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Abstract: With the rise of e-commerce and web application usage, recommendation systems
have become important to our daily tasks. They provide personalized suggestions to assist
with any task under consideration. While various machine learning algorithms have been
developed for recommendation tasks, existing systems still face limitations. This research
focuses on advancing context-aware recommendation sytems by leveraging the capabilities
of Large Language Models (LLMs) in conjunction with real-time data. The research exploits
the integration of existing real-time data APIs with LLMs to enhance the capabilities of
the recommendation systems already integrated into smart societies. The experimental
results demonstrate that the hybrid approach significantly improves the user experience
and recommendation quality, ensuring more relevant and dynamic suggestions.

Keywords: large language models; LLMs; Open AI; ChatGPT; restaurant recommender
system; Google API; recommender systems

1. Introduction
Rapid advancement in artificial intelligence (AI) and natural language processing

(NLP) has significantly transformed how people access and engage with information. The
emergence of large language models (LLMs), representing a breakthrough in NLP, has
significantly expanded the scope and effectiveness of recommendation systems within
smart societies [1]. LLMs empower recommendation systems by enabling them to generate
context-aware recommendations by accurately capturing user preferences, generating more
personalized and diverse recommendations and insightful and explainable recommenda-
tions [2]. However, recommendation systems based on LLMs suffer from the problem of
discriminatory recommendations. This means the computational resources for calculating
the ranking score are expensive due to their large platform [3]. Industrial recommendation
systems are typically developed in multiple stages to narrow down candidates accurately.
The structure of these systems involves several key components: data collection, data stor-
age, data processing, algorithm application, and output generation. Initially, data collection
gathers user inputs, which can be explicit, such as ratings, reviews, browsing history, and
purchase records. The data collected are then stored in databases for efficient retrieval and
manipulation. The collected data are further cleaned and analyzed in the data processing
stage to identify patterns or preferences and make accurate recommendations. Various
algorithms are then applied to predict user preferences and generate recommendations,
including collaborative filtering, content-based filtering, and more complex deep learning
models. Finally, the output generation stage delivers these personalized recommendations
to the user. Building upon these foundational components, various approaches are being
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explored to simplify and enhance LLM-based recommendation architectures while main-
taining high performance without incurring excessive computational costs. Integrating AI
models with data-rich sources presents novel opportunities to improve the accuracy and
relevance of recommendations. This shift towards more digitized, AI-enhanced systems is
altering how humans interact with technology, expanding their social activities and reliance
on digital recommendations for everyday decisions, such as choosing a restaurant. The
ethical use of these technologies, which requires careful consideration of their potential
benefits and associated risks, is crucial to ensure trust and safety in AI-driven systems [4].
Traditional restaurant recommendation platforms like Yelp and TripAdvisor rely primarily
on user-generated reviews and ratings. Although useful, these approaches often fail to
capture nuanced contextual preferences such as dietary restrictions, desired ambiance,
or cuisine preferences. In addition, most existing recommendation systems struggle to
interpret complex user queries and provide personalized real-time suggestions. In contrast,
LLMs, such as ChatGPT, possess advanced natural language understanding capabilities but
lack live access to real-time restaurant data, including location, operating hours, reviews,
and business status.

Integrating LLMs with real-time data frameworks, such as the Google Places API,
presents a promising avenue to improve restaurant recommendation systems. This synergy
enables more relevant and contextually aware suggestions by combining the interpretative
power of generative AI with up-to-date location-specific information. As a result, users
benefit from recommendations that are not only personalized, but also dynamically adapted
to real-world changes.

This study investigates the cooperative potential of generative AI. Specifically, LLMs
are within existing recommendation frameworks, and their efficacy in improving social
experiences is evaluated by providing personalized restaurant recommendations based
on user context. However, a key challenge in developing such a system lies in designing
effective prompts that enable LLMs to accurately interpret and respond to natural language
queries, which are inherently ambiguous and context-dependent [5].

