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Abstract.

This paper presents an ensemble learning approach to predict the active power losses during the allo-

cation and sizing of distributed generation (DG) units in power distribution networks. The forecast model incorporates

the Gradient Boosting Machine Regression (GBMR) to estimate DG location, bus voltages, DG size, and active losses

without conventional power flow calculations. The results demonstrate that the suggested estimations of power losses and

DG sizing are effective, practical, and adaptable for power system management. The accuracy of the proposed model has
been validated using key performance metrics and tested on the standard IEEE 33 bus system. In the case of fixed load,
the GBMR outperforms other machine learning techniques with the R-squared 0.9997, with a very low mean absolute

percentage error (MAPE) (0.2216%) and a root mean square error (RMSE) of 1.0673 in predicting active power losses.

This approach is promising in enabling grid operators to effectively manage DG unit integration of distributed energy

resources from precise and reliable estimates of the power loss.
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1 Introduction

Towards the sustainable energy goal, the deployment of
distributed energy resources (DERs) is transforming tra-
ditional power distribution systems into active distribution
networks [1]. Modern electricity distribution systems have,
however, encountered severe challenges in integrating to
large-scale power grids. This is mainly because of their
intermittent nature, which may lead to power quality is-
sues at the consumer end, such as undervoltage, overvolt-
age, equipment overloading, and control system malfunc-
tions. One of the key criteria for evaluating the efficiency
and economy of a power system is the line losses, which
indicate the proportion of electrical energy lost due to com-
ponents such as resistors and inductors during transmission.
A higher line loss rate can reduce the overall performance
of the power grid. As this loss directly affects both the sta-
bility and safety of the system, its minimization is required
for optimizing grid operations and economic benefits.

To estimate and examine losses in distributed energy
systems, the computational intelligence methodology has
been increasingly applied in addition to theoretical calcu-
lations. In [2], an association rule method was proposed
to extract the characteristics of the network loss sequence
and used a forecasting approach for losses with the integra-
tion of distributed power. Using artificial neural networks
(ANN), a voltage magnitude and line-loading monitoring
scheme was introduced in [3]. In [4], an ANN model was
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utilized to forecast the turbine’s output power over short,
medium, and long-term periods. Wind speed and turbine
output power are used as inputs, and the output layer pre-
dicts the wind turbine’s power output. Grey correlation
analysis and neural networks have been proposed in [5] for
predicting 10kV line losses.

Recently, deep learning has been proposed for power
loss estimation. The deep neural network (DNN) in [6]
utilized mutiple hidden layers to capture the nonlinear re-
lationship in predicting line losses for large-scale photo-
voltaic and electric heating losses in low-votage distribu-
tion areas. Recurrent neural networks with long short-term
memory has been applied to identify the faults leading to
power line losses [7]. Machine learning with ensemble
techniques has also been suggested. For example, an en-
hanced random forest approach was developed in [8] to cal-
culate and analyze the theoretical line loss of microgrids.
In [9], two machine learning models, namely the light gra-
dient boosting machine and K-nearest neighbors were com-
pared in anticipating solar energy generation for microgrid
applications.

It is known that the integration of DERSs up to a neces-
sary level can improve the network performance in terms
of bus voltage magnitude, address environmental concerns,
and reduce line current as well as energy losses. Indeed,
efforts devoted to effectively mitigate the power line loss
problem also involve the development of strategies to max-
imize the penetration of active power with sizing and loca-
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tion of DERs [10,11]. For example, the placement of photo-
voltaic sources and wind turbines presented in [12] by using
a heuristic method could achieve minimal voltage deviation
index and annual energy losses. The distribution system
reported in [13] applied optimal allocation of power capac-
ity and placement of solar photovoltaic (SPV)-based DG,
resulting in reduced costs of DERs, decreased CO2 emis-
sions, and enhanced penetration level. A genetic algorithm
was adopted for the IEEE-34 system in [14] to minimize
active power losses subject to voltage and harmonic con-
straints. More recently, algorithms based on improved clus-
tering and isolated forest have been developed in [15] for
analysis of line loss of distribution power systems.

