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Abstract
With the latest Q20 technology, the base error rate in ONT long-
read sequencing has been down to 1%. However, such rates of
sequencing errors (base insertions, deletions or substitutions) still 
lag behind the 0.1% base error rate in NGS short reads, resulting in
many complicated variation regions in the full alignment data of 
deeply sequenced long reads and posing a big challenge to germline
variant calling. For example, current deep learning methods could 
misidentify 20,000 to 30,000 variants from the ONT long reads 
basecalled by Q20 on a single chromosome, or could misidentify
more than 30,000 at the complicated variation regions when the 
reads basecalled by Guppy v5.0.14. We proposed a spatiotempo-
ral attention deep learning method (Attdeepcaller) to boost the 
performance of variation calling on these complicated variation 
regions. The novel use of spatiotemporal attention is to modulate
the confusion between genuine sequencing errors and the true 
germline variations in the alignment data so that the identification
by the algorithms becomes clear at most cases. As tested on the
complicated regions in the alignment data basecalled by Q20 on 
chr1 of HG002, Attdeepcaller made only 22,739 misidentifications,
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reduced by 12.69% from current 26,043 misidentifications. Similarly,
the misidentification number is reduced by 16.49% on HG003 and
by 23.58% on HG004 compared with the current best. When tested
on the Guppy 5 alignment data, Attdeepcaller improved the preci-
sion by 3 percent and the recall by 1 percent on the complicated
variation regions. We also conducted comparative analysis of these
methods on old versions of guppy data. Specifically on the Guppy
v3.4.5 datasets, Attdeepcaller boosted the precision by a jump of 16
percent and improved the recall by 10 percent. This result suggests
that Attdeepcaller can still work and can work substantially better
when the reads alignment data becomes more complicated (the
older the version of basecalling, the higher the base error rate of
the sequencing data, and the more complicated the alignment data
is).
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1 Introduction
Germline variant calling or detection of gene variations such as
SNPs and small Indels directly from DNA/RNA sequencing align-
ment data is helpful inmany applications [Marx,2023, Logsdon et al.,2020],
including population genetics, precision medicine, cancer therapy,
and phylogeny evolution. The detection is very accurate when
PacBio CCS HiFi reads or Illumina short-read sequencing data are
given because the data is of extraordinary quality with almost no
sequencing errors.

However, the detection becomes challenging when we are given
the increasingly adopted third generation Nanopore long-read se-
quencing data. This is because the raw data may contain up to 20%
base errors caused by sequencingmistaken incidents [Shendure et al.,2017].
Even basecalled by the Guppy tools [Wick et al.,2019], some of
these errors can still pass to the reads. Although the errors con-
tained in the reads are occasionally located at some preferred re-
gions exhibiting patterns, these sequencing errors rarely happen
at the same base positions in deep sequencing processes. Thus,
the true SNP or Indel regions in the alignment data of deeply se-
quenced long reads when mapped to a reference genome can be
much ruined by the sequencing errors. Meanwhile, those alignment
regions without any variation can be significantly messed by these
sequencing errors as well. Thus, the variation detection problem
becomes very complicated because of the confusion between the
sequencing errors and the true variations in these data regions.

Examples of these complicated variation regions (exact definition
is given in the next section) from the Guppy 3 alignment data are
depicted in Fig.1, where the first four complicated regions contain
true SNPs or true Indels, while the last two complicated regions
contain no germline variations. Although there are huge leaps in
advancing new basecalling approaches (such as the newest Q20
and Guppy 5 and above) which have massively removed the base
errors in the ONT long reads, there still exist tens of thousands of
complicated variation regions in these long reads’ alignment data.

Machine learning algorithms were proposed recently to decide
whether a true variation exists or not in each of these complicated
variation regions. However, current best learning method Clair3
(the latest version) [Zheng et al.,2022] had misidentified 20,000 to
30,000 variants on a single chromosome from the alignment data
of the ONT long reads basecalled by Q20; On the alignment data
of ONT long reads basecalled by Guppy v5.0.14, Clair3 made more
than 30,000 misidentified variants. On the old versions of the data
such as Guppy v3.2.5, the misclassification rate is much higher.
An earlier method DeepVariant [Poplin et al.,2018] has outstand-
ing performance (99.94% accuracy) only on short reads with no
effective applications in ONT long-read sequencing data. Other
variant detection methods, such as Clairvoyante [Luo et al.,2019],
Clair [Luo et al.,2020], andNanocaller [Ahsan et al.,2021], use pileup
summaries of the long reads as algorithm input, making perfor-
mance improvements over DeepVariant but still incompetent to
deal with the calling on the complicated variation regions. Method
PEPPER [Shafin et al.,2021] further improved the performance by
incorporating spatial information of the read alignments in a form
called full-alignment, which is dozen times larger in size than pileup
data. Nevertheless, PEPPER is reported to be inferior in precision
to Clair3 [Zheng et al.,2022], the current best method exploiting

the strong potential of deep ResNet learning [He et al.,2016], when
tested on the same set of full-alignment data.

A full alignment is a 3-dimensional data cube (denoted as𝐶𝑢𝑏𝑒𝐶×𝐻×𝑊
here), that contains interweaved channel and spatial information of
the deeply sequenced long reads after aligned to a reference genome.
In this work, a full alignment consists of 23496 integer numbers
allocated into 8 channels (i.e., 𝐶 , the number of sequencing chan-
nels such as reference base, alternative base, strand information,
mapping quality, base quality, candidate proportion, insertion base
and phasing information) at 33 gene positions (𝑊 ) with a maximum
read coverage of 89 (𝐻 ). As such a big data cube also contains many
random sequencing errors confusing the detection of true positions
of SNPs or Indels, removal or modulation of these heavy noise is cru-
cially important for the subsequent variation detection. However,
there is no pre-processing steps for Clair3 to extract confusion-
modulated essential features from these full alignment data cubes
before the deep learning method ResNet is taken for the germline
variant calling.

