
Received: 20 February 2023 Revised: 23 July 2023 Accepted: 30 August 2023 The Journal of Engineering

DOI: 10.1049/tje2.12310

ORIGINAL RESEARCH

A novel fault location strategy based on Bi-LSTM for

MMC-HVDC systems

Jude Inwumoh Craig Baguley Udaya Madawala Kosala Gunawardane

Department of Electrical Electronics, Auckland
University of Technology, Auckland, New Zealand

Correspondence

Jude Inwumoh, Department of Electrical
Electronics, Auckland University of Technology,
Auckland, New Zealand.
Email: jinwumoh@aut.ac.nz

Abstract

The integration of modular multilevel converters (MMCs) with high voltage direct cur-
rent (HVDC) transmission systems is an efficient method for transporting electricity
from distant renewable energy sources to demand centres. However, MMC-HVDC sys-
tems face reliability challenges during DC overcurrent faults, often caused by component
failures that can lead to HVDC network shutdowns. Consequently, a reliable fault loca-
tion approach is crucial for grid protection and restoration, aiding in fault isolation
and alternate power flow identification. Conventional fault location methods struggle
with manual protective threshold setting, susceptibility to fault resistance and noise,
and the need for communication channels, resulting in signal delays. In multi-terminal
HVDC networks, fault location becomes even more complex due to poor selectiv-
ity and sensitivity in traditional schemes. This study proposes a robust fault location
approach based on bidirectional long short-term memory (bi-LSTM). The method offers
a simplified decision-making model with low computational requirements, utilizing fault
features from one end of the network, eliminating the need for a communication chan-
nel. Remarkably, this approach achieves high fault location accuracy, even with varying
fault types, resistances, and noise levels, as demonstrated by an MSE of 0.006 and a
percentage error below 1% in simulations conducted using a real-time simulator with
MATLAB/Simulink.

1 INTRODUCTION

High voltage direct current (HVDC) systems are one of
the most promising technologies in the power industry. This
technology can be used in overhead transmission lines and
submarine cables for long-distance renewable energy trans-
mission since it can offer flexible and bulk power transfer
at reduced losses [1]. However, as most conventional power
systems are AC, integrating an HVDC transmission system
requires AC/DC conversion [2]. This conversion is made possi-
ble with the aid of a line commutated converter (LCC). LCC
is a well-established converter technology used for HVDC
deployment. However, LCC based HVDC systems are faced
with challenges such as the need for bulky filters, commu-
tation failure, and frequent DC polarity changes for power
reversal [3].
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As a result, the modular multilevel converter (MMC) was cho-
sen as a better alternative to LCC, with the ability to produce
bidirectional control capability and reduced harmonic distortion
with no filter requirement [4]. However, MMC based HVDC
transmission networks have struggled to sustain direct current
(DC) short circuit faults, which pose a severe threat to the safety
and stability of the network [5]. DC faults are inevitable and can
result from misfires and flashovers of the MMC rectifier stations
or malfunctioning of the valves and controllers in the MMC
converter. In addition, the DC fault could be caused by natu-
ral causes, such as earthquakes, and human errors, such as war
and sabotage. If these faults are not isolated, they can damage
the components of the MMC, shutting down the entire network,
and hampering power supply reliability. As a result of the neg-
ative impact of this fault, it is vital to classify and locate the
exact point of fault impact on the network to aid fault isolation
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while an alternative path is provided for power flow. Thus, a safe
and reliable operation is guaranteed, as the components in the
MMC-HVDC network are protected from further harm. More-
over, estimating the fault location reduces maintenance costs
and the time spent on repairs. Considering that MMC-HVDC
transmission lines are very long, accurately locating a fault is
challenging. For example, in 2015, the 295 km long Basslink
HVDC transmission between Tasmania and Australia’s main-
land was affected by a fault. It took approximately 500 h for
the contractors (Alcatel-Lucent) to locate the fault using extra
hardware at the repeater stations [6]. This method increases the
cost of the fault location. In addition, an extra-long cable, such
as the 2500 km long Porto Velho-Sao Paulo, would be more
complex and expensive. Such a lengthy disruption of the power
supply is usually unacceptable. Hence, it is crucial to investigate
a prompt and cost-effective approach for accurately locating
DC faults.

