥𝑡

𝐶𝑟
, for charging

𝑆𝑂𝐶𝑛−1 +
𝑑𝑐⋅𝐼𝑐 (𝑡)⋅𝛥𝑡

𝐶𝑟
, for discharging

(6)

𝐶𝑛: Cumulative charged capacity at time n. 𝐶𝑛−1: Cumulative charge
apacity at the previous time step (n-1). 𝑛𝑐: Charging efficiency co-
fficient, this accounts for the efficiency of the charging process. 𝑑𝑐:
ischarging efficiency coefficient, this accounts for the efficiency of

he discharging process. 𝐼𝐶 𝑡: Current at time t. 𝛥𝑡: The time interval
etween the current and the previous measurement.

Research present an approach to estimate Coulombic Efficiency
CE), defined as the ratio of actual energy delivered by the battery
o the energy supplied during charging. Estimating CE is essential for
valuating battery health and identifying degradation over time. It
pproach employs a Gaussian curve fit to estimate the CE based on the
attery’s charging and discharging profiles (Ren et al., 2019).

In summary, the SOC estimation method integrates a modified
oulomb Counting technique with an adaptive model-based approach,
esulting in higher accuracy and reliability. This novel method proves
o be highly effective in managing battery health and energy levels for
arious applications including solar energy storage systems and electric
ehicles.

. Formulating the objective function

Crafting an effective objective function is paramount in advancing
attery performance and management. This function acts as a quantifi-
ble representation of the ultimate aims the BMS is designed to achieve.
3617

p

t is shaped and refined through sophisticated control algorithms and
trategic management approaches.

In contexts of home solar energy storage systems or electric vehi-
les, the objective function typically integrates various factors. These
nclude enhancing the battery’s lifespan, optimizing SOC, ensuring safe
peration, and improving energy efficiency.

By fine-tuning this objective function, the control of BMS can
deptly navigate the intricate balance between prolonging battery
ife, optimizing energy use, and maintaining safety. This balance is
specially critical in solar energy storage and electric vehicles, where
oth longevity and efficiency are key.

This research focused on an objective function centered around
OC estimation algorithms to minimize predictive errors, employed the
ean Squared Error (MSE) as a metric to gauge the accuracy of SOC

stimation.
MSE is particularly advantageous in this setting. It accentuates

arger discrepancies by squaring the difference between actual and pre-
icted values, making it highly sensitive to significant variations crucial
or practical scenarios. Moreover, its differentiable nature creates a
onducive landscape for optimization algorithms, facilitating more ef-
ective model training. As an absolute measure, it directly mirrors the
rror magnitude in squared units, offering a clear understanding of the
odel’s performance.

𝑆𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − �̂�𝑖)2 (7)

Here, n represents the number of data points, the actual value, the
predicted value, and ∑ denotes summation. The aim is to minimize
this metric concerning the charge efficiency coefficient nc and the
discharge efficiency coefficient dc. Consequently, the objective function
for minimizing the MSE is:

minimize ObjectiveFunctionMSE(𝑛𝑐, 𝑑𝑐) =

1
𝑁

𝑁
∑

𝑡=1

(

𝑆𝑂𝐶actual(𝑡)

− 𝑓
(

𝐶(𝑡 − 1) + 𝑛𝑐 ⋅ 𝐼charge(𝑡) ⋅ 𝛥𝑡 + 𝑑𝑐 ⋅ 𝐼discharge(𝑡) ⋅ 𝛥𝑡
))2

(8)

The objective function incorporates nc and dc as variables to calcu-
ate SOC’s estimation MSE. Utilizing the BFGS optimization method, the
ystem iteratively refines nc and dc to minimize this function, thereby
iminishing MSE and bolstering SOC estimation precision.

The BFGS technique, a simplex-based method, iteratively refines the
alues of nc and dc by navigating the function’s landscape through
eflection, expansion, contraction, and shrinkage. This method does not
ecessitate derivative calculations, making it highly suitable for sce-
arios requiring quick and reliable solutions. Thus, it is an invaluable
sset in BMS for dynamically balancing battery health, energy use, and
afety, providing a strategic edge in the management and optimization
f sophisticated battery systems.

