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ABSTRACT

M
odern machine learning relies on massive data to train models like deep neu-

ral networks, but collecting data is becoming more sensitive with increasing

attention to privacy protection. Then, Federated Learning (FL) was proposed

to learn a global model while keeping users’ data decentralised and private. Personalised

Federated Learning (PerFL) improves vanilla FL by balancing collaborative training

and model personalisation. It exploits client preferences and turns the global model

into personalised models, which usually demonstrate superior performance. However,

explainable personalisation is still an open challenge in developing a federated learning

system. This research aims to solve the challenges by recognising client preferences

embodied in data and proposing on-deployment personalisation where clients can obtain

practical and explainable model outputs.

Firstly, the research explains personalisation by disentangling common and per-

sonalised knowledge in an FL system with many distributed heterogeneous nodes. A

novel Federated Dual Variational Autoencoder (FedDVA) framework is proposed to fulfil

the task of disentangling sample representations into client-agnostic (common) and

client-specific (personalised) parts. The disentangled representations will demonstrate

meaningful structures describing clients’ preferences, providing a better interpretation

of features contributing to the personalisation.

Further, the research introduces a representation alignment mechanism to learn

a universal representation space across clients to measure client properties related
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to personalisation. The proposed Client-Decorrelation Federated Learning (FedCD)

framework utilises bias in representations of a client’s local data to recognise the client’s

properties. Then, it aligns the global model’s hidden space with axes representing client

properties, unravelling a client’s influence from its sample’s latent representations.

Moreover, the research introduces Virtual Concepts (VCs) to explicate clients’ pref-

erences and model personalisation. The VCs are a set of vectors describing structures

of data partitions of an FL system. They constitute client-supervised information that

characterises biases implied in clients’ local data. Then, personalisation becomes explicit

and explainable by including VCs as labels of clients’ preferences in FL’s training process.

Qualitative and quantitative experiments on real-world datasets validate the ef-

fectiveness and efficiency of our proposed methods. Particularly, data reconstructions

based on representations learned by FedDVA demonstrate two irrelevant data manifolds

regarding client-agnostic and client-specific knowledge, which validates the effectiveness

of personalisation disentanglement. Representations aligned by FedCD and distributions

of virtual concepts have consistent cluster structures with data distributed among clients,

which could be utilised as a measurement of client preferences explaining personalisa-

tion. Furthermore, on-deployment classification performance shows that a global model

can learn client preferences with the proposed methods so that it can obtain competitive

performance to those delicate PerFL models without needing client-specific modules or

extra adaptation processes.

Keywords: Federated Learning, Model Personalisation, Model Interpretability, Variational

Auto-Encoder, Concept Vector
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INTRODUCTION

1.1 Background

1.1.1 Federated Learning

B
enefiting from massive data, modern machine learning techniques are able

to train complex models like deep neural networks (DNNs) [34], which demon-

strate promising performance in various tasks, such as image recognition,

natural language processing and recommendation. Meanwhile, as these techniques be-

come ever more prevalent, they draw increasing attention to the safety of our private

data. Regulations like GDPR [105] are released in many countries to protect against

unauthorised data collection and to ensure models are trustworthy.

Federated Learning (FL) [45, 75, 84] was proposed to mitigate privacy risks in

traditional machine learning processes, becoming a popular learning paradigm in recent

years. The FL embodies the principles of focused collection and data minimisation [75]. It

distributes machine learning tasks to a set of clients (i.e., devices like smartphones and
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laptops) and collects only model updates to realise decentralised training. Accordingly,

data will be kept distributed and closed on each client so that many privacy risks

in the centralised learning environment can be averted. For example, users will no

longer need to expose their browsing histories when recommendation models are trained

decentralised with FL [121, 122].

Generally, the FL training processes consist of collaborative stages between a server

and many clients. The clients will first synchronise a globally shared model from the

server and optimise it individually on local data, e.g., by gradient-based methods. Then,

the server will collect and aggregate local updates to synthesise a new version of the

global model. Algorithm 1 describes the alternate learning process. One iteration

between the clients and the server is called a communication round (or a round), which

relies on networks, e.g., the internet, to synchronise models among devices. Since network

traffic can be costly and unreliable, e.g. for network latency, the communication cost is

usually the bottleneck that limits the size of the global model and the efficiency of a

learning algorithm.

Algorithm 1 Federated Learning
Input: communication rounds R
Output: global model G

1: server initialises the global model G
2: for r from 0 to R do ▷ communication rounds
3: server selects a set of clients C

4: for c ∈C parallel do
5: client c synchronises G from the server ▷ network traffic
6: G′

c ←ClientUpdate(G)
7: end for
8: server collects local updates G′

c, c ∈C ▷ network traffic
9: G←ServerUpdate(G′

c), c ∈C

10: end for
11: return G

It is worth noting that federated learning introduces a distinct learning paradigm,

which significantly differs from conventional distributed machine learning settings. A
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characteristic is that clients in FL are independent devices that manage their local

data and training steps. They will only communicate with a server when necessary

model updates need to be synchronised. In contrast, in conventional distributed learning,

’clients’ are nodes in a data centre. A server will schedule them to utilise computing

resources and storage capacity fully. Local data may also be re-partitioned cluster-wise to

balance working loads. As a consequence, FL is more favourable to the public’s requests

for privacy protection. They can keep their data closed on their devices rather than send

them to a server or a data centre. They can also reserve the right to opt in or out of a

learning process, as devices are independent of the central server.

Further, with the border of FL being greatly expanded, the focus of FL research is

developing towards different application scenarios. Two acknowledged communities [45]

are the cross-device FL, which emphasises mobile and edge device applications [43, 75,

76], and the cross-silo FL, which involves only a few but reliable clients, e.g., servers

from multiple organisations collaborating to train a shared model [22, 23, 65, 109].

The cross-device FL refers to the cooperation among a substantial amount of mobile or

IoT devices. It aims to train a globally shared model with private data, such as browsing

history, typing preferences and locations. However, clients in this setting are usually

unreliable for various reasons, such as unstable internet connection, working period, or

opting out of the training, and only a small fraction of clients will be available at each

communication round [75]. So far, the cross-device FL has been widely adapted to train

models deployed on smartphones. For example, Google has deployed federated learning

in Gboard (keyboard on mobiles) [12, 37, 83, 117] and Android Messages [97]. The FL is

utilised to train models for tasks like next-word/emoji prediction and query suggestion.

Apple also deployed federated learning in iOS [5] to train the QuickType keyboard and

the vocal classifier for Siri, a personal AI assistant [4].

The cross-silo FL is built by companies or institutions to facilitate inter-organisation
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Cross-device FL Cross-silo FL

settings
clients are numerous edge-
devices connected by the
Internet

clients are multiple data
centres connected by pri-
vate networks

participants
laptops, smartphones and
IoT devices

institutes and companies,
e.g., banks and hospitals

research interest
privacy protection, com-
munication efficiency, data
heterogeneity, robustness

privacy protection, ac-
countability, reliability,
model heterogeneity

Table 1.1: Comparisons between cross-device and cross-silo FL

cooperation while keeping the organisations’ data confidential. Clients in the setting are

usually servers from different organisations and are assumed to be reliable compared

with counterparts in the cross-device scenarios. However, data across organisations

are changing not only in distributions but also in schema. Coordinating and training

models on heterogeneous data become a key to the success of cross-silo FL. The cost

of collaboration is another concern for organisations. As infrastructures for sharing

and training models could be costly, quantifying the costs and contributions of each

participant is a problem to solve before building the FL platform. Several applications

have been proposed and are in operation in the industry, such as finance risk prediction

for reinsurance [109], digital health records mining [87] and medical data segmenta-

tion [23, 61]. Table 1.1 compares the settings, participants and research interests of the

two types of FL.

Peer-to-peer FL is an emerging attempt to reach fully decentralised learning [6, 28,

102, 107]. As the number of clients in FL is enormous, the central server in existing

methods can be a bottleneck that limits the performance of a learning process, e.g.,

due to limited computing power and network capacity. Besides, sharing a global model

by a central server gives some clients chances to upload malicious updates to ’poison’

the others [80]. Peer-to-peer FL aims to enable clients to collaborate through peer-to-

peer communication so that an FL system can completely remove the central server.
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Implementation based on the gossip protocol [19, 54] has been proposed, but it remains

challenging to orchestrate clients in complex environments to collaborate and co-train

efficiently.

1.1.2 Non-I.I.D. Problem and Model Personalisation

A common challenge in FL is the non-I.I.D. problem. Samples on the same client are not

independent as they are influenced by their host client’s biases, e.g., browsing history

on a smartphone will demonstrate biases towards the user’s preferences. Samples of

different clients are on the opposite. They are usually from various distributions, as

users’ preferences vary from client to client. From a server’s perspective, clients involved

in each communication round may also be correlated as they can have similar diurnal or

nocturnal patterns in device availability [125].

For vanilla FL frameworks like FedAvg [75], non-independent data on a client will

lead local training steps to fit the model towards the implied bias. Then, the aggregation

steps on the server will inverse the process. It will eliminate potential bias in individual

updates when averaging their parameters. Such contradictory processes hamper the

learning algorithm’s convergence rate and degenerate the global model’s generalisation

capability to different distributions.

Personalised FL (PerFL) [24, 74, 112] was proposed to solve the challenge. The PerFL

tries to mitigate the non-I.I.D. problem during cross-client collaborations and, in turn,

leverages client-specific bias to turn the global model into personalised local models

before deploying it. Plenty of works [20, 24, 44, 55, 74, 82, 90, 112, 123] have shown

that PerFL models will outperform a single global model when data distribution shifts

significantly among clients.
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1.1.2.1 Non-I.I.D. Problem

In PerFL, most methods assume samples are observed independently, and the main focus

is the non-identical distribution problem among clients. Several types of the distribution

shift problem have been discussed, which may relate to classic settings in conventional

machine learning [41]. For ease of understanding, let (x(i),y(i)) be random variables

representing features and labels (targets) observed on the i-th client. X (i) and Y (i) are

their distributions, i.e., x(i) ∼Xi and y(i) ∼Yi. There are the following types of differences

in distribution among clients:

• Feature Shift: In this scenario, feature distributions X (i) ̸=X ( j) when i ̸= j, even

if the two clients share the same relationship between x and y, e.g., P(y|x). It

happens in many tasks, such as object recognition, where the input features may

have specific biases due to factors like illumination and device resolution. Similar

settings are also introduced in the research topic of Domain Adaptation, but in FL,

more restrictions on data access are imposed. For example, a client can only visit

its local data/distribution, while comparing data of two distributions is feasible for

conventional domain adaptation tasks.

• Target Shift: The probability that samples of a specific class are observed may

vary across clients. This setting is referred to as the target shift, i.e., Y (i) ̸=Y ( j) if

i ̸= j. It happens when targets (labels) are closely related to some client properties,

such as location and the user’s gender. For example, images of koalas are more

likely to appear on smartphones in Australia. Few-shot learning and transfer-

learning techniques sometimes help mitigate the challenge as they are able to

rapidly adapt to new tasks, e.g., new classes, when deployed on an unseen client.

• Concept Shift: The concept shift [110] problem has been widely discussed in

machine learning. It is raised by the changing mapping between the feature x∼X
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and the target y∼Y , i.e., P(y|x). A typical case is that users will have different

attitudes (target) towards the same movie (feature). Then, a recommendation

model needs to adapt its predictions according to the user’s preferences. In FL, the

concept shift problem could be more challenging as the preferences could result

from intricate environments that won’t reflect in data, such as hardware conditions,

seasons, regions, religions, etc [45].

Except for the non-I.I.D. problem, FL is expected to encounter various cross-client

data variations in real-world applications. A related topic, Heterogeneous Federated

Learning [119], is to study the heterogeneity problem, such as heterogeneous mod-

els and multi-modality data. PerFL focuses on the non-I.I.D. problem, i.e. statistical

heterogeneity, and data are assumed to have an identical structure and format.

1.1.2.2 Model Personalisation

There are multiple strategies to realise model personalisation in PerFL [112]. Some

methods will ’generate’ a model for each client [90], while others need only fine-tuning

a classification head on the local dataset [20]. This section categorises PerFL methods

according to portions of model parameters utilised to capture client-specific knowledge.

• Full Personalisation: A straightforward way to personalise is to fine-tune the

globally shared model on a client’s local data [18, 21, 75]. All parameters of the

model will be optimised to capture the client’s bias. However, the strategy is some-

times impractical in real-world applications due to limited computation capability

and data scale on the client. Some works [30, 55] mitigate the problem by learning

initialisation for client-specific models, which are more robust to the changing dis-

tributions and can adapt fast to new clients. Hyper-network [90] is a new technique

where the global model is a DNN that directly generates personalised parame-
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ters for local models. Still, due to the complexity of the global hyper-network, its

training process is usually computation and communication costly.

• Group-wise Personalisation: Unsupervised methods [33, 74] help obtain fully

personalised models without being limited by a client’s local resources. They cluster

clients into groups regarding client-specific properties and co-train a model within

each group to achieve group-wise personalisation. As cross-client collaboration

only happens among clients with similar properties, it can take advantage of FL’s

collaborative training and simultaneously tune the model toward the properties

shared in the group. A major difficulty is to cluster clients while keeping data

private. Most methods cluster clients by the similarity between local models’

parameters, but they usually suffer from problems like cluster collapse, unreliable

initialisations, etc [33, 112].

• Partial Personalisation: Many PerFL works study partial personalisation by

splitting a model into global and local parts. Clients will update the two parts

alternately on their local data and only share the global parts as in vanilla FL.

Research has shown that partial personalisation can obtain most benefits of full

personalisation with a small fraction of client-specific parameters [82]. Figure 1.1

summarises prevalent architectures for partial personalisation. Compared with

other PerFL methods, a noticeable drawback is that the global model is no longer

ready to use. It has to be concatenated and aligned with a client-specific module

when deployed on a new client, while there may be no prepared data to fulfil the

process.

8



1.2. INTERPRETABLE PERSONALISATION

input

output

input

…

transformer

adapter

feedforward

add & norm

encoderbackbone

classifier

Personalised 
backbone

(a) (c)

(d)

Dual encoders

Transformer layer with 
a personalized adapter

input

output

backbone

classifier

Personalised 
classifier

(b)

output

classifier

encoder

output

input

adapter

attention

add & norm

…

Figure 1.1: Four architectures of partially personalised models in PerFL. Red modules
denote personalised parts trained individually on each client. Blue modules denote the
global parts shared among clients.

1.2 Interpretable Personalisation

With the prevalence of machine learning, intelligent models are changing our shopping

behaviours, influencing our watching preferences, and even deciding whether we can get

a loan. Their indispensability and influence necessitate the accountability of the machine

learning processes. An urgent request is that a model’s behaviour be interpretable to

human beings so that people can know why they get a specific result from the model, e.g.,

what factors caused a rejection of the loan application.

The request to be interpretable is even more crucial to model personalisation in

PerFL. As training data are closed and can not be sanitised beforehand, PerFL models

are vulnerable to malicious content like bias and discrimination [71, 103]. Attackers can

take the chance to poison the FL system by fitting misleading data during local training

processes. Besides, personalisation will bring diversity to model outputs for different

clients. It may raise concerns about decision fairness, e.g., why do they get disparate
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outcomes for identical input?

Interpretable personalisation helps defend PerFL against detrimental updates and

improves decision transparency, making personalised models trustworthy. Specifically,

interpretable personalisation requires a PerFL model to be ready to answer questions:

1) what properties a client has that will contribute to personalisation? and 2) how do

these properties change a model’s decision? Then, the black-box PerFL model will become

controllable through Human-In-The-Loop (HITL) [111] operations. For example, users

can inspect personalised information that may change model outputs; developers can set

decision boundaries regarding client preferences to filter out malicious inputs.

1.2.1 Interpretability

So far, there is no mathematical definition of interpretability. An acknowledged definition

is that interpretability is the degree to which a human can understand the cause of

a decision [77]. Model interpretation usually plays a role in bridging the gap between

black-box models and meaningful knowledge humans can understand (Figure 1.21)

Some research dissects a black-box model to comprehend how the model makes

predictions [62], while others explain why a model makes a specific prediction for a sam-

ple. [77, 78] suggest distinguishing between the terms interpretability and explanation,

where "interpretability" refers to the comprehension of a black-box model, and "expla-

nation" denotes explanations of individual predictions. We summarise some common

methods to interpret a model or explain a specific prediction.

1.2.1.1 Interpretable Methods

• Shallow Models: Most of the shallow models in machine learning are intrinsically

interpretable. For example, linear models like logistic regression and LASSO [38]

1* image source: https://en.wikipedia.org/wiki/Universe; # image source: [67]
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Real World* Data
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Machine 
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Figure 1.2: A pipeline of knowledge discovery: 1) ordinary methods extract knowledge
from data by statistical approaches that are interpretable and accountable; 2) Modern
machine learning applies black-box models to learn complex and abstract concepts from
data, but they are hard to understand. Model interpretation bridges the gap between
black-box models and meaningful knowledge humans can understand.

have explicit decision boundaries that make it easy to tell the importance of each

feature and how the model will change its output along with the input changes.