Several fault location methods for HVDC transmission lines
have been proposed. The travelling wave (TW) method is the
most common among conventional techniques. This method’s
accuracy depends on the arrival time and velocity of the
reflected fault wave [7]. The TW method struggles to differen-
tiate the waves from a system terminal from those of a fault [8].
To improve the accuracy of the TW method, a double-ended
TW method was proposed, in which fault waves from the rec-
tifying and inverting terminals of the MMC-HVDC network
are synchronised using a Global Positioning System (GPS) and
a communication channel [9]. However, the cost of installing
GPS and communication channels are the two major draw-
backs of this method. Besides, a weak wave is generated for a
high resistance fault, which can easily be attenuated, leading to
a significant location error. Apart from the TW method, the
impedance method has been used to locate faults in MMC-
HVDC systems. In [10], an impedance-based method was used
to locate high-resistance and remote faults. This technique mea-
sures the characteristic harmonics of the fault current and
voltage in the HVDC transmission line to obtain the fault
distance. The method is easy to apply. However, they are sus-
ceptible to noise signals and the operating state of the MMC
converter. In [11], the Pearson correlation coefficient of volt-
age signals was another fault location method for MMC-HVDC
systems. Its location process is quite challenging to implement
because the voltage signals are easily disturbed by the actions
of fault protection devices. In addition, the Pearson correla-
tion coefficient changes with voltage ripples, even when the
rate of change of the voltage is the same. This could lead to
a miscalculation of the fault location. In [12], a fault location
based on electromagnetic time reversal (EMTR) was proposed.
This method uses an approach similar to TW fault location
techniques by refocusing the peak energy amplitude from time-
reversed waves to locate the unknown fault distance. However,
it fails to accurately locate high impedance faults, and requires
numerous backpropagation simulations to identify the fault
location. In [13], the Prony algorithm was used to locate faults
using the principal components of natural frequencies. How-
ever, it is prone to location errors since the Prony model is
numerically ill-conditioned, non-strict, and sensitive to noise.

With the rapid development of artificial intelligence (AI), AI
algorithms have been applied to various fault location tasks,
such as fault location in power systems. However, most of
these algorithms cannot capture time-series features of voltage
or current signals. For example, an improved extreme learning
machine [14] was designed to locate faults; however, it did not
consider time-series features. In [15], the Decision Tree Regres-
sion (DTR) method was used to extract the characteristics of
the voltage and current signals to determine the fault location.
However, for some experimental samples, the method produced
significant errors. In [16], support vector machine (SVM) was
used to identify the fault segment, while TW analysis was used
to obtain the location of the fault. The analysis was limited
to only a two-terminal network, and the study did not investi-
gate the high resistive fault. Considering the above limitation,
[17] proposes the use of a genetic algorithm to locate HVDC
faults using the voltage profile in the frequency domain. How-
ever, the sampling rate of the algorithm was too high, which
affected the accuracy of the method. In [18], a back propagation
neural network was used to achieve fault location on an MMC
HVDC system, but it was at the expense of high computational
burdens and reduced accuracy. In [19], fault signals were pro-
cessed through empirical mode decomposition (EMD) and used
to train a deep learning-based convolutional neural network
(CNN). CNN classification and linear regression mechanisms
were used to determine the fault location on the HVDC net-
work. The model also considers the impact of high impedance
ground faults, but it cannot automatically adapt to different fault
lines. Moreover, this technique uses complex feature extraction
and a working algorithm. There is a need to eliminate the fea-
ture extraction part and work directly on operational data since
it increases the complexity and computational burden of the
scheme. Therefore, a research gap exists in locating faults in
HVDC grid networks using deep learning-based AI algorithms.

This study proposes a new deep learning AI-based fault
location method inspired by bi-LSTM. bi-LSTM has an advan-
tage over other deep learning algorithms since it has direct
access to all the gate activation functions, thus ensuring frequent
updating of its memory cells so that the algorithm recognises
patterns over a long period, aiding desired system performance.
In addition, the algorithm uses simple addition and multipli-
cation to update the cell states, thereby requiring only minor
adjustments and a lower computational burden.