We propose two novel steps to overcome the limits of Clair3’
workflow for a more accurate detection of germline variations
from the complicated variation regions in the alignment data. One
novelty is that we use ResNeXt [Xie et al.,2017] instead of ResNet
because ResNeXt updates blocks and uses Group Convolution with
a smaller number of parameters than ResNet for a better classifi-
cation clarity. More importantly, we propose to use spatiotemporal
attention to extract confusion-modulated features from the full
alignment data cubes before the newly introduced ResNeXt is ap-
plied for the germline variant calling. Spatiotemporal attention is a
double-attention mechanism which specializes in feature transfor-
mation of 3-dimensional data input and extracts weighted essential
features from the full alignment data cubes. The key idea of this
attention is originated in CBAM (Convolutional Block Attention
Module [Woo et al.,2018]) that combines both spatial and channel
information to weigh the raw input features and then place greater
weights on attention features.

Extensive tests on ONT long reads’ alignment datasets basecalled
by various Guppy versions demonstrate that Attdeepcaller can
reduce lots of variant misidentifications in comparison to Clair3 or
other long-read variation detection methods such as PEPPER.

2 Methods and Benchmark Datasets
We present novelties of our method and dataset details in this
section.

2.1 Detailed workflow of Attdeepcaller
Our germline variant calling method is a deep aggregated residual
neural network that integrates the reads’ sequence feature extrac-
tion data and the variant classification into an end-to-end network.
The network structure consists of two BiLSTM (Bi-directional Long
Short-TermMemory) layers [Zhang et al.,2015], four ResNeXt+CBAM
Blocks, one PyramidPooling layer, and three feedback layers. Short-
cut links are set at the input and output terminals of each ResNeXt
module. A dropout strategy [Ghiasi et al.,2018] is added before each
fully connected layer to increase the robustness of the model. Fig.2
shows the overall network architecture of our variation detection
method Attdeepcaller.
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Low-complexity region           chr1:119620624,SNP/het  0/1                    chr4:3487264,SNP/het  0/1

                                             chr7:17308428,SNP/het  0/1 LOWQUAL                       chr10:129027380,INDEL/hetalt  2/1

                                chr1:78883952,INDEL/het  0/1                                 chr9:134784951,SNP/het  0/1

Figure 1: Complicated variation regions in the alignment data of ONT long reads (basecalled by Guppy v3.4.5) as visualized
through the IGV plots of the Nanopore reads of the HG002 genome at different base positions. In these screen captures,
bases A, G, C, and T are in green, orange, blue, and red, respectively. Different shades of the colors indicate different base
coverage. Insertions are represented by those purple dots and deletions are denoted by long black lines. Here ’hom’ represents
a homozygous reference, ’het’ represents heterozygous with 1/2 alternative alleles, and ’homalt’ represents a homozygous
variant, ’hetalt’ represents heterozygous with multiple alleles.

Input files to the network for model training include the BAM file
of the reads, a reference sequence file (in .fa format), and the ground-
truth VCF file of the variations (see the detailed data workflow
of Attdeepcaller at Supplementary Figure 1). The workflow first
chooses the pileup data of the candidate variant site as input data
and then uses the pileup network for calling. The Pileup network
classifies each input into four sets of predictions: (1) a homozygous
reference (0/0); (2) heterozygous with 1/2 alternative alleles (0/1);
(3) heterozygous with multiple alleles (1/2); and (4) a homozygous
variant (1/1). All the variant candidates are ranked by the quality of
variation (QUAL). The Pileup network directly classifies the high-
quality variants, and also generates a phased alignment through
WhatsHap [Patterson et al.,2016] for the improperly classified low-
quality candidate variants, which are input into the full-alignment
network for a further detection. The high-quality heterozygous

SNP calls (the top 70% of 0/1 calls) are also included as input to the
full-alignment network to ensure variant detection more accurate.

When the workflow goes for the pileup low-quality candidates,
it has four prediction tasks: (1) the 21-genotype probabilistic labels;
(2)zygosity; (3) the length of the first indel allele; (4) the length of the
second indel allele. The 21-genotype comprises all of the possible
genotypes of a deploid sample at a genome position, including ′𝐴𝐴′,
′𝐴𝐶′, ′𝐴𝐺 ′, ′𝐴𝑇 ′, ′𝐶𝐶′, ′𝐶𝐺 ′, ′𝐶𝑇 ′, ′𝐺𝐺 ′, ′𝐺𝑇 ′, ′𝑇𝑇 ′, ′𝐴𝐼 ′, ′𝐶𝐼 ′,
′𝐺𝐼 ′, ′𝑇 𝐼 ′, ′𝐴𝐷′, ′𝐶𝐷′, ′𝐺𝐷′, ′𝑇𝐷′, ′𝐼 𝐼 ′, ′𝐷𝐷′, and ′𝐼𝐷′, where ′𝐴′,
′𝐶′, ′𝐺 ′, ′𝑇 ′, ′𝐼 ′ (insertion), ′𝐷′ (deletion) denote the six possible
alleles. The two indel-length prediction tasks tell an exact indel
length from -15 to 15bp, or below -15bp / above 15bp. These four
tasks are bound to each other, andwe have added cross-validation to
the code to improve the accuracy of variant detection. For example,
the zygosity prediction is a coarse-grained version of task one and
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Figure 2: Attdeepcaller network architecture.

can veto the decision made by task one. Tasks 3 and 4 will tell a
0-bp indel length if an SNP variant is decided by task one. The
key component in this brunch of workflow is the ResNeXt+CBAM
block, where spatiotemporal attention is used for feature extraction
and noise modulation/removal.