Tree-based models also have transparent decision processes by tracing the path

from the root to a specific leave. Ordinary shallow models have been vastly applied

in our daily lives, especially in handling tabular data. However, they have limited

capacity for tasks learning abstract concepts, e.g., object recognition, and the

interpretation could be unintuitive when the relationship between features is

complex, e.g., due to the multicollinearity problem.

• Partial Dependence Plot and Accumulated Local Effects Plot: Partial De-

pendence Plot (PDP) [124] and Accumulated Local Effects Plot (ALE) [3] are math-

ematical tools that show the marginal effect that a feature has on a model’s output.

They plot the expected model output regarding a given feature while marginalising

it over other features. Theoretically, they will directly show us the relationship

between the target and the feature of interest, but they could be less effective when
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the feature space is large. For example, it is infeasible to marginalise a pixel in an

image to show its contribution to recognising objects.

• Prototypes and Criticisms: Prototypes [36] and criticisms [47] are example-

based methods with fair interpretability. The prototypes are representative sam-

ples selected through density estimation, and the criticisms are those not well

represented. They provide us with a way to reveal critical samples changing a

model’s behaviour for a sanity check. A difficulty is setting hyperparameters to find

the required samples, e.g., the number of prototypes, the kernel measuring sample

similarities, etc. Different choices of hyperparameters usually lead to divergent

prototypes and criticisms. So does the interpretation.

• Activation Maximisation: Early research looks inside latent layers of DNNs

by visualising learned feature maps. They visualise the input that maximises

the activation of a unit to reveal what builds up a model’s knowledge over many

layers [46, 81]. An intuitive discovery is that the lower a layer is, the more abstract

concepts are learned, and the higher a layer is, the more concrete concepts are

learned. For example, from the lowest layer to the highest layer, a DNN may

respectively learn concepts of edges, textures, patterns and objects (Figure 1.3).

The activation maximisation provides a straightforward insight into hidden units

in a DNN model. However, visualising does not imply that we can interpret the

model’s decision process, and the visualised feature maps themselves are usually

too hallucinatory to understand, e.g., objects in Figure 1.3(d).

• Concept Vectors: Concept Vectors, or Concept Activation Vectors [32], study the

impacts of a given concept on a DNN’s predictions. Concretely, a concept is any

abstraction one cares about, such as a word, an object or a colour. The concept

vector is a binary classifier, e.g., SVM or logistic regression, to separate hidden

units activated in a specific layer when the concept appears. Then, by comparing
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the concept vector and activated units leading to predictions, e.g., by the T-test [48],

one can quantify the concept’s influence on the model’s outputs. As users only need

to collect data for the concept of interest in training a binary classifier, concept

vectors are friendly to experts who specialise in domain knowledge but know little

about the DNN architecture. A limitation is that concept vectors may only work in

deeper layers, as many works have shown that layers in shallow DNNs are usually

inseparable [2].

• Influential Functions: An influence function quantifies the influence of a training

sample on the model’s parameters and outputs [52]. It up-weights the loss of a

sample by an infinitesimally small step and approximates subsequent changes in

model parameters to derive an influence score. The larger the changes cause, the

higher the sample’s influence on model parameters, as well as on its predictions.

The influence score can be used as a measure of the similarity between the training

and the test samples (regarding the model) to identify influential training samples

that lead to a false prediction (debug). The obstacle to the influence function is

calculating the Hessian matrix of model parameters, which is computationally

costly and usually numerically unstable.

a) Edges b) Textures c) Patterns d) Objects

Convolution layersLow High

Figure 1.3: Visualisation of hidden layers in a GoogLeNet [46]. As the layer goes deeper
(from the left to the right), the concepts learned become more complex and concrete.

13



CHAPTER 1. INTRODUCTION

1.2.1.2 Explanation Methods

• Local Interpretable Model-agnostic Explanations: Local Interpretable Model-

agnostic Explanations (LIME) [86] seeks to surrogate the black-box model with a

shallow and interpretable model near the region of a certain sample. Then, one

can explain predictions near the region by investigating the decision logic of the

surrogate model. Anchors [85] have a similar idea of local surrogates but generate

explanations of IF-THEN rules that are easy to understand.

• Saliency Maps: Saliency Maps highlight the features of an input that are relevant

to the model output [91]. A common implementation is to compute the gradient of

a score, e.g., classification loss, for the class of interest with respect to the input.

The larger the absolute value of the gradient, the stronger the relevance (positively

or negatively) of the feature in recognising the class. The saliency maps provide

us with intuitive visualisation to explain why a DNN made a specific prediction

and have been widely used in medical tasks, e.g., medical image analysis. However,

many saliency methods have shown failures in critical sanity checks [104]. For

example, experiments show that they do not depend on the learned model but

rather depend on the distribution of input features [104].

• Shapley Values: Similar to the saliency maps, Shapely Values [69] highlight the

features of an input that contribute to a prediction. However, rather than depend-

ing on gradients, Shapley values quantify the contribution of the value of each

input feature. They are proven to satisfy many critical properties, e.g., symmetry,

dummy and additivity, for sanity checks [95]. To compute the Shapley value, the

contribution of a specific value of a feature is the difference between the effect of

the given value and the effect of a baseline value, usually the expectation of that

feature. Then, the Shapley value is the averaged contribution of the given value

of the feature over all possible feature value combinations. The most challenging
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problem of the Shapley method is that it is computationally costly, e.g., marginalis-

ing a value over all other feature value combinations. Besides, selecting a baseline

value is usually difficult, while they have shown a strong influence on the resulting

Shapley values [95].

1.2.2 Challenges for Interpretable Personalisation

While plenty of works have attempted to interpret black-box models or explain a particu-

lar prediction, model personalisation in FL remains to raise people’s attention. PerFL’s

decentralised settings and non-I.I.D distributions even bring more challenges in provid-

ing a transparent decision process.

1.2.2.1 Undefined Client Preferences

A typical difficulty is that client preferences regarding personalisation are implied in

training data without explicit definitions. A preference could be a client’s favour towards

specific classes or a specific noise mixed up with input features. However, from the

perspective of a PerFL model, all kinds of preferences are treated as shifts in data

distributions, as introduced in Section 1.1.2. Most personalisation methods implicitly

learn those preferences when tuning the model for tasks like classification, precipitating

them as personalised knowledge in hidden layers. Unfortunately, methods introduced in

Section 1.2.1 require a well-defined target, e.g., labels, to deduce the cause of a model

making a specific decision. They are hard to apply without determined targets.

Still, group-wise personalisation (Section 1.1.2.2) provides a glimpse into how to

uncover comprehensible preferences contributing to personalisation. It groups clients

into clusters according to the similarity between model parameters and investigates

properties a client has in common with those clients in the same cluster. Results show

that clients in the same cluster will demonstrate the same preference for certain prop-
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erties, e.g., they may use the same language [112]. Then, although clients’ preferences

are not explicitly defined, it is promising to reveal meaningful preferences relevant to

personalisation by examining clients sharing similar local models.

1.2.2.2 Entangled Influences

Undefined client preferences will raise another problem of entangled influences. As

most PerFL models are trained in an end-to-end schema with classification loss as

supervised information, the potential influences of client preferences will be entangled

with the supervised information and scattered throughout the model’s hidden layers.

As a consequence, to identify influences of a client’s preferences, one needs first to

disentangle client-specific and client-agnostic knowledge, which is difficult without

supervised information about client preferences.

Partial model personalisation frameworks (Section 1.1.2.2) may mitigate this prob-

lem. Here, part of the model parameters will be shared as in vanilla FL, and the rest will

be held locally for personalisation. Then, the client-specific knowledge and client-agnostic

knowledge are separated into the local and global modules so that one can investigate a

client’s influences by inspecting changes introduced by the local module.

On the other hand, partially personalised parameters deprive PerFL models of

consistency with client properties. Clients may learn very different local parameters

even though they have similar preferences, so uncovering comprehensible properties

by investigating clients sharing similar local models is no longer feasible through this

personalisation strategy.

1.2.2.3 Inconsistent Representation Space

The distributed learning environment of PerFL will be challenging for making consistent

interpretations across clients. As personalised knowledge of each client usually leads

to diverse local models, an interpretation of a local model may be improper to the

16



1.2. INTERPRETABLE PERSONALISATION

model of another client. The critical solution is to ensure that distributed local models

share a consensus about properties related to personalisation, e.g., to share a unified

representation space describing client properties. Subsequently, clients can derive a

universal interpretation of personalisation by studying changes caused by properties

they are all aware of, even though local models are distributed.

It is worth noting that sharing unified representations of client properties will also

make one-model-for-all personalisation possible. Concretely, according to the unified

representations, a global model can directly learn the relationship between client prop-

erties and target concepts rather than by fine-tuning a client’s local data. Then, the

global model is ready to deliver personalised outputs to all scenarios requiring model

personalisation without needing extra tuning steps. The property is indispensable to

clients where local updates are hard to afford, e.g., IoT devices.

1.2.3 Aims and Significance

This research aims to solve the above challenges by recognising client preferences

embodied in sample representations and proposing interpretable personalisation where

clients can obtain practical and interpretable personalised models. The relationship

between research objectives and the challenges they solve is described in Figure 1.4.

1.2.3.1 Personalisation Disentanglement

As there is no supervised information describing client preferences relevant to person-

alisation, the research will first investigate biases implied in a client’s local data and

disentangle them from the universal, or client-agnostic, knowledge as client-specific

knowledge to mitigate the problem of entangled influences.

Specifically, disentanglement denotes finding a representation where a change in

one factor of the representation corresponds to a change in the cause of variation of a
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Figure 1.4: The relationship between research objectives and the challenges they solve.

sample [7]. Personalisation disentanglement requires a PerFL model learning to encode

a sample into two irrelevant representations, one capturing client-specific knowledge

and the other capturing client-agnostic knowledge. Then, a client can build interpretable

models over the disentangled representations and identify preferences useful for making

predictions, e.g., training a linear model over the disentangled representations of local

data and studying the relationship between client-specific representations and model

outputs.

This research achieves personalisation disentanglement by proposing a novel Feder-

ated Dual Variational Autoencoder (FedDVA), which employs two probabilistic encoders

to infer the client-specific/-agnostic representations. The FedDVA produces a better un-

derstanding of the trade-off between global knowledge sharing and local personalisation

in PerFL. Extensive experiments validate the advantages caused by disentanglement and

show that models trained with disentangled representations substantially outperform

those vanilla methods.
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1.2.3.2 Representation Alignment

This research also studies aligning a global model’s hidden layers to find a unified

representation space describing client properties. The key motivation is that samples on

the same client are influenced by identical client properties. They shall induce similar

representations in describing their host client’s properties, whilst samples from different

clients are on the opposite.

Accordingly, the research proposes to impose constraints on a global model’s hidden

layers to decompose the latent representation space into two subspaces. One subspace

is aligned with the above inductive bias that sample representations will be similar if

they were from the same client. The other subspace is unrelated to clients and captures

sample information. Then, the global model can precipitate client properties in its hidden

layers when it is optimised for supervised tasks like classification, and the resulting

representation space will be synchronised among clients along with the sharing of the

global model.

To find the target representation space, a new federated learning framework on client-

decorrelation (FedCD) is proposed. The FedCD formulates the representation alignment

problem into an optimisation framework that clients can solve collaboratively along

with the model training process. Experimental studies show that the FedCD can learn a

unified representation space for client properties and a robust FL global model for one-

model-for-all personalisation. The FedCD’s global model can be directly deployed to the

test clients with changing data distributions while achieving comparable performance to

other personalised FL methods that require local model adaptation.

1.2.3.3 Client Properties Description

Although no significant definitions of client properties exist, an essential feature dis-

tinguishing model personalisation from unsupervised tasks is that each sample has a
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distinct host client. One may assume that there are invisible labels of client indices

providing supervised information for personalisation. This research calls the learning

paradigm Client-Supervision.

The research will introduce Virtual Concepts (VC) to explicate client-supervised

information. The VCs are representation vectors describing potential structure infor-

mation implied in each client’s training data. They can be learned independently of the

supervised tasks by a novel FedVC algorithm, which facilitates understanding client

properties and boosts model personalisation.

Experiments on real-world datasets show that the VCs can work as supervised

information to train a global model that is robust to the changing distributions. Further

study demonstrates that the VCs are useful in interpreting differences in model outputs

caused by client properties.

1.3 Outline of the Thesis

The rest of this thesis is organised as follows:

Chapter 2 first gives a literature review on federated learning research, including

general frameworks of federated learning (Section 2.1) and various ways to realise

model personalisation (Section 2.1.1). Then, related techniques, i.e., Representation

Disentanglement, Representation Alignment and Unsupervised Personalisation, are

introduced in Section 2.2.1.1, Section 2.2.1.2 and Section 2.2.1.3.

Chapter 3 gives formal definitions for federated learning settings and an ordi-

nary framework of federated learning (Section 3.1). Then, Section 3.2 introduces the

learning objectives of the three types of personalised FL. The Variational Autoencoder

framework is also introduced in Section 3.3.

Chapter 4 studies the problem of personalisation disentanglement. It introduces a

novel Federated Dual Variational Autoencoder (FedDVA) framework, which explicitly

20



1.3. OUTLINE OF THE THESIS

disentangles sample representations into client-agnostic and client-specific parts, i.e.,

a change in one dimension of the disentangled representation corresponds to a change

in one type of the client-agnostic/-specific property while being irrelevant to the other.

It also derives the Evidence Lower Bound (ELBO) to formulate the FedDVA into a

unified optimisation framework that ordinary FL optimisation methods can solve. It

evaluates FedDVA’s performance from the perspective of interpretation and classification.

Concretely, it restructures samples from the disentangled representations and shows that

each type of representation will lead to a data manifold of the corresponding knowledge,

which validates the effectiveness of personalisation disentanglement. In addition, it

evaluates personalisation performance through training a lightweight classification over

the disentangled representations, where FedDVA achieves competitive performance

compared to state-of-the-art PerFL models.

Chapter 5 studies the representation alignment task to unravel client properties. It

introduces a novel client-decorrelation mechanism (FedCD) to decompose an FL model’s

hidden space and align samples’ latent representations to unravel client properties.

Particularly, it proposes to impose orthogonality constraints on a DNN’s hidden layers,

restricting their outputs to vary along with axes aligned with clients’ properties. Then,

client-specific information will be encoded in a unified representation space and then

be fed into a decision module along with class knowledge to make the final prediction.

Moreover, it shows that the client-decorrelation mechanism could become a plug-in

component to be integrated with any federated learning methods, which enables a

vanilla FL model to output personalised results without on-device fine-tuning steps.

Subsequently, a novel client-supervised optimisation framework is introduced, which

formulates the representation alignment problem into a bi-level optimisation framework

that clients can solve collaboratively under FL settings. Experiments on benchmark

datasets validate that the disentangled client-specific representations will demonstrate
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meaningful structures describing clients’ properties, which helps us better understand

features contributing to the personalisation and study their influences on the final

decision. Besides, by comparisons with baseline methods, it shows that FedCD will

obtain a robust FL global model that can be directly deployed to the test clients with

changing distributions while achieving comparable performance to other personalised

FL methods that require model adaptation.

Chapter 6 interprets personalisation using the Virtual Concepts (VC) as supervised

information that not only provides a high-level summary of the data but also boosts the

performance of distributed training in PerFL. The VCs are representations of potential

structure information extracted from training data. They can be learned independently

of the supervised tasks by a novel FedVC algorithm, which boosts the training of clients

with statistically heterogeneous data. Experiments on real-world datasets show that

the global model learned with VCs can be directly deployed on the test clients while

achieving competitive performance without extra fine-tuning or personalisation. Further

study also demonstrates that there will be a mapping between VCs and meaningful

structure in data.

Chapter 7 concludes the research and discusses future works.
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2
LITERATURE REVIEW

2.1 Federated Learning

Federated Learning (FL) was first introduced in [75] to embody the principles of

focused collection and data minimisation. It decomposes a machine learning task into

subtasks and distributes them to a set of clients, e.g., smartphones and laptops, to carry

out training steps. Only model updates will be collected during the process so that private

data will remain closed compared to the conventional centralised machine learning

paradigm. [75] proposed a fundamental framework FedAvg. Each client will synchronise

a global model from a server and optimise the global model on its local data by gradient-

descend methods. Then, the server will collect locally updated models and aggregate

them by averaging their parameters. The FedAvg framework is compatible with most

gradient-based optimisation methods, but its performance degenerates significantly

when data distributions on clients shift.

Many strategies have been applied to handle this problem. [92] showed that multi-

task learning is naturally suited to handle the statistical challenges of the FL and
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proposed a novel systems-aware optimisation method, MOCHA. [56] proposed a Fed-

Prox algorithm, which constrains the optimisation steps on each client by a proximal

regulariser. The authors proved that a model learned by the FedProx has more robust

convergence than the FedAvg. In FetchSGD [88], clients upload gradient sketches instead

of local models to the server, and the server applies momentum and error accumulation

when aggregating the uploaded gradient sketches. [20] assumed the statistical hetero-

geneity across clients is concentrated in the labels. They proposed a FedRep algorithm to

learn a global feature representation in the federation.

