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ABSTRACT
A connected undirected graph is called geodetic if for every pair of vertices there is a unique shortest path
connecting them. It has been conjectured that for finite groups, the only geodetic Cayley graphs are odd
cycles and complete graphs. In this article we present a series of theoretical results which contribute to a
computer search verifying this conjecture for all groups of size up to 1024. The conjecture is also verified for
several infinite families of groups including dihedral and some families of nilpotent groups. Two key results
which enable the computer search to reach as far as it does are: if the center of a group has even order, then
the conjecture holds (this eliminates all 2-groups from our computer search); if a Cayley graph is geodetic then
there are bounds relating the size of the group, generating set and center (which significantly cuts down the
number of generating sets which must be searched).
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1. Introduction

Cayley graphs form an important subclass of vertex-transitive and regular graphs. The undirected Cayley graph of a group G with
respect to a generating set � is the connected graph on vertex set V = G and edge set E, where {g, h} ∈ E if and only if there is a
generator a ∈ � such that ga = h. Besides being an important tool in combinatorial group theory, there are also interesting graph-
theoretic questions about Cayley graphs. One example which has been much studied is the longstanding conjecture that every finite
undirected Cayley graph that is not the complete graph on two vertices has a Hamiltonian cycle (see for example [26]).

A connected undirected graph � = (V , E) is called geodetic if for any pair u, v ∈ V , the shortest path from u to v is unique. Research
on geodetic graphs began in 1962, when Ore posed the problem of classifying all such graphs [25]. This goal has been achieved so far
for planar geodetic graphs, and geodetic graphs of diameter two [33, 34]; yet, after decades of active research, a full classification of
finite geodetic graphs has not been attained (for some recent developments, see for example [14, 17, 35]).

In 1997, Shapiro [32] asked whether each finitely generated group that admits a geodetic Cayley graph with respect to some finite
generating set is plain, that is, isomorphic to the free product of finitely many finite groups and finitely many copies of Z. It is well
known and not hard to see that the converse holds: each plain group admits a geodetic Cayley graph (with respect to the generating
set consisting of each non-trivial element of each finite factor, and a cyclic generator for each Z factor). Recently, significant progress
has been made on this question and variants of it [11–13, 21] (see also the paragraph below on related work).

For any group, the Cayley graph with respect to the generating set consisting of every non-trivial element is the complete graph,
which is geodetic. For cyclic groups of odd order, there is a second possibility: taking an arbitrary single generator, the Cayley graph
is an odd cycle, which is also geodetic. The question we study here is whether there is any other possibility. In a 2017 PhD thesis [15],
Federici conjectured that among the finite groups, there is none.

Conjecture A. [15, Conjecture 6] Every finite geodetic Cayley graph is either a cycle of odd length or a complete graph.

We say that a group satisfies Conjecture A if all its possible Cayley graphs satisfy Conjecture A. In this paper we report on a
systematic computer experiment which confirms the conjecture for a significant number of groups.

Theorem B. All groups of size up to 1024 satisfy Conjecture A.

We also show that all groups of even order up to 2014, all simple groups of order up to 5000, and the symmetric group S7 satisfy
Conjecture A. Given that there are approximately 49.5 billion groups of order at most 1024, and each group of order n has 2n−1

potential generating sets, a naive computer search could not possibly achieve the result in Theorem B. Instead, our computer search
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relies on a series of theoretical results concerning finite groups and when they can admit geodetic Cayley graphs. Some of these results
confirm the conjecture for infinite families of groups, as summarized by the following.

Theorem C. A finite group G satisfies Conjecture A if any one of the following conditions holds.

(1) The center Z(G) of G has even order (Theorem 3.12).
(2) The group G contains an abelian subgroup of index two (Theorem 5.4).
(3) The group G is nilpotent and its order does not have certain small divisors depending on the nilpotency class of G (see Theorem 5.9

for the precise statement).
(4) The group G has large commutativity degree (Theorem 5.14).

This cuts down the number of groups which need to be considered enormously, from 49.5 billion to 3197. In fact, just excluding
abelian groups and groups with even-order center leaves 4734 groups of order at most 1024. We note that Conjecture A was shown
to be satisfied by all abelian groups by Georgakopoulos as reported in [15, Proposition 10].

A second key theoretical result is the following, which provides an upper bound on the number of generating sets that the search
must consider for each group.

Theorem D. Let G be a finite group with generating set � such that the Cayley graph Cay(G, �) is a counterexample to Conjecture A,
i.e., it is geodetic but neither complete nor a cycle. Then |�| < 1.07

√|G|.
Article organization. Section 2 sets our notation for groups and graphs, and provides some preliminary results about geodetic graphs.
Theorems C and D are proved via a series of results presented in Sections 3–5. In Section 6 we give details of the implementation of
our computer program. We use GAP [18] and its small group (SmallGrp) library [2] to enumerate the groups and check which of
them are already covered by Theorem C. Then we apply an exhaustive search to check whether there is any geodetic generating set
for any of the remaining groups. This exhaustive search crucially relies on several pruning methods based on variants of Theorem D
and other theoretical results developed in Sections 3 and 4. The code is available at

https://osf.io/9ay6s/?view_only=37e18301e4e74e12bfe4e07b90b924c0.

Related work. As noted above, the first mention of Conjecture A that we are aware of is in the 2017 thesis of Federici [15], where the
conjecture is proved for abelian groups and where it is shown that the Cayley graph of a semidirect product Cm � Cn with Cn acting
faithfully on Cm with respect to the “standard” generating set is not geodetic. Notice that for both m and n sufficiently large, this class
of groups turns out to be one of the most difficult cases for our computer search (see Section 6.5). Besides this result, Federici proves
some helpful lemmas for general geodetic Cayley graphs and runs computer experiments (unfortunately undocumented) which do
not find any geodetic Cayley graphs except the obvious ones.

In 2022 Che [6] programmed an exhaustive computer search as part of an undergraduate project supervised by Alexey Talambutsa
establishing Conjecture A for subgroups of the symmetric group S4. Moreover, for

• all subgroups of S6 with generating sets of size five,
• all subgroups of S7 with generating sets of size four,
• all subgroups of S9 with generating sets of size three,
• all subgroups of S10 with generating sets of size two,

Che showed that none of the corresponding Cayley graphs except complete ones and odd cycles are geodetic. For the source code, see
https://gitlab.com/andr0901/kayley-geodesics. Be aware that restricting the number of generators to five or less is a strong restriction.
(Note that by contrast, Theorem B verifies all generating sets for S6, and Theorem 6.7 below verifies all generating sets for S7. The
groups S9 and S10 are beyond our scope.)

A geodetic Cayley graph for a group corresponds to an inverse-closed confluent length-reducing rewriting system [12], yielding
a connection between a geometric property (being geodetic) and formal languages. Monadic rewriting systems are special cases of
length-reducing rewriting systems, and a result that is similar to Conjecture A is known for monadic rewriting systems: the only
normalized finite confluent monadic rewriting systems for finite groups are those that correspond to complete Cayley graphs, or
those that correspond to directed cycles for cyclic groups [27, Corollary 3.13]. As discussed in [12], it is an interesting open problem
to classify the groups presented by inverse-closed finite convergent length-reducing rewriting systems. One reason to pursue new
examples of finite geodetic Cayley graphs is that, by a simple construction that corresponds to the free product of groups, they
immediately give new examples of infinite geodetic Cayley graphs.

In [13] Townsend and the first two authors generalize the concept of a geodetic graph to graphs which have at most k different
geodesics between any pair of vertices for some constant k, which they call k-geodetic, and study properties of groups which admit
k-geodetic Cayley graphs. While the main focus in [13] is on infinite groups, [13, Example 1.1] gives examples of Cayley graphs of
finite groups that are k-geodetic but not (k − 1)-geodetic or complete for k ≥ 2. The easiest such examples are cyclic groups of even
order with a non-complete 2-geodetic Cayley graph as well as a complete bipartite Cayley graph.

A graph is called strongly geodetic if for every pair of vertices there is at most one non-backtracking path connecting them that has
length at most the diameter of the graph [4]. Clearly, all strongly geodetic graphs are geodetic. By [4, Theorem 1] the class of strongly

https://osf.io/9ay6s/?view_only=37e18301e4e74e12bfe4e07b90b924c0
https://gitlab.com/andr0901/kayley-geodesics
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geodetic regular graphs coincides with the class of so-called Moore graphs, which also have been thoroughly studied in graph theory
(for a definition see [20] or the survey paper [24]). Moreover, by [1, 8] the Moore graphs are completely classified: cycles of odd length,
complete graphs, the Petersen graph, Hoffman-Singleton graph, and potentially hypothesized graphs (not known to exist) with 3250
vertices and degree 57. Of these, only the cycles and the complete graphs are Cayley graphs [5, 24] (we provide an alternative proof
of this fact in Corollary 3.15). Hence, Conjecture A is true if we replace “geodetic” with “strongly geodetic”.

2. Preliminaries

2.1. Groups and words

Throughout this article, we only consider finite groups. We write these multiplicatively, mostly omitting the binary operation
altogether, and denote their identity element by 1. As usual, we write [g, h] = g−1h−1gh for the commutator of two elements g, h
of a group G. The center of G is the subgroup Z(G) = {g ∈ G | [g, h] = 1 for all h ∈ G}. Two elements g, g′ ∈ G are conjugate if
g′ = h−1gh (=: gh) for some h ∈ G. Given g ∈ G and H ⊆ G, we write gH = {gh | h ∈ H}.

We denote by ord(g) the order of g ∈ G, i.e., the smallest positive integer n with gn = 1. The order (number of elements) of the
group G is denoted by |G|, and the exponent of G by exp(G), i.e., the smallest positive integer n such that gn = 1 for all g ∈ G. We
denote the trivial group by 1.

For a subset X ⊆ G, we write 〈X〉 for the subgroup generated by X. It consists of those group elements that can be written as words
over the alphabet � = X ∪X−1. We denote the set of all such words by �∗. Given words v, w ∈ �∗, we write v = w with the meaning
that v and w evaluate to the same group element in G, whereas v ≡ w denotes equality of words.

A subset � ⊆ G with 〈�〉 = G is called a generating set of G. Throughout, we assume that all generating sets satisfy 1 �∈ � and
are symmetric, i.e., a ∈ � implies a−1 ∈ �. We sometimes represent the inverse a−1 of a generator a ∈ � by a to emphasize that it is
a single letter.

The length of a word w = a1 · · · an ∈ �∗ (with ai ∈ �) is denoted by |w| = n. We denote the set of words over � of length n by
�n. A word w ∈ �∗ is called a geodesic for (or representing) a group element g ∈ G if w = g and w is shortest among all words with
that property. The geodesic length of g ∈ G is defined as the length of a geodesic word representing g. If g admits a unique geodesic,
we denote its geodesic by geod(g).

We use the following notation for specific groups. Cn is the cyclic group of order n, D2n the dihedral group of order 2n, and Sn
(resp. An) the symmetric (resp. alternating) group on n elements. A direct product is denoted by × and a semidirect product by �,
where G = N � H means that N is a normal subgroup of G and H a subgroup of G such that G = NH and N ∩ H = 1. Notice that
G/N ∼= H in this case. Be aware that, if we are given only N and H, then writing G = N � H does not completely define G – instead
we need to also specify a homomorphism from H to the automorphism group of N describing the action (h, n) �→ hnh−1 of H on N
(in other words H acts on N via automorphisms).

2.2. Graphs and Cayley graphs

We consider only undirected finite simple graphs � = (V , E) where E ⊆ (V
2
)
. The Cayley graph Cay(G, �) = (V , E) of a group G (with

respect to a generating set � ⊆ G) is defined by V = G and E = {{g, ga} | g ∈ G, a ∈ �}. In other literature the directed Cayley graph
is often considered; however, throughout this paper Cay(G, �) is undirected (and contains no loops) due to the above assumptions
on �. Note that G acts on Cay(G, �) by left multiplication, i.e., g.v = gv and g.{h, ha} = {gh, gha}. In particular, Cay(G, �) is vertex-
transitive. The Cayley graph is connected because � generates G. In fact, it is biconnected for every finite group G with G �= 1 and
G �∼= C2 [36, Theorem 3]. The degree of each vertex is |�|.

Given a graph � = (V , E), a path of length n from v0 ∈ V to vn ∈ V in � is a sequence v0, . . . , vn of vertices (not necessarily
distinct) with {vi−1, vi} ∈ E for all 1 ≤ i ≤ n. A cycle is a path of length at least 3 with vi = vj if and only if {i, j} = {0, n}. The
distance d(u, v) between vertices u and v is defined as the length of a shortest path (geodesic) connecting u and v. The diameter of �

is max{d(u, v) | u, v ∈ V}. Moreover, given v ∈ V and H ⊆ V , we define d(v, H) = min{d(v, h) | h ∈ H} to be the distance of v to
H, N (v) = {u | {u, v} ∈ E} to be the neighborhood of v, and N (H) = ⋃

h∈H N (h) H to be the neighborhood of H ⊆ V .
A subset H ⊆ V is called a clique (resp. independent set) if {u, v} ∈ E (resp. {u, v} �∈ E) for all u, v ∈ H with u �= v. A graph

� = (V , E) is called complete if V is a clique; it is called a cycle if the entire graph is a cycle as defined above.

2.3. Geodetic graphs

Definition 2.1. A graph is geodetic if each pair of vertices is connected by a unique geodesic.