Bi-LSTM can classify fault lines and locate fault distances
using a simplified extraction and analysis approach on fault
data from only the rectifying end of the MMC-HVDC net-
work, thus eliminating the need for a communication channel.
Furthermore, the proposed algorithm learns the time series of
the fault current samples from a real-time simulator of bipo-
lar and four-terminal MMC-HVDC systems based on Artemis
and SSN benchmarks. The accuracy of the proposed technique
was verified for different fault types, fault impedances, and
noise levels. From the above statements, the main contribu-
tions of this work are summarised as follows: A simple and
robust fault classification and location scheme are proposed
to handle high-resolution time step data with the exclusion
of complex feature extraction, thus eliminating the issue of

 20513305, 2023, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12310 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [12/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INWUMOH ET AL. 3 of 13

FIGURE 1 The structure of LSTM.

computational burden. In addition, the scheme is resilient
against varying fault impedances, noise, transmission line
parameters, and operating conditions. This approach can elimi-
nate the issue of vanishing gradients affecting the deployment of
Recurrent Neural Networks (RNN) in practical systems. Finally,
the proposed algorithm can adapt to a more complex multiter-
minal MMC-HVDC network with a location percentage error
of less than 1%.

The rest of the paper is structured as follows: Section 2
presents a theoretical analysis of the proposed scheme, and
Section 3 provides a detailed analysis of the fault location
methodology. Section 4 discusses the system under test and the
data acquisition process. Section 5 presents the simulations and
results, as well as a set of comparisons with other fault location
methods. Finally, the conclusions are presented in Section 6.

2 DESCRIPTION OF THE PROPOSED
SCHEME

The long short term memory (LSTM) algorithm is a deep learn-
ing algorithm integrated into MMC-HVDC to locate DC faults
in the network. The algorithm is a new type of recurrent neural
network (RNN). An RNN is an improved version of a convolu-
tional neural network (CNN), which is one of the most popular
deep learning algorithms. The RNN uses previous output data
to forecast new data. This ability has led to significant improve-
ments in time-series forecasting tasks. However, the RNN still
suffers from gradient disappearance [20]. A condition where the
weights of the neurons are unable to learn and update as the
time step increases. This condition is severe because the learn-
ing rate of the network decreases, and the network may fail
during the training phase. RNNs also require high computing
power during the training of data for large scale implementa-
tions. These drawbacks of RNN can be linked to the fact that
the recurrence of data is achieved using a single layer. LSTM
solves the issue of RNN gradient disappearance using three dif-
ferent gates with separate activation functions to continuously
update the data. Moreover, LSTM has a memory block that can
hold information for a long time step; thus, it is called Long
Memory.

The gates in the LSTM are the forget, input, and output gates,
as shown in Figure 1. These gates control the flow of informa-

tion in the LSTM. The “forget” gate can be used to remove
unwanted data. It uses a sigmoid activation function to refresh
the memory of the LSTM. The input gate is located immediately
after the forget gate. This gate controls whether the memory
should be updated, and the elements required for the update.
The output gate determines the features that are sent to the
hidden state.

From Figure 1, xt is the current time step of the input data,
whereas the previous time step of the cell state and the hidden
layer are Ct−1 and ht−1, respectively. The current hidden state,
ht , of the LSTM can be computed by updating the weight and
bias parameters of each gate as shown below:

Forget gate,

fsigmoid =
(
𝜔 fh + 𝜔 fx + b f

)
(1)

By passing the inputs (ht−1 and xt ) through the function, (2)
can be obtained:

ft = 𝜎
[(
𝜔 fh + ht−1

)
+
(
𝜔 fx + xt

)
+ b f

]
(2)

C
f

t = Ct−1 × ft (3)

Input gate,

isigmoid = (𝜔ih + 𝜔ix + bi ) (4)

it = 𝜎
[
(𝜔ih + ht−1) + (𝜔ix + xt ) + bi

]
(5)

Similarly,

gtanh =
(
𝜔gh + 𝜔gx + bg

)
(6)

gt = tanh
[(
𝜔gh + ht−1

)
+
(
𝜔gx + xt

)
+ bg

]
(7)

C i
t = it × gt (8)

Ct = C
f

t +C i
t (9)

Output gate,

osigmoid = (𝜔oh + 𝜔ox + bo) (10)

ot = 𝜎
[
(𝜔oh + ht−1) + (𝜔ox + xt ) + bo

]
(11)

Passing (9) through the tanh function and combining it with
(11), generates the output of the hidden layer in (12):

ht = tanh (Ct ) + ot (12)

tanh (x ) =
ex − e−x

ex + e−x
and sigmoid (x ) =

1
1 + e−x

where ft , it , gt , and ot are forget gate, input gate, input node
and output gate respectively. While 𝜔 f , 𝜔i , 𝜔g, and 𝜔oare the
weight parameters. The bias for the gates is b f , bi , bg, and bo.
𝜎 is the sigmoid activation, which maintains the gate’s output
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FIGURE 2 Structure of bidirectional LSTM (bi-LSTM).