2.1.1 Personalised Federated Learning

In addition to sharing knowledge through a global model, many FL methods adapt

the global model into a client-specific local model, leveraging the client’s preferences

to improve performance. For example, [18, 24, 74, 112] showed that steps as simple

as fine-tuning a client’s local data would improve the model’s classification accuracy

on that client. The scope of balancing global knowledge sharing and local preferences

exploitation is referred to as Personalised Federated Learning (PerFL). There are

three personalisation strategies from the perspective of model splitting and sharing.

2.1.1.1 Fully Personalised FL

Full personalisation denotes FL methods that adjust all parameters of a global model

for individual clients. A straightforward approach is fine-tuning the entire global model

using a client’s local data [18, 21, 75], but this practice is usually limited by data volume

and computation capabilities on clients. Then, [11, 29, 44] followed meta-learning [30] to

learn a shared model initialisation by FedAvg so that clients can adapt the global model

to local data effectively and efficiently. [55] proposed clients train personalised models

individually while leveraging a shared regulariser endowed with global knowledge to
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constrain the distributed training procedures. [90] proposed to learn a hyper-network

that will generate personalised parameters directly. Recent work [10, 16, 99] utilised the

graph-based structural information among clients to enhance the knowledge-sharing in

PerFL, which enables clients to train the global and personalised models simultaneously.

2.1.1.2 Partial Personalised FL

Partial personalisation [82] splits an FL model into global and local parts. Clients share

the global part as in vanilla FL but combine it with a privately trained local part to

achieve personalisation. [57] is a simple but efficient case of these methods. It trains a

model through the vanilla FedAvg except for preserving batch-normalisation modules

locally. [20] introduced a method to learn a shared data representation across clients and

unique classification heads for each client. [70] utilised a global and a local encoder to

learn different representations for cross-client collaboration and personalisation. [121]

applied the dual-encoder architecture to recommendation systems to help generate per-

sonalised recommendations while keeping users’ data private and closed. [82] compared

popular model splitting strategies from the convergence perspective and proposed two

PerFL optimisation algorithms.

2.1.1.3 Group-wise Personalised FL

Group-wise personalisation aims to cluster clients into groups to share personalised mod-

els within each client group [33, 66, 74]. [112] validated that the cluster of individually

trained local models would demonstrate consistent structure with the natural cluster

regarding client properties, e.g., groups regarding user languages, which is promising to

interpret the mechanism behind model personalisation. [125] utilised communication

patterns between clients and the server to describe client preferences. It formulated

this prior knowledge to cluster clients into daytime and nighttime modes to improve

personalisation. [73] mixed the global and group-wise models to mitigate the clustering
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collapse problem and balance cross-group knowledge sharing. [72] provided a theoretical

analysis of popular clustering methods and proved their convergence.

2.1.2 Personalisation by Heterogeneous Models

While most PerFL methods aim to adapt a global model to specific tasks on clients,

several works study the problem from the reversed aspect of aggregating heterogeneous

models. Specifically, clients in this setting fulfil personalisation by task-specific model

designs, and the challenge lies in how to share common knowledge across heterogeneous

local models. [100] introduced FedProto, where clients maintain a set of prototypes

rather than models by FedAvg. The training steps on each client will simultaneously

minimise the classification error and keep sample embeddings close to the corresponding

prototypes. [98, 101] leveraged contrastive methods to enhance sample-wise invariance

encoding ability and aggregate outputs of multiple heterogeneous models.

2.1.3 Personalisation by Federated Foundation Models

Emerging foundation models (FM) like GPT have made significant progress in AI in

both research and applications. However, as training an FM from scratch is challenging

and costly, a popular way is to adapt a pre-trained general-purpose FM to specific tasks.

Federated Foundation Models (FFM) integrate FMs into the FL framework so that

clients can maintain a global FM to share fundamental knowledge [64] and personalise it

toward local tasks through parameter-efficient fine-tuning. For example, [118] proposed a

dual-adapter framework to balance global knowledge sharing and model personalisation

for pre-trained FFMs. [14, 15] adapted pre-trained FFMs on distributed meteorological

data to conduct weather predictions. [58, 59, 120] proposed federated recommendation

systems that can generate personalised recommendations based on FFMs while keeping

user data closed and private.
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2.2 Interpretable Machine Learning

Interpretable Machine Learning is a field studying the comprehensibility of machine

learning models. It aims to illustrate why a model makes specific predictions [47, 77]

and reveals knowledge either contained in data or learned by the model [79]. Traditional

statistical models like linear regression and decision trees are essentially interpretable,

but they have limited capacity to handle complex problems like image recognition. So,

recent research focuses on disclosing knowledge in deep models that are more powerful

and complicated.

The most extensively discussed interpreting method is visualising feature attri-

butions by propagating gradients [89, 91] or calculating the Shapley value [69, 96].

However, although various works attempt to verify the interpretability of existing attri-

bution maps [9, 25, 95], there is still controversy about whether their interpretation was

consistent with the ground truth knowledge [1, 50, 104].

2.2.1 Interpreting Model Personalisation

By methods discussed in Section. 2.1, model personalisation is mainly embodied through

clients’ parameter-sharing strategies, i.e., which parameters are shared and whom they

are shared with. However, the intricate parameters involved could be too abstract for

human beings to understand the logic behind personalisation. Three technical aspects

will help to get a deeper insight into this opaque procedure.

2.2.1.1 Representation Disentanglement

Since most PerFL models are trained in an end-to-end schema, client-specific and client-

agnostic knowledge will be entangled and scattered throughout their entire hidden

layers. Identifying properties that contribute to personalisation requires disentangling

clients’ influence on a model’s decisions. Specifically, disentanglement refers to learning
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a representation where a change in one dimension corresponds to a change in one factor

of variation of the sample while being relatively invariant to changes in other factors [7].

Variational autoencoder (VAE), as well as its variations [13, 35, 39, 49, 51, 93], is a

popular framework for learning disentangled representations. It is attractive for elegant

theoretical backgrounds and high computation efficiency.

However, previous research [63] proved that unsupervised learning of disentangled

representations is fundamentally impossible without inductive biases on both the models

and the data. Prior knowledge regarding the model or the data is necessary for VAE

models disentangling client-specific and client-agnostic representations in PerFL. Be-

sides, since most VAE models will maintain a decoder to reconstruct samples from latent

representations, deploying VAE in FL risks leaking privacy by recovering local data

across clients.

Chapter 4 manages to disentangle clients’ preferences using VAE frameworks. It

introduces an inductive bias that samples on the same client are influenced by identical

properties and integrates this prior knowledge into a novel Dual Variational Autoencoder

(FedDVA). The disentanglement task is then formulated into an optimisation problem

of maximising an Evidence Lower Bound (ELBO). Compared with the existing VAE

architecture, only the encoder modules are shared among clients, which takes advantage

of VAE’s disentanglement capability while keeping user privacy safe.

2.2.1.2 Representation Alignment

The distributed training procedure in FL introduces a new challenge of unaligned

representation space among locally trained models. Clients may encode the same sample

into very different representations for the same task. Thus, aligning the representation

space across clients is necessary to help find the mapping between representations and

meaningful properties explaining model behaviours.
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[108] proposed a layer-wise matching algorithm to match every hidden unit of two

local models before aggregating their parameters. [113] leveraged global semantic knowl-

edge to conduct explicit local-global feature alignment. Concept Vectors are new ways to

investigate the decision process of a black-box model [17, 32, 48, 53]. These approaches

learn a set of concept vectors, i.e., decision hyperplanes aligned with certain concepts, to

classify hidden units inside a DNN. End users can unravel concepts leading to a specific

output by inspecting whether relevant hidden units are activated. Notably, the concept

vector method allows human-in-the-loop operations to test and quantify a concept’s influ-

ence, which is critical in studying the causation of a prediction [48, 53]. A disadvantage

is that these methods require supervised information for each concept of interest, either

by auxiliary datasets [17, 48] or labels [32, 53]. Then, they are limited to working in

scenarios where concepts of interest are enumerable and easily depicted.

Chapter 5 introduces a novel client-decorrelation mechanism (FedCD) to decompose

an FL model’s hidden space and align samples’ latent representations to unravel client

properties. The FedCD imposes orthogonality constraints on a DNN’s hidden layers,

limiting their outputs to vary along with axes aligned with clients’ properties. Client-

specific information is then projected into a unified representation space across clients,

allowing downstream modules to make personalised decisions without needing extra

personalisation steps.

2.2.1.3 Unsupervised Personalisation

Since there is no supervised information like labels to measure a model’s personalisation,

one needs to deliberate on data distributions to clarify related factors. [26] proposed

a distribution-fusion method to aggregate local models trained on statistically hetero-

geneous data. It represented clients’ local data distributions by several virtual fusion

components extracted from client-specific models and aggregated them into a shared

global model. [68] proposed an unsupervised FL method for problems where the class-
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prior probabilities are shifted while the class-conditional distributions are shared among

the unlabelled data. It transformed the unlabelled data into surrogate-labelled data on

each client and then utilised the surrogate labels as supervised information to train a

surrogate global model.

A typical problem of the above methods is that they are sensitive to multiple factors,

e.g., the number of predefined latent distributions. It is hard to ensure local distribu-

tions are properly represented or are able to map to meaningful client properties [112].

Chapter 6 introduces Virtual Concepts (VCs) to describe clients’ properties explicitly.

Compared with the existing methods, the proposed FedVC integrates VCs into PerFL’s

training process, converting the unsupervised personalisation task into a supervised task.

It not only boosts the performance of distributed training in PerFL but also provides a

high-level summary of the data to facilitate understanding of model personalisation.
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3.1 Federated Learning

In a federated learning system with K clients, each client is indexed by k. {x(k)
1 ,x(k)

2 , ...,x(k)
Nk

} ∈
X (k) denotes samples on the k-th client, and {y(k)

1 , y(k)
2 , ..., y(k)

Nk
} ∈Y (k) are their labels. Nk

is the number of samples. The FL task is to find the optimal parameters ω∗ for a global

model f (x;ω) by minimising the total loss of all clients as the following optimisation

problem:

(3.1) ω∗ = argmin
ω

K∑
k=1

αkLk(ω)

where Lk(ω)= (1/Nk)
∑Nk

i=1 l( f (x(k)
i ;ω), y(k)

i ) is the supervised loss on the k-th client, and

αk is its weight. In particular, in the ordinary FedAvg framework [75], αk is the fraction

of the size of the client’s training data, i.e., αk = Nk/
∑K

k′=1 Nk′ .

The optimisation process of Equation 3.1 consists of two steps. 1) each client syn-

chronises a global model from a server and updates ω privately by gradient descent

methods, i.e., ωk =ω−∇Lk(ω); 2), the server collects and aggregates local updates by av-

31



CHAPTER 3. PRELIMINARIES

eraging parameters, i.e., ω=∑K
k=1αkωk. A fundamental learning algorithm is described

in Algorithm 2.

Algorithm 2 Federated Learning
Input: communication rounds R, epochs in each round E, learning rate λ, batch size B
Output: optimal parameters ω∗

1: server initialises parameters ω

2: for r from 0 to R do ▷ communication rounds
3: server selects a set of clients C

4: for k ∈C parallel do
5: client k synchronises ω from the server ▷ network traffic
6: ωk ←ClientUpdate(ω)
7: end for
8: server collects local updates ωk, k ∈C ▷ network traffic
9: ω←∑

k∈Cαkωk
10: end for
11: return ω

ClientUpdate(ω)
1: for e from 0 to E do
2: for b from 0 to Nk/B do
3: sample a batch of data B

4: ω=ω−λ∇L (ω;B)
5: end for
6: end for
7: return ω

3.2 Personalised Federated Learning

PerFL leverages cross-client collaboration but learns a personalised model f (x;ω,µk) for

each client, where ω denotes parameters shared, and µk denotes parameters for the k-th

client. The learning task can be formulated into a unified optimisation problem as below:

(3.2) ω∗, {µ∗
k}K

k=1 = arg min
ω,{µk}K

k=1

K∑
k=1

αkLk(ω,µk)

There are different types of personalisation according to how to define ω and µk.

Full Personalisation: A local model is fully parameterised by µk and the global

model guides the local training process. For example, [55] utilises ω as a regulariser to
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constraint µk by minimising ∥ω−µk∥2. Formally, there is

(3.3) Lk(ω,µk)= (1/Nk)
Nk∑
i=1

l( f (x(k)
i ;µk), y(k)

i )+a∥ω−µk∥2

where a is a weight tuning the two parts of the loss; [29] trains the global parameter ω

as an initialisation to local models. That is

(3.4) Lk(ω,µk)= (1/Nk)
Nk∑
i=1

l( f (x(k)
i ;µk), y(k)

i ), s.t.µk =ω−∇Lk

Algorithm 2 can be applied to optimise objective functions in full personalisation.

Group-wise Personalisation: Clients are clustered into groups to maintain a

personalised model within each group, i.e., for clients in the group Gc, there is ωc =∑
αkµk[[k ∈Gc]] [33, 74]. The learning object of group-wise personalisation can be formu-

lated into the optimisation problem below:

(3.5)
{ω∗

c }C
c=1 = argmin

ω

C∑
c=1

K∑
k=1

αkr(c,k)Lk(ω)

s.t. r(c,k) = argmin
r(c,k)

C∑
c=1

r(c,k)∥µk −ωc∥2, r(c,k) ∈ {0,1},
C∑

c=1
r(c,k) = 1, for k = 1 : K

The vanilla federated learning method is utilised to learn the ’global’ model in each

group.

Partial Personalisation: ω and µk constitute the global and personal parts of a

local model, where ω is shared through the fundamental FL method and µk is trained

individually on each client. e.g., ω could be parameters of a shared backbone model, and

µk is a classification head for the k-th client (Figure 1.1(b)). Generally, a client will

update ω and µk alternately before sharing ω across clients. A typical local updating

process [82] is introduced in Algorithm 3.

3.3 Variational Autoencoder

Variational Autoencoder [51] assumes any sample x is corresponding to a latent repre-

sentation z, whose prior distribution is the standard normal distribution, i.e., p(z) =
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Algorithm 3 ClientUpdate in Partial Model Personalisation
ClientUpdate(ω)

1: for e from 0 to Eω do
2: for b from 0 to Nk/B do
3: sample a batch of data B

4: ω=ω−λω∇ωL (ω,µk;B)
5: end for
6: end for
7: for e from 0 to Eµk do
8: for b from 0 to Nk/B do
9: sample a batch of data B

10: µk =µk −λµk∇µkL (ω,µk;B)
11: end for
12: end for
13: return ω

N (z;0, I). It learns a probabilistic encoder to approximate the variational posterior q(z|x)

and a decoder to reconstruct the sample x from the latent representation z sampled from

q(z|x).

In general, the encoder is a neural network whose outputs are the mean and co-

variance of the q(z|x), that is q(z|x) = N (z;µ(x),Σ(x)) and the covariance matrix Σ is

assumed to be diagonal for computation simplicity. The decoder is another neural net-

work reconstructing x by maximising the log-likelihood log p(x|z). An illustration of the

VAE framework is shown in Figure 3.1.

𝑥
𝜇 𝑥

Σ 𝑥

𝑞 𝐳 𝑥 = 𝒩(𝐳; 𝜇 𝑥 , Σ 𝑥 )

𝑧 -𝑥 𝑧 𝑥

-𝑥 − 𝑥 !

Probabilistic 
Encoder

Probabilistic 
Decoder

𝑝 𝐱 𝑧 = 𝒩(𝐱; -𝑥 𝑧 , 𝐼)

loss

sample

Variational Posterior Likelihood

Figure 3.1: A pipeline of VAE framework

The learning objective of VAE can be formulated into an optimisation problem of
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maximising the Evidence Lower BOund (ELBO) as below

(3.6) θ∗,ϕ∗ = argmax
θ,ϕ

N∑
i=1

Eq(z|xi)[log p(xi|z)]−DKL(q(z|xi)||p(z))

where θ and ϕ are the parameters of the probabilistic encoder and the decoder respec-

tively. The first term on the RHS of Equation 3.6 measures the decoding performance of

latent representation z and the second term measures the KL-divergence between the

posterior q(z|x) and the prior p(z). Gradient-based optimisation methods can be applied

with the help of the reparameterisation trick [51].
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4
PERSONALISATION DISENTANGLEMENT FEDERATED

LEARNING

4.1 Motivations

In PerFL tasks, clients need to train local models with raw samples entangled with

client-specific and client-agnostic knowledge. Then, they will eliminate personalised

information before sharing local updates to update the global model. Most PerFL methods

mitigate these contradictory operations by designing new model architectures or adapting

gradient-descent strategies [18, 29, 55, 60, 108]. Figure 4.1 gives examples of samples

entangled with different knowledge. A PerFL algorithm needs to train local models on

samples entangled with digits and marks and filter the impacts of marks when updating

the global model. Meanwhile, a personalisation process may fine-tune the global model

on local data and fit the client-specific marks again to obtain a client-specific model.

