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Abstract

Trilinear Form Equivalence Problems: from Algorithm and Complexity to

Post-Quantum Cryptography.

by

Gang Tang

Doctor of Philosophy

University of Technology Sydney

In this thesis, we present new results on alternating trilinear form equivalence

(ATFE), a problem that arises in both mathematics and cryptography. ATFE is of par-

ticular interest due to its connections to various hard problems in cryptography, which

makes it a promising candidate for post-quantum cryptographic schemes. We study

its complexity, cryptographic applications and algorithms. We also study the QROM

security and the construction of linkable ring signatures based on group action under

the GMW-FS framework.

• Digital signature fromATFE.We study the complexity of testing equivalence

of alternating trilinear forms. This problem is of interest in both mathematics

and cryptography. We show that this problem is polynomial-time equivalent to

testing equivalence of symmetric trilinear forms, by showing that they are both

Tensor Isomorphism-complete, therefore is equivalent to testing isomorphism

of cubic forms over most fields.

We then propose a post-quantum signature scheme ALTEQ based on the ATFE

problem. We implement the ALTEQ scheme with several optimizations and

submit it to NIST call for additional post-quantum signature standardization as

a round 1 candidate.

• GMW-FS design based on group actions. Group action based cryptogra-

phy was formally proposed in the seminal paper of Brassard and Yung (Crypto
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1990). Based on one-way group action, there is a well-known digital signature

design based on the Goldreich–Micali–Widgerson (GMW) zero-knowledge pro-

tocol for the graph isomorphism problem and the Fiat–Shamir (FS) transforma-

tion.

Our second result concerns the QROM security and ring signatures of the

GMW-FS design. We distil properties of the underlying group action for the

GMW-FS design to be secure in the quantum random oracle model (QROM).

We also show that this design supports a (linkable) ring signature construction

following the work of Beullens, Katsumata and Pintore (Asiacrypt 2020). We

apply these results to support the security of the ALTEQ scheme in the QROM

model. We then describe a linkable ring signature scheme based on it, and pro-

vide an implementation of the ring signature scheme. Preliminary experiments

suggest that our scheme is competitive among existing post-quantum ring sig-

natures.

• Cryptanalysis on MEDS and ALTEQ. The final part of this thesis investi-

gates the hardness of MCE and ATFE. We present new algorithms for MCE

and ATFE, which are the further development of the algorithms for polynomial

isomorphism and alternating trilinear form equivalence, in particular by Bouil-

laguet, Fouque, and Véber (Eurocrypt 2013), and Beullens (Crypto 2023). Key

ingredients in these algorithms are new easy-to-compute distinguishing invari-

ants under the respective group actions. This algorithm has some implications

for the security of MEDS. our algorithm for ATFE improves on the runtime of

the previously best known algorithm of Beullens (Crypto 2023).
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Chapter 1

Introduction

Public-key cryptosystems widely used today rely on hard problems like integer fac-

torization and discrete logarithm problems over elliptic curves or finite fields. How-

ever, Shor’s algorithms [Sho97], proposed in 1997, solve these problems in polynomial

time on a quantum machine. Despite the current absence of large-scale and universal

quantum computers, the rapid advancements in quantum technology in recent years

have raised concerns in the cryptography community. While the exact timeline of

this threat remains uncertain, the imperative to develop new cryptographic systems

resistant to quantum attacks is pressing, leading to the emergence of post-quantum

cryptography.

The development of post-quantum cryptography has inspired researchers across

various fields to explore novel mathematical problems that are hard for quantum com-

puters. These problems can be broadly categorized into five groups: lattice-based,

code-based, multivariate-based, hash-based, and isogeny-based. We give an overview

of these five categories in Section 1.1.

In 2016, the National Institute of Standards and Technology (NIST) launched the

standardization for post-quantum cryptosystems, aiming to proactively migrate to

post-quantum cryptosystems to deal with potential threats. This initiative has signif-

icantly piqued academic and industrial interest in practical post-quantum cryptosys-
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tems. In 2022, four cryptosystems were selected for standardization: the lattice-based

encryption scheme KYBER [SAB+22], the lattice-based signature schemes Dilithium

[BDK+21] and Falcon [FHK+20], and the hash-based signature scheme SPHINCS+

[ABWB+20]. Additionally, three code-based and one isogeny-based scheme, namely

Classical McEliece [BCC+22], HQC [MAB+22], BIKE [ABB+22] and SIKE [JAC+22] 1,

moved to the final round of standardization for further cryptanalysis.

Embracing the principle of diversity for standardization, NIST [oST22] launched

a new call for post-quantum signature standardization in 2022, with a particular em-

phasis on the cryptosystems based on a variety of different problems. Notably, the

ALTEQ [BDN+23] signature, introduced in the Chapter 3 of this thesis, has been sub-

mitted to NIST standardization as the first-round candidate. We provide a comparison

between ALTEQ and some NIST submissions, please refer to Section 3.5.4.

1.1 Overview of post-quantum cryptography.

In this section, we give an overview of the main families of post-quantum cryptogra-

phy.

Lattice-based cryptography

Lattice-based cryptographic primitives are widely regarded as one of the most promis-

ing post-quantum cryptographic approaches, extensively explored both theoretically

and practically. At the core of lattice cryptography lie two fundamental problems:

Learning with Errors (LWE) and Short Integer Solutions (SIS). These problems form

the cornerstone for constructing lattice-based cryptographic protocols. SIS, intro-

duced as early as 1996 by Ajtai, marked a pivotal advancement, with Ajtai [Ajt96]

providing a reduction from the worst-case approximate shortest vector problem to the

average-case SIS problem. Another seminal contribution came from Regev [Reg05]

in 2005, who introduced LWE and demonstrated reductions from some worst-case
1SIKE [JAC+22] suffered fatal attacks [CD23,MMP+23,Rob23] and should no longer be used
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problems in lattice to average-case LWE. A notable advantage of LWE is its appli-

cability in constructing public key encryption schemes and various other cryptosys-

tems. For instance, the pioneering lattice-based public key encryption scheme was

proposed by Regev in [Reg05]. To enhance the practicality of lattice-based cryptosys-

tems (e.g. low size and high efficiency), several variants of LWE/SIS have been pro-

posed, including ring-LWE/SIS and modular-LWE/SIS, all of which enjoy worst-case

to average-case reductions. Building upon LWE/SIS and their variants, numerous ad-

vanced cryptographic systems have been developed, such as fully homomorphic en-

cryption [Gen09], attribute-based encryption [GVW13] etc [GVW15, BVWW16]. As

for the basic cryptographic systems such as public key encryption and digital signa-

ture, there are three schemes selected by NIST for standardization: Kyber [SAB+22],

Dilithium [BDK+21], Falcon [FHK+20].

Code-based cryptography

Code-based cryptography has a long history, and its security relies on the hard prob-

lems in coding theory, e.g. Learning Parity with Noise (LPN) and Syndrome Decoding

(SD). In 1978, Berlekamp, McEliece, and Van Tilborg [BMVT78] proved that decoding

random linear codes is NP-complete. In the same year, McEliece [McE78] proposed

the pioneering code-based public key encryption cryptosystem, where the private key

is a random binary irreducible Goppa code and the public key is a random genera-

tor matrix of a randomly permuted version of that code. The ciphertext consists of

the corrupted codeword, namely, the codeword combined with a random error. Ef-

ficiently recovering the codeword, a process called decoding, is achievable using the

private key, thereby eliminating errors. The adversary’s challenge lies in attempting

to decode the ciphertext armed only with knowledge of the public key and cipher-

text. Moreover, there are three schemes in the final round of NIST standardization:

Classical McEliece [BCC+22], HQC [MAB+22] and BIKE [ABB+22].
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Multivariate-based cryptography

Multivariate cryptography is cryptographic primitives based on multivariate polyno-

mials over finite fields, with its security relies on solving systems of multivariate poly-

nomials over these fields. Multivariable cryptography has an old history in PQC. In

1988, Matsumoto and Imai [MI88] introduced the first multivariate-based public key

cryptosystem, known as MI. However, in 1995, MI was broken by the linearized equa-

tion attack proposed by Patarin [Pat95]. Subsequently, in 1996, Patarin [Pat96] gen-

eralized the field by introducing Hidden Field Equation (HFE), which spawned some

signature schemes. Another important class of multivariate schemes is based on the

unbalanced oil and vinegar (UOV) scheme, initially proposed by Kipnis et al. [KPG99].

UOV is the unbalanced variant of oil and vinegar (OV), the latter one was broken by

Kipnis-Shamir attack [KS98]. In 2005, Ding et al. [DS05] proposed Rainbow, a layered

generalization of UOV, which was selected for the third round of the NIST PQC stan-

dardization due to its good performance and security. Recently, Beullens proposed a

new hybrid algebraic attack and an improvement of the rectangular MinRank attacks,

so that Rainbow-I can be practically solved. In the recent NIST call for additional post-

quantum signature, UOV [BCD+23] was re-proposed, and nine other protocols based

on multivariate were shortlisted.

Hash-based cryptography

One of the important properties of hash functions is that it is hard to compute the

pre-image for a given output. The signature scheme based on the hash function was

first proposed by Lamport [Lam79] in 1975. However, the signature size of Lamport’s

scheme is very large, and it is very demanding that each key can only sign one mes-

sage. In this way, this scheme becomes an example of "one-time signature". To over-

come the problems of large public keys that could be used only once, Merkle [Mer89]

introduced an improved signature scheme in 1989. This signature scheme evolved

from a one-time signature scheme, using the authentication mechanism of the Merkle
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tree(hash tree). In a Merkle tree, the secret key in Lamport’s scheme is used as the leaf

node, and the root is the new public key in Merkle’s scheme. The length of the public

key can be effectively reduced by Merkle tree. The security of hash-based signature

algorithms depends on the collision resistance of the hash function. Since there is

no effective quantum algorithm that can quickly find the collision of the hash func-

tion, the signature scheme based on the hash function can effectively resist quantum

computer attacks. In addition, the security of a hash-based digital signature scheme

does not depend on a specific hash function. In other words, even if some of the

currently used hash functions are breached, we can replace them with more secure

hash functions. Further, there is one scheme selected by NIST for standardization:

Sphincs+ [ABWB+20].

Isogeny-based cryptography

Isogeny-based cryptography is based on finding an isogeny map between elliptic

curves. While relatively young in post-quantum cryptography, its roots trace back

decades. In 2006, Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06] indepen-

dently introduced the first key exchange protocol based on isogenies. Its security is

based on the hardness of finding isogeny on two given ordinary elliptic curves. The

concept of supersingular elliptic curves was initially integrated into the CGL hash

function from expander graphs, originating fromCharles, Goren, and Lauter [CLG09].

In 2011, Jao andDe Feo [JF11] proposed Supersingular IsogenyDiffie–Hellman (SIDH),

a public key exchange protocol based on the isogeny between two supersingular el-

liptic curves. In practical applications, the SIKE [JAC+22] scheme, a variant of SIDH,

moved as a final candidate for NIST standardization. However, due to recent ad-

vancements [CD23,MMP+23,Rob23] in the hardness of SIDH, SIKE is now considered

vulnerable. Another notable isogeny-based key exchange protocol proposed in 2018

by Castryck, Lange, Martindale, Panny, and Renes [CLM+18], named Commutative

Supersingular Isogeny Diffie–Hellman (CSIDH). CSIDH follows the framework laid
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by [Cou06, RS06] but restricts its focus to supersingular elliptic curves defined over

𝐹𝑞 . Despite it has lower computational efficiency compared to SIDH, CSIDH is the

first post-quantum Non-Interactive Key Exchange (NIKE). Beyond these public key

exchange protocols, many other isogeny-based primitives have also been developed,

such as digital signatures [BKV19,FG19,DFKL+20], threshold signatures [FM20], ring

and group signatures [BKP20, BDK+22]. It is noteworthy that in NIST’s recent call

for signature schemes, an isogeny-based scheme called SQISign [CSSF+23] has been

proposed as the first-round candidate.

1.2 Overview of group action based cryptography

The use of group actions in cryptography has a long tradition. Indeed, the discrete log-

arithm problem can be interpreted as a problem about cyclic group actions [Cou06].

As far as we know, the first treatment of abstract group actions in cryptography goes

back to Brassard and Yung [BY90], who proposed the notion of one-way group ac-

tions. When the groups are abelian (commutative), this was further developed by

Couveignes [Cou06]. Recently, two independent works [JQSY19] and [AFMP20] en-

riched this framework further by introducing the notion of (weakly) pseudorandom

group actions, which generalizes the celebrated Decisional Diffie–Hellman assump-

tion [DH76,Bon98].

Besides setting up frameworks, many cryptographic primitives can be real-

ized, such as claw-free one-way functions and bit commitment [BY90], quantum-

secure pseudorandom functions [JQSY19] and zero-knowledge identification proto-

cols [Cou06, JQSY19]. When the groups are abelian (commutative), more functions

are possible, such as key exchange [Cou06,CLM+18], smooth projective hashing, and

dual-mode public-key encryption [AFMP20].

Since discrete logarithms can be solved efficiently on quantum computers [Sho97],

it is desirable to explore group actions suitable for post-quantum cryptography.

Indeed, there are some instantiations of post-quantum security group actions.
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These include lattice isomorphism [DvW22], Commutative Supersingular Isogeny

Diffie–Hellman (CSIDH) [CLM+18], Alternating Trilinear Form Equivalence (ATFE)

[TDJ+22], Linear Code Equivalence (LCE) [BMPS20], and Matrix Code equivalence

(MCE) [CNP+23b]. These instantiations have been further developed into a variety

of quantum-resistant cryptographic primitives, including digital signatures [TDJ+22,

BMPS20,CNP+23b,BKV19,FG19], ring signatures [BKP20,BCD+22], and group signa-

tures [BDK+22]. Many of the signature schemes use a unified framework, that is, the

GMW-FS framework we described in Section 1.3.

As in the lattice case [Reg04], the research into hidden subgroup problems is of

particular relevance here, especially the hidden shift problems [CJS14] and symmetric

or general linear groups [HMR+10]. For the class group actions in the isogeny setting,

even though the group action underlying CSIDH is commutative, the best quantum

algorithms are still subexponential [Pei20,BS20]. For the group actions on LCE, ATFE

andMCE, the groups are symmetric or general linear groups, so the previous negative

evidence for standard techniques (such as coset sampling) in the hidden subgroup

problem for graph isomorphisms [HMR+10] applies. Our use of HSP to support ATFE

in post-quantum cryptography follows the use of HSP to support lattices in post-

quantum cryptography. That is, by [Reg04], certain lattice problems reduce to HSP

over dihedral groups. However, to the best of our knowledge, it is not known that

the HSP over dihedral groups reduces to lattice problems. Similarly, here ATFE can

be formulated as a HSP over general linear groups, but the reverse direction is not

known.

1.3 Overview of GMW-FS framework

In [GMW91], Goldreich, Micali andWigderson described a zero-knowledge proof pro-

tocol for the graph isomorphism (GI) problem. We describe the graph isomorphism

problem and this protocol as below.
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Graph isomorphism problem. Given two graphs 𝐺 = ( [𝑛], 𝐸) and 𝐻 = ( [𝑛], 𝐹 ),

where [𝑛] denotes {1, . . . , 𝑛} and 𝐸, 𝐹 are the edge sets. The classical graph iso-

morphism problem asks whether two graphs are the same up to relabeling the ver-

tices. Specifically, 𝐺 and 𝐻 are isomorphic if and only if there exists a permutation

𝜎 : [𝑛] → [𝑛] (𝜎 ∈ 𝑆𝑛) such that 𝜎 (𝐸) = 𝐹 , where 𝜎 (𝐸) = 𝐹 means that for any

{𝑖, 𝑗} ∈ 𝐸 if and only if {𝜎 (𝑖), 𝜎 ( 𝑗)} ∈ 𝐹 .

GMW protocol for graph isomorphism. Given two graphs 𝐺 and 𝐻 as the state-

ment, let 𝜎 be an isomorphism as the witness such that 𝜎 (𝐺) = 𝐻 . We then give the

sigma protocol for graph isomorphism as follows:

(1) Commitment phase. The prover generates a random permutation 𝜋 which

sends 𝐺 to 𝐾 = 𝜋 (𝐺) and then sends the new graph 𝐾 to the verifier as the

commitment,

(2) Challenge phase. The verifier random generates a binary challenge 𝑏 ∈ {0, 1}

and sends it to the prover.

(3) Response phase. If 𝑏 = 0 the prover sends 𝑟 := 𝜋 to verifier; otherwise sends

𝑟 := 𝜋𝜎−1.

(4) Verification phase. If 𝑏 = 0 the verifier accepts when 𝑟 (𝐺) = 𝐾 ; otherwise

accepts when 𝑟 (𝐻 ) = 𝐾 .

It’s straightforward to check this protocol satisfies the completeness, special sound-

ness and honest verifier zero knowledge.

The Fiat–Shamir transformation FS [FS86] can be applied to the above sigma pro-

tocol to yield a digital signature scheme. This construction has been observed by

several researchers since the 1990’s. However, this scheme based on the graph isomor-

phism is not secure, because GI can be solved efficiently in practice [McK80,MP14],

not to mention Babai’s quasipolynomial-time algorithm [Bab16]. Still, this design pat-

tern can be easily adapted to accommodate other isomorphism problems, and has been

studied in multivariate cryptography and isogeny-based cryptography.
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In multivariate cryptography, Patarin [Pat96] first proposed to use polynomial iso-

morphism (PI) to replace graph isomorphism in the GMW identification protocol. De-

pending on the degrees and the number of polynomials involved, PI is actually a fam-

ily of problems. The most studied cases include cubic forms and systems of quadratic

polynomials. For systems of quadratic polynomials, there are also subcases such as ho-

mogeneous vs inhomogeneous (as explained in Example 3.3.8 of Section 3.3.2). Some

problems, such as the isomorphism of quadratic polynomials with one secret, turn out

to be easy [FP06,BFFP11, IQ19].

In isogeny-based cryptography, Couveignes [Cou06] first proposed the use of class

group actions on elliptic curves in cryptography. He adapted the GMW identification

protocol to this action. Stolbunov [Sto12] suggested to apply the Fiat-Shamir trans-

formation to this identification protocol to get a signature scheme. However, the use

of ordinary elliptic curves have issues including the subexponential-time quantum

algorithm [CJS14] and the slow performance.

The recent revival of the GMW-FS design. Recently, there has been a revival of

the study of the GMW-FS design, which is attributed to two research directions.

The first direction is the study of elliptic curve isogenies, following Couveignes

and Stolbunov. As mentioned above, the issues here are mostly due to the computa-

tional aspects of group actions. To remedy this, the commutative group action CSIDH

based on supersingular curves over prime fields was introduced in [CLM+18]. This

led to the schemes SeaSign [FG19] and CSI-FiSh [BKV19], which greatly improve the

situation by introducing both computational and protocol optimizations; see also the

recent nice survey on this and more in [BFGP23].

The second direction may be viewed as a continuation of the polynomial iso-

morphism direction by Patarin [Pat96]. Three schemes submitted to the most re-

cent NIST call for post-quantum digital signatures [oST22] fall into this category,

namely LESS [BMPS20] based on linear code monomial equivalence, ATFE [TDJ+22]

based on alternating trilinear form equivalence, and MEDS [CNP+23b] based on ma-



CHAPTER 1. INTRODUCTION 10

trix code equivalence2. Recent progress in complexity theory [GQ21b] shows that (1)

linear code monomial equivalence reduces to matrix code equivalence in polynomial

time [GQ21a, CDAG20], and (2) alternating trilinear form equivalence, isomorphism

of quadratic polynomials with two secrets, cubic form equivalence, and matrix code

equivalence are polynomial-time equivalent [GQ21b, GQT21] (see also [RST24] for

some of these equivalences).

1.4 Overview of Contributions

In this thesis, the contributions are divided into three parts. In the first part, we design

a practical digital signature scheme ALTEQ , its security only depends on the hardness

of the alternating trilinear form equivalence (ATFE) problem. We also give new results

on the complexity of ATFE. In the second part, we provide QROM security in a general

framework based on group actions, and linkable ring signature under this framework.

In part 3 we present state-of-the-art cryptanalysis for MEDS [CNP+23b] and ALTEQ .

Results about ATFE. In Chapter 2, we concern the complexity of testing equiva-

lence of alternating trilinear forms. This problem is of interest in both mathematics

and cryptography. We show that this problem is polynomial-time equivalent to test-

ing equivalence of symmetric trilinear forms, by showing that they are both Tensor

Isomorphism-complete, therefore is equivalent to test the isomorphism of cubic forms

over most fields.

ALTEQ design and implementation. In Chapter 3, we turn our focus on construct-

ing digital signature schemes based on ATFE. We propose a post-quantum signature

schemeALTEQ based on theATFE problem. Our scheme is inspired by the GMWzero-

knowledge interaction protocol [GMW91] for graph isomorphism. We implement the

ALTEQ scheme with several optimizations, and submit it to NIST call for additional

post-quantum signature standardization as the round 1 candidate.
2Matrix code equivalence is also known as 3-tensor isomorphism in [GQ21b].
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QROM security and ring signature. In Chapter 4, we distill properties for group

actions to be secure in the quantum random oracle model (QROM) based on the

works [KLS18, LZ19, DFMS19]. We then apply these results to support the security

of the ALTEQ scheme in the QROM model. In Chapter 5, we present the linkable

ring signature construction of Beullens, Katsumata and Pintore [BKP20] with abstract

group actions. We then apply the results to a concrete setting, namely the digital sig-

nature scheme ALTEQ . We implement the ring signature scheme above for ALTEQ

and our preliminary experiments suggest that this scheme is competitive among ex-

isting post-quantum ring signatures.

Cryptanalysis on MEDS and ALTEQ. In Chapter 6, we outline the generic algo-

rithms forMCE and ATFE at a high level, following Beullens [Beu23]. But in a depar-

ture from [Beu23] which relies on local invariants on graphs, we design new global

invariants. We present new algorithms for MCE and ATFE in Chapter 7 and Chap-

ter 8 respectively, which are further development of the algorithms for polynomial

isomorphism and alternating trilinear form equivalence, in particular by Bouillaguet,

Fouque, and Véber [BFV13], and Beullens [Beu23]. Key ingredients in these algo-

rithms are new easy-to-compute distinguishing invariants under the respective group

actions.

For MCE, we associate new isomorphism invariants to corank-1 points of matrix

codes, which lead to a birthday-type algorithm. We present empirical justifications

that these isomorphism invariants are easy-to-compute and distinguishing, and pro-

vide an implementation of this algorithm. This algorithm has some implications for

the security of MEDS.

The invariant function for ATFE is similar, except it is associated with lower rank

points. Modulo certain assumptions on turning the invariant function into canonical

forms, our algorithm for ATFE improves on the runtime of the previously best known

algorithm of Beullens [Beu23].
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In the remaining sections of this chapter, we give detailed overviews of each of the

results in this thesis.

1.5 Complexity of symmetric and alternating

trilinear form equivalence

The polynomial isomorphism problem. Let F be a field, and let 𝑋 = {𝑥1, . . . , 𝑥𝑛}

be a set of variables. Let GL(𝑛, F) be the general linear group consisting of 𝑛 × 𝑛

invertible matrices over F. A natural group action of 𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL(𝑛, F) on the

polynomial ring F[𝑋 ] sends 𝑓 (𝑥1, . . . , 𝑥𝑛) to 𝑓 ◦ 𝐴 := 𝑓 (∑𝑛
𝑗=1 𝑎1, 𝑗𝑥 𝑗 , . . . ,

∑𝑛
𝑗=1 𝑎𝑛,𝑗𝑥 𝑗 ).

The polynomial isomorphism problem (PI) asks, given 𝑓 , 𝑔 ∈ F[𝑋 ], whether there exists

𝐴 ∈ GL(𝑛, F) such that 𝑓 = 𝑔 ◦ 𝐴. In the literature, this problem was also called the

polynomial equivalence problem [AS05].

An important subcase of PI is when the input polynomials are required to be ho-

mogeneous of degree 𝑑 . In this case, this problem is referred to as the homogeneous

polynomial isomorphism problem, denoted as 𝑑-HPI. Homogeneous degree-3 (resp.

degree-2) polynomials are also known as cubic (resp. quadratic) forms.

From cubic forms to symmetric and alternating trilinear forms. In the con-

text of polynomial isomorphism, cubic forms are of particular interest. In complexity

theory, it was shown that 𝑑-HPI reduces to cubic form isomorphism over fields with

𝑑th roots of unity [AS05, AS06]. In multivariate cryptography, cubic form isomor-

phism also received special attention, since using higher degree forms results in less

efficiency in the cryptographic protocols.

Just as quadratic forms are closely related with symmetric bilinear forms, cubic

forms are closely related with symmetric trilinear forms. Let F be a field of charac-

teristic not 2 or 3, and let 𝑓 =
∑

1≤𝑖≤ 𝑗≤𝑘≤𝑛 𝑎𝑖, 𝑗,𝑘𝑥𝑖𝑥 𝑗𝑥𝑘 ∈ F[𝑥1, . . . , 𝑥𝑛] be a cubic form.

For any 𝑖, 𝑗, 𝑘 ∈ [𝑛], let 1 ≤ 𝑖′ ≤ 𝑗 ′ ≤ 𝑘′ ≤ 𝑛 be the result of sorting 𝑖, 𝑗, 𝑘 in the
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increasing order, and set 𝑎𝑖, 𝑗,𝑘 = 𝑎𝑖′, 𝑗 ′,𝑘 ′ . Then we can define a symmetric3 trilinear

form 𝜙 𝑓 : F𝑛 × F𝑛 × F𝑛 → F by

𝜙 𝑓 (𝑢, 𝑣,𝑤) =
∑︁
𝑖∈[𝑛]

𝑎𝑖,𝑖,𝑖𝑢𝑖𝑣𝑖𝑤𝑖+
1
3
·

∑︁
𝑖, 𝑗,𝑘∈[𝑛]

two of 𝑖, 𝑗,𝑘 are the same

𝑎𝑖, 𝑗,𝑘𝑢𝑖𝑣 𝑗𝑤𝑘+
1
6
·

∑︁
𝑖, 𝑗,𝑘∈[𝑛]

𝑖, 𝑗,𝑘 all different

𝑎𝑖, 𝑗,𝑘𝑢𝑖𝑣 𝑗𝑤𝑘 .

It can be seen easily that for any 𝑣 = (𝑣1, . . . , 𝑣𝑛)t ∈ F𝑛 , 𝑓 (𝑣1, . . . , 𝑣𝑛) = 𝜙 𝑓 (𝑣, 𝑣, 𝑣).

In the theory of bilinear forms, symmetric and skew-symmetric bilinear forms are

two important special subclasses. For example, they are critical in the classifications

of classical groups [Wey97] and finite simple groups [Wil09b]. For trilinear forms, we

also have skew-symmetric trilinear forms. In fact, to avoid some complications over

fields of characteristics 2 or 3, we shall consider alternating trilinear forms which are

closely related to skew-symmetric ones. For trilinear forms, the exceptional groups of

type 𝐸6 can be constructed as the stabilizer of certain symmetric trilinear forms, and

those of type 𝐺2 can be constructed as the stabilizer of certain alternating trilinear

forms.

Definition 1.5.1 (Alternating trilinear form). A trilinear form 𝜙 : F𝑛 × F𝑛 × F𝑛 → F

is alternating, if whenever two arguments of 𝜙 are equal, 𝜙 evaluates to zero.

Note that this implies skew-symmetry, namely for any 𝑢1, 𝑢2, 𝑢3 ∈ F𝑛 and any

𝜎 ∈ S3, 𝜙 (𝑢1, 𝑢2, 𝑢3) = sgn(𝜎) · 𝜙 (𝑢𝜎 (1), 𝑢𝜎 (2), 𝑢𝜎 (3)). Over fields of characteristic zero

or > 3, this is equivalent to skew-symmetry.

The trilinear form equivalence problem. Given a trilinear form 𝜙 : F𝑛×F𝑛×F𝑛 →

F, 𝐴 ∈ GL(𝑛, F) naturally acts on 𝜙 by sending it to 𝜙 ◦ 𝐴 := 𝜙 (𝐴𝑡 (𝑢), 𝐴𝑡 (𝑣), 𝐴𝑡 (𝑤)).

The trilinear form equivalence problem then asks, given two trilinear forms 𝜙,𝜓 : F𝑛 ×

F𝑛 × F𝑛 → F, whether there exists 𝐴 ∈ GL(𝑛, F), such that 𝜙 = 𝜓 ◦ 𝐴. Over fields

of characteristic not 2 or 3, two cubic forms 𝑓 and 𝑔 are isomorphic if and only if 𝜙 𝑓

and 𝜙𝑔 are equivalent, so cubic form isomorphism is polynomial-time equivalent to

symmetric trilinear form equivalence over such fields. Note that for clarity, we reserve
3That is, for any permutation 𝜎 ∈ S3, 𝜙 (𝑢1, 𝑢2, 𝑢3) = 𝜙 (𝑢𝜎 (1) , 𝑢𝜎 (2) , 𝑢𝜎 (3) )
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the term “isomorphism” for polynomials (and cubic forms), and use “equivalence” for

multilinear forms.

Motivations to study alternating trilinear form equivalence. Our main inter-

est is to study the the complexity of alternating trilinear form equivalence, with the

following motivations.

The first motivation comes from cryptography. To store a symmetric trilinear form

on F𝑛𝑞 ,
(𝑛+2
3
)
field elements are required. To store an alternating trilinear form on F𝑛𝑞 ,

(𝑛
3
)

field elements are needed. The difference between
(𝑛+2
3
)
and

(𝑛
3
)
could be significant for

practical purposes. For example, when 𝑛 = 9,
(𝑛+2
3
)
=

(11
3
)
= 165, while

(𝑛
3
)
=

(9
3
)
= 84.

This means that in the authentication protocol of Patarin [Pat96], using alternating

trilinear forms instead of cubic forms for 𝑛 = 9, saves almost one-half in the public

key size, which is an important saving in practice.

The second motivation originates from comparing symmetric and alternating bi-

linear forms. It is well-known that, in the bilinear case, the structure of alternating

forms is simpler than that of symmetric ones [Lan02]. Indeed, up to equivalence, an

alternating bilinear form is completely determined by its rank over any field, while the

classification of symmetric bilinear forms depends crucially on the underlying field.

For example, recall that over R, a symmetric form is determined by its “signature”, so

just the rank is not enough.

A third motivation is implied by the representation theory of the general linear

groups; namely that alternating trilinear forms are the “last” natural case for 𝑑 = 3. If

we consider the action ofGL(𝑛,C) acting on 𝑑-tensors in C𝑛 ⊗C𝑛 ⊗ · · ·⊗C𝑛 diagonally

(that is, the same matrix acts on each tensor factor), it is a classical result [Wey97]

that the invariant subspaces of (C𝑛)⊗𝑑 under this action are completely determined

by the irreducible representations of GL(𝑛,C). When 𝑑 = 3, there are only three

such representations, which correspond precisely to: symmetric trilinear forms, Lie

algebras, and alternating trilinear forms. From the complexity point of view, it was

previously shown that the isomorphism of symmetric trilinear forms [AS05,AS06] and
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Lie algebras [GQ21b] are equivalent to algebra isomorphism. In Chapter 2, we show

that the last case, the isomorphism of alternating trilinear forms, is also equivalent to

the others.

Our Results. Given the above discussion on the comparison between symmetric

and alternating bilinear forms, one may wonder whether alternating trilinear form

equivalence was easier than symmetric trilinear form equivalence. Interestingly, we

show that this is not the case; rather, they are polynomial-time equivalent.

Theorem 1.5.2. The alternating trilinear form equivalence problem is polynomial-time

equivalent to the symmetric trilinear form equivalence problem.

Note here that the reduction from alternating to symmetric trilinear form equiva-

lence requires us to go through the tensor isomorphism problem, which causes poly-

nomial blow-ups in the dimensions of the underlying vector spaces. Therefore, though

these two problems are polynomial-time equivalent, these problems may result in

cryptosystems with different efficiencies for a given security level.

Relate Work. As mentioned in above, the degree-𝑑 homogeneous polynomial iso-

morphism problem (𝑑-HPI) was shown to be almost equivalent to the algebra isomor-

phism problem (AI) in [AS05,AS06]. Here, almost refers to that for the reduction from

𝑑-HPI to AI in [AS05,AS06], the underlying fields are required to contain a 𝑑th root of

unity. When 𝑑 = 3, this means that the characteristic of the underlying field 𝑝 satisfies

that 𝑝 = 2 mod 3 or 𝑝 = 0, which amounts to half of the primes. In [GQ21b], another

reduction from 3-HPI to AI was presented, which works for fields of characteristics

not 2 or 3. The reduction from AI to 3-HPI in [AS06] works over any field.

The tensor isomorphism complete class. In [FGS19, GQ21b], polynomial-time

equivalences are proved between isomorphism testing of many more mathematical

structures, including tensors, matrix spaces, polynomial maps, and so on. These prob-

lems arise from many areas: besides multivariate cryptography and computational

complexity, they appear in quantum information, machine learning, and computa-
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tional group theory. This motivates the authors of [GQ21b] to define the tensor iso-

morphism complete class TI, which we recall here.

Definition 1.5.3 (The 𝑑-Tensor Isomorphism problem, and the complexity class TI).

𝑑-Tensor Isomorphism over a field F is the problem: given two 𝑑-way arrays A =

(𝑎𝑖1,...,𝑖𝑑 ) and B = (𝑏𝑖1,...,𝑖𝑑 ), where 𝑖𝑘 ∈ [𝑛𝑘] for 𝑘 ∈ [𝑑], and 𝑎𝑖1,...,𝑖𝑑 , 𝑏𝑖1,...,𝑖𝑑 ∈ F, decide

whether there are 𝑃𝑘 ∈ GL(𝑛𝑘 , F) for 𝑘 ∈ [𝑑], such that for all 𝑖1, . . . , 𝑖𝑑 ,

𝑎𝑖1,...,𝑖𝑑 =
∑︁
𝑗1,..., 𝑗𝑑

𝑏 𝑗1,..., 𝑗𝑑 (𝑃1)𝑖1, 𝑗1 (𝑃2)𝑖2, 𝑗2 · · · (𝑃𝑑)𝑖𝑑 , 𝑗𝑑 . (1.1)

For any field F, TIF denotes the class of problems that are polynomial-time Turing

(Cook) reducible to 𝑑-Tensor Isomorphism over F, for some 𝑑 . A problem is TIF-

complete, if it is in TIF, and 𝑑-Tensor Isomorphism over F for any 𝑑 reduces to this

problem.