The following equivalent definition using even cycles is due to Stemple and Watkins.

Lemma 2.2. [34, Theorem 2] A connected graph � is geodetic if and only if � contains no even cycle x0, . . . , x2n = x0 with n ≥ 2 such
that d(xi, xi+n) = n for all 0 ≤ i ≤ n.
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An important special case are cycles of length four or six, the conditions under which those can exist are described in [33]. Of
these we recall some basic facts on 4-cycles.

Lemma 2.3. [33, Theorem 3.3] Suppose that � = (V , E) is a geodetic graph. Then the vertices of every cycle v0, v1, v2, v3, v0 of length
four in � induce a complete subgraph.

Remark 2.4. Throughout, we use Lemma 2.3 in the following way without giving further reference. If � is a generating set of a group G
such that the corresponding Cayley graph is geodetic and a, b, c, d ∈ � with a �= c and ab = cd �= 1, then ab, cd, c−1a, bd−1 ∈ � (since
1, a, ab, c, 1 is a cycle of length 4).

Lemma 2.5. [33, Theorem 3.5] Let � = (V , E) be a geodetic graph and C ⊆ V be a clique in �. If v ∈ V is adjacent to at least two
distinct vertices in C, then C ∪ {v} is a clique.

Lemma 2.6. Let � = (V , E) be a geodetic graph. Then the neighbors of any vertex v ∈ V can be partitioned into a set of disjoint cliques.

Proof. Assume for contradiction that x, y, z ∈ N (v) with {x, y} ∈ E, {y, z} ∈ E but {x, z} /∈ E. Then there are two geodesics from x to
z (one via v and one via y), contradicting � being geodetic.

After fixing a starting point in a Cayley graph Cay(G, �) (for instance the vertex corresponding to the identity element 1), paths
starting at 1 are in bijection with words w ∈ �∗ (recall that we always assume the generating set � ⊆ G to be symmetric). This allows
us to denote paths by words in �∗ rather than vertex sequences and leads to the following observation.

Observation 2.7. The Cayley graph Cay(G, �) of a group G is geodetic if and only if each element g ∈ G is represented by a unique
geodesic w ∈ �∗, with the identity element represented by the empty word ε ∈ �∗.

3. Structure of geodetic Cayley graphs

3.1. Complete subgroups

Definition 3.1. Let G be a group with generating set �. We call H ≤ G a complete subgroup (with respect to �) if H {1} ⊆ � or,
equivalently, if H ⊆ G induces a complete subgraph of Cay(G, �).

Lemma 3.2. Let � = Cay(G, �) be geodetic and let C ⊆ G be a maximal clique of � with 1 ∈ C.

(1) Then g−1C = C or g−1C ∩ C = {1} for each g ∈ C.
(2) If C is the only maximal clique C′ with 1 ∈ C′ and

∣∣C′∣∣ = |C|, then C is closed under inversion.

Proof. Recall that multiplying by a group element on the left induces an isomorphism. Since 1 ∈ g−1C ∩ C for each g ∈ C, the
first statement follows from Lemma 2.5. For the second statement, note that we have shown that g−1C = C holds for each g ∈ C by
uniqueness of C. As such, g−1 ∈ g−1C = C.

Note that, in the second case of the previous lemma, where C is the only maximal clique of its size, C is not only closed under
inversion, it is also a subgroup. We prove a more general statement.

Lemma 3.3. Let � = Cay(G, �) be geodetic. If X ⊆ G is a clique of � with 1 ∈ X and such that X is closed under inversion, then 〈X〉
is a complete subgroup.

Proof. Let C ⊆ G be a maximal clique containing X. If g ∈ X {1}, then {g−1, 1, g} ∈ C so {g−1, 1} ∈ g−1C. Hence g−1C ∩ C �= {1}
and so g−1C = C by Lemma 3.2. Thus for any g ∈ X we have C = g(g−1C) = gC. By induction, assume products of i elements of X
lie in C which holds for i = 1. Then g1 . . . gi+1 ∈ g1C = C. This shows that 〈X〉 ⊆ C so 〈X〉 is a clique.

We observe that the second item of Lemmas 3.2 and 3.3 together imply [15, Lemma 14] of Federici.

Lemma 3.4. Let Cay(G, �) be geodetic and let H1, H2 ≤ G be complete subgroups. If H1 ∩ H2 �= 1 then 〈H1, H2〉 is also a complete
subgroup of G.

Proof. Under these assumptions H1 ∪H2 is a clique (Lemma 2.5). Since 1 ∈ H1 ∪H2 and H1 ∪H2 is closed under inversion, 〈H1, H2〉
is a clique by Lemma 3.3.

Lemma 3.5. Let � = (V , E) be a biconnected vertex-transitive non-complete geodetic graph and let C ⊆ V be a clique of � of size k.
Then there is an independent set I ⊆ N (C) of size k2 − k.
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Proof. By [19, Corollary 1] every biconnected non-complete geodetic graph containing a clique of size k also contains the star graph
K1,k as an induced subgraph. In other words, there exists a vertex v ∈ V with an independent set of size k in its neighborhood N (v).
As � is vertex-transitive, for every vertex v ∈ V there is an independent set I(v) ⊆ N (v) of size k.

Fix a maximal clique C̃ of � with C ⊆ C̃ and set Ĩ(v) := I(v) C̃. Note that Ĩ(v) ⊆ N (C). Since an independent set can contain at
most one vertex of any given clique, we have |Ĩ(v)| ≥ |I(v)| − 1 = k − 1.

We claim that Ĩ(u)∩ Ĩ(v) = ∅ for distinct u, v ∈ C. If there were a vertex x ∈ Ĩ(u)∩ Ĩ(v), then we would have x ∈ C̃ by Lemma 2.5,
because x is adjacent to two vertices in C̃. That contradicts the definition of Ĩ, which excludes vertices in C̃.

Let I := ⋃
v∈C Ĩ(v) ⊆ N (C) and observe that |I| ≥ k(k − 1) = k2 − k, as the union is disjoint. It remains to show that I is indeed

an independent set. Assume there are x, y ∈ I with {x, y} ∈ E. By definition of I there are u, v ∈ C such that x ∈ Ĩ(u) and y ∈ Ĩ(v).
We must have u �= v, as Ĩ(u) is an independent set. Now we have a 4-cycle u, x, y, v. By Lemma 2.3 this implies the existence of the
edge {u, y}. Now y is a neighbor of both u and v. That implies y ∈ C̃ by Lemma 2.5, a contradiction with the definition of Ĩ(v).

Proposition 3.6. Let � = Cay(G, �) be a geodetic but not complete Cayley graph. If H ≤ G is a complete subgroup with respect to �,
then |G| ≥ |H|3 − |H|2 + |H|.

Proof. By Lemma 3.5 there is an independent set of size |H|2 − |H| in the neighborhood of H which does not contain any vertex
of H. We now look at the left cosets of H. Each such coset is a clique of �. Thus, each coset can contain at most one point of the
independent set. Since H itself does not contain any point of the independent set, the index of H is at least |H|2 − |H| + 1. Hence,
|G| = |G : H| |H| ≥ |H|3 − |H|2 + |H|.

3.2. Conjugacy classes and elements of order two

Lemma 3.7 (Conjugacy class of generators). Let G be a group with geodetic Cayley graph Cay(G, �) and H ≤ G such that H = 〈H∩�〉.
If xH ⊆ � for some x ∈ �, then H ∩ � = {x±1} or H is a complete subgroup. In particular, if xG ⊆ � for some x ∈ G, then Cay(G, �)

satisfies Conjecture A.

Proof. If y ∈ H ∩ � with y �= x±1, then xy ∈ � and, therefore, yxy = xy ∈ � as this element cannot have length zero or two. We
also have x−1y ∈ � and yx±1 ∈ � by symmetry.

If H ∩ � �= {x±1}, then there exists y ∈ H ∩ � with y �= x±1. We will show that every uv ∈ G with u, v ∈ H ∩ � has length at
most one. If u �∈ {x±1} and v ∈ {x±1}, or vice versa, then this follows from the argument above. Otherwise, first consider the case
that u, v �∈ {x±1} and define u′ := ux and v′ := xv. As u′ = ux = xuu, we have u′ ∈ � and likewise v′ ∈ �. Since uv = u′v′, it follows
that uv ∈ �. If u, v ∈ {x±1}, we set u′ := uy and v′ := y−1v and by the same argument conclude that uv ∈ �.

Finally, if xG ⊆ �, then either � = G ∩ � = {x±1} or G is a complete subgroup of itself (or both in case G ∼= C2 or G ∼= C3).
In the first case, G = 〈

x±1〉 is a cyclic group. If, moreover, |G| > 2, then Cay(G, �) is a cycle of length |G|, which has to be odd as an
even cycle is not geodetic. Otherwise as well as in the second case, Cay(G, �) is complete.

The above lemma may seem technical but is extremely useful, for example, as demonstrated by the following consequences. For
the first of these, note that xG = {x} whenever x ∈ Z(G).

Corollary 3.8 (Generator in center). If Z(G) ∩ � �= ∅, then Cay(G, �) satisfies Conjecture A.

From this we obtain the following result first shown by Georgakopoulos and presented in [15].

Corollary 3.9. [15, Proposition 10] If G is a finite abelian group, then G satisfies Conjecture A.

Proof. This is immediate from Corollary 3.8 since G = Z(G).

Note that Lemma 3.7 can also be applied to deduce the completeness of a subgroup. A simple example of such an application is as
follows. (Another example of this kind can be found in Lemma 6.5 and both of these observations are used to facilitate our computer
search.)

Corollary 3.10 (Commuting generators). Let Cay(G, �) be geodetic and x, y ∈ �. If xy = yx and y �= x±1, then 〈x, y〉 ≤ G is a
complete subgroup.

Proof. Apply Lemma 3.7 with H = 〈x, y〉.

If a group has an element of order two we have the following.
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Lemma 3.11 (Order-two elements). Let G be a group with generating set � such that the Cayley graph is geodetic. Let g ∈ G be an
element of order two. Then the geodesic for g is of the form

(w1 · · · w�) · w�+1 · (w� · · · w1)

of length 2� + 1 where � ∈ N and wi ∈ � for each 1 ≤ i ≤ � + 1. In particular, � contains an element of order two conjugate to g,
namely w�+1.

Proof. Let w1 · · · wk ∈ �∗ be a geodesic for g. We have g = g−1 and thus w1 · · · wk = wk · · · w1. Hence, we have two paths of
length k that lead from 1 to g. Since Cay(G, �) is geodetic, g must have a unique geodesic, i.e., the two paths must coincide; hence,
wi = wk−i+1 for i ∈ {1, . . . , k}.

If k is even, then g = (w1 · · · wk/2) · (wk/2+1 · · · wk) ≡ (w1 · · · wk/2) · (wk/2 · · · w1) = 1, contradicting the assumption that g is of
order two. Thus, k = 2� + 1 must be odd and we obtain the equation

g = (w1 · · · w�) · w�+1 · (w�+2 · · · wk)

≡ (w1 · · · w�) · w�+1 · (w� · · · w1).

Hence, g is conjugate to w�+1 ∈ � and w�+1 = w�+1, proving the lemma.

The above results lead to the following observation which turns out to be extremely useful in any computer search, since it shows
that every 2-group immediately satisfies Conjecture A.

Theorem 3.12 (Even order center). Let G be a group such that Z(G) is of even order. Then the only geodetic Cayley graph of G is the
complete graph.

Proof. Assume we have a geodetic Cayley graph of G. By Lemma 3.11, the generating set � must contain at least one element of each
conjugacy class of elements of order two in G. Since Z(G) is of even order it must contain an element g of order two. As g is in the
center of the group, it is not conjugate to any other elements. Hence, g ∈ � and by Corollary 3.8, the Cayley graph is either complete,
or an odd cycle. Since G contains an even order subgroup, G itself has even order. Therefore, the Cayley graph cannot be an odd cycle,
so it must a be complete graph.

Remark 3.13. All but 4734 groups of the approximately 49.5 billion groups of order at most 1024 are covered by the combination of
Theorem 3.12 and Corollary 3.9.

3.3. Cayley graphs of diameter two

Proposition 3.14. If G is of even order, then G has no geodetic Cayley graph of diameter two.

Proof. Assume that � = Cay(G, �) is a geodetic Cayley graph of diameter two and |G| is even. Since |G| is even, G has elements of
order two. Since � is geodetic and has diameter two, each such element is contained in � by Lemma 3.11. But then � contains an
entire conjugacy class. By Lemma 3.7, the graph � would therefore have to be complete or a cycle, both of which are absurd.

This affords a short elementary proof of the (well-known) fact that the Moore graphs of diameter two, other than C5, are not Cayley
graphs (see [5, Theorem 3.13], [24, 29]).

Corollary 3.15. The Petersen graph, the Hoffman-Singleton graph, and all of the hypothetical Moore graphs of degree 57 and diameter
two are not Cayley graphs.

Proof. As each graph has an even number of vertices and diameter two, this follows from Proposition 3.14.