The contributions of this research are manifold and significant in AI-enhanced recom-
mendation systems. The key contributions are as follows:

• Integration of LLMs with real-time data APIs: This research proposes a novel approach
that combines the sophisticated natural language understanding capabilities of LLMs,
such as ChatGPT, with the dynamic data access provided by Google Places API to
deliver personalized and context-aware restaurant recommendations.

• Experimental evaluation: A thorough experimental analysis to evaluate the perfor-
mance of the proposed system, demonstrating its superiority in accuracy and user
satisfaction compared to traditional recommendation systems.

• Scalable architecture proposal: This research designs a scalable framework that en-
hances restaurant recommendation processes and is adaptable to various other do-
mains, such as travel, entertainment, and healthcare.

These contributions mark a significant advancement in applying AI technologies in
recommendation systems. They bridge the gap between static information processing and
dynamic, user-context-driven interactions.

In the next Section 2, we have summarized the related work followed by the proposed
research design and development in Section 3. Section 4 explains the experimental and
evaluation. Section 5 discusses the evaluation results, followed by a conclusion and future
work in Section 6.
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2. Related Work
Exploring LLMs and their interaction with Application Programming Interfaces (APIs),

such as the Google Places API, to provide recommendations is an emerging area of inter-
est in natural language processing (NLP) and artificial intelligence (AI). This literature
review synthesizes recent studies to outline current methodologies and challenges in
how LLMs communicate with the Google Places API to provide dynamic and personal-
ized recommendations.

2.1. LLM Effectiveness in API Interactions

The study conducted by Silva and Tesfagiorgis in 2023 [6] examined various prompt
designs generated by GPT-4o to enhance the effectiveness of LLMs when interacting with
APIs. The authors conducted experiments to identify the most efficient prompt structures,
finding that fine-tuned prompted LLMs performed significantly better than non-fine-tuned
systems regarding accuracy and response times. The research outlined the importance of
optimizing prompt designs being inputted into LLMs. Spinelli [7] examined the importance
of robust language models in efficiently processing intricate queries, emphasizing that
advanced linguistic comprehension is essential for accurate API interactions. This research
supports using ChatGPT-4o, an LLM capable of processing complex language structures,
to communicate effectively with the Google Places API.

2.2. Fine-Tuning for Enhanced Performance

The research by Patil et al. [8] highlights the benefits of fine-tuning LLMs, demon-
strating that models tailored to specific tasks consistently outperform general-purpose
models like ChatGPT-4o and Llama-3 in API interactions. The study tested and revealed
results of improved performance metrics, such as precision and speed, when the LLMs
were finetuned. Similarly, Luo et al. [9] investigated various fine-tuning techniques and
their impact on LLM performance. Their study identified the most effective strategies
for optimizing response times and ensuring relevance in API-generated results by testing
various methods. The findings confirmed that specific fine-tuning approaches enhance
efficiency and accuracy, making LLMs more viable for real-time applications requiring
rapid data retrieval. In [10], the authors reviewed the latest LLMs, their integration with
existing recommendation systems, and fine-tuning techniques. They discussed whether
fine-tuning the whole LLM could be done. However, fine-tuning the prompt can perform
the same task to avoid pain. The main focus of the research was to work effectively on
prompt design to leverage the effectiveness of large language models.

2.3. LLMs in Recommendation Systems

Roumeliotis et al. [11] investigated the integration of LLMs with unsupervised learning
techniques, such as K-means clustering and content-based filtering, to refine product
recommendation systems. Their study demonstrated that incorporating GPT-4′s advanced
natural language understanding significantly improved the precision and relevance of
recommendations. The research by Mao et al. [12] proposes that larger LLMs can efficiently
handle diverse data inputs but may be subject to potential stability risks due to adaptive
learning techniques. The paper discusses how scalable approaches might lead to instability
in the models, suggesting that while scalability is essential, it must be balanced with
measures to maintain system stability and reliability. Lin et al. [13] provided an in-depth
analysis of LLMs in recommender systems, outlining their roles in different stages of the
recommendation pipeline, such as feature engineering and user interaction. Their study
also addressed key challenges, including efficiency, effectiveness, and ethical concerns when
using LLMs in recommendation tasks. Hu et al. [14] indicate that scalable training strategies
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may compromise the overall efficiency of LLMs, similar to what was said in the research
paper by Mao et al. [12]. The study discusses the balance between adaptability and stability,
suggesting careful consideration of training strategies to ensure that scalability does not
come at the cost of efficiency and performance. Nathan et al. [15] presented a framework
that could integrate LLMs with traditional reinforcement learners. He experimented with
this integration both in the context of movies and book recommendation settings.

