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ABSTRACT
Biopharmaceutical products, particularly monoclonal antibodies (mAbs), have gained prominence in the pharmaceutical market 
due to their high specificity and efficacy. As these products are projected to constitute a substantial portion of global pharma-
ceutical sales, the application of machine learning models in mAb development and manufacturing is gaining momentum. This 
paper addresses the critical need for uncertainty quantification in machine learning predictions, particularly in scenarios with 
limited training data. Leveraging ensemble learning and Monte Carlo simulations, our proposed method generates additional 
input samples to enhance the robustness of the model in small training datasets. We evaluate the efficacy of our approach through 
two case studies: predicting antibody concentrations in advance and real-time monitoring of glucose concentrations during bi-
oreactor runs using Raman spectra data. Our findings demonstrate the effectiveness of the proposed method in estimating the 
uncertainty levels associated with process performance predictions and facilitating real-time decision-making in biopharma-
ceutical manufacturing. This contribution not only introduces a novel approach for uncertainty quantification but also provides 
insights into overcoming challenges posed by small training datasets in bioprocess development. The evaluation demonstrates 
the effectiveness of our method in addressing key challenges related to uncertainty estimation within upstream cell cultivation, 
illustrating its potential impact on enhancing process control and product quality in the dynamic field of biopharmaceuticals.

1   |   Introduction

In recent years, biopharmaceutical products, including mono-
clonal antibodies (mAbs) and therapeutic proteins derived 
from biological organisms for the treatment or prevention of 
diseases, have emerged as top-selling drugs in the pharma-
ceutical market [1]. This trend is attributed to their numer-
ous advantages, such as high specificity and activity [2]. As 
global pharmaceutical sales are projected to surpass $1 tril-
lion by 2026, biopharmaceutical products are expected to 

contribute significantly, constituting 37% of the total sales, 
an increase from 30% in 2020 [3]. By 2026, over half of the 
top 100 best-selling medications are anticipated to be biolog-
ics. Within the realm of biological products, mAbs stand out 
as the forefront runners in the swiftly expanding market of 
high-value biologics [4]. The mAb products are manufactured 
through biotechnological processes within living systems, 
including microorganisms, plants, animals or human cells 
such as Chinese hamster ovary (CHO) cells, mouse myeloma 
(NS0), baby hamster kidney (BHK), human embryo kidney 
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(HEK-293) and human retinal cells [5]. Hence, the cultivation 
and harvesting of cells responsible for producing the active 
pharmaceutical ingredient [6] play a crucial role in facilitating 
the growth and reproduction of cells in quantities sufficient to 
meet production demands [7]. Continuing this trajectory, the 
utilisation of machine learning models across different phases 
of mAb development and manufacturing, including the pre-
diction and monitoring of biophysical properties, cell growth, 
nutrient, metabolite and protein concentrations throughout 
bioreactor cell cultivation processes, is not only gaining popu-
larity but also improving in accuracy [8].

According to Kelley [9], the attention in cell culture process 
development has been shifted from solely pursuing the el-
evated titres to emphasising the control of product quality 
and process consistency at every stage of the development 
and across all production scales. Therefore, it is crucial to 
monitor the changes in the culture operating parameters 
which include physical, chemical and biological parameters. 
Physical parameters encompass factors such as temperature, 
gas flow rate and agitation speed, while chemical parameters 
encompass dissolved oxygen and carbon dioxide levels, pH, 
osmolality, nutrient and metabolite concentrations. Biological 
parameters are employed to assess the physiological condition 
of the culture and include metrics such as viable cell concen-
tration, viability and a range of intracellular and extracellular 
measurements [10]. Optimising culture operating parameters 
is essential to attain high product expression while maintain-
ing acceptable product quality profiles. This purpose can be 
achieved by monitoring the relationships among process vari-
ables and extracting valuable knowledge from bioprocess data 
using machine learning models to gain novel insights into the 
interdependence between critical process parameters (CPPs) 
and critical quality attributes (CQAs) in biopharmaceutical 
process development and manufacturing. To construct bio-
process datasets and calibrate the machine learning models, 
it is essential to measure process parameters during the cell 
culture process within bioreactors. These process parame-
ters can be measured either online or offline with operator 
intervention. Examples of offline measurements include pH 
(often for verification of online pH readings), cell counting, 
viability measurements, osmolality and specific metabolite 
and product concentrations. Metabolites in cell culture, such 
as glucose, lactate, glutamine and glutamate, are typically as-
sessed offline using enzymatic biosensors designed for each 
specific analyte [10]. These measurements play a crucial role 
not only in sustaining substrate levels above critical thresh-
olds through feeding strategies but also in formulating pro-
cesses with minimised by-product formation.

Commercially available autosamplers and integrated mul-
tifunctional offline analysers, such as the BioProfile FLEX, 
have typically been used for offline monitoring of metabolite 
levels, osmolality, pH, dissolved gases and measurements of 
sodium, potassium and calcium. This is done as a replacement 
for manual sampling, which is often labour-intensive and can 
introduce operator-dependent errors into the process [11]. 
Although autosamplers and analysers can obtain a high accu-
racy, analyses in [12] showed that the coefficient of variation 
among different measurement times ranges from 3% to 8% for 
each process parameter. This fact reflects the uncertainty of 

input features and target variables when building predictive 
models. To assist in making control decisions based on the 
predictive outcomes of machine learning models, it is neces-
sary to provide uncertainty levels associated with each predic-
tive value. In the context of the regression problem addressed 
in this paper, the variance in predictive outcomes for an input 
query can serve as a meaningful indicator of uncertainty. A 
comprehensive review paper conducted by Hullermeier and 
Waegeman [13] categorised uncertainty sources into aleatoric 
(data dependent and noise induced) and epistemic (model de-
pendent) uncertainties. Aleatoric uncertainty, often termed 
as the irreducible component of uncertainty, is associated 
with randomness, which is the variability in the outcome of 
an experiment due to inherently random effects. This type 
of uncertainty cannot be mitigated through model enhance-
ments. Instead, reducing aleatoric uncertainty is achievable 
through improvements in the data, such as incorporating re-
peat measurements or eliminating erroneous entries [14]. On 
the contrary, epistemic uncertainty represents the reducible 
uncertainty stemming from insufficient knowledge about 
the optimal model, and it can be diminished through model 
enhancements [15]. This type of uncertainty can be further 
divided into uncertainties arising from the selection of the 
model (including architecture, representations and features) 
and the ambiguity in parameter optimisation once a model is 
selected.

Numerous methods for quantifying uncertainty in predictive 
outcomes of machine learning models are available in the lit-
erature, as outlined in [13]. Among them, the two most popular 
groups are ensemble learning and Bayesian methods [8]. While 
Bayesian methods such as Gaussian process (GP) regression 
focus mainly on quantification and reducing the epistemic un-
certainty, ensemble methods aim to estimate the impact of the 
aleatoric uncertainty due to the use of sampling techniques on 
the input data.