When a problem is naturally defined and is TIF-complete over any F, then we can

simply write that it is TI-complete.

The authors of [GQ21b] further utilised this connection between tensors and

groups to show search-to-decision, counting-to-decision, and nilpotency class results

for 𝑝-group isomorphism [GQ21a]. It is worth mentioning that [GQ21b] shows the re-

duction from monomial code equivalence to tensor isomorphism. Interestingly, there

is a concurrent and independent work [CDAG20] showing this reduction but using

different techniques and terminology, specifically, tensor isomorphism is referred to

matrix code equivalence in [CDAG20]. Moreover, matrix code equivalence is shown

to be equivalent to the homogeneous version of the quadratic maps linear equivalence

problem (QMLE) [RST24].

1.6 The ALTEQ signature scheme

In this thesis, we consider the alternating trilinear form equivalence (ATFE) problem.

ATFE can be formulated as a Hidden Subgroup Problem (HSP) instance over GL(𝑛, 𝑞),
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the general linear group of degree 𝑛 over F𝑞 . The research on HSP suggests that for

GL(𝑛, 𝑞) and symmetric groups, current quantum algorithm techniques cannot pro-

vide further speedup compared to classical algorithms [GSVV04, MRS08, HMR+10].

This was termed by Moore, Russell, and Vazirani as “the strongest such insights we

have about the limits of quantum algorithms” [MRV07]. As far as we know, this in-

sight had not been used to directly support the security of any practical post-quantum

cryptosystems. In this thesis, we will utilize this insight to investigate the practical

use of ATFE in post-quantum cryptography.

Our Results. We propose and study a digital signature scheme based on the ATFE

problem through the following steps.

(1) We propose a post-quantum signature scheme ALTEQ based on the ATFE prob-

lem. Our scheme is inspired by the GMW zero-knowledge interaction proto-

col [GMW91] for graph isomorphism. Our scheme is proven to be secure in the

Random Oracle Model (ROM) based on the hardness of the ATFE problem.

(2) Based on the algorithmic study of ATFE in Chapter 8, we propose criteria for

setting the parameters of these schemes to achieve a fixed security level in Sec-

tion 3.5.1.

(3) We implement the ALTEQ with several optimizations for modular arithmetic,

group actions, and seed expansion; see details in Section 3.5.2. We also provide

AVX2 acceleration.

On interactions with other research lines. This work has connections to many

works from several research lines. We now provide some remarks to clarify the situ-

ations for readers with different backgrounds.

For experts on multivariate cryptography, we wish to deliver the message that

Patarin’s signature scheme based on polynomial isomorphism [Pat96] could be prac-

tical if we are careful about the parameter choices, and replacing polynomial isomor-

phism with alternating trilinear form equivalence. Indeed, this scheme of Patarin
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was thought to be not practical, because the original parameters proposed were

quickly broken [FP06, BFFP11, BFV13]. Furthermore, some variants such as isomor-

phism of quadratic polynomials with one secret were shown to be easily solvable

[BFFP11,Bou11,BFP15, IQ19].

For experts on isogeny-based cryptography, especially those who are familiar with

SeaSign [FG19] and CSI-FiSh [BKV19], s/he would quickly recognize that our scheme

has the same structure. The key difference lies in using a different action. The class

group action as in CSIDH [CLM+18] has smaller group and set element representa-

tions, but is more difficult to compute. The group action here (general linear groups

acting on alternating trilinear forms) is easy to compute but the group and set ele-

ments are of larger sizes, resulting in larger public key and signature sizes.

1.7 On digital signatures based on group action:

QROM security and ring signatures

Quantum Random Oracle Model (QROM). The random oracle model (ROM) was

first proposed in 1993 by Bellare and Rogaway in [BR93] as a heuristic to provide

security proofs in cryptography. Briefly speaking, in the ROM model, the hash func-

tion is modeled as by a random oracle. However, ROM is insufficient when consider-

ing quantum adversaries, which leads to the proposal of the quantum ROM (QROM)

[BDF+11]. One main reason is that quantum adversaries can make queries at a su-

perposition. For example, let 𝐻 : X → Y be a hash function, a quantum adversary

will make superposition queries to evaluate this function, that is, for input
∑
𝑥 𝛽𝑥 |𝑥⟩

return
∑
𝑥 𝛽𝑥 |𝑥⟩|𝐻 (𝑥)⟩. Security proof migration from ROM to QROM is not an easy

task, due to several obstacles from some properties in the quantum setting, such as

whether the query is a superposition, quantum no cloning, and quantum measure-

ment causes collapse, etc. Indeed, there exist protocols that are secure in ROM but not

in QROM [BDF+11,YZ21].
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Linkable ring signatures. Ring signature, introduced by Rivest, Shamir and Tau-

man [RST01], is a special type of digital signature in which a signer can sign on behalf

of a group chosen by him- or herself, while retaining anonymity within the group. In

particular, ring signatures are formed without a complex setup procedure or the re-

quirement for a group manager. They simply require users to be part of an existing

public key infrastructure.

A linkable ring signature [LW05] is a variant of ring signatures in which any sig-

natures produced by the same signer can be publicly linked. Linkable ring signatures

are suitable inmany different practical applications, such as privacy-preserving digital

currency [SALY17] and e-voting [TW05].

Results for the GMW-FS design

In the following, we always let 𝐺 denote a group, 𝑆 a set, and 𝛼 : 𝐺 × 𝑆 → 𝑆 a group

action.

Security in the quantum random oracle model. The quantum random oracle

model (QROM) was proposed by Boneh et al. [BDF+11] in 2011 and has received

considerable attention since then. There are certain inherent difficulties in proving

security in the QROM model, such as the adaptive programmability and rewinding

[BDF+11]. Indeed, the QROM security of the Fiat–Shamir transformation was only

recently shown after a series of works [Unr17,KLS18,LZ19,DFMS19].

In this thesis, we make progress on the QROM security of the GMW-FS design

based on the works [Unr17, KLS18, LZ19, DFMS19]. Our results on this line can be

informally summarised as follows. Recall that 𝛼 : 𝐺 × 𝑆 → 𝑆 is a group action. In

the GMW-FS design, the protocol starts with some (chosen or randomly sampled) set

element 𝑠 ∈ 𝑆 . For 𝑠 ∈ 𝑆 , the stabilizer group Stab(𝑠) := {𝑔 ∈ 𝐺 | 𝛼 (𝑔, 𝑠) = 𝑠}.

(1) The GMW-FS scheme is secure in the QROM model, if Stab(𝑠) is trivial, i.e.

|Stab(𝑠) | = 1 and 𝛼 satisfies the 𝐶-one-way-O(𝑠) assumption (see Defini-

tion 4.1.2 and Remark 4.1.3).
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(2) The GMW-FS scheme is secure in the QROM model, if the group action un-

der ATFE satisfies the pseudorandom property as defined in [JQSY19,AFMP20]

(see Definition 4.1.2), and the non-trivial automorphism hardness property (see

Definition 4.2.6). In particular, in this setting the security proof is tight.

The GMW-FS-BKP ring signature design. Beullens, Katsumata and Pin-

tore [BKP20] proposed an elegant way to construct efficient linkable ring signatures

from group actions. Their focus was on commutative group actions, with instantia-

tions in both isogeny and lattice settings. The advantage of their schemes is the scal-

ability of signature sizes with the ring size, even compared to other logarithmic-size

post-quantum ring signatures.

While [BKP20] focussed on commutative group actions, their ring signature con-

struction is readily applicable to general group actions. In fact, for our group action

framework, the scheme becomes a bit simpler because [BKP20] needs to work with

rejection sampling due to certain stronger assumptions on the group actions. We call

this ring signature design the GMW-FS-BKP design, and describe its construction in

Section 5.2. The linkability property requires extra discussions as it calls for an inter-

esting property of pairs of group actions.

Comparisons with some previous works. QROM securities and ring signature

schemes have been shown for concrete schemes based on group actions. For example,

the QROM security of CSI-FiSh (resp. MEDS, LESS) based on the perfect unique re-

sponse was observed in [BKV19] (resp. [CNP+23b], [BMPS20]), and the tight QROM

security based on a lossy version of CSI-FiSh was shown in [EKP20]. The ring sig-

nature scheme in [BKP20] has been shown for the group actions underlying CSI-

FiSh [BKP20], LESS [BBN+22], and MEDS [CNP+23b].

Indeed, we view our results for the GMW-FS design as mostly conceptual. Our

aim is to make these results convenient for future uses. That is, we distill prop-

erties of group actions (pairs) that are key to the QROM security (Definition 4.2.6)

or for linkable ring signatures (Definition 5.3.2). We hope that these will not only
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help with existing schemes, but also facilitate future schemes based on the GMW-

FS design. Furthermore, to the best of our knowledge, the connection of the lossy

approach for QROM security [KLS18] with the pseudorandom group action assump-

tion [JQSY19,AFMP20] and the non-trivial automorphism hardness assumption (Def-

inition 4.2.6) was not stated explicitly before. Such results should benefit the LESS and

MEDS schemes, which only discussed their QROM securities based on perfect unique

response (but not the lossy scheme).

Results for the ALTEQ scheme

After working with the general GMW-FS design, we focus on the ALTEQ scheme

described in Chapter 3, which demonstrates concrete uses of the results we obtained

for abstract group actions.

The QROM security of the ALTEQ scheme. Based on the results from the first

part, there are two approaches to show its QROM security: the first is based on the

automorphism group order statistics, and the second is based on the pseudorandom

group action assumption. The sEUF-CMA security in QROM of ALTEQ scheme can

be achieved by both two approaches.

For the first approach, we provide experimental results to support that, for those

parameters proposed in Section 3.5.3, a random alternating trilinear form has the triv-

ial automorphism group. This requires us to implement an algorithm for the auto-

morphism group order computation.

For the second approach, the question of whether the group action under ATFE

is pseudorandom or not is an open problem. In Section 3.3.2, some arguments were

provided to support that it is. In particular, we do not need to modify the original

ALTEQ scheme in Section 3.2.1 to attain the security in QROM, i.e., as opposed to the

lossy CSI-FiSh scheme [EKP20]. We will discuss more about this in Section 1.7.

An implementation of the ring signature scheme forALTEQ.We implement the

ring signature protocol from [BKP20] for ALTEQ . Preliminary experimental results
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suggest that it’s more balanced than Calamari and Falafl in terms of signature size

and signing time. We refer the reader to Section 5.4 and Table 1.1 for the details. Here

we give a brief summary and comparison with some previous ring signature schemes.

Since we use the construction in [BKP20], the signature size of our schemes only

depends on log𝑅, where 𝑅 denotes the ring size. We see that our signature size can

be estimated as 0.8 log𝑅 + 19.7KB, while the signature sizes of Calamari and Falafl

in [BKP20] are estimated to be log𝑅+2.5KB and 0.5 log𝑅+28.5KB respectively. For ring

size 𝑅 = 8, our signing time is 205ms which is twice Falafl’s 90ms and much smaller

than Calamari’s 79s. Meanwhile, our ring signature size is 22.1KB, while Falafl and

Calamari have the signature size of 30KB and 5.4KB respectively. RAPTOR [LAZ19],

and DualRing-LB [YEL+21] have shorter signature sizes than ours when the ring size

is small. However, their sizes are linearly dependent on the number of ring users;

therefore, the size significantly increases when the number of participants rises. Re-

garding MRr-DSS [BESV22], while it performs well for low to medium users (<= 27),

our protocol can outperform it in this range. For more comparisons with other ring

signatures, please see Table 1.1. Finally, Fig 1.1 reports the signing time of our proto-

col; there, 𝑛, 𝑀 and 𝐾 are the parameters in the ring signature scheme for ALTEQ as

defined in Section 5.4. Note that the signing time is measured on a 2.4 GHz Quad-Core

Intel Core i5.

Figure 1.1: Signature generation time Figure 1.2: Signature size
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𝑅 Hardness Secuirty
21 23 25 26 210 212 215 221 assumption level

MatRiCT [EZS+19] 18 19 / 31 / 59 / 148 MSIS, MLWE 128 bits
SMILE [LNS21] / / 16 / 18 / 19 / MSIS, MLWE 128 bits

MatRiCT+ [ESZ22] 5.4 8.2 11 12.4 18 20.8 25 33.4 MSIS, MLWE 128 bits
RAPTOR [LAZ19] 2.5 10 / 81 / 5161 / / NTRU 100 bits
Calamari [BKP20] 3.5 5.4 / 8.2 / 14 / 23 CSIDH-512 *
Falafl [BKP20] 29 30 / 32 / 35 / 39 MSIS, MLWE 128 bits

DualRing-LB [YEL+21] / 4.6 / 6 / 106.6 / / MSIS, MLWE 128 bits
MRr-DSS [BESV22] / 27 / 36 / 422 / / MinRank 128 bits
LESS [BBN+22] / 10.8 / 13.7 / 19.7 / 28.6 Code Equiv. 128 bits

Ours 20.5 22.1 23.7 24.5 27.7 29.3 31.7 36.5 ATFE 128 bits

Table 1.1: Comparison of the signature size (KB) between our schemes and others

Discussions on QROM security. The QROM security for the GMW-FS design was

shown based on perfect unique responses and lossy schemes. There is one further

approach that could avoid analyzing automorphism groups mathematically. In [LZ19,

DFMS19], a property called quantum unique response in [DFMS19] or collapsing sigma

protocol in [LZ19] is introduced, generalizing the collapsingness which is introduced

by Unruh [Unr16] to the quantum setting. The definition of this property relies on a

certain protocol and basically asks to distinguish betweenmeasuring or notmeasuring

during the execution of the protocol. It is an interesting problem to study isomorphism

problems from the point of this property, which would lead to another security proof

under QROM.

Comparisons with results from isogeny-based cryptography. First, the group

action underlying our lossy identification scheme is the same action as the basic AL-

TEQ scheme as described in Section 3.2 , while the group action underlying the lossy

CSI-FiSh [EKP20] is the diagonal action of the class group on two elliptic curves

following [Sto12]. One reason is that for the pseudorandom group action assump-

tion [JQSY19] (cf. Section 4.1.3) to be useful, it is necessary that the underlying group

action is intransitive, but the class group action on the classes of elliptic curves are

transitive, which is why two copies are needed there. This results in a doubling of
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the public-key size in lossy CSI-FiSh compared to the original CSI-FiSh, as opposed

to our case where the public key size remains the same.

Second, we compare the GMW-FS-BKP design applied to ATFE here with that

of the class group action [BKP20]. The class group action leads to smaller signature

sizes, but it suffers the problems of efficiently computing the group action and random

sampling. The group action underlying ATFE allows for fast group action and random

sampling, though the signature sizes are larger.

1.8 Algorithms for matrix code and alternating

trilinear form equivalences

Background. Given two objects 𝐴 and 𝐵 of the same type, the equivalence problem

asks if there exists a map 𝜋 such that 𝜋 (𝐴) = 𝐵. The hardness of the equivalence

problem depends on the objects and how the map is defined. There are objects in the

equivalence problem that were recently proposed to support public-key cryptography

for quantum-resistant purposes, such as linear or matrix codes [CNP+23b, BMPS20,

BBN+22], alternating trilinear form (see Chapter 3), lattice [DvW22,DPPW22] etc.

Linear code equivalence. A classical equivalence problem is the Code Equivalence

problem, which asks whether two given linear codes are isometric, that is, whether

two linear codes are the same up to permuting, and possibly scalar multiplications on,

the coordinates. One digital signature scheme submitted to the NIST call for additional

signatures, LESS [BBB+23], is based on the assumed hardness of this problem.

Leon [Leo82] initiated the study of this problem and proposed an algorithm that

computes a list of both codes with minimumHamming weight and thenmatches them

to recover the isometry. Recently, Beullens [Beu20] improved Leon’s algorithm by us-

ing collision search. Another algorithm of significance is known as the Support Split-

ting Algorithm (SSA) by Sendrier [Sen00]. Its running time increases exponentially in

the dimension of the hull (the intersection of a code and its dual), and it works effec-



CHAPTER 1. INTRODUCTION 25

tively for random linear codes under permutations. When scalar multiplications are

also present, SSAworks when𝑞 ⩽ 4 but not𝑞 ≥ 5. If the hull is trivial and only permu-

tations are used, then this problem can be reduced to graph isomorphism [BOST19].

Matrix code equivalence. In this work, we are interested in the equivalence problem

of matrix codes, called the Matrix Code Equivalence (MCE) problem. A matrix code

over F𝑞 is a linear subspace of the space of𝑚 × 𝑛 matrices over F𝑞 . Concerning the

MCE problem, it was recently shown to be at least as hard as the Code Equivalence

problem [CDAG20,GQ21b].

Alternating trilinear form equivalence. We are also interested in another problem

namely Alternating Trilinear Form Equivalence (ATFE) problem. Here, the objects are

alternating trilinear forms, namely a function 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 that is (1) linear

in each argument, and (2) whenever two arguments are the same, 𝜙 evaluates to 0.

We now state the MCE problem and recall the ATFE problem, which would also

indicate what equivalences mean for matrix codes and alternating trilinear forms.

Definition 1.8.1 (Matrix Code Equivalence (MCE)). Given two matrix codes C and

D in M(𝑚 × 𝑛, 𝑞), the problem asks whether there exist two invertible matrices 𝐴 ∈

GL(𝑚,𝑞) and 𝐵 ∈ GL(𝑛, 𝑞) such that D = 𝐴C𝐵 := {𝐴𝐶𝐵 | 𝐶 ∈ C}.

Definition 1.8.2 (Alternating Trilinear Form Equivalence (ATFE)). Given two alter-

nating trilinear forms 𝜙,𝜓 : F𝑛𝑞 ×F𝑛𝑞 ×F𝑛𝑞 → F𝑞 , the problem asks whether there exists

an invertible matrix 𝐴 ∈ GL(𝑛, 𝑞) such that for any 𝑢, 𝑣,𝑤 ∈ F𝑛𝑞 , 𝜙 (𝐴𝑢,𝐴𝑣,𝐴𝑤) =

𝜓 (𝑢, 𝑣,𝑤).

Relations between MCE and ATFE. MCE and ATFE are shown to be polynomial-

time equivalent (see Chapter 2) and are Tensor Isomorphism (TI)-complete [GQ21b].

Based on theMCE andATFE problems, two signature schemes have recently been pro-

posed by Tang et al. [TDJ+22] and Chou et al. [CNP+23b]. Subsequently, various appli-

cations have arisen, including ring signatures [BCD+22,DG22,CNP+23b] and thresh-

old signatures [BBMP23]. These works lead to submissions to NIST’s current stan-
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dardization for post-quantum signatures: MEDS [CNP+23b] and ALTEQ [BDN+23].

Hence, it is of significance to investigate the hardness of these two problems, as it will

provide insights into the selection of secure parameter sets.

Previous work. We will briefly review some of the state-of-the-art algorithms for

MCE and ATFE. Algorithms for MCE and ATFE have been surveyed in [CNP+23b]

and [TDJ+22], respectively. Beullens recently contributed beautiful new algorithms

for ATFE in [Beu23]. Here we explain two algorithms, one forMCE and one for ATFE,

that are most relevant to us.

Leon-like algorithm forMCE. Leon’s algorithm [Leo82] is well-known for solving

code equivalence problem in the Hamming metric. The key observation is that the

equivalence preserves the hamming weight of the codewords. Consequently, identify-

ing the set of codewords with minimum hamming weight within two codes can aid in

revealing the equivalence or isometry between the codes. Recently, Beullens [Beu20]

improved upon this algorithm by constructing the set of codewords with particular

weight and the same multiset of entries as lists 4. Subsequently, a collision search is

conducted between the two lists to recover equivalence or isometry easily. It is natu-

ral to adapt Leon’s algorithm toMCE [CNP+23b]. That is, one can first build two lists

of low-rank matrices in C1 and C2, and then do a collision search to find a matched

pair of corresponding matrix codes and so recover the equivalence.

Beullens’ algorithm for ATFE. Beullens [Beu23] currently proposed a graph-

theoretic algorithm to solve the ATFE problem. An alternating trilinear form 𝜙 can

be viewed as a graph 𝐺𝜙 , where v ∈ F𝑛𝑞 is a vertex and (u, v) be an edge if and only if

𝜙u,v = 0. Also, a binlinear form 𝜙u can be viewed as a matrix 𝑀𝜙,u, then the rank of u

is the rank of𝑀𝜙,u. The key observation is that the equivalence preserves the rank of

the vertices in𝐺𝜙 . Therefore, the algorithm first builds two lists of low-rank points in

𝜙 and𝜓 respectively and then finds a collision to recover the equivalence.
4In the monomial setting, Beullens considered building a set of 2-dimension subcodes with small

support. This is because monomial transformation do not preserve anything beyond the hamming
weight of a vector.
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parameter set 𝑛 𝑞 Algebraic Leon-like Ours

MEDS-I 14 4093 148.1 170.68 102.59
MEDS-III 22 4093 218.41 246.95 152.55
MEDS-V 30 2039 298.82 297.77 186.57

Table 1.2: Algorithms for solving theMCE problem. The data for algebraic and Leon-
like algorithms are from the MEDS specification [CNP+23b].

Gröbner basis approach. The MCE and ATFE problem can be solved algebraically

by transforming them into a system of polynomial equations and then solving this

system via Gröbner basis [TDJ+22, CNP+23b]. The Gröbner basis method, exhibits

insensitivity to the parameter𝑞within the system, with its efficiency contingent solely

upon the values𝑚,𝑛 and 𝑙 (or 𝑛 for the ATFE). Also, this approach demonstrates high

efficiency when applied to problems characterized by low dimensions.

Our results. We propose two heuristic algorithms for MCE and ATFE problems,

respectively. We summarize our contributions below.

Algorithm forMCE.Wepresent a new algorithm forMCE. Our algorithm introduces

a novel invariant for matrix codes, which we call the “corank-1 associated invariant".

This innovation allows us to find a collision using the birthday paradox, and it avoids

the use of Gröbner basis computations. This improvement leads to an algorithmwith a

complexity of𝑂 (𝑞 (𝑛−2)/2 · (𝑞 ·𝑛3+𝑛4) · (log(𝑞))2) as described in Section 7.3. We provide

an implementation of this algorithm, and demonstrate its practical effectiveness for

small 𝑛 and 𝑞 (such as 𝑛 = 9 and 𝑞 = 31) in Section 7.5.

Regarding the MEDS scheme, its security is based on the hardness of the MCE

problem. Although our algorithm does not yet achieve a practical break of the param-

eter sets proposed by MEDS, it serves to underscore that these parameters have not

yet attained the target security level; see Table 1.2.

Importantly, we note that this could be fixed easily by enlarging 𝑞. This fix should

not affect the running times, and only increase the signature sizes at most5 linearly in
5It is at most because of the use of the seed tree techniques; see [CNP+23a] for more details.
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log(𝑞). Therefore the consequence of our algorithm on MEDS should be considered

as mild.

Algorithm for ATFE.We present an algorithm for the ATFE problem by introducing

a novel isomorphism invariant. For an alternating trilinear form 𝜙 and a low-rank

point 𝑣 , the equivalence preserves the kernel space 𝐾 of 𝑣 . Based on this observation,

we define the isomorphism invariant as a new alternating trilinear form 𝜙 under the

action ofGL(𝐾)×GL(𝑛, 𝑞). This isomorphism invariant leads to the birthday algorithm

to find a collision, resulting in an algorithm with complexity with the dominating

factor being 𝑂 (𝑞𝑘/2), as opposed to the algorithms in [Beu23] with the dominating

factors being𝑂 (𝑞𝑘) or𝑂 (𝑞𝑛/2). This algorithm was used to determine the parameters

of ALTEQ [BDN+23].

Our algorithms as a further development of [BFV13,Beu23]. Our algorithms for

MCE andATFE follow the previousworks on polynomial isomorphism and alternating

trilinear form equivalence. In particular, our algorithms are a further development of

the works of Bouillaguet, Fouque, and Véber [BFV13], and Beullens [Beu23].

In [BFV13], algorithms for testing isomorphism of systems of quadratic formswere

presented. Both algorithms rely on certain graphs associated with quadratic form

systems. The first algorithm in [BFV13] samples a list of low-rank points for each of

the two input polynomial systems, and finds a collision that can be used in conjunction

of the hybrid Gröbner basis method [FP06] to recover the secret transformation. The

second algorithm in [BFV13] works for 𝑞 = 2; it is based on birthday paradox with

an isomorphism invariant obtained by examining the radius-𝑘 neighborhood of the

points in the graph.

In [Beu23], algorithms for ATFE were presented. Two of the algorithms that are

most relevant to us are as follows. (We refer the reader to [Beu23] for a beautiful

algorithm for 𝑛 = 9.) The first algorithm follows the sampling and collision approach,

with the main innovation being that for the sampling step, where Beullens uses a

random walk on the graph associated with an alternating trilinear form. The second
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algorithm is based on the birthday paradox with isomorphism invariants. As 𝑞 is

large for the use of ATFE in [TDJ+22], Beullens used radius-1 or -2 neighborhoods

and observed that such neighborhood information is distinguishing.

Our algorithms for MCE and ATFE are based on the birthday paradox with iso-

morphism invariants (see Section 6.2). As seen from the above, previous works use

isomorphism invariants that are local (small radius neighborhood) on graphs asso-

ciated with polynomial systems or trilinear forms. Our main technical contribution

is to discover new isomorphism invariants that can be viewed as transforming the

information from graphs to global constraints.

For example, the isomorphism invariants for MCE are obtained by associating

some graphs with matrix codes. We also perform a walk on the graph (starting from

a corank-1 point), but we then use the path information to transform the matrix code

as a whole to obtain an isomorphism invariant. Similarly, for ATFE, the isomorphism

invariants are obtained by first taking the kernel of a low-rank point. We then apply

this kernel to the alternating trilinear form to obtain another (smaller) trilinear form,

and use this trilinear form as an isomorphism invariant.

1.9 Publications and works contained in this thesis

The results in this thesis are based on the following works 6:

(1) Average-case algorithms for testing isomorphism of polynomials, algebras, and

multilinear forms [GQT21], with Joshua A Grochow and Youming Qiao (STACS

2021).

(2) Practical post-quantum signature schemes from isomorphism problems of trilin-

ear forms [TDJ+22], with Dung Hoang Duong, Antoine Joux, Thomas Plantard,

Youming Qiao and Willy Susilo (Eurocrypt 2022).
6Note for the author order: I am the first author of (2), and the authors of the remaining works are

all sorted in alphabetical order.
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(3) ALTEQ: Digital Signatures from Alternating Trilinear Form Equivalence

[BDN+23], with Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan,

Thomas Plantard, Youming Qiao and Arnaud Sipasseuth (Round 1 candidate of

NIST Additional Call for Post-quantum Digital Signature Schemes).

(4) On digital signatures based on isomorphism problems: QROM security and ring

signatures [BCD+22], with Markus Bläser, Zhili Chen, Dung Hoang Duong, An-

toine Joux, Ngoc Tuong Nguyen, Thomas Plantard, Youming Qiao and Willy

Susilo (PQCrypto 2024).

(5) Algorithms for matrix code and trilinear form equivalences via new isomorphism

invariants, with Anand Kumar Narayanan and Youming Qiao (Eurocrypt 2024).

Other publications not included in this thesis:

(1) On the complexity of isomorphism problems for tensors, groups, and polynomials

III: actions by classical groups. [CGQ+24], with Zhili Chen, Joshua A. Grochow,

Youming Qiao and Chuanqi Zhang (ITCS 2024).
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Part I

Digital signatures from alternating

trilinear form equivalence
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Chapter 2

Complexity of alternating trilinear

form equivalence

2.1 Technical overview

We recall the Theorem 1.5.2 there, that is, the alternating trilinear form equivalence

problem is polynomial-time equivalent to the symmetric trilinear form equivalence

problem.

Techniques for proving Theorem 1.5.2. By [FGS19], the trilinear form equivalence

problem is in Tensor Isomorphism (TI), and so are the special cases symmetric and

alternating trilinear form equivalence. The proof of Theorem 1.5.2 goes by showing

that both symmetric and alternating trilinear form equivalence are TI-hard.

Technically, the basic proof strategy is to adapt a gadget construction, which orig-

inates from [FGS19] and then is further used in [GQ21b]. To use that gadget in the

trilinear form setting does require several non-trivial ideas. First, we identify the right

TI-complete problem to start with, namely the alternating (resp. symmetric) matrix

space isometry problem. Second, we need to arrange a 3-way array A, representing a

linear basis of an alternating (resp. symmetric) matrix spaces, into one representing

an alternating trilinear form. This requires 3 copies of A, assembled in an appropri-
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ate manner. Third, we need to add the gadget in three directions (instead of just two

as in previous results). All these features were not present in [FGS19, GQ21b]. The

correctness proof also requires certain tricky twists compared with those in [FGS19]

and [GQ21b].

2.2 Chapter preliminaries

Notations. Let F be a field. Vectors in F𝑛 are column vectors. Let 𝑒𝑖 denote the 𝑖th

standard basis vector of F𝑛 . Let M(ℓ × 𝑛, F) be the linear space of ℓ × 𝑛 matrices over

F, and set M(𝑛, F) := M(𝑛 × 𝑛, F). Let 𝐼𝑛 denote the identity matrix of size 𝑛. For 𝐴 ∈

M(𝑛, F), 𝐴 is symmetric if 𝐴t = 𝐴, and alternating if for every 𝑣 ∈ F𝑛 , 𝑣 t𝐴𝑣 = 0. When

the characteristic of F is not 2,𝐴 is alternating if and only if𝐴 is skew-symmetric. Let

S(𝑛, F) be the linear space of 𝑛 × 𝑛 symmetric matrices over F, and let Λ(𝑛, F) be the

linear space of alternating matrices over F. When F = F𝑞 , we may write M(𝑛, F𝑞) as

M(𝑛, 𝑞). We use ⟨·⟩ to denote the linear span.

3-way arrays. A 3-way array over a field F is an array with three indices whose

elements are from F. We use M(𝑛1 × 𝑛2 × 𝑛3, F) to denote the linear space of 3-way

arrays of side lengths 𝑛1 × 𝑛2 × 𝑛3 over F.

Let A ∈ M(ℓ ×𝑛 ×𝑚, F). For 𝑘 ∈ [𝑚], the 𝑘th frontal slice of A is (𝑎𝑖, 𝑗,𝑘)𝑖∈[ℓ], 𝑗∈[𝑛] ∈

M(ℓ × 𝑛, F). For 𝑗 ∈ [𝑛], the 𝑗th vertical slice of A is (𝑎𝑖, 𝑗,𝑘)𝑖∈[ℓ],𝑘∈[𝑚] ∈ M(ℓ ×𝑚, F).

For 𝑖 ∈ [ℓ], the 𝑖th horizontal slice of A is (𝑎𝑖, 𝑗,𝑘) 𝑗∈[𝑛],𝑘∈[𝑚] ∈ M(𝑛 ×𝑚, F). We shall

often think of A as a matrix tuple in M(ℓ × 𝑛, F)𝑚 consisting of its frontal slices.

A natural action of (𝑃,𝑄, 𝑅) ∈ GL(ℓ, F) × GL(𝑛, F) × GL(𝑚, F) sends a 3-way

array A ∈ M(ℓ × 𝑛 × 𝑚, F) to 𝑃 tA𝑅𝑄 , defined as follows. First represent A as an

𝑚-tuple of ℓ × 𝑛 matrices A = (𝐴1, . . . , 𝐴𝑚) ∈ M(ℓ × 𝑛, F)𝑚 . Then 𝑃 and 𝑄 send

A to 𝑃 tA𝑄 = (𝑃 t𝐴1𝑄, . . . , 𝑃
t𝐴𝑚𝑄), and 𝑅 = (𝑟𝑖, 𝑗 ) sends A to (𝐴′1, . . . , 𝐴′𝑚) where

𝐴′𝑖 =
∑
𝑗∈[𝑚] 𝑟𝑖, 𝑗𝐴 𝑗 . Clearly, the actions of 𝑃 , 𝑄 , and 𝑅 commute. The resulting 𝑚-

tuple of ℓ × 𝑛 matrices obtained by applying 𝑃 , 𝑄 , and 𝑅 to A is then 𝑃 tA𝑅𝑄 . Note
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that up to possibly relabelling indices, the entries of 𝑃 tA𝑅𝑄 are explicitly defined as

in Equation 1.1.

Matrix tuples. Let A = (𝐴1, . . . , 𝐴𝑚),B = (𝐵1, . . . , 𝐵𝑚) ∈ M(𝑛, F)𝑚 . Given 𝑇 ∈

GL(𝑛, F), let 𝑇 tA𝑇 = (𝑇 t𝐴1𝑇, . . . ,𝑇
t𝐴𝑚𝑇 ). We say that A and B are isometric, if there

exists 𝑇 ∈ GL(𝑛, F) such that 𝑇 tA𝑇 = B. Let Iso(A,B) = {𝑇 ∈ GL(𝑛, F) : A = 𝑇 tB𝑇 },

and set Aut(A) := Iso(A,A). Clearly, Aut(A) is a subgroup of GL(𝑛, 𝑞), and Iso(A,B)

is either empty or a coset of Aut(A).

2.3 The ATFE problem is TI-hard.

As mentioned in Section 2.1, the proof of Theorem 1.5.2 follows by showing that sym-

metric and alternating trilinear form equivalence are TI-hard (recall Definition 1.5.3).

In the following we focus on the alternating case. The symmetric case can be tackled

in a straightforward way, by starting from the TI-complete problem, symmetric ma-

trix tuple pseudo-isometry, from [GQ21b, Theorem B], and modifying the alternating

gadget to a symmetric one.

Proposition 2.3.1. The alternating trilinear form equivalence problem is TI-hard.