As other input data details for the workflow, the pileup input
contains a matrix of 594 integers: 33 genome positions wide with 18
features at each position (𝐴+,𝐶+,𝐺+,𝑇+, 𝐼𝑆+, 𝐼1𝑆+, 𝐷𝑆+, 𝐷1

𝑆
+, 𝐷𝑅+,

𝐴−, 𝐶−, 𝐺−, 𝑇−, 𝐼𝑆−, 𝐼1𝑆−, 𝐷𝑆−, 𝐷
1
𝑆
−, 𝐷𝑅−). Symbols A, C, G, T, I,

D, +, and -, respectively, stand for the count of read support of the
four nucleotides: insertion, deletion, positive strand, and negative
strand. Superscript

′1′ means that only the indel with the highest
read support is counted (i.e., all indels are counted if without

′1′ ).
Subscript ′𝑆 ′/′𝑅′ means the starting/non-starting position of an
indel. For example, a 3bp deletion with the most reads support
will have the first deleted base counted in either 𝐷1

𝑆
+ or 𝐷1

𝑆
−, and

the second and third deleted bases counted in either 𝐷𝑅+ or 𝐷𝑅−.
The full-alignment input is a cube of 23,496 integers: 8 channels of
33 genome positions and 89 maximum representable reads. The 8
channels are referred to as Reference base, Alternative base, Strand
information, Mapping quality, Base quality, Candidate proportion,
Insertion base and Phasing information.

2.2 Complicated variation regions in the 3D
alignment data: definition and examples

As introduced, not all SNP or Indel regions in ONT reads’ alignment
data contain heavy confusion noise caused by the sequencing errors.

If the pileup summary data of a candidate region (well defined and
exploited by Clairvoyante [Luo et al.,2019], Clair [Luo et al.,2020],
and Nanocaller [Ahsan et al.,2021]) is of high-quality and clarity,
Attdeepcaller does not use its full-alignment data cube as input
to predict whether the variation region is a true variation or not.
Otherwise, Attdeepcaller needs the full-alignment cube as input
data and takes the spatiotemporal-attention deep learning to make
the prediction. Namely, the sequences of the long reads are first
aligned in the pileup mode, and a variant detection is performed;
only those low-quality candidates which cannot be confidently
detected in the pileup alignment step are diverted into the process
of using full-alignment for the algorithm to make a decision.

We call those alignment regions having a high-quality score of
pileup summary simple variation regions in the ONT germline vari-
ation detection. By visualization, simple variation regions are clear
pictures of variations or clear pictures of non-variations having
little confusion noise inside them (Fig.3).

On the other hand, we call those alignment data regions having a
low-quality score and high-quality heterozygous SNP calls of pileup
summary complicated variation regions. By visualization, compli-
cated variation regions are such blurred pictures of variations or
blurred pictures of non-variations those that are indistinguishable
vividly or by linear prediction algorithms.

Fig.1 shows some of the complicated variation regions which
can be correctly identified. Of them, Fig1.1 and Fig1.2 are two cases
that can be detected by both Attdeepcaller and Clair3, while the
remaining two cases (Fig1.3 to Fig1.4) are complicated variations
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Easy case                             chr15:92507311,SNP/homalt  1/1 Easy case                          chr20:11456277,SNP/homalt  1/1

Phased alignment            chr15:92507311,SNP/homalt  1/1 Phased alignment            chr20:11456277,SNP/homalt  1/1

A T G CFigure 3: Visualization of simple variation regions in the alignment data of ONT long reads basecalled by Guppy v3.4.5 specially
through the IGV plots of Nanopore reads of the HG002 genome at different positions. In the screen captures, bases A, G, C, and
T are in green, orange, blue, and red, respectively. Different shades of the colors indicate different base coverage. Insertions are
represented by those purple dots and deletions are denoted by long black lines. Here ’hom’ represents a homozygous reference,
’het’ represents heterozygous with 1/2 alternative alleles, and ’homalt’ represents a homozygous variant, ’hetalt’ represents
heterozygous with multiple alleles.

that can be detected by Attdeepcaller only. Fig.3.1 and Fig.3.2 dis-
play two simple variation regions which have high-quality pileup
scores; and Fig.3.3 and Fig.3.4 show the diagrams of the two simple
variation regions in the phased alignment, where the features are
sharp and easy to be distinguished.

2.3 Attention-based ResNeXt: novel use of
spatiotemporal attention for feature
extraction from 3-dimensional
full-alignment data cubes

As seen at the ResNeXt+CBAM modules in the architecture of
Attdeepcaller (the orange color part of Fig.2), we propose to use
spatiotemporal attention, a double-attention mechanism which
specializes in feature transformation of 3-dimensional data input,
to extract confusion-modulated essential features from the full
alignment data cubes. Specifically by this attention (see Fig. 4), the
input feature 𝐹 is first modeled for channel attention, and varied
weights are assigned to these channels to get 𝐹 ′. Then, the spatial
attention of feature 𝐹 ′ is modeled, and each model places more

attention to the region of interest of each feature space (the gene-
coverage space) to obtain 𝐹 ′′. We then multiply the feature vector
𝐹 with the weight coefficient 𝐹 ′′ to get the final subset of important
features. This double-attention mechanism is denoted as

𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐹 ⊗ 𝐹 ′′ (1)

where, input features 𝐹 ∈ 𝑅𝐶×𝐻×𝑊 ,𝐶 is the number of channels in
the full alignment data cubes, 𝐻 represents the height of the cube,
and𝑊 stands for the width of the cube; the symbol ⊗ represents
an element-wise multiplication.

