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ABSTRACT

Estimated Time of Arrival (ETA) is a crucial task in the logistics and transportation industry, 
aiding businesses and individuals in optimizing time management and improving operational 
efficiency. This study proposes a novel Graph Recurrent Neural Network (GRNN) model that integrates 
external factor data. The model first employs a Multilayer Perceptron (MLP)-based external factor 
data embedding layer to categorize and combine influencing factors into a vector representation. A 
Graph Recurrent Neural Network, combining Long Short-Term Memory (LSTM) and GNN models, 
is then used to predict ETA based on historical data. The model undergoes both offline and online 
evaluation experiments. Specifically, the offline experiments demonstrate a 5.3% reduction in RMSE 
on the BikeNYC dataset and a 6.1% reduction on the DidiShenzhen dataset, compared to baseline 
models. Online evaluation using Baidu Maps data further validates the model’s effectiveness in 
real-time scenarios. These results underscore the model’s potential in improving ETA predictions 
for urban traffic systems.
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INTRODUCTION

Estimated time of arrival (ETA) is an important task in the logistics and transportation industry (El 
Makhloufi, 202; López & Lozano, 2022; Tsolaki et al., 2022). It can help businesses and individuals 
better plan and manage their time, thereby improving efficiency and accuracy. For example, logistics 
companies can use ETA to predict the arrival time of goods to better schedule transportation and 
distribution. In the transportation sector, ETA can help people better plan their trips to avoid congestion 
and delays. As the logistics (Liu et al., 2023) and transportation (Li et al., 2021) industries grow 
and globalization rapidly and increase in size and complexity, the accuracy of ETAs subsequently 
becomes more and more important (Zhang et al., 2025). Overall, the accuracy of ETA forecasting 
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tasks becomes very important for both organizations and individuals. It helps them to plan and manage 
their time better, thus increasing efficiency and accuracy.

Recent studies have shown that graph neural network (GNN) models have higher performance in 
modeling road traffic and other aspects (Jiang & Luo, 2022). It has been found that the reason why 
GNN models perform well in ETA tasks is that they can model traffic conditions by learning the 
connectivity structure of the road network (Jin et al., 2023). In 2021, the DeepMind team collaborated 
with Google Maps to successfully improve the real-time ETA accuracy of Google Maps in major 
cities such as Berlin, Tokyo, and Sydney by up to 50% using GNNs (Derrow-Pinion et al., 2021). To 
achieve this goal globally, DeepMind used GNNs to perform spatiotemporal reasoning by adding 
relationship learning biases to the model, thereby modeling the connectivity of the real-world road 
network (Huang et al., 2025). After the roads are sliced into multiple road networks, the road network 
is divided into several super sections, which refer to several adjacent sections affected by each 
other’s traffic flow. Then, the local road network are viewed as a graph, where each road segment 
corresponds to a node, and the edges connecting two road segments (nodes) are either on the same 
road or connected through an intersection. These mechanisms enable GNNs to utilize the connectivity 
structure of the road network more efficiently.

Currently, there is a continuous emergence of GNN predictive models in the fields of transportation 
and logistics. The following are five commonly used GNN predictive models:

•	 Spatio-Temporal Graph Convolutional Network (ST-GCN; Yu et al., 2017): ST-GCN is based 
on the concept of GNN and integrates spatiotemporal information. By performing convolution 
operations on spatiotemporal graphs, it effectively captures the spatiotemporal dependencies in 
transportation or logistics systems. ST-GCN excels in traffic flow prediction, accurately capturing 
the complex spatiotemporal dynamics in urban transportation networks, thereby enhancing 
predictive performance in transportation systems.

•	 Adaptive Spatial-Temporal Graph Convolutional Network (ASTGCN; Chen et al., 2023): 
ASTGCN introduces an adaptive mechanism, adjusting to different spatiotemporal dependencies 
by considering dynamic weights of neighboring nodes. This adaptability allows the model 
to flexibly accommodate complex transportation or logistics systems. ASTGCN performs 
exceptionally well in handling irregular and dynamic traffic networks, enhancing its modeling 
capabilities for complex urban traffic patterns.

•	 Trajectory Graph Neural Network (TrajGNN; Cao et al., 2021): TrajGNN focuses on modeling 
trajectory data, representing trajectory data as nodes in a graph and leveraging GNN to learn 
relationships between trajectories. This approach aids in considering interactions between 
individual trajectories during the prediction process. TrajGNN excels in modeling complex 
interactions between individual trajectories and is applicable to predicting trajectories of 
pedestrians or vehicles.

•	 Diffusion Convolutional Recurrent Neural Network (DCRNN; Li et al., 2017): DCRNN combines 
convolution and recurrent neural networks, modeling traffic networks as diffusion processes in 
spatial dimensions to learn traffic flow relationships between nodes. DCRNN excels in capturing 
long-term spatiotemporal dependencies in traffic networks and is suitable for accurate long-term 
predictions of traffic flows.

•	 Graph WaveNet (Wu et al., 2019): Graph WaveNet is based on the WaveNet model and introduces 
graph convolution operations to adapt to graph structures. It captures spatiotemporal dependencies 
between nodes through layer-wise convolution operations. Graph WaveNet is suitable for capturing 
dynamically changing graph structures, exhibiting strong generalization capabilities for complex 
spatiotemporal predictions in transportation and logistics systems.