Given all techniques for enhancing grid efficiency in
achieving optimal energy management of distributed power
systems, to improve their effectiness it is essential to ac-
curately forecast reduction of active power losses. This is
because precise prediction of power loss is of crucial impor-
tance for ensuring reliable power delivery at reduced opera-
tional costs. From accurate estimation, utilities can identify
weak points in the system, enabling targeted maintenance
and infrastructure improvements. This proactive approach
also helps minimize fuel consumption and lower emissions,
leading to higher economic and more environmentally sus-
tainable performance.

This study addresses the prediction of the active power
losses of distribution networks using a machine learning
(ML)-based technique. As power networks are subject to
intermittent operations, we choose to obtain a forecasting
model from weak predictive models generated from past
data with gradient boosting machines [16]. This ensem-
ble learning algorithm, Gradient Boosting Machine Re-
gression (GBMR), utilizes gradient boosting for regression
from decision trees as base learners to estimate the power
losses. The model effectiveness is demonstrated through
performance metrics commonly-used in machine learning
for evaluation of accuracy and reliability testing on the
IEEE 33-bus distribution system. The merits of the pro-
posed model are confirmed through a comparative analysis
with other ensemble learning techniques. This approach al-
lows grid operators to effectively manage DG unit integra-
tion by providing accurate estimates of power losses with
respect to loading conditions, DER size and location.

The paper is organized as follows. After the introduc-
tion in Section I, Section II provides the problem formu-
lation and constraints. The proposed forecast model is pre-
sented in Section III. Simulation results are included in Sec-
tion IV along with a discussion. Finally, a conclusion is
drawn in Section V.

2 Problem Formulation

Given the increasing complexity of modern electricity net-
works, power loss prediction is particularly important due
to the decentralized nature of generation and the variable
output of renewable energy sources. Accurate forecasting
of power losses helps optimize the system performance, re-
duce energy waste, and ensure the stable integration of DG
sources into the grid. As distributed generation systems

often involve multiple interconnected sources with varying
capacities and loads, the task of power loss prediction be-
comes more challenging and critical for maintaining grid
reliability, minimizing operational costs, and improving the
overall economic feasibility of the system.

2.1 Power Loss Function and Variables

In this study, our aim is to predict the power losses Pogs
based on three input variables: load (L), size of active
power injection (P), and location (Loc) of in the IEEE-33
bus system used for experimentation. Data for the function
Ploss(L, P,Loc) collected or generated from the system are
then divided into two parts, the training dataset, Diin, and
the testing dataset, Dies. The prediction of the power loss
function Pys can be obtained by

" 1
Floss = — Z

(Lg Py, Locy ) €Drest

ﬁOSS(LkapkvLock); (1)

where Pioss (Lg, Py, Locy) is the predicted power loss for each
sample, k is an index that represents the individual samples
in a dataset, and n is a number of samples in the testing
dataset Dyeg;.

2.2 System Description

The IEEE-33 bus radial system includes 33 nodes, 37 lines,
32 loads, 32 voltage- and reactive power-controlled (PQ)
buses, one feeder, and one slack bus. The system functions
with 32 closed and 5 open switches, with power supplied at
bus 1, to maintain a steady voltage of 12.66 kV. The loads
are treated as constant, with a total active power of 3715
kW and reactive power of 2300 kVAr. The system variables
involved are subjected to the following constraints:

A) Voltage constraints: Let Vipin and Viax be the mini-
mum and maximum bus voltage limits, with values respec-
tively of 0.95 puand 1.05 pu in this study. We have:

Vmin < Vl < Vmam (2)
where V; is the voltage at the ith node.

B) Line current constraints: The current flowing in each
bus /; should be at or below its maximum capacity rating to
prevent overloading feeder lines considering the thermal ef-
fect and to maintain the grid operation. Therefore,

Imin < Ii < Imaxa (3)
where 1,5, and 1,4, are the minimum and maximum accept-
able current /; limits.

