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Abstract. Deep-learning has emerged as a powerful approach to significantly improve forecast accuracy for air
quality estimation. Several models have been developed, demonstrating their own merits in some scenarios and
for certain pollutants. In nowcasting, the prediction of air pollution over a small time period essentially demands
accurate and reliable estimates, especially in the event cases. From these, selecting the most suitable model to
achieve the required forecast performance remains challenging. This paper presents an ensemble framework
based on the Dempster-Shafer theory for data fusion to identify the most accurate and reliable forecasts of air
pollution obtained from multiple deep neural network models. Our framework is evaluated against three popular
machine learning methods, namely, LightGBM, Random Forest, and XGBoost. Experiments are conducted
on two horizons: 6-hour and 12-hour predictions using real-world air quality data collected from state-run
monitoring stations and low-cost wireless sensor networks.

1 Introduction

Access to a reliable source of multi-hazard early warnings
can save lives [1]. Nowcasting, which provides weather
predictions up to a short period of time ahead, is one of the
integral components in such systems, facilitating timely
detection of natural hazards, as highlighted by the United
Nations [2]. Not just supporting long-term sustainabil-
ity in cities, nowcasting can also significantly contribute
to microclimate management, providing local information
for public dissemination and, in cases of extreme events,
community-specific dispatch of responsive measures. Due
to the stochastic and volatile nature of the atmospheric en-
vironment, achieving forecast accuracy in short time hori-
zons is a challenging task, as a particular model for it is
often suitable for different spatial and temporal scenarios
[3]. Therefore, researchers have recently explored vari-
ous deep learning techniques to effectively predict weather
events [4], especially to blend those learning models for
the best forecast performance.

For model ensembling, the Romanian National Me-
teorological Administration developed NowDeepN [5],
where neural network-based deep learning (DL) algo-
rithms are merged to increase the capability of accu-
rately forecasting heavy precipitation and hail by lever-
aging radar data. To this end, data fusion from multiple
remote sensing sources collected by the National Oceanic
and Atmospheric Administration and the China Meteoro-
logical Administration has contributed to the development
of NowcastNet [6], integrating the physics-informed layer
with neural models. In Spain, researchers have imple-
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mented an ensemble DL framework to address the issue of
fog-related accidents, demonstrating advantages over indi-
vidual models in nowcasting fog events [7].

To improve the highly-demanded accuracy in real-time
forecasting time-series, as of air quality, it requires a ver-
satile and robust method that can all integrate advantages
of each existing technique to efficiently handle uncertainty,
random fluctuations and nonlinearity in various scenarios
[8]. In this context, the Dempster-Shafer evidence theory
(DSET) has proven to be an effective data fusion approach,
where it can amalgamate predictions from an ensemble
of learning-based models to enhance the forecast perfor-
mance, e.g., precipitation classification and rainfall esti-
mation in Algeria [9]. In another research, DSET was em-
ployed to blend Random Forest (RF) and Support Vector
Machine models for flood susceptibility forecasts to im-
prove the ultimate accuracy in the face of a multitude of
conflicting flood conditioning factors [10]. The ground for
adopting DSET in nowcasting could stem from its notable
ability to assimilate environmental parameters and fore-
casts. Given the heterogeneity of urban air quality, where
a certain model may respond differently to localized am-
bient conditions, especially within a small prediction hori-
zon, there is a clear need for a reliable tool for merging
the forecasts at a decision level, such as those Dempster-
Shafer-based (DS) models.

In this paper, we propose a dynamic ensemble frame-
work for model selection based on DS data fusion of var-
ious models and estimation sources for air pollution now-
casting in urban areas. As a result, the most accurate now-
cast among member models is selected based on certain
performance metrics. Through implementation on real-
world air quality datasets and extensive statistical analy-
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sis, the proposed framework demonstrates its feasibility
and effectiveness in estimating air quality in some Sydney
suburbs. The contributions of this work include (i) an ar-
chitecture of the ensemble framework for air quality fore-
casting equipped with a DS mechanism to yield the most
accurate forecasts from models and monitoring network
observations, (ii) the DS-based algorithm developed based
on performance metrics for dynamic selection of the best
learning-based models, and (iii) nowcasting results for
air pollution in some Sydney suburbs benchmarked with
state-run monitoring stations.