This paper focuses on introducing a general framework for un-
certainty quantification applicable to any regressors, especially 
in the context of small training data, using ensemble learning. 
In situations involving limited training data and the presence 
of noise in input features, the conventional approach of devel-
oping multiple base learners through bootstrap resampling 
from input spaces in ensemble learning becomes inefficient. To 
estimate the impact of the aleatoric uncertainty on the predic-
tion accuracy in small training datasets, we propose the use of 
Monte Carlo simulations to generate additional input samples 
by considering available training features as mean values. The 
additional instances will be used to train base learners. The ef-
fectiveness of the proposed method will be assessed in the con-
text of predicting and monitoring the performance of process 
parameters during upstream cell culture bioreactor runs. One 
of the inherent challenges in cell culture processes pertains to 
the limitation of available data, commonly referred to as the 
small data issue. This limitation arises from the scarcity of pro-
cess data for emerging bioproducts, with instances where only 
one or two production runs are conducted for a novel product 
at manufacturing sites [16, 17]. The substantial cost associated 
with cell culture processes further exacerbates this issue, as 
conducting bioreactor runs for new cell lines or experimen-
tal variations (e.g., novel base media or feeding strategies) is 
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economically constrained. Additionally, the practical necessity 
of relocating products across different production sites to ac-
commodate various products and their life cycles contributes 
to what is known as the small training data problem. This op-
erational characteristics result in a limited number of histori-
cal experiments available at new manufacturing facilities. The 
adoption of process analytical technology (PAT) tools in bio-
process development and manufacturing steps has facilitated 
the real-time collection of extensive and diverse measurements 
and information. This can lead to the availability of thou-
sands of input features, for example, each Raman spectrum 
from the spectrometer can contain thousands of spectrum 
variables (e.g., wave numbers) considered as input features. 
Meanwhile, the number of experiments (i.e., samples) is lim-
ited. Consequently, these circumstances give rise to a low-N 
problem, wherein the number of training samples is consider-
ably smaller than the number of input data dimensions. This 
inherent disparity poses a considerable challenge for machine 
learning algorithms, when the number of training samples is 
inadequate relative to the number of input features.

By generating new values for input features and the target vari-
able based on their actual values, along with a coefficient of 
variation associated with each input feature, we can overcome 
the shortage issue of training data when training an ensemble 
model of multiple base learners. In our proposed method, we 
will use the standard deviation value of the predictive outcomes 
of all base learners as an indicator of the uncertainty level for 
each predicted value. In short, our novel contribution can be 
summarised as follows:

1.	 We introduce a comprehensive framework for assessing the 
uncertainty level linked to each predictive value through the 
utilisation of ensemble learning of regressors in tandem with 
Monte Carlo sampling. Our proposed method is designed to 
address the challenge of limited training data, a factor that 
can affect the effectiveness of traditional ensemble learning 
approaches. Moreover, our method represents the general 
framework employing ensemble learning in conjunction 
with Monte Carlo simulations to quantify the uncertainty 
level associated with each predictive outcome, particularly 
in scenarios characterised by a shortage of training data.

2.	 The effectiveness of the proposed method is evaluated 
through its application to two prominent challenges in up-
stream cell cultivation within bioreactors. The first problem 
involves the early prediction of antibody concentrations 
1 day in advance, utilising solely current offline measure-
ments as input features. The second problem entails real-
time monitoring of glucose concentrations throughout the 
bioreactor run of a cell culture process, employing Raman 
spectra as input features.

The subsequent sections of this paper are organised as follows. 
Section 2 provides an introduction to the key features of the pro-
posed method, including its application in predicting mAb con-
centrations in a cell culture process and in real-time monitoring of 
glucose concentrations within bioreactors using Raman spectral 
data. Section 3 shows the results of the proposed approach in ad-
dressing the challenge of predicting process performance in cell 
culture bioreactors 1 day in advance, using solely offline process 

measurements of the bioreactors and in addressing the real-time 
monitoring problem of glucose concentrations during bioreactor 
runs, using Raman spectra data as input features. Finally, the con-
cluding remarks of this paper will be presented in Section 4.

2   |   Methodology

2.1   |   General Framework for Uncertainty 
Estimation of Predictive Values

Because of the errors linked with offline measurements, as 
discussed in the Introduction section, relying solely on a sin-
gle predicted value generated by machine learning models 
for each set of input features proves inadequate for making 
informed decisions during the cell culture process. This lim-
itation becomes evident, for instance, in scenarios where it 
may not suffice to determine crucial actions such as deciding 
when to add glucose or terminate the cell cultivation process. 
It becomes challenging to assess the accuracy of a predicted 
value without considering the associated uncertainty range. 
With predictions that include uncertainty values, we gain 
knowledge of possible minimum and maximum values as-
sociated with each prediction. Hence, it is preferable to have 
results presented in the form of ŷ± 2 ⋅ 𝜎, where ŷ represents 
the predicted value and � signifies the standard deviation of 
the prediction. The prediction values may not follow a normal 
distribution, so 2 ⋅ � will be used to derive confidence limits, 
providing approximately 95% certainty that the actually ob-
served values will fall within the prediction range. This sec-
tion outlines a method to achieve this objective by employing 
an ensemble of regressors and Monte Carlo sampling on both 
input and output spaces to construct training sets.

Let X = [X1,X2,…,Xm] be a set of m input samples, where each 
sample Xk = (xk1, xk1,…, xkn) (k ∈ [1,m]) includes n input fea-
tures, and Y = [Y1,Y2,…,Ym] (Yk = {yk}, yk ∈ ℝ, k ∈ [1,m]) be 
outputs corresponding to input samples. We need to build a re-
gressor � (X)→ Ŷ such that minimises ||Y− 𝐘̂|| value. The out-
put of the regressor �  for each unseen input sample XT will be 
in the form of ŷT ± 𝜎T. In this case, ŷT is the average predictive 
value of N base learners within the ensemble model computed 
by Equation  (1), while �T represents the standard deviation 
value of N predictive values given in Equation (2). 

where ŷi(XT) is the predicted value of the i th base regressor for 
an unseen input sample XT within the ensemble model, which 
comprises N base regressors. The standard deviation of the en-
semble prediction for each data point (XT) can be employed to 
establish confidence intervals and uncertainty bounds. The uti-
lised standard deviation is the unbiased standard deviation de-
rived from the predictions of an individual base model for each 
data point: 

(1)ŷ(XT) =
1

N
⋅

N∑

i=1

ŷi(XT)

(2)𝜎(XT) =

� ∑N
i=1 (ŷi(XT)− ŷ(XT))

2

N− 1
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To train N  base regressors of an ensemble model, we need 
to generate N  training sets, each for training a base regres-
sor. We will not use resampling or random sampling without 
replacement from original training set to create N  training 
subsets because the training dataset is small in size, so the 
traditional sampling techniques may not generate sufficient 
diversity in the training subsets for the base regressors within 
the ensemble model. In addition, each input value is subjected 
to the errors due to the variation in measurements resulting 
from the final accuracy of offline analysers. As a result, in 
our proposed method, the Monte Carlo sampling method is 
employed to generate N  random values for each input feature 
xkj (k ∈ [1,m], j ∈ [1,n]) and each target value yk satisfying a 
Gaussian distribution requirement with mean being an actual 
value (xkj or yk) and given standard deviation value. In a math-
ematical form, we generate N  random values from a Gaussian 

distribution {x(1)
kj
,…, x(N)

kj
} = �(�kj = xkj, �kj,N) for each input 

feature xkj and {y(1)
k
,…, y(N)

k
} = �(�k = yk, �k,N) for each target 

value yk, where �kj and �k are the standard deviations for each 
input feature xkj and target value yk, respectively. These stan-
dard deviation values are computed from corresponding actual 
values and coefficient of variation (�) of each input feature as 
follow: �kj = �j × xkj and �k = �Y × yk, where �j is the maximum 
coefficient of variation of feature j, while �Y  is the maximum 
coefficient of variation of output variable Y. After generating N 
samples for all input and output values, we will concatenate all 
values x(i)

kj
 and y(i)

k
 at the i th position (i ∈ [1,N]) to create the i th 

training set X(i) and Y(i) in order to train the i th base regressor 
within the ensemble model. The fundamental steps of the pro-
posed framework are presented in Figure 1.