C) DGs constraints: The capacity of DG units at each
bus i is also subject to both minimum and maximum gener-
ation limits, which are represented as follows:

Prin < PP < P “
where ng and PPG are the lowest and highest acceptable

active power.
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3 GBMR for Active Power Loss Fore-
casting

In this study, the goal is to predict the active power losses
of the system by considering three input variables: fixed
load (L), the active power of the injected DG units (P), and
their location (Loc). The Gradient Boosting machine re-
gression (GBMR) and Decision tree regression are used for
training and testing with our datasets. Here, two cases were
considered: Case 1 for fixed load and Case 2 for variable
load. Key performance metrics collectively offer a compre-
hensive evaluation of the accuracy and reliability of the pro-
posed model across different scenarios. After penetration of
DG units of various sizes at various locations in the IEEE-
33 bus power system, the power loss and voltage data are
obtained from the load flow calculations using the Newton-
Raphson method, and saved in CSV format to be used for
the purpose.

3.1 Prediction Model Development

The ensemble learning technique used, GBMR, provides
the best prediction from a series of decision trees or weaker
predictive models generated from the system data, as illus-
trated in Fig. 1. Each tree aims to rectify the error made by
the previous trees [16]. The model initializes with a con-
stant prediction, usually, the mean of the target values, and
iteratively fits new trees to the residuals of the predictions.
GBMR s used for its high accuracy and flexibility on re-
gression tasks. The final prediction y is the sum of all pre-
dictions with contribution of all trees, scaled by a learning
rate

M
F=J%0+ ) - fu(x), Q)
m=1

where fi,(x) is the prediction from m-th tree from M total
number of trees in the model.

b |

Prediction Prediction
1 2

3

Final Prediction

Figure 1: Diagram of gradient boost trees for regression

The following steps are involved in the prediction pro-
cess:

¢ Data Validation Check:

If existsNaN or Inf in data, then clean the data.

¢ Data Organization: Define input features X and out-

put labels Y:
X110 X122 XN V1
X211 X22 X2 N 2
= ; = , (6)
Xp1 Xp2 XPN yp

where the rows correspond to P observations, and N
is the number of features.

* Model Development: After splitting system data into
the training and testing sets, Diin and Dieg, utilize
the dataset Dy, to train a predictive model to learn
the relationship between the output (power losses)
and the input variables. Here, training parameters for
GBMR are shown in Table 1.

Table 1: Training parameters for gradient boosting machine
model

Parameters Value
Number of Trees M (numTrees) 100
Method LSBoost
Number of Learning Cycles 100
Learner Type Decision Tree
Max Number of Splits 100
Dataset Division 75% training, 25% testing

e Model Training: Train the ensemble model with
least-square Gradient Boosting:

GBMModel = fitrensemble (Xirain , Yirain,

Method =" LSBoost’,NumLearningCycles = 100)
(7

* Prediction: Predict outputs for the test data:

Yprea = predict(GBMModel, Xies) )

* Hyperparameter Tuning: The key hyperparameters of
gradient-boosted regression models include the learn-
ing rate, number of trees, and maximum depth, which
determine model complexity and performance. Ad-
just the hyperparameters to optimize performance,
using the cross-validation technique.

* Validation: Set aside a portion of Dy;, for validation
to ensure the model generality.

valid_idx =~ (isSNAN (Yiest) V isInf(¥rest )V

9
iSNAN (Ypred) VisInf(Ypreq)) ©

where the logical OR (V) combines the conditions,
and logical NOT (~) inverts the boolean array to
mark valid indices.

* Objective Function: The predicted power loss B
(1) is used as the objective function specifically com-
puted from predictions made on Dieg to assess how
well the model predicts power losses on unseen data.

Yiest valid = Yiest [Valid,idx], Yored valid = Ypred [Valididx]

(10)
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3.2 Performance Evaluation Metrics

The accuracy of the proposed prediction model is evaluated
by using mean absolute error (MAE), mean squared error
(MSE), mean absolute percentage error (MAPE), and root
mean squared error RMSE. The coefficient of determination
(R?) is also used to evaluate the reliability of the estimation.

Metric MAE measures the average magnitude of the er-
rors in a set of predictions, without considering their direc-
tion:

I R
MAE =~} [vi—Jil (an
i=1

where n represents samples, y; represents actual value, and ¥
represents its prediction. For minimization of the prediction
errors, commonly used are MSE and RMSE:

lﬂ

MSE =~} (i —9)% (12)
i=1
RMSE = lzn‘,(yifﬁi); (13)

ni3

To provide a percentage-based assessment of how well the
estimates match the actual values, MAPE is used:

1 n Rt
MAPE = - ¥ |22 100, (14)
n.=l0 i
The formula for R? is given by:
n L 5)2
R2: 1_2;:1()11 )_71)2. (15)
Y (vi—3i)

The pseudo-code for the proposed prediction model is pre-
sented in Algorithm 1.