𝐹 ′ and 𝐹 ′′ are defined as

𝐹
′
= 𝑀𝐶 (𝐹 ) ⊗ 𝐹 (2)

𝐹
′′
= 𝑀𝑆 (𝐹

′
) ⊗ 𝐹

′
(3)

where,𝑀𝑐 ∈ 𝑅𝐶×1×1 is a one-dimensional channel attention graph
inferred by the CBAM module along the feature channel; 𝑀𝑆 ∈
𝑅1×𝐻×𝑊 is a two-dimensional space attention graph inferred by
the CBAM module along the feature space; 𝐹 ′′ is the output of
adaptive feature optimization by multiplying the attention map and
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Figure 4: Germline variant calling empowered by spatiotemporal attention.

input feature graph.𝑀𝐶 (𝐹 ) represents the channel attention, given
by

𝑀𝐶 (𝐹 ) = 𝜎 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹 )) +𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹 )))
= 𝜎 (𝑊1 (𝑊0 (𝐹𝑐𝑎𝑣𝑔)) +𝑊1 (𝑊0 (𝐹𝑐𝑚𝑎𝑥 )))

(4)

where 𝜎 represents the Sigmoid function, 𝑊0 ∈ 𝑅𝐶/𝑟×𝐶 , 𝑊1 ∈
𝑅𝐶×𝐶/𝑟 . The MLP (multi-layer perceptron) is a shared network
that shares the weights of𝑊0 and𝑊1.𝑀𝑆 (𝐹 ) represents the spatial
attention, and its definition is given by

𝑀𝑆 (𝐹 ) = 𝜎 (𝑓 7×7 ( [𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹 );𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹 )]))

= 𝜎 (𝑓 7×7 ( [𝐹𝑆𝑎𝑣𝑔 ; 𝐹𝑆𝑚𝑎𝑥 ])
(5)

where 7 × 7 represents the size of the convolution kernel.
ResNeXt in our ResNeXt+CBAMmodulewas proposed by [Xie et al.,2017],

which adds an inception idea on top of ResNet [He et al.,2016] to
widen the network for improving the performance of the network.
Data flow by ResNeXt is as follows:

𝑦 = 𝑥 +
𝐶∑︁
𝑖=1

𝑇𝑖 (𝑥) (6)

where 𝑥 represents the input feature,𝑇𝑖 represents a transformation,
such as a series of convolution operations, etc. 𝐶 is the cardinality
of Inception, which represents the network input width.

Detailed architecture of our attention-based ResNeXt is shown
in Supplementary Figure 3.

2.4 Multi-scale spatial pyramid pooling
Amulti-scale spatial pyramid pooling layer is introduced to remove
the restriction on the input size in the network. MSPP is a simple
improvement of SPP (Spatial Pyramid Pooling) [He et al.,2015]. The
input data is passed through four pooling modules, and the specific
feature maps in each module are extracted and fused to form a
fixed-size matrix, so as to achieve the function of fixed parameters.
In this study, the feature map obtained from the ResNeXt-CBAM
network needs to be input into the MSPP layer for pooling, and a
fixed-length vector is obtained, and then the vector is input into
the fully connected layer. After the pooling of MSPP, a fixed 𝑛 ×𝑀-
dimensional vector is obtained, where𝑀 is the number of blocks

after the multi-layer spatial pyramid is merged, and 𝑛 is the number
of convolution kernels in the last layer of the network model. The
MSPP network structure is shown in Supplementary Figure 4.

2.5 Model availability and training data
We trained the pileup model and the full-alignment model sepa-
rately and saved the two models. In the process of testing, one of
the two models is called according to the workflow options for the
prediction of all the germline variants. The two trained models are
provided in Attdeepcaller’s github installation website.

All experiments were carried out on a server running Ubuntu
18.04.6 (64-bit) with a 2.40GHz Intel(R) Xeon(R) Silver 4210R (10-
core), NVIDIA Tesla P100 PCIe 16GB, 100 GB RAM, and 16 TB disk
space. To verify the effectiveness of our model, we used the ONT
datasets, PacBio CCS HIFI datasets, and Illumina datasets in the
experiment. The experimental network was implemented based on
Tensorflow.

The links to the reference genomes, truth variants, benchmark-
ing materials and ONT data are provided in Table 1. More de-
tails are provided in Supplementary Table 29 to Supplementary
Table 31 in supplementary files. The commands and parameters
used in this study are also available in Supplementary. All analy-
sis output, including the VCFs and running logs, are available at
https://github.com/shiying-sxu/Attdeepcaller. Source data and code
are provided as well.

3 Results
We mainly use misidentification number, together with Precision,
Recall and F1-score metrics to evaluate the variant-calling perfor-
mance. The Precision, Recall and F1-score are computed via hap.py
(v0.3.12) [Krusche et al.,2019]. For individual evaluation, the bench-
mark ground truth was constrained in the high-confidence regions
provided in GIAB’s v3.3.2 or v4.2.1 small variant benchmark.



Attdeepcaller BCB ’24, November 22–25, 2024, Shenzhen, China

Table 1: ONT long reads datasets used in the training and testing.

Sample Reference BAM Benchmark VCF Benchmark BED Aligner Coverage Basecaller
HG001
(Guppy v2.3.8) GRCh38_no_alt Guppy v2.3.8 NISTv3.3.2 NISTv3.3.2 minimap2 49.83 Guppy v2.3.8

HG002
(Guppy v3.4.5) GRCh38_no_alt Guppy v3.4.5 NISTv3.3.2 NISTv3.3.2 minimap2 52.25 Guppy v3.4.5

HG003
(Guppy v3.2.5) GRCh38_no_alt Guppy v3.2.5 NISTv3.3.2 NISTv3.3.2 minimap2 76.85 Guppy v3.2.5

HG004
(Guppy v3.2.5) GRCh38_no_alt Guppy v3.2.5 NISTv4.2.1 NIST v4.2.1 minimap2 78.89 Guppy v3.2.5

HG002
(Guppy v5.0.14) GRCh38_no_alt Guppy v5.0.14 NISTv4.2.1 NIST v4.2.1 minimap2 117.37 Guppy v5.0.14

(dna_r9.4.1_450bps_sup_prom.cfg)
HG003
(Guppy v5.0.14) GRCh38_no_alt Guppy v5.0.14 NISTv4.2.1 NIST v4.2.1 minimap2 78.79 Guppy v5.0.14