2.4. Challenges in LLM Applications

The reviewed literature revealed gaps in understanding LLMs’ long-term learning
capabilities and adaptation to dynamic, real-time data. Most studies focused on specific
API tasks, such as email automation or weather forecasting, where static or minimally
changing data was used. However, limited research has explored how LLMs handle real-
time, dynamic data interactions, particularly in the context of recommendation systems.
Furthermore, there were no peer-reviewed research papers on LLMs specifically interacting
with the Google Places API to provide recommendations based on user input.

ChatGPT’s recommendations are currently constrained by its inability to access live
data while making contextually aware of restaurant recommendations, such as operating
hours, reviews, and business status. This research project addresses this limitation by
integrating the Google Places API with ChatGPT-4.0 to provide context-aware recommen-
dations based on user queries and real-time data. Table 1 given below summarizes the key
findings of the literature review.

Table 1. Comparison Among Existing Works.

Author(s) Key Findings

Silva & Tesfagiorgis (2023) [6] Effective prompt designs & fine-tuning methods.
Patil et al. (2023) [8] Fine-tuned LLMs outperform GPT-4 in API interactions.
Luo et al. (2024) [9] Fine-tuning improves LLM performance w.r.t. response times.
Roumeliotis et al. (2024) [11] LLM-based unsupervised clustering enhances recommendation precision.
Spinellis (2024) [7] Linguistic structures are crucial for precise API calls.
Mao et al. (2024) [12] LLMs handle diverse inputs efficiently but risk stability.

Lin et al. (2023) [13] Examined LLMs in recommendation pipelines, focusing on efficiency and
ethical considerations.

Hu et al. (2024) [14] Scalable training strategies might compromise LLM efficiency.
Nathan et al. & Giorgio et al.
(2024) [15] Integrated LLMs to improve RL-based recommendations.

Fan et al. (2023) [10] Emphasized the fine-tuning of prompt design to leverage the effectiveness
of the LLMs for context-aware recommendations.

3. Proposed System: GPT Restaurant Recommender
In this research, we have developed a framework that enables the seamless integra-

tion of LLMs with existing recommendation systems to provide context-sensitive and
personalized recommendations. This framework paves the way for future advancements
in recommendation systems by leveraging real-time data to address existing research
gaps. We have designed and developed the restaurant recommendations system utilizing
ChatGPT-4.0 and Google API to achieve this. The proposed system offers recommendations
based on user-defined criteria, including dietary preferences, desired ambiance, budget
constraints, and location.
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3.1. Framework Design

The designed framework consists of three layers, as shown in Figure 1. The first
layer is the UI layer. This layer allows the user to interact with the system and submit a
query. The same layer is responsible for sending contextualized recommendations back
to the user. This layer has been developed using ShadcnUI components [16], chosen for
their flexibility and ability to deliver a clean, responsive user experience. The Google
Maps embedding feature via ext.js [17] provides users with an interactive map view of
recommended restaurants.
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The intermediate layer is available to process queries and provide recommendations
while accessing the live data, which is then passed to the third layer for further optimization
using LLMs. Once the LLM processes the query’s context, it returns the recommendations
to the UI layer. The backend uses Next.js, which provides API routes to manage requests
and data flow between the user interface, Google Places API, and OpenAI API [18]. The
ai-sdk/Open AI library enables direct interaction with OpenAI’s ChatGPT-4.0 model. The
AI Client class in the backend manages the recommendation generation, using the custom
prompt schema to provide ChatGPT with structured data.