FIGURE 3 Flow diagram of bi-LSTM model.

between 0 and 1, while the tanh activation controls the outputs
between −1 and 1. The current memory cell state, Ct , can be
obtained from the current cell states of the input gate, C i

t , and

the forget gate, C
f

t . The latter is generated from the previous
cell states of Ct−1 and ft . Where ft is the combination of xt and
ht−1. Setting ft to zero ignores the old data, while setting it to
zero ignores newly computed data. A similar computation was
performed to obtain the next hidden layer of the LSTM, thus
eliminating gradient disappearance.

One of the limitations of using a single LSTM is that it
uses only historical data for prediction. Using a bi-LSTM, this
drawback can be eliminated since the algorithm uses both the
previous state (ht−1) and the future state (ht+1) by stacking
two LSTMs in forward and backward patterns as shown in
Figure 2. With this approach, the proposed algorithm can effi-
ciently extract all the hidden layer features, thus increasing the
accuracy of the location process.

The proposed bi-LSTM can classify and locate faults in
MMC-HVDC transmission lines using the flow diagram shown
in Figure 3. When a fault is detected in the system, the algorithm
collects all fault samples from the sequence input layer. The out-

FIGURE 4 Fault location scheme.

put from the bi-LSTM layer was passed onto the fully connected
layer, from which the fault types were classified, and the faulty
lines were identified via the SoftMax layer. Once a faulty line
is detected, the output is sent back to the fully connected layer,
from which a regression layer is used to locate the fault distance.

3 ANALYSIS OF THE FAULT
LOCATION APPROACH

The proposed fault location scheme for the MMC-HVDC
transmission system is shown in Figure 4. At the top of Figure 4
is a bipolar MMC system with a rectifying and inverting end.
Faults such as pole1 to ground (P1), pole2 to ground (P2), and
pole1 to pole 2 (P1 − P2) can affect the system. When a fault
is detected on the transmission line, the fault current and volt-
age data are collected only from the rectifying end of the system
into the input layer. The fault samples are passed from the input
layer to the hidden layer, which comprises multiple bidirectional
LSTM units, where unwanted fault samples are removed by
the forget gate while the input gate updates the cell state of

 20513305, 2023, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/tje2.12310 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [12/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INWUMOH ET AL. 5 of 13

FIGURE 5 Fault location approach using a regression function.

the bi-LSTM with the maximum current and minimum volt-
age fault values. As a result, useful features from the fault data
are extracted by the output gate. Thus, bi-LSTM improves the
accuracy of the fault location scheme by providing the back-
propagation needed to minimise the mean square error (MSE)
in (13) and extracting the features containing the information of
the faulty lines using the sigmoid and tanh activation functions.

MSE =

m∑
i

(Di − dR )2 (13)

where Di is the actual location of the fault, dR is the predicted
location and m is the number of samples.

Also, from Figure 4, the output from the bi-LSTM is sent to
the fully connected layer. This layer is also known as the dense
layer of neurons. A fully connected layer consists of weights
(𝜔) and bias (b) to perform dense multiplication between the
input features and the trainable weights. In Figure 4, the fully
connected layer can reduce the structural size of the fault sam-
ples to eliminate the computational burden and improve the
speed of locating the faulty lines and the fault distance. From
the fully connected layer comes the classification model. This
model can classify the fault samples into different fault types
(P1, P2, P1 − P2). The algorithm in the classification model that
is responsible for detecting faulty lines is SoftMax. SoftMax can
perform multiple classifications and represent the results using
the probability distribution function in (14). Thus, the output is
between 0 and 1, with the faulty region having the highest prob-
ability. If a fault occurs on the first transmission line, SoftMax
can predict that P1 will have a probability close to 1, while P2 and
P1 − P2 will have probabilities close to 0. Thus, all P1 fault sam-
ples are sent to the location model to quickly obtain the fault
distance.