(dna_r9.4.1_450bps_hac_prom.cfg)
HG004
(Guppy v5.0.14) GRCh38_no_alt Guppy v5.0.14 NISTv4.2.1 NIST v4.2.1 minimap2 79.04 Guppy v5.0.14

(dna_r9.4.1_450bps_sup_prom.cfg)

HG002
(Q20) GRCh38_no_alt Q20 NISTv4.2.1 NIST v4.2.1 minimap2 91.18

Q20
(Dorado v4.0.0
SUP_R10.4.1 E8.2)

HG003
(Q20) GRCh38_no_alt Q20 NISTv4.2.1 NIST v4.2.1 minimap2 72.51

Q20
(Dorado v4.0.0
SUP_R10.4.1 E8.2)

3.1 Significant reduction of variation
misidentifications by Attdeepcaller on ONT
Q20 and Guppy 5 datasets

Newer basecalling tools such as Guppy version 5 and Q20 have
massively reduced sequencing errors in ONT long reads. However,
there are still tens of thousands of complicated variation regions in
the alignment data of these quality-improved ONT long reads after
aligned to a reference genome. To understand the tremendous roles
of spatiotemporal attention played in the accurate detection of gene
variations, we trained Attdeepcaller on chr20 from ONT Guppy
v5.0.14 dataset 117.37 × 𝐻𝐺002 + 78.79 × 𝐻𝐺003 + 79.04 × 𝐻𝐺004,
and tested the model on chr1 from Q20 dataset and Guppy v5.0.14
dataset. To demonstrate the effect of Attdeepcaller on more compli-
cated datasets (earlier Guppy versions of the data), we also trained
Attdeepcaller on ONT dataset𝐻𝐺001(𝐺𝑢𝑝𝑝𝑦𝑣2.3.8) +60×𝐻𝐺001+
𝐻𝐺002(𝐺𝑢𝑝𝑝𝑦𝑣3.4.5) [Jain et al.,2018], and tested the model on
benchmark datasets HG003 (Guppy v3.4.5)
[Shafin et al.,2015] and HG004(Guppy v3.4.5) [Shafin et al.,2015].

For the ONT long reads’ alignment data basecalled by Q20, the
number of variation misidentification which Attdeepcaller made
on chr1 of HG002 was only 22,739, which is 12.69% lower than
Clair3’s 26,043 misidentifications from the same set of complicated
variation regions. Similarly, the number of misidentifications is
reduced by 16.49% on chr1 of HG003 and reduced by 23.58% on chr1
of HG004 (see Table 2). Namely for the same set of complicated
variation regions, Attdeepcaller outperformed Clair3 on precision,
recall, and F1-score by 3%, 1%, and 2%, respectively for the Guppy
v5.0.14 test dataset (from chr1). For the Q20 test datasets (from
chr1), Attdeepcaller is slightly inferior to Clair3 on precision (less
than 1%), but better than Clair3 on recall and F1-score by 2% and 1%,
respectively (see Table 3). We note that Clair3 was re-trained on the
same dataset as our Attdeepcaller for a fair performance comparison.
The total numbers for the complicated variation regions and simple
variation regions on chr1 of ONT HG002 are show in Table 4.

On the simple variation regions, Attdeepcaller has reached an
almost perfect prediction performance (up to 99.94% precision and

99.99% recall), and Clair3 made similar performance. These results
once again illustrate that the challenge in the area of germline
variation detection is how to reduce misidentification rates for
the complicated variation regions because detection of the simple
cases has reached nearly 100% precision and recall. Merging the
performance from the two situations as one measurement may hide
the challenge of gene variation detection because the number of
simple variation regions is much bigger than complicated variation
regions.

We trained and tested on the same datasets using the newest PEP-
PER (v0.8), the result shows that on the complicated regions of ONT
long reads’ alignment data basecalled by Guppy 5 on chr1 of HG002,
our Attdeepcaller made only 23,186 misidentifications, 3.98% lower
than PEPPER’s 24,147 misidentifications; similarly, Attdeepcaller
made 23,122 misidentifications, 6.19% lower than PEPPER’s 24,649
misidentifications on HG003. Namely, Attdeepcaller outperforms
the newest version of PEPPER as well. Detailed comparisons are
presented in Supplementary Table 1 to Table 3 (HG002) and Ta-
ble 5 to 7(HG003). More details are provided at other tables from
Supplementary Table 1 to Supplementary Table 10.

As another example, we applied the trained models to the chr20
data sets of Guppy v5.0.14 and to those of the Q20 versions of
HG002, HG003, andHG004. The performance of our Attdeepcaller is
consistently good as those on chr1. More details of the performance
are provided in Supplementary Table 11 to Supplementary Table 16
in the supplementary files. More performance comparison between
Attdeepcaller and Clair3 are also presented at Supplementary Table
17 to Supplementary Table 19.

The above achieved results are all those where the trainedmodels
were tested on only Chr1, thus we tested these models on the other
chromosomes’ long reads alignment data for a more comprehensive
understanding of their performance (not on chromosome 20 because
it is the training data). As shown in Fig.5, Attdeepcaller outperforms
both Clair3 and PEPPER in recall and F1, further demonstrating the
effectiveness of the Attdeepcaller method.
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Table 2: The numbers of variation misidentifications on the complicated variation regions. (FP: False Positive indicates the
number of false positive samples. FN: False Negative: the number of positive samples missed.)