The remainder of the paper is organized as follows.
Section 2 introduces the DL models integrated into the
proposed framework and the development of the ensemble
model architecture as well as the DS-based algorithm for
dynamic selection of best-performing predictions based on
multi-metrics criteria. Following that, we present the now-
casting results of the proposed framework on the urban air
quality monitoring network in Section 3 and discuss its
overall performance. A conclusion is drawn in Section 4.

2 Dempster-Shafer-based ensemble
nowcasting framework

2.1 Deep learning models

An ensemble model combines multiple machine learning
(ML) or DL models to improve predictive performance.
Each model, or "learner," captures distinct patterns in the
data, making the ensemble more capable of handling dif-
ferent scenarios [11]. This approach ensures robustness
and reliability by leveraging the strengths of individual
models to adapt to varying temporal dynamics. This adapt-
ability is essential for accurate air quality nowcasting in
urbanized areas, where many localized environmental fac-
tors, such as traffic flows, household emissions from en-
ergy usage and interactions between changing weather
conditions, govern the shift in pollutant levels.

In the proposed framework, each DL model chosen as
a member learner exhibits its own strengths in predicting
certain pollutant patterns from the input data. The follow-
ing learners are incorporated into the ensemble architec-
ture and their configurations are tabulated in Table 1:

e 1D-CNN (Convolutional Neural Network): A ro-
bust convolutional neural network for capturing short-term
temporal patterns.

o Artificial Neural Network (ANN): A general network
can model all types of data including time series.

e Long Short-Term Memory (LSTM): A DL recurrent
neural network that captures long-term patterns of time se-
ries.

e Gated Recurrent Unit (GRU): A type of lightweight
LSTM with less number of internal gates.

e Bidirectional LSTM (BiLSTM): A type of LSTM net-
work with learning capacity in two directions.

e Convolutional LSTM (CNN-LSTM): A hybrid DL
model with robustness of spatial-temporal learning.

Table 1: Member learners of ensemble learning framework

Member learners Configuration

1D-CNN Conv1D(64) - MaxPooling - Dense(64)
ANN Dense(100, 2 layers)

LSTM LSTM(128) - Dense(64)

GRU GRU(128) - Dense(64)
BiLSTM BiLSTM(128) - Dense(64)
CNN-LSTM Conv1D(64) - LSTM(128) - Dense(64)

The selection, after tuning, of hyperparameters for
each DL model in the ensemble learning framework, is
presented in Table 2. These hyperparameters are shared
across all member learners, ensuring consistency in the
training and prediction processes while preserving each
model’s particular suitability in handling temporal distri-
butions.

Table 2: Hyperparameters for ensemble learning frame-
work

Hyperparameters Values and types
Input layer (historical data) 12

Output layer (prediction horizon) 6-12

Epoch 50

Batch size 512
Learning rate 0.001
Patience (Early stopping) 5

Loss function Mean squared error
Optimizer Adam

2.2 DS framework for ensemble learning

Multiple strategies for constructing decision levels in
ensemble learning have recently been established [12].
Given the advantages and disadvantages of each nowcast-
ing model, and in the face of air pollution volatility in ur-
ban conditions, for instance, particulate matter (PM) origi-
nating from anthropogenic sources, leveraging the forecast
from all models may still encounter inaccuracy in the final
estimation. As such, an ensemble model that employs a
dynamic model selection mechanism to utilize the capabil-
ities of each learner offers the adaptability in real-time for
various environmental conditions, and thus, can improve
forecast accuracy [13]. For this, the Dempster-Shafer-
based ensemble learning framework (DSEL) is designed
to enhance overall predictive performance by dynamically
selecting the most reliable forecast from the diversity of
DL learners to meet the nowcasting requirements.

The architecture of DSEL, depicted in Fig. 1, demon-
strates the flow of information from individual nowcasts
produced by member learners to the DS selection pro-
cess for determining the best-performing model. Going
in-depth, key components of this architecture include the
calculation of performance indices between each learner’s
predictions and real observations from monitoring instru-
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ments. The DS algorithm, which is defined in 2.3, re-
ceives those metrics and then computes the similarity level
for each model. Finally, the predictions that align most
closely with real-world measurements are made the con-
cluding nowcasting results of DSEL.

2.3 Dynamic model selection mechanism

In this section, we elaborate on the model selection ap-
proach based on DSET at the decision-making unit of
the ensemble learning framework. The frame of discern-
ment (FoD) in DSET lays the foundation for the ensemble
model selection mechanism. FoD declares a finite set of
all possible hypotheses of the concerned problem, which
are the individual learners here. We denote the FoD as the
set

H:{pjijzlwque}’ (1)

where N, is the total number of nowcasting estimators, and
pj denotes the probability of model j achieving predictions
as similar as real observations.