. Calculating coulombic efficiency

Calculating the Coulombic Efficiency (CE) of Lithium-ion batteries
s an important metric for assessing their health. The performance loss
f a Lithium-ion battery is caused by three aging processes: loss of
ithium inventory, loss of active material, and an increase in internal
esistance (Chang, 2013; Dong et al., 2011; Nitika et al., 2021; Zhang
t al., 2020). CE is the ratio of discharge quantity to charge quantity
ithin the same cycle and is usually less than 1. However, obtaining an
ccurate CE value in online conditions is challenging due to irregular
harging and discharging, missing data, and other factors. This makes
t difficult to calculate each cycle’s CE, battery discharge capacity fade,
nd internal resistance accurately.

To tackle this problem, experimental online battery is utilized to
roduce a CE fading curve. The battery was charged via a solar panel
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during the day and discharged randomly at various times. Under opti-
mal weather conditions, the battery typically achieves a fully charged
state. For simplicity, assumed that one day represented one battery
cycle to compare CE with each day’s changes. However, in reality,
the randomness of the battery’s operation, errors in measurement,
and missing data transmission led to uneven charge and discharge
quantities throughout the day. As a result, the CE displayed an irregular
pattern that varied from one day to the next.

To enhance the precision of the Coulombic efficiency CE measure-
ment, here leveraged the Energy Conservation Law, which dictates
that input energy equals output energy. Thus, despite variations in
charging and discharging quantities on a daily basis, the total amount
of charged and discharged energy should be approximately equal over
a certain number of days. To calculate the CE, it used the average CE
of each day as a single data point. To ensure accuracy, it applied the
Central Limit Theorem, which states that the sample mean approaches
the population means as the sample size increases. Specifically, it
calculated a single CE value using one-day data consisting of 1440
data points and obtained the final mean value of CE by computing the
average of 100 days’ worth of samples.

Fig. 3 (c) presents a histogram that illustrates the energy consump-
tion during charging and discharging over a period of year 2022–2023.
It applied a Gaussian curve fit function to analyze the data and identify
the center of the mean distribution (𝜎), which corresponds to the CE
value. This approach eliminates outliers and reduces calculation errors
stemming from inaccuracies in the data. Consequently, the mean CE
value represented by the center of the Gaussian distribution, can serve
as a dependable metric for assessing battery health. In this study, it
determined a value of CE = 0.978 in a battery. Overall, the method-
ology enables a more precise estimation of the CE for Lithium-ion
batteries operating under real-world conditions, which can facilitate the
monitoring of battery health and the extension of battery lifespan.

A smaller value of CE indicates greater self-consumption of the
battery, but it does not necessarily mean that the battery is in a
degraded state. The Battery Degradation Index 𝜂 value is affected by
many factors, including Coulombic Efficiency, but also factors like
capacity fade, internal resistance, cycle number, temperature effects,
and other aging mechanisms. Therefore, it is necessary to use multiple
indicators to evaluate the health of a battery, rather than relying solely
on the CE value.

The significance of choosing an optimal averaging period for Coulo-
mbic Efficiency (CE) in evaluating battery degradation is underscored
in Fig. 4. This figure shows that using a 400-day average for CE results
in a nearly flat curve, suggesting that such a lengthy period might be
too extensive to detect significant degradation during the initial life
cycles of the battery. Conversely, a very brief averaging period may
emphasize short-term irregularities that do not necessarily reflect the
battery’s long-term health trends. Nevertheless, a consistent decline
in CE over time is a critical indicator, pointing towards increasing
parasitic reactions and progressive battery degradation. This reduction
in CE serves as a preliminary alert to declining battery performance.
Therefore, further research and experimental work are crucial to ascer-
tain the most effective averaging period that accurately reflects battery
health and identifies signs of degradation.

7. Energy measurement correction

The energy involved in charging and discharging is calculated by
multiplying voltage, current, and time.

Accurate voltage and current measurements are crucial for ana-
lyzing the performance of battery systems, especially smart batteries.
Various factors, including sensor limitations, measurement inaccura-
cies, and environmental conditions, can cause discrepancies between
the actual and measured energy values in these systems. Therefore, it
is essential to correct these measurements to ensure data precision and
reliability. This correction is vital for effective battery management.
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In line with the energy conservation principle, a battery’s energy
inputs and outputs should ideally balance each other. To uphold this
principle and tackle discrepancies in measurement, an adaptive error
correction method can be implemented. This method involves com-
paring the actual energy values obtained from charging and discharg-
ing cycles against a theoretical ideal of zero deviation. Through this
comparison, the system can dynamically adjust its energy calculations.