In order to prove the next lemma, we recall the following definition. A graph � is called strongly regular with parameters (δ, λ, μ)

if every vertex has degree δ, any two adjacent vertices share exactly λ neighbors, and any two non-adjacent vertices have exactly
μ neighbors in common. A necessary condition for a graph with v vertices to be strongly regular with parameters (δ, λ, μ) is the
equation (v − δ − 1)μ = δ(δ − λ − 1). Clearly, every strongly regular graph with parameter μ = 1 is geodetic and has diameter two,
and in this case the above condition becomes

v = δ(δ − λ) + 1. (1)

Lemma 3.16. If � = Cay(G, �) is geodetic and has diameter two and |G| < 2025, then � is the cycle C5.
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Figure 1. The situation in the proof of Lemma 3.17. Note that s, t have order two, so edges labeled s, t are drawn as undirected.

Proof. From [22, 33] (see also [3, Theorem 1]), we have that every geodetic graph of diameter two falls into one of the following
classes: block graphs joining all cliques in one vertex, biconnected graphs with exactly two different vertex degrees, and strongly
regular graphs with parameter μ = 1.

Among these, the strongly regular graphs are the only regular graphs. If the parameter λ is zero, then � is a Moore graph. The
Moore graphs of diameter two are the cycle C5, the Petersen graph, the Hoffman-Singleton graph and hypothetical graphs of degree
57 [1, 8]. Hence, by Corollary 3.15, only C5 remains.

Deutsch and Fischer [10] showed that if λ > 0, then we have λ > 1 and either (δ, λ) = (21, 2) or

δ ≥ (λ + 1)(λ + 13) (2)

[10, Theorem 4.1 and Corollary]. By the Handshake Lemma, an odd degree is only possible for a group of even order and hence
is excluded by Proposition 3.14. This excludes the case (21, 2). For the second case, if λ ≥ 3, then Equations (1) and (2) yield
|G| = δ(δ − λ) + 1 ≥ λ4 + 27λ3 + 208λ2 + 351λ + 170 ≥ 3905. For λ = 2 we obtain δ ≥ 45. Again, δ must be even; hence, δ ≥ 46
and δ − λ ≥ 44. Applying these bounds to Equation (1), we obtain |G| = δ(δ − λ) + 1 ≥ 46 · 44 + 1 = 2025.

We note that an alternative proof of Lemma 3.16 with a bound of 1300 has been provided to us by Filippo Prandina, which relies
on a database by Brouwer1 of strongly regular graphs.

3.4. Central elements

Lemma 3.17. Let Cay(G, �) be geodetic and b, t ∈ �. Suppose that b2 �= 1, t2 = 1, and b2t = tb±2. Then the subgroup 〈b, t〉 ≤ G is
complete with respect to �.

Proof. If bt = tb±1, then the statement follows from Lemma 3.7, so assume that bt �= tb±1 holds. As bbt = tbb or bbt = tbb, we have
s := btb = btb or s := btb = btb, respectively. In particular, there are two words of length three representing s; thus there must be a
shorter one. Moreover, since s has order two, its geodesic must have odd length. Hence, s ∈ �. The situation is as shown in Figure 1.

Let H := 〈b, t, s〉 = 〈H ∩ �〉 ≤ G. One may verify by straightforward computations (conjugating st by b, b̄, s, t) that (st)H =
{st, ts} ⊆ �. The statement then follows using Lemma 3.7.

Lemma 3.18. Let Cay(G, �) be geodetic. If there exists some b ∈ � with b2 �= 1 and (b2)G ⊆ {b±2}, then Cay(G, �) is an odd cycle or
a complete graph.

Proof. Suppose first, that (b2)G = {b2} and thus b2 ∈ Z(G). Then either b ∈ Z(G) or b �∈ Z(G). In the first case, the statement follows
immediately from Corollary 3.8. In the second case, |G : Z(G)| is even; hence so is |G|. As such, there exists an element of order two
in G. In fact, there even exists t ∈ � with t2 = 1 by Lemma 3.11. We then obtain (b2)G ⊆ � from Lemma 3.17. The statement now
follows from Corollary 3.8.

Finally, suppose that (b2)G = {b±2} has two elements. Then
∣∣G : CG(b2)

∣∣ = 2 and, as before, there thus exists some t ∈ � with
t2 = 1. The statement follows from Lemmas 3.17 and 3.7.

Lemma 3.19 (Flat coset). Let G be a group with generating set � such that the Cayley graph is geodetic. If w ∈ �m is a geodesic of
length m and a ∈ � such that aw = wa and w �= a±m, then each h ∈ w〈a〉 has a geodesic of length at most m. Moreover, if w �∈ 〈a〉,
then each h ∈ w〈a〉 has a geodesic of length exactly m.

Proof. We denote by wi the geodesic of wai. Let r be the order of a in G. Observe that w0 = wr .

1https://aeb.win.tue.nl/graphs/srg/srgtab.html

https://aeb.win.tue.nl/graphs/srg/srgtab.html
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Figure 2. The coset w〈a〉 in the case w = ak in the proof of Lemma 3.19.

First, we prove the lemma for the case w �∈ 〈a〉. In this case, awi and wia are two different words, as otherwise w ∈ 〈a〉. Both
awi and wia are of length |wi| + 1 representing wai+1. Thus, there must be a shorter word, implying that |wi+1| ≤ |wi|. Therefore,
m = |wr| ≤ · · · ≤ |wi| ≤ · · · ≤ |w0| = m, and we conclude |wi| = m for all i.

Second, we consider the case w = ak. The proof of this case is illustrated in Figure 2. Recall that wi is the geodesic for wai = ai+k.
Observe that, because the geodesic of ak has length m, we must have m ≤ k. In fact, because w �= a±m, we have m < k. Using the
same argument, we also have m < r − k. We prove by induction on i that |wi| ≤ m. For w0 = wr = w this obviously holds.

If 0 < i ≤ r − k, then we have two words, wi−1a and awi−1 of length |wi−1| + 1 for ai+k = wi. To prove that the two words are
different, we show wi−1 �= a|wi−1|: If wi−1 were a power of a, then wi−1 = ai+k−1. That is impossible, as |wi−1| ≤ m < k ≤ i + k − 1.
Thus, the geodesic wi has length at most |wi−1| ≤ m.

For r − k < i < r, we also use induction on decreasing values of i, multiplying with a. Now wr = w is the base case for the
induction. Assuming the statement holds for i + 1, the two words wi+1a and awi+1 both correspond to the group element ai+k = wi.
To prove that the two words are different, we show wi+1 �= a|wi+1|: If wi+1 were a power of a, then wi+1 = a2r−k−i−1 leading to the
contradiction 2r − k − i − 1 ≥ r − k > m ≥ |wi+1|. Therefore, we must have |wi| ≤ |wi+1| ≤ m.

The second case of the proof, where w = ak is illustrated in Figure 2. One can observe the two inductions, starting at w, one
multiplying with a, the other multiplying with a covering the entire subgroup. Before arriving at 1 we encounter small powers of a,
respectively a. In fact, there is an integer d ≤ |w|, such that ai and ai are geodesic for 0 ≤ i ≤ d, but for j > d the words aj and aj are
not geodesics. By applying Lemma 3.19 to the geodesic of ad+1, which has length d, we obtain d = m. This proves the following.

Corollary 3.20. Let Cay(G, �) be a counterexample to Conjecture A and let a ∈ �. Then there is an integer m ∈ N such that a±i is a
geodesic if i ≤ m and each element in the set 〈a〉 {a±i | 0 ≤ i ≤ m} has a geodesic of length exactly m.

Lemma 3.21 (Geodesics for central elements are powers of generators). Let G be a group with geodetic Cayley graph Cay(G, �), and
let z ∈ Z(G) {1}. Then the unique geodesic of z is ak for some a ∈ � and k ≥ 1.

Proof. Let w1 · · · wk ∈ �∗ be a geodesic for z. As z is in the center we have

w1w2 · · · wk = z = zw1 = w2 · · · wkw1.

Now we have two words of length k representing z. There cannot be a shorter word, as we chose w1 · · · wk to be a geodesic. The Cayley
graph is geodetic, so the words must coincide: we obtain w1 = w2 = · · · = wk.

Theorem 3.22 (Geodesics for central elements are powers with the same exponent). Let G �= 1 be a group with geodetic Cayley graph
Cay(G, �) and � ∩ Z(G) = ∅. Then, there is an integer k ≥ 3 such that for each z ∈ Z(G) {1} there exists an element cz ∈ � such
that ck

z is the geodesic for z. Moreover, k divides |G : Z(G)|.
In light of this theorem, we make the following definitions for a non-cyclic geodetic Cayley graph Cay(G, �) with G �= 1 and

� ∩ Z(G) = ∅. If k ≥ 3, z ∈ Z(G) {1} and cz ∈ � are as in Theorem 3.22,

(1) cz is called a central root
(2) k is called the length of central geodesics
(3) a geodesic between two central elements is called a central geodesic, and is necessarily labeled by ck

z for some central root cz.
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Observe that if � ∩ Z(G) �= ∅, then k = 1, as in this case the Cayley graph is complete by Corollary 3.8.

Proof. We know by Lemma 3.21 that the geodesic of every element in the center is a power of a generator. We first show that no two
central elements can have a geodesic that is a power of the same generator (note that a generator and its inverse is allowed and will
happen). Let bk be a geodesic representing a central element and assume that k is minimal so that bk is central. Let g be a generator
different to b±1 (such a generator must exist, otherwise G would be a cyclic group, but then b ∈ Z(G)). By Lemma 3.19 the elements
bkg and bkg both have a geodesic of length at most k, which we write as (bkg) and (bkg). Now (bkg)(bkg) is a word of length at most 2k
representing the central element b2k. Thus, b2k is not a geodesic. Assume there is some i ≥ 1 such that bk+i is a geodesic of a central
element. This implies that bi is a geodesic of a central element. By minimality of k we conclude i ≥ k. It follows that no power of b
other than bk is a geodesic for a non-trivial central element. In particular, the order of b · Z(G) in G/Z(G) is k and, thus, k divides
|G : Z(G)|.

Next we show that the geodesics of all non-trivial central elements have the same length. For a central element and its inverse this
is obvious. Assume there are c, d ∈ � with c /∈ {d, d̄} and k, � ≥ 1 such that ck and d� both are geodesics representing different central
elements. Note that ck �= d̄� because both are geodesics. Now assume for a contradiction that k �= �, w. l. o. g. k < �. Lemma 3.19
tells us that ckd� ∈ ck〈d〉 has a geodesic u of length |u| = m ≤ k. But ckd� is also in the center (and non-trivial), so u = f m for some
f ∈ �. Applying Lemma 3.19 again to d� = f mc−k ∈ f m〈c〉, we obtain a geodesic v of length at most m ≤ k < �, contradicting d�

being a geodesic.
It remains to show, that no central element has a geodesic of length two. In that case the Cayley graph would be cyclic or complete

by Lemma 3.18, contradicting � ∩ Z(G) = ∅.

From Theorem 3.22 and Corollary 3.8, we immediately obtain the following corollary.

Corollary 3.23. If � = Cay(G, �) is geodetic and has diameter two and Z(G) �= 1, then � is the cycle C5.

Lemma 3.24. Let Cay(G, �) be geodetic. If there is an element z ∈ Z(G), with ord(z) ≥ 4, then the length of central geodesics must be
odd.

Proof. Let m = ord(z). If m is even, then the statement follows from Theorem 3.12. Thus from here on we assume that m is odd and
m ≥ 5. Assume that b2k is the geodesic for z. Let y be the geodesic for z(m−1)/2. By Theorem 3.22 it has length 2k. As m ≥ 5, we have
y �= b±2k. Note that t = bkm = ybk. By Lemma 3.19, the element t ∈ y〈b〉 has length at most |y| = 2k. Clearly t2 = b2km = 1. If t = 1,
then y = tb−k = b̄k, contradicting 2k being the length of the central geodesics. It follows that t has order two, thus by Lemma 3.11 it
must have odd length, that is, the length of t is at most 2k − 1. Applying Lemma 3.19 to y = tb̄k ∈ t〈b〉 we obtain the contradiction
|y| ≤ |t| = 2k − 1.

4. Bounds on the size of generating sets

In this section we establish bounds on the possible sizes of those generating sets which result in a geodetic Cayley graph that is a
counterexample to Conjecture A. To obtain these, we study the structure and size of balls of radius one and two in such a graph, as
well as the positional relationships of central geodesics.

Let Cay(G, �) be an arbitrary geodetic Cayley graph. Throughout, we denote the r-ball in Cay(G, �) centered at a vertex g ∈ G
by Br(g) := {h ∈ G | d(g, h) ≤ r}. As Cayley graphs are vertex-transitive, all balls of the same radius r are isomorphic subgraphs of
Cay(G, �).

We begin by analyzing the structure of one-balls. By Lemma 2.6 the neighbors of any g ∈ G can be partitioned into a set of disjoint
cliques. We denote by m the number of these disjoint cliques and by δ1 ≤ δ2 ≤ . . . ≤ δm their sizes. Clearly, δ := ∑m

i=1 δi is the
degree of Cay(G, �) and thus δ = |�|.
Lemma 4.1. Let Cay(G, �) be a counterexample to Conjecture A. Then m ≥ 1 + δm ≥ 1 + δ/m and m ≥ 3.

Proof. The Cayley graph Cay(G, �) contains a clique of size δm + 1. By [19, Corollary 1] the neighborhood of some and, hence, of
every vertex contains an independent set of size δm + 1. Thus m ≥ δm + 1 by definition of m. The second inequality follows from
δ = ∑m

i=1 δi ≤ ∑m
i=1 δm = mδm.