Personalisation disentanglement aims to encode a sample into two disentangled

representations, each capturing one type of the above knowledge. The disentangled repre-

sentations will help identify essential knowledge constituting a model’s personalisation.
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samplessamples

Client-Agnostic 
Knowledge

Client-Specific 
Knowledge

Samples

Client 0 Client 1 Client 2

+ + +

= = =

Figure 4.1: An example of samples with entangled knowledge. Knowledge about handwrit-
ten digits is client-agnostic and will be shared through the global model, but knowledge
about sinusoidal and elliptical marks is client-specific.

Besides, a client can build a lightweight model over the disentangled representations

for downstream tasks, e.g., classification. As the two types of knowledge are separated

in different representations, the downstream model will have better efficiency without

being hampered by the contradictory steps above.

The key idea is that a global model intends to learn knowledge applicable to all

clients. Then, one can train a global encoder to capture the client-agnostic knowledge

and later train another encoder to learn to ’minus’ the client-agnostic knowledge from

the sample to get the client-specific knowledge. Figure 4.2 gives an example of how the

dual encoders work.

To this end, we develop a Federated Dual Variational Autoencoding framework (Fed-

DVA) [114], where clients in the federation share two encoders inferring the above

representations. The two encoders are trained collaboratively by fundamental FL al-

gorithms like FedAvg [75]. Clients update the encoders locally by maximising a novel

client-specific Evidence Lower BOund (ELBO). Then, a server collects local updates and
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personal-features

general-features

samples

(a) one encoder learns a representation for client-agnostic knowledge

(b) another encoder infers the client-specific knowledge given the 
client-agnostic knowledge

Encoder 
𝒇(𝒙)

Representation 𝒛Client 1

samples

general-features

personal-features

Client 2

personal-features

general-features

samples

Client 3

personal-features

general-features

samples

Encoder 
𝒉(𝒙, 𝒛)+

Representation 𝒄

𝒛

Figure 4.2: Motivation of Dual Encoders. (a) an encoder will learn to encode client-
agnostic knowledge. (b) another encoder will learn to eliminate client-agnostic knowledge
with the help of client-agnostic representations.

aggregates them by averaging parameters. Moreover, the two encoders are cascaded and

constrained by different prior knowledge so that each encoder will capture only one type

of knowledge mentioned above.

The main contributions of the method are summarised as follows:

• It proposes a novel FedDVA method to achieve personalisation disentanglement,

which provides a better understanding of PerFL and improves the efficiency of

downstream classification models.

• It derives a client-specific ELBO to optimise FedDVA and analyse its capability of

capturing personalised knowledge.

• Experiments on real-world datasets validate FedDVA’s effectiveness in personal-

isation disentanglement and show that classification models will converge fast
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and achieve competitive classification performance when trained on disentangled

representations.

4.2 Methodology

4.2.1 Problem Formulation

FedDVA aims to learn disentangled sample representations for client-agnostic and client-

specific knowledge. The target representations can be denoted as z and c . Since z

is irrelevant to clients, FedDVA assumes samples on each client have the same prior

distribution p(z)=N (z;0, I). Meanwhile, since samples in FL are private and distributed,

the prior distribution of c is unknown and varies among clients. It can be denoted as

pk(c) for the k-th client. It is worth noting that no assumptions on the pk(c) can be made

as there is no guarantee that the relationship between the assumed distributions is

consistent with the relationship between client preferences. For example, clients with

similar personalities shall have a similar distribution of pk(c). Alternatively, FedDVA

assumes the mixture distribution q(c) = ∑K
k=1αk pk(c) to be the standard Gaussian

distribution N (c;0, I).

4.2.2 Dual Encoders

The proposed FedDVA learns the target representations through two encoders as illus-

trated in Figure 4.3. For any sample x, an encoder first infers a variational posterior

q(z|x)=N (z;µ(x),Σ(x)) for the representation z. Then another encoder infers the varia-

tional posterior q(c|x, z)=N (c; µ̂(x, z), Σ̂(x, z)), which conditioned on both the sample x

and the representation z, for extracting impacts of personalised knowledge. In addition,

a client-specific local decoder will evaluate the decoding performance of the represen-

tations z and c. It is implemented by a neural network maximising the client-specific
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log-likelihood log pk(x|z, c). The negative ELBO optimising FedDVA is in Equation 4.1

(4.1) ℓdva(θ,ϕk; x)=−Eq(z|x)[Eq(c|x,z)[log pk(x|z, c)]+BRc(q(c|x, z))]+ ARz(q(z|x))

where θ denotes parameters of the shared encoders, ϕk denotes the parameters of

the local decoder specific to the k-th client, Rz(q(z|x)) and Rc(q(c|x, z)) denote the

regularizers for the posteriors q(z|x) and q(c|x, z), A and B are their importance weights.

Encoder 
𝒇(𝒙)

Encoder 
𝒉(𝒙, 𝒛)

Representation 𝒛

Representation 𝒄

ℛ" 𝑞(𝒛|𝒙)

ℛ# 𝑞(𝒄|𝒙, 𝒛)

𝒙
7𝒙 𝒙

Decoder 
𝒈𝒌(𝒛, 𝒄)

𝜇 𝒙
Σ 𝒙

-𝜇 𝒙, 𝒛
8Σ 𝒙, 𝒛

log	𝑝(𝒙|𝒛, 𝒄)

……

synchronise encoders 
𝑓(𝒙) and ℎ(𝒙, 𝒛)

Clients

Server

each client will maintain a 
private decoder 𝒈𝒌(𝒛, 𝒄)

Figure 4.3: The architecture of FedDVA. An encoder f (x) (Blue) will first infer the
posterior q(z|x), and then another encoder h(x, z) (red) will infer the conditional posterior
q(c|x, z). The decoder g(z, c) (white) will try to reconstruct x from z and c.

Similar to traditional VAE models, the posterior q(z|x) can be regularised by the

KL-divergence DKL(q(z|x)||p(z)), which enforces the distribution of the representation z

to be close to the standard Gaussian distribution no matter the client it is on. However,

it would be a challenge to regularise the representation c as we have no prior knowl-

edge about the distribution pk(c). FedDVA handles the problem by a slack regulariser

DKL(q(c|x, z)||q(c)) combing with a constrain that

(4.2) DKL(q(c|x, z)||q(c))−DKL(q(c|x, z)|| p̄k(c))≥ ξk

where p̄k(c)= 1
|Dk|

∑
x∈Dk q(c|x, z) is the mixture distribution of q(c|x, z) of samples on the

k-th client and ξk > 0 is a hyperparameter. Intuitively, p̄k(c) is an estimator of pk(c)
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and the Inequation 4.2 requires q(c|x, z) to be at least ξk closer to p̄k(c) than to q(c).

We will discuss it in Section 4.3 and show it helps the representation c to capture

client properties. Combining the KL-divergence and the constrain in Inequation 4.2,

regularisers Rz(q(z|x)) and Rc(q(c|x, z)) of Equation.4.1 can be written as

(4.3) Rz(q(z|x))= DKL(q(z|x)||p(z))

(4.4) Rc(q(c|x, z))=max(ξk +DKL(q(c|x, z)|| p̄k(c)),DKL(q(c|x, z)||q(c)))

They can be computed and differentiated without estimation (see Appendix A.1.2), and

therefore Equation 4.1 can be optimised by gradient-based methods.

4.2.3 Optimisation

To learn the encoders collaboratively by clients, the learning objective of FedDVA is

formulated as follows:

(4.5) θ∗,ϕ∗
1 , ...,ϕ∗

K = arg min
θ,ϕ1...ϕK

K∑
k=1

αkLk(θ,ϕk;Dk)

where Lk(θ,ϕk;Dk)=∑
x∈Dk ℓ

dva(θ,ϕk; x). Then gradient steps optimising Equation 4.5

consists of the following two parts

(4.6) ϕ′
k =ϕk −η∇ϕkLk(θ,ϕk;Dk),1≤ k ≤ K

(4.7) θ′ = θ−λ
K∑

k=1
αk∇θLk(θ,ϕk;Dk)

where η and λ are their learning rates. Equation 4.6 updates the client-specific decoders

and is processed by each client independently. Equation 4.7 updates the global encoders

shared in the federation. It can be implemented by most FL algorithms like FedAvg.

Concretely, θ′ =∑K
k=1αkθ

′
k, where

(4.8) θ′
k = θk −λ∇θLk(θk,ϕk;Dk),1≤ k ≤ K
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and Equation 4.8 is performed by each client independently. But it is worth noting that

the optimisation steps of Equation 4.6 and Equation 4.8 are asynchronous. As only

a subset of clients will participate in the optimisation process in each communication

round [75], client-specific decoders may not coincide with the shared encoders. A client

needs to update ϕk first and later the θ. Complete pseudo-codes of the optimisation

process are in Algorithm 4.

Algorithm 4 FedDVA
Input: R: communication rounds, M: number of clients sampled each round; B: batch
size; E epochs; λ and η: learning rates; ξk: the constraint threshold in Inequation 4.2

1: server initialises θ(0) ← θ

2: for r from 0 to R do
3: server selects M clients C

4: for k ∈C parallel do
5: client k synchronises θ from the server
6: θ(r+1)

k ←ClientUpdate(θ(r))
7: end for
8: server collects local updates θk, k ∈C

9: θ(r+1) ←∑
k∈Cαkθ

(r+1)
k

10: end for
11: return θ

ClientUpdate(θ)
1: Initialise θk ← θ, ϕk ←ϕ

2: for e from 0 to E do
3: for b from 0 to Nk/B do
4: sample a batch of data B

5: update ϕk by Equation 4.6
6: end for
7: end for
8: ϕ←ϕk
9: for e from 0 to E do

10: for b from 0 to Nk/B do
11: sample a batch of data B

12: update θk by Equation 4.8
13: end for
14: end for
15: return θk
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4.3 Theoretical Analysis

This section discusses the ELBO corresponding to Equation 4.1 and shows it can capture

client properties.

From the perspective of variational inference, the optimal posteriors q(z|x) and

q(c|x, z) are the ones maximising the following EBLOs jointly

(4.9) log pk(x)≥ ELBOz(x,k)= Eq(z|x)[log pk(x|z)]−DKL(q(z|x)||p(z))

(4.10) log pk(x|z)≥ ELBOc(x, z,k)= Eq(c|x,z)[log p(x|z, c)]−DKL(q(c|x, z)||pk(c))

where the subscript k means the distribution is specific to the k-th client. Ideally,

log p(x|z, c) is a client irrelevant log-likelihood modelling the sample generating pro-

cess, that is pk(x) = Î
p(x|z, c)p(z)pk(c)dzdc (Details of the derivation is given in Ap-

pendix A.1.1). But Equation 4.10 is hard to compute in practice. Besides the unknown

prior knowledge pk(c), the client irrelevant log-likelihood log p(x|z, c) is unavailable in

FL. For example, sharing log p(x|z, c) in the federation risks privacy leakage as it has

the capability to generate samples.

As an alternative, FedDVA optimises the posterior q(c|x, z) by maximising the ELBO

in Equation 4.11

(4.11) log pk(x|z)≥ ELBO′
c(x, z,k)= Eq(c|x,z)[log pk(x|z, c)]−DKL(q(c|x, z)||q(c))

which is equivalent to Equation 4.10, except for that the slack regulariser DKL(q(c|x, z)||q(c))

degenerates the capability of capturing difference between clients. Specifically, the overall

KL-divergence between q(c|x, z) and q(c) of samples on the same client is

(4.12) Epk(x)[Eq(z|x)[−H(q(c|x, z))]]+H(p̄k(c), q(c))

which requires the distribution of representation c to be close to q(c) wherever the

samples are. Inequation 4.2 helps resolve the problem through introducing an inductive
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bias that the posterior q(c|x, z) of samples on the same client is closer to pk(c) than

to q(c), with which DKL(p̄k(c)||q(c)) ≥ ξk holds (Details of the derivation is given in

Appendix A.1.1.3). Finally, replacing pk(x|z) in Equation 4.9 with Equation 4.11,

we have the loss function described in Equation 4.1 and the hyperparameter ξk helps

determinate the degree of ’penalisation’ representation c captured. The larger the ξk is,

the more personalised representation c is learned.

4.4 Experiments

This section evaluates the performance of FedDVA. First, it verifies FedDVA’s disentangle-

ment effectiveness by exploring data manifolds of samples decoded from the disentangled

representations z and c. Then, it evaluates FedDVA’s capability for classification tasks

on Non-I.I.D. data. It trains lightweight personalised classification heads over the disen-

tangled representations and compares its performance with state-of-the-art methods.

4.4.1 Personalisation Disentanglement

This experiment empirically studies FedDVA’s disentanglement capability on two real-

world datasets with different personalisation settings. First, it visualises distributions of

the learned representations z and c to verify that the two representations are uncorre-

lated. Then, it explores data manifolds of samples decoded from the learned representa-

tions to verify that the representation z captures the client-agnostic knowledge and the

representation c captures the client-specific knowledge.

4.4.1.1 Synthesised Digits

MNIST1 is a benchmark dataset of handwritten digits with 60,000 training images

and 10,000 testing images. This experiment uniformly allocates them to a set of clients
1https://yann.lecun.com/exdb/mnist/
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and synthesises them with client-specific marks. Examples of synthesised digits are in

Figure 4.4.

Client 0 Plain

Client 1 Sinusoid (h)

Client 2 Sinusoid (v)

Client 3 Ellipse

Figure 4.4: Examples of synthesised digits. Each quadrant displays samples from a
client, and each client is related to one type of mark, i.e., horizontal/vertical sinusoids on
random phrases or randomly rotated ellipses, and no marks on the Client 0

Representation Distribution: The experiment trains a FedDVA model on the

setting above and visualises distributions of the learned representations z and c. There

are two trials with different settings in the dimensions of the target representations.

The first trial sets the dimension of each type of representation to be one. Figure 4.5(a)

visualises the resulting z and c. It can be found that distributions of the client-agnostic

representation z (vertical) are in an overlapped range even though they are learned on
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different clients. On the other hand, distributions of the client-specific representation c

(horizontal) are clustered regarding their clients and separable. The result verifies the

effectiveness of FedDVA that the two types of representations are uncorrelated.

(a) distribution of 1-dimension 𝑧 and 𝑐 (b) t-SNE scatterplots of 8-dimension 𝑧 and 𝑐

Representation 𝑐

Re
pr

es
en
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tio

n 
𝑧

Representation 𝑐Representation 𝑧

Figure 4.5: Representation distributions of the synthesised digits. Each dot denotes
the representation of a sample, and colours correspond to clients. (a) scatter plot of
1-dimension z (vertical) and c (horizontal); (b) t-SNE embeddings of 8-dimension z (left)
and c (right).

Another trial sets the dimension of each type of representation to be eight. Fig-

ure 4.5(b) displays t-SNE embeddings [40] of the learned z and c. It can be found that

the two representations are uncorrelated. The client-agnostic representations (left) are

mixed and irrelevant to client preferences. The client-specific representations (right) are

clustered regarding clients.

Data Manifolds: The experiment explores data manifolds of samples decoded from

the learned representations to verify that the uncorrelated representations will cap-

ture the relevant knowledge. Figure 4.6 studies manifolds of data decoded from one-

dimension z and c on Client 3. Results show that digits will vary along with changes

in client-agnostic representation z (vertical) while being irrelevant to changes in client-

specific representation c (horizontal); Elliptical marks will rotate along with changes c

while being irrelevant to changes in z. Similar results are also observed on other clients
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Figure 4.6: Data manifolds of decoded digits on Client 3. (left) Red dots are distributions
of z and c on Client 3; (right) Data manifolds of digits decoded from z (vertical) and c
(horizontal).

(Figure 4.7), which denotes that the two types of representations are able to capture the

related knowledge and FedDVA succeed in personalisation disentanglement.

4.4.1.2 CelebA

CelebA2 is a large-scale face dataset containing 202,599 face images of celebrities. This

research allocates them to clients according to hairstyles in images so that samples of

the same client demonstrate a bias towards similar properties. Examples of personalised

face images are shown in Figure 4.8.

Experiments similar to the ones in Section 4.4.1.1 are performed. Figure 4.9(a)

visualises the scatter plots of 1-dimension z and c and Figure 4.9(b) shows the t-SNE

embeddings of 8-dimension z and c. The result verifies the effectiveness of FedDVA that

the two types of representations are uncorrelated.

In addition, manifolds of data decoded from the learned representations are shown in

Figure 4.10. It can be found that general properties like identities and backgrounds are

disentangled with personalised properties like hairstyles and angles.

2https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

48



4.4. EXPERIMENTS

Client 0

Client 1

Client 2

Client 3
Figure 4.7: Data manifolds of digits decoded from the learned representations

4.4.2 Personalised Classification

This section evaluates the classification performance of representations learned by

FedDVA. It tunes the dual encoders along with local lightweight classification heads and

compares their performance with vanilla FL algorithms, i.e., FedAvg [75], FedAvg+Fine

Tuning [18] and DITTO [55]. Two personalisation settings are evaluated.