For evaluation, we consider the performance-
indicative metrics, where each provides different insights
into the relation of prediction results with real observa-
tions. They are listed in the following,

— The Root Mean Squared Error (RMSE):

1 n
RMSE = 4| - D= 002, 2
n;(y ) @)

— The Mean Absolute Error (MAE):
MAE = 13 1y G
- n ~ yl yl ’

i=1

— Pearson correlation coefficient (r):
e i Wi = @i = §)
VS~ 92 S - 5

“

where n is the prediction horizon, y;, ¥;, i, and _1} are, re-
spectively, the real observations from monitoring instru-
ments, the ensemble nowcasting results, the mean of mea-
surements and the mean of predicted values.

The metrics RMSE, MAE, and correlation coefficient
r are popular in DL time-series forecasting. However, the
selection of a best-performing learner based on a single
metric may overlook other indications, leading to some
bias. To identify the best-fit prediction from an individ-
ual learner, DSET is tasked with the fusion of multiple
evaluation metrics to reach a balance by using a multi-
criteria selection process. Here, the metrics are considered
as sources of evidence for the development of the basic
probability assignment (BPA) in DSET. Quantifying the
degree of support for the similarity between forecast val-
ues and observations, a BPA for each member learner is
assigned based on the evidence provided by the model’s
performance indices. It is essential to note that the mass,

or probability, associated with a certain hypothesis in the
defined FoD must be in the range between 0 and 1. There-
fore, mathematically, the mass function, denoted as m, is
portrayed as

m: 2" 5 [0,1],
where it must satisfy
m (@) =0,
®)
Zng m(p) = 1.

For computation, we first formulate a reference matrix
that represents the FoD and BPAs. The reference matrix

R=1[ril, k=1,2,.K, (6)

where K is the number of evaluation metrics used in the
multi-criteria analysis. Since we are concerned with the
resemblance of forecasts to observational values while
considering multiple metrics, the sampling vector S = [s¢]
is derived from the assumption of exact alignment of fore-
casts to observations where the evaluation statistics are
ideal. In other words, the sampling vector containing the
optimal values of the metrics where they indicate the best
performance.

In compliance with the conditions (5), we took the first
step in deriving BPAs by the quantification of the similar-
ity between nowcasting values and the ideal scenario of
exact fit with measured values from monitoring devices,
which is expressed as

dix = s — rjl. (7

The multi-metrics-fused similarity probability associ-
ated with an individual learner j is calculated as

—1
d

= —K I’
Zk:l djk

qjk ®)
which establish the probability matrix Q = [gj].

The statistical values of the evaluation metrics are
transformed into the degree of forecasts aligning with ac-
tual observations in the matrix Q. However, the entries
in each column only represent the supporting degree from
one metric. Here, the Dempster’s rule of combination in
DSET is imperative in combining evidence from multiple
metrics to derive a balanced and inclusive confidence level
of a learner closely matching observations. If evidence
from different metrics is represented by a mass function m,
then given any two mass functions m; and m,, the Demp-
ster’s rule aggregates them into a joint belief m;, by using
the orthogonal sum (®). Thus, we have

2my (B)ymy (C)

mip(BNC) =m(B)omy(C) = =—————— )
if BN C # @, and m, (@) = 0, in which
Ko=) m(Bym(C). (10)
BNC=0

where K, represents the level of conflict between pair-wise
BPAs.
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Figure 1: Dempster-Shafer ensemble learning framework for nowcasting: the architecture

The pseudocode presented in Algorithm 1 summa-
rizes for the DS-based model selection mechanism and
describes the step-by-step procedure for dynamically se-
lecting the best model at each nowcasting interval. By in-
corporating DSET in the decision-making layer of DSEL,
the proposed ensemble learning framework gains the nec-
essary flexibility to continuously varying input data to im-
prove the accuracy required for nowcasting.