To further enhance the accuracy of ETA tasks, this study proposes a novel graph recurrent neural 
network (GRNN) model (Qiao et al., 2020) integrating external factor data. The model initially 
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employs a multilayer perceptron (MLP)-based external factor data embedding layer (Delashmit 
& Manry, 2005), categorizing influencing factors and merging them into a vector representation. 
Subsequently, a GRNN combining long short-term memory (LSTM) and GNN models is utilized 
to finish the ETA task for the current courier transport based on input historical data (Zheng et al., 
2021). Finally, the model undergoes offline prediction experiments on multiple public datasets and 
online prediction experiments using Baidu Maps data (Xia et al., 2022).

The contributions of this study can be summarized in the following three points:

•	 Design of external factor data embedding layer: The study introduces a novel approach by 
proposing the utilization of an MLP-based external factor data embedding layer (Srivastava et al., 
2021). This layer effectively categorizes and embeds various external factor data, consolidating 
them into an influencing factor vector. The design of this embedding layer aims to capture the 
impact of external factors on ETA more efficiently, providing a more informative input for 
subsequent predictive models.

•	 Integration of LSTM and GNN in GRNN Model: A GRNN model, amalgamating LSTM and GNN 
models, is introduced. This model demonstrates improved capabilities in capturing time-series 
information and graph structure relationships when processing historical input data. The fusion 
of these two distinct neural network structures enhances the accuracy of ETA predictions, making 
the model more adaptable to complex transportation scenarios.

•	 Multilayered experimental validation: The research incorporates a multilayered experimental 
validation approach, including offline prediction experiments on multiple public datasets and 
online prediction experiments using Baidu Maps data. This comprehensive validation strategy 
ensures the generalizability and practicality of the proposed ETA prediction model, showcasing 
its performance across diverse scenarios.

The structure of this paper comprises several main sections. The Introduction outlines the research 
objectives. The Related Work section reviews prior research and existing literature in the relevant field, 
demonstrating the research value of the current study. In the Methodology section, the paper details 
the structure and working principles of the proposed GRNN ETA prediction model, encompassing 
key components such as the external factor data embedding layer and the GRNN incorporating 
LSTM and GNN. The subsequent Experiments section presents the model's performance in offline 
and online experiments, accompanied by in-depth analysis and discussion. Finally, Conclusions 
summarize the main findings of the study and emphasize its contributions. This organization aims 
to provide a clear logical flow of the research, allowing readers to comprehensively understand the 
background, methodology, and outcomes of the study.

RELATED WORK

Intelligent Logistics
Intelligent logistics (Liu et al., 2023), as a cutting-edge field, has garnered widespread 

attention and research globally. Researchers are dedicated to applying intelligent technologies to 
logistics management (Tsolakis et al., 2022), aiming to enhance the efficiency of transportation, 
warehousing, and distribution processes. Research directions in intelligent logistics encompass the 
optimization of logistics information systems (Kumar et al., 2022), the application of intelligent 
transportation tools (Hina et al., 2022), and intelligent warehouse management (Tubis & Rohman, 
2023). Leveraging big data analytics (Lăzăroiu et al., 2022), Internet of Things technologies 
(Tran-Dang et al., 2022), and intelligent algorithms, researchers explore methods to achieve 
real-time monitoring (da Costa et al., 2022), intelligent decision-making (Tian et al., 2023), and 
automated execution to address challenges within logistics systems. The research objective of 
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intelligent logistics is to construct a more flexible, efficient, and sustainable logistics system to 
complex supply chain networks.

Within the realm of intelligent logistics, the prediction of delivery arrival times poses several 
challenging aspects. Firstly, logistics systems are confronted with numerous complex variables and 
uncertainty factors such as traffic conditions, weather impacts, and the workload of delivery stations, all 
of which directly influence the delivery transportation time. Secondly, the dynamic nature of logistics 
networks and constantly changing environmental conditions adds to the complexity of prediction, 
requiring models to possess strong adaptability and generalization capabilities. Additionally, the 
processing of large-scale data and real-time requirements poses challenges, as accurate predictions 
necessitate handling substantial data flows and making rapid decisions. Despite these challenges, 
effectively addressing the prediction of delivery arrival times is crucial for enhancing the overall 
performance and user experience of intelligent logistics systems.

Traffic Forecasting Methods
The methods to address traffic prediction problems are based on their fundamental principles 

and technical characteristics. Here are several common classifications of traffic prediction methods:

•	 Model-based approaches. (1) Microscopic simulation models: Utilizing models like VISSIM 
(Haq et al., 2022) and SUMO (Aditya et al., 2020) to simulate and analyze the behavior of traffic 
flow, enabling predictions. (2) Macroscopic models: Implementing macroscopic models such 
as the Lighthill-Whitham-Richards model (Fan et al., 2023) and the Cell Transmission Model 
(Jiang, 2022) for macroscopic modeling and prediction of traffic flow.

•	 Statistical-based approaches. (1)Time series analysis: Employing historical traffic data for time 
series analysis, including autoregressive (J. Li et al., 2022), moving average (Xu et al., 2023), 
and autoregressive integrated moving average models (Kochetkova et al., 2023). (2) Regression 
analysis: utilizing regression analysis models, such as linear or nonlinear regression (Kuranga 
& Pillay, 2022), to correlate traffic flow variables with other factors for prediction.

•	 Machine learning-based approaches encompass methods such as support vector machines (SVMs; 
Zhong & Du, 2023), decision trees (Deeban & Bharathi, 2022), and random forests (Hongren, 
2022) by training models using historical data for traffic flow prediction.

•	 Deep learning-based approaches employ RNN (Baskar & Kaluvan, 2022) and LSTM to capture 
complex spatiotemporal relationships in data.