4.4.2.1 Feature Shift Settings

The experiment evaluates FedDVA’s classification performance on the feature shift set-

ting. It follows the strategy in Section 4.4.1.1 to allocate synthesised digits to clients and
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Client 0 Bald Client 1 Hats Client 2 Blond Client 3 Black-hair

Figure 4.8: Examples of allocated face images. Each quadrant displays samples from a
client, and each client is related to one type of hairstyle, i.e., bald, wearing hats, blond
and black hair
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(a) distribution of 1-dimension 𝑧 and 𝑐 (b) t-SNE scatterplots of 8-dimension 𝑧 and 𝑐

Figure 4.9: Representation distributions of CelebA. Each dot denotes the representation
of a sample, and colours correspond to clients. (a) scatter plot of 1-dimension z (vertical)
and c (horizontal); (b) t-SNE embeddings of 8-dimension z (left) and c (right).

then trains a local lightweight classification head over the disentangled representations

on each client.

Figure 4.11 demonstrates the classification accuracy on each client. Results show

that a lightweight classification head based on the disentangled representations will

converge fast and achieve competitive performance compared to vanilla FL methods.

4.4.2.2 Target Shift Settings

This section evaluates FedDVA’s classification performance on the target shift setting.

It performs two trials of experiments with different benchmark datasets, i.e., MNIST
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Client 0

Client 1

Client 2

Client 3

Figure 4.10: Manifolds of decoded data on different clients. General properties like
identities and backgrounds vary along with changes in client-agnostic representation z
(vertical), and personalised properties like hairstyles and angles vary along with changes
in client-specific representation c (horizontal).

and CIFAR-103. Samples from a benchmark dataset are first allocated to 20 clients in a

non-I.I.D manner [42] that class distributions vary from client to client. Then, a local

lightweight classification head is trained over the disentangled representations on each

client.

Figure 4.12 displays the the class distributions on each client and Figure 4.13 shows

the averaged accuracy among clients. Results show that a lightweight classification head

3https://www.cs.toronto.edu/ kriz/cifar.html
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Client 0 Plain digits

Client 1 Digits +  Sinusoids (h) Client 3 Digits + Ellipses

Client 2 Digits + Sinusoids (v)

Feature shiftFigure 4.11: Classification accuracy on the feature shift setting. Each quadrant displays
accuracy on a client. The horizontal axis denotes communication rounds, and the vertical
axis denotes classification accuracy.

based on the disentangled representations will converge fast and achieve competitive

performance compared to those vanilla FL methods. Besides, classification accuracy

based on FedDVA has smaller standard deviations, which means that FedDVA can lead

to more robust personalisation performance in the setting.

4.5 Conclusions

In conclusion, the novel FedDVA method can disentangle client-agnostic and client-

specific knowledge for PerFL tasks. Empirical studies validate FedDVA’s personalisation

disentanglement capability. Experiments also show that lightweight classification heads

trained on disentangled representations will have better convergence and competitive
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(a) MNIST (b) CIFAR-10

Figure 4.12: Non-I.I.D class distributions. Each bar denotes the class distribution on a
client, and the length of a colour corresponds to the portion of a class on the client.

(a) Accuracy on MNIST (b) Accuracy on CIFAR-10

Label shift

Figure 4.13: Averaged classification accuracy on the target shift setting. The horizontal
axis denotes communication rounds, and the vertical axis denotes accuracy. Lines are
the averaged classification accuracy among clients, and shades denote the corresponding
standard deviation.

accuracy and be more robust to the changing distributions.
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5
CLIENT-DECORRELATION FEDERATED LEARNING

5.1 Motivation

The distributed learning environment of PerFL usually leads to diverse personalised

models. Then, an interpretation of a local model may be improper to the model of

another client. This section studies aligning a global model’s hidden layers to find a

unified representation space describing client properties. The unified representation

space ensures that clients will share a consensus about client properties and leads to a

novel one-model-for-all strategy to embody personalisation in federated settings.

The key motivation is that model personalisation in most PerFL methods relies on the

bias of samples on the same client, and little supervised information describing the client

is introduced. Then, the global model will be able to encode personalised information in

a unified representation space if it can recognise the bias of a client.

Based on the thought above, this research proposes a novel Client-Decorrelation

Federated Learning (FedCD) [115] that is to learn a unified global model with the
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below functions, including 1) to learn a unified representation space that can encode the

bias of a client, 2) to share client-agnostic knowledge as vanilla FL methods, and 3) to

make personalised predictions by leveraging both pieces of information. Moreover, the

Representation Alignment (RA) mechanism in FedCD could become a plug-in component

that can be integrated with any federated learning method. It enables a vanilla FL model

to output personalised results without on-device fine-tuning steps. An illustration of the

FedCD is in Figure 5.1.

Feature 
Extractor

Classifier

output -𝑦 

input 𝑥 

(a) Conventional global model

Representations  not 
aligned with clients Feature 

Extractor

Classifier

output -𝑦 

input 𝑥 

(b) Global model with an RA Module in FedCD

Representations aligned 
with clients

RA Module

cli
en
t

class

Figure 5.1: Illustration of the FedCD. Shapes denote representation distributions in
the latent space. Triangles, dots and crosses denote the classes they belong to. Colours
denote the clients they are on. (a) Latent representations in the conventional global
model are aligned with classes but not with clients. (b) Latent representations will be
aligned with clients through the RA Module.

The FedCD imposes orthogonality constraints on a global model’s hidden layers,

restricting their outputs to vary along axes regarding client-specific or client-agnostic

knowledge. Accordingly, the model’s latent representation space will be decomposed into

two subspaces. One subspace is aligned with the inductive bias that sample representa-

tions will be similar if they were from the same client. The other subspace is unrelated
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to clients and captures classification information. Client properties information will be

precipitated in the model’s hidden layers when it is optimised for supervised tasks like

classification, and the representation space will be synchronised among clients along

with the sharing of the global model.

To find the target representation space, FedCD formulates the representation align-

ment problem into a novel client-supervised optimisation framework that clients can

solve collaboratively along with the model training process. Empirical studies show that

the FedCD can learn a unified representation space for client properties and a robust

FL global model for one-model-for-all personalisation. The FedCD’s global model can be

directly deployed to the test clients with changing data distributions while achieving

comparable performance to other personalised FL methods that require local model

adaptation.

Through qualitative and quantitative experiments, the research illustrates how

FedCD is integrated into a black-box model to achieve compared performance of other

personalised federated learning methods. It verifies client-specific representation’s con-

sistency with client properties contributing to personalisation and illuminates how they

cooperate with FL models to induce personalised outputs. Moreover, the research demon-

strates that FedCD is compatible with most DNN models. Vanilla models with an RA

module can achieve competitive performance compared to those ad hoc PerFL models

without needing extra fine-tuning steps or personal parameters.

The main contributions are summarised as follows:

• The research proposes a novel one-model-for-all personalised FL framework that

won’t require an extra fine-tuning process at the model deployment and test time

stage. The personalisation of the FL system is carried by representations indicating

client bias rather than models.

• The research designs a novel representation alignment mechanism to project sam-
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ples’ representation into a space indicating client properties. The following decision

layers in the neural architecture can automatically learn to make personalised

predictions by leveraging the client properties.

• A client-supervised optimisation framework is designed to fit the proposed frame-

work. It formulates the representation-aligning problem into a unified optimisation

framework that clients can solve collaboratively under FL settings.

• Comparison with baseline methods shows that, by integrating FedCD into vanilla

FL models, they can achieve competitive personalisation performance without

requiring extra fine-tuning steps or personal parameters.

5.2 Methodology

5.2.1 Problem Formulation

Looking inside the latent space of a DNN f (x;ω)= g(h(x;ωh);ωg), it consists of two parts:

h(x;ωh) is a feature extractor learning the latent representation z ∈Rd, and g(z;ωg) is a

classification head making predictions based on z. ω, ωh, ωg denote learnable parameters

of the corresponding parts. FedCD aims to find orthogonal directions aligned with client-

specific/-agnostic knowledge to decompose z into Client-specific representations (CRep)

and Universal Representations (URep), such that 1) the global classification head can

make personalised predictions; 2) the CRep is a measurement of client properties through

which representations of samples influenced by similar properties will have similar

values and vary significantly otherwise.

Formally, let Pd×r = [p1, p2, ..., pr] be the orthonormal basis for capturing client-

specific knowledge and Qd×t = [q1, q2, ..., qt] be the one for client-agnostic knowledge.

Then projections c = PT z and s = QT z will respectively be representations describing

client-specific/-agnostic knowledge, namely the CRep and the URep.
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FedCD searches for the optimal directions P∗ according to an inductive bias that

samples on the same client are influenced by identical client properties. It implies that

CReps on the same client shall be similar, and those from different clients are on the

contrary.

5.2.2 Representation Alignment

Let c̄(k) denote the mean of CReps on the k-th client, and c̄ be the global mean of CReps

among clients.

(5.1) ΣW = 1∑K
k=1 Nk

K∑
k=1

Nk∑
i=1

(c(k)
i − c̄(k))(c(k)

i − c̄(k))T

Equation 5.1 is the within-client scatter matrix that measures the scatter of CReps

within each client, and

(5.2) ΣB = 1∑K
k=1 Nk

K∑
k=1

Nk(c̄(k) − c̄)(c̄(k) − c̄)T

Equation 5.2 is the between-client scatter matrix that measures the scatters of the

mean of CReps across clients. To find the P∗ aligning client-specific knowledge is to find

the directions that minimise ΣW and maximise ΣB. For example, it can be formulated as

the Linear Discriminate Analysis (LDA) problem below

(5.3) P∗ = argmax
P

J(P)= argmax
P

Tr(Σ−1
W ΣB)

where Tr(·) denotes the trace of the matrix.

Meanwhile, FedCD searches for the directions of Q, which spans a space uncorrelated

with the one by the P. It requires that [P,Q]T[P,Q]= I(d+r), where I(d+r) is the identity

matrix. Then, learning the optimal Q involves solving an optimisation problem with

quadratic constraints, usually NP-hard. On this account, FedCD directly derives Q∗ by

the Gram-Schmidt process (GSP) [94] as described in Algorithm 5. It removes client
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Algorithm 5 Gram-Schmidt process (GSP) derives Q∗

Input: P∗

Output: Q∗

1: Initialise Q = Id.
2: Let pro jp(q)= pT q p

∥p∥
3: for u = 1 to d do
4: qu = qu −∑r

v=1 pro jpv(qu)
5: end for
6: return: Q

influences on samples’ representations and guarantees that [P,Q] will span the same

d-dimensional representation space as the original one in the model’s hidden layer.

Then, bringing P and Q into the FL framework, the overall learning task of FedCD is

formulated as a bi-level optimisation problem

(5.4)

ω∗
h,ω∗

g = arg min
ωh,ωg

K∑
k=1

αkLk(ωh,ωg)

s.t. P∗ = argmax
P

J(P)

Q∗ =GSP(P∗)

where

(5.5)
Lk =

Nk∑
i=1

l(g([P∗,Q∗]T h(x(k)
i ;ωh);ωg), y(k)

i )

The following section introduces a client-supervised method to optimise the Equation 5.4

under the FL setting.

5.2.3 Client-Supervised Optimisation

Theoretically, the optima of Equation 5.3 are eigenvectors of Σ−1
W ΣB associated with the

r largest eigenvalues [27]. The classification and the alignment tasks in Equation 5.4

can be optimised alternatively under the conventional FL framework [55, 82]. However,

decomposing Σ−1
W ΣB is computationally expensive, and involves collecting the local mean
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c̄(k) which is privacy sensitive. To this end, this research proposes a client-supervised

method that decomposes the learning task in Equation 5.3 into sub-tasks so that clients

can optimise it collaboratively.

Concretely, previous works [31] show that solving Equation 5.3 is equivalent to

solving P∗ = argmaxP ΨΦ, where Φ is an approximation to the eigen system of the global

correlation matrix ΣW +ΣB, and Ψ=Σ−1/2
W . Both Ψ and Φ can be optimised incrementally

through the following equations [8]

(5.6) Ψ′ =Ψ+η(I −ΨΣWΨ)

(5.7) Φ′ =Φ+λ(ūūTΦ−Φτ(ΦūūTΦ)

where u =Ψc̄ and τ(·) is an operator that sets all the elements below the main diagonal

of the matrix to zero. λ and η are learning rates.

Then, Equation 5.6 and Equation 5.7 can be reorganised as the below equations

and optimised by clients collaboratively. The learning process on a client is described in

Algorithm 6, and the overall FL process with FedCD is described in Algorithm 7.

(5.8) Ψ′ =Ψ+η
1
K

K∑
k=1

(I −ΨΣ(k)
W Ψ)

(5.9) Φ′ =Φ+λ
K∑

k=1
(ū(k)ū(k)TΦ−Φτ(Φū(k)ū(k)TΦ)

where Σ(k)
W =∑Nk

i=1(c(k)
i − c̄(k))(c(k)

i − c̄(k))T and ū(k) =Ψ(c̄+ 1
Nk

∑Nk
i=1(c̄− c̄(k))).

5.3 Experiments

This section demonstrates the advantages of FedCD in learning from clients with non-

I.I.D. data. The FedCD can learn a robust FL global model for the changing data distri-

butions of unseen/test clients. The FedCD’s global model can be directly deployed to the
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Algorithm 6 Client-supervised Optimisation

Input: a batch of latent representations z(k)
i , i = 1 : Nk, global mean z̄, Ψ and Φ

Output: z̄′, Ψ′, Φ′

1: P ←ΨΦ.
2: z̄′ ← z̄+ 1

Nk

∑Nk
i=1(z̄(k)

i − z̄)

3: c(k)
i = Pz(k)

i , i = 1, ..., Nk
4: c̄ ← Pz̄′

5: c̄(k) ← 1
Nk

∑Nk
i=1 c(k)

i
6: ū(k) =Ψc̄
7: Σ(k)

W ←∑Nk
i=1(c(k)

i − c̄(k))(c(k)
i − c̄(k))T

8: update Ψ by Equation 5.8
9: update Φ by Equation 5.9

10: return z̄′, Ψ′,Φ′

Algorithm 7 Federate Learning with Client-Decorrelation
Input: number of clients: K , interval to align representations: it, number of communica-
tion rounds: R.
Output: P∗ Q∗, ω∗

h, ω∗
g

1: initialise ωh, ωg, z̄, Ψ, Φ.
2: for r from 0 to R do
3: select a set of clients C

4: for client k in C parallel do
5: update ωh,ωg by gradient-descent steps
6: if r%it ==0 then ▷ Representation Alignment
7: update z̄, Ψ, Φ by Algorithm 6 ▷ Client-supervised Optimisation
8: update Q by Algorithm 5 ▷ GS Process
9: end if

10: end for
11: aggregate local updates of ωh, ωg, z̄, Ψ and Φ through averaging parameters
12: end for
13: P∗ ←ΨΦ

14: update Q∗ by Algorithm 5
15: return P∗, Q∗, ω∗

g, ω∗
h
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40 clients from 8 distributions 
participated in the training 
process (tr. clients)

10 clients from 2 
distributions are 
held aside for test 
(ts. clients)

training sets
(tr. sets)

test sets
(ts. sets)

……

5 clients share one 
type of distribution

Figure 5.2: Clients in the target shift setting. Each bar denotes a client. Each colour
indicates one type of distribution. Samples on each client are split into a training set and
a test set.

test clients while achieving comparable performance to other personalised FL methods

that require model adaptation. Visualisation of the aligned Client-specific representation

validates the effectiveness of the proposed RA Module.

5.3.1 Personalisation Settings

The research simulates FL environments by allocating samples from benchmark datasets

to 50 clients, and two different types of personalisation settings are applied.

Target Shift Settings: MNIST and CIFAR-10 datasets are applied as benchmark

datasets to simulate the non-I.I.D. environments. The experiment allocates samples of

each class individually according to a posterior of the Dirichlet distribution[42], which

divides clients into ten groups with different class distributions. Eight groups of clients

will participate in the collaborative training process, and the rest will be held for testing.

An illustration of client settings is in Figure 5.2. Class distributions are shown in

Figure 5.3.
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class distributions of CIFAR-10class distributions of MNIST

client IDclient ID
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Figure 5.3: Class distributions on clients. Each bar denotes the class distribution on a
client. Each colour corresponds to a class and the length indicates its proportion on the
client.

Feature Shift Settings: The research utilises the Digit-5 dataset to evaluate

FedCD’s performance on feature-shift data. The Digit-5 consists of digits from five

different domains (MNIST, MNIST-M, SVHN, USPS and Synth Digits). The experiment

assigns samples of each domain to nine clients, where eight clients will participate in

training the global model and one will be held aside for the test. In addition, it randomly

draws samples from all domains to compose five mixed datasets for the rest of the clients

for the test. An illustration of client settings is in Figure 5.4.