Basecalling Data Training data Trained model Test Region Overrall
FP+FN

SNPs
FP+FN

INDELs
FP+FN

Attdeepcaller complicated variation regions 22739 2349 20390HG002_chr1 Clair3 complicated variation regions 26043 4005 22038
Attdeepcaller complicated variation regions 23511 2944 20567HG003_chr1 Clair3 complicated variation regions 28154 4655 23499
Attdeepcaller complicated variation regions 27152 4883 22269

Q20

HG004_chr1

Chr20 from
117.37× HG002+78.79× HG003
+79.04× HG004(Guppy v5.0.14 )

Clair3 complicated variation regions 35528 6861 28667
Attdeepcaller complicated variation regions 23186 2898 20288HG002_chr1 Clair3 complicated variation regions 36480 6280 30200
Attdeepcaller complicated variation regions 23122 3012 20110HG003_chr1 Clair3 complicated variation regions 34211 5781 28430
Attdeepcaller complicated variation regions 23569 2996 20573

Guppy v5.0.14

HG004_chr1

Chr20 from
117.37× HG002+78.79× HG003
+79.04× HG004(Guppy v5.0.14 )

Clair3 complicated variation regions 34364 5548 28816
Attdeepcaller complicated variation regions 395346 169778 225568HG003 Clair3 complicated variation regions 649556 384676 264880
Attdeepcaller complicated variation regions 868568 354350 514218Guppy v3.2.5

HG004

HG001(Guppy v2.3.8 )+60× HG001
+HG002(Guppy v3.4.5 )

Clair3 complicated variation regions 1542439 917947 624492

Figure 5: Calling performance on all other chromosomes (HG002 child).

Table 3: Calling performance comparisons on complicated variation regions and on simple variation regions (Chr1 fromHG004).
The ’precision’, ’recall’, ’F1-score’ all in percentage are written in order, separated by slashes. Training data: Chr20 from 117.37×
HG002+78.79× HG003+79.04× HG004(Guppy v5.0.14 ).

Trained model Test
Performance (%)

on complicated variation regions on simple variation regions
overall on SNPs on INDELs overall on SNPs on INDELs

Attdeepcaller
HG004_chr1
Guppy v5.0.14 95.91/89.21/92.44 98.90/98.60/98.75 84.49/62.19/71.65 99.96/99.99/99.97 99.96/100/99.98 100/97.53/98.75
HG004_chr1

Q20 97.83/85.23/91.10 99.74/96.26/97.97 88.52/51.84/65.39 99.98/99.99/99.99 99.98/100/99.99 99.51/99.30/99.41

Clair3
HG004_chr1
Guppy v5.0.14 92.85/88.61/90.68 97.58/98.70/98.14 69.78/51.95/59.56 99.98/100/99.99 99.98/100/99.99 99.92/99.75/99.83
HG004_chr1

Q20 98.89/82.43/89.91 98.98/96.52/97.73 97.56/26.63/41.84 99.97/99.99/99.98 99.98/100/99.99 99.68/99.81/99.75

3.2 Significant reduction of variation
misidentifications by Attdeepcaller on
Guppy 3 datasets (more complicated
datasets)

We conducted further comparative analysis between Attdeepcaller
and Clair3 on the old versions of guppy data which has much higher
degrees of sequencing errors and confusion noise than the Q20 and
Guppy 5 datasets. The overall performance of Attdeepcaller and

Clair3 on benchmark datasets HG001 (NA12878) [Jain et al.,2018]
and HG002 (NA24385) [Jain et al.,2018], where the performance
on HG003 and HG004 are included for more comprehensive com-
parison (Supplementary Table 18). Again, Attdeepcaller has made
significant numbers of variation misidentifications reduced from
Clair3’s detection on these Guppy v3 data sets, namely Attdeep-
caller made a jump of about 16% precision and 10% recall perfor-
mance improvements. This also indicates that Attdeepcaller can
work better when the data becomes more complicated (the older
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the version of basecalling, the higher the base error rate of the
sequencing data and the more complicated the alignment data).

3.3 Variation detection performance on PacBio
CCS HiFi sequencing data

Moreover, Attdeepcaller was tested on PacBio CCS HIFI sequenc-
ing data, and made an outstanding performance similarly as the
best algorithm Clair3 and DeepVariant did for SNP detection, but
made slightly inferior performance on Indels detection. On Illumina
short-read sequencing datasets, our method is slightly better than
Clair3, and both of them have made exceptionally good perfor-
mance. Details of these comparison results are presented provided
in Supplementary Table 20 to Supplementary Table 25 in supple-
mentary files including speed performance.

3.4 Verification of our detected germline
variations

We specially analyzed those variant calls made by Attdeepcaller on
HG002 (ONT reads basecalled by Guppy 2.3.4) which are excluded
by theGIAB benchmark regions released in 2017 (version3.3.2) [Zook et al.,2016],
and we validated 17 data regions of those variant calls by Sanger
sequencing before v4 benchmark for HG002wasmade available. Ah-
san et al. [Ahsan et al.,2021] have deciphered Sanger sequencing re-
sults, identified 41 novel variants (25 SNPs, 10 insertions, and 6 dele-
tions), as shown in Supplementary Table 26. We used multiple meth-
ods to detect variations on different versions of ONT HG002 reads,
and evaluated the 41 novel variants. On the older version of ONT
HG002 reads (version 2.3.4), Medaka [medaka,2019] correctly identi-
fied 8 SNPs, 3 insertions, and 1 deletion; and Clair identified 8 SNPs,
2 insertions, and 1 deletion, whereas Longshot [Edge et al.,2019]
correctly identified 8 SNPs. With much improvement, Attdeep-
caller was able to correctly identify 15 SNPs, 4 insertions, and
2 deletions. In particular, 6 of these 15 SNPs, 1 of these 4 inser-
tions and 1 of these 2 deletions were not called correctly by the
other variant callers. On a newly produced ONT HG002 reads (ver-
sion 3.3.2), Attdeepcaller correctly identified 17 SNPs, 6 insertions,
and 4 deletions; and Clair3 identified 18 SNPs, 4 insertions, and 3
deletions. In more details, Attdeepcaller correctly detected a dele-
tion at chr3:5336477 (GCA→G), an insertion at chr20:11064574
(A→ATTTTCAAGACTATTGTGACTATGAC) and an insertion at
chr12: 100940063(A→AT). These two insertions are correctly iden-
tified by Attdeepcaller only but missed by the other variant callers.
This performance improvement is mainly attributed to the spa-
tiotemporal double-attention mechanism that enables Attdeepcaller
to detect full-alignment sub-cubes of strong resilience to the confu-
sion effect from the sequencing errors.