For the final inequality, note that m ≤ 1 holds if and only if Cay(G, �) is complete. If m = 2, then Cay(G, �) is a cycle. Neither
can be a counterexample to Conjecture A. As such, m ≥ 3.

We define the function α, which will take an important role as parameter for the size of a two-ball in Cay(G, �) as follows:

α(m0) := 3m0 − 4
2m0 − 2

.
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Lemma 4.2. Let Cay(G, �) be a counterexample to Conjecture A and let α = α(m). Then, for every g ∈ G, the size of the two-ball
centered at g satisfies

∣∣B2(g)
∣∣ = 1 + δ + δ2 −

m∑
i=1

δ2
i ≥ 1 + δ + 1

2αδ2.

Proof. Every vertex at distance one from g which is contained in a clique of size δi has δ − δi neighbors at distance two from g. As
each vertex at distance two from g has a unique neighbor at distance one from g, we obtain the equality

∣∣B2(g)
∣∣ = 1 + δ +

m∑
i=1

δi(δ − δi) = 1 + δ + δ2 −
m∑

i=1
δ2

i .

We then apply the reversed Cauchy-Schwarz inequality due to Pólya and Szegö. [28, pp. 57, 213–214] with the bounds 1 ≤ δi ≤
m − 1 obtained in Lemma 4.1. This yields

m
m∑

i=1
δ2

i =
( m∑

i=1
12

)
·
( m∑

i=1
δ2

i

)
≤ 1

4
m2

m − 1

( m∑
i=1

δi

)2

= 1
4

m2

m − 1
δ2,

from which the claimed inequality follows.

Lemma 4.3. Let g, h ∈ G. If d(g, h) ≥ 3, then
∣∣B2(g) ∩ B2(h)

∣∣ ≤ 2δ − 1.

Proof. Let h′ be the vertex preceding h on the geodesic path from g to h. Then B2(g) ∩ B1(h) ⊆ {h′} by uniqueness of geodesics.
Hence,

∣∣B2(g) ∩ B1(h′)
∣∣ ≤ ∣∣B1(h′) {h}∣∣ = δ. If h′′ ∈ N (h) {h′}, then d(g, h′′) ≥ 3, which implies

∣∣B2(g) ∩ B1(h′′)
∣∣ ≤ 1. In total,

we obtain
∣∣B2(g) ∩ B2(h)

∣∣ ≤ 2δ − 1.

We now have all the tools necessary to prove the main result of this section.

Theorem 4.4. Let Cay(G, �) be a counterexample to Conjecture A of diameter at least three. Then α0 |�|2 < |G| holds for all α0 =
α(m0) such that m0 ≥ 3 is any integer with 1

2 (m0 − 1)(3m0 − 4)(m0 − 2)2 < |G|.
Recall that the assumption on the diameter is satisfied whenever G has nontrivial center (Corollary 3.23), even order (Proposition

3.14), or order at most 2025 (Lemma 3.16). In case Cay(G, �) has diameter two, we obtain a similar but weaker bound as follows. As
in the proof of Lemma 3.16, we have |�| ≥ (λ + 1)(λ + 13) for some λ ≥ 2 as well as |�| ≥ 46. The former yields the inequality

λ ≤
√

144 + 4|�| − 14
2

≤
√

144 + √
4|�| − 14

2
= √|�| − 1.

Then |G| = |�|2 − λ|�| + 1 > |�|2 − |�|√|�| + |�| by Equation (1) and using the above. Since |�| ≥ 46, a direct computation
shows that β0|�|2 < |G| where β0 = 47

46 − 1√
46

≈ 0.874 giving the bound in Theorem D.

Remark 4.5. Before proceeding with the proof, we note that the factor α0 = α(m0) is monotonically increasing in m0. The choice
m0 = 3 is always valid for a counterexample to Conjecture A and yields α0 = 5

4 . On the other hand, α0 → 3
2 as m0 → ∞. Moreover, as

a byproduct of our computer experiments, we obtain a posteriori that the conclusion of Theorem 4.4 holds with α0 = 7
5 , after verifying

that Conjecture A holds for every group of order at most 560 (see Theorem B), we set m0 = 6.
We use a combination of the bound obtained in Theorem 4.4, as well as other ones discussed hereafter, in our computer experiments.

This results in a massive reduction in the number of generating sets we have to consider. In order to make these bounds as tight as
possible, we choose the maximal value m0 that is permitted for the group currently under examination. For some groups, we also employ
Theorem 3.22 to establish an improved lower bound on the diameter which, in turn, allows us to replace Lemma 4.3 with a better estimate.

Proof. For the sake of deriving a contradiction, we assume that α0 |�|2 ≥ |G|. We also continue to employ the notation established
above. In particular, the previous inequality becomes α0δ

2 ≥ |G|, and Lemma 4.1 then yields α0(m2 − m)2 ≥ α0δ
2 ≥ |G|. We cannot

have m < m0, for otherwise
1
2 (m0 − 1)(3m0 − 4)(m0 − 2)2 = α0

(
(m0 − 1)2 − (m0 − 1)

)2 ≥ α0(m2 − m)2 ≥ |G|
which contradicts the choice of m0. Hence m ≥ m0 and, therefore, also α = α(m) ≥ α(m0) = α0.

Finally, recall that Cay(G, �) has diameter at least three by assumption. Hence there exist elements g, h ∈ G with d(g, h) = 3.
Using Lemmas 4.2 and 4.3 we arrive at∣∣B2(g) ∪ B2(h)

∣∣ = ∣∣B2(g)
∣∣ + |B2(h)|︸ ︷︷ ︸

≥2+2δ+αδ2

− ∣∣B2(g) ∩ B2(h)
∣∣︸ ︷︷ ︸

≤2δ−1

≥ 3 + αδ2 ≥ 3 + α0δ
2 ≥ 3 + |G| .

As such, |G| ≥ ∣∣B2(g) ∪ B2(h)
∣∣ ≥ |G| + 3 > |G|, which is the desired contradiction.
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Corollary 4.6. Let Cay(G, �) be a counterexample to Conjecture A. Then α0
(|Z(G)| − 1

)2
< |G|.

Proof. This follows from Theorem 4.4, as |�| ≥ |Z(G)|−1 by Theorem 3.22 and Corollary 3.8. Note that we can assume that Z(G) �=
1; Corollary 3.23 then excludes the case that Cay(G, �) has diameter two.

In Theorem 4.4 we have used two balls of radius two centered at vertices at distance three from each other to give a lower bound
to the size of the group. In cases where the group has a non-trivial center, we can improve upon this. By Theorem 3.22, the distance
between any two central elements is at least three. Using a subset of these as centers of balls of radius two, and Lemma 4.3 to bound
the size of pairwise intersections, we arrive at the following.

Theorem 4.7. Let Cay(G, �) be a counterexample to Conjecture A. Then the inequality

1
2α0z0 |�|2 − z0(z0 − 2) |�| + 1

2 z0(z0 + 1) ≤ |G| , (3)

where α0 = α(m0) holds for all integers z0 with 1 ≤ z0 ≤ |Z(G)| and all lower bounds m0 on the number m ≥ m0 of maximal cliques
in the neighborhood N (1) of 1 ∈ G.

Proof. Choose a set of z0 central elements, say Z0 ⊆ Z(G). By Lemmas 4.2 and 4.3,

|G| ≥
∣∣∣ ⋃

g∈Z0

B2(g)

∣∣∣ ≥
∑
g∈Z0

∣∣B2(g)
∣∣ −

∑
g,h∈Z0

g �=h

∣∣B2(g) ∩ B2(h)
∣∣ ≥ z0

(
1 + δ + 1

2αδ2) −
(

z0
2

)(
2δ − 1

)

with α ≥ α0. (Recall that δ = |�|.) Expanding the rightmost expression yields the stated inequality.

Note that in Theorem 4.7 we have a family of inequalities, parameterized by the number z0 of central elements used for placing
the two-balls. For groups with a small center, the best lower bound is achieved by z0 = |Z(G)|. However, if the center is large enough,
then at some point it is no longer beneficial to place more balls, due to the way we approximate the intersection. The best lower bound
is obtained for z0 ≈ 1

4α0δ. Based on this observation we obtain the following bound on the center.

Corollary 4.8. Let Cay(G, �) be a counterexample to Conjecture A. Then 1
16α2

0
(|Z(G)| − 1

)3 ≤ |G|.

Proof. If |Z(G)| = 1, then the statement holds. If |Z(G)| > 1, the inequality is derived from Theorem 4.7 by setting z0 =⌈ 1
4α0

( |Z(G)| − 1
)⌉

:

|G| ≥ ( 1
2α0δ − z0)z0δ + 2z0δ

≥ ( 1
2α0δ − 1

4α0(Z(G) − 1) − 1)z0δ + 2z0δ

≥ ( 1
2α0δ − 1

4α0(Z(G) − 1))z0δ

≥ 1
16α2

0(Z(G) − 1)3.

The first inequality follows directly from equation (3) by dropping the terms not containing δ = |�|, which are all positive. The
second inequality uses z0 = ⌈ 1

4α0
( |Z(G)| − 1

)⌉ ≤ 1
4α0

( |Z(G)| − 1
) + 1. The third inequality is obtained by dropping the term

2z0δ − z0δ ≥ 0. Finally we use the inequalities z0 ≥ 1
4α0

( |Z(G)| − 1
)

and δ ≥ |Z(G)| − 1 to obtain the desired statement.

To obtain the result above, we placed two-balls on central elements. If the central elements are sufficiently far apart, then we can
show an even stronger bound, by placing the two-balls along the central geodesics (geodesics connecting the central elements). Recall
that by Theorem 3.22 central geodesics all have the same length k. We begin with the following lower bound on the distance between
two vertices on two different central geodesics.

Lemma 4.9. Let Cay(G, �) be a counterexample to Conjecture A with Z(G) �= 1. Let g be a vertex on a central geodesic with
endpoints y1 and y2. Let h be a vertex on a different central geodesic with endpoints z1 and z2. Then d(g, h) ≥ max{i, j}, where
i = min{d(y1, g), d(y2, g)} and j = min{d(z1, h), d(z2, g)}.

Proof. Let k be the length of the central geodesics. As g and h lie on different central geodesics, at most one pair of the vertices
{y1, y2, z1, z2} may coincide. We choose y ∈ {y1, y2}, z ∈ {z1, z2} and a, b ∈ � such that {y1, y2} = {y, yak}, {z1, z2} = {z, zbk}, and if
any of the four endpoints coincide, then yak = zbk. A consequence of this choice is y �= z, y �= zbk, d(y, g) ≤ k− i, and d(z, h) ≤ k− j.

We claim that d(y, h) ≥ k. Let w be the geodesic of y−1h. Observe that y−1h commutes with b, as it is the product of the central
element y−1z with a power of b. In the case that w �= b±m where m = |w|, by Lemma 3.19, the geodesic of y−1z ∈ y−1h 〈b〉 has length
at most m, that is k = d(1, y−1z) ≤ m = d(1, y−1h). We obtain the desired statement d(y, h) ≥ k using vertex transitivity. In the case
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that w = b±m, assume for a contradiction that m < k. Then y−1h = b±m is on the central geodesic between 1 and b±k. By vertex
transitivity, h is on the central geodesic between y and yb±k. Thus y ∈ {z, zbk} contradicting the choice of y.

From the triangle inequality d(y, h) ≤ d(y, g) + d(g, h) we obtain d(g, h) ≥ d(y, h) − d(y, g) ≥ k − (k − i) = i. Similarly, using
d(z, g) ≤ d(z, h) + d(h, g), we obtain d(g, h) ≥ j.

Multiple disjoint balls of radius two can be placed along each central geodesic if its length permits. However, we will only give an
explicit bound for the simplest case, placing a single such ball in the middle of each central geodesic.

Proposition 4.10. Let Cay(G, �) be a counterexample to Conjecture A. If 3 � |G| and 5, 7 � |G : Z(G)|, then 1
4α0

( |Z(G)| − 1
)4

< |G|.

Proof. If |Z(G)| = 1, then clearly the statement is true. By Theorem 3.12 the order of Z(G) is odd. With our assumption 3 � |G|,
there must be an element of order at least 5 in the center. Thus, the length k of central geodesics must be odd by Lemma 3.24. As
5, 7 � |G : Z(G)| we have k ≥ 11.

There are 1
2 |Z(G)| ( |Z(G)| − 1

)
distinct pairs of central elements, and thus, that many central geodesics. We place a two-ball on

the middle of each central geodesic. The intersection between any pair of two-balls is trivial, as the distance between any two of their
center points is at least 5 by Lemma 4.9. Thus we obtain

|G| ≥ 1
2 |Z(G)| ( |Z(G)| − 1

) |B2(1)|
> 1

2
( |Z(G)| − 1

)2( 1
2αδ2 + δ + 1

)
> 1

4α
( |Z(G)| − 1

)2
δ2.

Using the inequality δ ≥ |Z(G)| − 1 yields the desired bound.

5. Further cases: dihedral, nilpotent, groups with large commutativity degree

In this section we show that further large families of groups satisfy Conjecture A by combining results from Section 3 with more
detailed knowledge about finite group theory and insights gleaned from the computer search.