Proof. The starting TI-complete problem. We use the following TI-complete prob-

lem from [GQ21b]. Let A = (𝐴1, . . . , 𝐴𝑚),B = (𝐵1, . . . , 𝐵𝑚) ∈ Λ(𝑛, F)𝑚 be two tuples

of alternating matrices. We say that A and B are pseudo-isometric, if there exist 𝐶 ∈

GL(𝑛, F) and𝐷 = (𝑑𝑖, 𝑗 ) ∈ GL(𝑚, F), such that for any 𝑖 ∈ [𝑚],𝐶 t(∑ 𝑗∈[𝑚] 𝑑𝑖, 𝑗𝐴 𝑗 )𝐶 = 𝐵𝑖 .

By [GQ21b, Theorem B], the alternating matrix tuple pseudo-isometry problem is TI-

complete. Without loss of generality, we assume that dim(⟨𝐴𝑖⟩) = dim(⟨𝐵𝑖⟩), as if not,

then they cannot be pseudo-isometric, and this dimension condition is easily checked.

An alternating trilinear form 𝜙 : F𝑛 × F𝑛 × F𝑛 → F naturally corresponds to a

3-way array A = (𝑎𝑖, 𝑗,𝑘) ∈ M(𝑛 × 𝑛 × 𝑛, F), where 𝑎𝑖, 𝑗,𝑘 = 𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘). Then A is also

alternating, i.e. 𝑎𝑖, 𝑗,𝑘 = 0 if 𝑖 = 𝑗 or 𝑖 = 𝑘 or 𝑗 = 𝑘 , and 𝑎𝑖, 𝑗,𝑘 = sgn(𝜎)𝑎𝜎 (𝑖),𝜎 ( 𝑗),𝜎 (𝑘)
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for any 𝜎 ∈ S3. So in the following, we present a construction of an alternating 3-

way array from an alternating matrix tuple, in such a way that two alternating matrix

tuples are pseudo-isometric if and only if the corresponding alternating trilinear forms

are equivalent.

Constructing alternating 3-way arrays from alternating matrix tuples. Given

A = (𝐴1, . . . , 𝐴𝑚) ∈ Λ(𝑛, F)𝑚 , we first build the𝑛×𝑛×𝑚 tensorAwhich has𝐴1, . . . , 𝐴𝑚

as its frontal slices. Then we will use essentially the following construction twice in

succession. We will give two viewpoints on this construction: one algebraic, in terms

of trilinear forms, and another “matricial”, in terms of 3-way arrays. Different readers

may prefer one viewpoint over the other; our opinion is that the algebraic viewmakes

it easier to verify the alternating property while the matricial view makes it easier to

verify the reduction. The construction is, in some sense, the 3-tensor analogue of

taking an ordinary matrix 𝐴 and building the alternating matrix

0 𝐴

−𝐴t 0

 .
Notation: Just as the transpose acts on matrices by (𝐴t)𝑖, 𝑗 = 𝐴 𝑗,𝑖 , for a 3-tensor

A, we have six possible “transposes” corresponding to the six permutations of the

three coordinates. Given 𝜎 ∈ S3, we write A𝜎 for the 3-tensor defined by (A𝜎 )𝑖1,𝑖2,𝑖3 =

A𝑖𝜎 (1) ,𝑖𝜎 (2) ,𝑖𝜎 (3) .

Given a 3-way array A ∈ M(𝑛 ×𝑚 × 𝑑, F), we will make use of A(23) and A(13) :

• A(23) is 𝑛 × 𝑑 ×𝑚 and has A(23)
𝑖, 𝑗,𝑘

= A𝑖,𝑘, 𝑗 . Equivalently, the 𝑘-th frontal slice of

A(23) is the 𝑘-th vertical slice of A.

• A(13) is 𝑑 ×𝑚 × 𝑛 and has A(13)
𝑖, 𝑗,𝑘

= A𝑘,𝑗,𝑖 . Equivalently, the 𝑘-th frontal slice of

A(13) is the transpose of the 𝑘-th horizontal slice of A.

Example 2.3.2 (Running example). Let us examine a simple example as follows. Let

A = (𝐴) ∈ Λ(2, F)1, where 𝐴 =


0 𝑎

−𝑎 0

 . Then A = (𝐴); A(23) = (𝐴′1, 𝐴′2) ∈ M(2 ×
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1 × 2, F), where 𝐴′1 =

0

−𝑎

 , and 𝐴′2 =

𝑎

0

 ; A(13) = (𝐴′′1 , 𝐴′′2 ) ∈ M(1 × 2 × 2, F), where

𝐴′′1 =

[
0 𝑎

]
, and 𝐴′′2 =

[
−𝑎 0

]
.

From the aboveA, A(23) , andA(13) , we construct Ã ∈ M((𝑛+𝑚)×(𝑛+𝑚)×(𝑛+𝑚), F)

as follows. We divide Ã into the following eight blocks. That is, set Ã = (Ã1, Ã2) (two

block frontal slices) where Ã1 =


0𝑛×𝑛×𝑛 A(23)

A(13) 0

 , and Ã2 =


−A 0

0 0𝑚×𝑚×𝑚

 , where
0𝑛×𝑛×𝑛 indicates the 𝑛 ×𝑛 ×𝑛 zero tensor, and analogously for 0𝑚×𝑚×𝑚 (the remaining

sizes can be determined from these and the fact that A is 𝑛 × 𝑛 ×𝑚).

The corresponding construction on trilinear forms is as follows. The original

trilinear form is 𝐴(𝑥,𝑦, 𝑧) =
∑
𝑖, 𝑗∈[𝑛],𝑘∈[𝑚] 𝑎𝑖, 𝑗,𝑘𝑥𝑖𝑦 𝑗𝑧𝑘 , where 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 =

(𝑦1, . . . , 𝑦𝑛), and 𝑧 = (𝑧1, . . . , 𝑧𝑚), and we have 𝐴(𝑥,𝑦, 𝑧) = −𝐴(𝑦, 𝑥, 𝑧). The new trilin-

ear form will be �̃�(𝑥′, 𝑦′, 𝑧′), where

𝑥′ = (𝑥 (1), 𝑥 (2)) = (𝑥 (1)1 , . . . , 𝑥
(1)
𝑛 , 𝑥

(2)
1 , . . . , 𝑥

(2)
𝑚 )

𝑦′ = (𝑦 (1), 𝑦 (2)) = (𝑦 (1)1 , . . . , 𝑦
(1)
𝑛 , 𝑦

(2)
1 , . . . , 𝑦

(2)
𝑚 )

𝑧′ = (𝑧 (1), 𝑧 (2)) = (𝑧 (1)1 , . . . , 𝑧
(1)
𝑛 , 𝑧

(2)
1 , . . . , 𝑧

(2)
𝑚 ).

This new form will satisfy �̃�(𝑥′, 𝑦′, 𝑧′) = ∑
𝑖, 𝑗,𝑘∈[𝑛+𝑚] 𝑎𝑖, 𝑗,𝑘𝑥

′
𝑖𝑦
′
𝑗𝑧
′
𝑘
. Let us unravel what

this looks like from the above description of Ã. We have

�̃�(𝑥′, 𝑦′, 𝑧′) =
∑︁

𝑖∈[𝑛], 𝑗∈[𝑚],𝑘∈[𝑛]
(Ã1)𝑖,𝑛+ 𝑗,𝑘𝑥′𝑖𝑦′𝑛+ 𝑗𝑧′𝑘 +

∑︁
𝑖∈[𝑚], 𝑗,𝑘∈[𝑛]

(Ã1)𝑛+𝑖, 𝑗,𝑘𝑥′𝑛+𝑖𝑦′𝑗𝑧′𝑘

+
∑︁

𝑖, 𝑗∈[𝑛],𝑘∈[𝑚]
(Ã2)𝑖, 𝑗,𝑘𝑥′𝑖𝑦′𝑗𝑧′𝑛+𝑘

=
∑︁

𝑖∈[𝑛], 𝑗∈[𝑚],𝑘∈[𝑛]
A(23)
𝑖, 𝑗,𝑘

𝑥′𝑖𝑦
′
𝑛+ 𝑗𝑧

′
𝑘
+

∑︁
𝑖∈[𝑚], 𝑗,𝑘∈[𝑛]

A(13)
𝑖, 𝑗,𝑘

𝑥′𝑛+𝑖𝑦
′
𝑗𝑧
′
𝑘
−

∑︁
𝑖, 𝑗∈[𝑛],𝑘∈[𝑚]

A𝑖, 𝑗,𝑘𝑥′𝑖𝑦
′
𝑗𝑧
′
𝑛+𝑘

=
∑︁

𝑖∈[𝑛], 𝑗∈[𝑚],𝑘∈[𝑛]
A𝑖,𝑘, 𝑗𝑥′𝑖𝑦

′
𝑛+ 𝑗𝑧

′
𝑘
+

∑︁
𝑖∈[𝑚], 𝑗,𝑘∈[𝑛]

A𝑘,𝑗,𝑖𝑥′𝑛+𝑖𝑦
′
𝑗𝑧
′
𝑘
−

∑︁
𝑖, 𝑗∈[𝑛],𝑘∈[𝑚]

A𝑖, 𝑗,𝑘𝑥′𝑖𝑦
′
𝑗𝑧
′
𝑛+𝑘

= 𝐴(𝑥 (1), 𝑧 (1), 𝑦 (2)) +𝐴(𝑧 (1), 𝑦 (1), 𝑥 (2)) −𝐴(𝑥 (1), 𝑦 (1), 𝑧 (2))

From this formula, and the fact that 𝐴(𝑥,𝑦, 𝑧) = −𝐴(𝑦, 𝑥, 𝑧), we can now more easily

verify that �̃� is alternating in all three arguments. Since the permutations (13) and
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(23) generate 𝑆3, it suffices to verify it for these two. We have

�̃�(13) (𝑥′, 𝑦′, 𝑧′) = �̃�(𝑧′, 𝑦′, 𝑥′)

= 𝐴(𝑧 (1), 𝑥 (1), 𝑦 (2)) +𝐴(𝑥 (1), 𝑦 (1), 𝑧 (2)) −𝐴(𝑧 (1), 𝑦 (1), 𝑥 (2))

= −𝐴(𝑥 (1), 𝑧 (1), 𝑦 (2)) +𝐴(𝑥 (1), 𝑦 (1), 𝑧 (2)) −𝐴(𝑧 (1), 𝑦 (1), 𝑥 (2))

= −�̃�(𝑥′, 𝑦′, 𝑧′).

Similarly, we have:

�̃�(23) (𝑥′, 𝑦′, 𝑧′) = �̃�(𝑥′, 𝑧′, 𝑦′)

= 𝐴(𝑥 (1), 𝑦 (1), 𝑧 (2)) +𝐴(𝑦 (1), 𝑧 (1), 𝑥 (2)) −𝐴(𝑥 (1), 𝑧 (1), 𝑦 (2))

= 𝐴(𝑥 (1), 𝑦 (1), 𝑧 (2)) −𝐴(𝑧 (1), 𝑦 (1), 𝑥 (2)) −𝐴(𝑥 (1), 𝑧 (1), 𝑦 (2))

= −�̃�(𝑥′, 𝑦′, 𝑧′),

as claimed.

Example 2.3.3 (Running example, continued from Example 2.3.2). We can write out

Ã in this case explicitly. The first block frontal slice Ã1 is 3 × 3 × 2, consisting of the

two frontal slices ©«
0 0 0

0 0 −𝑎

0 𝑎 0

ª®®®®¬
and

©«
0 0 𝑎

0 0 0

−𝑎 0 0

ª®®®®¬
while the second block frontal slice Ã2 is the 3 × 3 × 1 matrix

©«
0 −𝑎 0

𝑎 0 0

0 0 0

ª®®®®¬
It can be verified easily that Ã = (𝑎𝑖, 𝑗,𝑘) is alternating: the nonzero entries are 𝑎2,3,1 =

−𝑎, 𝑎3,2,1 = 𝑎, 𝑎1,3,2 = 𝑎, 𝑎3,1,2 = −𝑎, 𝑎1,2,3 = −𝑎, and 𝑎2,1,3 = 𝑎, which are consistent

with the signs of the permutations.
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The gadget construction. We now describe the gadget construction. The gadget

can be described as a block 3-way array as follows. Construct a 3-way array G of size

(𝑛 + 1)2 × (𝑛 + 1)2 × (𝑛 +𝑚) over F as follows. For 𝑖 ∈ [𝑛], the 𝑖th frontal slice of G is

0 0 . . . 0 𝐼𝑛+1 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . 0 0 0 . . . 0

−𝐼𝑛+1 0 . . . 0 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...

0 0 . . . 0 0 0 . . . 0



,

where 0 here denotes the (𝑛 + 1) × (𝑛 + 1) all-zero matrix, 𝐼𝑛+1 is at the (1, 𝑖 + 1)th

block position, and −𝐼𝑛+1 is at the (𝑖 + 1, 1)th block position. For 𝑛 + 1 ≤ 𝑖 ≤ 𝑛 +𝑚, the

𝑖th frontal slice of G is the all-zero matrix. We also need the following 3-way arrays

derived from G. We will use G(13) and G(23) . Note that G(13) is of size (𝑛 +𝑚) × (𝑛 +

1)2 × (𝑛 + 1)2, and its 𝑖th horizontal slice is the 𝑖th frontal slice of G. Similarly, G(23) is

of size (𝑛 + 1)2× (𝑛 +𝑚) × (𝑛 + 1)2, and its 𝑗th vertical slice is the 𝑗th frontal slice of G.

Finally, construct a 3-tensor Â as follows. It consists of the two block frontal slices
Ã 0

0 −G

 and


0 G(13)

G(23) 0

 .
To see how this all fits together, let G1 be the (𝑛+1)2×(𝑛+1)2×𝑛 tensor consisting

of the first 𝑛 frontal slices of G (these are the only nonzero frontal slices of G). Then

we may view Â as having three block frontal slices, namely:
0𝑛×𝑛×𝑛 A(23) 0

A(13) 0𝑚×𝑚×𝑛 0

0 0 −G1


,


−A 0 0

0 0𝑚×𝑚×𝑚 0

0 0 0(𝑛+1)2×(𝑛+1)2×𝑚


,
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and 
0𝑛×𝑛×(𝑛+1)2 0 G(13)1

0 0𝑚×𝑚×(𝑛+1)2 0

G(23)1 0 0


.

We claim that Â is alternating. To verify this is straightforward but somewhat te-

dious. So we use the following example from which a complete proof can be extracted

easily.

Example 2.3.4 (Running example, continued fromExample 2.3.3). LetA be the 2×2×1

tensor with alternating frontal slice𝐴 =


0 𝑎

−𝑎 0

 . In particular, 𝑛 = 2,𝑚 = 1, so G will

have size (𝑛+1)2×(𝑛+1)2×(𝑛+𝑚) = 9×9×3, and Awill have size 𝑛+𝑚+ (𝑛+1)2 = 12

in all three directions. We will write out the first 𝑛 +𝑚 = 3 frontal slices explicitly, as

those are the only ones involving A, and leave the last 9 (involving only transposes of

G1) unwritten.

©«

0 0 0

0 0 −𝑎

0 𝑎 0

03 𝐼3 0

−𝐼3 03 0

0 0 03

ª®®®®®®®®®®®®®¬
,

©«

0 0 𝑎

0 0 0

−𝑎 0 0

03 0 𝐼3

0 03 0

−𝐼3 0 03

ª®®®®®®®®®®®®®¬
,

and

©«

0 𝑎 0

−𝑎 0 0

0 0 0

03 0 0

0 03 0

0 0 03

ª®®®®®®®®®®®®®¬
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and the remaining 9 frontal slices look like

©«

0 0 0

0 0 0 G(13)1

0 0 0 01×9×9

03×3×9 0 0

G(23)1 09×1×9 0 03×3×9 0

0 0 03×3×9

ª®®®®®®®®®®®®®¬
Since the 𝑎’s only appear in positions with the same indices as they did in Ã (see

Example 2.3.3), that portion is still alternating. For the G parts, note that the identity

matrices in the first three frontal slices, when having their indices transposed, end up

either in the G(13)1 portion or the G(23)1 portion, with appropriate signs.

Proof of correctness. Let A,B ∈ Λ(𝑛, F)𝑚 . Let Â = (

Ã 0

0 −G

 ,


0 G(13)

G(23) 0

), B̂ =

(

B̃ 0

0 −G

 ,


0 G(13)

G(23) 0

) ∈ M((𝑛+𝑚+(𝑛+1)2)×(𝑛+𝑚+(𝑛+1)2)×(𝑛+𝑚+(𝑛+1)2), F)
be constructed from A and B using the procedure above, respectively.

We claim that A and B are pseudo-isometric if and only if Â and B̂ are equivalent

as trilinear forms.

The only if direction. Suppose 𝑃 tA𝑃 = B𝑄 for some 𝑃 ∈ GL(𝑛, F) and𝑄 ∈ GL(𝑚, F).

We will construct a trilinear form equivalence from Â to B̂ of the form 𝑆 =
𝑃 0 0

0 𝑄−1 0

0 0 𝑅


∈ GL(𝑛 +𝑚 + (𝑛 + 1)2, F), where 𝑅 ∈ GL((𝑛 + 1)2, F) is to be deter-

mined later on.

Recall that Â = (

Ã 0

0 −G

 ,


0 G(13)

G(23) 0

), B̂ = (

B̃ 0

0 −G

 ,


0 G(13)

G(23) 0

). It can
be verified that the action of 𝑆 sends Ã to B̃. It remains to show that, by choosing an

appropriate 𝑅, the action of 𝑆 also sends G to G.
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Let G1 be the first 𝑛 frontal slices of G, and G2 the last𝑚 frontal slices from G. Then

the action of 𝑆 sends G1 to 𝑅tG𝑃1𝑅, and G2 to 𝑅tG
𝑄−1

2 𝑅. Since G2 is all-zero, the action

of 𝑆 on G2 results in an all-zero tensor, so we have 𝑅tG𝑄
−1

2 𝑅 = G2.

We then turn to G1. For 𝑖 ∈ [𝑛 + 1], consider the 𝑖th horizontal slice of G1, which

is of the form 𝐻𝑖 =

[
0 𝐵1,𝑖 𝐵2,𝑖 . . . 𝐵𝑛,𝑖

]
, where 0 denotes the 𝑛 × (𝑛 + 1) all-zero

matrix, and 𝐵 𝑗,𝑖 is the 𝑛× (𝑛+1) elementary matrix with the ( 𝑗, 𝑖)th entry being 1, and

other entries being 0. Note that those non-zero entries of 𝐻𝑖 are in the (𝑘 (𝑛 + 1) + 𝑖)th

columns, for 𝑘 ∈ [𝑛]. Let 𝑃 t =
[
𝑝1 . . . 𝑝𝑛

]
, where 𝑝𝑖 is the 𝑖th column of 𝑃 t. Then

𝑃 acts on 𝐻𝑖 from the left, which yields 𝑃 t𝐻𝑖 =
[
0 𝑃1,𝑖 . . . 𝑃𝑛,𝑖

]
, where 𝑃 𝑗,𝑖 denotes

the 𝑛 × (𝑛 + 1) matrix with the 𝑖th column being 𝑝 𝑗 , and the other columns being 0.

Let us first set 𝑅 =


𝐼𝑛+1 0

0 𝑅

 , where 𝑅 is to be determined later on. Then the left

action of𝑅 onG1 preserves𝐻𝑖 through 𝐼𝑛+1. The right action of𝑅 onG1 translates to the

right action of 𝑅 on𝐻𝑖 . To send 𝑃 t𝐻𝑖 back to𝐻𝑖 , 𝑅 needs to act on those (𝑘 (𝑛+1) +𝑖)th

columns of 𝐻𝑖 , 𝑖 ∈ [𝑛 + 1], as 𝑃−1. Note that for 𝐻𝑖 and 𝐻 𝑗 , 𝑖 ≠ 𝑗 , those columns

with non-zero entries are disjoint. This gives 𝑅 the freedom to handle different 𝐻𝑖 ’s

separately. In other words, 𝑅 can be set as 𝑃−1 ⊗ 𝐼𝑛+1. This ensures that for every 𝐻𝑖 ,

𝑃 t𝐻𝑖𝑅 = 𝐻𝑖 . To summarize, we have 𝑅tG𝑃1𝑅 = G1, and this concludes the proof for the

only if direction.

The if direction. Suppose Â and B̂ are isomorphic as trilinear forms via 𝑃 ∈ GL(𝑛 +

𝑚 + (𝑛 + 1)2, F). Set 𝑃 =


𝑃1,1 𝑃1,2 𝑃1,3

𝑃2,1 𝑃2,2 𝑃2,3

𝑃3,1 𝑃3,2 𝑃3,3


, where 𝑃1,1 is of size 𝑛 × 𝑛, 𝑃2,2 is of size

𝑚 ×𝑚, and 𝑃3,3 is of size (𝑛 + 1)2 × (𝑛 + 1)2. Consider the ranks of the frontal slices of

Â.

• The ranks of the first 𝑛 frontal slices are in [2(𝑛 + 1), 4𝑛]. This is because a

frontal slice in this range consists of two copies of vertical slices of A (whose

ranks are between [0, 𝑛 − 1] due to the alternating condition), and one frontal

slice of G (whose ranks are of 2(𝑛 + 1)).
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• The ranks of the 𝑛+1 to 𝑛+𝑚 frontal slices are in [0, 𝑛]. This is because a frontal

slice in this range consists of only just one frontal slice of A.

• The ranks of the last𝑛(𝑛+1) vertical slices are in [0, 2𝑛]. This is because a frontal

slice in this range consists of two copies of horizontal slices of G (whose ranks

are either 𝑛 or 1; see e.g. the form of 𝐻𝑖 in the proof of the only if direction).

By the discussions above, we claim that 𝑃 must be of the form


𝑃1,1 0 0

𝑃2,1 𝑃2,2 𝑃2,3

𝑃3,1 𝑃3,2 𝑃3,3


. To

see this, for the sake of contradiction, suppose there are non-zero entries in 𝑃1,2 or

𝑃1,3. Then a non-trivial linear combination of the first 𝑛 frontal slices is added to one

of the last (𝑚 + (𝑛 + 1)2) frontal slices. This implies that for this slice, the lower-right

(𝑛+1)2×(𝑛+1)2 submatrix is of the form



0 𝑎1𝐼𝑛+1 𝑎2𝐼𝑛+1 . . . 𝑎𝑛𝐼𝑛+1

−𝑎1𝐼𝑛+1 0 0 . . . 0

−𝑎2𝐼𝑛+1 0 0 . . . 0
...

...
...

. . .
...

−𝑎𝑛𝐼𝑛+1 0 0 . . . 0


, where

one of 𝑎𝑖 ∈ F is non-zero. Then this slice is of rank ≥ 2(𝑛 + 1), which is unchanged by

left (resp. right) multiplying 𝑃 t (resp. 𝑃 ), so it cannot be equal to the corresponding

slice of B̂ which is of rank ≤ 2𝑛. We then arrived at the desired contradiction.

Now consider the action of such 𝑃 on the 𝑛 + 1 to 𝑛 + 𝑚 frontal slices. Note

that these slices are of the form


𝐴𝑖 0 0

0 0 0

0 0 0


. (Recall that the last 𝑚 slices of G

are all-zero matrices.) Then we have


𝑃 t1,1 𝑃 t2,1 𝑃 t3,1

0 𝑃 t2,2 𝑃 t3,2

0 𝑃 t2,3 𝑃 t3,3



𝐴𝑖 0 0

0 0 0

0 0 0



𝑃1,1 0 0

𝑃2,1 𝑃2,2 𝑃2,3

𝑃3,1 𝑃3,2 𝑃3,3


=


𝑃 t1,1𝐴𝑖𝑃1,1 0 0

0 0 0

0 0 0


. Since 𝑃 tÂ𝑃𝑃 = B̂, we have 𝑃 tÂ𝑃 = B̂𝑃

−1 . Observe that for the

upper-left 𝑛 × 𝑛 submatrices of the frontal slices of B̂, 𝑃−1 simply performs a linear
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combination of 𝐵𝑖 ’s. It follows that every 𝑃 t1,1𝐴𝑖𝑃1,1 is in the linear span of 𝐵𝑖 . Since

we assumed dim(⟨𝐴𝑖⟩) = dim(⟨𝐵𝑖⟩), we have that A and B are pseudo-isometric. This

concludes the proof of Proposition 2.3.1. □
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Chapter 3

The ALTEQ signature scheme

3.1 Chapter preliminaries

3.1.1 Defining ATFE and variants

Our proposed signature protocol ALTEQ relies on the assumed hardness of the al-

ternating trilinear form equivalence (ATFE) problem over finite fields. To define this

problem we need some preparations.

Alternating trilinear forms with a natural group action. Let F𝑞 be the finite

field of order 𝑞. A trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 is alternating, if 𝜙 evaluates

to 0 whenever two arguments are the same. Let ATF(𝑛, 𝑞) be the set of all alternating

trilinear forms defined over F𝑛𝑞 . The general linear group GL(𝑛, 𝑞) of degree 𝑛 over

F𝑞 naturally acts on ATF(𝑛, 𝑞) as follows: 𝐴 ∈ GL(𝑛, 𝑞) sends 𝜙 to 𝜙 ◦ 𝐴, defined as

(𝜙 ◦𝐴) (𝑢, 𝑣,𝑤) := 𝜙 (𝐴t(𝑢), 𝐴t(𝑣), 𝐴t(𝑤)). This action defines an equivalence relation

∼ on ATF(𝑛, 𝑞), namely 𝜙 ∼ 𝜓 if and only if there exists 𝐴 ∈ GL(𝑛, 𝑞), such that

𝜙 = 𝜓 ◦𝐴.

Algorithmic representations. It is well-known that an alternating trilinear form

𝜙 : F𝑛𝑞×F𝑛𝑞×F𝑛𝑞 → F𝑞 can be represented as
∑

1≤𝑖< 𝑗<𝑘≤𝑛 𝑐𝑖, 𝑗,𝑘𝑒
∗
𝑖 ∧𝑒∗𝑗 ∧𝑒∗𝑘 , where 𝑐𝑖, 𝑗,𝑘 ∈ F𝑞 ,

𝑒𝑖 is the 𝑖th standard basis vector, 𝑒∗𝑖 is the linear form sending𝑢 = (𝑢1, . . . , 𝑢𝑛)t ∈ F𝑛𝑞 to
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𝑢𝑖 , and∧ denotes the wedge (or exterior) product. Indeed, we can view 𝑒∗𝑖 ∧𝑒∗𝑗 ∧𝑒∗𝑘 as an

alternating trilinear form, sending (𝑢, 𝑣,𝑤), where 𝑢 = (𝑢1, . . . , 𝑢𝑛)t, 𝑣 = (𝑣1, . . . , 𝑣𝑛)t,

𝑤 = (𝑤1, . . . ,𝑤𝑛)t are in F𝑛𝑞 , to det


𝑢𝑖 𝑣𝑖 𝑤𝑖

𝑢 𝑗 𝑣 𝑗 𝑤 𝑗

𝑢𝑘 𝑣𝑘 𝑤𝑘


. Therefore, in algorithms we can

store the alternating trilinear form 𝜙 as (𝑐𝑖, 𝑗,𝑘 : 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛), 𝑐𝑖, 𝑗,𝑘 ∈ F𝑞 , which

requires
(𝑛
3
)
· ⌈log𝑞⌉ many bits.

The action of GL(𝑛, 𝑞) on ATF(𝑛, 𝑞) can be represented concretely as follows. Let

𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL(𝑛, 𝑞). It sends 𝑒∗𝑖 ∧ 𝑒∗𝑗 ∧ 𝑒∗𝑘 to
∑

1≤𝑟<𝑠<𝑡≤𝑛 𝑑𝑟,𝑠,𝑡𝑒
∗
𝑟 ∧ 𝑒∗𝑠 ∧ 𝑒∗𝑡 , where

𝑑𝑟,𝑠,𝑡 = det


𝑎𝑖,𝑟 𝑎𝑖,𝑠 𝑎𝑖,𝑡

𝑎 𝑗,𝑟 𝑎 𝑗,𝑠 𝑎 𝑗,𝑡

𝑎𝑘,𝑟 𝑎𝑘,𝑠 𝑎𝑘,𝑡


. For general 𝜙 ∈ ATF(𝑛, 𝑞), the action of𝐴 can be obtained

by linearly extending this action to each term 𝑒∗𝑖 ∧ 𝑒∗𝑗 ∧ 𝑒∗𝑘 .

Formal statements of the algorithmic problems. We can now formally state the

alternating trilinear form equivalence problem.

Definition 3.1.1. The decision version of the alternating trilinear form equivalence

problem (ATFE) is the following.

Input Two alternating trilinear forms 𝜙,𝜓 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 .

Output “Yes” if there exists 𝐴 ∈ GL(𝑛, 𝑞) such that 𝜙 = 𝜓 ◦𝐴. “No” otherwise.

Definition 3.1.2. The promised search version of the alternating trilinear form equiv-

alence problem (psATFE) is the following.

Input Two alternating trilinear forms 𝜙,𝜓 : F𝑛𝑞 ×F𝑛𝑞 ×F𝑛𝑞 → F𝑞 , with the promise that

𝜙 ∼ 𝜓 .

Output Some 𝐴 ∈ GL(𝑛, 𝑞) such that 𝜙 = 𝜓 ◦𝐴.

Definition 3.1.3. The promised search version of the alternating trilinear form equiv-

alence problem with𝑚-instances (𝑚-psATFE) is the following.
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Input 𝑚 alternating trilinear forms 𝜙1, . . . , 𝜙𝑚 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 , with the promise

that 𝜙𝑖 ∼ 𝜙 𝑗 for any 𝑖, 𝑗 ∈ [𝑚].

Output Some 𝐴 ∈ GL(𝑛, 𝑞) and 𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗 , such that 𝜙𝑖 = 𝜙 𝑗 ◦𝐴.

Remark 3.1.4. It is not known whether the search version of ATFE reduces to the

decision version in polynomial time. In [GQ21a], it was shown that for some related

problems, such as the quadratic form map isomorphism (cf. Definition 3.3.3), search

to decision can be done in time 𝑞𝑂 (𝑛) (improving from 𝑞𝑛
2 · poly(𝑛, log𝑞)). So it is

expected that for ATFE, a search to decision reduction can be achieved in time 𝑞𝑂 (𝑛) .

However, a polynomial-time search to decision reduction seems difficult.

On the one hand,𝑚-psATFE generalizes the original version. On the other hand, it

is easy to get a non-tight reduction from𝑚-psATFE to the original version of psATFE.

So we believe that𝑚-psATFE is of the same difficulty as psATFE.

3.1.2 Digital signatures

Definition 3.1.5. A signature scheme consists of a triplet of polynomial-time (possi-

ble probabilistic) algorithms (KeyGen, Sign,Verify) such that for every pair of out-

puts (PK, SK) ← KeyGen(1𝜆) and any 𝑛-bit message 𝜇, we have

Verify(PK, 𝜇, Sign(SK, 𝜇)) = 1

holds true, except with negligible probability (in 𝜆).

A signature is said to be secure if it is impossible for an attacker to forge a valid

signature. Explicitly, the standard definition of security for digital signature schemes

are given in the game between the challenger C and an adversaryA as the following.

• The challenger C generates (PK, SK) ← KeyGen(1𝜆) and gives PK to A.

• A is allowed to make the following queries at maximum 𝑄 times. For 𝑖 =

1, · · · , 𝑄 :

– A chooses a message 𝜇𝑖 and sends to C
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– C computes 𝜎𝑖 ← Sign(SK, 𝜇𝑖) and sends 𝜎𝑖 to A.

• A outputs a forgery (𝜇∗, 𝜎∗)

• A wins if Verify(PK, 𝜇∗, 𝜎∗) = 1 and 𝜇∗ ∉ {𝜇1, · · · , 𝜇𝑄 }.

We say that a signature scheme is Existentially UnForgeable under adaptive Chosen

Message Attacks (EUF-CMA) if no probabilistic polynomial-time adversary A wins

the game above with non-negligible probability 𝜆−O(1) .

3.2 Signature schemes based on ATFE

Our scheme is inspired by the zero-knowledge protocol for graph isomorphisms by

Goldreich, Micali and Wigderson (GMW) [GMW91]. At a high level, we will incor-

porate the ATFE to obtain a generalized GMW-like scheme and then apply the Fiat-

Shamir transformation [FS86] to obtain a signature scheme. This basic scheme is de-

scribed in Section 3.2.1. We emphasize that one may think it is straightforward to just

replace the graph isomorphisms in GMW to ATFE, which is exactly the route we go,

but the technical details are involved; see Section 3.2.1 for the detail.

3.2.1 The basic scheme

The original GMW protocol [GMW91] has two graphs as input. For the purpose of

using it in identification and signature, it is useful to generalize this to more than two

graphs, as already observed by several researchers including Patarin [Pat96] and De

Feo and Galbraith [FG19].

We present this slightly generalized scheme based on ATFE in Algorithms 1, 2,

and 3. It involves five parameters: 𝑛 ∈ N and a prime power 𝑞 to specify ATF(𝑛, 𝑞),

the round number 𝑟 , the security parameter 𝜆, and the number of alternating trilinear

forms in the public key 𝐶 .

Note that by randomly sampling 𝜙 ∈ ATF(𝑛, 𝑞), we sample independently ran-

domly
(𝑛
3
)
field elements from F𝑞 . By randomly sampling𝐴 ∈ GL(𝑛, 𝑞), we can sample
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a random matrix from 𝑀 (𝑛, 𝑞) until we get an invertible one, or use the method de-

scribed in Section 3.5.2.

Algorithm 1: Key generation.
Input: The variable number 𝑛 ∈ N, a prime power 𝑞, the alternating trilinear

form number 𝐶 .
Output: Public key: 𝐶 alternating trilinear forms 𝜙𝑖 ∈ ATF(𝑛, 𝑞) such that

𝜙𝑖 ∼ 𝜙 𝑗 for any 𝑖, 𝑗 ∈ [𝐶].
Private key: 𝐶 matrices 𝐴1, . . . , 𝐴𝐶 , such that 𝜙𝑖 ◦𝐴𝑖 = 𝜙𝐶 .