The use of historical data plays a crucial role in this process, signifi-
cantly improving the accuracy of battery performance assessments and
enhancing the overall functionality of the battery management system.
Each new measurement allows the error correction algorithm to update
its parameters, continually honing its precision based on the variances
between the measured values and the expected zero deviation.

Integrating this error correction method into the broader framework
of the battery management system is essential. It ensures a more
accurate and reliable evaluation of battery health and performance,
thereby maintaining the balance between energy input and output as
per the energy conservation law. This approach not only corrects im-
mediate discrepancies but also contributes to the long-term reliability
and efficiency of the battery system.

By factoring in the specifics of each battery system, including the
unique characteristics of the sensors used, the environmental condi-
tions, and the particular application of the battery, the error correction
method can be different tailored to suit each scenario, leading to
improved precision in energy measurement, ensure the accuracy and
reliability for effective and efficient battery management.

The study utilizes an iterative method to adjust the parameters
of the correction function, which substantially improves the precision
of daily energy calculations. Incorporating a third-degree polynomial
fit counteracts the influence of environmental disturbances. Insights
from the application of function 5, as depicted in Fig. 5, demonstrate
a notable decrease in daily energy computation errors. This figure
illustrates the corrected current values obtained through this method,
alongside the calculated daily energy and the associated errors across
a 600-day timeline. The figure clearly conveys the increased accuracy
attained via daily energy correction.

The results affirm that the refined energy values significantly el-
evate the precision of daily energy computations, effectively reduc-
ing the error accumulation and preventing the energy calculations
from straying from their actual values. The graph notably indicates
that the error rate maintains relative stability, even amidst data fluc-
tuations, underscoring the strength and efficiency of the correction
method applied. For sustained accuracy in daily energy estimations
over prolonged periods, it is imperative to routinely revise the cor-
rection function parameters. The adaptive method takes into account
sensor discrepancies that could alter energy readings and autonomously
adapts to minimize computational errors. This process of continual
refinement further increases the trustworthiness of the daily energy es-
timation process. To validate a model against empirical data, especially
in the context of energy charge and discharge where actual values are
not readily available, presents a unique set of challenges.

8. Enhancing SOC estimation with optimization techniques

This section delves into the application of the statistical method to
optimize the charge coefficient (nc) and discharge coefficient (dc) for
minimize the MSE in SOC estimation.