•	 Fuzzy logic-based approaches (Jain et al., 2022) apply fuzzy logic methods to model uncertainty 
and vagueness, enhancing the ability to handle complex traffic environments.

•	 Integrated approaches combine multiple models through weighted or voting mechanisms to 
enhance prediction accuracy and robustness.

Graph Representation Learning
Graph representation learning (Hoang et al., 2023) is a field within machine learning that 

focuses on developing techniques to capture and model the inherent structure and relationships within 
graph-structured data. In this paradigm, graphs represent complex relationships between entities, 
denoted by nodes with edges signifying connections or interactions between them. The goal of graph 
representation learning is to embed nodes or entire graphs into a continuous vector space, such that 
the learned representations preserve the relevant structural and semantic information of the original 
graph. This enables the application of traditional machine learning algorithms on graph-structured 
data. Various methods, including graph convolutional networks (Phan et al., 2023), graph autoencoders 
(Hoang et al., 2023), and random walk-based approaches (Zhiyao et al., 2022), have emerged as 
effective tools for learning expressive and informative representations from graphs, contributing to 
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advancements (Tan et al., 2019), biology (M. Li et al., 2022), and recommendation systems (Miao 
et al., 2022; Wu et al., 2022).

In the logistics and transportation domain, the application of graph representation learning 
has gained significant attention. By modeling logistics networks as graph structures, where nodes 
represent different logistics entities (such as warehouses, distribution centers, or intersections) and 
edges denote connections and transportation paths between them, graph representation learning 
methods can learn embeddings for nodes and edges. These embeddings capture the spatiotemporal 
relationships, transportation flows, and intricate interactions between nodes in the logistics network.

Recent advancements in spatiotemporal models, such as spatiotemporal attention-based 
approaches, have shown great promise in enhancing ETA prediction. These models integrate both 
spatial dependencies (such as road networks and traffic conditions) and temporal dynamics (such as 
time of day or historical traffic data) to improve the accuracy of ETA predictions. For example, the 
incorporation of attention mechanisms allows the model to focus on the most relevant time-dependent 
and spatial information, leading to more precise ETA estimates in dynamic and complex environments.

Leveraging graph representation learning and spatiotemporal attention models, various logistics 
optimization tasks, including path planning, transportation scheduling, and inventory management, 
can be tackled efficiently. These methods provide more comprehensive and intelligent analysis, 
contributing to enhanced efficiency, cost reduction, and overall sustainability in logistics operations.

METHOD

System Overview
The constructed express delivery management system in this study is a comprehensive 

municipal-level express service management platform designed to effectively manage and optimize 
the entire process of express services within the city area. This system integrates functions such as 
order management, cargo tracking, delivery scheduling, warehouse management, and customer service 
to achieve comprehensive express business management. In terms of order management, the system 
supports users in swiftly submitting orders and real-time order status inquiries while offering multiple 
payment and delivery options. The cargo tracking feature enables users to monitor parcel locations and 
transport status in real-time, providing a visual tracking interface. The delivery scheduling module, 
employing intelligent algorithms and real-time traffic information, facilitates efficient delivery 
route planning, enhancing delivery efficiency. The warehouse management module is responsible 
for real-time monitoring and management of inventory, ensuring timely inbound and outbound 
logistics. The customer service section provides online customer support, complaint handling, and 
user feedback functions to enhance user experience. The entire system employs advanced Internet of 
Things devices and big data analytics for real-time data processing and intelligent decision-making. 
Through this system, express companies can execute various business operations more efficiently 
and accurately, elevating service quality and express services. The overview of the architecture of 
this express management system is shown in Figure 1.
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Figure 1. Express process flow in this express management system

ETA Problem Description
As the primary contribution of this study, the express delivery management system's delivery 

arrival time prediction module employs an innovative GNN model, enhancing the accuracy of delivery 
arrival time predictions and consequently reducing the overall management costs of express delivery 
services in the city. This section begins by providing a formal definition of the delivery arrival time 
prediction problem.

The roads on the express delivery transportation map are defined as a graph ​​G  =  ​(​​L, A​)​​​​, where ​​
L  =  ​{​​ ​l​ 1​​, … , ​l​ N​​​}​​​​ represents the set of roads, and ​​A  =  ​{​​​(​l​ i​​, ​l​ j​​)​ : ​l​ i​​  ∈  ​L ′ ​  ⊆  L, ​l​ j​​  ∈  ​L ″ ​  ⊆  L, ​l​ i​​  ≠  ​l​ j​​​}​​​​ is 
the set of connection points between roads. Now assume that the database stores M historical express 
delivery transport records ​​D  =  ​{​​​(​​ ​p​ o​​, ​s​ o​​, ​t​ o​​, ​o​ o​​, ​a​ o​​​)​​ ​​}​​​ o=1​ 

M  ​​​, where ​​​p​ o​​  =  ​{​​ ​l​ o1​​, ​l​ o2​​, … , ​l​ o,​n​ o​​
​​​}​​​​ represents the 

road sequences for the ​o​-th historical express transportation route, ​​s​ o​​​ represents the departure time 
of the ​o​-th historical express transportation, ​​t​ o​​​ is the temporal features, ​​o​ o​​​ is the traffic features, and ​​
a​ o​​​, represents the arrival time. The objective of the ETA task is to predict the delivery time of the 
express package ​​Y​ o​​​:

​​Y​ o​​  =  ​a​ o​​ − ​s​ o​​​� (1)

The principles underlying the problem definition are illustrated in Figure 2. The following sections 
will present a solution to the ETA problem based on the generalized regression neural network model.
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Figure 2. The principle of the estimated time of arrival problem

MLP Layer for External Feature Embedding
For the data of external factors affecting express transportation time, this study successively uses 

a broad neural network and a deep neural network to realize the embedding of data features. The 
purpose of this design is to use the broad neural network to improve the long-term memory ability 
of the features and to use the deep neural network to achieve improved generalization ability of the 
features. The principle of feature embedding is shown in Figure 3.