We first consider groups that have an abelian subgroup of index two (which is necessarily normal); these include the dihedral
groups. Pushing this to index three presents more challenges; so for that case we are able to prove the conjecture only in the two
important special cases when the subgroup is not normal or when the center is trivial. For nilpotent groups we can prove the conjecture
holds in all groups of class two except for a particular subfamily (see Proposition 5.13), and in groups of any class provided certain
numerical conditions are satisfied (see Theorem 5.9). Each of these families of groups in some sense is close to abelian, which is
emphasized by the fact that these classes cover all groups with a high commutativity degree (see Theorem 5.14).

5.1. Abelian subgroups of index two

Lemma 5.1. Let G be a group and 1 < N < G with |G : N| = 2. If Cay(G, �) is geodetic, then N ∩ � �= ∅.

Proof. If � ∩ N = ∅, then every word w ∈ �∗ representing 1 ∈ G has even length. Hence, all cycles in Cay(G, �) must have even
length. But then Cay(G, �) cannot be geodetic (see Lemma 2.2).

Theorem 5.2. Let φ : A → A be an order-two automorphism of an abelian group A = 〈X | R〉. Let

DA,φ := A �φ C2 = 〈X ∪ {t} | R ∪ {t2, txt(φ(x))−1; x ∈ X}〉
be the corresponding semidirect product. Then the only geodetic Cayley graph of the generalized dihedral group DA,φ is the complete
graph.

Proof. Assume that Cay(DA,φ , �) is geodetic but not complete (in particular, Z(DA,φ) ∩ � = ∅ by Corollary 3.8). Since ord(t) = 2,
the generating set � contains a conjugate of t by Lemma 3.11. Upon replacing � with a suitable conjugate if necessary, we may
therefore assume that t ∈ �.

As |DA,φ : A| = 2, there exists some x ∈ A ∩ � by Lemma 5.1. If φ(x) ∈ {x±1}, then xDA,φ ⊆ {x±1} ⊆ �. Since � �= {x±1},
Lemma 3.7 implies that Cay(DA,φ , �) is complete. Thus φ(x) �∈ {x±1}. Note that φ(x)x commutes with t as tφ(x)x = ttxtx = xtxtt =
xφ(x)t = φ(x)xt as x, φ(x) ∈ A. Hence φ(x)x ∈ Z(DA,φ) {1}.

By Theorem 3.22, there exists y ∈ � such that φ(x)x = yk with k ≥ 3 and, therefore, with k = 3 by uniqueness of geodesics (since
φ(x)x = txtx). Thus, in particular, the length of central geodesics is three. Now, suppose that z ∈ � with z3 ∈ Z(DA,φ). Then z ∈ A,
for otherwise z3 �∈ A (since A has index 2) which would contradict the assumption that z3 ∈ Z(DA,φ) ≤ A. In particular, this shows
that y ∈ � ∩ A.
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Next, we argue that we can find an element z ∈ � ∩ A with z /∈ {y±1}. If so, then y and z commute; hence z〈y〉 = {z} ⊆ � and
then we can apply Lemma 3.7 to show that

〈
y
〉

is complete. However, this implies y3 ∈ � and thus Z(DA,φ) ∩ � �= ∅; contradicting
the assumption that Z(G) ∩ � = ∅.

Firstly, suppose that y = x, then x3 = y3 = φ(x)x and thus φ(x) = x2. We obtain the contradiction y3 = x3 = xx4 = xφ(φ(x)) =
xx = 1. Next, suppose that y = x−1 holds. Then x−3 = y3 = φ(x)x and thus φ(x) = x−4, or equivalently φ(y) = y−4. Then
φ(φ(y)) = φ(y−4) = y16 and since φ is order two, this means y = y16 so y15 = 1. This means the order of y is either 3, 5, or 15. It
cannot be 3 since y3 is a non-trivial element of the center. If y5 = 1, then y = y−4 = φ(y) ∈ Z(DA,φ) and so Z(DA,φ) ∩ � �= ∅ and
we are done. Thus ord(y) = 15. We then have y6 ∈ Z(DA,φ) {1} and y6 /∈ {y±3}. Thus y6 = z3 for some z ∈ � ∩ A with z /∈ {y±1}.
Lastly if y �= x±1 then z := x satisfies our requirements. Thus we have found an element z ∈ � ∩ A with z �∈ {y±1} which by the
above paragraph shows that the Cayley graph is complete, contradicting our assumption.

Corollary 5.3. The only geodetic Cayley graph of a dihedral group is the complete graph.

We will now reduce the general case, of admitting an abelian subgroup of index two, to the situation discussed in Theorem 5.2. In
other words, we will prove the following.

Theorem 5.4. Let G be a group. If there exists an abelian subgroup A ≤ G such that |G : A| = 2, then the only geodetic Cayley graph of
G is the complete graph.

Our reduction will rely on a certain relationship between the structure of the group G and the parity of the order of A as well as
that of Z(G). Part of this relationship is captured by the following observation (with p = 2). It will be used again (with p = 3) in
Section 5.2.

Lemma 5.5. Let G be a group and A � G a normal abelian subgroup of prime index |G : A| = p. If g ∈ G A, then gp ∈ Z(G) ∩ A.
Moreover, if p � |A|, then there exists some g̃ ∈ G A with g̃p = 1.

Proof. The image of any given g ∈ G A in the quotient G/A ∼= Cp has order p and, as such, gp ∈ A. In particular, gp commutes
with every element a ∈ A and, clearly, gp also commutes with g. We have 〈A, g〉 = G since A ≤ G is a maximal subgroup (its index is
prime) and g ∈ G A. Therefore, the element gp commutes with all elements of G, i.e., gp ∈ Z(G) as claimed. Lastly, since p divides
|G| = |G : A| |A|, there exists an element g̃ ∈ G of order p by Cauchy’s theorem. If p � |A|, then g̃ �∈ A by Lagrange’s theorem.

Proof of Theorem 5.4. If |Z(G)| is even, then Theorem 3.12 applies, so assume |Z(G)| is odd. We claim that |A| is odd as well. Suppose
otherwise. Then there exists some a ∈ A with ord(a) = 2. Note that we cannot have a ∈ Z(G) for |Z(G)| is odd. Let g ∈ G A and
consider ã := aga ∈ A. Clearly, ag �= a for otherwise we would have a ∈ Z(G). Therefore, ã �= 1. Since ã2 = 1, we conclude that
ord(ã) = 2. Moreover ãg = aggag = aag = aga = ã since g2 ∈ Z(G) by Lemma 5.5. But then we conclude that ã ∈ Z(G) and,
therefore, |Z(G)| would have to be even.

Finally, since |A| is odd, there exists t ∈ G A with t2 = 1 by Lemma 5.5. Consider the automorphism φ : A → A with φ(a) = at .
It satisfies φ2 = id and φ �= id since t2 = 1 and t �∈ Z(G), respectively. As such, it has order two and we can apply Theorem 5.2.

5.2. Abelian subgroups of index three

For an index 3 abelian subgroup A ≤ G we are able to show that Conjecture A holds for two cases: first if A is not normal and second
if the center of G is trivial.

The general intuition is that, if a group has a lot of commuting elements (as it does when it contains an abelian subgroup of small
index), then all of its Cayley graphs will need to have a lot of squares. However, we can only manage to make this precise with particular
hypotheses. In Section 5.4 we investigate this intuition further.

Lemma 5.6. Let G be a group and suppose that there exists an abelian subgroup A ≤ G such that |G : A| = 3 and A is not normal in G.
Then the only geodetic Cayley graph of G is the complete graph.

Proof. Let Ag ≤ G be a conjugate subgroup with A �= Ag . Then 〈A, Ag〉 = G since A is a maximal subgroup of G (as its index is
prime). Moreover, we observe that A ∩ Ag ⊆ Z(G) as every element of A ∩ Ag commutes with every element of 〈A, Ag〉.

Now consider the action of G by left-multiplication on the set of cosets G/A. It gives rise to a homomorphism ρ : G → S3 with
Ker(ρ) = {h ∈ G | hgA = gA for all g ∈ G} = ⋂

g∈G Ag ≤ Z(G). The ρ-preimage of C3 ≤ S3 is an abelian subgroup ρ−1(C3) ≤ G,
as it is an extension of Ker(ρ) ≤ Z(G) by a cyclic group.

Since |G : ρ−1(C3)| = 2 as ρ is surjective, the statement now follows from Theorem 5.4.

Remark 5.7. In the situation described in Lemma 5.6, we have |G : Z(G)| = 6. In Corollary 4.6 we have proved an inequality relating the
size of the center and the size of the group, which in the case at hand gives us the bound |G| < 36 (assuming that G violates Conjecture A,
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we have 5
4 (|Z(G)| − 1)2 < |G| = 6 |Z(G)| which, since |Z(G)| is necessarily odd by Theorem 3.12, implies that |Z(G)| < 6 and thus

|G| < 36). These groups can be checked by a computer search.
We note that this alternative proof can be adapted, so as to cover groups with an abelian but not normal subgroup of index 5 or 7 (the

center of such a group has index at most 20 or 42 and, thus, by Corollary 4.8 we need only consider such groups with order at most 300
and 840, respectively).

The other case is that G contains a normal abelian subgroup of index three. For this we can make progress when we restrict to the
case where the center is trivial.

Theorem 5.8. Let G be a group with Z(G) = 1 and suppose that there exists an abelian subgroup A ≤ G such that |G : A| = 3. Then
the only geodetic Cayley graph of G is the complete graph.

Proof. Assume that Cay(G, �) is geodetic but not complete. By Lemma 5.6, A is a normal subgroup of G. Note that we then have
ord(ψ) = 3 for each ψ ∈ G A by Lemma 5.5 and our assumption on Z(G). In order to derive a contradiction, we establish two claims
regarding the conjugacy classes of elements of A with specific geodesics, in particular, elements of the set C := {g ∈ A | geod(g) ≡
ψ1ψ2 with ψ1, ψ2 ∈ � A}.

Claim (1). If x ∈ � ∩ A, then xG = {x, ψ1ψ2, ψ2ψ1} for some ψ1, ψ2 ∈ � A with ψ1ψ2, ψ2ψ1 ∈ C.

Since A ≤ G is a maximal subgroup, there exists some ψ ∈ � A. Because G = A · {1, ψ , ψ−1}, we know that xG =
{x, ψ−1xψ , ψxψ−1}. We also note that ψxψxψx = (ψx)3 = 1 as ψx ∈ G A. Therefore, the element ψxψ = x−1ψ−1x−1

has length at most two. In turn, we conclude that both of the elements ψ−1xψ = ψ(ψxψ) and ψxψ−1 = (ψxψ)ψ have length at
most two.

If one of these elements, ψ−1xψ say, had length one, then, so would xψ and ψ−1x by Lemma 2.3; hence, so would ψ(xψ) =
x−1(ψ−1x−1) and (ψ−1x)ψ−1 = (x−1ψ)x−1; hence, so would ψx and xψ−1. It follows that the other element (ψx)ψ−1 = ψ(xψ−1)
would also have length one. But then all elements of the conjugacy class xG would have length one, i.e., xG ⊆ �. This contradicts
Lemma 3.7.

Next, we assume that geod(ψ−1xψ) ≡ y1y2 with y1, y2 ∈ � ∩ A. This implies y1, y2 ∈ {x±1}, for otherwise 〈� ∩ A〉 ≤ G is a
complete subgroup by Lemma 3.7 and thus y1y2 has length one. If ψ−1xψ = x±2, then either ψxψ−1 = ψ1ψ2 ∈ C or, for the same
reason as above, ψxψ−1 = x∓2.

In the second case, x is conjugate to x−1 by transitivity of conjugacy. Since x is the only element of length one in xG, this implies
x = x−1. But then ψ−1xψ = x±2 = 1, which is absurd.

In the first case, i.e., xG = {x, x̃, ψ1ψ2} where x̃ = x±2, we have ψ−1xψ = x̃ = x±2 and, hence, x = x±8 as ψ3 = 1. If
ψ−1xψ = x−2, then x9 = 1 and thus ψ−1x3ψ = x−6 = x3 ∈ Z(G). But this implies x3 = 1 and, therefore, x−2 = x ∈ �;
a contradiction. In the case ψ−1xψ = x2, we first observe that ψ2ψ1 = x. Indeed, ψ2ψ1 is conjugate to x and cannot equal x2

or ψ1ψ2 by uniqueness of geodesics. Using this, we obtain ψ2xψ−1
2 = x2 since ψ2(ψ1ψ2)ψ

−1
2 = x and ψ2 has order three. Now

ψ1x = ψ−1
2 ψ2ψ1x = ψ−1

2 x2 = ψ−1
2 ψ2xψ−1

2 = xψ−1
2 ∈ �, since it has two expressions of length two. But then the same is true for

x2 = ψ2(ψ1x); hence x2 ∈ �, which contradicts our assumption that x2 has length two.
The only remaining possibility is that geod(ψ−1xψ) ≡ ψ1ψ2 and, hence, geod(ψxψ−1) ≡ ψ2ψ1 for some ψ1, ψ2 ∈ � A. This

establishes Claim (1).

Claim (2). If ψ1, ψ2 ∈ � A with g = ψ1ψ2 ∈ C, then for some x ∈ � ∩ A

gG = {x, ψ1ψ2, ψ2ψ1} or gG = {x2, ψ1ψ2, ψ2ψ1}.