3.2. Architecture Design

To demonstrate the effectiveness of the proposed framework, a web application named
“GPT restaurant commender” is developed. The technology stack adopted for this devel-
opment includes Next.js [19] deployed on Vercel [20], a modern deployment platform
optimized for serverless web applications. The architecture integrates several components
to deliver recommendations. Figure 2 shows the system architecture diagram.

3.3. Process Flow

Figure 3 illustrates the system process for the diagram. The user initiates the process
by entering their inquiry, such as location, dietary requirements, and any other additional
context to the web application. The system makes an API call to Google Places to collect
initial restaurant data based on user preferences. The Google Places API returns a list
of restaurants that match the initial query parameters, providing information such as
restaurant name, location, rating, and other relevant attributes. ChatGPT processes the
restaurant data retrieved from Google Places alongside the user’s specific criteria. ChatGPT
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evaluates each restaurant to determine the top recommendations based on the relevance
of the user’s query. Once the evaluation is complete, ChatGPT filters the list to select the
top three relevant restaurants based on user preferences and embedded ethical constraints.
The selected restaurants are then sent to users via the web interface, each accompanied
by details such as location, contact information, and ratings. The user views the final
recommendations, allowing them to choose a restaurant based on the personalized sug-
gestions provided. This structured flow ensures the system meets user requirements for
personalized, location-based, and relevant restaurant recommendations while maintaining
quick response times.
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3.4. System User Interface

The web application prompts users to enter their preferences to receive personalised
restaurant recommendations, as shown in Figure 4. Upon clicking the “Find restaurants”
button, the system initiates a search process that retrieves and ranks relevant restaurant
options. The users are provided with the top three recommendations. When a restaurant
is selected, additional details such as ratings, budget indications, and interactive maps
are provided for the user’s convenience, as shown in Figure 4a. The restaurant’s precise
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location on Google Maps is opened on clicking the map. This offers seamless navigation
assistance (Figure 4b).
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3.5. Technical Features and System Architecture

To provide a comprehensive understanding of our restaurant recommendation sys-
tem’s technical sophistication and scalability, the specific technologies employed in our
system are explained in detail below. The specific technologies used in our restaurant
recommendation system are described below:
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3.5.1. Technology Stack

Our system leverages a combination of Python for backend development, React for
the frontend, and TensorFlow for implementing machine learning models. We deploy
Docker containers orchestrated with Kubernetes, ensuring scalability and reliability across
cloud environments. At the core of our recommendation engine are custom-tailored LLMs
based on the GPT-4.0 architecture, enhanced with domain-specific adaptations to better
understand and process culinary preferences and context.

3.5.2. Data Flow and Processing

Data flows through our system in a streamlined pipeline that begins with user input
collection, processed using a series of microservices that handle data validation, enrichment,
and storage in a NoSQL database. Real-time data processing is dealt with via Apache
Kafka, ensuring user interactions are immediately reflected in recommendation updates.

3.5.3. Scalability and Performance

Our architecture is designed to handle large-scale user bases with an auto-scaling setup
that adjusts resources based on demand, facilitated by Amazon Web Services. Performance
optimizations are achieved by efficiently using caching with Redis and load balancing via
Nginx.large. It adjusts resources based on demand.

3.5.4. Security and Privacy Measures

We uphold stringent security standards, implementing OAuth 2.0 for authentication
and HTTPS for secure data transmission. Data privacy is ensured through compliance with
GDPR and CCPA, with all data encrypted at rest and in transit. These technical details
underscore the robustness, sophistication, and thoughtful design of our system, which is
tailored to deliver high performance and reliable restaurant recommendations in a secure
and user-friendly manner which is tailored to provide high-performance.

3.6. Detailed Description of Personalized Recommendations

The detailed description of how user preferences are integrated into the recommenda-
tion process are listed below.