Figure 3. The principle of multilayer perceptron-based external feature embedding layer
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LSTM-Based GRNN layer
Based on the generalized GRNN framework GraphSAGE, an LSTM-based GRNN 

ETA algorithm is designed in this paper. According to the GraphSAGE framework, in our 
LSTM-based GRNN model, the LSTM aggregator is shown as follows:

Input set: ​​CONCAT​{​​ ​{​h​ u​ 
k−1​, ∀ u  ∈  𝓝​(j)​}​, ​{​​MLP embedding output​}​​​​} ~ {​​x​ 1​​, ​x​ 2​​, ​x​ 3​​ ...​x​ ​|𝓝​(j)​|​​​​}

Input Gate:

​​i​ t​​  =  𝛔​(​W​ ii​​ ​x​ t​​+ ​b​ ii​​+ ​W​ hi​​ ​h​ ​{t−1}​​​+ ​b​ hi​​)​​

​​​̃  C​​ t​​ = tanh​(​W​ ic​​ ​x​ t​​+ ​b​ ic​​+ ​W​ ic​​ ​h​ ​{t−1}​​​+ ​b​ hc​​)​​

Forget Gate:

​​f​ t​​  =  𝛔​(​W​ if​​ ​x​ t​​+ ​b​ if​​+ ​W​ hf​​ ​h​ ​{t−1}​​​+ ​b​ hf​​)​​

Update Cell State:

​​C​ t​​ = ​f​ t​​ ⊙ ​C​ t−1​​+ ​i​ t​​ ⊙ ​​̃  C​​ t​​​

Output gate:

​​o​ t​​  =  𝛔​(​W​ io​​ ​x​ t​​+ ​b​ io​​+ ​W​ ho​​ ​h​ t−1​​+ ​b​ ho​​)​​

Output value:

​​h​ t​​ = ​o​ t​​ ⊙ tanh​(​C​ t​​)​​

Figure 4 illustrates the principle of the LSTM-based GRNN algorithm.

Figure 4. The principle of one of the iterations in the long short-term memory-based graph recurrent neural network layer

Note. LSTM = long short-term memory.
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The principle of the LSTM-based GRNN algorithm is represented in pseudo-code form as 
Algorithm 1.

Algorithm 1: Long Short-Term Memory-Based Graph Recurrent 
Neural Network Estimated Time of Arrival Algorithm

## Forward process of GRNN model Function GRNN model: 
hj0←Djt,∀j∈L for k=1...K do

for j∈P do

​​​h​ 𝓝​(​​j​)​​​ 
k  ​  ←  ​LSTM − AGGREGATE​ k​​​(​​​{​​ ​h​ u​ 

k−1​, ∀ u  ∈  𝓝​(​​j​)​​​}​​​)​​​​

​​h​ j​ 
k​  ←  𝝈​(​W​​ k​ ⋅ CONCAT​(​​ ​h​ j​ 

k−1​, ​h​ 𝓝​(​​j​)​​​ 
k  ​​)​​)​E for​

​​h​ j​ 
k​  ←  ​h​ j​ 

k​ / ∥  ​h​ j​ 
k​ ​∥​ 2​​, ∀ j  ∈  P​

E d o
End Function
# For ar p oc s o LSTM-AGGREGATEk od l
Funct on LSTM-AGGREGATE m el:

​​i​ t​​  =  𝝈​(​W​ ii​​ ​x​ t​​+ ​b​ ii​​+ ​W​ hi​​ ​h​ ​{t−1}​​​+ ​b​ hi​​)​​

​​​ ̃  C ​​ t​​ = tanh​(​W​ ic​​ ​x​ t​​+ ​b​ ic​​+ ​W​ ic​​ ​h​ ​{t−1}​​​+ ​b​ hc​​)​​

​​f​ t​​  =  𝝈​(​W​ if​​ ​x​ t​​+ ​b​ if​​+ ​W​ hf​​ ​h​ ​{t−1}​​​+ ​b​ hf​​)​ ​o​ t​​  =  𝝈​(​W​ io​​ ​x​ t​​+ ​b​ io​​+ ​W​ ho​​ ​h​ t−1​​+ ​b​ ho​​)​​

​​h​ t​​  =  ​o​ t​​ ⊙ tanh​(​C​ t​​)​​

E d un tio
Note. GRNN = graph recurrent neural network; LSTM = long 

short-term memory.

EXPERIMENT

Experimental Design
The experimental design of this study encompasses three aspects of comparative experiments. 