So ftMax (Pi ) =
exi∑K

j=1 ex j

(14)

FIGURE 6 OPAL-RT Digital real-time simulator.

where exi is the input vector standard exponential function and
ex j is the output vector standard exponential function. K is the
number of fault classes, and in this case, K is 3.

The fault location model uses a regression function to pre-
dict the fault distance (dR) on the selected transmission line.
dR is measured from the point of fault impact to the rectifier
substation.

Considering the fault current and voltage waveforms in
Figure 4, the fault samples xt in the input layer consisting of
the current and voltage can be used to update 𝜔 and b in the
regression function as shown in (15) and (16). In addition, the
regression function in (17) can correlate xt with the fault dis-
tance such that when a new fault affects the system, dR can be
obtained using (18), as shown in Figure 5.

𝜔 =
N

∑
t .xt −

∑
t .
∑

xt

N
∑

t 2 −
(∑

t
)2

(15)

b =

∑
xt

N
− 𝜔.

∑
t

N
(16)

ft =
1√

2𝜋𝜎 (xt − 𝜆)
e

{
−

[ln (xt − 𝜆) − 𝜇]2

2𝜎2

}
(17)

dR = 𝜔. ft + b (18)

where t is the duration of the fault, N is the number of fault
samples, µ is the location parameter, 𝜎 is the standard deviation,
𝜆 is the variance, and ft is the fault sample probability function.
The point on the probability distribution curve obtained from
the classification model with the highest fault sample density is
used to predict the fault distance.

4 SIMULATION SETUP AND DATA
PREPARATION

In this section, the MMC-HVDC system is shown in Section
4.1, while the simulation of the faults on the systems and the
extraction of the fault currents and voltages as training and test
datasets are evaluated in Section 4.2.
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FIGURE 7 Bipolar Modular Multilevel
Converter High Voltage Direct Current system.

TABLE 1 Simulation parameters for the system under test.

Design parameters Values

AC voltage and frequency 230 kV and 60 Hz

DC voltage level 230 kV

Capacity rating 40 MW

SMs capacitor voltage 1.15 kV

Arm inductance 0.026 H

Cell capacitance 0.015 F

Number of MMC SMs 12

Insertion resistance 5 kΩ

Transmission line DPL model—300 km, 0.79 mH/km,
0.014 uF/km, 0.02 Ω/km

4.1 MMC-HVDC system

The validation of the fault location scheme is performed
using fault samples generated from a bipolar HVDC system
in Figure 7, designed in MATLAB, and simulated in real time
using the OPAL-RT digital simulator shown in Figure 6. The
digital simulator uses the Artemis and State Space Nodal (SSN)
solver to simulate the 24-pulse bipolar HVDC on four cores of
a 3.2 GHz Xeon V2 (2 cores per station).

The MMC station is a 230 kV, 40 MW, 60 Hz network
based on the CIGRE Benchmark as shown in Table 1. The
rectifier and inverter are 12-pulse converters connected using
a bipolar link. The link (pole 1 and pole 2) is a 300-km
distributed parameter line (DPL) based on frequency dependent
model (FDM) [21]. The capacitance, inductance, and resis-
tance of the line are 0.014 µF/km 0.79 mH/km, 0.02 Ω/km,
respectively.

4.2 Fault dataset generation

The first step in the fault location approach is to obtain the
fault current and voltage from the network. Figure 8 shows
an example of the fault current and voltage display generated
from the real time simulator during the fault, from which the
fault data are extracted. From the display, the fault impacted the
system at 0.5 s and lasted for 0.7 s. The three different fault

FIGURE 8 DC fault current and voltage.

types (P1, P2, P1 − P2) were impacted at four different incep-
tion angles (30, 45, 60, and 90) for 30 different positions of the
transmission line, with 25 different resistance values selected
randomly between 0.01 Ω and 250 Ω. A total of 9000 fault
cases (3 fault types, 4 inception angles, 30 fault positions, and
25 fault resistances) were obtained using a sampling frequency
of 12 kHz. The fault dataset was collected by a measuring relay
at the rectifier pole.