1 Randomly sample an alternating trilinear form 𝜙𝐶 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 .
2 Randomly sample 𝐶 − 1 invertible matrices, 𝐴1, . . . , 𝐴𝐶−1 ∈ GL(𝑛, 𝑞).
3 For every 𝑖 ∈ [𝐶 − 1], 𝜙𝑖 ← 𝜙𝐶 ◦𝐴𝑖 .
4 For every 𝑖 ∈ [𝐶 − 1], 𝐴𝑖 ← 𝐴−1𝑖 .
5 𝐴𝐶 ← 𝐼𝑛 .
6 return Public key: 𝜙1, 𝜙2, . . . , 𝜙𝐶 . Private Key: 𝐴1, . . . , 𝐴𝐶 .

Algorithm 2: Signing procedure.
Input: The public key 𝜙1, . . . , 𝜙𝐶 ∈ ATF(𝑛, 𝑞). The private key

𝐴1, . . . , 𝐴𝐶 ∈ GL(𝑛, 𝑞). 𝑟 ∈ N, 𝐶 . The messageM. A hash function
𝐻 : {0, 1}∗ → {0, 1}2𝜆 . An expander Expand : {0, 1}2𝜆 → {𝑎𝑖}𝑖∈[𝑟 ] ,
where 𝑎𝑖 ∈ [𝐶].

Output: The signature 𝑆 on M.
1 for 𝑖 ∈ [𝑟 ] do
2 Randomly sample 𝐵𝑖 ∈ GL(𝑛, 𝑞).
3 𝜓𝑖 ← 𝜙𝐶 ◦ 𝐵𝑖 .
4 end
5 Compute cha = 𝐻 (M|𝜓1 | . . . |𝜓𝑟 ) ∈ {0, 1}{2𝜆}.
6 (𝑏1, . . . , 𝑏𝑟 ) ← Expand(cha)
7 for 𝑖 ∈ [𝑟 ] do
8 𝐷𝑖 ← 𝐴𝑏𝑖𝐵𝑖 . ; // Note that 𝜙𝑏𝑖 ◦ 𝐷𝑖 = 𝜓𝑖.
9 end

10 return 𝑆 = (𝑏1, . . . , 𝑏𝑟 , 𝐷1, . . . , 𝐷𝑟 ).

It is straightforward to verify the correctness of the scheme. We now analyze

its security. It is well-known that the Goldreich-Micali-Wigderson (GMW) protocol

satisfies completeness, special soundness, and special honest-verifier zero knowledge

properties. These allow us to prove the ROM security of the digital signature scheme

as follows. We also provide the QROM security in Section 4.4.
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Algorithm 3: Verification procedure.
Input: The public key 𝜙1, . . . , 𝜙𝐶 ∈ ATF(𝑛, 𝑞). The signature

𝑆 = (𝑏1, . . . , 𝑏𝑟 , 𝐷1, . . . , 𝐷𝑟 ), 𝑏𝑖 ∈ [𝐶], 𝐷𝑖 ∈ GL(𝑛, 𝑞). The messageM.
The A hash function 𝐻 : {0, 1}∗ → {0, 1}2𝜆 . An expander
Expand : {0, 1}2𝜆 → {𝑎𝑖}𝑖∈[𝑟 ] , where 𝑎𝑖 ∈ [𝐶].

Output: “Yes” if 𝑆 is a valid signature for M. “No” otherwise.
1 for 𝑖 ∈ [𝑟 ] do
2 Compute𝜓𝑖 = 𝜙𝑏𝑖 ◦ 𝐷𝑖 .
3 end
4 Compute cha′ = 𝐻 (M|𝜓1 | . . . |𝜓𝑟 ) ∈ {0, 1}2𝜆 .
5 (𝑏′1, . . . , 𝑏′𝑟 ) ← Expand(cha′)
6 if for every 𝑖 ∈ [𝑟 ], 𝑏𝑖 = 𝑏′𝑖 then
7 return Yes
8 else
9 return No

Theorem 3.2.1. The basic signature scheme described above is EUF-CMA secure in the

Random Oracle Model (ROM) under the hardness of the𝑚-psATFE problem.

Proof. We proceed the proof by contradiction. Assume that there exists an adversary

A that having maximum 𝑄 queries to the hash function 𝐻 , which is modeled as ran-

dom oracle, can break the EUF-CMA security, as described in Section 3.1.2, of the sig-

nature scheme. Wewill build an algorithmB that solves the ATFEwith non-negligible

probability using A. The proof follows the standard one in Fiat-Shamir-type signa-

ture, we present it here for completeness.

At the beginning, B is given an instance of the 𝐶-psATFE problem, that are 𝐶

alternative trilinear forms 𝜙1, . . . , 𝜙𝐶 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 such that 𝜙𝑖 ∼ 𝜙 𝑗 for any

𝑖, 𝑗 ∈ [𝐶]. The goal of B is to find 𝑖 ≠ 𝑗 and some 𝐴 ∈ GL(𝑛, 𝑞) such that 𝜙𝑖 = 𝜙 𝑗 ◦𝐴.

Let cha1, . . . , cha𝑄 be random elements in {0, 1}2𝜆 , which B will use to answer

hash queries from the adversaryA, and let 𝑅 be an entry from the set of possible ran-

dom tapes of adversary A. The algorithm B will take (𝑅, 𝜙1, . . . , 𝜙𝐶, cha1, . . . , cha𝑄 )

as input. When A makes a signing query on the message 𝑀 , then B executes the

following steps:

• Take the next hash query value input to B, and let this be cha 𝑗 for 𝑗 ∈ [𝑄].
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• Expand cha 𝑗 to the integers 𝑏 𝑗1, . . . , 𝑏 𝑗,𝑟 ∈ [𝐶].

• For 𝑖 ∈ [𝑟 ], choose randomly 𝐷𝑖 ← GL(𝑛, 𝑞) and set𝜓𝑖 := 𝜙𝑏 𝑗𝑖 ◦ 𝐷𝑖 .

• Define cha 𝑗 := 𝐻 (𝑀 |𝜓1 | . . . |𝜓𝑟 ). If this value has already been defined then we

pick another value of 𝐷𝑖 ’s.

• Return a signature (𝑏 𝑗1, . . . , 𝑏 𝑗𝑟 , 𝐷1, . . . , 𝐷𝑟 ) to the adversary A.

One can easily see that the distribution of the signature generated by B is statistically

close to that generated by the signing algorithm in Algorithm 2. In this case, the

adversaryA can verify the signature as in the verification procedure in Algorithm 3.

Assume now that A outputs a valid forgery (𝑏∗1, . . . , 𝑏∗𝑗 , 𝐷∗1, . . . , 𝐷∗𝑟 ) for a mes-

sage 𝑀∗. We let cha∗ be the corresponding hash query of the adversary, i.e., cha∗

is defined by 𝐻 (𝑀∗ |𝜓 ∗1 | · · · |𝜓 ∗𝑟 ) by the algorithm B. We let (𝜓 ∗1 , · · · ,𝜓 ∗𝑟 ) be the as-

sociated commitments computed from (𝑏∗1, . . . , 𝑏∗𝑗 , 𝐷∗1, . . . , 𝐷∗𝑟 ), i.e., 𝜓 ∗𝑖 = 𝜙𝑏∗
𝑖
◦ 𝐷∗𝑖 for

𝑖 ∈ [𝑟 ]. Now the challenger B runs A a second time using the same randomness

𝑅 as before. By the General Forking Lemma [BN06], A will output another forgery

(𝑏′1, . . . , 𝑏′𝑗 , 𝐷′1, . . . , 𝐷′𝑟 ) with associated commitments (𝜓 ′1, · · · ,𝜓 ′𝑟 ) for the same mes-

sage𝑀∗ such that𝜓 ∗𝑖 = 𝜓 ′𝑖 for 𝑖 = 1, · · · , 𝑟 and cha∗ ≠ cha′, where cha′ is programmed

to be 𝐻 (𝑀∗ |𝜓 ′1 | · · · |𝜓 ′𝑟 ). Since cha
∗ ≠ cha′, then there exist 𝑖 ∈ [𝑟 ] such that 𝑏∗𝑖 ≠ 𝑏′𝑖 .

Now B outputs 𝐴 := 𝐷∗𝑖 (𝐷′𝑖 )−1 as an answer for the given 𝐶-psATFE instance.

In fact, we have 𝜙𝑏∗
𝑖
◦𝐴 = 𝜙𝑏∗

𝑖
◦𝐷∗𝑖 (𝐷′𝑖 )−1 = 𝜓 ∗𝑖 ◦ (𝐷′𝑖 )−1 = 𝜓 ′𝑖 ◦ (𝐷′𝑖 )−1 = 𝜙𝑏′𝑖 . Hence

B already finds an invertible matrix 𝐴 ∈ GL(𝑛, 𝑞) and two indices 𝑏∗𝑖 ≠ 𝑏′𝑖 such that

𝜙𝑏∗
𝑖
◦𝐴 = 𝜙𝑏′

𝑖
. This completes the proof. □

3.3 Complexity and cryptography aspects of ATFE

3.3.1 ATFE in complexity theory

In Section 1.5, we mentioned the recent introduction of the Tensor Isomorphism-

complete class (TI) in [GQ21b], which captures many isomorphism problems arising

from multivariate crytography, machine learning, quantum information, and com-
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puter algebra. In Chapter 2, ATFE was proved to be TI-complete. Among those TI-

complete problems, the following algorithmic problems are of particular relevance to

our discussion.

Definition 3.3.1. The 3-tensor isomorphism problem (3TI) is the following.

Input Two 3-way arrays 𝐷 = (𝑑𝑖, 𝑗,𝑘), 𝐸 = (𝑒𝑖, 𝑗,𝑘), where 𝑑𝑖, 𝑗,𝑘 , 𝑒𝑖, 𝑗,𝑘 ∈ F𝑞 and 𝑖, 𝑗, 𝑘 ∈

[𝑛].

Output “Yes” if there exist 𝐴 = (𝑎𝑖,𝑟 ), 𝐵 = (𝑏 𝑗,𝑠),𝐶 = (𝑐𝑘,𝑡 ) ∈ GL(𝑛, 𝑞), such that

𝐷 = (𝐴, 𝐵,𝐶)★𝐸, where (𝐴, 𝐵,𝐶)★𝐸 := 𝐹 = (𝑓𝑖, 𝑗,𝑘), 𝑓𝑖, 𝑗,𝑘 =
∑
𝑟,𝑠,𝑡∈[𝑛] 𝑎𝑖,𝑟𝑏 𝑗,𝑠𝑐𝑘,𝑡𝑒𝑟,𝑠,𝑡 .

“No” otherwise.

3TI appears in quantum information, characterizing equivalence classes of tri-

partite states under stochastic local operation and classical communication (SLOCC)

[GQ21b].

Definition 3.3.2. The cubic form isomorphism problem (CFI) is the following.

Input Two cubic forms (homogeneous degree-3 polynomials) 𝑓 , 𝑔 ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛].

Output “Yes” if there exists 𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL(𝑛, 𝑞), such that 𝑓 = 𝐴 ★ 𝑔, where the

action of 𝐴 on 𝑔 is by sending 𝑥𝑖 to
∑
𝑗∈[𝑛] 𝑎𝑖, 𝑗𝑥 𝑗 . “No” otherwise.

CFI has been studied in multivariate cryptography [BFFP11] and theoretical com-

puter science [AS05,AS06].

Definition 3.3.3. The quadratic form map isomorphism problem (QFMI) is the fol-

lowing.

Input Two tuples of quadratic forms f = (𝑓1, . . . , 𝑓𝑚), g = (𝑔1, . . . , 𝑔𝑚), where 𝑓𝑖, 𝑔 𝑗 ∈

F𝑞 [𝑥1, . . . , 𝑥𝑛] are quadratic forms (homogeneous degree-2 polynomials).

Output “Yes” if there exist 𝐴 = (𝑎𝑖, 𝑗 ) ∈ GL(𝑛, 𝑞), 𝐵 = (𝑏𝑖, 𝑗 ) ∈ GL(𝑚,𝑞), such that

∀𝑖 ∈ [𝑚], 𝑓 ′𝑖 = 𝐴 ★ 𝑔𝑖 , where 𝑓 ′𝑖 =
∑
𝑗∈[𝑚] 𝑏𝑖, 𝑗 𝑓 𝑗 , and the action of 𝐴 on 𝑔𝑖 is by

sending 𝑥𝑖 to
∑
𝑗∈[𝑛] 𝑎𝑖, 𝑗𝑥 𝑗 . “No” otherwise.
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QFMI has been studied in multivariate cryptography. It was first raised by Patarin

[Pat96] and has been studied in several works including [FP06,BFV13,BFP15]. Several

variants of this problem have also been studied, such as replacing quadratic formswith

quadratic polynomials (from homogeneous to possibly inhomogeneous), or restricting

𝐵 to be the identity matrix (also known as the one secret version of the problem).

Definition 3.3.4. The class-2 and exponent-𝑝 𝑝-group isomorphism problem (𝑝GpI)

is the following.

Input Two sets of matrices 𝐴 = {𝐴1, . . . , 𝐴𝑚}, 𝐵 = {𝐵1, . . . , 𝐵𝑚} ∈ GL(𝑛, 𝑝), with the

promise that𝐴 (resp. 𝐵) generates a 𝑝-group𝐺 (resp. 𝐻 ) of class 2 and exponent

𝑝 .

Output “Yes” if 𝐺 and 𝐻 are isomorphic (as abstract groups). “No” otherwise.

𝑝GpI has long been known to be one bottleneck case of the group isomorphism

problem, which asks whether two finite groups are isomorphic. It is studied in both

computational group theory [O’B94,Wil09a, BMW17] and theoretical computer sci-

ence [LQ17,BLQW20,GQ21b].

The following theorem is important for our understanding of ATFE.

Theorem 3.3.5 ( [GQ21b, GQT21]). The following problems are equivalent under

polynomial-time reductions: ATFE, 3TI, CFI, QFMI, and 𝑝GpI.

Theorem 3.3.5 allows us to tap into research areas such as multivariate cryptog-

raphy, computational group theory, and theoretical computer science, to understand

the complexity of ATFE. In particular, we have seen that CFI and QFMI are known to

be difficult in multivariate cryptography, and 𝑝GpI is known to be difficult in compu-

tational group theory. This gives us confidence in the worst-case hardness of ATFE.

In [GQT21], an average-case algorithm for ATFE in time 𝑞𝑂 (𝑛) was presented, which

works for all but 1
𝑞Ω (𝑛)

fraction of 𝜙 ∈ ATF(𝑛, 𝑞), 1 where the constant hidden in the
1In [GQT21] an algorithm in such timewas presented forCFI, but its algorithmic idea can be readily

applied to ATFE.
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big O is at least 4. Note that we don’t include the average-case algorithm for ATFE in

this thesis, because it is not useful in practice.

3.3.2 ATFE and cryptography based on group actions

Let 𝐺 be a group and 𝑆 a set. A group action is a function 𝛼 : 𝐺 × 𝑆 → 𝑆 satisfying

certain axioms. For the purpose of this thesis we don’t need to spell out these axioms;

instead, it is enough to realize that the functions underlying isomorphism problems

are all group actions.

Cryptography based on group actions, as a framework, has been studied by

Brassard and Yung [BY90], Couveignes [Cou06], and more recently in two papers

[JQSY19, AFMP20]. We review this framework and explain the roles of the discrete

logarithm problem and ATFE in this framework.

In [BY90], Brassard and Yung defined the group action 𝛼 to be one-way, if there

exists 𝑠 ∈ 𝑆 , such that 𝛼𝑠 : 𝐺 → 𝑆 , defined as 𝛼𝑠 (𝑔) = 𝛼 (𝑔, 𝑠), is a one-way function.

In [JQSY19], this is slightly relaxed to 𝛼𝑠 is a one-way function for a random 𝑠 ∈ 𝑆 . The

following example, known at least since [Cou06], shows how to interpret the discrete

logarithm problem as a problem about group action.

Example 3.3.6. To illustrate the notion of one-way group actions, let us consider an

important group action in cryptography. Let 𝐶𝑝 be the cyclic group of order 𝑝 , and

let Aut(𝐶𝑝) be the automorphism group of 𝐶𝑝 . Note that 𝐺 = Aut(𝐶𝑝) � Z∗𝑝 , the

multiplicative group of units in Z𝑝 . Then given 𝑎 ∈ Z∗𝑝 and 𝑔 ∈ 𝐶𝑝 , 𝑎 sends 𝑔 to 𝑔𝑎 . Let

𝑆 = 𝐶𝑝 \{id}where id is the identity element, and let 𝛼 : Aut(𝐶𝑝)×𝑆 → 𝑆 be the group

action just defined. Then 𝛼 is one-way, if and only if 𝛼𝑔 is one-way for some 𝑔 ∈ 𝑆 , if

and only if the discrete logarithm problem (with a fixed generator) is one-way.

Clearly, the action underlying ATFE being one-way in the relaxed sense is equiv-

alent to saying that the problem of solving psATFE is hard on average.

In [Cou06], Couveignes studied what he called hard homogeneous spaces, which

is in fact also a group action with certain properties. In particular, he defined the
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parallelization problem for a group action 𝛼 as follows. Given 𝑠1, 𝑡1, 𝑠2 ∈ 𝑆 with the

promise that there exists 𝑔 ∈ 𝐺 such that 𝛼 (𝑔, 𝑠1) = 𝑡1, compute 𝛼 (𝑔, 𝑠2). For the group

action defining discrete logarithm as in Example 3.3.6, its parallelization problem is

hard on average is equivalent to the Computational Diffie-Hellman assumption.

Recently, the notion of pseudorandom group actions was independently intro-

duced in [JQSY19] and [AFMP20].2 Briefly speaking, a group action 𝛼 : 𝐺 × 𝑆 → 𝑆

is pseudorandom, if efficient algorithms cannot distinguish the following two dis-

tributions. The first distribution is the random distribution, namely (𝑠, 𝑡) ∈ 𝑆 × 𝑆

where 𝑠, 𝑡 ∈𝑅 𝑆 . The second distribution is the pseudorandom distribution, namely

(𝑠, 𝑡) ∈ 𝑆 × 𝑆 where 𝑠 ∈𝑅 𝑆 , and 𝑡 = 𝛼 (𝑔, 𝑠) where 𝑔 ∈𝑅 𝐺 . In [JQSY19], it was

observed that this assumption generalizes the Decisional Diffie-Hellman assumption.

We reproduce this example here.

Example 3.3.7. Let 𝐶𝑝 , 𝐺 = Aut(𝐶𝑝), and 𝑆 = 𝐶𝑝 \ {id} be from Example 3.3.6. Note

that the action of 𝐺 on 𝐶𝑝 is transitive, i.e. for any 𝑔, ℎ ∈ 𝑆 , there exists 𝑎 ∈ 𝐺

such that 𝑔𝑎 = ℎ. In particular, for a fixed 𝑔 ∈ 𝑆 , when 𝑎 is uniformly sampled

from 𝐺 , 𝑔𝑎 is uniformly sampled from 𝑆 . Let 𝐺 act on 𝑆 × 𝑆 diagonally, i.e. 𝑎 ∈ 𝐺

sends (𝑔, ℎ) to (𝑔𝑎, ℎ𝑎). Then the random distribution (of this diagonal action) is

((𝑔, ℎ), (𝑔′, ℎ′)) = ((𝑔,𝑔𝑎), (𝑔𝑏, 𝑔𝑐)) where 𝑔 ∈𝑅 𝑆 , 𝑎, 𝑏, 𝑐 ∈𝑅 𝐺 . The pseudorandom

distribution is ((𝑔, ℎ), (𝑔𝑏, ℎ𝑏)) = ((𝑔,𝑔𝑎), (𝑔𝑏, 𝑔𝑎𝑏)) where 𝑔 ∈𝑅 𝑆 and 𝑎, 𝑏 ∈𝑅 𝐺 . Dis-

tinguishing these two distributions is then exactly the Decisional Diffie-Hellman prob-

lem.

We give an example suggesting that the pseudorandom group action is a useful cri-

terion for cryptographic uses in the context of multivariate cryptography as follows.

Example 3.3.8. Consider the quadratic form map isomorphism problem (QFMI)

from Definition 3.3.3, where GL(𝑛, 𝑞) × GL(𝑚,𝑞) acts on tuples of quadratic forms
2In [AFMP20] this is called weak pseudorandom group actions.
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f = (𝑓1, . . . , 𝑓𝑚) ∈ F𝑞 [𝑥1, . . . , 𝑥𝑛]. Consider the following two variations. First, we re-

lax 𝑓𝑖 to be quadratic polynomials, that is, 𝑓𝑖 ’s are allowed to have linear and constant

terms. Call this Variant 1 of QFMI. Second, we relax 𝑓𝑖 ’s to be quadratic polynomi-

als with constant terms being 0, that is, 𝑓𝑖 ’s are allowed to have linear terms but no

constant terms. Call this Variant 2 of QFMI.

The experience in multivariate cryptography (cf. Bouillaguet’s thesis [Bou11])

suggests that Variant 1 is easier than Variant 2, which is in turn easier than QFMI

itself. From the pseudorandom group action viewpoint, Variant 1 is clearly not pseu-

dorandom, as the constant terms are not changed under the group action. Variant 2 is

also not pseudorandom: in the setting𝑚 = 𝑛 (the most studied situation), the rank of

the 𝑛 linear forms from 𝑓𝑖 ’s is an invariant under the group action, which can be com-

puted easily to distinguish the random and pseudorandom distributions. (Note that

over F𝑞 , the rank of 𝑛 linear forms in 𝑛 variables is not full with probability ≥ 1/𝑞Θ(1) .)

It is clear that the pseudorandom assumption is stronger than the one-way

assumption and the assumption that solving parallelization is hard. In [JQSY19,

AFMP20], pseudorandom group actions are shown to have applications ranging from

pseudorandom functions, to signature, and to oblivious transfer. The candidate pseu-

dorandom group actions are the 3-tensor action as in Definition 3.3.1 (proposed

in [JQSY19]) and the class group action underlying CSIDH [CLM+18] (proposed in

[AFMP20]). Note that certain technical modifications are required to address some

computational issues in the class group action underlying CSIDH. Furthermore, cer-

tain applications of pseudorandom group actions in [AFMP20] require the group to

be commutative.

Conjecture 3.3.9. The group action underlying ATFE is pseudorandom.

To prove ATFE to be pseudorandom (even based on certain assumptions) seems

difficult. Instead, as customary for this type of question, we provide certain arguments

to support Conjecture 3.3.9.
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• Several researchers have noted that the mathematics of alternating trilinear

forms is “much harder” [Atk73], or “much more complicated (and interest-

ing)” [DS14], especially when compared to alternating bilinear forms. For ex-

ample, in general one cannot expect to classify alternating trilinear forms when

𝑛 is large enough.

• A basic approach to refute an action from being pseudorandom is to identify

easy-to-compute isomorphism invariants, which are quantities unchanged by

the group action. Such isomorphism invariants are also expected to be non-

trivial for random instances. For example, rank is an isomorphism invariant for

the action of GL(𝑛, 𝑞) × GL(𝑛, 𝑞) on𝑀 (𝑛, 𝑞) by left and right multiplications. It

is non-trivial because at least 1/𝑞Θ(1) fraction of𝑀 (𝑛, 𝑞) are of non-full rank.

As far as we know, for 3TI, CFI, QFMI, and 𝑝GpI, ATFE, despite having been

studied in several areas for decades, no such isomorphism invariants are found.

For example, tensor rank is certainly an isomorphism invariant for 3TI, but it is

NP-hard [Hås90], and most tensors are of full-rank, which makes it not useful

for breaking the pseudorandom assumption.

• There are some non-trivial attack strategies in [JQSY19] supporting 3TI to be

pseudorandom, including utilizing supergroups and invariant theory. These at-

tack strategies work for certain settings (such as unitary groups and special

linear groups), but do not work with general linear groups. Such arguments can

be used to support Conjecture 3.3.9 as well.

3.4 Algorithms of the ATFE problem

We’ve shown how ATFE supports the EUF-CMA security of ALTEQ in ROM in Sec-

tion 3.2.1. In Section 3.3.1, we gave pointers to the literature where the relations of

many problems and the ATFE were discussed. So it remains to present the current

status of the basic ATFE problem. We analyze known algorithms in Chapter 8, includ-
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ing Gröbner basis attacks, graph-theoretic algorithms by Beullens [Beu23], as well as

low-rank birthday attack. These attacks are accounted for in our parameter selection.

It should be noted that, because of the connections with many isomorphism prob-

lems, the algorithmic techniques for ATFE have been drawn from years of research

experience of these computational areas for such problems.

3.5 Modern parameters and implementations.

The ALTEQ scheme implementation incorporates several measures to enhance the

system performance. Some main points are as follows.

Unbalanced challenges. We incorporate the unbalanced challenge technique [FS86].

Briefly speaking, this means that in the GMW identification protocol, we set a fixed

number of challenges to be some specific value. This is because when the challenge is

of this value, the response is a random matrix expanded from a short seed, so sending

this seed through reduces the communication (and thus the signature size). The cost

is that more rounds are required, therefore increasing the sign and verification times.

Specifically, we will sample 𝑟 challenges (𝑏1, . . . , 𝑏𝑟 ) ∈ [𝐶]𝑟 with the property that

|{𝑖 ∈ [𝑟 ] | 𝑏𝑖 = 𝐶}| = 𝑟 − 𝐾 . We denote 𝐾 as the unbalanced challenge parameter.

Implementation considerations. The main algebraic operation is the group action

computation, which relies on modular arithmetic. For modular arithmetic, we use a

method for Pseudo-Mersenne numbers from [Cra92]. For group actions, we imple-

ment several optimizations, such as the tensorial viewpoint of alternating trilinear

forms, and the use of decomposing an invertible matrix into a product of matrices in

a special form.

Parameter choices. Let 𝜆 be the bit security level. To determine the choices of 𝑛

and 𝑞 (the ATFE parameters), we rely on two main approaches for solving ATFE: the

Gröbner basis approach and the approach based on low-rank points. The Gröbner ba-

sis approach determines the vector space dimension 𝑛, and then the low-rank based
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approach determines the field order 𝑞. The GMW-FS design parameters, namely the

round number 𝑟 and the form number 𝐶 , and the unbalanced challenge parameter 𝐾 ,

can be determined in a straightforward manner. There can be certain flexibility in get-

ting some trade-offs between signature and public key sizes, as well as key generation,

sign, and verify times.

3.5.1 Parameter choices

The choices of𝑛. This is set up based on the direct Gröbner basis attack in Section 8.1.

We compare the three modelings of polynomial systems below. We note that estimat-

ing the solving degrees of these systems is a major open problem. Lacking proper tools

to understand them, we resort to the estimates of semi-regular systems [BFSY05]. We

estimate that the direct Gröbner basis attack based on quadratic with inverse mod-

ellings, and the results are given in Table 3.3.

Practical evaluations of the three modelings. We carried out experiments for all

the methods in Section 8.1 on Magma [BJP97].

All work for 𝑛 = 5 on a laptop3.

Modelling Direct cubic Quadratic with inverse Quadratic dual
Time < 0.01s ≈ 35s ≈ 11s
Step 4 15 13

Max degree 7 7 7
Memory 900MB 800 to 900MB 800 to 900 MB

Table 3.1: Performance of the three modelings for 𝑛 = 5.

For 𝑛 = 6, we put the experiments on a server4.
3MacBook Pro, Apple M1 Pro chip, 32 GB memory.
42x AMD EPYC 7532 2.40GHz 32 cores 256M L3 Cache (Max Turbo Freq. 3.33GHz), 1024GB

3200MHz ECC DDR4-RAM (Eight Channel).
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Modelling Direct cubic Quadratic with inverse Quadratic dual
Time ≈ 300s between 79000s and 90000s Could not finish after three weeks
Step 21 48 5 (stuck at)

Max degree 7 7 7 (stuck at)
Memory 4.2GB 167GB 170GB

Table 3.2: Performance of the three modellings for 𝑛 = 6.

For 𝑛 = 7, the direct cubic modeling failed after taking more than 300GB memory.

We computed the Hilbert series for the homogeneous parts of the three modelings,

and they do not resemble generic polynomial systems with the same variable and

equation numbers. To estimate the solving degrees and to investigate these modelings

is an open problem.

Estimations based on semi-regular assumptions. We therefore adopt the follow-

ing approach as a guide. We are aware that these systems are not homogeneous nor

semi-regular, so this approach should not be applicable. But we resort to it due to the

lack of appropriate tools at the moment.

First, we decide to follow the (unrealistic) assumption that these systems behave

as semi-regular systems. Second, the regularity for cubic systems is usually much

larger than quadratic ones, so for the sake of conservation, we drop the direct cubic

modeling, despite that its performance is better than the other two. Third, we drop

the quadratic dual modeling, because its performance at 𝑛 = 6 is much worse than the

other two.

This leaves us with the quadratic with inverse modeling. Following [YC04], we

compute the regularity degrees𝑑 , use
(2𝑛2+𝑑

𝑑

)
as theMacaulay matrix sizes and 2·

(𝑛
2
)
+𝑛

as the density. Based on the formula 3 · (Macaulay-mat-size)2 · density as used in

Rainbow [sCDK+21] and UOV [BCH+23], we have the following estimates for the

number of arithmetic operations.

(1) 𝑛 = 13, regularity 𝑑 = 11, Macaulay-mat-size ≈ 267, and arithmetic operations

≈ 2143.
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(2) 𝑛 = 20, regularity 𝑑 = 15, Macaulay-mat-size ≈ 2104, and arithmetic operations

≈ 2219.

The choices of 𝑞. After selecting 𝑛, the choice of 𝑞 is based on the low-rank birthday

attack in Chapter 8. This relies on the rank statistics of 𝑛.

Let 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 be an alternating trilinear form. Let P(F𝑛𝑞) be the

projective space associated with F𝑛𝑞 , consisting of lines in F𝑛𝑞 . That is, for 𝑣 ∈ F𝑛𝑞 , 𝑣 ≠ 0,

we let 𝑣 := {𝑢 ∈ F𝑛𝑞 | 𝑢 = 𝛼 · 𝑣, 𝛼 ∈ F𝑞}. For 𝑣 ∈ P(F𝑛𝑞), let rk𝜙 (𝑣) be the rank of the

bilinear form 𝜙𝑣 := 𝜙 (𝑣, ·, ·). When it is clear from the context, we may just write as

rk(𝑣).

Based on Theorem 2 from [Beu23], the following data are most relevant to our

choice.

(1) For 𝑛 = 13, for a random 𝜙 , it is expected that |{𝑣 | rk𝜙 (𝑣) = 8}| ≈ 𝑞6. It is also

expected that 1/𝑞3-fraction of 𝜙 has 𝑣 such that rk𝜙 (𝑣) = 6.

(2) For 𝑛 = 20, for a random 𝜙 , it is expected that |{𝑣 | rk𝜙 (𝑣) = 14}| ≈ 𝑞9. It is also

expected that 1/𝑞2-fraction of 𝜙 has 𝑣 such that rk𝜙 (𝑣) = 12.

The low-rank birthday algorithm described in Chapter 8 yields the following. Let

minrank-cost(𝑛, 𝑘, 𝑟 ) denote the min-rank cost for sampling a rank-𝑟 matrix from the

linear span of 𝑘 𝑛 × 𝑛 matrices.

(1) For 𝑛 = 13, an algorithm with 𝑂 (𝑞3 · minrank-cost(13, 7, 8) · 136) arithmetic

operations.

(2) For 𝑛 = 20, an algorithm with 𝑂 (𝑞4.5 ·minrank-cost(20, 11, 14) · 206) arithmetic

operations.

We use the algorithm5 from [BBC+20] to estimate the min-rank cost as follows.
5We compared the estimates below with the estimates based on the analysis of the Kipnis–Shamir

system [KS99] in [VBC+19], and found that the ones from [BBC+20] are lower.
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parameter set 𝑟 𝐾 𝐶
security level of
ALTEQ (bit)

I 84 22 7 128.1
16 14 458 130.6

III 201 28 7 192.0
39 20 229 192.7

Table 3.4: The bit security of ALTEQ for the choices of 𝐶, 𝑟 and 𝐾 .

(1) minrank-cost(13, 7, 8) ≈ 232.

(2) minrank-cost(20, 11, 12) ≈ 257. Here we use the parameter𝑏 = 4 as in [BBC+20].

We now summarise the arithmetic complexities for the direct Göbner basis attack

and the low-rank birthday attack for 𝑛 = 13 and 𝑛 = 20 with 𝑞 being a 32-bit prime in

Table 3.3.

Quadratic with inverse GB, arithmetic low-rank birthday, arithmetic
𝑛 = 13, 𝑞 = 232 − 5 ≈ 2143 ≈ 2128
𝑛 = 20, 𝑞 = 232 − 5 ≈ 2219 ≈ 2202

Table 3.3: Arithmetic complexities of the two attacks.

The above discussions are for numbers of arithmetic operations. These already

suffice for levels I and III. To translate to bit complexities, we need to add the bit

operation complexity for modular multiplications as 𝑂 (log2(𝑞)).

The choices of𝐶, 𝑟 , and𝐾 . Weuse the unbalanced challenge technique asmentioned

above. This relies on three parameters, the round number 𝑟 , the unbalanced parameter

𝐾 , and the form number in each round 𝐶 . To achieve the 𝜆 bit security, we require

that
( 𝑟
𝐾

)
·𝐶𝐾 ⩾ 2𝜆 . Table 3.4 illustrates the bit securities of our choices of 𝑟 , 𝐾 , and 𝐶 .

3.5.2 Implementations

In this section, we provide the implementation details of ALTEQ . The code can be

found at https://pqcalteq.github.io/. We explain some optimizations

for modular arithmetic, group actions, and seed expansion.

https://pqcalteq.github.io/
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Modular arithmetic. Operating on matrices and tensors requires multiple compu-

tations of a sum of products of elements over F𝑞 . Therefore, we will use only one

single modulo i.e. 𝑞 = 232 − 5. This choice allows to use a large field without using

multiprecision arithmetic. Consequently, eachmultiplication needs to be followed im-

mediately by a modular reduction. Regarding modular addition, multiple operations

can be done before a modular reduction. As 𝑞 is a Pseudo-Mersenne number [Cra92],

a modular reduction is done by a shift, an addition and multiplication by a constant.