To optimise the hyperparameters of the ensemble models in-
cluding the number of base regressors N and the hyperparam-
eters of base regressors, we need a separate validation set and 
find the set of hyperparameters resulting in the minimum aver-
age value of errors over Nval samples in the validation sets. For 
instance, we can seek for a given set of hyperparameters to ob-
tain the minimum mean absolute error (MAE) of the ensemble 
model with N base regressors: 

where y(Xk) is the target value of the k th sample in the valida-
tion set and ŷi(Xk) is the prediction of the i th base regressor in 
the ensemble model for a validation sample Xk. Although our 
proposed framework can be used for any regression models as 
base learners, this work only illustrates the empirical outcomes 
for two typical types of regression models for small datasets. The 
first model is the support vector regression (SVR), which is one of 
the most often used machine learning algorithms for small data-
sets [18]. The second model is the partial least squares regression 
(PLSR), which is very popular for small data [19] and dominates 
in machine learning models applied for predicting a variety of 
process performance issues in cell culture processes [8].

2.2   |   Performance Prediction of a Cell Culture 
Process

CHO cells are commonly employed for the production of mAbs. 
The cell culture procedure involves a sequence of scale-up and 
expansion stages designed to yield a sufficient cell mass for the 
inoculation of the production bioreactors. This process includes 
additional cell growth, mAb production, the elimination of cel-
lular mass from the bioreactor material through centrifugation 
and a three-stage filtration process resulting in the acquisition of 
clarified material [2]. In the course of biopharmaceutical process 
development, it is crucial to enhance titre aiming to reduce man-
ufacturing expenses but still maintaining consistent quality at-
tributes, safety and efficacy of therapeutic proteins. Throughout 
this development phase, continuously enhancing upstream titre 
will play a critical role in increasing the output and reducing 
the costs of production [20]. The optimisation of nutrient con-
centrations, including amino acids, vitamins and trace metals, 
is widely recognised as a crucial factor for enhancing the protein 
production [21]. In addition, the cell concentration and viability 
play a pivotal role in the development of cell culture processes. 
These measurements are essential for assessing the culture 

(3)MAE =

∑Nval

k=1
(�y(Xk)−

1

N
⋅

∑N
i=1 ŷi(Xk)�)

Nval

FIGURE 1    |    General framework for estimating uncertainty levels of predictive values using ensemble learning and Monte Carlo sampling.
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physiology in response to operating conditions, calculating 
growth rates, specific consumption/production rates of metab-
olites and determining cell-specific productivity [10]. Therefore, 
there is a high expectation of making early predictions of mAb 
concentration in the upcoming culture days based on current 
values of tens of offline measurements, such as operational 
conditions, nutrients and metabolite concentrations monitored 
over time. Accurate predictions will contribute to adjusting the 
culture environments and nutrient compositions to increase the 
product concentration. The effectiveness of the proposed frame-
work presented in Section  2.1 will be evaluated in predicting 
mAb concentration 1-day-ahead using values of offline mea-
surements at the current day.

2.2.1   |   Dataset

The dataset utilised in predicting mAb concentration 
1-day-ahead was derived from AstraZeneca's upstream process 
development and production databases, encompassing various 
antibody products employing CHO cell lines, as detailed in [22]. 
The dataset included information from 106 cultures, reflecting 
a diverse operational scale ranging from bench-top (5-L vol-
ume) to manufacturing (500-L volume), spanning a period of 
7 years from 2010 to 2016. Each culture involved the record-
ing of over 20 offline parameters for up to 17 days, including 
culture days; elapsed culture time (ECT); viable cell density 
(VCD); total cell density (TCD); pH; cell viability; elapsed gen-
eration number (EGN); average cell volume (ACV); osmolality; 
average cell compactness (ACC); average cell diameter (ACD); 
cumulative population doubling level (CPDL); concentrations 
of glucose, lactate, ammonium, glutamine, glutamate, sodium, 
potassium and bicarbonate; temperature; pCO2; pO2; monomer 
content of the final product; and product (mAb) concentration. 
The time-series dataset has been normalised to safeguard pro-
prietary rights.

We have used all offline measurements in the original dataset 
as input features and created a new target variable, which is 
the mAb concentration of the next culture day. We have also re-
moved the sample corresponding to the last culture day as there 
is no value in the target variable.

2.2.2   |   Learning Procedures

To address the problem of 1-day-head mAb concentration pre-
diction, we employed two types of regression models, namely, 
the PLSR and the SVR, as base learners within the ensemble 
model for small-sized datasets shown in Figure 1. The dataset, 
extracted from [22], lacks information regarding the coefficient 
of variation for each offline measurement. Consequently, a fixed 
value of �j = �Y = 0. 05 was used for all offline measurements 
serving as input features and the target variable. In addition to 
the ensemble models of PLSR and SVR, we conducted separate 
training for PLSR, SVR and GP Regression as competing models 
for performance comparison. The GP regression has notable ad-
vantages such as lower data requirements and more importantly 
the possibility to assess the uncertainty of predictions [15]. The 
implementation of PLSR, SVR and GP was taken from the scikit-
learn library [23].

We will assess the obtained performance of all learning models 
based on errors through a fivefold group cross-validation. The 
set of 106 cultures will be partitioned into five folds, with each 
fold encompassing data from all culture days within a specific 
culture. Four folds will serve for training, while the remaining 
fold will be designated as testing data. This process will be iter-
ated five times, with each bioreactor used once in a testing fold. 
The average error of the trained models across the five testing 
folds will be employed for comparing the performance among 
competing models. For each training fold, we employed a hyper-
parameter optimisation procedure using the Bayesian optimisa-
tion approach within the Optuna library [24]. This optimisation 
involved 50 iterations and fivefold cross-validation to determine 
the optimal hyperparameter settings before training the model 
on the respective training fold. The potential range of hyperpa-
rameter values for each regression model is detailed in Table S1. 
It is noted that all individual regressors within the ensemble 
model will use the same hyperparameter setting.