Clearly, ψ1ψ2 and ψ2ψ1 are distinct elements of gG. Moreover, ψ2ψ1 also has length two by Claim (1). The third element of gG is
h := ψ−1

1 ψ2ψ
−1
1 = ψ−1

2 ψ1ψ
−1
2 , which therefore has length at most two. The claim is trivial if h has length one. Suppose that h has

length two and geod(h) ≡ ψ ′
1ψ

′
2 with ψ ′

1, ψ ′
2 ∈ � A. Clearly, ψ ′

2ψ
′
1 �= ψ ′

1ψ
′
2 and ψ ′

2ψ
′
1 ∈ gG. Moreover, ψ ′

2ψ
′
1 also has length two

by what we have just shown. It follows that {ψ ′
1, ψ ′

2} = {ψ1, ψ2}, which is clearly impossible.
If geod(h) ≡ y1y2 with y1, y2 ∈ � ∩ A, then y1 = y2 by uniqueness of geodesics and the fact that y1y2 = y2y1. Hence h = x2 with

x = y1 = y2 ∈ �. This completes our proof of the claim.

We finally derive the desired contradiction. To this end, recall that there exists some ψ ∈ � A. Furthermore, we cannot have
� = {ψ±1} for G is not cyclic. As such, we either have � ∩ A �= ∅ or there exists some ψ ′ ∈ � A with ψ ′ �∈ {ψ±1}. In the latter
case, � ∩ A �= ∅ by Claim (2).

Now, choose some x ∈ � ∩A and let ψ1, ψ2 ∈ � A with xG = {x, ψ1ψ2, ψ2ψ1} as in Claim (1). We then have x = ψ−1
1 ψ2ψ

−1
1 =

ψ−1
2 ψ1ψ

−1
2 . Let ψ3 := xψ1 = ψ−1

1 ψ2 ∈ � and observe ψ3 �∈ {ψ±1
1 , ψ2}. In fact, we also have ψ3 = ψ−1

1 ψ2 �= ψ−1
2 for

otherwise ψ2ψ1 = 1. Now note that ψ−1
3 ψ−1

2 = x and thus ψ−1
2 ψ−1

3 ∈ xG {x} = {ψ1ψ2, ψ2ψ1}, which contradicts uniqueness of
geodesics.
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5.3. Nilpotent groups

In every nilpotent group, certain iterated commutators evaluate to central elements. This fact, together with our results concerning
central elements developed in Section 3.4, imposes restrictions on the structure of a nilpotent group with an alleged non-complete
geodetic Cayley graph. For groups of nilpotency class two, we obtain further restrictions based on a more detailed analysis of the
involved commutator maps; see Proposition 5.13.

Recall that a group G is nilpotent if G = 1 or G/Z(G) is nilpotent. If G is nilpotent, then there exists a number s such that
[g1, . . . , gs+1] := [[g1, . . . , gs], gs+1] = 1 for all g1, . . . , gs+1 ∈ G. The smallest such number s is the nilpotency class of G. A group is
nilpotent if and only if it is a direct product of p-groups; see [30, Theorem 5.2.4]. In particular, every nilpotent group of even order
has even-order center.

Theorem 5.9. Let G be a nilpotent but not cyclic group of nilpotency class s and suppose that

p �
exp(G)

exp(Z(G))

for each odd prime p < 3 · 2s−1 − 2. Then the only geodetic Cayley graph of G is the complete graph.

Proof. All finite nilpotent groups are direct products of p-groups. Thus, if 2 divides |G|, then there must be an order 2 element in the
center and the statement follows from Theorem 3.12. If G is abelian, then the statement is a consequence of Corollary 3.9. We now
assume that s > 1 and 2 � |G|, and that there exists a geodetic Cayley graph Cay(G, �) which is not complete.

In every finite group of nilpotency class s, by [7, Lemma 2.6], there are generators a1, . . . , as ∈ � such that z = [a1, a2, . . . , as] �= 1.
Further, since G is nilpotent of class s, we have z ∈ Z(G); hence, by Corollary 3.8 and Theorem 3.22, z = ak with a ∈ � and k ≥ 3
equal to the order of a in the quotient group G/Z(G). Since ak is a geodesic, its length is shorter than the length of the commutator,
which is 3 · 2s−1 − 2.

Let p be a prime divisor of k = pr. Then p also divides |G : Z(G)|, |G|, and |Z(G)|. Furthermore, p is odd and p ≤ k < 3 · 2s−1 − 2.
Let pn be the largest power of p dividing exp(Z(G)) (note that n ≥ 1). Let z̃ ∈ Z(G) with ord(z̃) = pn. Once more, z̃ = ãk for
some ã ∈ � by Theorem 3.22. Now consider the element b = ãr (where k = pr as above). Clearly, (bp)pn = z̃pn = 1. As such,
ord(b) = pn+1 and, thus, pn+1 divides exp(G). We conclude that p divides exp(G)/ exp(Z(G)), which contradicts our assumption
on G.

Remark 5.10. The condition in Theorem 5.9 is satisfied if no odd prime p < 3 · 2s−1 − 2 divides the order of G or, more generally, if
p2 does not divide exp(G) for any such prime p. If, for example, G is a nilpotent group of nilpotency class two with 9 � exp(G), then G
satisfies Conjecture A; if G is of nilpotency class three and neither 3, 5, nor 7 divide |G|, then G satisfies Conjecture A.

We now turn to the case of nilpotency class two. In the following we always assume that G is nilpotent group of nilpotency class two
and that Cay(G, �) is a counterexample to Conjecture A. Recall that, by Theorem 3.12, this implies that 2 � |G| and, by Theorem 5.9
(see also Remark 5.10), that 3 | |Z(G)|.

Throughout, we will consider the subset  := {x ∈ � | x3 ∈ Z(G) {1}} ⊆ �. Since [x, y] ∈ Z(G) {1} for some x, y ∈ � (see
the proof of Theorem 5.9), the length of central geodesics is three according to Theorem 3.22. As such, the map α : G → G given by
g �→ g3 induces a bijection from  onto Z(G) {1}. As there exists an element of order three in Z(G), there exists an element of order
nine in ; in particular,  �= ∅.

Lemma 5.11. Let x, y ∈ � with x ∈  or y ∈ . Then [x, y] = 1 if and only if {x±1} = {y±1}.

Proof. If [x, y] = 1 and {x±1} �= {y±1}, then 〈x, y〉 ≤ G is a complete subgroup by Corollary 3.10. If, furthermore, x ∈ , then
x3 ∈ Z(G) ∩ �. But then Cay(G, �) is complete by Corollary 3.8.

Lemma 5.12. Let x ∈ � and y1, y2 ∈ � {x±1} with y1 ∈ . Then [x, y1] = [x, y2] implies y1 = y2.

Proof. Let z := [x, y1] = [x, y2] ∈ Z(G). Then z �= 1 by Lemma 5.11 and, thus, z = a3 with a ∈ . Assuming y1 �= y2, the element
xz = xy1 = xy2 has two distinct representatives of length three; therefore, it has length at most two. But then x̄ = a by uniqueness of
geodesics, as x̄(xz) = z = a3. In particular, this shows that x = ā ∈  and that xy = xz = x−2 for y ∈ {y1, y2}.

Since 2 � |G|, the order of x cannot be even. Let ord(x) = 2k + 1 and note that k ≥ 4 as x ∈ . Then (xk)y = x−2k = x for
y ∈ {y1, y2}. As such, xk = y1xy−1

1 = y2xy−1
2 has length at most two. Since xk /∈ {1, x±1, x±2}, we can apply Lemma 3.19 (with w

being the geodesic of xk) to conclude that all elements of the coset xk 〈x〉 have length at most two. In particular x−3 = z ∈ Z(G) has
length at most two; a contradiction!

As usual, we denote the commutator (or derived) subgroup of G by G′ = 〈[a, b]; a, b ∈ G〉, and the Frattini subgroup of G by �(G),
i.e., �(G) is the intersection of all maximal subgroups of G.
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Using the above, we will now show that a nilpotent group G of class two that violates Conjecture A would have to be special, i.e., it
would satisfy G′ = �(G) = Z(G). In some sense, such groups are as non-abelian as possible given the constraint G′ ≤ Z(G) imposed
by G being nilpotent of class two.

Proposition 5.13. Suppose that G is a nilpotent group of class two and a counterexample to Conjecture A. Then exp(G) = 9 and
G′ = �(G) = Z(G) �∼= C3, i.e., G is a special but not extra-special 3-group.

Proof. Suppose that Cay(G, �) violates Conjecture A and, as above, let  := {x ∈ � | x3 ∈ Z(G) {1}} ⊆ � be the set of central
roots. The subgroup H := 〈〉 clearly satisfies H′ ≤ G′ ≤ Z(G) ≤ H ≤ G. Furthermore, H/Z(G) is an elementary abelian 3-group.
We treat the cases �  = ∅ and �  �= ∅ separately.

We first deal with the case �  = ∅, i.e., � =  and H = G. As such, G/Z(G) is an elementary abelian 3-group and thus so is
G′ (which is the image of G/Z(G) × G/Z(G) under the bilinear map induced by the commutator map). To show that G′ = Z(G), fix
x ∈ � and consider the homomorphism

ψ : G → Z(G); g �→ [x, g].
By Lemma 5.12, ψ is injective on � {x±1}. But then Z(G) ψ(G) contains at most two elements. From ψ(G) �= 1, we conclude that
ψ(G) = Z(G) by Lagrange’s Theorem. Hence, G′ = Z(G). From this we conclude that exp(G) = 9 and that the Frattini subgroup
�(G) coincides with G′ = Z(G) (in p-groups, the Frattini subgroup is the smallest subgroup with elementary abelian quotient;
hence, G′ ≤ �(G) ≤ Z(G) since G/Z(G) is elementary abelian). Finally, note that |Z(G)| − 1 = || = |�| ≥ 4 since G is not cyclic.
Therefore, we can conclude that Z(G) �∼= C3. This completes the proof for the case �  = ∅.

We now assume that there exists an element u ∈ �  and consider the homomorphism

φ : G → Z(G); g �→ [u, g].
By Lemma 5.11, φ() ⊆ Z(G) {1} and, by Lemma 5.12, φ is injective on . Since || = |Z(G) {1}|, we then have φ() = Z(G) {1}
and, therefore, φ(H) = Im(φ) = Z(G). We claim that φ(� ) = {1}. Indeed, if y2 ∈ �  would satisfy φ(y2) �= 1, then
φ(y2) = φ(y1) for some y1 ∈ . Hence, y1 = y2 by Lemma 5.12.

The homomorphism φ factors through the quotient G → G/Z(G) and the inclusion G′ → Z(G). As such, G′ = Z(G) is isomorphic
to a quotient of H/Z(G); hence, Z(G) is an elementary abelian 3-group. It follows that  ⊆ �2, i.e., ord(x) = 9 for all x ∈ . On the
other hand, we have u3 ∈ Z(G) since [u3, x] = [u, x]3 = φ(x)3 = 1 for each x ∈ �. This implies u3 = 1 since u ∈ � . Moreover,
the same holds for all u ∈ � . Since all elements of � have order three in the quotient G/Z(G), the latter is an elementary abelian
3-group. As in the previous case, we conclude that exp(G) = 9 and G′ = �(G) = Z(G).

It remains to show that Z(G) �∼= C3. By way of contradiction, let us assume that Z(G) ∼= C3. Then  consists of precisely two
elements, i.e.,  = {x±1}, and φ() = Z(G) {1} = {x±3}. Upon replacing u by u−1 if necessary, we may then assume that
[x, u] = x−3. It follows that uxu = u2x−2 = u−1x−2 and this element has length at most two by uniqueness of geodesics. Hence,
(uxu)u = uxu−1 also has length at most two and so does x3 = x−1(uxu−1). But this contradicts Theorem 3.22 since x3 ∈ Z(G) {1}.
As such, Z(G) �∼= C3.

To further explore the applicability of Theorem 5.9 and Proposition 5.13, we have examined all non-abelian groups of order pk

with p ∈ {3, 5, 7, 11} and k ≤ 7 in GAP [18] using its SmallGrp library [2]. The results of this examination are summarized in Table 1.
Note that such groups have nilpotency class s ≤ 6. Moreover, by Theorem 5.9, every p-group of nilpotency class s with p ≥ 3 ·2s−1 −2
satisfies Conjecture A; this threshold is indicated by horizontal lines in the table.

5.4. Groups with large commutativity degree

Many of our results address Conjecture A in the case of groups that are, in some sense, close to being abelian. This property can be
quantified by a group G’s commutativity degree P(G), which is the probability that two randomly chosen elements of G commute, i.e.,

P(G) := |{(g, h) ∈ G × G | gh = hg}|
|G × G| .

The interested reader is referred to the survey by Das, Nath, and Pournaki [9] for further details and historical context. We will
content ourselves here with the following observation.

Table 1. The number of groups of order pk with k ≤ 7 and nilpotency class s covered by Theorem 5.9 and Proposition 5.13 / total number of such groups (if distinct).

p s ≤ 1 s = 2 s = 3 s = 4 s = 5 s = 6

3 45 587 / 1,926 150 / 6,362 36 / 1,386 0 / 180 0 / 6
5 45 7,256 247 / 23,073 119 / 3,382 5 / 1,227 0 / 9
7 45 26,914 255 / 76,783 131 / 8,034 60 / 2,140 15 / 198
11 45 204,912 514,627 139 / 26,882 62 / 5,170 19 / 402
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Table 2. The possible structures of a non-abelian group G with P(G) > 11
32 .