The fault current and voltage samples were normalised
between 0 and 1 using (19) to form the input fault samples (xi )
for the algorithm. This is done to enforce a level of uniformity
without distorting the range of the values, thus improving the
quality of the dataset, and speeding up the fault location pro-
cess. The results of xi obtained from the simulations are shown
in Figure 9.

xi =

⎧⎪⎨⎪⎩
ii−min(i )

max(i )−min(i )
for fault current

vi−min(v)

max(v)−min(v)
for fault voltage

(19)

Before xi is passed to the bi-LSTM fault location scheme,
it is divided into 70% training samples (6300) and 30% test
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FIGURE 9 Normalised input fault samples (x).

samples (2700). The training fault samples are used to model the
algorithm to learn and adapt to the fault features so that future
predictions can be made when deployed on new fault samples,
which in this case are the test samples.

For adequate training and testing, parameters such as the lay-
ers, batches, learning rate, and epochs of the bi-LSTM network
should be properly selected. Increasing the number of layers,
batch sizes, and epochs improves the performance of the model
but adds to its complexity and computational burden, thereby
increasing the locating time. Also, a learning rate that is not
too low or too high should be selected because a low learning
rate will converge after several iterations and thus reduce the
speed of location, while a high learning rate will diverge and lead
to poor accuracy [22]. Consequently, the following parameters
were used for training and testing the fault datasets in a timely
and accurate manner: 256 hidden layers, 3 fully connected lay-
ers, batch sizes of 90, 30 iterations (epochs), and a learning rate
of 0.01.

5 SIMULATION AND RESULT

This section presents the classification model results for the
training and test phases of the fault samples in Section 5.1, and
the location model results are shown in Section 5.2. In Section
5.3, the effect of noise on the location scheme is analysed. In
Sections 5.4 and 5.5, the bi-LSTM location scheme is deployed
on a multi-terminal MMC-HVDC system to verify the scheme’s
robustness, while a comparative analysis with other location
schemes is presented in Section 5.6.

5.1 Classification analysis

The classification model separates the training dataset into three
different fault types (P1, P2, P1 − P2), as shown in Figure 10.
Each fault type is identified with different regions of the trans-
mission lines, with corresponding class intervals of 0–1, 1–2,
and 2–3. The accuracy of the trained model is illustrated in
Figure 11. The simulation was done for 21 iterations with a
training time of 3.819 s, and it can be seen that a close compari-
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FIGURE 10 Classified trained fault samples.
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FIGURE 11 Accuracy of the trained model.
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FIGURE 12 Classified test fault samples.

son occurred between the actual fault regions and the classified
fault types as the curves approached 100%. This verifies that the
trained model has learned the fault features of the transmission
and can be further deployed to predict the fault types of 2700
test samples. The identified region of the test sample is shown
in Figure 12, while the performance of the prediction model is
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FIGURE 13 Confusion matrix of classified test model.
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FIGURE 14 Performance of the classification model.

FIGURE 15 Pole-pole fault distance estimation.

shown using a confusion matrix in Figure 13. From the con-
fusion matrix, it was observed that only one of the 900 fault
samples belonging to pole2-G was incorrectly predicted.

The performance of the classification model is shown in the
correlation response plot in Figure 14. The trained model was
able to predict the test fault samples as both the training and
test outputs converged in the three fault regions of the trans-
mission line. Thus, the proposed classification model is accurate
and efficient.

Since the fault region is known, the information from that
transmission line is sent to the location model to detect the exact
point of the fault impact. For example, if the classifier predicts
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FIGURE 16 Performance of the location model in MSE.

TABLE 2 Validation of proposed location scheme.

Fault type

Actual fault

location, km

Predicted fault

location, km

Percentage

error, %

P1 40 39.75 0.625

55 55.38 0.686

108 108.22 0.203

130 129.25 0.577

242 242.54 0.223

P2 50 50.16 0.319

94 94.69 0.729

112 111.82 0.161

256 255.19 0.316

287 287.86 0.299

P1 − P2 24 24.11 0.456

73 72.39 0.836

100 99.46 0.540

140 139.54 0.329

215 215.62 0.286

TABLE 3 Validation of noise data.

SNR (dB)

Actual fault

location, km

Predicted fault

location, km

Percentage

error, %

40 40 39.644 0.890

30 80 80.73 0.904

20 160 161.49 0.923

10 240 237.72 0.950

the fault to occur on pole 1 of the bipolar network, only the pole
1 dataset is made available to the location model. This concept
reduces the computational complexity of dealing with complex
data from all regions of the transmission line.
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INWUMOH ET AL. 9 of 13

TABLE 4 Location results for 4-terminal MMC-HVDC.