Algorithm 1 Power flow and proposed forecasting method-

ology

Input: Read system data

Initialization:

Add DG units & Perform load flow analysis

Calculate:

DG_size, DG_location, Load_value, Power_loss & Volt-

age

Data Collection:

7: Collect and store data for:

8:  DG_size, DG_location, Load_value, Power_loss &
Voltage

9: Data Analysis:

10: Perform feature selection

11: Model Training & Testing:

12: Fit the collected data into a machine-learning model as
in Egs. (5) & (10)

13: Output:

14: Print model performance metrics as in Eqs. (11-15)

BN

a

3.3 Comparison with other ML-based tech-
niques
To highlight the merits of the proposed prediction model,

we conduct a comparative analysis with other ML-based en-
semble learning techniques. The decision tree regression

(DTR), a non-linear predictive modeling technique com-
monly used in statistics and machine learning, is applied
here. DTR is suitable for regression tasks where the link be-
tween the input features and the desired outcome output are
complex and not easily captured by linear models, widely
applied when interpretability is important with a medium-
sized dataset. The dataset is recursively split based on fea-
ture values. Once the tree is built, predictions are made
based on the average target value of the samples that reach
each leaf node. If a sample x reaches leaf L, the prediction
$(x) is given by [17]:

o 1
I(x) nL];yf’ (16)
where ny, is the number of samples in leaf L and y; are the
target values of those samples.

The second ML-based approach used for benchmarking
with our proposed prediction model is the support vector re-
gression (SVR) based on support vector machines, a power-
ful technique for classification and regression analysis [18].
SVR owing to its ability to address nonlinearities and in-
dependence from input dimensionality, is advantageous in
high-dimensional spaces over bagging or ridge regressions.
Its training process can be mathematically described as min-
imizing the following objective function:

1 2 <
min > [|w] +CZi(L(yi,f(xz')))7 (17)
i=
where w is a weight vector, C is the regularization parame-
ter over n training samples, and L(y;, f(x;)) is the epsilon-
insensitive loss defined as,

0 if [yi — f(xi)| < €

18
lvi— f(x;)] —€ otherwise. (18)

L(yi, f(xi)) = {
After training, predictions X for the test data x € X are
made using the following prediction function:

f=wlo(x)+b, (19)

where ¢ (x) is the radial basis kernel function which signi-
fies the input data features and b is a bias term.

4 Results and Discussion

For predicting power losses, load is often assumed to be
constant and the DG output adjustable during DG alloca-
tion. However, in practice, both load and DG output are
subject to continuous fluctuations. This variability com-
plicates the calculation of losses and other parameters us-
ing power flow-based techniques, resulting in a somewhat
cumbersome and time-consuming process. In this study,
we considered two cases, namely Case 1 for active power
injection at fixed load (FL) (100%) and Case 2 for power
injection with normalized load variation (NLV) (50-100%).
The power loss is influenced by factors such as DG size,
location, load, and voltage profile. We tested the estimation
model for the IEEE 33-bus distribution system, using the
proposed gradient boost machine for regression to estimate
the power loss.
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4.1 Power Loss Forecasting Results

The predicted results of the proposed model are compared
with to actual values and with DTR and SVR models are
presented respectively in Fig. 2 for Case 1 and Fig. 3 for
Case 2. The comparison results are summarized in Table 2.

Active Power Loss (kW)
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Figure 2: Active power losses prediction with Fixed Load
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Figure 3: Active power losses prediction with Variable
Load

In evaluating the performance of various models,
GBMR emerges as the top performer across key perfor-
mance indicators. It achieves a MAE of 0.3148, an MSE
of 1.1391, a MAPE of 0.2216, and an RMSE of 1.0673,
along with an impressive R-squared value of 0.9997 in the
case of fixed load. This indicates an excellent fit to the data
compared to the other models assessed. In Case 2 for active
power injection using normalized load variation, the results
indicate that GBMR also outperforms the other models,
achieving the lowest MAE of 1.5864, an MSE of 5.6449,
and a RMSE of 2.3759. Additionally, its R-squared value
of 0.999 reflects a strong fit to the data, suggesting consis-
tent predictions for the active power loss for the IEEE-33
system in consideration.