Group Structure Applicable result

G′ G′ ∩ Z(G) G/Z(G)

C2 C2 C2r
2 (r ≥ 1) Theorem 3.12

C3 1 S3 Theorem 5.4
C2

2 or C4 C2 D8 Theorem 3.12
C2

2 C2
2 C3

2 or C4
2 Theorem 3.12

C3 C3 C2
3 Proposition 5.13

C5 1 D10 Theorem 5.4
C6 C2 S3 × C2 or C3 � C4 Theorem 3.12

Theorem 5.14. Conjecture A holds for every group G with P(G) > 11
32 .

Proof. For abelian groups, this follows from Corollary 3.9 (see also [15]). If G is non-abelian and P(G) > 11
32 , then according to Rusin

[31, p. 246] the structure of G must be as indicated in Table 2.
In most of these cases, Z(G) contains a subgroup isomorphic to C2; hence, Theorem 3.12 applies. If G/Z(G) ∼= S3 or G/Z(G) ∼= D10,

then G contains an abelian subgroup of index two corresponding to C3 ≤ S3 or C5 ≤ D10 in G/Z(G), respectively. As such, we can
apply Theorem 5.4. In the remaining case, i.e., if C3 ∼= G′ ≤ Z(G), then G is covered by Corollary 5.13.

6. Experiments

We now turn to the exhaustive computer search to check which groups of order up to 1024, as well as all even orders up to 2014
and all non-abelian finite simple groups up to order 5000, have a generating set that yields a geodetic Cayley graph. The aim of this
experiment was to either verify Conjecture A for as many group orders as possible, or to find a group and a generating set that yields
a nontrivial geodetic Cayley graph, i.e., a graph that is neither complete nor an odd cycle. For our code, see

https://osf.io/9ay6s/?view_only=37e18301e4e74e12bfe4e07b90b924c0.
Improving the computer search has been a major motivation for the theoretical work in the previous sections. Important results

in this regard are the bounds on the generating set discussed in Section 4 as well as the results covering entire classes of groups, the
most important of which is Theorem 3.12 excluding all groups with even-order center.

In turn, the results from the computer search also influenced our theoretical work. For example, at one point in the development
of our computer search algorithms, groups which were semidirect products with C2 had a long running time. This directed our
theoretical work to focus on such groups, leading to Theorem 5.4 showing that Conjecture A holds for all groups with an abelian
subgroup of index two.

6.1. Overview

Our approach consists of three stages. The first is the filtering stage in which we identify the relevant groups which are not covered by
our theoretical results, and thus need to be considered in our computer search. We realized this stage using GAP [18].

The second stage is a preprocessing stage, also realized in GAP, during which we compute the information required for the search
and store it in a JSON file. Besides the multiplication table describing the group, the most important information computed in this
stage comprises a set of forbidden elements and a set of required subsets.

Forbidden elements are elements which cannot be part of any geodetic generating set except for the complete one. A required
subset is a set of elements of which each geodetic generating set needs to contain at least one. We will give more details on how we
compute and use these below.

The third and final stage is the actual search, which we have implemented in Rust. Obviously, enumerating all generating sets is
infeasible even for relatively small groups. For example, already for the symmetric group S5, which has 120 elements, there are 272

potential generating sets (symmetric subsets not containing the identity element). To circumvent this problem, we discard generating
sets based on the theoretical results described in the previous sections. We implement this using a binary counter for enumerating
generating sets, which allows us to systematically skip the respective ranges. For each of the remaining generating sets, we test whether
or not the resulting Cayley graph is geodetic and report those that are.

6.2. Filtering

We used GAP [18] and its SmallGrp library [2] to obtain a list of all finite groups up to order 1024 relevant to our search. (In a
second run we repeated the experiment also filtering out all odd-order groups, which we report on below.) When generating this list
of groups, we ignored the following.

https://osf.io/9ay6s/?view_only=37e18301e4e74e12bfe4e07b90b924c0
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Table 3. Number of groups of order up to 1024 and excluding 2-groups which are
caught by the different filtering steps.

Total number of groups 1,206,579

Abelian groups 2034
Groups with center of even order 1,200,151
Groups with Abelian subgroup of Index 2 989
Nilpotent groups as in Proposition 5.13 170
Nilpotent groups as in Theorem 5.9 18
Groups with Abelian Subgroup of Index 3 as in Theorem 5.8 86
Groups with large center as in Corollary 4.8 and Proposition 4.10 274
Remaining groups 3197

The filtering is performed in the same order as in the table, and each group is only
counted toward the first category it matches.

• All abelian groups (Corollary 3.9).
• All groups with even-order center (Theorem 3.12).
• All groups with a large center (Corollary 4.8 and Proposition 4.10).
• All groups with abelian index-2 subgroups (Theorem 5.4).
• The groups with abelian index-3 subgroups covered by Theorem 5.8.
• The nilpotent groups covered by Theorem 5.9 and Proposition 5.13.

Note that, while there are approximately 50 ·109 groups up to order 1024, most of those are 2-groups, which all have an even-order
center. Excluding the 2-groups there are only 1206579 groups of order at most 1024, and after excluding the groups in the above list
only 3197 groups remain. We provide more details on the number of groups falling into each of the above categories in Table 3.

Remark 6.1. The smallest group with a center larger than the bound from Corollary 4.8 is C13 × A4. Its center has order 13 – just above
the bound, which in this case is 12.

To find an example for Proposition 4.10, we have to look a bit further. The proposition excludes 3 as a prime divisor of the order of the
group, and, 5 and 7 are excluded as prime divisors of the index of the center. The smallest group covered by Proposition 4.10 that is not
already covered by Corollary 4.8 is C7 × (C13 � C4). Its center has order 7, just larger than the bound of 6.

During filtering we only verify those bounds on the size of the center based on Corollary 4.8 and Proposition 4.10 (with m0 = 3).
More precise bounds on the size of non-complete geodetic generating sets, and thus also on the size of the center, are computed within
the initialization step of our search algorithm. Therein, we utilize most results of Section 4 (with optimal parameters). Due to tighter
bounds, we were able to exclude an additional 240 groups from the search.

Remark 6.2. For filtering the groups of even order up to 2014, we use the same method. However, there is one special case: the groups of
order 1536 = 3 · 29. There are more than 4 · 108 of them—too many for running through the entire filtering stage. However, most of them
have a normal Sylow 3-subgroup. Because such groups have an even-order center, they can be safely ignored by Theorem 3.12. Therefore,
we only run the filtering procedure for the remaining groups, indexed 408526598–408641062 in the SmallGrp library.

6.3. Preprocessing

The main objective of the preprocessing stage is to compute the forbidden elements and the required subsets of each group. As
mentioned above, an element is forbidden if, whenever it is part of a geodetic generating set, the associated Cayley graph is necessarily
complete. Note that, since we filter out abelian groups in the filtering stage, here we do not need to consider the possibility that the
Cayley graph is an odd cycle. The set of forbidden elements comprises all elements g ∈ G such that h = g or h = g2 is nontrivial
and satisfies hG ⊆ {h±1}; see Lemmas 3.7 and 3.18. In particular, this includes central elements (Corollary 3.8) and their square roots
(Theorem 3.22).

A required subset is a set of which each geodetic generating set needs to contain at least one element. In the preprocessing we
compute the following sets, which we know to be required.

• Each conjugacy class of elements of order two (Lemma 3.11).
• Each normal subgroup of index two (Lemma 5.1).
• Each complement of a maximal subgroup (as we want a generating set).

There is one other family of required subsets: the potential roots of each central element. However, since these sets are smaller, and
thus their inclusion is more effective, when we know the length of central geodesics, we do not add these sets in the preprocessing
stage, but later in the search algorithm.
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At this stage we also take advantage of automorphisms to reduce the size of the required subsets and thus reduce the number
of generating sets we need to look at. The procedure is to go through the required subsets one by one. For each, we compute the
orbits of its elements under the automorphism group and select one element from each orbit. As we are interested only in symmetric
generating sets, we consider the orbits of an element and its inverse as a single orbit. Continuing with the next required subset, we no
longer use the full automorphism group, but only the point-wise stabilizer of the elements that were selected in the previous required
subsets. This is justified by the following straight-forward observation:

Lemma 6.3. Let R ⊆ G and Y ⊆ G and let R̃ ⊆ R be a system of representatives of R/ Stab(Y).2 Then for all X ⊆ G with R ∩ X �= ∅,
there exists some φ ∈ Stab(Y) such that φ(X) ∩ R̃ �= ∅.

In cases where the required subset contains only part of an orbit under the action of the automorphism group, we take care to
select representatives that are part of the original set. This way, for each generating set that contains an element of each of the original
required subsets, there is a generating set which contains at least one element of each of the smaller required subsets obtained after
applying the automorphism group.

Finally, we discard required subsets that are supersets of smaller ones.

Remark 6.4. For the finite simple groups PSL(2, q) with q ∈ {17, 19, 16}, for parallelization, we split the computation of the search
algorithm into several chunks. This is implemented by generating several instances during the preprocessing stage with different required
and forbidden subsets.

6.4. The search algorithm

For a group G, we fix a subset C ⊆ G {1} such that
∣∣{g, g−1} ∩ C

∣∣ = 1 for each g ∈ G {1}. We call the elements of C candidates.
In this way, each inverse-closed subset � ⊆ G {1} (i.e., each potential generating set) bijectively corresponds to a candidate set
X = � ∩ C ⊆ C. Note that if more than half of the elements of G are of order two, then, according to Liebeck and MacHale [23],
G has an abelian subgroup of index two or Z(G) has even order. Since such groups were excluded during the filtering stage, we may
assume at most half the elements of G have order two; hence, |C| ≤ 1

2 |G| + 1
4 |G| = 3

4 |G|.
In the following, we identify C with the set of numbers {0, . . . , |C| − 1}; in particular, we fix an order on C. We enumerate the

potential generating sets of a group by enumerating all subsets of C in the order of a binary counter from 0 to 2|C|, where a binary
number naturally corresponds to a subset of C. The main loop of our search algorithm is presented in Algorithm 1. Incrementing
the binary counter is done in lines 6 to 14. In line 18 we check whether the resulting Cayley graph is geodetic and connected
(TestGeodetic, for details see below). We use a stack to keep track of the current candidate set X, the corresponding increment
I, and some additional information that is not displayed in Algorithm 1. During the execution of the algorithm, we maintain the
following invariants of the stack (which we consider to grow upwards).

(I1) If (X, I) is above (X′, I′), then X ⊇ X′ and I < I′. Moreover, X ∩ [I′, |C|] = X′ ∩ [I′, |C|].
(I2) If (X, I) is directly above (X′, I′), then additionally X ∩ [I, |C|] = (X′ ∩ [I, |C|]) ∪ {I}.

We use several pruning methods to shortcut the counting process. The variable Inext in Algorithm 1 serves as the index of the bit
to be increased next (meaning that Inext = 0 yields a usual increment by one); by increasing Inext, we can skip over certain values for
the counter.

The pruning methods, described in detail below, rely upon

• bounds on the size of the generating set,
• the forbidden candidate array (for simplicity not included in the pseudocode Algorithm 1),
• the required subsets described above in Section 6.3 (handled in line 5 in Algorithm 1),
• saturating the generating set (FillIn),
• handling of collisions at distance 3 discovered during the check whether the Cayley graph is geodetic (HandleCollisions).

Finally, for groups of even order and groups with non-trivial center, we employ further pruning techniques during TestGeodetic
and HandleCollisions.

Bounds on the number of generators
In Section 4 we developed several bounds on the size of non-complete geodetic generating sets. As Proposition 3.14 and Lemma 3.16
already cover the diameter-two case of our search, the most general such bound is due to Theorem 4.4: it gives us an upper bound of
c · √n where n is the order of the group. The constant factor c is at most 2/

√
5 but, depending on the size of the group, the factor can

be even smaller. In fact, we compute the optimal bound given by Theorem 4.4 in our program. If the group has non-trivial center,
we use Theorem 4.7 to obtain an even smaller bound in the order of 3√n. We use these bounds to prune the search tree as follows:

2Here, by abuse of notation, we write R/ Stab(Y) to denote the set R/∼ where x ∼ y if φ(x) = y for some φ ∈ Stab(Y).
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procedure CheckGroup(G)
1: (X, I) ← (∅, ∞)

2: Stack.Push(X, I)
3: Inext ← 0
4: while Stack �= ∅ do
5: Inext ← max{Inext, Required(X)}
6: while Inext ∈ X do
7: Inext ← Inext + 1
8: if Inext ≥ |C| then
9: return

10: while Inext ≥ I do
11: (X, I) ← Stack.pop()
12: Ilast ← I
13: (X, I) ← (X ∪ {Inext}, Inext)
14: Stack.Push(X, I)
15: Inext ← CheckGenSet(X, I, Ilast)

procedure CheckGenSet(X, I, Ilast)
16: if FillIn(X, I, Ilast) fails then
17: return I
18: T ← TestGeodetic(X)
19: if T = Geodetic then
20: output X
21: return 0
22: if HandleCollisions(T, X, I, Ilast) fails then
23: return I
24: else
25: return 0

Algorithm 1: Outline of our search algorithm.

whenever there are too many bits set to one in the counter (i.e., |X| is too big – detected either in FillIn or HandleCollisions), we
increment the least-significant bit currently set to one by setting Inext ← I (see lines 17 and 23 of Algorithm 1).