5.3.2 Models and Hyperparameters

The research applies convolution neural networks (CNN) as fundamental models and

integrates the proposed RA module into one of the fully connected layers (FC1 to FC3)

to align their hidden layers. By default, in each communication round, ten clients are

sampled to update the global model, and subsequently, the global model is synchronised

to all clients to evaluate its performance. The learning rate of a client’s local training

step is initialised as 0.005 and it will decay at the rate of 0.8 every 50 communication

rounds. The RA module will be updated every five communication rounds by the sampled
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MNIST 5 clients consists of 
the mixture of all 5 
domains are held 
aside for the test

……

MNIST-M SVHN USPS Synth. 
Digits

1 client of each domain 
is held aside for the test

training sets
(tr. sets)

test sets
(ts. sets)

8 clients are from 
the same domain 

Figure 5.4: Clients in the feature shift setting. Each bar denotes a client. Each colour
indicates a domain. Samples on each client are split into a training set and a test set.

MNIST CIFAR-10 Digit-5
communication rounds 200 400 400
epoch per round 5 30 10
batch size 10 32 10

Table 5.1: Hyperparamters for experiments

ten clients, and the learning rate is fixed at 0.001. Other hyperparameters are listed in

Table.5.1.

5.3.3 Baseline Methods

Several PerFL strategies are compared as baselines, including:

• Local Only: models those trained on each client locally

• FedAvg: benchmark FL framework [75]

• FedAvg + FT: personalisation by fine-tuning the global model on local data [18, 21]

• FedAvg + BN: a global model with shared BatchNormalisation layers
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• FedBN: a global model with private BatchNormalisation layers [57]

• FedRep: personalisation by training local classification heads [20]

• PerCNN: personalisation by training local feature extractors [82]

5.3.4 Performance

This section first demonstrates averaged model performance on all clients, which shows

that a global model learned with FedCD will achieve comparable performance to other

personalised FL methods that require model adaptation. Then, it looks inside the group-

wised metrics to evaluate a model’s performance on different distributions. Results show

that the global model learned with FedCD is more robust to the changing distribu-

tions. The learned global model can be directly deployed on test clients without extra

adaptations.

5.3.4.1 Target Shift Settings

For target shift settings, the averaged accuracy, weighted AUC score and weighted

F1 score are applied to evaluate model performance1. Table 5.2 and Table 5.3 report

the averaged performance over all clients and Figure 5.5 and Figure 5.6 show the

group-wise performance.

Overall performance

Table 5.2 demonstrates models’ performance on the MNIST dataset. It can be found

that a global model with RA layers achieves the best performance under the target shift

setting. It outperforms those locally fine-tuned global models (FedAvg+FT) and models

with client-specific parameters (FedBN, FedRep and PerCNN). A combination of FedAvg

and BN layers has a performance marginally below FedCD; the Locally trained model

1https://scikit-learn.org/stable/index.html
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avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%) ↑
Local Only 62.19 (7.93) 85.18 (4.62) 47.80 (10.12)
FedAvg 88.26 (4.81) 97.12 (1.33) 81.01 (5.48)
FedAvg+FT 87.72 (9.06) 96.97 (2.54) 80.81 (10.14)
FedAvg+BN 97.97 (1.19) 99.69 (0.14) 93.38 (1.76)
FedBN 88.74 (18.56) 99.32 (0.75) 83.85 (18.82)
FedRep 51.97 (21.06) 75.72 (15.56) 38.53 (20.52)
PerCNN 95.96 (1.70) 99.48 (0.20) 91.40 (1.95)
FedCD-FC1(ours) 98.43 (0.80) 99.72 (0.15) 93.72 (1.71)
FedCD-FC2(ours) 98.26 (0.90) 99.71 (0.16) 93.43 (1.78)
FedCD-FC3(ours) 98.35 (0.93) 99.72 (0.26) 93.64 (1.56)

Table 5.2: Overall performance on the MNIST dataset. The standard deviation of each
metric is reported in parentheses. avg. is the abbreviation of ’averaged’ and w. denotes
the ’weighted’. The ↑ denotes that the higher the metric is, the better performance a
model achieved, and the best performance is highlighted in bold.

(Local Only) has the worst performance. It might result from the lack of training data

and the extremely unbalanced distribution of classes.

Table 5.3 demonstrates models’ performance on the CIFAR-10 dataset. FedCD

achieves the best performance in this setting. Other models are less effective than FedCD

and their performances vary significantly among clients (higher standard deviations).

The group-wised performance below shows that the gap results from the generalisation

error on test clients and FedCD mitigates such performance gap.

Group-wise performance

Figure.5.5 and Figure.5.6 show the averaged accuracy of clients within different groups,

i.e., data distributions. It shows that the global model trained by FedCD is more robust

among different distributions, and it generalises well to unseen distributions (client

groups 8-9). Fine-tuned models (FedAvg+FT) and models with personalised parameters

(FedBN, FedRep) have significant performance gaps between training clients (group 0-7)

and test clients (group 8-9). They achieve higher accuracy in training groups but are less

effective in test groups.
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(1) Local Only 

(2) FedAvg (3) FedAvg+FT 

(4) FedAvg +BN (5) FedBN 

(7) PerCNN (6) FedRep 

(0) FedCD+FC1 (Ours) 

Figure 5.5: Grouped-wise accuracy on MNIST. The horizontal axis denotes communi-
cation rounds and the vertical axis denotes the accuracy. Each colour corresponds to a
client group, i.e., data distribution. Shade indicates the standard deviation of accuracy
among clients in the group.
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(6) FedRep (7) PerCNN 

(1) Local Only (0) FedCD+FC1 (Ours) 

(5) FedBN 

(3) FedAvg+FT 

(4) FedAvg+BN 

(2) FedAvg 

Figure 5.6: Grouped-wise accuracy on CIFAR-10. The horizontal axis denotes communi-
cation rounds and the vertical axis denotes the accuracy. Each colour corresponds to a
client group, i.e., data distribution. Shade indicates the standard deviation of accuracy
among clients in the group.
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avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%) ↑
Local Only 45.09 (8.14) 70.93 (9.23) 34.86 (10.71)
FedAvg 57.92 (7.52) 88.03 (3.61) 54.04 (8.61)
FedAvg+FT 60.37 (10.12) 86.89 (4.65) 51.75 (12.62)
FedAvg+BN 58.84 (13.94) 91.57 (4.30) 57.87 (14.95)
FedBN 60.65 (14.21) 91.64 (4.56) 59.41 (14.70)
FedRep 43.34 (11.58) 70.70 (9.80) 33.01 (13.88)
PerCNN 64.69 (8.41) 89.18 (3.36) 58.62 (9.17)
FedCD-FC1(ours) 68.07 (4.33) 93.72 (1.71) 69.48 (4.69)
FedCD-FC2(ours) 68.12 (4.87) 93.33 (2.33) 69.06 (5.97)
FedCD-FC3(ours) 68.84 (4.62) 93.49 (2.09) 69.69 (4.96)

Table 5.3: Overall performance on the CIFAR-10 dataset. The standard deviation of each
metric is reported in parentheses. avg. is the abbreviation of ’averaged’ and w. denotes
the ’weighted’. The ↑ denotes that the higher the metric is, the better performance a
model achieved, and the best performance is highlighted in bold.

5.3.4.2 Feature Shift Settings

This section demonstrates evaluations in feature shift data. Table 5.4 shows that FedCD

achieves the best accuracy, AUC and F1 score under this setting. Other models are less

effective than FedCD and their performances vary significantly among clients (higher

standard deviations). Group-wised performance in Figure 5.7 shows that FedCD has a

more robust performance on all domains while other methods degenerate significantly

on test clients (dash lines).

5.3.5 Visualisation of Aligned Representations

Figure 5.8 compares the client-specific representations learned by FedCD with latent

representations from FedAvg and FedBN. It can be found that representations from

FedAvg and FedBN are unable to maintain the group information (clients’ preferences),

while the CReps demonstrate the same cluster structure as the one regarding clients’

preferences, which validates the effectiveness of the proposed RA mechanism.
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(0) FedCD+FC1 (Ours)  

(4) FedAvg+BN 

(6) FedRep (7) PerCNN 

(1) Local Only 

(5) FedBN 

(2) FedAvg (3) FedAvg+FT 

Figure 5.7: Grouped-wise accuracy on Digit-5. The horizontal axis denotes communication
rounds and the vertical axis denotes the accuracy. Each colour corresponds to a client
group, i.e., data distribution. Shade indicates the standard deviation of accuracy among
clients in the group.
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avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%)↑
Local Only 59.11 (18.35) 84.03 (9.75) 49.73 (20.38)
FedAvg 89.15 (6.73) 98.16 (1.43) 85.69 (6.38)
FedAvg+FT 82.12 (5.32) 96.11 (1.98) 75.64 (4.94)
FedAvg+BN 87.19 (13.63) 97.82 (3.11) 83.40 (12.96)
FedBN 80.38 (11.63) 95.71 (3.79) 74.07 (10.90)
FedRep 55.77 (20.51) 82.94 (11.54) 50.14 (20.88)
PerCNN 80.63 (6.91) 96.10 (2.47) 74.63 (6.71)
FedCD-FC1(ours) 91.47 (4.99) 98.74 (0.95) 87.89 (4.76)
FedCD-FC2(ours) 91.19 (5.52) 98.60 (1.09) 87.66 (5.15)
FedCD-FC3(ours) 91.18 (5.52) 98.57 (1.09) 87.66 (5.19)

Table 5.4: Overall performance on the Digit-5 dataset. The standard deviation of each
metric is reported in parentheses. avg. is the abbreviation of ’averaged’ and w. denotes
the ’weighted’. The ↑ denotes that the higher the metric is, the better performance a
model achieved, and the best performance is highlighted in bold.

AUSTRALIAN ARTIFICIAL INTELLIGENCE INSTITUTE

Experiments

• Aligned Distributions

FedAvg FedBN FedCD (Ours)

Figure 5.8: Comparisons of distributions of latent representations on the Digit-5 dataset.

5.4 Conclusions

This research is the first to propose using a one-model-for-all strategy to implement per-

sonalised federated learning. We believe the one-model-for-all personalisation can form a

new topic to advance existing personalised federated learning research. It foresees more

discussion and exploration can be conducted in this new one-model-for-all personalised

federated setting.

From a technical perspective, the research introduces a novel client-decorrelation

method, FedCD, for FL. A global model learned with FedCD can be shared across clients
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without extra workload for fine-tuning in the stage of model deployment and test time.

The personalised characteristic of each client has been preserved into client-specific

representations that will be further processed by a unified model. Moreover, a federated

optimisation framework has been designed accordingly to solve the proposed framework.

Experiments on real-world datasets verified the effectiveness and efficiency of FedCD.

73





C
H

A
P

T
E

R

6
VIRTUAL CONCEPTS BOOST FEDERATED LEARNING

6.1 Motivation

A critical challenge in PerFL is the absence of well-defined concepts of personalisation.

Client preferences and personalised properties are implied in training data and enclosed

on each client. They could be a client’s favour towards specific classes or a specific

noise mixed up with input features. The only tangible information is the shift in data

distribution across clients.

Meanwhile, most machine learning models, e.g., DNNs, are trained in an end-to-

end paradigm. They are optimised by back-propagating supervised information, e.g.,

classification loss, from the output layer to the input layer. Personalisation is performed

indirectly when a model is tuned for tasks like classification. This learning schema is

less efficient in PerFL. The on-device training tends to overfit a client’s local data due to

limited and unbalanced training samples. The aggregation step on the server, in turn,

will neutralise personalised information when synthesising the global model, e.g., by

averaging local updates.
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However, it is worth noting that though there is no supervised information of signif-

icantly defined client properties, a feature distinguishing model personalisation from

unsupervised tasks is that data in PerFL are explicitly partitioned. Samples from the

same client will demonstrate a client-specific bias toward certain properties. Then, one

may assume that there were invisible labels of clients inducing the on-device training to

progress toward a client’s preferences, i.e., personalisation. The client-based data parti-

tion essentially supervises PerFL’s training process, so this research calls the learning

paradigm Client-Supervised Learning.

Based on the thought above, this research introduces Virtual Concepts (VC) [116]

to explicate client-supervised information. The VCs are representations of potential

structure information extracted from training data. They can be learned independently

of downstream classification tasks by a novel FedVC algorithm, which facilitates under-

standing client properties and boosts model personalisation.

Specifically, FedVC assumes that there is a set of vectors (virtual concepts), each

describing a type of client property. A client’s preferences are then represented by a

combination of VCs, which will be utilised as supervised information to guide the training

progress of the global model. Figure 6.1 gives an illustration to the propose FedVC.

To learn the VCs, FedVC evaluates the underlying distribution structure in data by

formulating the learning task into a Gaussian Mixture Model (GMM) that can be solved

by most unsupervised learning methods, e.g., Expectation-Maximisation algorithm (EM).

Experiments on real-world datasets show that the VCs can work as supervised

information to train a robust global model to the changing distributions. Further study

demonstrates that the VCs are useful in exploring meaningful client properties by

discovering distribution structures implied in training data.

The main contributions are summarised as follows:

• The research proposes virtual concepts describing client preferences. The VCs
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(a) Sample distributions (b) Underlying structures 
(virtual concepts) 

(c) Client preferences (d) Client supervision 

Figure 6.1: Illustration to FedVC. (a) data distribution in an FL system; (b) virtual con-
cepts (pentagon, plus and triangle) are vectors indicating underlying cluster structures of
data, e.g., cluster centres; (c) a client’s preference (star) is represented by a combination
of virtual concepts; (d) client-supervised loss requires sample representations on the
same client (data points within the circle) to be close to each other as they share the
identical client preference.

are representations of distribution structure extracted from training data. They

provide us with a way to explore meaningful client properties relevant to model

personalisation.

• The research proposes a novel client-supervised PerFL framework that utilises

virtual concept vectors as supervised information to train the global model. The

77



CHAPTER 6. VIRTUAL CONCEPTS BOOST FEDERATED LEARNING

VCs will allow an FL algorithm to simultaneously learn class and client knowledge

so that the learned global model can achieve on-deployment personalisation, where

the global model will not require an extra fine-tuning process at the test stage.

• The research formulates the learning task of VCs into a Gaussian Mixture Model

that most unsupervised learning methods can solve. The proposed FedVC frame-

work is compatible with most FL methods, where they can be integrated as an

add-on to improve personalisation performance and model interpretability.

• Contrast with baseline methods shows that FL models trained with VCs can simul-

taneously learn class and client knowledge. It achieves competitive personalisation

performance without requiring extra fine-tuning steps or personal parameters.

• Empirical studies show that VCs can discover meaningful distribution structures

implied in training, facilitating the uncovering of client properties related to model

personalisation.

6.2 Methodology

6.2.1 Client-supervised PerFL

Let C = {c1, ..., cM} denote m virtual concept vectors, a client’s preference is then repre-

sented by p(k) =∑M
m=1υ(k)

m cm, where k is the client index, and υm is a factor measuring

the degree the client relevant to cm, i.e., how typical the client has the property of cm.

FedVC aims to utilise p(k) as supervised information to guide FL’s learning process so

that the global model can learn client knowledge explicitly.

Specifically, FedVC adds a projection head to FL’s global model to extract a represen-

tation ẑ(k)
i of potential client properties (see Figure 6.2). One can evaluate a sample’s

relevance to each concept by a similarity function, e.g., Equation 6.1, and derive an
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prediction -𝑦 

input 𝑥 

projection �̂�

hidden layers

Figure 6.2: Projection head

estimated client preference p̂(k)
i = ∑M

m=1 ŝ(k)
i,mcm, where i is the sample index and ι is a

hyperparameter.

(6.1) s(k)
i,m = υ(k)

m exp(−ι∥ẑ(k)
i − cm∥2)∑M

m=1υ(k)
m exp(−ι∥ẑ(k)

i − cm∥2)

Then, there will be a supervised loss regarding client preferences, i.e., lp(p̂(k), p(k)
i ) =

∥p̂(k)− p(k)
i ∥2. It can be integrated into any FL framework like Equation 3.1 and solved

by gradient-based methods. Details of the learning algorithm are in Algorithm 8.

6.2.2 Virtual Concepts

As virtual concepts correspond to client properties, a sample is then assumed to be

generated by some random process involving a mixture of multiple client properties.