Fault lines

Actual fault

location, km

Predicted fault

location, km

Percentage

error, %

DPL150 km 22 21.92 0.355

70 70.33 0.469

130 129.67 0.254

DPL200 km 50 50.47 0.931

110 110.26 0.236

167 165.9 0.659

189 189.82 0.432

DPL300 km 26 26.19 0.725

100 99.36 0.640

265 265.68 0.256

288 289.70 0.587

DPL400 km 80 79.35 0.813

150 149.54 0.306

215 216.03 0.477

376 374.02 0.527

5.2 Location analysis

For this study, all the test samples are sent to the location
model, and considering that they were generated from faults
impacted at 30 different positions, the scheme is used to predict

the location of each fault impact. Figure 15 shows the dis-
tance prediction for one of the fault impacts. From the results,
the distance of a pole-pole fault is indicated by a purple sam-
ple point located at the top of the probability density curve
(ft). Within 1.053 ms, the model predicts the fault location at
83.25 km, since that is the distance with the highest magni-
tude of ft. On validation, the actual fault location was 83 km.
Thus, a percentage error of 0.3% was recorded, which shows
that the predicted and actual fault distances are in close agree-
ment. Further to the above statement, Figure 16 shows the MSE
of the location model. It can be seen that the curve for the pre-
dicted distance is close to the true value, with a low MSE of
0.006.

Table 2 presents the percentage error for the fault location
of some of the other 29 positions. From the table, it can be
seen that the percentage error for the test samples is less than
1%. This shows that the proposed location scheme has high
precision for fault distance estimation.

5.3 Performance on noisy fault data

In real-life scenarios, fault signals are sometimes contaminated
with noise from measuring devices and the environment. Such
distortion of the fault data can affect the accuracy of the
location scheme. To verify the performance of the proposed
location scheme in a noisy environment, Gaussian noise with
a signal-to-noise ratio (SNR) of 40 dB to 10 dB was added to
the training and test fault samples. Some of the results of the

FIGURE 17 4-terminal MMC HVDC system.
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10 of 13 INWUMOH ET AL.

FIGURE 18 Subsystem of a 37-terminal MMC HVDC system.

distance estimation are presented in Table 3. From the table, it
can be seen that the percentage error was less than 1% for the
different noise levels. This verifies that the location scheme is
robust to noise.

5.4 Performance on a 4-terminal
MMC-HVDC system

The proposed location scheme is deployed on a 4-terminal
MMC-HVDC system based on the CIGRE benchmark. The
system comprises four MMC substations with a 250 kV, 1.5
GW capacity. The MMCs are regulated by the master con-
trol (SM_Control) and connected by 4 DPL (150 km, 200 km,
300 km, and 400 km), as shown in Figure 17.

The scheme’s performance is verified by simulating pole to
ground faults on the four different lines. As discussed in Sec-

tion 4.2, the fault data are generated by varying the resistance,
distance, and inception angles. The distance prediction results
obtained using the same principle as that in Section 4 are shown
in Table 4. The location scheme still maintains a percentage
error within 1%. Thus, the performance of the scheme is not
affected by the system’s complexity.

5.5 Validation on a 37-terminal MMC
HVDC system

The proposed fault location scheme is validated on an IEEE
37-terminal MMC HVDC system, simulated using the Opal-RT
real-time digital simulator under unbalanced load conditions.
The HVDC substation is rated at 230 kV with a capacity of
2.5 GW nominal power. Each substation is linked by differ-
ent lengths of DPL transmission networks. The system uses the
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INWUMOH ET AL. 11 of 13

FIGURE 19 The console showing fault results.

FIGURE 20 Current and voltage display of 37-terminal MMC HVDC
system.

SSN solver to simulate the model and to section the model to
fit into two cores containing the subsystem shown in Figure 18
and the console, which displays the fault dataset in Figure 19.

To further validate the proposed algorithm, DC faults were
impacted on less than 1% and more than 99% of the transmis-
sion lines. The fault dataset was generated from a combination
of different fault scenarios such as different fault locations, dif-
ferent fault resistances (0 Ω, 4 Ω, 8 Ω, 20 Ω, 40 Ω and 60 Ω)
and different fault types (P1, P2, P1 − P2).