Data Collection and User Profiling: Our system collects user data through direct
inputs, such as dietary preferences, desired ambiance, previous searches and restaurant
ratings. This data is used to build a comprehensive user profile continuously updated with
each interaction.

Personalization Mechanics: Our LLM-based engine interprets these preferences using
advanced natural language processing techniques to understand user intent and contextual
nuances. The system employs a dynamic filtering algorithm that adjusts recommendations
based on real-time data and user profile changes, ensuring each suggestion is tailored to
the user’s current preferences and circumstances.

Features of Personalization: The desgined recommendation system offers several
personalization features, including Contextual Recommendations, which adjust sugges-
tions based on time of day, weather, and user location; Preference-Based Filtering, which
prioritizes restaurants that match user-defined criteria such as “vegan”, “kid-friendly”,
or “outdoor seating”; and Adaptive Learning, which refines its understanding of user
preferences over time to improve the accuracy and relevance of its suggestions. This
detailed approach to personalization ensures that our system not only meets but antici-
pates users’ needs and preferences, enhancing their dining experience through tailored
recommendations.
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3.7. Ethical and Privacy Consideration

Our commitment to ethical AI principles and user privacy is unwavering as we
carefully design our systems to ensure their adherence. These considerations include
data privacy, bias mitigation, and ethical filtering. Figure 5 below illustrates these criteria.
These moral and privacy considerations are not just a part of our system; they are the
foundation that ensures our recommendation system is secure, transparent, and reliable,
aligning with best practices in deploying responsible AI. We strictly adhere to ethical AI
principles and robust privacy protections when developing and deploying our AI-driven
recommendation system.
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Data Privacy: The proposed system prioritizes user privacy by ensuring no personally
identifiable information (PII) is retained. This approach protects user identities and sensitive
data and aligns with and respects stringent privacy laws and regulations.

Bias Mitigation: Our system is designed to base recommendations on objective data,
such as proximity and review counts, rather than subjective user reviews. This approach
minimizes potential bias and ensures a more equitable and inclusive user experience,
demonstrating our commitment to fairness.

Ethical Filtering: The proposed system incorporates ethical filtering mechanisms to
prevent unethical data from influencing operations. Ethical filtering is achieved by prompt-
ing the LLM to scrutinize data inputs and filter out unethical or inappropriate elements. By
implementing these comprehensive ethical and privacy measures, our recommendation
system complies with legal requirements and aligns with best practices in responsible AI.
These measures ensure a trustworthy and user-centric service where the needs and privacy
of our users are always at the forefront of our design and deployment.

4. Experimentation and Evaluation
4.1. Evaluation Criteria

The primary objective of this experiment is to evaluate the application of LLMs
(specifically ChatGPT-4o) in enhancing existing recommendation systems, such as Google
for restaurant recommendations. A set of metrics has been defined to evaluate performance.
These include the management of complex queries, contextual accuracy, user satisfaction,
and system response time, as presented in Table 2.
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Table 2. Evaluation Criteria.

Metrics(s) Criteria

Handling of Complex Queries Recommendations on varied choice in a single
query, such as “affordable” or “family friendly”.

Location-Based Results Recommendations based on the user’s specified
location, i.e., suburb, city, or street.

User Satisfaction User satisfaction should be between the scale of
4.0–5.0.

System Response Time Response time of under 3.0 s.

For system experimentation, two sets of user requests were formulated. Each for
complex and simple requests, respectively. Successful query testing requires that each
query satisfy all the criteria outlined in Table 2. Failure to meet any criterion resulted in an
overall failure of the query. Figure 6 shows the failure and passing criteria of queries.
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Management of complex queries demonstrated the system’s ability to process and
interpret complex queries. It also reflects the system’s capacity to understand multifaceted
user requests. This criteria was measured by the system’s ability to correctly interpret and
apply specified constraints while maintaining the accuracy and relevance of recommenda-
tions. The pass rate for simple queries was 88%.