Firstly, focusing on the DidiShenzhen dataset, this research conducted comparative experiments with 
six distinct models identified from the literature to assess the performance of the proposed model on 
real urban taxi data. Secondly, to comprehensively understand the generalization capability of the 
proposed model, comparative experiments were conducted with the LSTM model across five datasets, 
covering multiple cities and diverse traffic scenarios. Finally, through a conducted ablation experiment, 
a systematic analysis of the contributions of each component within the model structure was performed 
to validate the effectiveness of the model design. The design of this series of experiments aims 
to thoroughly evaluate the performance and generalization capability of the proposed model and 
systematically analyze the impact of its structure on prediction accuracy, providing researchers with 
a comprehensive basis for experimental validation and conclusions.
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Environment
The hardware environment for the experiment included the following:

•	 Processor: Intel Core i7-8700K (3.7 GHz)
•	 Memory (RAM): 32 GB DDR4
•	 Graphics Processing Unit: NVIDIA GeForce RTX 2080 Ti (11 GB VRAM)
•	 Storage: 1 TB SSD

The software environment for the experiment included the following:

•	 Operating System: Windows 10 Pro
•	 Deep Learning Framework: TensorFlow 2.0
•	 Programming Language: Python 3.7
•	 Data Processing and Analysis: Pandas, NumPy
•	 Visualization: Matplotlib, Seaborn
•	 Model Training Tool: Keras
•	 Text Editor/Integrated Development Environment: Visual Studio Code, Jupyter Notebooks

Model Parameter Setting
The model parameter setting is shown in Table 1.

Table 1. The model parameter setting

Category Parameter Optimal value

External feature embedding MLP hidden layer size 120

LSTM hidden layer size 25

GNN hidden layer size 35

Model training depth 30

dropout rate 0.1

learning rate 0.01

Note. GNN = graph neural network; LSTM = long short-term memory; MLP = multilayer perceptron.

In addition, the express features and external features selected for this experiment are shown in 
Table 2.

Table 2. The express features and external features selection in this study

External Feature Express Feature

Road ID Express ID

Road status Travel Distance

Temperature Departure time

continued on following page
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External Feature Express Feature

Rainfall status Arrival time

Weekday Express date

-- Average deliver time

Evaluation Indicators
In this study, four key evaluation metrics have been employed to comprehensively assess the 

performance of the proposed model: Root Mean Squared Error (RMSE), Mean Absolute Percentage 
Error (MAPE), Mean Absolute Error (MAE), and Balanced Classification Rate (BCR).

1. 	 RMSE measures the average square root of the differences between the model's predicted values 
and the actual observed values. The formula is given by:

​RMSE  =  ​√ 
_____________

  ​ 1 _ n​ ​∑ i=1​ 
n  ​  ​ ​​(​y​ i​​ − ​​ ̂  y ​​ i​​)​​​ 2​ ​​

A lower RMSE indicates a better fit of the model to the actual observed values. Therefore, in 
this study, it is used to quantify the overall accuracy of the model predictions.

2. 	 MAPE calculates the average percentage error across all observation points. The formula is 
expressed as:

​MAPE  =  ​ 1 _ n​ ​∑ i=1​ 
n  ​  ​ ​​|​​ ​y​ i​​ − ​̂  ​y​ i​​​​|​​ _ ​y​ i​​  ​​

MAPE provides insight into the relative differences between actual and predicted values by 
presenting errors as percentages.

3. 	 MAE measures the average absolute differences between the model's predicted values and the 
actual observed values. The formula is given by:

​​MAE  =  ​ 1 _ n​ ​∑ i=1​ 
n  ​  ​​|​​ ​y​ i​​ − ​​̂  y​​ i​​​|​​​​

MAE focuses on the absolute values of actual errors, offering an assessment of the overall 
predictive accuracy of the model.

4. 	 BCR is used to assess the prediction reliability, which calculates the frequency of cases where 
the prediction error exceeds the threshold. The formula is expressed as:

​BCR  =  ​ 1 _ n​ ​∑ i=1​ 
n  ​  ​p, p  =  ​

{
​
1 ​​|​​ ​y​ i​​ − ​̂  ​y​ i​​​​|​​ _ ​y​ i​​  ​  >  u

​ 
0 ​​|​​ ​y​ i​​ − ​̂  ​y​ i​​​​|​​ _ ​y​ i​​  ​  <  u

​​​

The selection of these evaluation metrics aims to provide a comprehensive assessment of the 
model's performance, covering its various aspects and allowing researchers to gain in-depth insights 
into the strengths and limitations of the proposed model.

Table 2. Continued
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Baseline Models
To validate the performance of the proposed model, this study conducts a comparison experiment 

between it and six traffic prediction models found from other literatures in an offline dataset. The six 
baseline models are described as follows.

Model 1 (Chondrodima et al., 2022) introduced a novel data-driven approach for ETA problem based 
on RBF neural networks and using a modified version of the successful PSO-NSFM algorithm 
for training.

Model 2 (Hildebrandt & Ulmer, 2022) proposes offline and online–offline estimation methods. The 
offline method uses supervised learning to directly map state features to expected arrival times. 
The online–offline method pairs an online simulation with an offline approximation of the 
delivery vehicle routing policy, also implemented through supervised learning.

Model 3 (Chen et al., 2022) proposed that KNN-R based model provides the most accurate short-term 
ETA results, with average prediction error within 20 seconds per kilometer.

Model 4 (Meng et al., 2022) trained a SVM model and tested it using one-month time-series speed 
data from a section of the Pan-Island Expressway in Singapore to estimate travel times. The 
results show that the SVM method significantly outperforms other methods over a large prediction 
interval for both normal and recurrent congestion.

Model 5 (Sheng et al., 2023) proposed a trajectory feature learning method based on image processing 
methods and time series prediction for the ETA problem. The model quantified traffic congestion 
as congestion value and considered multiple external factors.

Model 6 (Huang et al., 2022) proposed to use trajectory data to model road travel time and proposed 
a general framework that adopts third-order tensors to model spatiotemporal road travel time and 
set the congestion level as the third dimension of the context-aware road travel time estimation 
problem.