3 DS ensemble learning implementation
for urban air quality nowcasting

3.1 Multi-scale air quality monitoring network

Rapid urban growth in smart cities necessitates microcli-
mate management to address challenges posed by climate
change and safeguard public health. Multi-scale environ-
mental monitoring combining reference-grade air quality
monitoring stations (AQMS) and low-cost air quality sen-
sors becomes more and more popular, e.g., in Europe [14]
and Australia [15]. To this end, our proposed DSEL frame-
work has been implemented to perform along such net-
works in urban settings within the city of Sydney, New
South Wales, Australia. Our sites of interest, illustrated in
2, include the monitoring station located in Liverpool sub-
urb at the coordinates -33.93132°S, 150.90727°E and Pur-
pleAir sensors (PAS) located in Lidcombe suburb at co-
ordinates -33.88143°S, 151.04676°E. These data sources
are under the management of the local authority, enabling
a quality-assured, continuous and real-time information
stream.

We retrieved the data of Liverpool AQMS through the
publicly available online portal of the local environmen-

“Monitoring station

Figure 2: Surveyed urban air quality monitoring instru-
ments in Sydney

tal agency. This dataset spans the period from January
1, 2018 to September 30, 2023. As for the PAS in Lid-
combe, we collected the data from March 1, 2021 to June
30, 2022. The focal point of both datasets is hourly PM 5
concentrations, the primary target in this study, serving for
the training and evaluation of the proposed DSEL frame-
work against other ensemble models for cross-comparison
purposes. The training and nowcasting of PM, s for all
ensemble models were performed on an Interactive High
Performance Computing (iHPC) server equipped with the
NVIDIA A2 GPU to ensure uniformity in the learning pro-
cess and support rigorous evaluation afterward.



E3S Web of Conferences 626, 01003 (2025)
EIER 2025

https://doi.org/10.1051/e3sconf/202562601003

Algorithm 1 Dynamic Dempster-Shafer-based model se-
lection for ensemble learning

1: function statisTics(ensemble_nowcast, obs)

2 fork=1:Kdo

3: Compute evaluation metrics stats; (Eq. 2 3, 4)
4 Compute intermediate mass inter_mass| j]

from pair-wise hypotheses (Eq. 9)

5 end for

6: end function

7: function MATRIX_FORMATION(ensemble_nowcast, obs)
8 for j=1:N,do

9: stats <« STATISTICS(ensemble_nowcast;, obs)
10: ref_matlj] « stats

11: end for
12: samp_mat contains ideal statistics

13: end function
14: function coMBINED_MASS(discounted_mass)
15: for j=1:N,do

16: Compute conflict coefficient K. (Eq. 10)

17: Compute intermediate mass inter_mass|[ j|
from pair-wise faults (Eq. 9)

18: end for

19: combined_mass « inter_mass[N,]

20: end function

21: function pSET_ALGORITHM(re f_mat, samp_mat)
22: Compute distances (Eq. 7)

23: Compute probabilities (Eq. 8)

24: similarity_prob —
COMBINED_MASS(ensemble_nowcast, obs)

25: end function
26: function MODEL_SELECTION(similarity_prob)

27: if max(similarity_prob) == similarity_prob;
then

28: best_model « j

29: end if

30: return best-fit nowcast ensemble_nowcastyes; moder

31: end function

3.2 Air pollution nowcasting with DS ensemble
learning: Results and Evaluation

To demonstrate the application of our proposed frame-
work on real-world datasets, we present the final results
of DSEL in the form of 6-hour nowcasting and 12-hour
very short-term forecasting for the reference-grade station
in Liverpool and PAS in Lidcombe. Both horizons provide
necessary information for quick responses and early warn-
ing in local communities [16]. The performance of our
proposed framework is compared with different ensem-
ble ML methods LightGBM, RF regression and XGBoost.
They were trained on the exact datasets as DSEL. Fig-
ure 3 presents the time-series prediction from DSEL and
other ensembles plotted alongside real observations from
professional-grade and cost-effective instruments. Specif-
ically, Fig. 3a and Fig. 3c show a general trend of transi-
tioning from a Fair to Good level of PM; s concentration
as categorized by the local authority [17]. While all en-
semble models considered here are able to recognize the
constant inclination of observations, DSEL presents the

ability to trace the magnitude of its target when the oth-
ers show significant biases in magnitude. The decreas-
ing tendency of PM; s in the 12-hour forecast accompa-
nies fluctuations in the form of sudden spikes and valleys.
Despite the challenges posed, the 12-hour DSEL forecasts
can adapt well to such abrupt changes to match observa-
tional values at Liverpool station, as depicted in Fig. 3c.