Given the unpredictable nature of battery usage, online data fre-
quently show erratic charging and discharging patterns. This complex-
ity is intensified by energy dissipation as heat, which makes precise
SOC estimation based solely on data from complete charge–discharge
cycles becomes impractical. The nc and dc is a pivotal element in
battery SOC estimation, indicative of the efficiency and energy loss
during charging and discharging. As noted earlier, SOC is deduced from
daily energy inputs and outputs, with nc dc being critical factors in
formula (6). Influenced by variables such as temperature, battery age,
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Fig. 3. Analysis of Coulombic Efficiency (CE) Using Gaussian Curve Fitting: (a) Variations in CE attributed to inconsistent charging and discharging cycles. (b) Analysis including
real-time data from irregular charging and discharging patterns, encompassing over 400,000 data points. (c) Estimation of CE via Gaussian fitting; the mean value is obtained
from the apex of the curve. In accordance with the Central Limit Theorem, the distribution of sample means tends towards a normal distribution as the sample size increases,
irrespective of the population distribution’s form. Consequently, if large random samples are taken from a population and their means are calculated, those means will typically
form a normal distribution centered (𝜎) around the actual population mean.
and discharge rates, a precise nc and dc value is essential for accurate
SOC calculation, as it directly impacts the integration of current over
time. A standard SOC estimation model might overlook the dynamic
nature of nc, dc, resulting in progressive inaccuracies. The goal of
optimizing nc and dc is to minimize MSE as outlined function (7)
within the overarching objective function (8). This optimization aims
to correct the deviations and significantly improve the accuracy and
reliability of the overall model.
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Our investigation included a detailed assessment of various opti-
mization algorithms, with a special focus on the ‘L-BFGS-B’ method,
an enhancement of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm [28]. This sophisticated method is particularly adept at opti-
mizing differentiable functions subject to specific boundaries, making
it a key tool in Multivariate Optimization to identify the minimum
of a function across numerous variables. It is especially effective in
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Fig. 4. Coulombic Efficiency (CE) Analysis: Coulombic Efficiency (CE) Analysis is an essential technique for evaluating the performance of batteries over time. This method becomes
more effective and accurate when the period for calculating CE is extended. In this analysis, (a) the observation of a nearly flat trend (indicated by the red line) on the graph is
encouraging. It signifies that there is minimal early degradation of the battery, as the CE value approaches the ideal mark of 1. (b) The other trend lines represent the average CE
values, calculated by grouping the charge and discharge data over intervals of 50, 75, and 100 days. These lines demonstrate the expected fluctuations in energy quantities that
occur during typical charging and discharging cycles. Particularly noteworthy is the trend line for the 100-day interval over an extended 400-day period. This line shows a more
consistent pattern, indicating that longer periods of data for calculating CE can yield a more reliable gauge of battery efficiency. Such insights are crucial for accurately forecasting
the long-term performance and health of batteries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Analysis of Net Energy Trends and Corrections: (a) Across over 600 days, the chart depicts the cumulative trend in battery energy balance, with subtle fluctuations indicative
of systematic drift. The application of a third-degree polynomial fit reveals a well-aligned model, underscoring the critical importance of precise trend analysis for subsequent
data utilization. (b) The second graph showcases the application of a third-degree polynomial for trend extraction from daily energy data. The resulting green line demarcates
the detrended data, crucial for isolating transient errors and enhancing the accuracy of future estimations. This step is pivotal in refining the data for more granular analytical
endeavors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Optimization Trajectories for SOC Estimation Accuracy: This pair of graphs illustrates the progression of MSE reduction across iterations using an optimization algorithm.
The charts compare the minimization process for two distinct datasets from 2022 and 2023, highlighting the algorithm’s effectiveness in fine-tuning SOC estimation parameters
nc, dc for improved accuracy. Key metrics such as the minimum MSE achieved are annotated, showcasing the optimizer’s performance in searching local optimum.
minimizing the MSE, thereby significantly boosting the precision and
reliability of SOC estimation models for batteries.

The ‘L-BFGS-B’ method stands out for its ability to fine-tune critical
parameters like the charging efficiency coefficient nc and discharging
efficiency coefficient dc, significantly reducing estimation inaccuracies.
This optimization, depicted in Fig. 6, demonstrates the method’s effec-
tiveness through the convergence of optimal values from two distinct
data sets.

Crucially, the ‘L-BFGS-B’ method performs iterative adjustments of
nc and dc to minimize the MSE. During this process, nc is applied
during the charging phase, and dc is used during discharging. Notably,
this method operates independently of the derivative of MSE with
respect to nc or dc, providing an advantage in complex scenarios where
an analytical derivation is challenging or impossible.

The ‘L-BFGS-B’ optimizer functions through an iterative, bounded,
and memory-efficient approach. It employs a limited memory strategy,
approximating the inverse Hessian matrix using a restricted number
of previous updates. This significantly reduces memory usage and
computational load, particularly beneficial in scenarios involving a
large number of parameters. Each iteration assesses the gradient of the
objective function, determines the search direction, and performs a line
search to find a suitable step size. The optimizer’s handling of bound
constraints ensures solutions remain within feasible and logical ranges.

This method’s intelligent navigation of the objective function’s land-
scape, making informed adjustments at each step, results in an efficient
convergence towards the optimal values. This balance between preci-
sion and computational feasibility makes the ‘L-BFGS-B’ an invaluable
tool in complex optimization scenarios, underlining its importance in
enhancing SOC estimation accuracy and battery management systems.

In a particular dataset analysis, after 11 iterations of calculation, the
values of nc = 2.0722 and nd = 2.1524 were determined. These values
correspond to the minimum MSE in estimating the SOC for this dataset.