FedVC formulates the assumption into a Gaussian Mixture Model (GMM). For any

sample z(k) on the k-th client, there is

(6.2) z(k) ∼P (k)(z)=
M∑

m=1
υ(k)

m N (z; cm,Σm)

where the covariance Σm is set to be the identity matrix I for simplicity.
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Let C = {c1, ..., cM} denotes the set of VCs and Υ= {{υ(1)
m }M

m=1, ..., {υ(K)
m }M

m=1} denotes the

set of client preferences, the collaborative learning task for C and Υ is formulated as

(6.3) C ∗,Υ∗ = argmax
C ,Υ

K∑
k=1

Nk∑
i=1

logP (k)(z(k)
i )

FedVC solves it by the EM framework below:

• E-step: Given C and Υ, clients estimate local samples’ s(k)
i,m by Equation 6.1

• M-step: Clients update C and Υ collaboratively by Equation 6.4 and Equa-

tion 6.5

(6.4) υ(k)
m = 1

Nk

Nk∑
i=1

s(k)
i,m

(6.5) cm =
∑K

k=1
∑Nk

i=1 s(k)
i,m ẑ(k)

i∑K
k=1

∑Nk
i=1 s(k)

i,m

However, Equation 6.4 and Equation 6.5 cannot be applied when working with mini-

batches in FL settings. FedVC uses exponential moving averages as an alternative:

(6.6) S
′(k)
m = S(k)

m ∗κ+ ∑
i∈B

s(k)
i,m ∗ (1−κ)

(6.7) C
′(k)
m = C(k)

m ∗κ+ ∑
i∈B

s(k)
i,m ẑ(k)

i ∗ (1−κ)

(6.8) N ′
k = Nk ∗κ+|B|∗ (1−κ)

where B denotes a minibatch of samples, |B| denotes the batch size, and κ is a smoothing

hyperparameter between 0 and 1. Then,

(6.9) υ(k)
m = S

′(k)
m

N ′
k

(6.10) cm =
∑K

k=1 C
′(k)
m∑K

k=1 S
′(k)
m

The overall learning algorithm is described in Algorithm 8.
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Algorithm 8 FedVC
Input: communication rounds R, epochs in each round E, learning rate λ, batch size B,
hyperparameters ι, κ and γ

Output: optimal parameters ω∗, virtual concepts C ∗

1: server initialises parameters ω and virtual concepts C

2: for r from 0 to R do ▷ communication rounds
3: server selects a set of clients C

4: for k ∈C parallel do
5: client k synchronises ω and C from the server ▷ network traffic
6: ωk,S

′(k)
m ,C

′(k)
m ←ClientUpdate(ω)

7: end for
8: server collects local updates ωk, S

′(k)
m and C

′(k)
m k ∈C ▷ network traffic

9: ω←∑
k∈Cαkωk

10: update cm ∈C by Equation 6.10
11: end for
12: return ω, C

ClientUpdate(ω, C )
1: for any sample on the clients do ▷ Update client preferencesp(k)

2: get model outputs by ŷ, ẑ = f (x;ω)
3: calculate s(k)

i,m by Equation 6.1
4: update v(k)

m by Equation 6.9
5: update client preference p(k) ←∑M

m=1 v(k)
m cm

6: end for
7: for e from 0 to E do
8: for b from 0 to Nk/B do
9: sample a batch of data B

10: ω←ω−∇ω(lp + lcls) ▷ Update model
11: update S, C and N by Equation 6.6, 6.7 and 6.8 respectively
12: end for
13: end for
14: return ω, S and C
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6.2.2.1 Unified Learning Process

It is worth noting that the client preference p(k) =∑M
m=1υ(k)

m cm can be viewed a function

of virtual concepts C , so does the loss lp(p̂, p). Then, the learning processes for C and

the global ω can be formulated into a unified optimisation task that can be solved in an

end-to-end manner rather than in an alternate way as EM-based methods.

!"*

#* ∈ %(+) &,-. !", "
"*

Virtual Concepts

((+)

&/ (̂, (

(̂* %(+)

⋯ 

∇,&/∇0&/

∇0&,-. Forward prop.
Back prop.
Global para.
Private data

Model,

Model,

-1 -2 -3

Figure 6.3: FedVC architecture.

Concretely, as described in Figure 6.3, lp(p̂, p) will simultaneously provide super-

vised information for optimising virtual concepts and the model. The unified learning

object is formulated as

(6.11) ω∗,C ∗ = argmin
ω,C

K∑
k=1

αkLk(ω,C )

where

(6.12) Lk(ω)= (1/Nk)
Nk∑
i=1

lcls( ŷ(k)
i , y(k)

i )+ lp(p̂(k)
i ,sg[p(k)])+γlp(sg[p̂(k)

i ], p(k))

The sg[·] is the stopgradient operator [106], where the operand will feed forward as

normal but have zero partial derivatives, being a non-updated constant. γ is a hyperpa-
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rameter balancing the two losses. The corresponding learning process is summarised in

Algorithm 9.

Algorithm 9 FedVC-unified
Input: communication rounds R, epochs in each round E, learning rate λ, batch size B,
hyperparameters ι, κ and γ

Output: optimal parameters ω∗, virtual concepts C ∗

1: server initialises parameters ω and virtual concepts C

2: for r from 0 to R do ▷ communication rounds
3: server selects a set of clients C

4: for k ∈C parallel do
5: client k synchronises ω and C from the server ▷ network traffic
6: ωk, Ck ←ClientUpdate(ω,C )
7: end for
8: server collects local updatesωk,Ck k ∈C ▷ network traffic
9: ω←∑

k∈Cαkωk
10: cm ←∑

k∈Cαkc(k)
m , c(k)

m ∈Ck
11: end for
12: return ω, C

ClientUpdate(ω, C )
1: for any sample on the clients do ▷ Update client preferencesp(k)

2: get model outputs by ŷ, ẑ = f (x;ω)
3: calculate s(k)

i,m by Equation 6.1
4: update v(k)

m by Equation 6.9
5: update client preference p(k) ←∑M

m=1 v(k)
m cm

6: end for
7: for e from 0 to E do
8: for b from 0 to Nk/B do
9: sample a batch of data B

10: ω←ω−∇ωLk
11: cm ← cm −∇cLk, cm ∈C

12: end for
13: end for
14: return ω, C

6.3 Experiments

This section empirically studies the advantages of FedVC in learning from clients with

non-I.I.D. data. The FedVC can learn a robust FL global model for the changing data
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distributions of unseen/test clients. The FedVC’s global model can be directly deployed

to the test clients while achieving comparable performance to other personalised FL

methods that require model adaptation.

6.3.1 Non-I.I.D settings

Target Shift: MNIST is applied as a benchmark to simulate the non-I.I.D. environments.

The experiment allocates samples of each class individually according to a posterior of

the Dirichlet distribution[42], which divides clients into five groups with different class

distributions. Three groups of clients will participate in the collaborative training process,

and the rest will be held for testing. An illustration of client settings is in Figure 6.4.

Class distributions are shown in Figure 6.5.

20 clients from 5 distributions 
participated in the training 
process (tr. clients)

10 clients from 2 
distributions are 
held aside for test 
(ts. clients)

training sets
(tr. sets)

test sets
(ts. sets)

5 clients share one 
type of distribution

Figure 6.4: Clients in the target shift setting. Each bar denotes a client. Each colour
indicates one type of distribution. Samples on each client are split into a training set and
a test set.

Feature Shift: The research utilises the Digit-5 dataset to evaluate FedVC’s perfor-

mance on feature-shift data. The Digit-5 consists of digits from five different domains
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Figure 6.5: Class distributions on clients. Each bar denotes the class distribution on a
client. Each colour corresponds to a class and the length indicates its proportion on the
client.

(MNIST, MNIST-M, SVHN, USPS and Synth Digits). The experiment assigns samples of

each domain to six clients, where five clients will participate in training the global model

and one will be held aside for the test.Classes are evenly distributed on each client. In

addition, it randomly draws samples from all domains to compose five mixed datasets

for the rest clients for the test. An illustration of client settings is in Figure 6.6.

6.3.2 Models and Hyperparameters

The research applies convolution neural networks (CNN) as fundamental models and

supervises the training process by virtual concepts. By default, in each communication

round, ten clients are sampled to update the global model and virtual concepts, and

subsequently, the global model is synchronised to all clients to evaluate its performance.

The learning rate of a client’s local training step is initialised as 0.005 and it will decay

at the rate of 0.8 every 10 communication rounds. During each communication round, a

client will tune the global model on its local data for two epochs with a batch size of 10.

For the FedVC, the default number of virtual concepts is set to be 10 and the dimen-
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MNIST 5 clients consists of 
the mixture of all 5 
domains are held 
aside for the test

MNIST-M SVHN USPS Synth. 
Digits

1 client of each domain 
is held aside for the test

training sets
(tr. sets)

test sets
(ts. sets)

8 clients are from 
the same domain 

Figure 6.6: Clients in the feature shift setting. Each bar denotes a client. Each colour
indicates a domain. Samples of each client are split into a training set and a test set.

sion of each virtual concept is 10. The similarity parameter ι is 0.1, and the smoothing

parameter κ is 0.05.

6.3.3 Baseline Methods

Several PerFL strategies are compared as baselines, including:

• Local Only: models those trained on each client locally

• FedAvg + FT: personalisation by fine-tuning the global model on local data [18, 21]

• FedBN: a global model with private BatchNormalisation layers [57]

• FedProx: leverages a global to regularise the local training process [56]

• Ditto: leverages a global to regularise the local training process while learning a

local model for each client [55]

• FedRep: personalisation by training local classification heads [20]

• FedDual: personalisation by training a global and a local feature extractors [82]
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6.3.4 Performance

This section first demonstrates averaged model performance on all clients, which shows

that a global model learned with FedVC will achieve comparable performance to other

personalised FL methods that require model adaptation. Then, it looks inside the group-

wised metrics to evaluate a model’s performance on different distributions. Results

show that the global model learned with FedVC is more robust to the changing distribu-

tions. The learned global model can be directly deployed on test clients without extra

adaptations.

6.3.4.1 Target Shift Settings

For target shift settings, the averaged accuracy, weighted AUC score and weighted F1

score are applied to evaluate model performance1. Table 6.1 and Table 6.2 respectively

report the averaged performance over the training clients and the test clients. Figure 6.9

shows the group-wise performance.

Overall performance

Table 6.1 demonstrates models’ performance on the MNIST dataset on the training

clients (tr-clients). It can be found that a global model trained by FedVC achieves the

best performance under the target shift setting. It outperforms those locally fine-tuned

global models (FedAvg+FT) and models with client-specific parameters (FedBN, FedProx,

FedRep and FedDual). Table 6.2 demonstrates models’ performance on the test clients

(ts-clients). All baseline methods are fine-tuned on the test clients to adapt to the client’s

local distribution. It can be found that the model learned by FedVC generalised well to

the unseen clients, even though they are not fine-tuned. Note that locally trained models

(Local Only and Ditto) can not be generalised to unseen clients.

Group-wise performance

1https://scikit-learn.org/stable/index.html
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avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%) ↑
Local Only 95.79 (1.00) 99.69 (0.11) 93.21 (0.96)
FedAvg+FT 97.92 (0.98) 99.90 (0.04) 95.49 (1.07)
FedBN 98.43 (0.86) 99.90 (0.04) 95.71 (0.94)
FedProx 98.07 (0.90) 99.89 (0.04) 95.48 (0.89)
Ditto 95.86 (1.19) 99.71 (0.09) 93.25 (1.17)
FedRep 93.61 (2.55) 99.53 (0.18) 91.05 (2.59)
FedDual 96.87 (0.99) 99.84 (0.06) 94.14 (1.25)
FedVC (ours) 98.56 (0.56) 99.90 (0.05) 95.83 (0.96)
FedVC-sg (ours) 98.51 (0.62) 99.90 (0.03) 95.84 (1.10)

Table 6.1: Overall performance on the MNIST dataset on the training clients. The
standard deviation of each metric is reported in parentheses. avg. is the abbreviation of
’averaged’ and w. denotes the ’weighted’. The ↑ denotes that the higher the metric is, the
better performance a model achieved, and the best performance is highlighted in bold.

avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%) ↑
FedAvg+FT 98.42 (0.84) 99.91 (0.04) 95.71 (0.74)
FedBN 98.48 (0.84) 99.91 (0.04) 95.64 (0.84)
FedProx 98.19 (0.98) 99.90 (0.04) 95.53 (0.94)
FedRep 88.98 (1.37) 99.00 (0.24) 86.11 (1.85)
FedDual 97.80 (0.51) 99.88 (0.03) 95.08 (0.57)
FedVC (ours) 98.79 (0.62) 99.91 (0.03) 95.97 (0.87)
FedVC-sg (ours) 98.76 (0.67) 99.91 (0.04) 95.92 (0.99)

Table 6.2: Overall performance on the MNIST dataset on the test clients. The standard
deviation of each metric is reported in parentheses. avg. is the abbreviation of ’averaged’
and w. denotes the ’weighted’. The ↑ denotes that the higher the metric is, the better
performance a model achieved, and the best performance is highlighted in bold.

Figure.6.9 shows the averaged accuracy of clients within different groups, i.e., data

distributions. It shows that the global model trained by FedVC is more robust among

different distributions, and it generalises well to unseen distributions (client groups 4-5).

Fluctuation in the learning curves indicates that the fine-tuned models (FedAvg+FT) and

models with personalised parameters (FedBN, FedProx, FedDual) are slightly unstable.

Locally trained models (Local Only and Ditto) and FedRep have significant performance

gaps among clients.
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avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%)↑
Local Only 74.43 (13.60) 93.98 (4.53) 71.34 (13.00)
FedAvg+FT 80.92 (9.37) 96.75 (2.32) 77.40 (8.87)
FedBN 84.34 (10.61) 97.49 (2.19) 80.99 (10.02)
FedProx 80.50 (11.32) 96.46 (2.77) 76.93 (10.82)
Ditto 67.30 (18.50) 92.10 (6.63) 63.95 (18.54)
FedRep 55.44 (20.40) 85.55 (11.28) 51.86 (20.74)
FedDual 70.36 (15.59) 93.20 (5.34) 66.99 (15.57)
FedVC(ours) 85.42 (8.95) 97.55 (1.81) 81.88(8.53)
FedVC-sg(ours) 85.82 (8.47) 97.59(1.88) 82.27(7.99)

Table 6.3: Overall performance on the Digit-5 dataset on the training clients. The
standard deviation of each metric is reported in parentheses. avg. is the abbreviation of
’averaged’ and w. denotes the ’weighted’. The ↑ denotes that the higher the metric is, the
better performance a model achieved, and the best performance is highlighted in bold.

avg. Accuracy (%) ↑ w. AUC (%) ↑ w. F1-score (%)↑
FedAvg+FT 77.85 (7.71) 96.26 (1.99) 74.57 (7.42)
FedBN 83.30 (7.05) 97.45 (1.32) 79.69 (6.67)
FedProx 76.90 (7.92) 96.19 (2.02) 73.55 (7.31)
FedRep 34.85 (18.75) 73.08 (11.66) 30.24 (18.39)
FedDual 67.15 (11.46) 92.74 (4.66) 63.85 (11.62)
FedVC(ours) 86.20 (5.62) 97.61 (1.38) 82.92 (5.15)
FedVC-sg(ours) 85.10 (5.92) 97.68(1.39) 81.61 (5.70)

Table 6.4: Overall performance on the Digit-5 dataset on the test clients. The standard
deviation of each metric is reported in parentheses. avg. is the abbreviation of ’averaged’
and w. denotes the ’weighted’. The ↑ denotes that the higher the metric is, the better
performance a model achieved, and the best performance is highlighted in bold.

6.3.4.2 Feature Shift Settings

This section demonstrates evaluations in feature shift data. Table 6.3 shows that FedVC

achieves the best accuracy, AUC and F1 score under this setting. Other models are less

robust than FedVC and their performances vary significantly among clients (higher

standard deviations). Group-wised performance in Figure 6.10 shows that FedVC has a

smaller performance gap between different domains and it is more robust for that there

is less fluctuation in the learning curves.
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6.3.5 Ablation Study

This section evaluates the effectiveness of FedVC through experiments on the Digit-5

dataset. The section first validates virtual concepts’ capability as supervised information

for personalisation by visualising the distribution of estimated client preferences ( p̂).

Then, it analyses the behaviours of hyperparameters by ablation experiments.

6.3.5.1 Interpreting Personalisation

Figure 6.7 compares the latent representations learned by FedAvg and the FedVC.

It can be found that FedVC succeeds in supervising the learning process with client

preferences so that the distribution of the estimated client preferences p̂ are consistent

with the group truth knowledge, i.e., samples from the same group (colours) are closer to

each other.

ι in Equation 6.1 is a hyperparameter that weights the importance of the difference

|ẑ− c| when estimating the client preference p̂. Figure 6.8(a) shows that client prefer-

ences (colours) are unrecognisable with a model learned with a small ι, i.e., ι = 0.001.

With the increasing of ι, the estimated p̂ demonstrates structure consistent with their

client preferences (Figure 6.8(b-d)). It validates the effectiveness of the supervision of

virtual concepts c. The superior performance of FedVC denotes such supervision does

improve the performance of a global model, and virtual concepts are indicators that can

be utilised to interpret personalisation.