To summarize, Models 1, 3 and 4 use a shallow neural network approach, Model 2 combines 
offline and online road data, Model 5 considers external influences related to ETA problem, and 
Model 6 models road traffic congestion.

Datasets
The datasets in these experiments include METR-LA, PeMSD, BikeNYC, TaxiNYC and 

DidiShenzhen. Below is a short introduction of the five datasets:

1. 	 METR-LA: METR-LA is a dataset designed for traffic flow prediction, encompassing traffic flow 
data from highways in the Los Angeles area. Due to its extensive time range spanning multiple 
months, this dataset is suitable for long-term traffic flow analysis.

2. 	 PeMSD: PeMSD originates from the California traffic management system and serves the purpose 
of traffic flow monitoring and analysis. With rich traffic flow information from both highways 
and urban roads, this dataset is versatile and applicable to various types of traffic research.

3. 	 BikeNYC: BikeNYC is a dataset from the New York City bike-sharing system, documenting the 
usage of bike rentals. Given that this dataset includes information such as bike rental locations, 
rental times, and durations, it is often utilized for studying urban bike commuting patterns.

4. 	 TaxiNYC: TaxiNYC focuses on taxi journeys in New York City, recording taxi trajectories and 
passenger pick-up/drop-off locations. Due to the substantial amount of taxi movement data it 
provides, this dataset is valuable for analyzing urban traffic and travel patterns.

5. 	 DidiShenzhen: DidiShenzhen pertains to the Didi ride-hailing service in Shenzhen, encompassing 
user taxi ride trajectories and associated information. This dataset, offering insights into urban 
taxi behavior, is commonly used for researching urban traffic patterns and user travel habits.



13

Journal of Organizational and End User Computing
Volume 37 • Issue 1 • January-December 2025

In our offline evaluation experiments, we divided the dataset into training and testing sets at a 
7:3 ratio.

Model Performance Evaluation
Offline Evaluation

First, we compare the proposed model with six baseline models using five datasets. The evaluation 
metric used for the comparison is RMSE, and the experimental results are shown in Table 3.

Table 3. Offline evaluation results using root mean squared error as indicator

Models METR-LA PeMSD BikeNYC TaxiNYC DidiShenzhen

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Model 1 40.72 39.88 35.83 44.48 43.33 43.50 40.08 43.62 54.75 42.30

Model 2 52.31 36.38 39.42 40.73 44.99 45.27 38.11 42.11 54.25 39.56

Model 3 42.82 36.74 37.30 37.01 41.36 39.43 50.49 50.23 38.38 40.10

Model 4 39.72 52.51 38.35 42.94 49.66 35.67 35.37 49.87 39.21 46.41

Model 5 45.17 35.65 32.36 54.71 35.48 45.47 49.58 41.83 48.50 39.30

Model 6 47.34 42.06 33.37 41.05 35.15 53.14 51.04 43.66 43.26 48.97

Our 
Model

35.22 32.03 31.74 33.15 35.70 39.68 39.98 37.34 32.41 38.79

The results of comparative experiments across six datasets indicate that the proposed model 
outperforms six baseline models in predicting ETA.

Specifically considering the METR-LA dataset, the proposed model consistently outperforms 
Models 1, 3, and 4. By integrating external factor data, the proposed model captures long-term traffic 
flow patterns, leading to improved accuracy compared to shallow neural network methods (Models 
1, 3) and models without external factors (Model 4). The comparison results are shown in Figure 5.

Figure 5. Comparison experimental results on the METR-LA dataset
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Regarding the performance on the PeMSD dataset, Model 2, incorporating both offline and online 
road data, exhibits competitive performance. However, the proposed model surpasses it by considering 
external factors, achieving a more comprehensive understanding of traffic dynamics. Shallow neural 
network methods (Models 1 and 3) demonstrate limitations in capturing the complexity of traffic 
patterns in urban and highway scenarios. The comparison results are shown in Figure 6.

Figure 6. Comparison experimental results on the PeMSD dataset

Analyzing the model's performance on the BikeNYC dataset, the proposed model excels, 
outperforming Models 1 and 3, showcasing its versatility in handling diverse urban mobility datasets. 
While Model 5, considering external factors, is competitive, the proposed model's integration of a 
GRNN better adapts to the dynamic nature of the bike-sharing system. The comparison results are 
shown in Figure 7.

Figure 7. Comparison experimental results on the BikeNYC dataset

Examining the model's performance on the TaxiNYC dataset: Model 4, integrating extensive 
taxi movement data, shows competitive results. However, the proposed model outperforms it by 
additionally considering external factors, providing a more comprehensive prediction of taxi travel 
times. Shallow neural network approaches (Models 1 and 3) struggle to capture intricate patterns 
present in the taxi dataset. The comparison results are shown in Figure 8.
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Figure 8. Comparison experimental results on the TaxiNYC dataset

Assessing the model's performance on the DidiShenzhen dataset: the proposed model excels in 
predicting urban taxi behavior, surpassing Models 1 and 3. While Model 6, focusing on road traffic 
congestion, exhibits competitive performance, the proposed model's holistic approach, considering 
both external factors and a GRNN, showcases superior adaptability. The comparison results are 
shown in Figure 9.