Supplementary Table 26 also shows some novel variants in the
𝐻𝐺002 genome, missing in v3.3.2 benchmark variants, as discov-
ered by Sanger sequencing together with the prediction informa-
tion by Attdeepcaller and other variant callers using ONT reads
basecall with Guppy 2.3.4. Attdeepcaller was trained on the ONT
𝐻𝐺001(𝐺𝑢𝑝𝑝𝑦𝑣2.3.8) + 60 × 𝐻𝐺001 + 𝐻𝐺002 (Guppy 3.4.5) base-
called reads.

4 Discussion on different types of
spatiotemporal attention

In the theory of neural networks, the attention mechanism is to
assign various weights for the feature map using some network
layers and carries out the attention mechanism on the feature map.
Spatiotemporal attention is a double attention mechanism which
specializes in the transformation of 3-dimensional data cubes for
relevant feature extraction.

There are other choices of attention mechanisms. For exam-
ple, SAM (Spatial Attention Module) [Woo et al.,2018] generates
the spatial attention feature map by analyzing the relationships
within the feature map space. SAM focuses on the “where” of the
useful information on the feature map. CAM (channel attention
module) [Woo et al.,2018] generates channel attention feature maps
through the recognition of relationships between the features. Each
channel in the feature map is treated as a feature detector, so the
channel feature focuses on the “what” of the useful information in
the image. SE (Squeeze-and-excitation networks) [Hu et al.,2018]
has key operations including squeeze and excitation. Using au-
tomatic learning, an extra neural network is used to obtain the
importance of each channel in the feature graph and then assign
a weight to each feature, so that the neural network focuses on
only some feature channels. ECA (Efficient channel attention net-
works) [Wang et al.,2020] is an improved version of SE by using
the 1 × 1 convolution layer directly after the global averaging pool-
ing layer, removing the fully connected layer. This module avoids
dimension reduction and can effectively capture cross-channel in-
teractions. ECA works well with only a few parameters.

These attention mechanisms integrated with convolutional neu-
ral networks focus more on the separate analysis of channel do-
mains or spatial domains. CBAM introduces spatial attention and
channel attention to realize a sequential attention structure from
channel to space. The spatial attention canmake the neural network
pay more attention to the pixel regions that play a decisive role
in the classification of the image while ignoring the unimportant
regions. The channel attention is used to deal with the distribution
relationship of the channels in the feature map. At the same time,
the attention allocation of the two dimensions enhances the effect
of the attention mechanism on the model performance.

To understand the performance of different attention mecha-
nisms, we applied each of them to the Attdeepcaller model as five
different architectures: CBAM, SAM, CAM, SE, ECA. We trained a
model for each of the architectures on ONT𝐻𝐺001(𝐺𝑢𝑝𝑝𝑦𝑣2.3.8) +
600 × 𝐻𝐺001 + 𝐻𝐺002 (Guppy 3.4.5) basecalled reads, and tested
these models on ONT datasets HG003 and HG004. The perfor-
mance is shown in Supplementary Figure 5. CBAM has the best
effect on the germline variation detection. More details are pro-
vided in Supplementary Table 27 to Supplementary Table 28 in the
supplementary file.

5 Conclusion
We introduced Attdeepcaller, a deep learning method based on
a spatiotemporal attention mechanism, which can effectively im-
prove the accuracy of variation detection, especially for the accurate
variation detection from complicated regions. Attdeepcaller out-
performed state-of-the-art tools for germline variant calling under
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Table 4: The total numbers for the complicated variation regions and simple variation regions on chr1 from ONT HG002.
The ’FP’, ’FN’, ’TP’ are written in order, separated by slashes. Training data: Chr20 from 117.37× HG002+78.79× HG003+79.04×
HG004(Guppy v5.0.14 ). (TP: True Positive indicates the number of positive samples correctly identified. FP: False Positive
indicates the number of false positive samples. FN: False Negative: the number of positive samples missed.)

Data Trained model Test
Region

Overrall
FP/FN/TP

SNPs
FP/FN/TP

INDELs
FP/FN/TP

HG002_chr1
Guppy v5.0.14

Attdeepcaller
ALL 6441/16832/290000 1471/1517/262626 4970/15315/27374

complicated variation regions 6354/16832/141732 1381/1517/114726 4973/15315/27006
simple variation regions 96/5/148263 96/0/147900 0/5/363

Clair3
ALL 16337/20185/286647 4506/1818/262325 11831/18367/24322

complicated variation regions 16295/20185/164337 4462/1818/141351 11833/18367/22986
simple variation regions 55/8/122302 54/1/120973 1/7/1329

HG002_chr1
Q20

Attdeepcaller
ALL 3810/18943/287889 702/1669/262474 3108/17274/25415

complicated variation regions 3796/18943/142538 680/1669/118298 3116/17274/24240
simple variation regions 44/11/145340 42/0/144176 2/11/1164

Clair3
ALL 3203/22869/283963 1714/2318/261825 1489/20551/22138

complicated variation regions 3174/22869/165416 1687/2318/145941 1487/20551/19475
simple variation regions 52/9/118538 43/0/115884 9/9/2654

all of the recall, precision and F1 metrics. We conducted further
comparative analysis for variant calling on the old guppy versions.
For the Guppy v3.4.5 datasets, Attdeepcaller boosted the precision
by a jump of 16 percent and improved the recall by 10 percent. This
suggests that Attdeepcaller can still work and can work substan-
tially better when the data becomes more complicated such as the
older the versions of basecalling Guppy datasets, where the base
erring rate of the sequencing data is higher.

Acknowledgments
This work has been supported by the National Natural Science
Foundation of China (No.U21A20513, No.62476157, No.62076154),
the Key R&D Program of Shanxi Province (202202020101003), and
the National Innovation Fellowship Program of the MOST of China
(E327130001).