2.3   |   Real-Time Monitoring of Glucose 
Concentrations Within Bioreactors Using Raman 
Spectra Data

Currently, monitoring the cell culture profile during produc-
tion involves taking small samples of medium components and 
metabolites at specific culture points, which are then quanti-
fied using a bioanalyser [25]. However, this sampling process 
presents challenges, including potential effects on the culture 
volume and the risk of microbial contamination. Additionally, 
the limited number of sampling points makes it challenging 
to acquire data at high frequencies [25]. As a result, various 
PAT methods have been developed to enable continuous anal-
ysis [8]. For instance, Raman spectrometers and near-infrared 
spectroscopy can offer information on components in the cul-
ture solution, while capacitance-based measurements allow for 
cellular concentration analysis [26]. The application of Raman 
spectrometers for the continuous acquisition of various culture 
data in cultivation processes enables real-time monitoring of cell 
growth, nutrient and metabolite concentrations. This marks a 
crucial step towards implementing feedback controls for culture 
conditions. For instance, a Raman-based glucose feedback con-
trol mechanism can enhance overall bioreactor health, product 
output and product quality [27]. Moreover, real-time monitoring 
of culture components may expedite faster medium development 
by continuously optimising a broader range of components [25].

In this study, we will evaluate the efficacy of various ML models 
in real-time monitoring of glucose concentrations within biore-
actors throughout the cell culture process, using only Raman 
spectra data as input features. The actual outputs of the target 
variable corresponding to input Raman spectra will be based 
on offline glucose measurements. Periodically sampled offline 
glucose concentrations will be analysed by bioanalysers such as 
Nova Biomedical BioProfile FLEX Analyser. As a result, the tar-
get variable will exhibit a coefficient of variation. Meanwhile, the 
input Raman data are high dimensional, and the relationships 
and dependencies among input wave numbers (features) and 
between all input features and the output variable are complex 
and usually non-linear. Therefore, the value of the coefficient of 
variation for each input Raman feature is typically unknown. 
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Consequently, this scenario differs from the issue discussed in 
Section 2.2, so it requires modifications to the framework out-
lined in Section 2.1.

2.3.1   |   Dataset

To address the problem of real-time monitoring of glucose con-
centrations within bioreactors using Raman spectral data, we 
used a dataset extracted from the cell culture process within 
CSL Innovation Pty Ltd. The dataset includes the historical cul-
ture data of three 5-L bioreactors (A1, A2 and A3) taking place 
in 2 weeks. All of the three bioreactors used the same culture 
media (base and feed), but A3 used a different cell line express-
ing a different product than A1 and A2, which were the same 
cell line and product.

Raman spectra were acquired within the bioreactor using a 
Kaiser Raman Rxn2 analyser equipped with a 785-nm excitation 
laser and a probe. The spectra were collected in the Raman shift 
range of 100–3425.0 cm− 1. On average, approximately four spec-
tra were recorded per hour during bioreactor runs. In contrast, 
glucose concentrations were sampled and analysed twice daily 
using the BioProfile FLEX Analyser. To enhance the accuracy 
of ML models, offline measurements were also taken before and 
immediately after glucose feeding. In total, there are 100 offline 
values of glucose concentrations for all three bioreactors over 
the 2 weeks of cell culturing.

Due to the mismatch of time points at which online Raman 
spectra and offline glucose concentration measurements were 
collected, it is necessary to map the Raman spectra to the cor-
responding offline glucose concentration values for building 
training and testing datasets. In this study, we will associate 
each offline glucose concentration value with the closest Raman 
spectra collected after the timestamp of the offline measure-
ment. As there are no Raman spectra collected during the feed-
ing process, the offline glucose concentration value acquired 
immediately before glucose feeding will be mapped to the clos-
est Raman spectra collected prior to that specific offline collec-
tion timepoint.

2.3.2   |   Raman Data Preprocessing

Raman spectroscopy holds great promise as a real-time mon-
itoring tool for key analytes in mammalian cell culture fer-
mentations. However, significant challenges accompany this 
promising technology, including noise, strong background flu-
orescence and cocorrelations between multiple components. 
Preprocessing of the spectra is crucial to overcome these chal-
lenges [28] before employing multivariate regression analysis to 
extract relevant information and build a robust model. As af-
firmed by Poth et al. [29], preprocessing methods strongly influ-
ence the performance of machine learning models. Therefore, 
a typical pipeline for Raman-based machine learning models 
encompasses essential steps starting from Raman preprocessing 
methods, as illustrated in Figure 2.

Initially, the Raman spectra undergo several preprocessing 
steps, including wavelength selection (clipping), smoothing, 

signal differentiation, normalisation and dimensionality reduc-
tion. Subsequently, the preprocessed Raman spectra, along with 
their corresponding offline measurements, will be employed for 
the development of a machine learning model. Throughout the 
model-building process, the hyperparameters of the models can 
be fine-tuned.

In this study, each Raman spectrum will be trimmed to the 
wavelength range of 500–3000 cm− 1 to eliminate highly vari-
able spectral slopes, window peaks, an artificial jump in the 
Raman signal caused by spectrograph mapping on Kaiser 
analysers and interference with water [29]. Additionally, this 
preprocessing step ensures the exclusion of information un-
related to glucose concentration [25]. In this study, we em-
ployed the Savitzky–Golay procedure [30] for the smoothing 
and differentiation step. This technique, based on least square 
fitting, was chosen for its effectiveness in preserving peaks 
from corruption. We used a moving average of 25 points, first-
order differential and a polynomial order of 2 to fit the sam-
ples in the Savitzky–Golay smoothing. After performing the 
smoothing and differentiation, the Raman spectra are stan-
dardised, and in some cases, they can be directly analysed. 
However, variations in intensity between Raman spectra of 
different samples and even within spectral maps can be sig-
nificant due to changes in focusing and other experimental 
factors. Therefore, the use of normalisation can help alleviate 
this effect. Each Raman spectrum in our experiment was nor-
malised by first subtracting the mean and then dividing by its 
standard deviation.

Raman spectral datasets are typically characterised by a 
large number of variables, presenting challenges for statis-
tical analysis in terms of generalisation performance and 

FIGURE 2    |    A pipeline for Raman spectra modelling consists of two 
main procedures: preprocessing and model building. The preprocessing 
steps aim to standardise the data by removing noise and background-
related contributions. At the end of the pipeline, statistical models or 
machine learning approaches are constructed. These models are then 
assessed, and parameter optimisation may be performed based on the 
model outcomes. All these steps together contribute to the creation of a 
robust prediction from the constructed model.
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computational effort. As a result, a dimensionality reduction 
should be conducted before the ML model building to find a 
lower-dimensional representation of the original dataset with-
out significant loss of information. Several ML models, such 
as PLSR, can perform this step implicitly, while many other 
ML models may encounter challenges when learning from a 
dataset with limitations in the number of samples but high 
dimensionality. In this study, we employed kernel principal 
component analysis (KPCA) as a dimensionality reduction 
method. The number of principal components will be fine-
tuned within the range of [3, 30]. The KPCA employs the 
radial basis function (RBF) as a kernel, and the kernel coeffi-
cient (�) for RBF will be a floating-point number, logarithmi-
cally tuned within the range of [10− 6, 102].