In some cases, the bound computed at this stage is impossible to satisfy and, therefore, the group possesses no geodetic generating
set other than the complete one. In this way, we exclude an additional 240 (of the remaining 3197) groups from the search.

Forbidden candidates
As a first improvement, we use a bit array indicating candidates that are forbidden given the other candidates already contained in
X. For each entry on the stack (stack frame) we keep a separate forbidden candidate array. Initially, the forbidden candidate array of
the first stack frame comprises the forbidden candidates computed during preprocessing (Section 6.3). When creating a new stack
frame, the forbidden candidates of its predecessor are copied; afterwards, additional candidates might be marked as forbidden on the
new stack frame. An additional candidate can be marked as forbidden if its inclusion in X would

• lead to a generating set that is too large,
• require the inclusion of a candidate that is already forbidden, or
• violate the order in which we search through the generating sets.

These conditions are tested for during the FillIn and HandleCollisions procedures. For details we refer to the respective
paragraphs below.

We use the forbidden candidate array in the FillIn and HandleCollisions procedures as well as in the counter logic. While
omitted from the description in Algorithm 1 for simplicity, its incorporation is rather straightforward: whenever Inext is a forbidden
candidate, it is incremented.

Required subsets
We incorporate the required subsets computed during the preprocessing step as detailed in Section 6.3. Whenever there is a required
subset R with R ∩ X = ∅, we increase Inext to the smallest candidate contained in R (see line 5 of Algorithm 1). This dispenses with
all candidate sets in between which do not contain an element of the required subset and, thus, need not be considered.

If multiple required subsets are disjoint from X, we apply the following heuristic: choose a required subset to be satisfied first such
that the smallest candidate contained in it is maximal with respect to the order on C.

It may happen that the smallest candidate of a required subset is forbidden. In this case we simply consider the smallest candidate
I in the required subset that is not forbidden. If I is larger than Ilast, the candidate of the previous stack frame, then we cannot
satisfy the required subset by pushing a new stack frame without violating the order in which we search through the generating sets
(Invariant (I1)). Therefore, we assign Inext ← Ilast in order to skip a number of candidate sets to which we cannot add any candidate
from the required subset.

Finally, we remark that further required subsets are created during the HandleCollisions procedure and at the beginning of the
search for groups with nontrivial center.

Saturating the generating set (FillIn)
The most crucial improvement of our algorithm over a naïve search is based on Lemma 2.3. If a, b, c, d ∈ � with ab = cd �= 1
for a geodetic generating set � ⊆ G, then (ab), (c−1a) ∈ �. Therefore, whenever we add a new candidate to X, we test whether a
product of the newly added element(s) and some other element of the generating set � associated with X equals a different product
of two elements of �. If so, we also add this product to � by adding the corresponding candidate to X. By repeating this we obtain a
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candidate set X′. If the corresponding generating set �′ is too large, or if X′ contains a forbidden candidate, then the FillIn procedure
fails and marks the current increment I as forbidden on the previous stack frame.

In order to avoid considering the same generating set multiple times, we only want to add a candidate J to X during the FillIn
procedure if J < I; otherwise, the resulting candidate set would be considered again after incrementing the counter.

As such, if X′ contains a candidate J with I < J, then the FillIn procedure fails and, thus, in line 17 of Algorithm 1 we set Inext ← I
skipping a number of candidate sets that would violate the search order. Moreover, if X′ contains a candidate J with Ilast < J, then we
also mark I as forbidden on the previous stack frame, which corresponds to Ilast. This is because introducing I as a candidate in any
stack frame above the previous one would violate the second part of Invariant (I1).

Testing whether the Cayley graph is geodetic (TestGeodetic)
As the Cayley graph is vertex-transitive, it suffices to check whether geodesics from the origin 1 ∈ G to each other vertex exist and
are unique. We implemented this using a breadth-first search. If during this breadth-first search we encounter an element with two
different geodesics of length three, then we record this element for later handling. We collect a certain number of such elements
depending on the order of the group and other parameters such as, e.g., the order of the center and the number of elements of order
two. In the case of groups with non-trivial center we implemented some further checks as detailed below.

Handling collisions at distance three (HandleCollisions)
While testing whether the Cayley graph is geodetic, we compute a list of elements which have multiple geodesics of length three. We
aim to extend the generating set to a geodetic generating set. To achieve this, we need to add new generators (by adding the respective
candidates) such that each element in the list either becomes a generator or can be uniquely written as a product of two generators.

Since there are many options as for which generators to add, for each of the recorded collisions, we create a temporary required
subset. It remains valid until the current candidate is removed from the candidate set, i.e., the lifetime of these new required subsets
is tied to the current stack frame.

The temporary required subset associated with a collision is constructed as follows. Suppose that adding a single candidate J to
X would resolve the collision. Then we insert J into the required subset, unless invoking FillIn with X′ = X ∪ {J} fails. For pairs
of candidates whose addition would resolve the collision, we proceed similarly, but only add the larger of the two candidates to the
required subset.

Finally, if all calls to FillIn fail, and thus the required subset is empty, then the call to HandleCollisions fails as we cannot resolve
the collision. Crucially, if all calls to FillIn forbid the corresponding inclusion, then we also forbid I on the stack frame corresponding
to Ilast.

Modifications for groups of even order
If during TestGeodetic we find an element of order two among the collisions at distance three, then the only choice is to add the
element itself to the generating set. Recall that, by Lemma 3.11, such an element cannot have a geodesic of length two. As such, we
do not construct a required subset in this case (by calling HandleCollisions), but add the respective candidates directly to the
candidate set instead (or possibly forbid the current increment I) and continue afterwards with FillIn.

Based on the same observation, as a further improvement for groups of even order (more precisely, for groups whose order is
divisible by six) we have implemented the following. During FillIn, we check whether a generator is of order six, and thus generates
a subgroup isomorphic to C6, or whether two generators together generate a subgroup isomorphic to S3. If so, we add all non-trivial
elements of the corresponding subgroup to the generating set � since such a subgroup is complete with respect to any geodetic
generating set as the following lemma shows.

Lemma 6.5. Let Cay(G, �) be geodetic and H ≤ G with 〈H ∩ �〉 = H. If |H| = 6, then H is complete.

Proof. Suppose that H ∼= C6. If we have a generator g ∈ H ∩� of order six, then g3 = g3 has length one by Lemma 3.11, i.e., g3 ∈ �.
It follows that H ∩ � always contains some element h of order two and at least one other element k which commutes with h. Hence,
the subgroup H = 〈h, k〉 is complete by Corollary 3.10.

Similarly, let g, h ∈ � generate the subgroup H isomorphic to S3 and assume (without loss of generality) that g is of order two.
If h is of order three, then we have gh = h−1g and, hence, gh ∈ � and similarly hg ∈ � and (hg)h = h(gh) ∈ � showing that
H = {1, g, h, gh, hg, hgh} is complete. If h is of order two, then ghg = hgh is of order two; hence, by Lemma 3.11, ghg ∈ �. Thus, we
have an entire conjugacy class gH = {g, h, ghg} contained in �. Therefore, the subgroup H = 〈

g, h
〉

is complete by Lemma 3.7.

Modifications for groups with nontrivial center
For groups with nontrivial center, we compute all possible lengths of central geodesics given by Theorem 3.22. Then we run the search
repeatedly, once for each length of central geodesics. We add the corresponding central roots as required subsets and add the central
roots which are too short as forbidden elements. When testing whether the Cayley graph is geodetic, we additionally check whether
there are central elements with geodesics shorter than the length of central geodesics. If that happens, then the only geodetic graphs
the Cayley graph can be extended to by adding more generators are graphs with a smaller length of central geodesics.
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6.5. Experimental results

Our experiments were conducted on a machine with an AMD Ryzen 9 5900X CPU (12 cores, 24 threads, 3.7 GHz) and 128 GB of
RAM. Running the experiments for all groups up to order 1024 took 299 hours of total CPU time, and we were able to establish

Theorem B. All groups of size up to 1024 satisfy Conjecture A.

With parallelization, the running time was dominated by a few “difficult” groups. See Table 4 for the running time of select groups
and Figure 3 for a plot of the running time of every group of order up to 1024 compared to the group’s order.

As it can be seen from Table 4 and Figure 3, our search is substantially faster for groups of even order. Therefore, for groups of
even order we extended our search up to order 2014. We did not go beyond that since larger groups are not completely listed in the
GAP SmallGrp library [2]. Moreover, note that, as detailed in Remark 6.2, for groups of order 1536, we had to take some special care
during the filtering stage.

Theorem 6.6. Conjecture A holds for all groups of even order at most 2014.

In the light of Corollary 3.10 and Theorem 5.9 it seems reasonable to search for counterexamples to Conjecture A within classes
of groups that are far from commutative. Thus, it is natural to consider non-abelian finite simple groups. Nevertheless, in our
experiments these groups turned out to be even easier to handle than many of the other groups of even order. (Note that by the famous
Feit-Thompson theorem [16] all non-abelian simple groups have even order.) Indeed, for this special case we could go further than
order 2014 and succeeded to show the following.

Theorem 6.7. Conjecture A holds for S7 and for the simple groups PSL(2, 17), A7, PSL(2, 19), and PSL(2, 16). In particular, it holds for
all simple groups of order at most 5000.

To give an indication which groups are “easy” and which are “difficult”, we give an overview on some selected groups in Table 4.
The table contains the following classes of groups:

• alternating and symmetric groups,
• further simple groups of order exceeding 2014,
• the five groups of order up to 1024 with the longest running time,
• different groups of order 729 = 36,
• groups with the longest running time among the even groups of order up to 1024,
• groups of even order between 1026 and 2014 with the longest running time.

Note that the order of the groups certainly plays a role in the running time, but there was also a huge variance in running time for
different groups of roughly the same order. For instance this can be seen very prominently for groups of order 729 in Figure 3.

There are various reasons for this difference. For example we observe an impact of the size of the center, which is to be expected
given the results in Section 4. Moreover, we see the clear effect of the groups having even order: for these we have additional possibilities
to generate small required subsets and we can use the improved FillIn procedure. However, also among groups of odd order and

Figure 3. Running time of our computer search for all groups of order up to 1024; groups of even order are marked in black, those of odd order are marked in red.
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Table 4. Experiments for selected groups including the five groups with the
longest running time.

Group Order Index Sets tested Duration

A5 60 5 31 0.3 ms
S5 120 34 207 1.3 ms
A6 360 118 6249 23 ms
S6 720 763 27590 120 ms
A7 2520 — 74,946,283 52 min
S7 5040 — 1,059,510,737 197 min

PSL(2, 17)‖ 2448 — 123,451,769 23 min
PSL(2, 16)‖ 4080 — 4,869,673,337 13 h
PSL(2, 19)‖ 3420 — 2,696,472,513 21 h
C109 � C9 981 3 5,683,264,056 14 h

(C7 � C3) × (C13 � C3) 819 6 8,728,959,134 19 h
C89 � C11 979 1 10,178,934,027 24 h
C61 � C15 915 1 43,174,839,011 87 h
C43 � C21 903 1 43,967,855,355 88 h

C2
9 extended by C2

3 729 96 13,525 39 ms
(C3 × (C27 � C3)) � C3

‡ 729 90 11,276,468 208 s
C27 � C27

‡ 729 22 10,776,997 255 s
(C9 � C9) � C9 729 75 97,944,803 52 min

(C27 � C9) � C3 729 390 175,898,535 87 min
((C9 × C3) � C3) � C2

3 729 399 240,194,985 128 min
C31 � C30 930 1 821,601 18 s

C17 × A5 1020 9 1,030,890 18 s
C5

2 � C31 992 194 3,260,710 70 s
C11 × PSL(3, 2) 1848 127 1,024,861,064 8 h

C37 � C54 1998 7 1,292,527,452 13 h
C4

2 � (C5 × (C7 � C3)) 1680 939 1,709,925,665 14 h

The first column shows the group according to the GAP structure description, the
second column displays the order of the group, the third column the index in the
SmallGrp library, the fourth column the number of calls to the TestGeodetic pro-
cedure, and the final column contains the running time. The computation was
parallelized for the groups PSL(2, q) (marked with ‖) according to Remark 6.4;
the quantities displayed in the last two columns are cumulative. The center of
the groups of order 729 is either of order three or nine (marked with ‡).

with trivial center there is a huge variation in running time. We observe that the most difficult instances are groups Cp � Cn with a
faithful action, p prime, and n as large as possible.

Additional statistics on our experiments may be found at
https://osf.io/9ay6s/?view_only=37e18301e4e74e12bfe4e07b90b924c0.

7. Discussion

We have shown that for several infinite classes of finite groups there are no geodetic Cayley graphs except the complete graphs. This
includes all abelian groups (except cyclic groups of odd order), dihedral groups, and groups with even-order center, as well as many
nilpotent groups. Moreover, we have verified by a computer search that Conjecture A holds for all groups up to order 1024, all groups
of even order up to 2014, all simple groups of order up to 5000, and the symmetric group S7.

The main open problem, of course, remains whether Conjecture A holds for all finite groups, i.e., that every geodetic Cayley graph
of a finite group is either complete or a cycle of odd length. Our experiments suggest that it might be reasonable to aim for proving
Conjecture A for all groups of even order.
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