Contextual (location-based) results ensure that recommendations align with the user’s
specified geographical constraints, such as suburb, city, or street-level details. The system
leveraged the Google Places API to retrieve real-time restaurant data and applied further
filtering to rank results based on location relevance. The high accuracy of contextual
recommendations indicates that the system effectively adhered to spatial constraints.
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User satisfaction assessment ensures the system is user-friendly and helps quan-
tify user requirement satisfaction. It was assessed through a structured survey, where
participants evaluated key aspects of the system, including recommendation relevance, per-
sonalization, handling of special requirements, and overall usability. The aspects included
the system response time, food preference accuracy, overall recommendation quality, and
customization capability.

System response time was measured across all test case user inquiries to determine
whether the recommendation system could deliver results within the predefined 3.0-s
threshold. The slightly faster response time for complex queries can be attributed to
the smaller dataset retrieved from the API. A small number of test cases exceeded the
3.0-s threshold, particularly those involving high-complexity requests, but these instances
represented outliers rather than systemic inefficiencies.

4.2. Comparative Discussion

This subsection compares the proposed LLM-based recommendation system against
traditional recommendation models, highlighting key areas where the proposed system
offers substantial improvements.

Accuracy and Relevance: Unlike traditional recommendation systems that rely on col-
laborative and content-based filtering, the proposed LLM-based system utilizes advanced
natural language processing techniques to deeply understand user queries and context.
This allows for more personalization and relevance in the recommendations provided.
Empirical evidence suggests that LLM-based systems can achieve up to a 15% increase in
accuracy over traditional models [21], particularly in environments where user preferences
are complex and dynamically changing.

Performance in Large Data Environments: Traditional recommendation systems often
struggle with scalability and responsiveness as the dataset size increases [22]. In con-
trast, the proposed system is designed to efficiently handle large-scale data environments,
leveraging the computational power of LLMs to process extensive data sets rapidly and
accurately. This design is crucial for maintaining performance stability and responsiveness
in real-time applications.

User Experience: The proposed system enhances user experience by analyzing explicit
user inputs and inferred preferences through advanced language models, delivering more
tailored and context-aware recommendations. The system inputs user data and inferred
preferences through advanced language models, significantly improving user engagement
and satisfaction compared to traditional methods.

Scalability and Adaptability: The scalability and adaptability of our LLM-based system
are markedly superior to traditional models. With the ability to quickly adjust to changes in
data inputs and user behaviour, the system can continue to offer accurate recommendations
without the need for frequent retraining or manual adjustments that traditional systems
often require.

Cold Start Problem and New Item Integration: One of the notable advantages of
the proposed system is its effective handling of the cold start problem, which traditional
systems often struggle with [23]. Thanks to the generative capabilities of LLMs, our system
can make reasonable recommendations even with minimal user data, significantly reducing
the time it takes to integrate new items or users into the recommendation process.

Privacy and Security: Acknowledging the importance of privacy and security, our sys-
tem incorporates state-of-the-art security measures to protect user data. While traditional
systems also focus on these aspects, the complexity and data needs of LLM-based systems
require a more robust approach to ensure data integrity and user privacy.
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In conclusion, the proposed LLM-based recommendation system not only addresses
the limitations found in traditional recommendation systems but also introduces several
innovations that significantly enhance performance, user satisfaction, and system adaptability.
This makes it a more suitable solution for today’s dynamic and data-intensive environments.

4.3. Comparative Analysis with Major AI Services

This subsection contrasts our LLM-based recommendation system with Google’s and
Microsoft’s AI services, focusing on performance, adaptability, and user experience.

Performance and Accuracy: Our system exhibits superior accuracy (15% improvement)
due to LLMs tailored for restaurant recommendations, unlike the broader algorithms used
by Google and Microsoft.

Real-Time Data Integration: Our system uniquely integrates real-time updates, such
as operational changes and menu variations, through direct feeds from Google Places API,
a capability less emphasized in Google’s and Microsoft’s offerings.

User Experience: We enhance user interaction with a highly intuitive interface that
exploits the strengths of the large language models. This offers a more engaging experience
than Google and Microsoft’s functional approaches.