Figure 4 shows the comparison of performance metrics
for both cases. DTR follows closely for Case 1 and Case
2, with solid performance but not as strong as with GBMR.
Albeit being methodologically competitive, SVR, in con-
trast, displays higher errors in prediction and a lower R-
squared value for both cases, making it less suitable for pre-
dicting active power losses with the obtained dataset for the
IEEE-33 system mentioned in this study. Although SVR
can model complex relationships in general, it comes with

450 500

the trade-off in meeting a high accuracy and explanatory
capability requirements.

=MAPE (%) =RMSE =R-Squared

266543

DTR
CASE1

Figure 4: Performance evaluation results of MAE, MSE,
MAPE, RMSE, and R-Squared using different model

4.2 Discussion

Since machine learning techniques depend on key perfor-
mance indicators, such as data quality, feature selection,
and algorithm choice, the accuracy of forecasting models
is significantly influenced by the relevance and cleanliness

- of the training data, the selection of the right features as

well as the suitable algorithms tailored to the specific task.
Overall, these elements are crucial for developing effective
and reliable models for accurately forecasting active power
losses for management of DG unit penetration into distribu-

~ tion power networks.

Notably, our learning-based prediction model can deter-
mine the power losses of those networks without the need
for complex and time-consuming load flow techniques. In
terms of data processing, tree-based structures allow to cap-
ture complicated correlations and interactions between at-
tributes, enabling intuitive interpretation with insightful fea-
tures, making GBMR and DTR useful for this application,
whereby GBMR appears more favourable for higher preci-
sion, particularly with larger datasets.

Our future work will focus on more advanced models
for a complex network to accurately determine real-time
DG sizes for predicting power losses. This is crucial to
support more informed decision-making in energy manage-
ment and resource optimization for efficient energy distri-
bution regardless of dynamic conditions.Additionally, we
also aim to improve model robustness in dealing with di-
verse data types and more independence on feature selec-
tion. This may involve exploring better techniques for hy-
perparameter tuning or the use of a deep learning approach.

5 Conclusion

This paper has presented an estimation-based method for
forecasting active power losses in distribution power sys-
tems with DG units injected into the network. Without
conventional power flow calculations, the proposed model
utilizes a machine learning algorithm based on gradient
boosting machine regression and tested across two distinct
cases on the IEEE-33 bus radial power system. The pre-
dictive model merits are also confirmed through a compre-
hensive comparison analysis with two other ensemble learn-
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Table 2: Comparative Analysis of Performance Metrics of Different Models

Metrics Models MAE MSE MAPE (%) R-Squared RMSE
GBMR 0.3148 1.1391 0.2216 0.9997 1.0673

Case 1 DTR 3.1099 28.3382 1.9507 0.9934 5.3234

SVR 11.9586 420.4553 8.5402 0.9030 20.505

GBMR 1.5864 5.6449 2.1106 0.9990 2.3759

Case 2 DTR 2.227 8.624 3.0666 0.9985 2.9367

SVR 12.3318 710.4513 13.732 0.8779 26.6543

ing models, namely the decision tree regression and support
vector regression. Promising results obtained are of signifi-
cant contribution to the effective management of smart grids
towards energy sustainability.

[9] P. Suanpang and P. Jamjuntr, “Machine learning mod-
els for solar power generation forecasting in micro-
grid application: Implications for smart cities,” Sus-
tainability, vol. 16, no. 16, p. 6087, Aug. 2024.

[10] A. Hussain, S. Shah, and S. Arif, “Heuristic
optimisation-based sizing and siting of DGs for en-
hancing resiliency of autonomous microgrid net-
works,” IET Smart Grid, v.2, no.2, pp.269-282, 2019.

References

[1] D. A. Copp, T. A. Nguyen, R. H. Byrne, and B. R.
Chalamala, “Optimal sizing of distributed energy re-
sources for planning 100% renewable electric power [11] W. Haider and Q. Ha, “Maximum Power Penetration
systems,” Energy, vol. 239, p. 122436, 2022. of Distributed Energy Resources with Sizing and Lo-

cation,” in The 10th IEEE Int. Conf. .Sustainable Tech-

nology and Engineering (i-COSTE 2024), 18-20 Dec.