To guarantee that the result stays on 32 bits, a second round of modular reduction will

need to be performed.

Representing invertible matrices and their actions. An invertible matrix is rep-

resented as a product of 𝑛 invertible column matrices. Here, a column matrix is equal

to the identity matrix for each coefficient but one column. Not all invertible matrices

cannot be decomposed in such product (without the use of a permutation matrix), but

the number of matrices not decomposable directly in such product of columnmatrices

is negligible.

Once in the form of the product of 𝑛 column matrices, a matrix can be applied to

an alternating trilinear form in a simpler and faster way: each column matrix, one

after the other, can be applied directly to the alternating trilinear without passing by

a costly tensor form. Consequently, we obtain a reduction from 7/4 · 𝑛4 to 1/2 · 𝑛4

of the number of field multiplications required. This gain is especially evident in the

verification process, as a majority of the cases are expanded from random seeds.

Finally, it is important to note that we can efficiently compute the matrix corre-

sponding to the product of the column matrix by performing such a product itself.

The product of a dense matrix by a column matrix will cost 𝑛2 field multiplications. In

this scheme, we will need to compute the product of 2𝑛 columns matrices. However,

the first𝑛 columnmatrices product will cost less than𝑛2 fields multiplications because

such product are with elements corresponding to zero and therefore does not need to

be computed. The reason is that the identity matrix will still have (𝑛 − 1) · (𝑛 − 𝑘)
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elements equal to zero after 𝑘 products by a columns matrix. This is correct if columns

are ordered as in our implementation.

Seed expansion. Aswe havemultiple random objects to generate, we try tominimize

the call to seed expander. To this end, for random matrices and random ATFs, we

simply randomly generate a large number of values in [0, 232). The elements will

discarded in the rare cases that is not falling in [0, 𝑞) or if is equal to 0 in the case of

element of the diagonal of a column matrix.

For generating the challenges, we need multiple values with different sizes: both

for the challenge value different from𝐶 and to determine where the challenge is equal

to𝐶 . This last step corresponds to picking 𝐾 elements among 𝑟 elements. It is impor-

tant to note that to minimize the call to seed expander, the approach will be different

if 𝑟 − 𝐾 is smaller than 𝐾 . For such cases, we pick 𝑟 − 𝐾 elements among 𝑟 elements

for the same result. For all those reasons, when generating the challenges, we keep in

a buffer each random bit generated by the seed expander to avoid unnecessary calls.

AVX2 acceleration. To fully utilize AVX acceleration, the representations of multiple

ATFs have been intertwined: on the array representing ATF, the consecutive value

does not correspond to the same ATF, but rather to the value having the same index in

a different ATF. Concretely, the element corresponding to𝐴𝑇𝐹𝑟 (𝑖, 𝑗, 𝑘) is not followed

by𝐴𝑇𝐹𝑟 (𝑖, 𝑗, 𝑘 +1) but by𝐴𝑇𝐹𝑟+1(𝑖, 𝑗, 𝑘). Consequently, when we need to compute the

action of different matrices on multiple ATFs, this can be done in a vectorized manner.

Hashing function and seed expansion can also take advantage of AVX acceleration.

For our symmetric needs, we borrow solutions from some previous submissions to

NIST PQC standardization, such as Dilithium as well as from XKCP. The Dilithium

team has already proposed an efficient and dedicated versions of AES utilizing AVX

acceleration. Regarding Keccak, XKCP offers a version that is fully utilizing AVX as

well. While these implementations have been slightly modified to fit our scheme, they

should be fully credited to the Dilithium and XKCP teams.
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Furthermore, while our implementation has been optimized and parameterized for

AVX2, it will strongly take advantage of AVX512 as well.

Finally, our scheme could be accelerated even further by using multithreading. As

it requires a dedicated implementation, we did not investigate such an option to focus

principally on AVX2 acceleration.

Remark 3.5.1. Recently, two attacks against ALTEQ were released on the pqc forum.

The first one is the forgery attack proposed by Saarinen [Saa23], which utilizes that the

secret matrix does not do invertibility checking. The second is the multi-target attack

proposed by Beullens. We have fixed the protocol by adding an invertibility check as

well as doubling the seed size and adding salt. For the latest version of ALTEQ, please

refer to https://pqcalteq.github.io/.

3.5.3 Performance analysis

We provide two sets of parameters for each security level I and III. The first set is

called Balanced, and the second set is called ShortSig.

Key and signature sizes. In Table 3.5, we list the parameters for the balanced-ATFE-

Sig for security levels I, III. Note that for level I, the public key+signature size is below

24KB. For level III, the public key+signature size is below 80KB.

Parameter
set

Parameters
(𝑛, 𝑞, 𝑟, 𝐾,𝐶)

Private key
Size (Bytes)

Public key
Size (Bytes)

Signature
Size (Bytes)

Public key + signature
Size (Bytes)

I (13, 232 − 5, 84, 22, 7) 16 8024 15896 23920
III (20, 232 − 5, 201, 28, 7) 24 31944 49000 80944

Table 3.5: Key and Signature Sizes for Balanced-ATFE-Sig

In Table 3.6, we list the parameters for the ShortSig-ATFE-Sig for security levels I,

III. Note that for level I, the public key size is below 512KB and the signature size is

below 10KB. For level III, the public key size is below 1MB and the signature size is

below 32KB.

https://pqcalteq.github.io/
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Parameter
set

Parameters
(𝑛, 𝑞, 𝑟, 𝐾,𝐶)

Private key
Size (Bytes)

Public key
Size (Bytes)

Signature
Size (Bytes)

I (13, 232 − 5, 16, 14, 458) 16 523968 9528
III (20, 232 − 5, 39, 20, 229) 24 1044264 32504

Table 3.6: Key and Signature Sizes for ShortSig-ALTEQ

Performance. We test our codes on a machine with the following configurations.

• Processor: Intel Xeon E-2288G 3.7GHz 8 cores 16MB L3 Cache HT Enabled (Max

Turbo Freq. 5.0GHz, Min 4.7GHz).

• Memory: 64GB.

• Operating system: Red Hat Enterprise Linux 8.6 (Ootpa).

• Compiler: gcc version 8.5.0 20210514 (Red Hat 8.5.0-10).

Our results are as follows. The numbers in the following Tables are averages over

1000 runs. We report the averages, and the medians are quite close to the averages.

parameter set Key gen Sign Verify Sign+verify

I cycles 329285 2310789 1836795 4147584
time (ms) 0.093 0.629 0.496 1.125

III cycles 2121817 25965846 24075470 50041316
time (ms) 0.582 6.986 6.483 13.469

Table 3.7: Performance of Balanced-ALTEQ .

parameter set Key gen Sign Verify

I cycles 7123223 686620 326242
time (ms) 1.902 0.194 0.092

III cycles 18339415 6346193 4851234
time (ms) 5.152 1.705 1.304

Table 3.8: Performance of ShortSig-ALTEQ .

3.5.4 Comparison with other NIST submissions

In this section, we provide a comparison of ALTEQ with standardized protocol in

Table 3.9, i.e. Dilithium [BDK+21], Falcon [FHK+20] and SPHINCS+ [ABWB+20].
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We also include MEDS [CNP+23a] and LESS [BMPS20] in the Table 3.9 because, as

mentioned in Section 1.8, the problems on which these two protocols are based are

related to ATFE. As mentioned in Section 1.2, the choice of ATFE in post-quantum

cryptography is backed by a strong limitation on known quantum algorithm tech-

niques [HMR+10]. The speeds of our implementation, though still slower than lattice-

based schemes, are acceptable in general. As for MEDS and LESS, ALTEQ’s signature

size is almost 1.5x theirs, but its key gen./signing/verification speed is much faster

than theirs.

PQ security
level Algorithm Public key

Size (Bytes)
Signature
Size (Bytes)

Key Gen.
(cycles)

Signing
(cycles)

Verification
(cycles)

II Dilithium2 1312 2420 7 × 104 2.5 × 105 7.2 × 104
I Falcon512 897 666 19.9 × 109 3.8 × 108 8.2 × 107
I SPHINCS+-128f 32 17088 1.8 × 107 4.6 × 108 2.8 × 107
I LESS-1b 13600 8400 3.4 × 106 878.7 × 106 890.8 × 106
I MEDS-9923 9923 9896 1.9 × 106 518.05 × 106 515.58 × 106
I Balanced-ALTEQ 8024 15896 3.2 × 105 2.3 × 106 1.8 × 106

Table 3.9: Comparison with other submissions to the NIST
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On digital signatures based on group

action: QROM security and ring
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Chapter 4

Quantum Random Oracle Model

(QROM) security

4.1 Chapter preliminaries

4.1.1 Notations

We collect some basic notation in this subsection. We use F𝑞 to denote the finite field

with 𝑞 elements. The general linear group of degree 𝑛 over F𝑞 is denoted as GL(𝑛, 𝑞).

The base of the logarithm is 2 unless otherwise specified. For a finite set 𝑆 , we use

𝑠
$← 𝑆 to denote that 𝑠 is uniformly randomly sampled from 𝑆 . Given a positive integer

𝑘 , we denote by [𝑘] the set {1, . . . , 𝑘}.

4.1.2 Σ-protocols

Let R ⊆ X ×W be a binary relation, where X,W,R are recognizable finite sets. In

other words, there is a polynomial time algorithm that can decide whether (𝑥,𝑤) ∈ R

for 𝑥 ∈ X and 𝑤 ∈ W. Given an instance generator Gen of a relation R, the relation

R is hard if for any poly-time quantum algorithmA, the probability Pr[(𝑥,𝑤 ′) ∈ R |

(𝑥,𝑤) ← Gen(1𝜆),𝑤 ′← A(𝑥)] is negligible.
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Given a hard relation R, the Σ-protocol for R is 3-move interactive protocol be-

tween a prover P and a verifierV in which the prover P who has the witness 𝑤 for

the statement 𝑥 tries to convince the verifier V that he possesses a valid witness 𝑤

without revealing anything more than the fact that he knows𝑤 . Formally, Σ-protocol

is defined as follows.

Definition 4.1.1. Let R be a hard binary relation. Let ComSet,ChSet,ResSet be the

commitment space, challenge space and response space respectively. The Σ-protocol

Σ for a relation R consists of three PPT algorithms (P = (P1,P2),V), where 𝑉 is

deterministic and we assume that P1 and P2 share the same state, working as the

following:

• The prover P first computes a commitment 𝑎 ← P1(𝑥,𝑤) and sends 𝑎 to the

verifierV .

• On input a commitment 𝑎, theV samples a random challenge 𝑐 from the chal-

lenge space ChSet and sends to P.

• P computes a response 𝑟 ← P2(𝑥,𝑤, 𝑎, 𝑐) and sends to the V who will run

V(𝑥, 𝑎, 𝑐, 𝑟 ) and outputs 1 if the transcript (𝑎, 𝑐, 𝑟 ) is valid and 0 otherwise.

Identification from Σ-protocol. A Σ-protocol (P,V) with a key generation algo-

rithm ID.Gen gives an identification scheme (ID.Gen,P,V).

Completeness. A Σ-protocol is said to be complete if for all pair (𝑥,𝑤) ∈ R, an honest

prover P with (pk, sk), where pk := 𝑥 and sk := 𝑤 , can always convince an honest

verifier, i.e. Pr[V(pk, 𝑎, 𝑐, 𝑟 ) = 1 | 𝑎 ← P(sk), 𝑐 ∈𝑅 ChSet, 𝑟 ← P2(pubk, sk, 𝑎, 𝑐)] =

1.

Post-Quantum 2-Soundness. We say a Σ-protocol has post-quantum 2-soundness,

if for any 𝜆 and any poly-time quantum adversary A, the following probability is

negligible, taken over the randomness of (𝑥,𝑤) ← Gen(1𝜆): Pr[V(pk, 𝑎, 𝑐, 𝑟 ) = 1 ∧

V(pk, 𝑎, 𝑐′, 𝑟 ′) = 1 ∧ 𝑐 ≠ 𝑐′ | (𝑎, 𝑐, 𝑟, 𝑐′, 𝑟 ′) ← A(pk)] ≤ negl(𝜆).
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Honest Verifier Zero Knowledge. A Σ-protocol has honest verifier zero knowledge

(HVZK) if for all pairs (𝑥,𝑤) ∈ R, there is a simulator S with only the statement 𝑥 ,

can always compute a valid transcript (𝑎, 𝑐, 𝑟 ), i.e. Pr[V(pk, 𝑎, 𝑐, 𝑟 ) = 1 | (𝑎, 𝑐, 𝑟 ) ←

S(pk)] = 1. Moreover, the output distribution of S on input (𝑥, 𝑐) is equal to the

distribution of those outputs generated via an honest execution conditioned on the

verifier using 𝑐 as the challenge.

Min-entropy. A Σ-protocol has 𝛼-bit min-entropy, if

Pr
(𝑥,𝑤)∈𝑅R

[min-entropy(𝑎 |𝑎 ← P1(𝑥,𝑤)) ≥ 𝛼] ≥ 1 − 2−𝛼 .

Commitment Recoverability. A Σ-protocol is commitment recoverable if given 𝑐

and 𝑟 , there is a unique 𝑎 such that (𝑎, 𝑐, 𝑟 ) is a valid transcript. Such a commitment

may be publicly computed with the input (𝑥, 𝑐, 𝑟 ).

Perfect Unique Response. A Σ-protocol has perfect unique response if for all pairs

(𝑥,𝑤) ∈ R, there is no two valid transcripts (𝑎, 𝑐, 𝑟 ) and (𝑎, 𝑐, 𝑟 ′) of the same com-

mitment 𝑎 and challenge 𝑐 but different responses 𝑟 ≠ 𝑟 ′, i.e. Pr[V(𝑥, 𝑎, 𝑐, 𝑟 ) =

1 ∧V(𝑥, 𝑎, 𝑐, 𝑟 ′) = 1 ∧ 𝑟 ≠ 𝑟 ′] = 0.

Computationally Unique Response. A Σ-protocol has computationally unique re-

sponse, if for any 𝜆 and any poly-time quantum adversaryA, the following probability

is negligible, taken over the randomness of (𝑥,𝑤) ← Gen(1𝜆):

Pr[V(𝑥, 𝑎, 𝑐, 𝑟 ) = 1 ∧V(𝑥, 𝑎, 𝑐, 𝑟 ′) = 1 ∧ 𝑟 ≠ 𝑟 ′ | (𝑎, 𝑐, 𝑟, 𝑟 ′) ← A(𝑥)] ≤ negl(𝜆).

4.1.3 Abstract group actions in cryptography

Let𝐺 be a group and 𝑆 be a set. We use ∗ to denote the group multiplication. A group

action is a function 𝛼 : 𝐺 ×𝑆 → 𝑆 satisfying certain natural axioms. There are several

frameworks of group actions in cryptography [BY90,Cou06,JQSY19,AFMP20], which

are mostly the same but can be different in some details. In this chapter, we use the

following model.
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Some notation. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action. For 𝑠 ∈ 𝑆 , its orbit under 𝛼

is O(𝑠) := {𝑡 ∈ 𝑆 | ∃𝑔 ∈ 𝐺, 𝛼 (𝑔, 𝑠) = 𝑡}, and its stabilizer group under 𝛼 is Stab(𝑠) =

{𝑔 ∈ 𝐺 | 𝛼 (𝑔, 𝑠) = 𝑠}. An element in Stab(𝑠) is called an automorphism of 𝑠 . By the

orbit-stabilizer theorem, |O(𝑠) | · |Stab(𝑠) | = |𝐺 |.

Computational assumptions. We first make the following computational assump-

tions for using a group action in algorithms.

(1) We work with group families 𝐺 = {𝐺𝑘}𝑘∈N and set families 𝑆 = {𝑆𝑘}𝑘∈N.

(2) For a fixed 𝑘 , 𝐺𝑘 and 𝑆𝑘 are finite, where |𝑆𝑘 | = 𝐴𝑘 and |𝐺𝑘 | = 𝐵𝑘 , and log𝐴𝑘

and log𝐵𝑘 are upper bounded by some polynomial in 𝑘 .

(3) The following tasks can be done in time polynomial in 𝑘 : computing group

product and inverse, deciding the equivalence of group elements, computing

the group action function, and uniformly sampling group and set elements.

In the following, when 𝑘 is clear from the context, we may just write𝐺 and 𝑆 , and

set |𝑆 | = 𝐴 and |𝐺 | = 𝐵.

We note that it is not necessary for a group action to satisfy all the above to be

useful in cryptography. For example, the group action underlying CSIDH [CLM+18]

cannot be efficiently computed for all group elements, though it can be modeled as a

“restricted effective group action” as in [AFMP20].

Cryptographic assumptions. We now list the following assumptions for a group

action to be useful in cryptography. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action. Given 𝑠 ∈ 𝑆 ,

we shall often use the fact that we can sample from O(𝑠) uniformly. This is because

we can uniformly sample 𝑔 ∈ 𝐺 and return 𝛼 (𝑔, 𝑠).

(1) One-way assumption: for 𝑠 ←𝑅 𝑆 and 𝑡 ←𝑅 O(𝑠), there is no probabilistic or

quantum polynomial-time algorithm that returns 𝑔′ such that 𝛼 (𝑔′, 𝑠) = 𝑡 .
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(2) Pseudorandom assumption: there is no probabilistic or quantum polynomial-

time algorithm that can distinguish the following two distributions with non-

negligible probability:

a) The random distribution: (𝑠, 𝑡) ∈ 𝑆 × 𝑆 where 𝑠, 𝑡 ←𝑅 𝑆 .

b) The pseudorandom distribution: (𝑠, 𝑡) ∈ 𝑆 × 𝑆 where 𝑠 ←𝑅 𝑆 , 𝑡 ←𝑅 O(𝑠).

Those assumptions can be generalized to the following 𝐶-instance version.

Definition 4.1.2. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action.

(1) We say that 𝛼 satisfies the 𝐶-one-way assumption, if for 𝑠0 ←𝑅 𝑆 , given 𝑠0 and

𝑠1, . . . , 𝑠𝐶−1 ←𝑅 O(𝑠0), there is no probabilistic or quantum polynomial-time

algorithm that returns 𝑔′, 𝑖, 𝑗 ∈ {0, 1, . . . ,𝐶 − 1}, 𝑖 ≠ 𝑗 , such that 𝛼 (𝑔′, 𝑠𝑖) = 𝑠 𝑗 ,

with non-negligible probability.

(2) We say that 𝛼 satisfies the𝐶-pseudorandom assumption, if there is no probabilis-

tic or quantum polynomial-time algorithm that can distinguish the following

two distributions with non-negligible probability:

a) The random distribution: (𝑠0, . . . , 𝑠𝐶−1) ∈ 𝑆𝐶 where 𝑠𝑖 ←𝑅 𝑆 .

b) The pseudorandom distribution: (𝑠0, . . . , 𝑠𝐶−1) ∈ 𝑆𝐶 where 𝑠0 ←𝑅 𝑆 , and

𝑠1, . . . , 𝑠𝐶−1 ←𝑅 O(𝑠0).

Remark 4.1.3. These assumptions can also be restricted to the versions that work

with a fixed 𝑠0 rather than a random one. That is, in the above, replace 𝑠0 ←𝑅 𝑆 with a

fixed choice 𝑠0 ∈ 𝑆 . We shall call these𝐶-one-way-O(𝑠0) and𝐶-pseudorandom-O(𝑠0)

assumptions, respectively.

The GMW-FS digital signature design. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action. As

mentioned in Section 1.7, we can obtain a digital signature by applying the Fiat-Shamir
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P(𝑠0, . . . , 𝑠𝐶−1, 𝑔0 = id, 𝑔1, . . . , 𝑔𝐶−1) V(𝑠0, . . . , 𝑠𝐶−1)

ℎ
$← 𝐺

𝑡 = 𝛼 (ℎ, 𝑠0) 𝑡

𝑐 𝑐
$← {0, . . . ,𝐶 − 1}

Set 𝑓 := ℎ ∗ 𝑔−1𝑐 𝑓 Check if 𝛼 (𝑓 , 𝑠𝑐) = 𝑡?

Figure 4.1: The 𝛼 (G, S)-GMW protocol.

(FS) transformation to the Goldreich-Micali-Wigderson (GMW) zero-knowledge pro-

tocol instantiated with the group action 𝛼 , assuming that the group action satisfies the

𝐶-one-way assumption. We call this digital signature the 𝛼 (G, S)-GMW-FS scheme.

For our purposes in this part, the key is the GMW protocol instantiated with 𝛼

with the𝐶-one-way assumption. This protocol is easily interpreted as an identification

protocol, and we shall refer it as the 𝛼 (G, S)-GMW protocol. Therefore, we describe

the 𝛼 (G, S)-GMW protocol in detail.

In the 𝛼 (G, S)-GMW protocol, the public key consists of set elements 𝑠0, . . . , 𝑠𝐶−1

such that 𝑠0 ←𝑅 𝑆 , and 𝑠1, . . . , 𝑠𝐶−1 ←𝑅 O(𝑠0). The private keys consists of 𝑔0 =

id, 𝑔1, . . . , 𝑔𝐶−1 such that 𝛼 (𝑔𝑖, 𝑠0) = 𝑠𝑖 . In this protocol, the goal of the prover is to

convince the verifier that, for every 𝑖 ≠ 𝑗 , the prover knows someℎ such that 𝛼 (ℎ, 𝑠𝑖) =

𝑠 𝑗 .

Define the relation 𝑅 := {𝑥 = {𝑠0, . . . , 𝑠𝐶−1} ,𝑤 = {𝑔1, . . . , 𝑔𝐶−1} | 𝑥 ⊆ 𝑆,𝑤 ⊆

𝐺, 𝛼 (𝑔𝑖, 𝑠1) = 𝑠𝑖,∀𝑖 ∈ {1, . . . ,𝐶 − 1}}. The protocol is described in Figure 4.1, which

will be repeated several times to attain the required security level.

The 𝛼 (G, S)-GMW-FS-O(𝑠) scheme. In Section 4.2, we will need a variant of the

𝛼 (G, S)-GMW-FS-O(𝑠) scheme, following Remark 4.1.3. Briefly speaking, this variant

restricts to an orbit of some specific 𝑠 ∈ 𝑆 instead of working in the orbit of a random

𝑠 ←𝑅 𝑆 . We call such a scheme the 𝛼 (G, S)-GMW-FS-O(𝑠) scheme.
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4.1.4 Properties of the Σ-protocol based on abstract group

actions

Completeness. It is clear that the honest prover with the statement and witness

(𝑥,𝑤) following the 𝛼 (G, S)-GMW protocol can always convince the honest verifiers.

Post-Quantum 2-Soundness. If there is a poly-time quantum adversary A with

statement 𝑥 = {𝑠0, . . . , 𝑠𝐶−1} who can compute two valid transcripts (𝑡, 𝑐, ℎ) and

(𝑡, 𝑐′, ℎ′) where 𝑐 ≠ 𝑐′. Since 𝛼 (ℎ, 𝑠𝑐) = 𝑡 and 𝛼 (ℎ′, 𝑠𝑐′) = 𝑡 , the adversary A can

get 𝑓 = ℎ−1 ∗ ℎ′ such that 𝑠𝑐 = 𝛼 (𝑓 , 𝑠𝑐′), which is contradicted to the group action

one-way assumption.

HVZK. Given a statement 𝑥 = {𝑠0, . . . , 𝑠𝐶−1}, there is a simulator S first sampling

𝑐 ∈𝑅 {0, . . . ,𝐶 − 1} and ℎ ∈𝑅 𝐺 and then computing 𝑡 = 𝛼 (ℎ, 𝑠𝑐). It follows that (𝑡, 𝑐, ℎ)

is a valid transcript. Then the distributions of ℎ and 𝑐 are uniform, and 𝑡 = 𝛼 (ℎ, 𝑠𝑐) is

uniformly from the orbit where statement 𝑥 is in. The distribution of (𝑡, 𝑐, ℎ) ← S(𝑥)

is equal to the distribution of real transcripts since both are uniform distributions on

commitments, challenges, and responses.

Min-Entropy. Since commitment 𝑡 is uniformly taken from the orbit O which

elements of the statement 𝑥 = {𝑠0, . . . , 𝑠𝐶−1} belong to, the 𝛼 (G, S)-GMW protocol

has 𝛼-bit min-entropy with 𝛼 = log2( |O|) and |O| is the size of orbit O.

Remark 4.1.4. By the orbit-stabiliser theorem, for an alternating trilinear form 𝜙

over F𝑛𝑞 , we have |O(𝜙) | = |GL(𝑛, 𝑞) |/|Aut(𝜙) |. In Section 4.4, some results on the

automorphism group orders, and therefore orbit sizes, of random alternating trilinear

forms will be presented.
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Commitment Recoverable. The 𝛼 (G, S)-GMW protocol is commitment recover-

able. In fact, given a challenge 𝑐 and a response ℎ, there is only one commitment 𝑡

computed by 𝑡 = 𝛼 (ℎ, 𝑠𝑐).

4.1.5 Some candidates of group actions for the GMW-FS

design

The group action underlying ALTEQ.We recall the definition of the group action

on ATF. Let F𝑞 be the finite field of order 𝑞. A trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 →

F𝑞 is alternating, if 𝜙 evaluates to 0 whenever two arguments are the same. We use

ATF(𝑛, 𝑞) to denote the set of all alternating trilinear forms defined over F𝑛𝑞 . Let 𝐴

be an invertible matrix of size 𝑛 × 𝑛 over F𝑞 . Then 𝐴 sends 𝜙 to another alternating

trilinear form 𝜙 ◦𝐴, defined as (𝜙 ◦𝐴) (𝑢, 𝑣,𝑤) := 𝜙 (𝐴t(𝑢), 𝐴t(𝑣), 𝐴t(𝑤)).

The group action underlying LESS [BMPS20]. For 1 ≤ 𝑑 ≤ 𝑛, let M(𝑑 × 𝑛, F𝑞) be

the linear space of𝑑×𝑛matrices over F𝑞 . LetMon(𝑛, 𝑞) be the group of𝑛×𝑛monomial

matrices over F𝑞 . The group 𝐺 = GL(𝑛, 𝑞) ×Mon(𝑛, 𝑞), the set 𝑆 = M(𝑑 × 𝑛, F𝑞), and

the action is defined as (𝐴,𝐶) ∈ GL(𝑛, 𝑞) ×Mon(𝑛, 𝑞) sending 𝐵 ∈ M(𝑑×𝑛, 𝑞) to𝐴𝐵𝐶𝑡 .

The group action underlying MEDS [CNP+23b]. Let 𝑛1, 𝑛2, 𝑛3 ∈ N. The set 𝑆 is

F𝑛1𝑞 ⊗ F𝑛2𝑞 ⊗ F𝑛3𝑞 . The group𝐺 = GL(𝑛1, 𝑞) ×GL(𝑛2, 𝑞) ×GL(𝑛3, 𝑞). The action is defined

as (𝐴1, 𝐴2, 𝐴3) ∈ 𝐺 sending 𝑢1 ⊗𝑢2 ⊗𝑢3 to𝐴1(𝑢1) ⊗𝐴2(𝑢2) ⊗𝐴3(𝑢3), and then linearly

extending this to the whole F𝑛1𝑞 ⊗ F𝑛2𝑞 ⊗ F𝑛3𝑞 .

The class group action such as CSIDH [CLM+18] (for SeaSign [FG19] and CSI-

FiSh [BKV19]). Let 𝐸 be an elliptic curve over F𝑝 , and let 𝑂 := EndF𝑝 (𝐸). The ideal

class group Cl(𝑂) acts on the set of F𝑝-isomorphism classes of elliptic curves with

F𝑝-rational endomorphism ring𝑂 via a natural action. For details we refer the reader

to [FG19,BKV19,BFGP23]. Note that this action does not satisfy all the properties in

Section 4.1.3; see [AFMP20].
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Further group actions in cryptography. We note that more isomorphism problems

and group actions have been proposed for cryptographic uses, such as lattice isomor-

phism [DvW22] and knot equivalence [FGH+12]. While these are interesting, we did

not discuss these here, because they have not been used with the GMW-FS design

which is the focus of this part.

4.2 QROM security via perfect unique responses

In this section, we show that the 𝛼 (G, S)-GMW-FS scheme is secure in the quantum

random oracle model (QROM) subject to a certain condition on the automorphism

group of the alternating trilinear form in use.

This section is organized as follows. In Section 4.2.1, we translate perfect and

computational unique response properties of the 𝛼 (G, S)-GMW protocol to certain

properties about stabilizer groups. In Section 4.2.2, we formally state QROM secu-

rity of the 𝛼 (G, S)-GMW-FS-O(𝑠0) scheme in Theorem 4.2.7, with proof sketches in

Section 4.2.3.

4.2.1 Perfect and computationally unique responses of the

𝛼 (G, S)-GMW protocol

We require some extra properties such that the 𝛼 (G, S)-GMW or 𝛼 (G, S)-GMW-O(𝑠0)

protocols meet the perfect unique response and computationally unique response prop-

erties, as recalled in Section 4.1.2.

Lemma 4.2.1 (Perfect Unique Response). The 𝛼 (G, S)-GMW-O(𝑠0) protocol supports

perfect unique response if and only if Stab(𝑠0) is trivial.

Proof. Assume that Stab(𝑠0) is trivial. If there are two valid transcripts (𝑡, 𝑐, 𝑔1) and

(𝑡, 𝑐, 𝑔2) for the protocol in Figure 4.1. Then we have 𝛼 (𝑔1, 𝑡) = 𝛼 (𝑔2, 𝑡). It implies that

𝑔2 ∗ 𝑔−11 ∈ Stab(𝑠0) and thus 𝑔1 = 𝑔2.
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Now assume that the 𝛼 (G, S)-GMW-O(𝑠0) protocol satisfies the perfect unique

response property. If Stab(𝑠0) is non-trivial, i.e., there exists a group element ℎ ≠ id

such that 𝛼 (ℎ, 𝑠0) = 𝑠0. Therefore, all the elements in {𝑠0, . . . , 𝑠𝐶−1} satisfy 𝛼 (ℎ, 𝑠𝑖) =

𝑠𝑖 . It follows that for the statement {𝑠0, . . . , 𝑠𝐶−1}, any commitments 𝑡 ∈ 𝑆 , and any

challenge 𝑐 ∈ {0, 1, . . . ,𝐶 − 1}, there are two different responses 𝑔 ∈ 𝐺 and ℎ ∗ 𝑔 ∈ 𝐺

such that (𝑡, 𝑐, 𝑔) and (𝑡, 𝑐, ℎ ∗ 𝑔) are valid transcripts, which is a contradiction. □

Remark 4.2.2. For the 𝛼 (G, S)-GMW, since 𝑠0 is not fixed, in some cases, we can

only say that the stabilizer group of a random 𝑠0 ←𝑅 𝑆 is trivial with high probability.

Such a property is known as the statistical unique response property. However, it

is not known if statistical unique response is enough to prove the quantum proof of

knowledge.

To illustrate the relation between the computationally unique response and group

actions, we define the following algorithm problem.

Definition 4.2.3. The 𝛼 (G, S)-stabilizer problem is the following.

Input: An element 𝑠 ∈𝑅 𝑆 .

Output: Some 𝑔 ∈ 𝐺,𝑔 ≠ id such that 𝑠 = 𝛼 (𝑔, 𝑠).

The 𝛼 (G, S)-stabilizer problem is also known as the automorphism group problem

in the literature (see e.g. the graph automorphism problem [KST93]).

Lemma 4.2.4 (Computationally Unique Response). The 𝛼 (G, S)-GMW protocol in Fig-

ure 4.1 supports computationally unique response if and only if no poly-time quantum al-

gorithm can solve the 𝛼 (G, S)-stabilizer problem in Definition 4.2.3 with a non-negligible

probability.

Proof. Assume that the Σ-protocol supports computationally unique response. If

there is a polynomial-time quantum adversary A such that for any statement 𝑥 =

{𝑠0, . . . , 𝑠𝐶−1} ⊆ 𝑆 , it can compute two valid transcripts (𝑡, 𝑐, 𝑔1) and (𝑡, 𝑐, 𝑔2), where
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𝑔1 ≠ 𝑔2, with a non-negligible probability. Then there is an algorithm A1 using A as

subroutine such that for any 𝑐 ∈ {0, 1, . . . ,𝐶 − 1}, it can produce an ℎ = 𝑔2 ∗ 𝑔−11 such

that 𝛼 (ℎ, 𝑠𝑐) = 𝑠𝑐 with a non-negligible probability.

Assume there is a polynomial-time quantum algorithm A1 such that, for any

𝑠 ∈ 𝑆 , it produces a stabilizer element ℎ such that 𝛼 (ℎ, 𝑠) = 𝑠 with a non-negligible

probability. By the HVZK property, there exists a simulator S such that, for any

𝑥 = {𝑠0, . . . , 𝑠𝐶−1} ⊆ 𝑆 , it produces a valid transcript (𝑡, 𝑐, 𝑔). Then there is an ad-

versary A using A1 and S as subroutines such that it firstly computes a valid tran-

script (𝑡, 𝑐, 𝑔) by S, and then computes ℎ such that 𝛼 (ℎ, 𝑠𝑐) = 𝑠𝑐 by A1. Thus, for any

statement {𝑠0, . . . , 𝑠𝐶−1}, A computes two transcripts (𝑡, 𝑐, 𝑔) and (𝑡, 𝑐, ℎ ∗ 𝑔) with a

non-negligible probability. □

Remark 4.2.5. For a fixed 𝑠0 ∈ 𝑆 , we can define the 𝛼 (G, S)-stabilizer-O(𝑠0) problem

by restricting the input to 𝑠 ∈𝑅 O(𝑠0). Then the above proof can be applied to show

the same result for 𝛼 (G, S)-GMW-O(𝑠0).

Based on the above, we define the following properties of group actions.

Definition 4.2.6. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action.

(1) We say that 𝛼 satisfies the (statistical) trivial stabilizer assumption, if for a ran-

dom 𝑠 ∈ 𝑆 , Stab(𝑠) is trivial.

(2) We say that 𝛼 satisfies the non-trivial automorphism hardness assumption, if

no probabilistic or quantum polynomial-time algorithm can solve the 𝛼 (G, S)-

stabilizer problem with non-negligible probability.