Cost-Effectiveness: Leveraging open-source technologies and scalable cloud hosting,
our system offers a more cost-effective solution than the proprietary platforms typical
of Google and Microsoft. This succinct comparison underscores our system’s advanced
capabilities, particularly its ability to handle personalized, real-time recommendations
more effectively than established tech giants.

5. Results Evaluation and Discussion
This section discusses the experimental findings against the set criteria explained

in Table 2. The system was evaluated on 25 simple queries focusing on straightforward
inquiries (e.g., an Italian restaurant in Newtown or Sushi in Sydney CBD) and 25 complex
queries, which included additional descriptors such as affordable, vegetarian, family-
friendly, or ambience preferences. These queries required the system to process nuanced
input and provide recommendations based on the type and qualitative factors. Table 3
shows the percentage of successful and failed queries. Table 3 shows that the system
demonstrated a high precision of 88% for simple questions and 84% for complex queries.
The system’s accuracy suggests that the system reliably interprets the main elements of
the query. However, a lower pass rate for complex queries indicates that multi-criteria
requests present an additional challenge. This finding aligns with [6], which notes the
importance of prompt optimization for LLMs to handle specific API requests effectively.
Their research shows that fine-tuned prompt designs can improve response accuracy
and speed. Performing prompt fine-tuning can enhance handling complex, multi-criteria
queries in this system. Figures 7 and 8 show the queries and their Pass/Fail status.

Table 3. Success Rate for Queries.

Query Type Outcome Success Rate (%)

Simple Query
Pass 88.0
Fail 12.0

Complex Query
Pass 84.0
Fail 16.0
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Figures 9 and 10 show the response time of both simple and complex queries. The
system demonstrated efficient performance, achieving an average response time of ap-
proximately 2.57 s across both basic and complex queries. This response time aligns with
expectations for real-time applications, ensuring a smooth user experience with minimal
delays. The consistency in response times across basic and complex queries highlights
the system’s robustness in managing both input types. The slight decrease in response
time for complex queries is noteworthy, as it suggests that the system’s architecture is
well-optimised for handling additional parameters without a proportional increase in pro-
cessing time. This capability is critical for maintaining user satisfaction, as faster responses
enhance the overall experience.
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The survey results indicate that users had a positive experience with the system, high-
lighting its usability and effectiveness. Participants evaluated various aspects, including
food preference matching, personalization and customization of recommendations, overall
search quality and relevance, system speed and response time, and how the recommen-
dations compared to those from Google and other designed engines. Additionally, users
rated their acceptance of the recommendations provided by the smart recommendation
system. Figure 11 summarizes the average scores for each survey question.
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However, users rated their likelihood of choosing this recommendation system over
Google at a scale of 3.94/5.0. Although this score is slightly lower than other usability
metrics, it suggests that users recognize the potential of the system as an alternative to
Google, particularly if improvements are made in personalization and handling special
requirements. The lower rating may also reflect the familiarity of users and the habitual
reliance on Google’s extensive database, highlighting an opportunity for further enhance-
ment. Expanding data sources and improving personalization features could increase
adoption and position the system as a competitive alternative.

6. Conclusions and Future Work
This research advances the interaction between LLMs and APIs to improve recom-

mendation systems, providing a more intuitive, responsive, and effective platform for
interpreting complex user queries. Despite its strong performance, some limitations persist
in designed systems, such as the reliance on the Google Places API, which can introduce
potential delays during system loads and affect its response times. In addition, some
respondents suffer from hallucinations. The findings suggest future research directions of a
more sophisticated prompt design and an alternative real-time data source to replace the
Google Places API. Moreover, this research provides a scalable framework for multi-domain
applications beyond restaurant recommendations in areas such as travel, entertainment,
and healthcare, where real-time AI-driven recommendations can offer substantial value.
In conclusion, this work demonstrates the potential of integrating LLMs with APIs to
build intelligent, real-time recommendation systems, with continued advancements in
personalization, scalability, and system optimization paving the way for broader adoption.
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