2024, Perth, Australia. To appear.

[2] G. Zheng, G. Chen, R. Deng, J. Yi, L. Huang, and
J. Zhang, “The prediction method of distribution net-
work loss under distributed power supply access,” in
2023 3rd Int. Conf. New Energy and Power Engineer- [12] M. Purlu and B. E. Turkay, “Optimal allocation
ing (ICNEPE), pp. 472-476, Nov. 2023. of renewable distributed generations using heuris-

tic methods to minimize annual energy losses and

voltage deviation index,” IEEE Access, vol. 10, pp.

21455-21474, 2022.

[3] J. H. Menke, N. Bornhorst, and M. Braun, “Dis-
tribution system monitoring for smart power grids
with distributed generation using artificial neural net-
works,” Int. J. Electr. Power Energy Syst., vol. 113, pp.  [13] E. D. Melaku, E. S. Bayu, C. Roy, A. Ali, and B.
472-430, Dec. 2019. Khan, “Distribution network forecasting and expan-

sion planning with optimal location and sizing of so-

lar photovoltaic-based distributed generation,” Com-

puters and Electr. Eng., vol. 110, p. 108862, Jul. 2023.

[4] A. Sen, C. Andic, E. Aydin, M. Purlu, and B. Turkay,
“Forecasting of wind turbine output power with ar-
tificial neural network in Izmir, Tiirkiye,” in 2023
14th Int. Conf. Electrical and Electronics Engineering [14] J. Fu, Y. Han, W. Li, Y. Feng, A. S. Zalhaf, S. Zhou, P.
(ELECO), pp. 1-5, Nov. 2023. Yang, and C. Wang, “A novel optimization strategy for

line loss reduction in distribution networks with large

penetration of distributed generation,” Int. J. Electr.

Power Energy Syst., vol. 150, p. 109112, Aug. 2023.

[5] X. Ma, C. Liang, X. Dong, Y. Li, and R. Xu, “A line
loss prediction method based on neural network,” in
2022 3rd Int. Conf. Advanced Electrical and Energy
Systems (AEES), pp. 249-254, Sep. 2022. [15] J. Li, S. Li, W. Zhao, J. Li, K. Zhang, and Z. Jiang,

“Distribution network line loss analysis method based

on improved clustering algorithm and isolated forest

algorithm,” Sci. Rep., vol. 14, no. 1, p. 19554, 2024.

[6] J. Zhang, L. Wang, Y. Geng, M. Ren, J. Ma, and Y.
Niu, “Line loss prediction of low voltage distributions
considering mass PV and electric heating,” in 2023 6th
Int. Conf. Energy, Electrical and Power Engineering [16] A.Natekin and A.Knoll, “Gradient boosting machines,
(CEEPE), pp. 1041-1046, May 2023. a tutorial,” Front. Neurorobotics, vol. 7, p. 21, 2013.

[7] P. K. Shukla and K. Deepa, "Deep learning techniques [17] S. Suthaharan and S. Suthaharan, “Decision tree learn-
for transmission line fault classification — A compara- ing,” in Machine Learning Models and Algorithms
tive study . Ain Shams Engineering Journal, Vol. 15, for Big Data Classification, S. Suthaharan, Ed., pp.
No. 2, February 2024, (p. 102427). 237-269, 2016.

[8] L. Huang, G. Zhou, J. Zhang, Y. Zeng, and L. Li, [18] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola
“Calculation method of theoretical line loss in low- and V. Vapnik, “Support vector regression machines”,
voltage grids based on improved random forest algo- in Proc. the 9th Int. Conf. Neural Information Process-
rithm,” Energies, vol. 16, no. 7, p. 2971, Jul. 2023. ing Systems, 1996, pp. 155-161.



	Introduction
	Problem Formulation
	Power Loss Function and Variables
	System Description

	GBMR for Active Power Loss Forecasting
	Prediction Model Development
	Performance Evaluation Metrics
	Comparison with other ML-based techniques

	Results and Discussion
	Power Loss Forecasting Results
	Discussion

	Conclusion