4.2.2 QROM security via perfect unique response

Lemma 4.2.1 interprets the perfect unique response property as a property of group

actions. Based on this, it is straightforward to adapt the results in [LZ19] to give a

security proof in QROM for 𝛼 (G, S)-GMW-FS-O(𝑠0) signature scheme assuming the

stabilizer group being trivial.
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Theorem 4.2.7. Suppose 𝑠0 ∈ 𝑆 satisfies that Stab(𝑠0) is trivial, and assume the C-one-

way-O(𝑠0) is hard. The 𝛼 (G, S)-GMW-FS-O(𝑠0) signature based on the 𝑡 repetitions

of 𝛼 (G, S)-GMW-O(𝑠0) protocol has existential unforgeability under chosen-message

attack (EUF-CMA) security. More specifically, for any polynomial-time quantum ad-

versary A querying the quantum random oracle 𝑄𝐻 times against EUF-CMA security

of 𝛼 (G, S)-GMW-FS-O(𝑠0) signature, there is a quantum adversary B for 𝐶-one-way-

O(𝑠0) problem such that,

Adv𝛼 (G,S)-EUF-CMA
A ≤ 𝑂

(
𝑄9
𝐻 ·

(
Adv𝐶-one-way-O(𝑠0)B

) 1
3
)
.

Remark 4.2.8. The EUF-CMA security in QROM here can be strengthened to the

sEUF-CMA security by assuming the computationally unique response property

[KLS18, Theorem 3.2]. Since we assume that the stabilizer group is trivial (perfect

unique response) which implies the computationally unique response, 𝛼 (G, S)-GMW-

FS-O(𝑠0) signature here is sEUF-CMA secure.

Remark 4.2.9. The ATFE instantiation in Section 4.4 provides meaningful realization

of Theorem 4.2.7 in a concrete group action setting. In fact, in Section 4.4, we ex-

perimentally verify that for a random alternating trilinear form, its stabilizer group is

trivial, hence supporting the security of ALTEQ in the QROM model; see Section 4.4

for more detail.

4.2.3 Proof of Theorem 4.2.7

To prove Theorem 4.2.7 we first need some preparations.

Post-Quantum ID soundness of 𝛼 (G, S)-GMW-O(𝑠0) Σ-protocol. When a Σ-

protocol is for identification, we need a definition of ID soundness to protect against

adversaries with eavesdropping attacks.

Definition 4.2.10. A Σ-protocol has post-quantum ID soundness if for any (𝑥,𝑤) ∈ 𝑅,

every adversary AOP,V =

(
AOP,V0 ,AOP,V1

)
with only the pk and polynomial times
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of queries to the valid transcripts generated with an honest prover P with pk and sk

and an honest verifierV with pk can convince an honest verifierV with a negligible

probability, i.e., the probability

Pr
[
V .Ver(pk, 𝑎, 𝑐, 𝑟 ) = 1 | 𝑎 ← AOP,V0 (pk) ∧ 𝑐 ←𝑅 {0, 1}𝜆 ∧ 𝑟 ← AOP,V1 (pk, 𝑎, 𝑐)

]
.

is negligible.

Liu and Zhandry show that post-quantum identification soundness can be satisfied

if a Σ-protocol has the weakly collapsing property and some extra properties [LZ19,

Theorem 1]. Since the perfect unique response is a stronger property than the weakly

collapsing property, we can state the result in [LZ19] as follows.

Theorem 4.2.11 ( [LZ19]). If a Σ-protocol with an exponentially large challenge space

has completeness, post-quantum 2-soundness, HVZK, and perfect unique response, it is

a Σ-protocol with post-quantum ID soundness that for any polynomial-time quantum

adversary A against post-quantum ID soundness, there is a quantum adversary B for

2-soundness such that,

AdvID-soundA ≤ 𝑂
((
Adv2-soundB

) 1
3
)
.

Corollary 4.2.12. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a group action. Suppose we have some 𝑠0 ∈

𝑆 such that Stab(𝑠0) is trivial. The 𝑡 repetitions of 𝛼 (G, S)-GMW-O(𝑠0) Σ-protocol in

Figure 4.1 is a Σ-protocol with post-quantum ID soundness that for any polynomial-time

quantum adversaryA against post-quantum ID soundness, there is a quantum adversary

B for 𝐶-one-way-O(𝑠0) problem such that,

Adv𝛼 (G,S)−IDA ≤ 𝑂
((
Adv𝐶−𝑜𝑛𝑒−𝑤𝑎𝑦−O(𝑠0)B

) 1
3
)
.

Proof. As Stab(𝑠0) is trivial, by Lemma 4.2.1, the Σ-protocol in Figure 4.1 has perfect

unique response. It also satisfies completeness, 2-soundness, and HVZK. Since the 𝑡

repetitions of Σ-protocol in Figure 4.1 has an exponentially large challenge space, we

can conclude the proof by Theorem 4.2.11. □
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Security of 𝛼 (G, S)-GMW-FS-O(𝑠0) signature. Liu and Zhandry [LZ19, Theorem

11] showed that the signature security can be reduced to the underlying Σ-protocol

with post-quantum ID soundness through a variant of Zhandry’s compressed oracle

model [Zha19]. Since min-entropy 𝛼 = Ω(𝜆) implies that the Σ-protocol has unpre-

dictable commitment, we can substitute unpredictable commitment with Ω(𝑛) bits

min-entropy to have the following theorem.

Theorem 4.2.13 ( [LZ19], Theorem 1). If a Σ-protocol has post-quantum ID sound-

ness and Ω(𝑛) bits min-entropy, the Fiat-Shamir transformation can produce a signature

scheme with EUF-CMA security that for any polynomial-time quantum adversary A

querying the quantum random oracle 𝑄𝐻 times against EUF-CMA security, there is a

quantum adversary B against ID-soundness of the underlying protocol such that,

AdvEUF-CMA
A ≤ 𝑂

(
𝑄9
𝐻 · Adv

ID-sound
B

)
.

Corollary 4.2.14. If the 𝑡 repetitions of 𝛼 (G, S)-GMW-O(𝑠0) protocol showed in Fig-

ure 4.1 has post-quantum ID soundness, then the corresponding Fiat-Shamir signature

has EUF-CMA security that for any polynomial-time quantum adversary A querying

the quantum random oracle 𝑄𝐻 times against EUF-CMA security of 𝛼 (G, S)-GMW-FS-

O(𝑠0) signature, there are quantum adversaryB against ID-soundness of 𝛼 (G, S)-GMW-

O(𝑠0) protocol such that,

Adv𝛼 (G,S)−EUF-CMA
A ≤ 𝑂

(
𝑄9
𝐻 · Adv

𝛼 (G,S)−ID
B

)
.

Proof. Assume the 𝑡 repetitions of Σ-protocol showed in Figure 4.1 has post-quantum

ID soundness. We proved that it has log2( |O(𝑠0) |) bits min-entropy, and |O(𝑠0) | =

2Ω(𝜆) . Now we complete the proof utilizing the result of Theorem 4.2.13. □

We are now ready to prove Theorem 4.2.7.

Proof of Theorem 4.2.7. By Corollary 4.2.12, we have a Σ-protocol with post-

quantum ID soundness. Then the EUF-CMA security can be achieved by Corollary

4.2.14.□
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4.3 QROM security via lossy schemes

4.3.1 Definitions and previous results

In this section, we recall the definition of lossy identification protocol [AFLT12,EKP20]

and a security result of its associated Fiat-Shamir signature in QROM from [KLS18].

Definition 4.3.1. An identification protocol ID is called lossy, denoted by IDls, if it has

one additional PPT algorithm LossyGen, called the lossy key generation that on inputs

the security parameter outputs a lossy verification key pubk. To be more precise,

LossyGen(1𝜆) generates 𝑥ls ← LossyGen(1𝜆) such that there are no𝑤 ∈ W satisfying

(𝑥ls,𝑤) ∈ R.

A lossy identification protocol is required to satisfy the following additional

properties.

Indistinguishability of lossy statements. It is required that the lossy statements gen-

erated by LossyGen(1𝜆) is indistinguishable with ones generated by Gen(1𝜆), i.e., .

for any PPT (or quantum PT) adversary A, the advantage of A against the indistin-

guishability of lossy statements

AdvlsA (𝜆) := | Pr[A(𝑥ls = 1) |𝑥ls ← LossyGen(1𝜆)]

− Pr[A(𝑥) = 1| (𝑥,𝑤) ← Gen(1𝜆)]

is negligible.

Statistical lossy soundness. Consider following experiment ExplsID,A (𝜆) between an ad-

versary A and a challenger.

• The challenger runs 𝑥ls ← LossyGen(1𝜆) and provides 𝑥ls to the adversary A.

• On input 𝑥ls, the adversary A selects a commitment 𝑎 and sends it to the chal-

lenger who responds with a random challenge 𝑐 .

• On input (𝑎, 𝑐), the adversary A outputs a response 𝑟 .
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• Return 1 if (𝑎, 𝑐, 𝑟 ) is a valid transcript for 𝑥ls, and 0 otherwise.

We say that the lossy identification protocol IDls is 𝜖ls-lossy sound if for any un-

bounded (possibly quantum) adversaryA, the probability of winning the experiment

ExplsID,A (𝜆) is less than 𝜖ls, i.e.,

Pr[ExplsID,A (𝜆) = 1] ≤ 𝜖ls.

Fiat-Shamir transformation applied to a lossy identification protocol yields a

tightly secure signature in QROM [KLS18,LZ19,DFMS19].

Theorem 4.3.2 ( [KLS18, Theorem 3.1]). Assume that the identification protocol ID

is lossy, perfect HVZK, has 𝛼 bits of min-entropy, and it is 𝜖ls-lossily sound. Then the

signature scheme FS[ID] obtained from applying the Fiat-Shamir transformation to ID

is such that for any quantum adversary A against the sEUF-CMA security that issues

at most 𝑄𝐻 queries to the quantum random oracle, there exist a quantum adversary B

against the lossiness and C against the computation unique response such that

AdvsEUF-CMA
A (𝜆) ≤ AdvlsB (𝜆) + 2

−𝛼+1 + 8(𝑄𝐻 + 1)2 · 𝜖ls + AdvCURC (𝜆),

and Time(B) = Time(C) = Time(D) = Time(A) +𝑄𝐻 � Time(A).

In the classical setting, we can replace 8(𝑄𝐻 + 1)2 by (𝑄𝐻 + 1).

4.3.2 Lossy identification protocol from abstract group actions

In this section, we define a lossy identification protocol based on the𝐾-pseudorandom

assumption in Definition 4.1.2. The underlying sigma protocol is the 𝛼 (G, S)-GMW

protocol in Figure 4.1. Here, we consider a relation R consisting of statement-witness

pairs (𝑥,𝑤) with 𝑥 = {𝑠0, 𝑠1, . . . , 𝑠𝐶−1} ⊆ 𝑆 and 𝑤 = {𝑔1, . . . , 𝑔𝐶−1} ⊆ 𝐺 , where

𝛼 (𝑔𝑖, 𝑠0) = 𝑠𝑖 for each 𝑖 ∈ [𝐶 − 1].

The lossy identification scheme for the relation R defined as above with challenge

space {0, 1, · · · ,𝐶 − 1} consists of five algorithms (IGen, LossyGen,P1,P2,V) as fol-

lows. Note that the new addition is the LossyGen algorithm.
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• Algorithm IGen randomly samples an element 𝑠0 ∈ 𝑆 and group elements

𝑔1, · · · , 𝑔𝐶−1 ∈𝑅 𝐺 . It outputs a statement 𝑥 = (𝑠0, 𝑠1, · · · , 𝑠𝐶−1) with 𝑠𝑖 = 𝛼 (𝑔𝑖, 𝑠0)

for 𝑖 = 1, · · · ,𝐶 − 1, and a witness𝑤 = (𝑔1, · · · , 𝑔𝐶−1).

• Algorithm LossyGen randomly samples set elements 𝑠0, 𝑠1, · · · , 𝑠𝐾−1 ∈ 𝑆 and

outputs a lossy statement 𝑥ls = (𝑠0, 𝑠1, · · · , 𝑠𝐶−1).

• On input a statement-witness pair (𝑥,𝑤), P1 samples a random group element

ℎ ∈𝑅 𝐺 and outputs the commitment 𝑡 = 𝛼 (ℎ, 𝑠0).

• On input (𝑥,𝑤, 𝑡, 𝑐) where 𝑐 ∈ {0, 1, · · · ,𝐶 − 1} is a challenge, P2 outputs a

response 𝑓 = ℎ ∗ 𝑔𝑐 .

• On input (𝑥, 𝑡, 𝑐, 𝑓 ), the verification algorithmV check whether 𝑡 = 𝛼 (𝑓 , 𝑠𝑐).

Security analysis.

Since the underlying protocol is the same as in Figure 4.1, it is clear that our lossy

identification protocol is complete, has 𝛼-bit min-entropy with 𝛼 ≈ log2 |O|, satisfies

HVZK property and commitment recoverability. It remains to show that our proto-

col has indistinguishability of lossy statements, and to calculate the statistical lossy

soundness.

Lemma 4.3.3. Suppose 𝛼 : 𝐺 × 𝑆 → 𝑆 satisfies the 𝐶-pseudorandom assumption as

in Definition 4.1.2. Then the lossy identification protocol satisfies the lossy statement

indistinguishability.

Proof. The lossy generator of our protocol just random samples 𝐶 elements

𝑠0, 𝑠1, · · · , 𝑠𝐶−1 ∈𝑅 𝑆 . By the hardness assumption of the 𝐶-pseudorandom problem,

lossy statements and real statements are indistinguishable. □

The following lemma calculates the lossy soundness parameter 𝜖ls.

Lemma 4.3.4. The lossy identification protocol satisfies statistical 𝜖ls-lossy soundness

for 𝜖ls = 1
𝐶

∏𝐶−1
𝑖=1

𝐴−𝑖𝐵
𝐴
+

(
1 −∏𝐶−1

𝑖=1
𝐴−𝑖𝐵
𝐴

)
, where 𝐵 = |𝐺 |, 𝐴 = |𝑆 |.
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Proof. This proof is similar to the proof of [EKP20, Lemma 3.3]. Let X be the set of

the statements such that given a commitment 𝑧 ∈𝑅 𝑆 , there is only one challenge 𝑐

resulting in a valid transcript. Consider other commitment 𝑧 with two valid transcripts

(𝑧, 𝑐0, 𝑔0) and (𝑧, 𝑐1, 𝑔1) where these two transcripts satisfy following equations:

𝛼 (𝑔0, 𝑠𝑐0) = 𝑧

𝛼 (𝑔1, 𝑠𝑐1) = 𝑧.

It implies that 𝛼 (𝑔0 ∗ 𝑔−11 , 𝑠𝑐0) = 𝑠𝑐1 , i.e., 𝑠𝑐0 and 𝑠𝑐1 are in the same orbit. Therefore, if

any two elements in the statement are not in the same orbit, the statement can’t have

two valid transcripts with different challenges.

The number of different statements in X is 𝐴
∏𝐶−1
𝑖=1 (𝐴 − 𝑖 |O𝑖 |) ≥ 𝐴

∏𝐶−1
𝑖=1 (𝐴 − 𝑖𝐵),

where |O𝑖 | is the size of O𝑖 and |O𝑖 | ≤ 𝐵. The number of all statements is 𝐴𝐶 . Then

we can have the probability that a statement is in X is Pr[𝑥 ∈ X | 𝑥 ← LossyGen] ≥∏𝐶−1
𝑖=1

𝐴−𝑖𝐵
𝐴

. We can obtain the probability that an adversary wins as follows:

Pr[A wins ] = Pr[A wins | 𝑥 ∈ X] Pr[𝑥 ∈ X] + Pr[A wins | 𝑥 ∉ X] Pr[𝑥 ∉ X]

≤ Pr[A wins | 𝑥 ∈ X] Pr[𝑥 ∈ X] + Pr[𝑥 ∉ X]

= Pr[A wins | 𝑥 ∈ X] Pr[𝑥 ∈ X] + (1 − Pr[𝑥 ∈ X])

= (Pr[A wins | 𝑥 ∈ X] − 1) Pr[𝑥 ∈ X] + 1

≤ (Pr[A wins | 𝑥 ∈ X] − 1)
𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴
+ 1

= Pr[A wins | 𝑥 ∈ X]
𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴
+

(
1 −

𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴

)
.

Note that the second inquality is due to Pr[A wins | 𝑥 ∈ X] − 1 ≤ 0. This completes

the proof. □

Lemma 4.3.4 implies the following for a 𝑡-parallel repetition of the lossy identifi-

cation protocol.



CHAPTER 4. QUANTUM RANDOM ORACLE MODEL (QROM) SECURITY 86

Corollary 4.3.5. The lossy identification protocol in Figure 4.1, that is run 𝑡 parallel

rounds with the same statement-witness pair, satisfies statistical 𝜖ls-lossy soundness for

𝜖ls =
1
𝐶𝑡

∏𝐶−1
𝑖=1

𝐴−𝑖𝐵
𝐴
+

(
1 −∏𝐶−1

𝑖=1
𝐴−𝑖𝐵
𝐴

)
, where 𝐴 = |𝑆 |, 𝐵 = |𝐺 |, and |𝐶 | is the size of the

challenge space.

Remark 4.3.6. For our ATFE instantiation in Section 4.4, 𝐵 is the order of the general

linear group GL(𝑛, 𝑞) and 𝐴 is the size of ATF(𝑛, 𝑞) which is far greater than 𝐵 as the

parameter 𝑛 is large enough. Therefore, the error 𝜖ls is estimated to be 2−𝜆 where 𝜆 is

the security level; see Section 4.4 for the detail.

4.3.3 Tightly secure signature scheme in QROM from abstract

group actions

A digital signature scheme can be obtained by applying the Fiat-Shamir transforma-

tion to the 𝑡-fold parallel repetition of the lossy identification protocol in Section 4.3.2.

We call this the 𝛼 (G, S)-GMW-FS-lossy scheme. Note that this result is essentially the

same scheme as the 𝛼 (G, S)-GMW-FS scheme, as the additional LossyGen algorithm

used for lossy key generation is only used for security analysis.

We now prove the QROM security of 𝛼 (G, S)-GMW-FS-lossy based on the 𝐶-

pseudorandom assumption and the computational unique response assumption as in

Lemma 4.2.4.

Theorem 4.3.7. For any quantum adversary A against the sEUF-CMA security of

𝛼 (G, S)-GMW-FS-lossy that issues at most 𝑄𝐻 queries to the quantum random oracle,

there exists a quantum adversary B against the 𝐶-pseudorandomness (Definition 4.1.2),

a quantum adversary C against the 𝛼 (G, S)-stabilizer problem (Definition 4.2.3) such

that

Adv𝛼 (G,S)-GMW-FS-lossy-sEUF-CMA(𝜆)
A

≤ Adv𝐶-pseudorandomB (𝜆) + 2
|O|
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+ 8(𝑄𝐻 + 1)2 ·
(
1
𝐶𝑡

𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴
+

(
1 −

𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴

))
+ Adv𝛼 (G,S)-StabC (𝜆)

and Time(B) = Time(A) +𝑄𝐻 � Time(A). Here 𝐵 = |𝐺 |, 𝐴 = |𝑆 |, and |O| is the size

of the orbit where elements of the statement 𝑥 = (𝑠0, 𝑠1, · · · , 𝑠𝐶−1) are in.

In the classical setting, we can replace 8(𝑄𝐻 + 1)2 with 𝑄𝐻 + 1.

Proof. The proof initializes with Lemma 4.2.4 and Section 4.3.2 that the underlying

sigma protocol has computational unique response, lossiness, lossy-soundness, per-

fect HVZK and at least log( |O|) bits of min-entropy. The result now follows from

Theorem 4.3.2. □

4.4 The QROM security of the ALTEQ scheme

Based on the results in Sections 4.2, there are two approaches to show the QROM

security of the ALTEQ scheme.

QROM security via perfect unique response.

Let 𝜙 : F𝑛𝑞 ×F𝑛𝑞 ×F𝑛𝑞 → F𝑞 be an alternating trilinear form. Recall that Stab(𝜙) := {𝐴 ∈

GL(𝑛, 𝑞) | 𝜙 ◦𝐴 = 𝜙}.

By Lemma 4.2.1, the ATFE-GMW-FS-O(𝜙) is secure in the quantum model, if

Stab(𝜙) is trivial and assume the𝐶-one-way-O(𝜙), where 𝜙 is instantiated as an alter-

nating trilinear form. To decide whether Stab(𝜙) is trivial or not is a difficult algorith-

mic problem. Still, we make progress by running experiments for those 𝑛 of interest

in our context.

Basic facts about Stab(𝜙). First, note that if 3|𝑞 − 1, then Stab(𝜙) cannot be trivial.

This is because 3|𝑞 − 1 implies the existence of 𝜆 ∈ F𝑞 , 𝜆 ≠ 1, and 𝜆3 = 1. Therefore

𝜆𝐼𝑛 ∈ Aut(𝜙). Second, for (a) 𝑛 = 7 and (b) 𝑛 = 8 and char(F𝑞) ≠ 3, there exist

no alternating trilinear forms with trivial automorphism groups, by classifications of
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alternating trilinear forms in these cases [CH88,MN13, HP15]. Third, for 𝑛 = 9 and

𝑞 = 2, by the classification of alternating trilinear forms [HP21], there exists a unique

orbit of alternating trilinear forms with trivial automorphism groups.

In general, because of the difference between the dimension of GL(𝑛, 𝑞) (which is

𝑛2) and the dimension of ATF(𝑛, 𝑞) (which is
(𝑛
3
)
), it is expected that for 𝑛 ≥ 10 and

3 ∤ 𝑞−1, most alternating trilinear forms would have the trivial automorphism group.

A Magma program to compute the stabilizer group order. We implemented a

program in Magma [BJP97] for computing automorphism group orders of alternating

trilinear forms as follows.

(1) Enumerate every 𝑣 ∈ F𝑛𝑞 and compute the rank of 𝜙 (𝑣, ·, ·) as an alternating

bilinear form. Let 𝑆 ⊆ F𝑛𝑞 be the set of non-zero vectors such that 𝜙 (𝑣, ·, ·) is of

lowest rank.

(2) Fix 𝑢 ∈ 𝑆 . Let 𝑋 and 𝑌 be two 𝑛 × 𝑛 variable matrices. For every 𝑣 ∈ 𝑆 , set up a

system of polynomial equations expressing the following:

a) 𝜙 ◦ 𝑋 = 𝜙 , and 𝜙 = 𝜙 ◦ 𝑌 .

b) For any 𝑎, 𝑏, 𝑐 ∈ F𝑛 , 𝜙 (𝑋 (𝑎), 𝑋 (𝑏), 𝑐) = 𝜙 (𝑎, 𝑏, 𝑌 (𝑐)), and 𝜙 (𝑋 (𝑎), 𝑏, 𝑐) =

𝜙 (𝑎,𝑌 (𝑏), 𝑌 (𝑐)).

c) 𝑋𝑌 = 𝐼𝑛 , and 𝑌𝑋 = 𝐼𝑛 .

d) 𝑋 (𝑢) = 𝑣 , and 𝑌 (𝑣) = 𝑢.

The use the Gröbner basis algorithm implemented in Magma to compute the

number of solutions to this system of polynomial equations. Let it be 𝑠𝑣 .

(3) Sum over 𝑠𝑣 over 𝑣 ∈ 𝑆 as the order of Stab(𝜙).

This algorithm runs in time 𝑞𝑛 · poly(𝑛, log𝑞). The use of Gröbner computations fol-

lows the practices of works in multivariate cryptography for solving polynomial iso-

morphism [FP06,Bou11,BFFP11,BFV13]. The reason for Step 1 is to limit the number
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of Gröbner basis computations, which are more costly compared to computing the

ranks. This idea could be found, for example, in [BLQW20].

Report on the results. Our experiment results are as follows.

• For𝑞 = 2 and𝑛 = 9, out of 100 samples there are three ones with trivial stabilizer

groups. This is consistent with the fact that there exists exactly one orbit of

alternating trilinear forms [HP21], so the probability of sampling one from this

orbit is |GL(2, 9) |/284 ≈ 3.6169%.

• For 𝑞 = 2 and 𝑛 = 10, 11, all 100 samples return trivial stabilizer groups.

• For 𝑞 = 3 and 𝑛 = 10, 11, all 10 samples return trivial stabilizer groups.

These suggest that for 𝑛 = 10 and 𝑞 satisfying 3 ∤ 𝑞 − 1, a random alternating trilinear

form has the trivial automorphism group with good probability. This also implies that

for larger 𝑛 and 𝑞 such that 3 ∤ 𝑞−1, a random alternating trilinear form has the trivial

automorphism group with high probability, as the gap between the space dimension

and the group dimension becomes larger as 𝑛 increases. To the best of our knowledge,

to give an estimation of this probability (depending on 𝑞 and 𝑛) is an open problem.

QROM security via lossy schemes. In the above, we presented evidence for the

ALTEQ to satisfy the perfect unique response property for 𝑛 ≥ 10, supporting its

QROM security by the results in Section 4.2. However, the reduction in this approach

is not tight. Instead, the QROM security via the lossy scheme approach gives a tight

reduction.

To apply the results in Section 4.3 to the ALTEQ scheme, we need to examine

whether the group action underlying ATFE is pseudorandom. In Conjecture 3.3.9,

we conjectured that this is indeed the case, and provided some supporting evidence,

some of which traced back to [JQSY19]. Here we briefly explain that, a key argument

is that there seem no easy-to-compute isomorphism invariants for ATFE, as such iso-

morphism invariants can be used to distinguish non-equivalent alternating trilinear

forms.
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If the above holds, then 𝐵 = |GL(𝑛, 𝑞) | ≈ 𝑞𝑛2 and 𝐴 = |ATF(𝑛, 𝑞) | = 𝑞(𝑛3) , 𝐴 ≫ 𝐵 as

the security parameter 𝜆 is large enough. Therefore, the lossy soundness 𝜖𝑙𝑠 ≈ 1
𝐶𝑡
≈ 1

2𝜆 .

Lossy schemes with unbalanced challenges. Recall the unbalanced challenge

technique described in Section 3.5. The idea is to observe that, in the case of chal-

lenge 0, the response would be a random group element that can be expanded from a

short seed, so sending the seed reduces the communication. As a result, the number of

rounds needs to be increased. This is a standard technique that turns out to be useful

in practice as witnessed in [BBPS21,CNP+23b,BDN+23].

Recall the parameters involved in the ALTEQ scheme with unbalanced challenges

are as follows. Let 𝑀 be the round number, 𝐾 be the number of non-zero challenges,

and𝐶 the number of alternating trilinear forms in each round. To achieve 𝜆-bit secu-

rity, we should choose the proper 𝑀 and 𝐾 such that
(𝑀
𝐾

)
· (𝐶 − 1)𝐾 ⩾ 2𝜆 . Some care

is then needed to demonstrate the lossy soundness in this setting.

Corollary 4.4.1. The lossy identification protocol based on ATFE with the unbalanced

challenge, satisfies statistical 𝜖ls-lossy soundness for

𝜖ls =
1(𝑀

𝐾

)
(𝐶 − 1)𝐾

𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴
+

(
1 −

𝐶−1∏
𝑖=1

𝐴 − 𝑖𝐵
𝐴

)
,

where 𝐴 = |ATF(𝑛, 𝑞) |, 𝐵 = |GL(𝑛, 𝑞) |.

Proof. Since the size of the challenge space is
(𝑀
𝐾

)
(𝐶 − 1)𝐾 , we have that Pr[A wins |

𝑥 ∈ X] ≤ 1
(𝑀𝐾 ) (𝐶−1)𝐾

. The result follows the proof for Lemma 4.3.4. □
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Chapter 5

Linkable ring signatures based on

group action

5.1 Chapter preliminaries

5.1.1 Ring signatures

In this section, we provide the definition of the ring signature.

Definition 5.1.1 (Ring signature). A ring signature scheme ΠRS consists of three 𝑃𝑃𝑇

algorithms (RS.KeyGen,RS.Sign,RS.Verify) where,

• RS.SetUp(1𝜆): Given a security parameter 𝜆, this algorithm outputs the corre-

sponding public parameters pp.

• RS.KeyGen(pp): This algorithm generates, for a user 𝑖 , a pair (vk𝑖, sk𝑖) of the

secret key sk𝑖 and public key (verification key) vk𝑖 .

• RS.Sign(sk𝑖,R,M): Given the secret key sk𝑖 , a list of public keys R =

{vk1, . . . , vk𝑁 } and a message M, it outputs a signature 𝜎 .

• RS.Verify(R,M, 𝜎): Given a list of public key R = {vk1, . . . , vk𝑁 }, a message M

and a signature𝜎 , this algorithm output 1 if this signature is valid or 0 otherwise.
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A ring signature needs to satisfy three properties: correctness, anonymity and

unforgeability.

Correctness. A ring signature ΠRS is said to be correct if for any security

parameter 𝜆, polynomial 𝑁 = poly, any message M, pp ← RS.SetUp(1𝜆),

(vk1, sk1), . . . , (vk𝑁 , sk𝑁 ) ← RS.KeyGen(pp), 𝜎 ← RS.Sign(sk𝑖,R,M) with R :=

{vk1, . . . , vk𝑁 }, it always holds that RS.Verify(R,M, 𝜎) = 1.

Anonymity. A ring signature ΠRS is said to be anonymous if for every security pa-

rameter 𝜆 and polynomial 𝑁 = poly, any PPT adversary A has at most negligible

advantage in the following game:

(1) The challenger runs pp ← RS.SetUp(1𝜆) and generates key pairs (vk𝑖, sk𝑖) ←

RS.KeyGen(pp) for all 𝑖 ∈ [𝑁 ] and samples 𝑏 ←𝑅 {0, 1}. Then it sends pp and

the secret keys {sk𝑖}𝑖∈[𝑁 ] to A.

(2) A computes a challenge (R,M, 𝑖0, 𝑖1), where R contains vk𝑖0 and vk𝑖1 , and sends

it to the challenger.

(3) The challenger runs RS.Sign(sk𝑖𝑏 ,R,M) → 𝜎 and sends 𝜎 to A.

(4) A outputs 𝑏′. If 𝑏 = 𝑏′, then we say that A wins this game.

The advantage of A is

AdvAnonRS (A) = |Pr[A wins] − 1/2| .

Unforgeability. A ring signature ΠRS is said to be unforgeable if for every security

parameter 𝜆 and polynomial 𝑁 = poly, any PPT adversary A has at most negligible

probability to win the following game:

(1) The challenger runs pp ← RS.SetUp(1𝜆) and generates key pairs (vk𝑖, sk𝑖) ←

RS.KeyGen(pp) for all 𝑖 ∈ [𝑁 ]. It sends the list of public keys VK = {vk𝑖}𝑖∈[𝑁 ]
to A and prepares two empty list SL and CL.

(2) A can make polynomial times of signing queries and corrupting queries:

– (sign, 𝑖,R,M): The challenger outputs the signature 𝜎 ←

RS.Sign(sk𝑖,R,M) to A and adds (𝑖,R,M) to SL.
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– (corrupt, 𝑖) The challenger sends sk𝑖 to A and adds vk𝑖 to CL.

(3) We say A wins this game if A outputs (R′,M′, 𝜎′) such that R′ ⊆ VK \ CL,

(·,R′,M′) ∉ SL, and RS.Verify(R′,M′, 𝜎′) = 1.

5.1.2 Linkable ring signatures

A linkable ring signature is a variant of a ring signature in which the linkability can

detect if a secret key is used more than once. The definition and properties of linkable

ring signature, following [BKP20], are provided as follows.

Definition 5.1.2 (Linkable ring signature). A linkable ring signature scheme ΠLRS

consists of three 𝑃𝑃𝑇 algorithms in the ring signature in additionwith a 𝑃𝑃𝑇 algorithm

such that:

• LRS.Link(𝜎0, 𝜎1): It checks if two signatures 𝜎0, 𝜎1 are produced with a same

secret key, and outputs 1 if it is the case and 0 otherwise.

Correctness: A linkable ring signature ΠLRS is said to have correctness if for any

security parameter 𝜆, polynomial 𝑁 = poly, two messages M0,M1, two sets 𝐷0, 𝐷1 ⊆

[𝑁 ] such that 𝑗 ∈ 𝐷0 ∩ 𝐷1, pp ← LRS.SetUp(1𝜆), {(vk1, sk1), . . . , (vk𝑁 , sk𝑁 )} ←

RS.KeyGen(pp), a random bit 𝑏 ← {0, 1}, 𝜎𝑏 ← LRS.Sign(sk 𝑗 ,R𝑏,M𝑏) with R𝑏 :=

{vk𝑖}𝑖∈𝐷𝑏 , it always holds that LRS.Verify(R,M, 𝜎𝑏) = 1 and LRS.Link(𝜎0, 𝜎1) = 1.

Linkability: A ring signature ΠLRS is said to be unforgeable if for every security

parameter 𝜆 and polynomial 𝑁 = poly, any PPT adversary A has at most negligible

probability to win the following game:

(1) The challenger runs pp← LRS.SetUp(1𝜆) and send pp to A.

(2) A generates public keys and secret keys ({vk𝑖, sk𝑖}) ← LRS.KeyGen(pp)) for

𝑖 ∈ [𝑁 ], and then produces a set (𝜎𝑖,M𝑖,R𝑖)𝑖∈[𝑁+1] .

(3) We say A wins this game if all the following conditions are satisfied:

– ∀𝑖 ∈ [𝑁 + 1], have R𝑖 ⊆ VK;

– ∀𝑖 ∈ [𝑁 + 1], have LRS.Verify(R𝑖,M𝑖, 𝜎𝑖) = 1;
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– ∀𝑖, 𝑗 ∈ [𝑁 + 1], where 𝑖 ≠ 𝑗 , have LRS.Link(𝜎𝑖, 𝜎 𝑗 ) = 0.