2.3.3   |   Raman-Based Machine Learning 
Model Building

Unlike the general framework mentioned in Section 2.1, where 
input features (offline measurements) are associated with coef-
ficients of variation, the coefficients of variation of input Raman 
features in this problem are usually unknown because of high 
dimension and complex relationships among input features. We 
assume that only the target variable (offline glucose concentra-
tion) exhibits the uncertainty in the obtained values. Therefore, 
we will modify the proposed framework as in Figure 3. In this 
modified framework, all base learners within the ensemble 
model will use the same input features but different values of 
the output variable. We will generate N training sets (X,Y(i)) 
(i ∈ [1,N]) for N base learners by randomly generating N values 
for each output value using Monte Carlo method with Gaussian 
distribution. In a mathematical form, let Y = [Y1,Y2,…,Ym] 
(Yk = {yk}, yk ∈ ℝ, k ∈ [1,m]) be the m output values in the train-
ing set. For each target value yk, N random values {y(1)

k
,…, y(N)

k
} 

will be generated from a Gaussian distribution �(�k = yk, �k,N), 
where �k is the standard deviation for each offline measurement 
yk, calculated as follows: 

where �Y  is the maximum coefficient of variation of output vari-
able Y and � is the threshold value used to compute the stan-
dard deviation for each offline measurement, depending on the 
measuring devices. For example, �Y = 0. 07 and � = 1 for glu-
cose concentration measured by NOVA BioProfile Flex in our 
experiment.

After generating N  samples for all output values in the train-
ing set, we will concatenate all values y(i)

k
 at the i th position 

(i ∈ [1,N]) to create the i th training set (X ,Y( i)) in order to 
train the i th base learner within the ensemble model. As all 
base learners utilise the same input features, it is not advis-
able to set identical best hyperparameters for all base learners, 
as indicated in the general framework in Figure  1. Instead, 
during the model-building process, we will conduct a hy-
perparameter tuning procedure to identify the specific opti-
mal set of hyperparameters for each base learner, employing 
k-fold cross-validation or hold-out validation. In the case of 
using hold-out validation, a separate validation set (Xval,Yval

k
) 

needs to be prepared in the same manner as the training set 
(X,Yk). To facilitate fine-tuning for each base learner using 
the Optuna library [24], a fixed value of the number of base 
learners (N) needs to be used, as opposed to considering it as 
a tunable hyperparameter.

We performed an initial experiment to identify the suitable 
value of N  using SVR as base learners in the ensemble model 
and KPCA as a dimensionality reduction method. The data 
from bioreactor A2 were used to train the ensemble model. If 
the fivefold cross-validation method is employed for hyperpa-
rameter tuning of the base estimators, the performance of the 
trained model will be tested on the data from bioreactor A1 
(belonging to the same project as A2) and bioreactor A3 (from 
a different project). If the hold-out validation approach is used 
for hyperparameter tuning, the data from bioreactor A1 are 
used as a validation set. For this experiment, the number of 
base estimators considered includes 10, 30, 50, 70, 100, 200, 
300, 400 and 500. The input Raman spectra were preprocessed 
as depicted in Section 2.3.2. The predicted performance of the 
trained models is presented in Figure  4. In the case of five-
fold CV, given a fixed number of base estimators, the best 

(4)𝜎k =

{
𝛿Y, if yk≤𝛽

𝛿Y × yk, if yk>𝛽,

FIGURE 3    |    The modified general framework for estimating uncertainty levels of predicted values from Raman input data using ensemble learn-
ing and Monte Carlo sampling.

 10974555, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/jrs.6808 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [04/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 14 Journal of Raman Spectroscopy, 2025

combination of hyperparameters for the base KPCA and SVR 
models that provided the smallest mean absolute percentage 
error (MAPE) value across all five training folds during the 
hyperparameter tuning process was used to train the ensem-
ble model on the entire training set (A2). This trained ensem-
ble model was then used to make predictions on the training 
and testing (A1 and A3) sets, recording the MAPE values for 
plotting the graph in Figure 4a. It should be noted that a fixed 
random seed value of 42 was used in this case to split the 
training data into five folds and to initialise the starting values 
for the hyperparameters. This random seed value was main-
tained across all experiments in Section  3. For the hold-out 
validation, given a fixed number of base estimators, the best 
combination of hyperparameters for the base KPCA and SVR 
models that provided the smallest MAPE value on the valida-
tion set (A1) was employed to train the ensemble model. This 
trained ensemble model was then used to make predictions 
on the training (A2), validation (A1) and testing (A3) sets for 
the specified number of base estimators, enabling the graph 
in Figure  4b to be constructed. Although this experimental 
approach can be applied to any Raman study, the results ob-
tained here are dependent on the given experimental Raman 
training, validation and testing datasets, as well as the speci-
fied hyperparameter search ranges.

We can observe that for small numbers of base estimators (10 
and 30 estimators), the testing error is high for both the out-
comes of the fivefold CV and the hold-out validation methods. 
However, when the number of base estimators is equal to or 
greater than 50, increasing the number of base estimators does 
not significantly contribute to the reduction of prediction errors. 
Therefore, it can be concluded that 50 base estimators are suffi-
cient to achieve good predictions without requiring a long train-
ing time in this case. As a result, we will use N = 50 to report the 
outcomes in the next parts.

For the model-building step, this study also uses the same 
ML algorithms for small datasets as the study presented in 
Section  2.2, including SVR, PLSR and GP. The hyperparame-
ters of these algorithms will be fine-tuned using Bayesian op-
timisation methods within the Optuna library. Two validation 
methods are employed for hyperparameter tuning: the fivefold 
cross-validation and the hold-out validation. For the hold-out 
validation, the entire dataset of another bioreactor run would 

be used for validation. For the experiments, 100 iterations were 
used for hyperparameter optimisation. The ranges of hyperpa-
rameters for each ML model are provided in Table S2. It is noted 
that the single SVR model and the SVR used as a base learner 
within the ensemble model will use the same searching range of 
hyperparameter values.

3   |   Results and Discussion

3.1   |   Empirical Results for Predicting Cell Culture 
Process Performance

The public dataset given in Gangadharan et  al. [22] was nor-
malised to the range of 0 to 1. With the existence of values of 0, 
several metrics with the actual values in the denominator such 
as MAPE will not work. In this experiment, we will use MAE as 
a performance metric to compare the learning models: 

where Ntest is the number of testing samples, ŷi is the prediction 
of the i th testing sample and yi is the true value of the i th testing 
sample.

For the learning models which return the standard deviation as-
sociated with the predictive values, we will compute both MAE 
scores for the upper bound (ŷ + 2𝜎) and the lower bound (ŷ− 2𝜎) 
as follows: 

where �i is the standard deviation associated with the prediction 
ŷi of the i th testing sample. If the MAE value is small, while 
the values of MAE+ and MAE− are high, the average of predic-
tions provided by all individual base learners contributes to the 
reduction of variations among individual learners. This case 

(5)MAE =

∑Ntest

i=1
�ŷi − yi�
Ntest

(6)MAE+ =

∑Ntest

i=1
�(ŷi + 2𝜎i)− yi�
Ntest

(7)MAE− =

∑Ntest

i=1
�(ŷi − 2𝜎i)− yi�
Ntest

FIGURE 4    |    The impact of the number of estimators on the prediction performance of an ensemble model consisting of KPCA and SVR base 
estimators.
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also indicates that the uncertainty level in the predictive out-
comes is high. When the level of uncertainty is high, decision-
making based on the prediction results should be approached 
with caution.