The display in Figure 20 shows a sample of the fault cur-
rent and voltage obtained from ten different locations along the
transmission line. The current and voltage fault data obtained
from the simulation are used to train the proposed algorithm, as
described in Section 4.2. The algorithm is further deployed to
locate the fault points of the new fault samples.

The performance of the algorithm is further validated in
Table 5 for faults that occur close to the nodes of the bus bar.
From this table, it can be seen that the accuracy of the fault
location algorithm drops slightly compared with its accuracy in
Table 4. This is solely due to the closeness of the fault impact to
the transmission line terminals, which might add some errors to
the data as a result of reflections. However, the overall perfor-
mance of the algorithm is still very high, with a 1% deviation
in accuracy. Thus, it can be concluded that the algorithm is
robust to faults occurring close to the nodes of the transmis-
sion lines. Furthermore, it can be seen that the complexity of
the network has no effect on the performance of the algorithm,
as the percentage error falls within the proposed 1% tolerance.
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12 of 13 INWUMOH ET AL.

TABLE 5 Location results for 37-terminal MMC HVDC system.

<1% of transmission line >99% of transmission line

Fault lines

Actual fault

location, km

Predicted fault

location, km

Percentage

error, %

Actual fault

location, km

Predicted fault

location, km

Percentage

error, %

DPL 701–702 0.198 0.20 1.120 19.820 20.042 1.119

DPL 702–703 0.590 0.586 0.752 59.460 59.009 0.758

DPL 703–727 0.178 0.176 1.034 17.840 17.656 1.031

DPL 703–730 0.346 0.349 0.971 34.690 35.028 0.974

DPL 704–720 0.396 0.392 0.950 39.640 39.260 0.958

DPL 706–725 0.693 0.698 0.726 69.370 68.872 0.718

DPL 707–720 0.545 0.549 0.808 54.510 54.952 0.810

DPL 709–731 0.297 0.294 0.996 29.730 29.434 0.995

DPL 714–718 0.099 0.100 1.420 9.910 9.769 1.421

DPL 733–734 0.495 0.490 0.911 49.550 50.003 0.914

TABLE 6 Comparative analyses among AI-location schemes.

Fault location methods

Communication

channel

requirement

Computational

burden

Robustness

to noise

Sampling

rate

Performance

(MSE)

Decision tree No Medium High Medium 0.048

K-nearest neighbour No Medium High High 0.670

ANN + fast Fourier transform No High Low High 0.889

ANN + discrete wavelet
transform

No High High High 0.906

SVM-based particle swarm
optimisation

No Medium NA High 0.590

CNN No High Medium High 0.012

Proposed bi-LSTM No low High Medium 0.006

TABLE 7 Comparative analyses among non AI-location schemes.

Fault location methods

Communication

channel

requirement

Computational

burden

Robustness

to Noise

Sampling

rate

Performance

(MSE)

TW Yes Medium Low High 1.990

Impedance-based Yes Medium Low High 1.206

Current differential Yes Medium Low Medium 1.405

Pearson correlation coefficient Yes Medium Low High 0.951

EMTR Yes High Medium High 1.153

Prony algorithm Yes High Low High 2.016

Voltage rate change Yes low NA Medium 2.301

5.6 Comparisons with other location
schemes

This section presents a brief comparison in Tables 6 and 7
between the existing fault location methods and the proposed
scheme under the same fault scenarios. One of the parame-
ters for comparison is the requirement for a communication

channel. Location methods that require a communication
channel often encounter time delays since they need
time synchronisation between installed relays on each
end of the network. An AI location scheme does
not need to overcome these challenges. In addition,
the proposed location scheme had the lowest MSE
(0.006).
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6 CONCLUSION

This paper proposes a fault location scheme based on the
bi-LSTM algorithm that classifies and locates faults on the trans-
mission lines of MMC-HVDC systems with a lower sampling
rate and higher performance than conventional methods. The
scheme eliminates the challenges of complex data extraction
and preprocessing of raw data, which could lead to a high
computational burden that could affect the algorithm’s perfor-
mance in real engineering applications. The scheme is flexible
with fault current and voltage from a single source, thus elim-
inating the need for a communication channel. The simulation
results showed that the scheme could classify fault regions with
very high accuracy, and the location model could predict fault
distance with a low MSE of 0.006. In addition, the location
scheme is not affected by system complexity, noise, different
fault types, or resistance since the percentage error obtained
from each case is within 1%.
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