Linkable Anonymity: A ring signature ΠLRS is said to be linkable anonymous if for

every security parameter 𝜆 and polynomial 𝑁 = poly, any PPT adversary A has at

most negligible advantage in the following game:

(1) The challenger runs pp← LRS.SetUp(1𝜆) generates public keys and secret keys

({vk𝑖, sk𝑖}) ← RS.KeyGen(pp; rr𝑖) for 𝑖 ∈ [𝑁 ] using random coins rr𝑖 and it

also samples a ramdom bit 𝑏 ∈ {0, 1}. Then it sends the public keys VK =

{vk0, . . . , vk𝑁 } to A.

(2) A sends two public keys vk′0, vk
′
1 to the challenger, and we let sk′0, sk

′
1 be the

corresponding secret keys.

(3) The challenger outputs rr𝑖 of the corresponding vk𝑖 ⊆ VK \ {vk′0, vk′1}.

(4) A chooses a public key vk ∈ {vk′0, vk′1} and provides a messageM and a ring R

that {vk′0, vk′1} ⊆ R to query the challenger:

– If vk = vk′0, the challenger outputs the signature LRS.Sign(𝑠𝑘𝑏,R,M) → 𝜎 .

– If vk = vk′1, the challenger outputs the signature LRS.Sign(𝑠𝑘1−𝑏,R,M) →

𝜎 .

(5) A output a guess 𝑏′. If 𝑏 = 𝑏′, we say A wins this game.

The advantage of A is AdvAnonLRS (A) = | Pr[A wins] − 1/2|.

Non-frameability: A ring signature ΠLRS is said to be non-frameable if for every

security parameter 𝜆 and polynomial 𝑁 = poly, any PPT adversary A has at most

negligible probability to win the following game:

(1) The challenger runs pp← LRS.SetUp(1𝜆) generates public keys and secret keys

({vk𝑖, sk𝑖}) ← RS.KeyGen(pp) for 𝑖 ∈ [𝑁 ]. It sends the list of public keys

VK = {vk𝑖}𝑖∈[𝑁 ] to A and prepares two empty list SL and CL.

(2) A can make polynomial times of signing queries and corrupting queries:

– (sign, 𝑖,R,M): The challenger outputs the signature LRS.Sign(sk𝑖,R,M) →

𝜎 to A and adds (𝑖,R,M) to SL.
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– (corrupt, 𝑖): The challenger sends the random bits r𝑖 to A and adds vk𝑖 to

CL.

(3) We say A wins this game if A outputs (R′,M′, 𝜎′) such that (·,M′,R′) ∉ SL,

LRS.Verify(R′,M′, 𝜎′) = 1, and for some query (𝑖,R,M) ∈ SL where the

identity 𝑖 satisfies vk𝑖 ∈ VK \ CL, the challenger outputs a signature 𝜎 that

LRS.Link(𝜎′, 𝜎) = 1 holds.

Unforgeability: The definition of unforgeability remains the same as that of the

normal ring signature. The unforgeability can be easily derived from the linkable

anonymity and the non-frameability.

5.2 Ring signatures from abstract group actions

In this section, we describe the construction of linkable ring signatures from abstract

group actions. It follows the framework of Beullens, Katsumata and Pintore [BKP20],

so we call it the GMW-FS-BKP design. While [BKP20] focussed on commutative

group actions, their ring signature construction readily applies to general group ac-

tions. In fact, for our group action framework, the scheme becomes a bit simpler

because [BKP20] needs to work with rejection sampling.

5.2.1 Base OR-Sigma protocol from abstract group actions

Before introducing the base OR-Sigma protocol, let’s recall a useful tree structure,

namely the index-hiding Merkle tree from [BKP20].

Index-hiding Merkle trees. Merkle trees [Mer89] are used widely in signature

scheme designs, including recent works on isogeny-based signatures [BKV19, FG19].

It provides a method for hashing a list of elements 𝐴 = (𝑎0, . . . , 𝑎𝑁 ) into a single hash

value, commonly called the root. Subsequently, one can efficiently demonstrate to a

third party that a specific element 𝑎𝑖 is part of the list 𝐴 at a certain position. In the

following discussion, we consider a slightly modified version of the standard Merkle
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P1(𝑠1, . . . , 𝑠𝑁 )
1 : seed←𝑅 {0, 1}𝜆

2 : (ℎ, bits1, . . . , bits𝑁 ) ← PRG(seed)
3 : for 𝑖 from 1 to 𝑁 do
4 : 𝑡𝑖 ← 𝛼 (ℎ, 𝑠𝑖)
5 : C𝑖 ← Com(𝑡𝑖 , bits𝑖)
6 : (root, tree) ← MerkleTree(C1, . . . ,C𝑁 )
7 : com← root

8 : The prover P sends the commitment com to the verifierV

V1(com)
1 : 𝑐 ←𝑅 {0, 1}
2 : cha← 𝑐

3 : The verifierV sends the challenge cha to the prover P

P2(𝑔𝐼 , 𝐼 , cha)
1 : 𝑐 ← cha

2 : if 𝑐 = 0 then
3 : 𝑓 ← ℎ ∗ 𝑔𝐼
4 : path← getMerklePath(tree, 𝐼 )
5 : rsp← (𝑓 , path, bits𝐼 )
6 : else
7 : rsp← seed

8 : The prover P sends the response rsp to the verifierV

V2(com, cha, rsp, 𝑠0, 𝑠1, . . . , 𝑠𝑁 )
1 : (root, 𝑐) ← (com, cha)
2 : if 𝑐 = 0 then
3 : (𝑓 , path, bits) ← rsp

4 : 𝑡 ← 𝛼 (𝑓 , 𝑠0)
5 : C̃← Com(𝑡, bits)
6 : r̃oot← ReconstructRoot(C̃, path)
7 : The verifierV outputs accept if r̃oot = root, else outputs reject
8 : else
9 : seed← rsp

10 : r̃oot← P1((𝑠1, . . . , 𝑠𝑁 ), seed)
11 : The verifierV outputs accept if r̃oot = root, else outputs reject

Figure 5.1: OR-Sigma protocol.
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tree. This modification enables the proof of inclusion of a specific element 𝑎𝑖 with-

out disclosing its exact position within the list. Formally, the Merkle tree consists of

three algorithms (MerkleTree, getMerklePath,ReconstructRoot) with a hash function

HColl : {0, 1}∗ → {0, 1}2𝜆 .

• MerkleTree(𝐴) → (root, tree): On input a list of 2𝑘 elements 𝐴 = (𝑎1, . . . , 𝑎2𝑘 )

with 𝑘 ∈ N, it constructs a binary tree of height 𝑘 . Its leaves consist of the hash

values of the list elements, and each internal node is equal to the concatenated

hash value of its two children, e.g. HColl(ℎleft | |ℎright). Here we consider another

way of concatenation, that is, sorting the two child nodes according to the lex-

icographical order, e.g. HColl((ℎleft | |ℎright)lex). The algorithm then outputs the

root root of the Merkle tree, as well as a description of the entire tree tree.

• getMerklePath(tree, 𝐼 ) → path: On input the description of a Merkle tree tree

and an index 𝑖 ∈ [2𝑘], it outputs the list path, which contains k nodes in the

tree. They are sorted by the siblings ofHColl(𝑎𝐼 ) and their parents’ siblings.

• ReconstructRoot(𝑎, path) → root: On input an element 𝑎 in the list of elements

𝐴 = (𝑎1, . . . , 𝑎2𝑘 ) and path = (𝑛1, . . . , 𝑛𝑘), it outputs a reconstructed root (a hash

value), which is calculated by putting ℎ0 = HColl(𝑎) and defining ℎ𝑖 for 𝑖 ∈ [𝑘]

recursively as ℎ𝑖 = HColl((ℎ𝑖−1, 𝑛𝑖)lex).

The Beullens-Katsumata-Pintore design. Briefly speaking, the GMW-FS-BKP

ring signature is obtained by applying the Fiat-Shamir transformation to an OR-Sigma

protocol, which is an interactive protocol in which a prover convinces a verifier that

she knows the witness of one of several given inputs without revealing which one.

Here, we describe the base OR-Sigma protocol (see Figure 5.1) for an abstract group

action.

Let 𝑔1, 𝑔2, . . . , 𝑔𝑁 ←𝑅 𝐺 be the secret keys, and 𝑠1 = 𝛼 (𝑔1, 𝑠0), . . . , 𝑠𝑁 = 𝛼 (𝑔𝑁 , 𝑠0)

be the public keys, Com be a commitment scheme. The base OR-Sigma protocol with

statement {𝑠0, . . . , 𝑠𝑁 ∈ 𝑆} andwitness {𝑔𝐼 ∈ 𝐺, 𝐼 ∈ [𝑁 ] such that 𝛼 (𝑔𝐼 , 𝑠0) = 𝑠𝐼 }, works

as follows.
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(1) First, the prover random sample a group elementℎ ∈ 𝐺 , and apply it to 𝑠1, . . . , 𝑠𝑁
respectively. Specifically, 𝑡1 = 𝛼 (ℎ, 𝑠1), . . . , 𝑡𝑁 = 𝛼 (ℎ, 𝑠𝑁 ). Then the prover sam-

ples bits𝑖 ←𝑅 {0, 1}𝜆 and commits to 𝑡𝑖 with C𝑖 = Com(𝑡𝑖, bits𝑖). The prover

further builds a Merkle tree with the (C1, . . . ,C𝑁 ) as its leaves. The prover

computes the root root of the Merkle tree and sends it to the verifier as the

commitment.

(2) When the verifier receives the commitment, it will randomly sample a challenge

𝑐 ←𝑅 {0, 1} and respond to the prover.

(3) If 𝑐 = 0, then the prover computes 𝑓 = ℎ ∗ 𝑔𝐼 and the authenticated path for C𝐼 .

The prover sends back a response rsp = (𝑓 , path, bits𝐼 ). The verifier applies 𝑓

to 𝑠0 to get 𝑡 and computes C̃ = Com(𝑡, bits𝐼 ). The verifier then get a root r̃oot

by path and C̃. Finally the verifier checks whether r̃oot = root.

(4) If 𝑐 = 1, then the prover sends (ℎ, bits1, . . . , bits𝑁 ) to the verifier. This informa-

tion allows the verifier to rebuild a Merkle tree as in step 1, and then check that

the roots are consistent.

5.2.2 Optimization

Following some optimization techniques used in [BKP20], we can have amore efficient

OR-Sigma protocol. We just briefly describe the following three techniques, for more

details please see [BKP20, Section 3.4].

(1) The challenge space of the original challenge space is binary. One can observe

that the response with challenge cha = 0 is more costly than that challenge

cha = 1. Instead of choosing the challenge bit uniformly in each round, we exe-

cute OR sigma protocol 𝑀 > 𝜆 rounds and fix exactly 𝐾 rounds with challenge

cha = 0. To satisfy the 𝜆 bits of security, we can choose proper parameters𝑀,𝐾

such that
(𝑀
𝐾

)
≥ 2𝜆 . Denote𝐶𝑀,𝐾 as the set of strings in {0, 1}𝑀 with 𝐾-bits of 0.
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(2) With the unbalanced challenge space technique, we do 𝑀 executions of OR

sigma protocol and 𝑀 − 𝐾 executions respond with random seeds. In-

stead of randomly sampling 𝑀 independent seeds, we can utilize a seed tree

to generate these seeds. Then prover can responsd with seedsinternal ←

ReleaseSeeds(seedroot, 𝑐) instead of𝑀 − 𝐾 seeds, where c is randomly sampled

from 𝐶𝑀,𝐾 . The verifier can use seedsinternal and c to recover 𝑀 − 𝐾 seeds by

RecoverLeaves(seedsinternal, c). Note that here we divide M leaves into K parts,

and put a leaf corresponding to c𝑖,𝑖∈[𝑀] = 0 in each part, which leads to a smaller

upper bound 𝐾 · log2(𝑀𝐾 ) for the internal seeds.

(3) Adding salt is a well-known technique that allows us to have tighter security

proofs for zero-knowledge. Also, it avoids multi-target attacks, as in [DN19],

without affecting too much efficiency.

After applying the above methods, we obtain the optimized base OR sigma proto-

col shown in Figure 5.2 where we simplify internal seeds seedsinternal as seedsint, the

SeedTree function as Sd, the ReleaseSeeds function as Rls, the RecoverLeaves func-

tion as Rcv, the seed expander and the commitment scheme O(salt| |·) with salt as Os
and the seed expander and the commitment scheme O(salt| |𝑖 | |·) with salt and the 𝑖th

instance as Os𝑖 .

Note that the group action 𝛼 with one-way assumption satisfies the definition of

admissible group action in [BKP20]. Then we prove the security of the optimized base

OR-Sigma protocol shown in Figure 5.2 as follows.

Theorem 5.2.1. Define the following relation

𝑅 =

((𝑠0, 𝑠1, . . . , 𝑠𝑁 ), (𝑔, 𝐼 ))
������ 𝑔 ∈ 𝐺, 𝑠𝑖 ∈ 𝑆

𝐼 ∈ [𝑁 ], 𝑠𝐼 = 𝛼 (𝑔, 𝑠0)

 ,
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P′1(𝑠1, . . . , 𝑠𝑁 )
1 : seedroot ←𝑅 {0, 1}𝜆

2 : salt←𝑅 {0, 1}2𝜆

3 : (seed1, . . . , seed𝑀 ) ← SdOs (seedroot, 𝑀)
4 : for 𝑖 from 1 to𝑀 do

5 : comi ← POs𝑖1 ((𝑠1, . . . , 𝑠𝑁 ), seed𝑖)
6 : com← (salt, com1, . . . , com𝑀 )
7 : P sends com toV

V′1 (com)
1 : c←𝑅 𝐶𝑀,𝐾

2 : cha← c
3 : V sends cha P

P′2(𝑔𝐼 , 𝐼 , cha)
1 : c = (𝑐1, . . . , 𝑐𝑀 ) ← cha

2 : for 𝑖 s.t. 𝑐𝑖 = 0 do
3 : rsp𝑖 ← P2(𝑔𝐼 , 𝐼 , 𝑐𝑖 , seed𝑖)
4 : seedsint ← RlsOs (seedroot, c)
5 : rsp← (seedsint, {rsp𝑖}𝑖 s.t. 𝑐𝑖=0)
6 : P sends rsp toV

V′2 (com, cha, rsp, 𝑠0, 𝑠1, . . . , 𝑠𝑁 )
1 : (salt, com1, . . . , com𝑀 ) ← com

2 : c = (𝑐1, . . . , 𝑐𝑀 ) ← cha

3 : (seedsint, {rsp𝑖}𝑖 s.t. 𝑐𝑖=0) ← rsp

4 : {rsp𝑖}𝑖 s.t. 𝑐𝑖=1 ← RcvOs (seedsint, c)
5 : for 𝑖 from 1 to𝑀 do

6 : if VOs𝑖2 (com𝑖 , 𝑐𝑖 , rsp𝑖) = reject then
7 : V outputs reject
8 : V outputs accept

Figure 5.2: Optimized OR sigma protocol.

and the relaxed relation

𝑅 =


((𝑠0, 𝑠1, . . . , 𝑠𝑁 ),𝑤)

�������������
𝑤 = (𝑔, 𝐼 ) :

𝑤 = (𝑥, 𝑥′) :

𝑔 ∈ 𝐺, 𝑠𝑖 ∈ 𝑆

𝐼 ∈ [𝑁 ], 𝑠𝐼 = 𝛼 (𝑔, 𝑠0)

or 𝑥 ≠ 𝑥′,HColl(𝑥) = HColl(𝑥′)

or Com(𝑥) = Com(𝑥′)


,

Then the optimized base OR sigma protocol shown in Figure 5.2 has correctness, relaxed

special soundness and honest-verifier zero-knowledge for the relation 𝑅.

Proof. Based on the group action one-way assumption, it’s straightforward to see

that our optimized base OR sigma protocol satisfies the properties in [BKP20, Def-

inition 3.1]. By Theorem 3.5 and Theorem 3.6 in [BKP20], the optimized base OR

sigma protocol satisfies correctness, relaxed special soundness and honest-verifier

zero-knowledge.
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Note that the only difference between our protocol and [BKP20] is that our pro-

tocol does not have abort, so the proof is basically the same. We provide a brief proof

of the base OR-sigma protocol as follows.

Correctness. If the protocol is executed honestly with the input (𝑔𝐼 , 𝐼 ) such that

𝛼 (𝑔𝐼 , 𝑠0) = 𝑠𝐼 , then the verifier accepts with probability 1. We will discuss the two

cases of 𝑐 = 0 and 𝑐 = 1 separately as follows. If 𝑐 = 0, we have 𝛼 (𝑓 , 𝑠0) = 𝛼 (ℎ∗𝑔𝐼 , 𝑠0) =

𝛼 (ℎ, 𝑠𝐼 ) = 𝑡𝐼 . Then we can reconstruct the correct root by Com(𝑡𝐼 , bits𝐼 ). If 𝑐 = 1, the

verifier just needs to rebuild a Merkle tree and then obtain a correct root.

Relaxed special soundness. Here we model the commitment scheme Com as

a random oracle O′. Then there is an extractor, given two valid transcripts

(root, 0, (𝑓 , path, bits)) and (root, 1, seed) outputs a witness. There are three possi-

bilities for witness as follows: (1) 𝑔 such that 𝛼 (𝑔, 𝑠0) = 𝑠𝐼 for some 𝐼 ∈ [𝑁 ]; (2) a colli-

sion inHColl; (3) a collision in O′. The extractor first expands the seed seed to obtain

(ℎ, bits1, . . . , bits𝑁 ) and then repeats what P1 did at the first round. That is, the ex-

tractor can rebuild a Merkle tree to obtain root′ fromMerkleTree(C1, . . . ,C𝑁 ), where

C𝑖 = Com(𝛼 (ℎ, 𝑠𝑖), bits𝑖). For another valid transcript, the extractor use the function

ReconstructRoot(C̃, path) to obtain the root root, where C̃ = Com(𝛼 (𝑓 , 𝑠0), bits). We

have root = root′ due to two valid transcripts. The extractor then checks whether

C̃ ≠ C𝑖 for all 𝑖 ∈ [𝑁 ], if so C̃ is not a leaf of this tree, which implies the extractor can

output a collision for the hash functionHColl. Otherwise, if C̃ = C𝐼 for some 𝐼 ∈ [𝑁 ],

the extractor then checks whether (𝛼 (𝑓 , 𝑠0), bits) ≠ (𝛼 (ℎ, 𝑠𝑖), bits𝐼 ). if so, this implies

the extractor can output a collision for the oracle O′. Otherwise, the extractor outputs

wit = ℎ−1 · 𝑓 as the witness, where 𝛼 (wit, 𝑠0) = 𝑠𝐼 .

Honest-verifier zero knowledge. Here, we only give a proof sketch; the complete

proof is consistent with [BKP20]. Since the prover does use the witness (the response

does not involve the witness) when challenge 1, it is straightforward that the simu-

lator simulates transcripts with challenge 1. When the challenge is 0, the advantage

of the adversary over the simulator is negligible, e.g., bounded by 2𝑄/2𝜆 , where we
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assume the adversary who makes 𝑄 queries to the random oracle. Here we briefly

describe where the 2𝑄 factor comes from. We can consider a series of simulators as

a proof strategy. Two of the simulators introduce a 𝑄 factor each. The first simu-

lator is equal to the honest prover, expect that by sampling (ℎ, bits1, . . . , bits𝑁 ) uni-

formly at random. This does not change the view of the adversary unless the adversary

queried the oracle related to PRG(seed). Since seed has 𝜆 bits of min-entropy and it’s

information-theoretically hidden from the adversary, then the probability that this

happens is bounded by 𝑄/2𝜆 . The second simulator is equal to the first simulator ex-

cept that the commitments C𝑖 for 𝑖 ≠ 𝐼 are chosen uniformly at random. This also

does not change the view of the adversary, unless the adversary queried the oracle

related with Com(𝑡𝑖, bits𝑖) for an 𝑖 ∈ [𝑁 ] with 𝑖 ≠ 𝐼 . The probability that this happens

is also bounded by 𝑄/2𝜆 . □

5.2.3 From OR-Sigma protocol to ring signatures

In this section, we obtain a ring signature by applying the Fiat-Shamir transformation

to the OR-Sigma protocol. The key generation, signature generation and verification

of the ring signature scheme are described in Algorithms 4, 5, 6, and 7 respectively.
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Algorithm 4: Set Up
Input: The security parameter

𝜆.

Output: Public parameter: an

element 𝑠0 ∈ 𝑆 .

1 Randomly sample an element

𝑠0 from 𝑆 .

2 return Public parameter: 𝑠0.

Algorithm 5: Key generation
Input: public parameter 𝑠0, the

user 𝑖 .

Output: Public key for the user 𝑖:

an element 𝑠𝑖 ∈ 𝑆 .

Private key for the user 𝑖: A group

element 𝑔𝑖 such that 𝑠𝑖 = 𝛼 (𝑔𝑖, 𝑠0).

1 Randomly sample a group element

𝑔𝑖 from 𝐺 .

2 Compute 𝑠𝑖 ← 𝛼 (𝑔𝑖, 𝑠0).

3 return Public key: 𝑠𝑖 . Private key:

𝑔𝑖 .
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Algorithm 6: Signing procedure
Input: The public key 𝑠0, . . . , 𝑠𝑁 ,

the private key 𝑔𝐼 of a user

𝐼 ∈ [𝑁 ], a message msg, a

commitment scheme

Com : {0, 1}∗ → {0, 1}𝜆 , a

hash function

H : {0, 1}∗ → {0, 1}𝜆 .

Output: A signature Sig on msg.

1 com = (salt, (com𝑖)𝑖∈[𝑀]) ←

P′1(𝑠1, . . . , 𝑠𝑁 )

2 cha←H(msg| |𝑠1 | | · · · | |𝑠𝑁 | |com)

3 rsp← P′2(𝑔𝐼 , 𝐼 , cha)

4 return Sig = (salt, cha, rsp)

Algorithm 7: Verification proce-

dure
Input: The public key

𝑠0, . . . , 𝑠𝑁 ∈ 𝑆 . The

signature

Sig = (salt, cha, rsp). The

message msg. A hash

function

H : {0, 1}∗ → {0, 1}𝜆 .

Output: "Yes" if Sig is a valid

signature for msg. "No"

otherwise.

1 com←

RecoverCom(𝑠0, . . . , 𝑠𝑁 , salt, cha, rsp)

2 if accept = V′2 (com, cha, rsp) ∧

cha = H(msg| |𝑠 | | · · · | |𝑠𝑁 | |com)

then

3 return Yes

4 else

5 return No

Remark 5.2.2. Since the optimized base OR sigma protocol is proved to satisfy all

properties in Theorem 5.2.1, the correctness, anonymity and unforgeability of the ring

signature are straightforward.
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5.3 Linkable ring signatures from abstract group

actions

The linkable property. Linkable ring signatures were first introduced by Liu and

Wong [LW05] that allow public checking whether two ring signatures are ‘linked’,

i.e., generated by one user. A typical approach to construct a linkable ring signature

is to add a tag, which uniquely defines the real signer, to a signature. The approach

in [BKP20] is to first construct a linkable OR sigma protocol and then apply Fiat-

Shamir transformation to obtain a linkable ring signature.

For this, we add a tag 𝑟0 ∈ 𝑆 associated with a group action 𝛽 : 𝐺 × 𝑆 → 𝑆 into the

relation. The group action 𝛽 is defined as 𝛽 (𝑔, 𝑠) = 𝛼 (𝑔−𝑡 , 𝑠) where 𝑡 is an involution

of 𝐺 . This tag 𝑟0 is used to track if some secret key is signed more than once. In

addition, we restrict the initial public key 𝑠0 is sampled from an orbit O(𝑠0) with a

trivial automorphism group. After adding the tag into the base OR sigma protocol, we

can get a linkable OR sigma protocol and apply certain optimization methods to it for

more efficiency.

To derive the security proof for linkable OR sigma protocol, the following prop-

erties of the pair of group actions are needed; see [BKP20, Definition 4.2], and also

[BBN+22,CNP+23b].

Definition 5.3.1. Given two group actions 𝛼 : 𝐺 × 𝑆 → 𝑆 and 𝛽 : 𝐺 × 𝑆 → 𝑆 . We

define the following properties:

(1) Efficiency: One can efficiently compute 𝛼 (𝑔, 𝑠) and 𝛽 (𝑔, 𝑠) for any 𝑔 ∈ 𝐺 and 𝑠 ∈

𝑆 , uniformly sample from𝐺 and 𝑆 , and represent elements in𝐺 and 𝑆 uniquely.

(2) Linkability: Given (𝑠0, 𝑟0) ∈ 𝑆 × 𝑆 , it’s hard to produce 𝑔,𝑔′ ∈ 𝐺 such that

𝛼 (𝑔, 𝑠0) = 𝛼 (𝑔′, 𝑠0) and 𝛽 (𝑔, 𝑟0) ≠ 𝛽 (𝑔′, 𝑟0)

(3) Linkable Anonymity: Given (𝑠0, 𝑟0) ∈ 𝑆 × 𝑆 , the pair (𝑠1, 𝑟1) = (𝛼 (𝑔, 𝑠0), 𝛽 (𝑔, 𝑟0))

is computationally indistinguishable from (𝑠2, 𝑟2) where 𝑔 ∈𝑅 𝐺 and 𝑠2, 𝑟2 ∈𝑅 𝑆 .
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(4) Non-Frameability: Given (𝑠0, 𝑟0) ∈ 𝑆 × 𝑆 , 𝑠1 = 𝛼 (𝑔, 𝑠0) and 𝑟1 = 𝛼 (𝑔, 𝑟0), it’s hard

to find a group element 𝑔′ such that 𝑟1 = 𝛼 (𝑔′, 𝑟0)

The linkable anonymity is captured by the following property about group action

pairs.

Definition 5.3.2. Let 𝛼, 𝛽 : 𝐺 × 𝑆 → 𝑆 be two group actions. We say that the (𝛼, 𝛽)

pair satisfies the pseudorandom assumption at (𝑠0, 𝑟0) ∈ 𝑆 × 𝑆 , if no probabilistic or

quantum polynomial-time algorithms can distinguish the following two distributions

with non-negligible probability:

(1) The random distribution: (𝑠1, 𝑟1) ∈ 𝑆 × 𝑆 , where 𝑠1, 𝑟1 ←𝑅 𝑆 .

(2) The pseudorandom distribution: (𝑠1, 𝑟1) ∈ 𝑆×𝑆 , where𝑔←𝑅 𝐺 , and 𝑠1 = 𝛼 (𝑔, 𝑠0)

and 𝑟1 = 𝛽 (𝑔, 𝑟0).

Furthermore, if the group actions 𝛼 and 𝛽 also satisfy the trivial stabilizer assump-

tion (Definition 4.2.6), then the linkability and non-frameability also follow. These

together suffice to prove the security of the linkable GMW-FS-BKP design based on

the action pair (𝛼, 𝛽). We note that the above strategy was already used in MEDS

[CNP+23b] for the action underlying the matrix code equivalence problem.

Instantiations of pseudorandom group action pairs. Let 𝛼 : 𝐺 × 𝑆 → 𝑆 be a

group action. There are some generic recipes in the literature about finding another

action 𝛽 : 𝐺 × 𝑆 → 𝑆 so that (𝛼, 𝛽) is pseudorandom. In [BKP20], 𝛽 is constructed as

𝛽 (𝑔, 𝑠) = 𝛼 (𝑔2, 𝑠). In [BMPS20,CNP+23b], 𝛽 is constructed as 𝛽 (𝑔, 𝑠) = 𝛼 (𝑔−1, 𝑠). Note

that here 𝛽 is actually a right action (if 𝛼 is a left action). It follows that the responses

need to involve both 𝑔ℎ and ℎ𝑔 where ℎ is a random group element and 𝑔 is the secret.

We note that it is possible to do slightly better than the above, if we have an invo-

lution 𝑡 of 𝐺 , i.e. an anti-automorphism of order 2. This means that 𝑡 is an automor-

phism, (𝑔𝑡 )𝑡 = 𝑔, and (𝑔 ∗ ℎ)𝑡 = ℎ𝑡 ∗ 𝑔𝑡 . We can then define 𝛽 (𝑔, 𝑠) = 𝛼 (𝑔−𝑡 , 𝑠). In the

case of 𝐺 = GL(𝑛, 𝑞) as of interest in ATFE (and MEDS), this 𝑡 can be simply taken as



CHAPTER 5. LINKABLE RING SIGNATURES BASED ON GROUP ACTION 107

the transpose of matrices. This gives a concrete linkable ring signature scheme based

on ATFE-GMW-FS-BKP. Of course, further research is required to verify whether this

instantiation does give a pseudorandom group action pair.

P1(𝑠1, . . . , 𝑠𝑁 , 𝑟 )
1 : seed←𝑅 {0, 1}𝜆

2 : (ℎ, bits1, . . . , bits𝑁 ) ← PRG(seed)
3 : 𝑟 ′ ← 𝛽 (ℎ, 𝑟 )
4 : for 𝑖 from 1 to 𝑁 do
5 : 𝑡𝑖 ← 𝛼 (ℎ, 𝑠𝑖)
6 : C𝑖 ← Com(𝑡𝑖 , bits𝑖)
7 : (root, tree) ← MerkleTree(C1, . . . ,C𝑁 )
8 : ℎ ←HColl(𝑟 ′, root)
9 : com← ℎ

10 : P sends com toV

V1(com)
1 : 𝑐 ←𝑅 {0, 1}
2 : cha← 𝑐

3 : V sends cha to P

P2(𝐴𝐼 , 𝐼 , cha)
1 : 𝑐 ← cha

2 : if 𝑐 = 0 then
3 : 𝑓 ← ℎ ∗ 𝑔𝐼
4 : path← getMerklePath(tree, 𝐼 )
5 : rsp← (𝑓 , path, bits𝐼 )
6 : else
7 : rsp← seed

8 : P sends rsp toV

V2(com, cha, rsp, 𝑠0, 𝑠1, . . . , 𝑠𝑁 , 𝑟0, 𝑟 )
1 : (ℎ, 𝑐) ← (com, cha)
2 : if 𝑐 = 0 then
3 : (𝑓 , path, bits) ← rsp

4 : 𝑡 ← 𝛼 (𝑓 , 𝑠0)
5 : C̃← Com(𝑡, bits)
6 : 𝑟 ′ ← 𝛽 (𝑓 , 𝑟0)
7 : r̃oot← ReconstructRoot(C̃, path)
8 : if ℎ = HColl(𝑟 ′, r̃oot) then
9 : V outputs accept
10 : else
11 : V outputs reject
12 : else
13 : seed← rsp

14 : r̃oot← P1((𝑠1, . . . , 𝑠𝑁 ), seed)
15 : if ℎ = HColl(𝑟 ′, r̃oot) then
16 : V outputs accept
17 : else
18 : V outputs reject

Figure 5.3: Linkable OR sigma protocol.

Theorem 5.3.3. Assume the stabilizers Stab(𝑠0) and Stab(𝑟0) are trivial (see Defini-

tion 4.2.6) and the pair-pseudorandom problem defined in Definition 5.3.2 is hard. The
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linkable OR sigma protocol shown in Figure 5.3 after the optimization satisfies the prop-

erties defined in Definition 5.3.1.

Proof. For the linkability, we derive this property by restricting the orbit O(𝑠0) has a

trivial stabilizer. Then by the pair-pseudorandom assumption, it’s straightforward to

see that our protocol has linkable anonymity. For the non-frameability, we restrict the

stabilizer Stab(𝑟0) to be trivial as well, and then the group element 𝑔 satisfying 𝑠1 =

𝛼 (𝑔, 𝑠0) and 𝑟1 = 𝛼 (𝑔, 𝑟0) is unique. It follows that if one can break non-frameability,

the pair-pseudorandom assumption can be broken as well. □

Corollary 5.3.4. The linkable OR sigma protocol shown in Figure 5.3 after the optimiza-

tion satisfies correctness, high min-entropy, special zero-knowledge and relaxed special

soundness.

Proof. By Theorem 5.3.3, our OR sigma protocol satisfies correctness, relaxed special

soundness and honest-verifier zero-knowledge. The proof is similar to that in Theo-

rem 5.2.1. Thus we omit the proof here. □

After applying the Fiat-Shamir transformation to the linkable OR sigma protocol,

we obtain a linkable ring signature shown in Algorithms 8, 9, 10, 11 and 12. The

linkable ring signature is similar to the normal ring signature in addition to a link

algorithm.
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Algorithm 8: Set Up
Input: The security parameter

𝜆.

Output: Public parameter:

variable number

𝑛 ∈ N, a prime power

𝑞 and elements

𝑠0, 𝑟0 ∈ 𝑆 .

1 Choose 𝑛 ∈ N and a prime

power 𝑞 corresponding to the

security parameter 𝜆.

2 Randomly sample elements

𝑠0, 𝑟0 from 𝑆 .

3 return Public parameter:

𝑛, 𝑞, 𝑠0, 𝑟0.

Algorithm 9: Linkable key

generation
Input: Public parameter

𝑛, 𝑞, 𝑠0, 𝑟0 and the user 𝑖 .

Output: Public key for the user

𝑖: an element 𝑠𝑖 ∈ 𝑆 .

Private key for the user 𝑖: A

group element 𝑔𝑖 such that

𝑠𝑖 = 𝛼 (𝑔𝑖, 𝑠0).

1 Randomly sample a group

element 𝑔𝑖 from 𝐺 .

2 Compute 𝑠𝑖 ← 𝛼 (𝑔𝑖, 𝑠0).

3 return Public key: 𝑠𝑖 . Private

key: 𝑔𝑖 .
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Algorithm 10: Link proce-

dure
Input: Two signature

Sig = (salt, 𝑟 , cha, rsp)

and Sig′ =

(salt′, 𝑟 ′, cha′, rsp′).

Output: "Yes" if two signatures

are produced by the

same secret key. "No"

otherwise.

1 if 𝑟 = 𝑟 ′ then

2 return Yes

3 else

4 return No

Algorithm 11: Linkable sign-

ing procedure
Input: The public key:

𝑠0, . . . , 𝑠𝑁 . The private

key: 𝑔𝐼 . The security

parameter 𝜆. The

message msg. The

commitment scheme

Com : {0, 1}∗ → {0, 1}𝜆 .

A hash function

H : {0, 1}∗ → {0, 1}𝜆 .

Output: The signature Sig on

msg.