This section compares the average performance of the proposed 
ensemble models with individual models such as SVR, PLSR 
and GP. Table  1 summarises the mean MAE scores and stan-
dard deviation values over fivefold group cross-validation of pre-
dictions, upper bounds and lower bounds. Meanwhile, Figure 5 
shows box-and-whisker plots of the compared ML models for 
MAE scores of all 106 cultures used as testing data over fivefold 
group cross-validation. It can be observed that the performance 
of the ensemble of SVRs outperforms that of using an individ-
ual SVR. However, the performance of the ensemble model 
of PLSRs is equal to the performance of a single PLSR model. 
When comparing the MAE scores of upper and lower bounds 
with the MAE score of predictive values generated by the av-
erage value of base regressors, we can see that the uncertainty 
level of predictions is small in this case. This is different from 
the case of using an individual GP model. In this experiment, 
although the GP can provide the best performance, the uncer-
tainty level of predictions is higher than that using our proposed 
method. In addition, the predictive performance of all 106 cul-
tures presented in Figure 5 illustrates that the ensemble of SVRs 
is competitive with the GP model.

Figure S1 depicts the culture exhibiting the most accurate pre-
dictive performance among the 106 cultures using various ML 
models. In contrast, Figure S2 showcases the culture with the 
least accurate predictive performance. It is evident that when the 
mAb concentration gradually increases throughout the culture 
time, the predictive performance of ML models tends to be high. 
Conversely, when the mAb concentration fluctuates, either in-
creasing or decreasing suddenly during the cell culture process, 
the performance of ML models typically diminishes, and the as-
sociated uncertainty of predicted values increases. Additionally, 
even in the case of the best prediction, some experimental data 
points fall outside the range of uncertainty provided by the al-
gorithm when using PLSR as base learners, as shown in Figure 
S1b. This occurs because the base PLSR models are less sensi-
tive to small errors, which are limited to a maximum of 5% of 
the measured values, within a steady upward trend in antibody 
concentrations. As a result, the variation level among the base 
learners is small. Consequently, the low uncertainty in this best 
case reflects high confidence in the reliability of the predictive 
results provided by the PLSR models, particularly when the 
changing trends of mAb concentrations are easy to capture.

The outcomes presented in this section serve as a proof of con-
cept for the proposed framework, operating under the assump-
tion of a uniform coefficient of variation of 5% for all offline 

measurements, given that all input features are normalised to 
the range of 0 and 1. In practical scenarios, offline measure-
ments may possess varying coefficients of variation, impacting 
the predictive performance of ML models. When dealing with 
different coefficients of variation for distinct input features, it 
becomes crucial to assess the importance of each input feature 
in determining predictive outcomes.

In the upcoming section, we will address another scenario 
where real-time measured input features are presumed accurate 
without the presence of a coefficient of variation. However, the 
target variable, being a specific offline measurement, exhibits 
variations in accuracy across different measuring times.

3.2   |   Empirical Results for Real-Time Monitoring 
of Glucose Concentration Within Bioreactors Using 
Raman Spectra Data

In this experiment, we would like to assess the average percent-
age difference between predicted and actual values to compare 
with the maximum coefficient of variation of the actual values 
(about 7% for glucose concentrations). Therefore, the metric 
employed to assess the performance of ML models and deter-
mine the optimal parameter configurations in this section is the 
MAPE. Additionally, MAPE is scale independent, meaning it 
provides a percentage error and is not affected by the scale of 
the data. This makes it useful when comparing the performance 
of different ML models on testing data of bioreactors A1 and A3 
with different scales. The MAPE metric will be computed as 
follows: 

TABLE 1    |    The mean and standard deviation of MAE scores over fivefold group cross-validation for different ML models.

Type Ensemble of SVRs Ensemble of PLSRs SVR PLSR GP

Prediction 0.0256 ± 0.0042 0.0288 ± 0.0024 0.0344 ± 0.0106 0.0285 ± 0.0026 0.0233 ± 0.0035

Upper bound 0.0301 ± 0.0065 0.0293 ± 0.0024 — — 0.0573 ± 0.0033

Lower bound 0.0287 ± 0.0036 0.0293 ± 0.0028 — — 0.0583 ± 0.0055

FIGURE 5    |    Comparing the performance of different machine learn-
ing models in predictions of all 106 bioreactors used in the testing set 
over fivefold group cross-validation.
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where Ntest is the number of testing samples, ŷi is the prediction 
of the i th testing sample and yi is the true value of the i th test-
ing sample. For the ML models which are able to provide the 
standard deviation associated with the predictive values, we will 
compute both MAPE scores for the upper bound ( ŷ + 2𝜎) and 
the lower bound ( ŷ− 2𝜎) as follows: 

where �i is the standard deviation associated with the prediction 
ŷi of the i th testing sample. If the MAPE score is small, while 
the values of MAPE+ and MAPE− are high, we can confirm that 
the average of predictions provided by all individual base learn-
ers contributes to the mitigation of variations among individual 
learners and increasing in the accuracy.

This section will present the practical outcomes of glucose con-
centration prediction employing various ML models. These 
models encompass the combination of KPCA and SVR, the com-
bination of KPCA and GP, PLSR, ensemble of KPCA and SVRs 
and ensemble of PLSRs. The training dataset is derived from 
bioreactor A2, while datasets from bioreactors A1 and A3 serve 
as the testing data. In the case of using hold-out validation, the 
dataset from bioreactor A1 is utilised as the validation set.

3.2.1   |   Comparing the Uncertainty Level in the Predicted 
Results With the Same and Different Projects

This section aims to evaluate the uncertainty level of real-time 
predictions made by the ensemble of KPCA and SVR base esti-
mators. The predictions are based on Raman spectra that have 
undergone preprocessing steps as presented in Section 2.3.2.

Figure 6 illustrates the real-time predictions and uncertainty lev-
els of glucose concentrations for different bioreactors within the 
same and different projects using an ensemble model. This is a 
typical use case in industry for a new project which will initially 
have very little specific data available for training, relying instead 
on data from previous projects. When considering both validation 

(8)MAPE =
1

Ntest

⋅

Ntest∑

i=1

||||
ŷi − yi
yi

||||

(9)MAPE+ =
1

Ntest

⋅

Ntest∑

i=1

||||
(ŷi + 2𝜎i)− yi

yi

||||

(10)MAPE− =
1

Ntest

⋅

Ntest∑

i=1

||||
(ŷi − 2𝜎i)− yi

yi

||||

FIGURE 6    |    Real-time predictions of glucose concentrations within various bioreactors with the same and different projects using an ensemble 
of KPCA and SVRs.
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methods, we observe that the uncertainty levels of predicted val-
ues within the bioreactors with the same project (Figure 6a,c) are 
smaller compared to those of different projects (Figure 6b,d). This 
discrepancy arises from the differences in metabolism and growth 
between cell lines which is reflected in the Raman spectra. These 
elements are quite similar between cell culture bioreactors within 
the same project, so the information recorded in the Raman spec-
tra of the training data is more likely to be present in the testing 
data of the same project. In contrast, cell lines from different proj-
ects can have distinct interactions with the culture composition, 
and so the information recorded in the Raman spectra testing 
data may not be available if the training data are from a different 
project. Consequently, this disparity impacts the predicted values 
for the testing data and increases the uncertainty levels. To mit-
igate this, we can reduce the uncertainty in predicted values for 
testing data from a different project by validating and optimising 
the parameters of the trained model on the validation data within 
the same project as testing data.