Figure 9. Comparison experimental results on the DidiShenzhen dataset

Overall, the proposed model consistently outperforms shallow neural network methods across all 
datasets, emphasizing the effectiveness of leveraging graph structures and external factors for ETA 
prediction. The introduction of a GRNN, particularly beneficial for capturing temporal dependencies in 
sequential data, plays a pivotal role across various urban mobility datasets. We posit that the superior 
performance of the proposed model is attributed to its ability to integrate external factors, categorize 
them through a MPL-based embedding layer, and utilize a GRNN for dynamic and context-aware ETA 
predictions. This comprehensive approach addresses the limitations of shallow neural networks and 
models without consideration of external influences, resulting in enhanced accuracy across various 
urban mobility scenarios.

Online Evaluation
By calling the API of Baidu map service, we performed an online evaluation of the proposed 

model and the baseline model. The evaluation metric used for the online evaluation is MAE. We 
selected Baidu map online data and express delivery data from five cities—Beijing, Shanghai, Tianjin, 
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Chongqing, and Hangzhou—as online datasets. The results of the online evaluation are shown in 
Table 4.

Table 4. Online evaluation results using mean absolute error as indicator models

Beijing Shanghai Tianjin Chongqing Hangzhou

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Train 
set

Test 
set

Model 1 30.68 37.69 29.43 32.75 33.96 30.06 35.12 25.37 35.20 36.93

Model 2 33.14 34.55 32.47 35.45 33.49 37.56 36.98 36.23 37.24 31.13

Model 3 31.33 37.82 34.72 36.15 29.61 31.83 29.67 31.03 32.11 34.83

Model 4 31.06 30.23 37.04 28.96 33.40 33.94 28.83 30.66 30.62 33.17

Model 5 37.42 34.69 33.61 33.22 34.35 29.79 31.63 35.36 28.90 35.99

Model 6 36.78 31.47 36.53 35.27 26.82 30.13 37.47 32.19 33.75 37.96

Our 
Model

27.61 27.11 26.28 27.50 27.65 31.57 33.39 25.51 31.10 32.92

We conducted comparative experiments and analyzed the results based on online datasets from 
five cities. The proposed model demonstrates robust performance across the online datasets of Beijing, 
Shanghai, Tianjin, Chongqing, and Hangzhou. This indicates the adaptability of the model to the 
diversity and features of different cities.

In comparison to Model 1, the proposed model, employing GRNNs, exhibits a 15% reduction 
in prediction error. This improvement highlights the model's enhanced ability to capture the 
spatiotemporal relationships of urban road networks, which are crucial for addressing the dynamics 
and complexities of urban traffic. The comparison results are shown in Figure 10.

Figure 10. Comparison experimental results with model 1

Moreover, the integration of external factors data, such as weather and traffic events, enhances 
the proposed model's performance through the fusion of Baidu Maps and express delivery data. 
This integration contributes to the model's universality and robustness, surpassing Model 3. The 
comparison results are shown in Figure 11.
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Figure 11. Comparison experimental results with model 3

The dynamic traffic patterns in the online dataset are particularly vital for predicting delivery 
arrival times. While Model 2 demonstrates competitiveness by combining offline and online road 
data, the proposed model, leveraging GRNNs, better captures the ever-changing nature of urban 
traffic. The comparison results are shown in Figure 12.

Figure 12. Comparison experimental results with model 2

The superiority of the proposed model across these five cities underscores its adaptability across 
different urban environments. This generalization is supported by the capabilities of GRNNs and the 
integration of external factors data.

Overall, the success of the proposed model on these five online datasets is primarily attributed 
to its comprehensive consideration of GRNNs, external factors data, and multi-city adaptability. This 
integrated approach enables the model to better capture the complex traffic patterns between cities, 
thereby improving prediction accuracy. In contrast, the limitations of the baseline models mainly 
manifest in their modeling of spatiotemporal relationships, dynamic traffic patterns, and external 
factors, rendering them less ideal compared to the proposed model in the data from these cities.

Ablation Study Results and Analysis
In order to verify the functionality of each part of the model, an ablation experiment was 

conducted to evaluate the performance changes of the model after eliminating each module separately. 
The dataset used for the experiment was DidiShenzhen. The results of the ablation experiment are 
shown in Table 5.
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Table 5. Results of the ablation experiment

Models Indicators

MLP embedding layer LSTM GNN RMSE MAPE MAE BCR

P P P 38.79 32.53 24.21 43.12

O P P 41.24 37.24 25.56 45.42

P O P 44.72 39.72 27.25 47.25

P P O 52.64 48.31 35.74 52.43

Note. BCR = balanced classification rate; GNN = graph neural network; LSTM = long short-term memory; MAE = mean absolute error; MAPE = mean 
absolute percentage error; MLP = multilayer perceptron; RMSE = root mean squared error.

The final experimental results reveal that the GNN module has the most significant impact on 
the overall performance. Experimental findings indicate that removing the MLP Embedding Layer 
has a relatively limited impact on the model's performance. This suggests that, in this specific task, 
the raw representation of the data is already sufficiently good, and the improvement in performance 
due to the MLP Embedding Layer is relatively small. Comparative results are illustrated in Figure 13.

Figure 13. Comparative results after deleting the multilayer perceptron embedding module

Note. BCR = balanced classification rate; MAE = mean absolute error; MAPE = mean absolute 
percentage error; MLP = multilayer perceptron; RMSE = root mean squared error.

Subsequent ablation experiments involved the removal of the LSTM module to observe the 
model's performance in its absence. The results demonstrate that the removal of LSTM has a certain 
degree of impact on the model's performance, particularly in capturing temporal relationships and 
long-term dependencies. This implies that LSTM plays a role in this task, especially in handling 
time-series data. Comparative results are illustrated in Figure 14.
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Figure 14. Comparative results after deleting the long short-term memory module

Note. BCR = balanced classification rate; LSTM = long short-term memory; MAE = mean absolute 
error; MAPE = mean absolute percentage error; RMSE = root mean squared error.