The measurements from low-cost sensors are expected
to have sharper edges than their counterparts collected by
regional monitoring stations due to inherent differences in
hardware and deployment sites. The PAS readings shown
in Fig. 3b illustrate the rapid fluctuation of PM; 5 values.
It is observed that DSEL predictions can identify and fol-
low the general trend of the PAS measurements in spite
of its high instability, whereas predictions from other en-
semble models struggle to capture the extrema and instead
converge toward the overall mean value. Figure 3d por-
trays a different scenario with a steep and jagged decline
of the PM, s ground-truth. In this case, it is visible that
DSEL forecasts can follow the general downward trend
from PAS, especially in the middle of the prediction win-
dow. At the two ends, the forecast shows some biases com-
pared to observations, likely due to extreme shifts in PM; 5
levels. The underperformance of ML ensemble models is
exhibited in cases of considerably high concentrations of
PM throughout the test datasets. However, at relatively
lower concentrations, the distinction is not as significant
and in a comparable level with DSEL. To comprehensively
evaluate the performance, we tabulated the statistics in Ta-
ble 3 and 12-hour forecasting in Table 4.

Through statistical analysis, the results for 6-hour hori-
zon produced by DSEL have significantly lower RMSE
and MAE compared to other ensemble nowcasting mod-
els, meaning the nowcast from DSEL closely matches the
magnitude of real observations, with RMSE ranging from
1.44 to 1.97 ug/m* and MAE between 1.29 to 1.57 ug/m?
for the AQMS and PAS respectively. The correlation co-
efficient also indicates the outperformance resulting from
the proposed DSEL, which is tabulated as 0.99 for AQMS
and 0.93 for PAS. Within the 12-hour prediction horizon,
the statistics of AQMS forecasts from different ensemble
models are quite comparable. Nevertheless, it is acknowl-
edged that DSEL forecasts offer better accuracy. In con-
trast, there is a clear distinction between the performance
of DSEL in the 12-hour forecast of PAS data compared to
other ensemble models. The RMSE and MAE of the 12-
hour forecast on PAS data are 1.94 and 1.63 pug/m?, within
close proximity to their counterparts in the nowcasting,
while maintaining a high correlation of 0.92. These re-
sults emphasize DSEL’s high predictive accuracy even in
a longer prediction window, especially in dealing with er-
ratic data patterns of low-cost ambient sensors.

4 Conclusion

The ability to predict the status of particulate matter con-
centrations in urban areas for short time horizons is piv-
otal for supporting early warning systems in a metropolis.
This paper presents a Dempster-Shafer-based ensemble
learning (DSEL) framework for the multi-criteria model
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Figure 3: Comparison of real observations from monitoring instruments against the proposed DSEL, LightGBM, Random

Forest regression and XGBoost.

Table 3: Performance comparison between different ensemble models on nowcasting of PM; 5

Prediction horizon (hr) Data source Model RMSE (ug/m?) MAE (ug/m?) Pearson’s r
DSEL 1.442 1.294 0.990
LightGBM 4.084 3.662 0.817
AQMS RF regression 4.207 3.605 0.799
6 XGBoost 4312 3.872 0.769
DSEL 1.972 1.570 0.935
PAS LightGBM 3.503 3.037 0.916
RF regression 3.671 3.193 0.706
XGBoost 3.677 3.162 0.486

selection mechanism to achieve the best forecast perfor-
mance. The predictions obtained from real-world datasets
suggested that the proposed DSEL is capable of tracking
the overall propensity observed by monitoring instruments
and outperforms other ensemble ML models, particularly
in the presence of high concentrations of the pollutant.
The adaptability and accuracy of the framework consol-
idate its suitability in volatile environments. For future
work, we plan to extend it to accommodate multivariate

nowcasting and broaden the outputs to other key pollutants
that may cause critical impacts on the environment and
human health. The ultimate aim is to improve the com-
putational efficiency and scalability of DSEL across the
multi-scale monitoring network to provide fine-grained air
quality nowcasting to the community level and compre-
hensively facilitate the informative decision-making pro-
cess and timely responses from the stakeholders.
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Table 4: Performance comparison between different ensemble models on very short-term forecasts of PM; s

Prediction horizon (hr) Data source Model RMSE (ug/m?) MAE (ug/m?) Pearson’s r

DSEL 3.778 3.030 0.960
LightGBM 3.908 3.362 0.921
AQMS RF regression 4.702 4.064 0.958
12 XGBoost 4.055 3.525 0.934
DSEL 1.943 1.637 0.924
PAS LightGBM 2.974 2.337 0.840
RF regression 2.845 2.202 0.839
XGBoost 3.185 2.630 0.917
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