Furthermore, as illustrated in Figure  6, the uncertainty as-
sociated with real-time predictions of the ensemble models 
fine-tuned using fivefold cross-validation (Figure  6a, b) is sig-
nificantly higher than that of the ensemble model fine-tuned 
using hold-out validation (Figure 6c, d). This observation under-
scores that having a validation set encompassing data from all 
cell culture days enhances the reliability of the ensemble model, 
whereas validation on only a limited portion of cell culture days 
tends to amplify the uncertainty in predictive outcomes.

3.2.2   |   Comparing the Predicted Performance Among 
the Different Tested ML Models

This section aims to compare the predicted performance of the 
proposed method with two different sets of base estimators: 
PLSR and the combination of KPCA and SVR, to the perfor-
mance of single models such as PLSR, the combination of KPCA 
and GP and the combination of KPCA and SVR. Because the 
base estimators of the proposed ensemble method were trained 
on data with the target variable within a 7% deviation from the 
ground truth values, we do not expect the ensemble method 
to produce the best predicted performance compared to those 
trained on the ground truth values. However, we anticipate that 
the performance of the ensemble model will be comparable to 
that of the best single model. One of the strengths of the pro-
posed method, compared to the single ML models, is its ability to 
provide the standard deviation of the predicted outcomes based 
on the coefficient of variation of bioanalysers.

In this experiment, we used 50 base estimators to build the en-
semble model. The ML models were trained using the data from 
bioreactor A2. For the case of fivefold CV employed for the hy-
perparameter tuning, the trained models were tested on the data 
from bioreactor A1 (the same project as A2) and bioreactor A3 (a 
different project from A2). In the case of using hold-out valida-
tion for the hyperparameter tuning, the data from bioreactor A1 
were used as a validation set, and the data from bioreactor A3 
were used as a testing set.

Table 2 presents the predicted performance of various ML mod-
els on the data from bioreactor A1 (the same project as A2) and 
bioreactor A3 (a different project from A2) using the fivefold CV 
approach. Among the models, the combination of KPCA and 
SVR provided the best performance on predictions of glucose 
concentrations of bioreactor A3, while the combination of KPCA 
and GP yielded the best results on bioreactor A1 of the same 
project with the training data.

In this experiment, the ensemble of models did not consistently 
outperform the single models in terms of predicted values. 
While the ensemble of PLSRs can outperform a single PLSR 
model, the ensemble of KPCA and SVRs is not able to provide 
a better performance in comparison of the single combination 
of KPCA and SVR. However, the difference in predicted per-
formance between the ensemble models and single models was 
generally within an error of around 4%. Nevertheless, the en-
semble model provided additional benefits by generating an esti-
mation of the uncertainty for each predicted outcome compared 
to the single models. It is worth noting that the prediction errors 
of the ML models in this experiment were often below 7%, which 
is also smaller than the maximum error of 7% associated with 
the bioanalyser for offline glucose concentrations. This obser-
vation suggests that the ML models can be effectively employed 
for developing soft sensors for real-time monitoring of glucose 
concentrations.

Table 3 presents the predicted performance of various ML mod-
els trained on data from bioreactor A2, validated on data from 
bioreactor A1 and tested on data from bioreactor A3. In this 
scenario, the combination of KPCA and SVR stands out as the 
top-performing model on the testing data (A3). Furthermore, it 
is noticeable that the testing errors of all five ML models fine-
tuned by the hold-out validation are smaller than those fine-
tuned by the fivefold cross-validation method. Additionally, the 
uncertainty levels on the testing data for the ensemble models 
using the hold-out validation are smaller than those using the 
fivefold cross-validation method.

TABLE 2    |    The MAPE (%) values of various ML models trained and optimised by the fivefold CV method.

Bioreactor A1 Bioreactor A3

MAPE (%) Prediction Upper bound Lower bound Prediction Upper bound Lower bound

Ensemble of KPCA + SVRs 3.8280 18.1349 13.8381 6.1250 28.4885 19.5367

Ensemble of PLSRs 4.5388 14.0537 6.2497 4.3285 13.1566 11.2454

KPCA + SVR 1.6133 — — 2.5731 — —

PLSR 4.2982 — — 4.2428 — —

KPCA + GP 2.0874 2.0942 2.0806 4.1223 4.1400 4.1047
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Figures S3 and S4 illustrate the real-time predictions of glucose 
concentrations using different ML models based on prepro-
cessed Raman spectra. The demonstrations reveal that while 
single models can, on average, produce better predictions than 
the ensemble model of uncertainty-associated base learners, 
they fail to accurately capture the lowest glucose concentration 
values (bottom points) where decisions regarding glucose addi-
tion have been made or the highest glucose concentrations after 
glucose feeding. In contrast, the predicted values of the ensem-
ble model, along with the standard deviation values, encompass 
these lowest glucose levels and the highest glucose concentra-
tions immediately after glucose addition to bioreactors. These 
results affirm the strengths of the proposed methods in assess-
ing the uncertainty of predicted values, which is crucial for 
developing control strategies for automated glucose feeding in 
bioreactors.

3.2.3   |   Comparing the Uncertainty Levels of GP Models 
With the Proposed Ensemble Framework

From Figures S3 and S4, it can be observed that the standard 
deviation of the predicted responses generated by the GP models 
is nearly zero. Consequently, the prediction intervals of the GP 
models are very narrow, limiting their ability to assess the un-
certainty levels of predicted values. This limitation arises from 
the fact that the GP models were trained solely on offline mea-
surements without considering the uncertainty and errors asso-
ciated with the bioanalysers. In contrast, our proposed method 
takes into account the uncertainty associated with each offline 
measurement and incorporates this information during the con-
struction of the ML models. As a result, the predicted responses, 
along with the corresponding standard deviation values, provide 
a comprehensive coverage of practical observations. The wider 
prediction intervals obtained using our proposed method effec-
tively assess the uncertainty of predicted values and facilitate 
informed decision-making for the control process.