Fig. 7 illustrates the comparison between SOC estimations from
cloud computing and local BMS SOC readings. Formula (6) was utilized
in these calculations, with the values of nc and dc being derived from
an optimization function. This suggests that the minimal MSE was
achieved using an optimization algorithm.

9. Discussion

The research delves into enhancing digital twin using adaptive
error correction, statistical analysis, and machine learning, showing
improved estimation and battery health monitoring. It addressed tra-
ditional BMS limitations, notably historical data handling and error
accumulation, by significantly reducing MSE in SOC estimations with
adaptive strategies and a novel CE calculation.

Importantly, this research has paved the way for analyzing random
3621

data in real-world applications. The data collected in actual scenarios,
with their inherent complexity, differ significantly from controlled
laboratory data. Consequently, achieving the same level of accuracy as
lab-generated results is challenging, underscoring the complexity and
unpredictability of real-world data. This aspect highlights the necessity
for continuous innovation in battery management systems, particularly
given the increasing dependence on renewable energy solutions.

The importance of a flexible objective function that adapts to real-
time conditions and various applications, extending our methods’ ap-
plicability across different battery types and scenarios. This work not
only boosts the reliability and efficiency of renewable energy systems
but also paves the way for further advancements in BMS technology to
meet the growing demand for sophisticated renewable energy solutions.

The research’s extension of local BMS functions to include cloud-
based remote control is a significant advancement. Allowing users to
set up battery operation parameters or strategies remotely not only en-
hances convenience but also optimizes battery performance in the long
run. By facilitating adjustments that can improve economic returns or
prolong battery longevity, the system offers a dynamic and responsive
approach to battery management.

Incorporating this system into the broader smart grid and renewable
energy ecosystem can indeed provide a more comprehensive view of
its significance. As part of a larger network, the cloud-based BMS can
contribute valuable real-time data and control capabilities. It could
interact with other elements of the smart grid to optimize energy
distribution and storage, responding to changes in demand or sup-
ply quickly. Moreover, its integration with renewable energy sources
can help maximize the efficiency and utilization of these resources,
promoting a more sustainable energy landscape.

By interacting with and adapting to the broader ecosystem, the
system not only improves individual battery performance and longevity
but also contributes to the overall efficiency and reliability of the
energy grid. This holistic approach emphasizes the potential of the
research to play a pivotal role in advancing smart grid technologies
and renewable energy management.

10. Conclusion

In summary, this research offers a cutting-edge methodology for
enhancing and managing battery performance within the realms of res-
idential solar energy storage and electric vehicles. By employing adap-
tive error correction techniques, comprehensive statistical analyses, and
advanced machine learning algorithms, the study has notably advanced
SOC estimation accuracy on the on-line data, thereby addressing the
inherent limitations of conventional BMS approaches.

Significantly, the application of an optimization algorithm has ef-
fectively reduced the MSE in SOC estimations, reflecting a marked
improvement in precision. The study’s innovative use of the Central
Limit Theorem to derive a unique degradation index signifies efficient



Energy Reports 11 (2024) 3614–3623F. Chen and G. Fang
Fig. 7. Enhancements in SOC Estimation Accuracy via MSE Reduction: (a) Comparison between Estimated SOC from Digital Twin and Actual readings from the local BMS. (b)(c)
Collected current and voltage data for battery unit across the period 2022–2023. (d) Temporal analysis of the SOC Estimation Error represented as MSE.
battery operation. Moreover, the tailored objective function, which
considers various battery parameters, enables dynamic management
tailored to specific application demands on real-time conditions.

This investigation underscores the critical need for continual in-
novation in battery management systems, especially in light of the
escalating reliance on renewable energy solutions. The methodologies
developed here are versatile, applicable to diverse battery types, and
contribute substantially to enhancing the reliability, efficiency, and
eco-friendliness of renewable energy storage systems.

The strategies and insights gleaned from this study lay a solid foun-
dation for further exploration into additional factors affecting battery
performance, the development of more sophisticated prediction algo-
rithms, and the integration of these methods with intelligent control
strategies for optimized functioning. As the future leans increasingly
towards a dominant role for renewable energy systems, the significance
and potential for further advancements in battery management systems
are unmistakably clear.
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