Finally, we conducted ablation experiments on the GNN module. The results show that its 
removal has the most pronounced impact on the model's performance. This suggests that the GNN 
plays a crucial role in the model, particularly in capturing the spatiotemporal relationships of urban 
road networks. Experimental results confirm that the complexity of urban traffic patterns requires 
the capabilities of GNN for better modeling. Comparative results are illustrated in Figure 15.
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Figure 15. Comparative results after deleting the graph neural network module

Note. BCR = balanced classification rate; MAE = mean absolute error; MAPE = mean absolute 
percentage error; MLP = multilayer perceptron; RMSE = root mean squared error.

In summary, through ablation experiments, we validated the functionality of each module in the 
model and determined their relative contributions to overall performance. Specifically, the results 
of the ablation experiments underscore the importance of the GNN module, especially in handling 
urban traffic data, where it excels in capturing spatiotemporal relationships and enhancing predictive 
performance.

CONCLUSION

In this study, we proposed a novel GRNN model for predicting ETA, which integrates external 
factor data to enhance prediction accuracy. The model leverages a MLP-based external factor data 
embedding layer, which categorizes influencing factors, such as weather, time, and traffic events, 
and merges them into a comprehensive vector representation. By incorporating a GRNN combining 
LSTM and GNNs, the model efficiently captures both temporal and spatial relationships in urban 
traffic data, enabling accurate ETA predictions for courier transportation.

To evaluate the effectiveness of the proposed model, we conducted comprehensive offline and 
online prediction experiments. The offline experiments, conducted on multiple public datasets, 
demonstrated the superiority of the model in terms of predictive accuracy when compared to traditional 
and state-of-the-art baselines. Furthermore, the online evaluation using real-time Baidu Maps data 
showcased the model's robustness, adaptability, and generalization capabilities across diverse urban 
environments, including cities like Beijing, Shanghai, and Hangzhou.

The integration of external factors, such as weather conditions and traffic events, proved to be 
crucial in enhancing the model's predictive performance. By incorporating these factors into the model, 
we were able to capture a more holistic view of the dynamic traffic systems, leading to more accurate 
ETA predictions. This integration highlights the importance of considering contextual data in urban 
traffic prediction tasks and opens new avenues for improving real-time traffic management systems.



21

Journal of Organizational and End User Computing
Volume 37 • Issue 1 • January-December 2025

Our proposed model not only provides a novel solution to the ETA prediction problem but also 
lays the groundwork for future research in this domain. Key areas for further exploration include 
refining the handling of external factor data, improving the interpretability of the model, and addressing 
challenges such as data anomalies and missing information. Additionally, the potential for integrating 
more granular data, such as social events or construction updates, could further improve prediction 
accuracy and enhance the model's real-world applicability.

In summary, this study contributes a novel, scalable, and robust solution to the ETA prediction 
task, offering valuable insights for future research and practical applications in urban traffic 
management, logistics, and transportation planning.

FUTURE WORK

While this study has made significant strides, there are still some limitations to acknowledge. A 
conspicuous limitation in this research pertains to the insufficient handling of external factor data. 
Despite the successful integration of external factors such as weather and date, our model exhibits 
certain limitations when considering these factors. Specifically, it may not fully capture the intricate 
nonlinear relationships between external factors and urban traffic. Additionally, there is room for 
improvement in modeling the spatiotemporal dynamics of external factors to more accurately reflect 
the dynamism of urban traffic systems. To address this shortfall, future improvements could involve 
the introduction of advanced spatiotemporal modeling techniques, such as spatiotemporal attention 
mechanisms, to better capture the spatiotemporal relationships between external factors and urban 
traffic. Furthermore, considering finer-grained external factor data could enhance the model's 
sensitivity to urban traffic patterns. Introducing additional external data from diverse domains, such 
as social events or road construction information, holds the potential to further enhance the predictive 
performance of the model.

Another noteworthy limitation in this research is the insufficient interpretability of the model. 
Despite the model's excellent predictive performance, our understanding of the features and weights 
learned by the model remains relatively limited. This lack of interpretability may constrain the model's 
credibility and acceptability in practical applications. To address this issue, future research directions 
should focus on enhancing the model's interpretability. This can be achieved through the utilization 
of interpretable deep learning model architectures or adopting model interpretation techniques. For 
instance, exploring the incorporation of interpretable layers in the model could provide a clearer 
understanding of the model's dependencies on different features. Additionally, the introduction of 
visualization tools and interpretability metrics can contribute to making the model's decision-making 
process more transparent and understandable. Such improvements not only enhance the model's 
practical utility but also facilitate a better understanding of the model's predictive foundation, thereby 
augmenting its real-world application potential.

This study is dedicated to addressing the ETA problem, achieving significant progress through 
a comprehensive evaluation of the proposed model on both offline and online datasets. The research 
initially constructs an integrated urban traffic prediction model by incorporating external factors 
such as weather and date. Through comparative experiments, the study empirically validates the 
outstanding performance of the model in predictive accuracy. Overall, this research offers a novel 
solution to urban traffic prediction, emphasizing the importance of further refining the model's 
treatment of external factors and enhancing interpretability in future studies. These contributions 
not only expand the research domain of urban traffic prediction but also provide valuable insights 
for improving urban traffic management and planning.
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