Table 4 shows the coverage percentage of the uncertainty regions 
of our proposed ensemble models and the GP models with respect 
to actual observations in the testing bioreactors, using fivefold 
cross-validation and hold-out validation for model building and 
hyperparameter tuning. It can be seen that over 95% of the actual 
offline glucose concentration values fall within the uncertainty 
boundary of the proposed ensemble models, as expected when 
using 2 ⋅ � to estimate the uncertainty boundary of predictions. In 
contrast, the boundary of Raman-based GP models in this exper-
iment usually does not contain the actual observations because 
the width of the boundary is very small. These results confirm 
that our proposed ensemble method estimates the uncertainty of 
the predictions better than the popular GP models for the real-
time monitoring problem of glucose concentrations within cell 
culture bioreactors using Raman spectra as input features.

3.3   |   Applicability of the Proposed Method Within 
the Industry and Potential Roadblocks

Our proposed method combines ensemble learning and Monte 
Carlo sampling to quantify uncertainty in the predictive results 
provided by ML models, particularly in the context of limited 
training data. Any single ML model, such as PLSR, SVR or GP, 
can be used as a base learner within the framework to estimate 
the uncertainty associated with the predictions of these individual 
models. Although single models, such as PLSR, are well adopted, 
straightforward to implement and frequently used in building 
predictive models for various problems in biopharmaceuticals, 
they cannot reliably estimate the uncertainty associated with 
their predictions. The uncertainty bounds of predictions are criti-
cal for making decisions related to control operations and assess-
ing the error tolerance of learning models, especially when actual 
offline measurements in training data also exhibit uncertainty. 
Our proposed framework addresses this gap. The empirical out-
comes illustrate the applicability of the framework in enhancing 
therapeutic manufacturing by providing reliable insights into 

TABLE 3    |    The MAPE (%) values of various ML models trained and optimised by the hold-out validation method.

Bioreactor A1 (validation set) Bioreactor A3

MAPE (%) Prediction Upper bound Lower bound Prediction Upper bound Lower bound

Ensemble of KPCA + SVRs 2.1227 9.8612 8.9721 3.6011 18.1493 14.0127

Ensemble of PLSRs 3.8046 13.6509 7.3930 4.2195 13.4981 12.3385

KPCA + SVR 1.3246 — — 2.3634 — —

PLSR 4.2982 — — 4.2428 — —

KPCA + GP 1.8168 1.8142 1.8194 3.4109 3.4381 3.3837

TABLE 4    |    Coverage of uncertainty bounds with respect to testing samples of the proposed ensemble framework and Gaussian process models.

Fivefold cross-validation Hold-out validation

Coverage (%) Bioreactor A1 Bioreactor A3 Bioreactor A3

Ensemble of KPCA + SVRs 100 100 100

Ensemble of PLSRs 96.97 96.88 96.88

KPCA + GP 0 0 3.125
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model predictions and facilitating decision-making under un-
certainty. Although the performance of the ensemble models, in 
some cases, is not higher than the accuracy of single models due 
to the base learners being trained on simulated offline values de-
rived from the variability and errors of actual offline values, the 
uncertainty bounds of the predicted values can still encompass all 
actual testing values, as illustrated in Figure 6.

It should be noted that the simulated data generated using Monte 
Carlo sampling, which is a rigorous and statistically valid method, 
for training base learners does not fabricate new trends but rather 
extends the variability inherent in actual offline data. The simu-
lated data distribution mirrors actual measurements by using the 
obtained offline values as the mean and the coefficient of variation 
from offline analysers to calculate the standard deviation. This ap-
proach is employed to augment limited experimental data, aiming 
to construct more reliable learning models, while the performance 
of the proposed method is still evaluated using experimental data. 
Consequently, our method does not present any issues with regula-
tory bodies when applied to manufacturing processes.

The proposed framework could be integrated into real-time 
monitoring systems for bioreactors in cell culture processes or 
future value forecasting systems for measurements of interest. 
Uncertainty quantification enables operators to understand the 
confidence in predictions related to cell growth, metabolite con-
centrations or product titre, allowing for dynamic adjustments 
to process parameters. Current practices in the industry where 
decisions are made on measurements include consideration of 
the uncertainty of those measurements. It is imperative that ML 
models are able to provide similar estimates to support effective 
decision-making during manufacturing and process development. 
Predictions with uncertainty estimates could also improve process 
optimisation by identifying scenarios with lower risks, leading to 
more efficient resource usage such as media components and en-
ergy. The methodology can be a core component of biopharma dig-
ital twins, enabling simulations of ‘what-if’ scenarios with explicit 
uncertainty propagation. To facilitate the reproduction of our pro-
posed method, we also provide pseudocode in Figures S5 and S6.

Potential roadblocks for the proposed method in the context of 
the biopharmaceutical industry include model interpretability, 
integration challenges, data availability and quality, as well as 
resistance to change. Regulatory bodies often favour interpre-
table models; however, while ensemble models are robust, their 
outputs may be less interpretable compared to simpler mecha-
nistic models. Deploying predictive ML models in established 
biopharmaceutical manufacturing setups requires seamless in-
tegration with existing process control systems and data acquisi-
tion systems. Continuous data integration facilities may require 
costly upgrades, which are often not readily available in the con-
text of biopharmaceutical manufacturing. Finally, bioprocess 
data are suboptimal for training machine learning models due 
to batch-to-batch variability, noise in sensor readings (such as 
Raman spectroscopy) and limited labelled data.

4   |   Conclusions

This paper introduced a novel framework capable of integrating 
any regressors as base learners to estimate uncertainty associated 

with each predictive outcome, especially in situations with limited 
training data. The coefficients of variation from offline measure-
ments are utilised to calculate the standard deviation of Gaussian 
distributions, which, in turn, are employed to generate synthetic 
samples complementing the available values in the dataset. All 
synthetic data contribute to the training of base learners. The effec-
tiveness of the proposed method was evaluated through two case 
studies. The first case involves using obtained offline measure-
ments on the current culture day to predict mAb concentrations 
on the next culture day. The second case uses real-time Raman 
spectral data as input features to predict glucose concentrations for 
real-time monitoring of bioreactor runs. Empirical results demon-
strated the robust performance of the proposed framework in both 
case studies, with small testing errors. Notably, a key strength of 
the proposed method lies in its ability to provide the uncertainty 
level associated with each prediction. This uncertainty level is cru-
cial for informed decision-making in control strategies to enhance 
cell culture process performance, such as adjusting glucose levels 
in bioreactors to sustain cell growth and productivity.

There are several potential directions for expanding the pro-
posed framework. In the scenario where only offline measure-
ments are used for early predictions regarding the future state 
of bioreactors, it becomes crucial to assess the impact of each 
input feature by assigning a specific coefficient of variation 
for each offline measurement. For online monitoring based on 
Raman spectral data, enhancing model accuracy could involve 
considering the incorporation of additional information beyond 
Raman spectra. This might include control variables, manual 
intervention data or domain knowledge derived from computa-
tional fluid dynamics models and the kinetics of each cultivation 
process [25]. Moreover, leveraging the predictive results along 
with the uncertainty levels provided by the proposed method 
could serve as a foundation for developing control strategies for 
real-time feedback control of bioreactors, particularly based on 
online glucose concentrations. In addition, there is a need to de-
velop automated methods for combining and optimising hyper-
parameters of Raman data preprocessing techniques, moving 
beyond the fixed parameter setting used in the current work.
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