6.3.5.2 Hyperparameters

The experiments study a hyperparameter’s behaviours by evaluating model performance

under different values of the selected hyperparameter while holding the others with

default values. According to Table 6.5 and Table 6.6, model performance will be im-

proved along with the increasing of the number and the dimension of virtual concepts.
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# of VCs avg. accuracy (%)↑ on tr clients avg. accuracy (%)↑ on ts clients
3 85.22(9.47) 85.05(6.79)
6 85.24(9.10) 85.15(6.06)

10 85.42(8.95) 86.20(5.62)

Table 6.5: Performance with different number of virtual concepts

d-VC avg. accuracy (%)↑ on tr clients avg. accuracy (%)↑ on ts clients
3 83.46(9.89) 83.45(6.95)
6 84.36(9.75) 83.80(7.07)

10 85.42(8.95) 86.20(5.62)

Table 6.6: Performance with different dimensions of virtual concepts

ι avg. accuracy (%)↑ on tr clients avg. accuracy (%)↑ on ts clients
0.001 84.40(9.30) 85.00(6.34)
0.005 84.56(9.55) 85.35(6.44)
0.01 85.74(9.12) 85.75(6.25)
0.1 85.42(8.95) 86.20(5.62)

Table 6.7: Performance with different similarity parameter ι. The larger the ι is, the more
weight the difference |ẑ− c| when estimating the client preference p̂

Table 6.7 shows that a larger weight for the similarity between ẑ and c will increase

model performance, which validates the effectiveness of the supervision from virtual

concepts. In addition, Table 6.8 indicates that the newly estimated S, C and N will

outperform the older one when using the moving average strategy. Table 6.9 suggests

that γ needs to be carefully selected when balancing updating the global model and the

virtual concepts.

6.4 Conclusions

The research proposes to utilise virtual concepts as client supervision information to

learn a robust global model and to interpret the non-IID data across clients. Specifically,

the proposed FedVC interprets each client’s preferences as a mixture of conceptual

vectors that each represents an interpretable concept to end-users. These conceptual
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κ avg. accuracy (%)↑ on tr clients avg. accuracy (%)↑ on ts clients
0.01 85.66(8.51) 85.40(6.12)
0.05 85.42(8.95) 86.20(5.62)
0.1 84.96(9.23) 85.45(6.18)
0.5 84.44(9.16) 84.65(6.25)

0.95 84.02(9.51) 83.85(7.29)

Table 6.8: Performance with different smoothing parameter κ. The larger the κ is, the
more weight the previous estimation of S, C and N.

γ avg. accuracy (%)↑ on tr clients avg. accuracy (%)↑ on ts clients
0.01 83.14(10.47) 83.40(7.27)
0.1 85.24(8.97) 85.30(6.86)
0.5 83.48(10.63) 82.35(8.03)

0.95 85.46(8.71) 85.20(6.02)

Table 6.9: Performance with different balancing parameter γ. The larger the γ is, the
more important the loss lp to optimising the virtual concepts c.

vectors could be learnt via the optimisation procedure of the federated learning system.

In addition to the interpretability, the clarity of client-specific personalisation could also

be applied to enhance the robustness of the training process on the FL system. The

effectiveness of the proposed methods has been validated on benchmark datasets.
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(a) distribution of sample 
representations after FedAvg

MNIST-MSVHN
(b) distribution of estimated 
preferences (̂ by FedVC

USPS

Synth.
MNIST

Figure 6.7: Distribution of estimated client preferences. Colours indicate the client group,
i.e., the domain, samples belong to. (a) The aggregation process by vanilla FedAvg will
eliminate the information on client preferences so that sample representations are mixed
regarding their domains. (b) Virtual concepts succeed in supervising the learning process
with client preferences so that the distribution of the estimated client preferences p̂ are
consistent with their domain knowledge, i.e., samples from the same domain will be
closer to each other.
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(a) 𝜄 = 0.001

(c) 𝜄 = 0.01

(b) 𝜄 = 0.005

(d) 𝜄 = 0.1

Figure 6.8: Distribution of estimated client preferences with different ι. The smaller the ι

is, the less weight the difference |ẑ− c| when estimating the client preference p̂.
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(0) FedVC (Ours)  (1) Local Only 

(3) FedBN (2) FedAvg+FT 
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 (5) Ditto 
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Figure 6.9: Grouped-wise accuracy on MNIST. The horizontal axis denotes communi-
cation rounds and the vertical axis denotes the accuracy. Each colour corresponds to a
client group, i.e., data distribution. Shade indicates the standard deviation of accuracy
among clients in the group.
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Figure 6.10: Grouped-wise accuracy on Digit-5. The horizontal axis denotes communi-
cation rounds and the vertical axis denotes the accuracy. Each colour corresponds to a
client group, i.e., data distribution. Shade indicates the standard deviation of accuracy
among clients in the group.
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CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

T
his research focuses on explainable model personalisation for FL systems. The

research aims to recognise preferences implied in a client’s local data and

propose on-deployment personalisation where clients can obtain practical and

explainable model outputs without extra local adaptations. Three objectives have been

achieved, with summaries as follows.

Firstly, Chapter 4 studies personalisation by disentangling common and personalised

knowledge in an FL system. A novel Federated Dual Variational Autoencoder (FedDVA)

framework is proposed to disentangle sample representations into client-agnostic (com-

mon) and client-specific (personalised) parts. Then, the disentangled representations will

demonstrate meaningful structures describing clients’ preferences, which will help us

better understand features contributing to the personalisation and study their influences

on the final predictions. Meanwhile, on-deployment personalisation can be implemented

efficiently by training a lightweight classification model over the disentangled repre-
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sentations. A client-specific Evidence Lower BOund (ELBO) is derived for learning the

FedDVA model, and it is formulated into an optimisation problem that gradient-based

methods can solve.

Further, Chapter 5 explains personalisation from the representation level by aligning

latent spaces of global models in FL. A new Client-Decorrelation Federated Learning

(FedCD) is proposed to explore client properties and facilitate explainable personalisation.

The FedCD utilises bias in representations of a client’s local data to recognise the client’s

properties. Then, it aligns the global model’s hidden space with axes representing client

properties, unravelling a client’s influence from its sample’s latent representations. The

proposed Representation Alignment (RA) mechanism in FedCD could become a plug-in

component to be integrated with any FL models, which enables various classic FL models

to be directly deployed for PerFL tasks without needing client-specific modifications. The

overall learning objective of FedCD is fulfilled by solving a bi-level optimisation problem

that clients can solve collaboratively under the standard FL framework.

Moreover, Chapter 6 introduces Virtual Concepts (VCs) to explicate clients’ pref-

erences and model personalisation. The VCs are a set of vectors describing structures

of data partitions of an FL system. They constitute client-supervised information that

characterises biases implied in clients’ local data. Then, personalisation becomes explicit

and explainable by including VCs as labels of clients’ preferences in FL’s training process.

The learning process of VCs could be formulated into a Gaussian Mixture Model (GMM)

that can be solved by Expectation Maximisation (EM) based methods or optimised along

with the standard federated learning process through gradient-based methods.

In conclusion, this thesis solves the explainable personalisation problem from dif-

ferent perspectives and proposes three algorithms: FedDVA disentangles personalised

representation; FedCD aligns the global model’s hidden spaces; and FedVC, which ex-

tracts data structures as supervised information. These novel methods provide ways to
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get deep insight into personalisation procedures in PerFL and inspire us to design models

that can achieve on-deployment personalisation. Theoretical analyses and comprehensive

experiments substantiate the proposed methods and findings.

7.2 Future works

As we get deeper into the field of PerFL, there is more to explore and understand about

what and how factors contribute to model personalisation.

Firstly, this research has succeeded in recognising clients’ preferences and utilising

them to boost model personalisation. Can we combine the proposed methods with conven-

tional supervised interpreting methods, e.g., the Shapely Values, to quantify the impacts

of client preferences in a prediction? Can we design a mechanism to further study the

causality rather than the correlation between client preferences and personalisation?

Besides, there have been many heterogeneous scenarios in FL beyond the scope of

non-I.I.D. data. Clients may differ in learning tasks, model architectures and hardware

capabilities. Can we extend the proposed methods to extract such differences so that a

PerFL model can be deployed for more complicated applications?

Thirdly, current PerFL research focuses on heterogeneity across clients, while data

distribution and preferences of a client may also change over time. Personalisation needs

to be able to capture changes in a client’s local data and track emerging tendencies in

the system. Uncovering and explaining personalisation in such a dynamic environment

could be more challenging.

Last but not least, the success of foundation models, e.g., Llama, has brought machine

learning into a new era. Clients in an FL system are now able to retrieve common

knowledge from a powerful foundation model directly rather than training a model from

scratch. However, as the large foundation models are usually trained by tech giants

opaquely, it becomes even more critical to understand the factors behind a personalised
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prediction in casing bias and discrimination in the decision process.

In summary, as AI is playing a more and more important role in our daily lives, FL

becomes necessary to keep our privacy safe and explainable personalisation becomes

the key to guaranteeing AI trustworthiness. In turn, a transparent and comprehensible

model will advance our understanding and capabilities in designing more powerful and

reliable AI systems.
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A.1 FedDVA

A.1.1 Evidence Lower Bounds

A.1.1.1 ELBO optimizing q(z|x)

Suppose p(z|x) is the true posterior of z, q(z|x) is the variational posterior approximating

p(z|x) and samples on the same client are independent and identical distributed (iid.),

then the learning task on the k-th client is to minimize DKL(q(z|x)||p(z|x)), which is

(A.1)

DKL(q(z|x)||p(z|x))=
∫

q(z|x) log
q(z|x)
p(z|x)

dz

=
∫

q(z|x) log
q(z|x)pk(x)
p(z|x)pk(x)

dz

= log pk(x)+
∫

q(z|x) log
q(z|x)

pk(x|z)p(z)
dz

= log pk(x)−Eq(z|x)[log pk(x|z)]+DKL(q(z|x)||p(z))

or equivalently,

(A.2) log pk(x)≥ ELBOz(x,k)= Eq(z|x)[log pk(x|z)]−DKL(q(z|x)||p(z))
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A.1.1.2 ELBO optimizing q(z|x, c)

Suppose p(c|x, z) is the true posterior of c, q(c|x, z) is the variational posterior approxi-

mating p(c|x, z) and samples on the same client are iid., then the learning task on the

k-th client is to minimize DKL(q(c|x, z)||p(c|x, z)), which is

(A.3)

DKL(q(c|x, z)||p(c|x, z))=
∫

q(c|x, z) log
q(c|x, z)
p(c|x, z)

dc

=
∫

q(c|x, z) log
q(c|x, z)pk(x|z)
p(c|x, z)pk(x|z)

dc

= log pk(x|z)+
∫

q(c|x, z) log
q(c|x, z)
pk(x, c|z)

dc

= log pk(x|z)−Eq(c|x,z)[log pk(x, c|z)]−H(q(c|x, z))

Ideally, there is a client-irrelevant likelihood p(x|z, c) modeling the sample generating

process, that is pk(x)=Î
p(x|z, c)p(z)pk(c)dzdc, where the personality of a client lies on

pk(c). Then we have

(A.4) log pk(x)≥ ELBOc(x, z,k)= Eq(c|x,z)[log p(x|z, c)]−DKL(q(c|x, z)||pk(c))

which is equivalent to

(A.5) log pk(x)≥ ELBO′
c(x, z,k)= Eq(c|x,z)[log pk(x|z, c)]−DKL(q(c|x, z)||q(c))

A.1.1.3 Difference between DKL(q(c|x, z)||q(c)) and DKL(q(c|x, z)|| p̄k(c))

For samples on the same client and suppose they are independent and identical dis-

tributed, according to Eq.4.2, there is

(A.6)

Epk(x)[Eq(z|x)[DKL(q(c|x, z)||q(c))−DKL(q(c|x, z)|| p̄k(c))]]

=Epk(x)[Eq(z|x)[Eq(c|x,z)[log p̄k(c)− log q(c)]]]

=Ep̄k(c)[log p̄k(c)− log q(c)]

=DKL(p̄k(c)||q(c))

≥ξk
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A.1.2 Computation of the KL-Divergence

A.1.2.1 KL-Divergence between two Gaussian distributions

For the i-th sample xi and j-th sample x j, variational posteriors inferring representation

c are q(c|xi, zi) = N (c;µi,Σi) and q(c|x j, z j) = N (c;µ j,Σ j), where c is a d-dimensional

vector and convariance matrices of Σi and Σ j are diagonal. Then we have

(A.7)

∫
q(c|xi, zi) log q(c|xi, zi)dc =

∫
N (c;µi,Σi) logN (c;µi,Σi)dc

=− 1
2

(d log(2π)+ log |Σi|+d)

and

(A.8)∫
q(c|xi, zi) log q(c|x j, z j)dc =

∫
N (c;µi,Σi) logN (c;µ j,Σ j)dc

=− 1
2

(d log(2π)+ log |Σ j|+Tr(Σ−1
j Σi)+ (µi −µ j)TΣ−1

j (µi −µ j))

Combining Eq.A.7 and Eq.A.8, the KL-Divergence between q(c|xi, zi) and q(c|x j, z j) is

(A.9)

DKL(q(c|xi, zi)||q(c|x j, z j))=
∫

q(c|xi, zi)(log q(c|xi, zi)− log q(c|x j, z j))dc

=
∫

N (c;µi,Σi)(logN (c;µi,Σi))dc−
∫

N (c;µi,Σi)(logN (c;µ j,Σ j))dc

=1
2

[(µi −µ j)TΣ−1
j (µi −µ j)− log |Σ−1

j Σi|+Tr(Σ−1
j Σi)−d]

=1
2

d∑
l=1

[(
µ(l)

i −µ(l)
j

σ(l)
j

)2 − log(
σ(l)

i

σ(l)
j

)2 + (
σ(l)

i

σ(l)
j

)2 −1]

where l denotes the l-th element and σ(l)
i denotes the positive root of the l-th element on

the diagonal of covariance matrix Σi.
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A.1.2.2 Computation of DKL(q(c|x, z)|| p̄k(c))

Let xi and x j denotes the i-th and j-th sample in dataset Dk with size is nk

(A.10)

DKL(q(c|xi, zi)|| p̄k(c))=Eq(c|xi ,zi)[log q(c|xi, zi)− log
1

nk

nk∑
j=1

[q(c|x j, z j)]

≤Eq(c|xi ,zi)[log q(c|xi, zi)− 1
nk

nk∑
j=1

log q(c|x j, z j)]

= 1
nk

nk∑
j=1

Eq(c|xi ,zi)[log q(c|xi, zi)− log q(c|x j, z j)]

Bringing Eq.A.9 we have

(A.11) DKL(q(c|xi, zi)|| p̄k(c))≤ 1
2nk

nk∑
j=1

d∑
l=1

[(
µ(l)

i −µ(l)
j

σ(l)
j

)2 − log(
σ(l)

i

σ(l)
j

)2 + (
σ(l)

i

σ(l)
j

)2 −1]

where µi, σi and µ j, σ j are outputs of neural networks and they can be differentiated

and optimized by gradient based optimization methods.

A.2 FedCD

We introduce an inductive bias to align the hidden layers of a DNN so that it is able to

learn client bias to achieve personalization without on-device fine-tuning. We assume

data on the same client are influenced by the same client properties so that data from

the similar clients will have similar representations. We formulate the representation

alignment problem into an optimization described in Eq.5.3.

Eq.5.3 is equivalent to the objective function of Linear Discriminant Analysis (LDA)

whose solution is the enginvector of corresponding to the largest enginvalue of Σ−1
W ΣB.

However, the computation cost of the decomposing Σ−1
W ΣB would be high, and aggregating

local representations to a server is infeasible in FL. Therefore, we divide the matrix

decomposition process into a set of clients’ local updating steps and integrate it into

standard FL framework.
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A.2.1 Client Supervised Optimization

Let ΣG denote the correlation matrix of latent representations on all clients, there is

ΣG = ΣW +ΣB. Then the learning problem can be formulate as solving the following

eigenvalue problem

(A.12) Σ−1
W ΣGP∗ = P∗Λ

where Λ is the diagonal eigenvalue matrix of Σ−1
W ΣG . [31] shows solving Eq.A.12 can be

simplified into solving the following symmetric eigenvalue problem:

(A.13) Σ−1/2
W ΣGΣ

−1/2
W Φ=ΦΛ

where Φ denotes eignevectors of Σ−1/2
W ΣGΣ

−1/2
W , and there is P∗ = Σ−1/2

W Φ. To find the

optimum P∗ is to find Φ and Σ−1/2
W .

[8] introduced an incremental algorithm to optimize Φ and Σ−1/2
W through which we

can distribute the optimizing steps to clients. Concretely, it proves that, 1)

(A.14) Φk+1 =Φk +λ(zkzT
k Φk −Φkτ[ΦT

k zkzT
k Φk])

will converge to the enginvector matrix Φ when there are sufficient instance zk sampled

from the data distribution; 2). let S denotes Σ−1/2
W , then

(A.15) Sk+1 = Sk +η∗ (I −SkΣW Sk)

where Sk+1 will converge to the inverted square root of ΣW when 1) S0 is initialized as a

symmetric positive define matrix, and 2) there are sufficient instance zk sampled from

the data distribution.

We apply the above methods in Eq.5.7 and Eq.5.6 to update P on each clients individ-

ually and aggregate local updates to align axis on different clients.
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A.2.2 Discussion on Privacy Protection

According to the section above, clients requires to share local correlations to update

the matrix ΣW . However, ΣW is a global statistic where a client’s local bias would be

eliminated, privacy-protection methods like differential privacy are feasible to avoid

privacy leakage.
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