References
[Marx,2023] Marx V (2023). Method of the year: long-read sequencing.NatureMethods,
20(1), 6-11.

[Logsdon et al.,2020] Logsdon G A, Vollger M R, Eichler E E (2020). Long-read human
genome sequencing and its applications.Nature Reviews Genetics,21(10), 597-614.

[Shendure et al.,2017] Shendure J, Balasubramanian S, Church G M, et al (2017). DNA
sequencing at 40: past, present and future. Nature, 550(7676), 345-353.

[Wick et al.,2019] Wick R R, Judd LM, Holt K E (2017). Performance of neural network
basecalling tools for Oxford Nanopore sequencing.Genome biology, 20,1-10.

[Zheng et al.,2022] Zheng Z, Li S, Su J, et al (2022). Symphonizing pileup and full-
alignment for deep learning-based long-read variant calling. Nature Computational
Science, 2(12), 797-803.

[Poplin et al.,2018] Poplin R, Chang P C, Alexander D, et al (2018). A universal SNP
and small-Indel variant caller using deep neural networks. Nature Biotechnology,
36(10), 983-987.

[Luo et al.,2019] Luo R, Sedlazeck F J, Lam T W, et al (2019). A multi-task convolu-
tional deep neural network for variant calling in single molecule sequencing. Nature
Communications, 10(1), 998.

[Luo et al.,2020] Luo R, Wong C L, Wong Y S, et al (2020). Exploring the limit of using
a deep neural network on pileup data for germline variant calling. Nature Machine
Intelligence, 2(4), 220-227.

[Ahsan et al.,2021] Ahsan M U, Liu Q, Fang L, et al (2021). NanoCaller for accurate
detection of SNPs and Indels in difficult-to-map regions from long-read sequencing
by haplotype-aware deep neural networks. Genome biology, 22, 1-33.

[Shafin et al.,2021] Shafin K, Pesout T, Chang P C, et al (2021). Haplotype-aware
variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore
long-reads. Nature Methods,18(11), 1322-1332.

[He et al.,2016] He K, Zhang X, Ren S, et al (2016). Deep residual learning for im-
age recognition, Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, 770-778.

[Xie et al.,2017] Xie S, Girshick R, Dollár P, et al (2017). Aggregated residual transfor-
mations for deep neural networks, Proceedings of the IEEE conference on computer
vision and pattern recognition.2017, 1492-1500.

[Woo et al.,2018] Woo S, Park J, Lee J Y, et al (2018). Cbam: Convolutional block
attention module. Proceedings of the European conference on computer vision (ECCV).
2018, 3-19.

[Zhang et al.,2015] Zhang S, Zheng D, Hu X, et al (2015). Bidirectional long short-
term memory networks for relation classification. Proceedings of the 29th Pacific Asia
conference on language, information and computation. 2015, 73-78.

[Shafin et al.,2015] Shafin K, Pesout T, Lorig-Roach R, et al (2015). Efficient de novo
assembly of eleven human genomes using PromethION sequencing and a novel
nanopore toolkit. BioRxiv, 2019, 715722.

[Jain et al.,2018] . Jain M, Koren S, Miga K H, et al (2018). Nanopore sequencing and
assembly of a human genome with ultra-long reads. Nature biotechnology, 36(4),
338-345.

[Zook et al.,2016] Zook J M, Catoe D, McDaniel J, et al (2016). Extensive sequencing
of seven human genomes to characterize benchmark reference materials. Scientific
data, 3(1), 1-26.

[medaka,2019] . medaka (2019). https://github.com/nanoporetech/medaka.2019, 11.
[Edge et al.,2019] Edge P, Bansal V (2019). Longshot enables accurate variant calling in
diploid genomes from single-molecule long read sequencing. Nature communications,
10(1), 4660.

[Patterson et al.,2016] Patterson M, Marschall T, Pisanti N, et al (2015). WhatsHap:
weighted haplotype assembly for future-generation sequencing reads. Journal of
Computational Biology, 22(6), 498-509.

[Krusche et al.,2019] Krusche P, Trigg L, Boutros P C, et al (2019). Best practices for
benchmarking germline small-variant calls in human genomes. Nature Biotechnology,
37(5), 555-560.

[Ghiasi et al.,2018] Ghiasi G, Lin T Y, Le Q V (2018). Dropblock: A regularization
method for convolutional networks.Advances in neural information processing systems,
2018,31.

[He et al.,2015] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convo-
lutional networks for visual recognition. IEEE transactions on pattern analysis and
machine intelligence, 37(9), 1904-1916.

[Hu et al.,2018] Hu J, Shen L, Sun G (2018). Squeeze-and-excitation networks. Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2018,
7132-7141.

[Wang et al.,2020] Wang Q,Wu B, Zhu P, et al (2020).ECA-Net: Efficient channel atten-
tion for deep convolutional neural networks. Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020,11534-11542.

Received 26 June 2024; revised 12 July 2024; accepted 25 September 2024


	Abstract
	1 Introduction
	2 Methods and Benchmark Datasets
	2.1 Detailed workflow of Attdeepcaller
	2.2 Complicated variation regions in the 3D alignment data: definition and examples
	2.3 Attention-based ResNeXt: novel use of spatiotemporal attention for feature extraction from 3-dimensional full-alignment data cubes
	2.4 Multi-scale spatial pyramid pooling
	2.5 Model availability and training data

	3 Results
	3.1 Significant reduction of variation misidentifications by Attdeepcaller on ONT Q20 and Guppy 5 datasets
	3.2 Significant reduction of variation misidentifications by Attdeepcaller on Guppy 3 datasets (more complicated datasets)
	3.3 Variation detection performance on PacBio CCS HiFi sequencing data
	3.4 Verification of our detected germline variations

	4 Discussion on different types of spatiotemporal attention
	5 Conclusion
	Acknowledgments
	References