1 𝑟 ← 𝛽 (𝑔𝐼 , 𝑟0)

2 com = (salt, (com𝑖)𝑖∈[𝑀]) ←

P′1(𝑠0, 𝑠1, . . . , 𝑠𝑁 , 𝑟 )

3 cha←

H(msg| |𝑠1 | | · · · | |𝑠𝑁 | |𝑟 | |com)

4 rsp← P′2(𝑔𝐼 , 𝐼 , cha)

5 return Sig = (salt, 𝑟 , cha, rsp)

Algorithm 12: Linkable verification procedure
Input: The public key 𝑠0, . . . , 𝑠𝑁 ∈ 𝑆 . The signature Sig = (salt, 𝑟 , cha, rsp).

The message msg. A hash functionH : {0, 1}∗ → {0, 1}𝜆 .
Output: "Yes" if Sig is a valid signature for msg. "No" otherwise.

1 com← RecoverCom(𝑠0, . . . , 𝑠𝑁 , 𝑟 , salt, cha, rsp)
2 if accept = V′2 (com, cha, rsp) ∧ cha = H(msg| |𝑠 | | · · · | |𝑠𝑁 | |𝑟 | |com) then
3 return Yes

4 else
5 return No
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Remark 5.3.5. Since the linkable OR sigma protocol satisfies all properties in Theo-

rem 5.3.4, the correctness, linkability, linkable anonymity and non-frameability of the

linkable ring signature in Algorithm 9, 10, 11 and 12 are straightforward.

Remark 5.3.6. Note that our ring signature obtained from OR-Sigma protocol is

proven securely only in ROM. As far as we are aware, whether it is secure in QROM

is still an open problem.

5.4 An implementation of the ATFE-GMW-FS-BKP

ring signature scheme

We implement the GMW-FS-BKP ring signature design based on ATFE. Here, we re-

port the formulas for calculating the parameters, and preliminary experiment results.

Some comparisons with known ring signature schemes were presented in Section 1.7.

Some formulas for parameters. Recall that𝑀 is the round number,𝐾 is the number

of non-zero challenges, and 𝐶 is the number of alternating trilinear forms in each

round. To achieve the 𝜆-bits security, we should choose the proper 𝑀 and 𝐾 such

that (𝑀
𝐾
)𝐾 ⩾ 2𝜆 . We use 𝑅 to denote the size of the ring. Here we use a trick that

evenly divides𝑀 rounds into 𝐾 sections with length of ⌈𝑀
𝐾
⌉. For each section, we can

construct a seed tree of which the internal seeds are of the size at most 𝜆 · ⌈log2(𝑀𝐾 )⌉.

(1) The public key, private key and signature size of (non-linkable) ring signature

in terms of bits are as follows.

Public Key Size = (𝑅 + 1) ·
(
𝑛

3

)
⌈log2 𝑞⌉,

Private Key Size =
(
𝑛

3

)
⌈log2 𝑞⌉ + 𝑅 · 𝑛2⌈log2 𝑞⌉,

Signature Size = 𝐾 (𝜆 · ⌈log2
(
𝑀

𝐾

)
⌉ + 𝑛2⌈log2 𝑞⌉ + 2𝜆 · ⌈log2 𝑅⌉ + 𝜆) + 3𝜆.
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(2) The public key, private key and signature size of linkable ring signature in terms

of bits are as follows.

Public Key Size = (𝑅 + 1) ·
(
𝑛

3

)
⌈log2 𝑞⌉,

Private Key Size =
(
𝑛

3

)
⌈log2 𝑞⌉ + 𝑅 · 𝑛2⌈log2 𝑞⌉,

Signature Size = 𝐾 (𝜆 · ⌈log2
(
𝑀

𝐾

)
⌉ + 𝑛2⌈log2 𝑞⌉ + 2𝜆 · ⌈log2 𝑅⌉ + 𝜆)

+ 3𝜆 +
(
𝑛

3

)
⌈log2 𝑞⌉ .

Concrete parameters and reports on the performance. We provide the perfor-

mance evaluation of our schemes in terms of signature size, as shown in Tables 5.1.

Furthermore, Table 5.2 illustrates the signature generation time for our schemes. Our

constructions are implemented and measured on a 2.4 GHz Quad-Core Intel Core i5.

Parameters Size in Bytes

𝑛 𝑞 𝑀 𝐾
R

21 23 26 212 221
13 4294967291(∼ 232) 850 25 20.5 22.1 24.5 29.3 36.5

Table 5.1: The signature size (KB) of the ring signature. The security meets the NIST
level 1.

Parameters Time in ms

𝑛 𝑞 𝑀 𝐾
R

21 22 23 24 25 26 27
13 4294967291(∼ 232) 850 25 83 121 205 379 682 1381 2714

Table 5.2: The signing time (ms) of the ring signature. The security meets the NIST
level 1.



113

Part III

Cryptanalysis on MEDS and ALTEQ
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Chapter 6

Generic algorithms forMCE and

ATFE

6.1 Part preliminaries

Notations. For 𝑛 ∈ N, [𝑛] := {1, 2, . . . , 𝑛}. Let F𝑞 be the finite field of 𝑞 elements. We

view F𝑛𝑞 as the linear space of length-𝑛 column vectors over F𝑞 . Let P = P(F𝑛𝑞) be the

projective space associated with the vector space F𝑛𝑞 . For a non-zero u ∈ F𝑛𝑞 , we use

û ∈ P to denote the projective line represented by u. Let GL(𝑛, 𝑞) denote the general

linear group of degree 𝑛 over F𝑞 . We use M(𝑚 × 𝑛, 𝑞) to denote the space of 𝑚 × 𝑛

matrices over F𝑞 , and ATF(𝑛, 𝑞) for the space of alternating trilinear forms over F𝑛𝑞 .

For a finite set 𝑆 , we use 𝑠 ←𝑅 𝑆 to denote that 𝑠 is uniformly randomly sampled from

𝑆 .

Matrix codes and trilinear forms. A trilinear form is a function 𝜙 : F𝑚𝑞 ×F𝑛𝑞 ×F𝑙𝑞 →

F𝑞 that is linear in each of its three arguments.

Definition 6.1.1 (Trilinear Form Equivalence Problem). Given two trilinear forms

𝜙,𝜓 : F𝑚𝑞 × F𝑛𝑞 × F𝑙𝑞 → F𝑞 , the problem asks whether there exists three matrices
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(𝐴, 𝐵,𝐶) ∈ GL(𝑚,𝑞) × GL(𝑛, 𝑞) × GL(𝑙, 𝑞), such that for any (𝑢, 𝑣,𝑤) ∈ F𝑚𝑞 × F𝑛𝑞 × F𝑙𝑞 ,

𝜙 (𝑢, 𝑣,𝑤) = 𝜓 (𝐴(𝑢), 𝐵(𝑣),𝐶 (𝑤)).

A [𝑚×𝑛, 𝑙]-matrix code C is an 𝑙-dimensional subspace ofM(𝑚×𝑛, 𝑞). We defined

matrix code equivalence in Definition 1.8.1. Matrix code equivalence reduces to trilin-

ear form equivalence in polynomial time. This is because of the following. Let amatrix

code C be given by an ordered linear basis (𝐶1,𝐶2, . . . ,𝐶𝑙 ),𝐶𝑘 ∈ M(𝑚 ×𝑛, 𝑞), and 𝑐𝑖, 𝑗,𝑘
denotes the (𝑖, 𝑗)-entry of𝐶𝑘 . This gives rise to a trilinear form𝜙C : F𝑚𝑞 ×F𝑛𝑞×F𝑙𝑞 → F𝑞 ,

that is, 𝜙C =
∑
𝑖, 𝑗,𝑘 𝑐𝑖, 𝑗,𝑘𝑢𝑖𝑣 𝑗𝑤𝑘 where 𝑢 = (𝑢1, . . . , 𝑢𝑚)𝑡 ∈ F𝑚𝑞 , 𝑣 = (𝑣1, . . . , 𝑣𝑛)𝑡 ∈ F𝑛𝑞 ,

and 𝑤 = (𝑤1, . . . ,𝑤𝑙 )𝑡 ∈ F𝑙𝑞 . It is straightforward to verify that two matrix codes

C and D are equivalent if and only if 𝜙C and 𝜙D are equivalent. Furthermore, if

(𝐴, 𝐵,𝐶) ∈ GL(𝑚,𝑞) × GL(𝑛, 𝑞) × GL(𝑙, 𝑞) sends 𝜙C ot 𝜙D , then (𝐴, 𝐵) sends C to D.

We note that the trilinear form equivalence problem differs from the alternating

trilinear form equivalence problem, in that three invertible matrices are used in the

former, while only one is used in the latter.

Instantiated arguments of trilinear forms. Let 𝜙 : F𝑛𝑞 ×F𝑛𝑞 ×F𝑛𝑞 → F𝑞 be a trilinear

form and u, v ∈ F𝑛𝑞 . We use 𝜙 (u,★,★) to denote the bilinear form obtained by instan-

tiating the first argument of 𝜙 with u. Let 𝜙 (u,★,★) = ∑
𝑗,𝑘 𝑐 𝑗,𝑘𝑦 𝑗𝑧𝑘 then it has matrix

representation 𝑀u = (𝑐 𝑗,𝑘) with respect to standard basis 𝑒1, . . . , 𝑒𝑛 . We use 𝜙 (u, v,★)

to denote the linear form obtained by instantiating the first two arguments of 𝜙 with

u and v, respectively.

Tripartite graphs associated with trilinear forms. Let 𝜙 ∈ TF(F𝑛𝑞) be a trilinear

form, then we can associate 𝜙 with a tripartite graph 𝐺𝜙 = (𝑈 ⊎ 𝑉 ⊎𝑊, 𝐸) where

𝑈 = 𝑉 = 𝑊 = P(F𝑛𝑞). To define the edge set 𝐸, let û ∈ 𝑈 , v̂ ∈ 𝑉 , and ŵ ∈ 𝑊 . Then

{û, v̂} ∈ 𝐸, if 𝜙 (u, v,★) is the zero linear form. Similarly, {û, ŵ} ∈ 𝐸, if 𝜙 (u,★,w) is

the zero linear form. And {v̂, ŵ} ∈ 𝐸, if 𝜙 (★, v,w) is the zero linear form.
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Rank distribution of random trilinear forms. The following rank distribution

of random trilinear forms follows from the well-known fact that the probability of a

random matrix in M(𝑛, F𝑞) to be of rank 𝑛 − 𝑑 tends to 𝑞−𝑑2 as 𝑞 →∞ [Bel93, FG15].

Theorem 6.1.2 ( [Bel93, FG15]). Let 𝑛,𝑑 be positive integers such that 𝑛 − 𝑑 is a non-

negative number less than 𝑛. Then as 𝑞 → ∞, the average number of projective points

with rank 𝑛 − 𝑑 of a uniformly random trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 tends to

𝑞−𝑑
2+𝑛−1.

Rank distribution of alternating trilinear forms. The following result is due to

Beullens [Beu23].

Theorem 6.1.3 ( [Beu23, Theorem 2]). Let 𝑛,𝑑 be positive integers such that 𝑛 − 𝑑 is a

non-negative even number less than 𝑛. Then as 𝑞 →∞, the average number of projective

points with rank 𝑛 − 𝑑 of a uniformly random alternating trilinear form 𝜙 ∈ ATF(F𝑛𝑞)

tends to 𝑞 (−𝑑
2+3𝑑)/2+𝑛−2.

6.2 Finding equivalences of trilinear forms via

invariants

We first outline the common framework of our algorithms for ATFE and TFE at a high

level, following Beullens (in Section 5.4 of [Beu23]). But in a departure from [Beu23]

which relies on invariants derived from graphs on projective points, we design new

global invariants. The invariant functions for ATF and TF will be of the form

𝐹0 : TF(F𝑛𝑞) × P(F𝑛𝑞) → 𝑋0,

𝐹1 : ATF(F𝑛𝑞) × P(F𝑛𝑞) → 𝑋1

and explicitly constructed in the following sections. The subscript 0 in the function

and the target set indicates that it is associated with TF. Likewise, the subscript 1

indicates an association with ATF. We will provide the detailed algorithm for MCE

and ATFE in Chapter 7 and Chapter 8 respectively.



CHAPTER 6. GENERIC ALGORITHMS FOR MCE AND ATFE 117

Invariants. To illustrate the notion of invariants, let us first name the actions under-

lying MCE and ATFE in the language of trilinear forms.

Definition 6.2.1 (MCE Action). For a trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 −→ F𝑞 and a

triple of matrices (𝐴, 𝐵,𝐶) ∈ GL(𝑛, 𝑞)3, define the trilinear form

𝜙𝐴,𝐵,𝐶 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 −→ F𝑞

(𝑥,𝑦, 𝑧) ↦−→ 𝜙 (𝐴𝑥, 𝐵𝑦,𝐶𝑧).

We design 𝐹0 as a pairing of the trilinear form and the projective space that is

invariant under twisting the trilinear form and the projective space. The trilinear

form is twisted by the GL(𝑛, 𝑞)3 MCE Action. The projective space is twisted by the

inverse of the matrix acting on the first dimension of the trilinear form. Formally, the

invariant for MCE action needs to satisfy that

∀𝜙 ∈ TF(F𝑛𝑞),∀v̂ ∈ P(F𝑛𝑞),∀(𝐴, 𝐵,𝐶) ∈ GL(𝑛, 𝑞)3, 𝐹0(𝜙, v̂) = 𝐹0(𝜙𝐴,𝐵,𝐶, 𝐴−1v̂) .

Definition 6.2.2 (ATFE Action). For a trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 −→ F𝑞 and a

matrix 𝐴 ∈ GL(𝑛, 𝑞), define the trilinear form

𝜙𝐴 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 −→ F𝑞

(𝑥,𝑦, 𝑧) ↦−→ 𝜙 (𝐴𝑥,𝐴𝑦,𝐴𝑧).

We design the function 𝐹1 as a pairing of the trilinear form and the projective

space that is invariant under twisting the trilinear form by the ATFE action and the

projective space by the inverse of the matrix defining the ATFE action. Formally,

∀𝜙 ∈ ATF(F𝑛𝑞),∀v̂ ∈ P(F𝑛𝑞),∀𝐴 ∈ GL(𝑛, 𝑞), 𝐹1(𝜙, v̂) = 𝐹1(𝜙𝐴, 𝐴−1v̂).

Distinguishing invariant. The invariant function 𝐹0 is called distinguishing if for

all 𝜙 ∈ TF(F𝑛𝑞),

Pr
(v̂1,v̂2)←𝑅P(F𝑛𝑞 )2

(𝐹0(𝜙, v̂1) ≠ 𝐹0(𝜙, v̂2)) ≈ 1.
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We will specify the meaning of ≈ 1 in the following. Likewise, 𝐹1 is called distinguish-

ing if for all 𝜙 ∈ ATF(F𝑛𝑞),

Pr
(v̂1,v̂2)←𝑅P(F𝑛𝑞 )2

(𝐹1(𝜙, v̂1) ≠ 𝐹1(𝜙, v̂2)) ≈ 1.

An algorithm template based on distinguishing invariants. With such distin-

guishing invariant functions at hand, we have the following generic algorithm for

MCE and ATFE. The version for ATFE is specified in parentheses.

To start with, recall that for a trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 and v ∈

F𝑛𝑞 , the rank of 𝜙 (v,★,★) (see Section 2.2) is an invariant, which has been utilised

in [BFV13,Beu23]. Also note that rk(𝜙 (v,★,★)) = rk(𝜙 (𝜆v,★,★)) for non-zero 𝜆 ∈ F𝑞 ,

so we can talk about the rank of 𝜙 (v̂,★,★) for v̂ ∈ P(F𝑛𝑞).

This rank invariant cannot be distinguished. Still, the new invariants considered

in this thesis are further refinements of the rank invariant, as will be seen below.

In particular, the generic algorithm is parametrized by this rank 𝑅, which would be

specified later depending on the specific invariants.

Input: Two equivalent (alternating) trilinear forms 𝜙,𝜓 ∈ TF(F𝑛𝑞)(or ATF(F𝑛𝑞)).

Output: 𝐴, 𝐵,𝐶 ∈ GL(𝑛, 𝑞) such that 𝜙𝐴,𝐵,𝐶 = 𝜓 (or 𝐴 ∈ GL(𝑛, 𝑞) such that 𝜙𝐴 = 𝜓 ).

Algorithm (1) Pick a positive number 𝑅 ⩽ 𝑛. Let

P𝜙,𝑅 :=
{
v̂ ∈ P(F𝑛𝑞) | rk(𝜙 (v̂, ∗, ∗)) = 𝑅

}
,

P𝜓,𝑅 :=
{
v̂ ∈ P(F𝑛𝑞) | rk(𝜓 (v̂, ∗, ∗)) = 𝑅

}
denote the respective set of points where the trilinear forms specialize in

the first dimension to give rank𝑅matrices. Independently sample a set 𝐿𝜙,𝑅

of
√︃��P𝜙,𝑅 �� points from P𝜙,𝑅 and a set 𝐿𝜓,𝑅 of

√︃��P𝜓,𝑅 �� points from P𝜓,𝑅 . Since

𝜙 and𝜓 are isomorphic, P𝜙,𝑅 = 𝐴 × P𝜓,𝑅 and we denote their cardinality as

𝑁𝑅 := ∥P𝜙,𝑅 ∥ = ∥P𝜓,𝑅 ∥. Therefore 𝐿𝜙,𝑅 and 𝐿𝜓,𝑅 are both
√
𝑁𝑅-sized subsets

of the same set of size 𝑁𝑅 .
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(2) Apply the invariant function 𝐹𝑖 (where 𝑖 = 0 for MCE and 𝑖 = 1 for ATFE)

to each element in 𝐿𝜙,𝑅 and 𝐿𝜓,𝑅 . Find a pair (v̂, v̂′) for which 𝐹𝑖 (𝜙, v̂) =

𝐹𝑖 (𝜓, v̂′), where v̂ ∈ 𝐿𝜙,𝑅 and v̂′ ∈ 𝐿𝜓,𝑅 . The existence of such a pair is

likely due to the birthday paradox.

(3) For MCE, such a pair reveals the desired output (𝐴, 𝐵,𝐶) ∈ GL(𝑛, 𝑞)3

through linear algebra, as we describe in Chapter 7. To solve the ATFE,

feed the matching pair (v̂, v̂′) as the partial information into the Gröbner

basis computation in [TDJ+22, BBC+20]. This Gröbner basis computation

is a heuristic that finds in polynomial time an 𝐴 ∈ GL(𝑛, 𝑞) (if it exists)

such that 𝜙𝐴 = 𝜓 and 𝐴−1v̂ = v̂′.

The complexity of the above algorithm parameterized by the target rank 𝑅 can be

estimated as

𝑂

(√︁
𝑁𝑅 · (samp-cost + inv-cost) + recover-cost

)
. (6.1)

The sampling cost samp-cost refers to the cost of sampling a rank-𝑅 (projective)

point, that is, a point in P𝜙,𝑅 (or equivalently in P𝜓,𝑅). And inv-cost denotes the

cost of invariant computation for each point. The cost of recovering the iso-

morphism given a collision is denoted by recover-cost. Also note that for the

invariant to be distinguishing enough in the above procedure, we need to have

Pr(v̂1,v̂2)←𝑅P(F𝑛𝑞 )2 (𝐹0(𝜙, v̂1) = 𝐹0(𝜙, v̂2)) = 𝑂 (1/𝑁𝑅).

In the following two chapters, we describe algorithms in this general framework

tailored to MCE and ATFE, by describing the invariant functions and optimizing the

rank 𝑅.
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Chapter 7

Algorithms for matrix code

equivalence

In this chapter, we introduce an algorithm for thematrix code (or trilinear form) equiv-

alence problem. Specifically, given two trilinear forms 𝜙 ∈ TF(F𝑛𝑞) and 𝜓 ∈ TF(F𝑛𝑞)

that are equivalent, the algorithm computes an equivalence (𝐴, 𝐵,𝐶) ∈ GL(𝑛, 𝑞) ×

GL(𝑛, 𝑞) ×GL(𝑛, 𝑞) between 𝜙 and𝜓 . The algorithm runs in time𝑂 (𝑞 (𝑛−2)/2 · (𝑞 · 𝑛3 +

𝑛4) · (log(𝑞))2).

Main idea. To instantiate the algorithm outlined in Section 6.2, the primary bottle-

neck is identifying invariants with sufficient distinguishing power. The main idea of

the algorithm is to associate distinguishing invariants to corank-1 points, specifically

for those û ∈ P(F𝑛𝑞) such that the bilinear form 𝜙 (u,★,★) is of rank 𝑛 − 1. We shall

occasionally call such projective lines as corank-1 points. Recall there is a tripartite

graph 𝐺𝜙 = (𝑈 ⊎ 𝑉 ⊎𝑊, 𝐸) associated with 𝜙 where 𝑈 = 𝑉 = 𝑊 = P(F𝑛𝑞). Each

corank-1 point û ∈ 𝑈 has a unique neighbor v̂ ∈ 𝑉 , namely the one dimensional left

kernel of the bilinear form 𝜙 (u,★,★). Since 𝜙 (★, v,★) has u in its left kernel, 𝜙 (★, v,★)

has co-rank at least 1. If 𝜙 (★, v,★) is of corank-1, it has a unique neighbour ŵ ∈ 𝑊 .

Repeating this procedure leads to a path on 𝐺𝜙 . We continue building this path until
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reaching length 3𝑛, collecting 𝑛 points each from 𝑈 , 𝑉 and𝑊 . Such a path is built

without ambiguity if and only if at every iteration we get a point of corank-1.

Our experiments show that for most starting points û, we do obtain a path of

length 3𝑛 without ambiguity and that the vector 𝑛-tuples collected in each of the sets

𝑈 ,𝑉 and𝑊 are linearly independent respectively. We use these three vector tuples to

transform 𝜙 to 𝜙 [u] which depends only on the vectors on this path.

Tomake this an isomorphism invariant indexedwith û (instead of with u), we need

to remove the ambiguity caused by the scalar multiples, which can be done easily by

locating non-zero evaluations of 𝜙 [u] on about 3𝑛 inputs of the form (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘). This

gives us 𝜙 [û] which is an invariant associated with û. Our experiments show that this

invariant is distinguishing, i.e. different û results in different 𝜙 [û]. This allows for an

application of the birthday algorithm.

It is known from Theorem 6.1.2 that for a random 𝜙 , there exist approximately

𝑞𝑛−2 corank-1 points. Thus we get an algorithm running in time𝑂 ((𝑞 (𝑛/2) +𝑞 (𝑛−2)/2) ·

poly(𝑛, 𝑞)) by instantiating the above invariant.

7.1 From a vector to three vector tuples

Corank-1 points of trilinear forms and paths on𝐺𝜙 . Suppose a non-zero u1 ∈ F𝑛𝑞
satisfies that 𝜙 (u1,★,★) is of corank-1 as a bilinear form. Consider the following steps.

(1) As 𝜙 (u1,★,★) is of corank-1, there exists a unique v̂1 ∈ P such that 𝜙 (u1, v1,★)

is the zero linear form.

(2) If 𝜙 (★, v1,★) is of corank-1, then there exists a unique ŵ1 ∈ P, such that

𝜙 (★, v1,w1) is the zero linear form.

(3) If 𝜙 (★,★,w1) is of corank-1, then there exists a unique û2 ∈ P, such that

𝜙 (u2,★,w1) is the zero linear form.
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If û1 ≠ û2, then the above procedure produces a path (û1, v̂1, ŵ1, û2) in 𝐺 (𝜙). We can

continue the above procedure as follows.

(1) Let 𝐿𝑈 = (𝑢1), 𝐿𝑉 = (), and 𝐿𝑊 = ().

(2) For 𝑖 = 1 to 𝑛, do the following:

a) Compute the unique v̂𝑖 ∈ P(F𝑛𝑞), such that 𝜙 (u𝑖, v𝑖,★) = 0.

b) If the corank of 𝜙 (★, v𝑖,★) is not 1, or if v𝑖 ∈ span(𝐿𝑉 ), terminate and

report “Fail”. Otherwise, add v𝑖 to 𝐿𝑉 .

c) Compute the unique ŵ𝑖 ∈ P(F𝑛𝑞), such that 𝜙 (★, v𝑖,w𝑖) = 0.

d) If the corank of 𝜙 (★,★,w𝑖) is not 1, or if w𝑖 ∈ span(𝐿𝑊 ), terminate and

report “Fail”. Otherwise, add w𝑖 to 𝐿𝑊 .

e) If 𝑖 = 𝑛, break.

f) Compute the unique ˆu𝑖+1 ∈ P(F𝑛𝑞), such that 𝜙 (u𝑖+1,★,w𝑖) = 0.

g) If the corank of 𝜙 (u𝑖+1,★,★) is not 1, or if u𝑖+1 ∈ span(𝐿𝑈 ), terminate and

report “Fail”. Otherwise, add u𝑖+1 to 𝐿𝑈 .

If the above procedure does not return “Fail”, then we obtain three vector tuples

𝐿𝑈 = (u1, . . . , u𝑛), 𝐿𝑉 = (v1, . . . , v𝑛), and 𝐿𝑊 = (w1, . . . ,w𝑛), such that u𝑖 ’s (resp, v𝑖 ’s,

w𝑖 ’s) are linearly independent.

7.2 Corank-1 invariants from three vector tuples

Suppose that starting from a corank-1 u1 ∈ F𝑛𝑞 , we obtain three vector tuples 𝐿𝑈 , 𝐿𝑉 ,

and 𝐿𝑊 , which are canonically associated with u1. We then treat 𝐿𝑈 , 𝐿𝑉 , and 𝐿𝑊 as

invertible matrices, that is, 𝐿𝑈 =

[
u1 . . . u𝑛

]𝑡
. Define a trilinear form 𝜙 : F𝑛𝑞 × F𝑛𝑞 ×

F𝑛𝑞 → F𝑞 by 𝜙 (𝑥,𝑦, 𝑧) = 𝜙 (𝐿𝑈 (𝑥), 𝐿𝑉 (𝑦), 𝐿𝑊 (𝑧)). This 𝜙 is almost an isomorphism

invariant associated with u1 – almost because there is an ambiguity associated with

the representing vectors of û𝑖 , v̂ 𝑗 , and ŵ𝑘 .
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To remove this ambiguity, we need to study the canonical form of 𝜙 under the

action of D(𝑛, 𝑞) × D(𝑛, 𝑞) × D(𝑛, 𝑞), where D(𝑛, 𝑞) denotes the group of invertible

diagonal 𝑛 × 𝑛 matrices over F𝑞 .

This can be done relatively easily when, for any 𝑖, 𝑗, 𝑘 ⩾ 3,

𝑎𝑖 := 𝜙 (𝑒𝑖, 𝑒2, 𝑒1), 𝑏 𝑗 := 𝜙 (𝑒1, 𝑒 𝑗 , 𝑒1), 𝑐𝑘 := 𝜙 (𝑒1, 𝑒2, 𝑒𝑘), 𝑑1 := 𝜙 (𝑒1, 𝑒2, 𝑒1),

𝑑2 := 𝜙 (𝑒2, 𝑒3, 𝑒5), 𝑑3 := 𝜙 (𝑒1, 𝑒3, 𝑒2), 𝑑4 := 𝜙 (𝑒2, 𝑒1, 𝑒2) are non-zero.
(7.1)

In this case, we can use the action ofD(𝑛, 𝑞) ×D(𝑛, 𝑞) ×D(𝑛, 𝑞) to set 𝑎𝑖 , 𝑏 𝑗 , 𝑐𝑘 , 𝑑1, 𝑑2, 𝑑3
and 𝑑4 to be 1. More specifically, let (𝐹,𝐺, 𝐻 ) ∈ D(𝑛, 𝑞) × D(𝑛, 𝑞) × D(𝑛, 𝑞), where

𝐹 = diag(𝑓1, . . . , 𝑓𝑛), 𝐺 = diag(𝑔1, . . . , 𝑔𝑛), and 𝐻 = diag(ℎ1, . . . , ℎ𝑛). Then set 𝑓𝑖 , 𝑔 𝑗 ,

and ℎ𝑘 to satisfy that, for 3 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛,

𝑓1𝑔2ℎ1 = 1/𝑑1, 𝑓𝑖/𝑓1 = 𝑑1/𝑎𝑖, 𝑔 𝑗/𝑔2 = 𝑑1/𝑏 𝑗 , ℎ𝑘/ℎ1 = 𝑑1/𝑐𝑘 ,

𝑓2 = 1/(𝑔3ℎ5𝑑2), ℎ2 = 1/(𝑓1𝑔3𝑑3), 𝑔1 = 1/(𝑓2ℎ2𝑑4) .
(7.2)

Let 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 be defined by 𝜙 (𝑥,𝑦, 𝑧) = 𝜙 (𝐹 (𝑥),𝐺 (𝑦), 𝐻 (𝑧)). Then

𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘) = 𝑓𝑖𝑔 𝑗ℎ𝑘𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘). Therefore,

𝜙 (𝑒1, 𝑒2, 𝑒1) = 𝑓1𝑔2ℎ1𝜙 (𝑒1, 𝑒2, 𝑒1) = 1/𝑑1 · 𝑑1 = 1.

For 𝑖 ≥ 3,

𝜙 (𝑒𝑖, 𝑒2, 𝑒1)

= 𝑓𝑖𝑔2ℎ1𝜙 (𝑒𝑖, 𝑒2, 𝑒1)

= (𝑓𝑖/𝑓1) 𝑓1𝑔2ℎ1𝜙 (𝑒𝑖, 𝑒2, 𝑒1)

= (𝑑1/𝑎𝑖) · (1/𝑑1) · 𝑎𝑖 = 1.

Similarly, it can be verified that 𝜙 (𝑒1, 𝑒 𝑗 , 𝑒1) = 𝜙 (𝑒1, 𝑒2, 𝑒𝑘) = 1 for 𝑗, 𝑘 ≥ 3. Addition-

ally, we can verify that 𝜙 (𝑒1, 𝑒2, 𝑒1) = 𝜙 (𝑒2, 𝑒3, 𝑒5) = 𝜙 (𝑒2, 𝑒1, 𝑒2) = 𝜙 (𝑒1, 𝑒3, 𝑒2) = 1.

Furthermore, for any 𝑖, 𝑗, 𝑘 ⩾ 3,

𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘)
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= 𝑓𝑖𝑔 𝑗ℎ𝑘𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘)

= (𝑓𝑖/𝑓1) (𝑔 𝑗/𝑔2) (ℎ𝑘/ℎ1) 𝑓1𝑔2ℎ1𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘)

=
𝑑41𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘)

𝑎𝑖𝑏 𝑗𝑐𝑘
;

for 𝑖 = 2 and any 𝑗, 𝑘 ⩾ 3,

𝜙 (𝑒2, 𝑒 𝑗 , 𝑒𝑘)

= 𝑓2𝑔 𝑗ℎ𝑘𝜙 (𝑒2, 𝑒 𝑗 , 𝑒𝑘)

= (𝑓2/𝑓1) (𝑔 𝑗/𝑔2) (ℎ𝑘/ℎ1) 𝑓1𝑔2ℎ1𝜙 (𝑒2, 𝑒 𝑗 , 𝑒𝑘)

=
𝑏3𝑏5𝜙 (𝑒2, 𝑒 𝑗 , 𝑒𝑘)

𝑑1𝑑2𝑏 𝑗𝑐𝑘
;

for 𝑘 = 2 and any 𝑖, 𝑗 ⩾ 3,

𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒2)

= 𝑓𝑖𝑔 𝑗ℎ2𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒2)

= (𝑓𝑖/𝑓1) (𝑔 𝑗/𝑔2) (ℎ2/ℎ1) 𝑓1𝑔2ℎ1𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒2)

=
𝑏3𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒2)

𝑑3𝑎𝑖𝑏 𝑗
;

for 𝑗 = 1 and any 𝑖, 𝑘 ⩾ 3,

𝜙 (𝑒𝑖, 𝑒1, 𝑒𝑘)

= 𝑓𝑖𝑔1ℎ𝑘𝜙 (𝑒𝑖, 𝑒1, 𝑒𝑘)

= (𝑓𝑖/𝑓1) (𝑔1/𝑔2) (ℎ𝑘/ℎ1) 𝑓1𝑔2ℎ1𝜙 (𝑒𝑖, 𝑒1, 𝑒𝑘)

=
𝑑71𝑑2𝑑3𝑑4𝜙 (𝑒𝑖, 𝑒1, 𝑒𝑘)

𝑏23𝑏5𝑎𝑖𝑐𝑘
;

So 𝜙 is completely determined by the conditions in Equation 7.2.

The above suggests that 𝜙 [û1] := 𝜙 is an isomorphism invariant associated with

û1 ∈ P(F𝑛𝑞), assuming that 𝜙 satisfies Equation 7.1.

7.3 Description of the algorithm

Given the above preparations, the algorithm works as follows.
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Input two equivalent trilinear forms 𝜙,𝜓 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 .

Output an equivalence (𝐴, 𝐵,𝐶) ∈ GL(𝑛, 𝑞) × GL(𝑛, 𝑞) × GL(𝑛, 𝑞).

Algorithm (1) For 𝜙 , construct a list 𝑆𝜙 of 𝑞 (𝑛−2)/2 corank-1 û ∈ P together with

the isomorphism invariant 𝜙 [û] as follows.

a) Compute one corank-1 û ∈ P by sampling randomly u ∈ F𝑛𝑞 𝑞 times.

b) For û ∈ P, compute three vector tuples 𝐿𝑈 , 𝐿𝑉 , and 𝐿𝑊 as in Section 7.1.

c) Use 𝐿𝑈 , 𝐿𝑉 and 𝐿𝑊 to transform 𝜙 to 𝜙 [u].

d) Use the method in Section 7.2 to transform 𝜙 [u] to 𝜙 [û].

(2) For 𝜓 , construct a list 𝑆𝜓 of 𝑞 (𝑛−2)/2 corank-1 û ∈ P(F𝑛𝑞) together with the

isomorphism invariant𝜓 [û] as above.

(3) Find û from 𝑆𝜙 , and û′ from 𝑆𝜓 , such that 𝜙 [û] and𝜓 [û′] are the same.

(4) An equivalence (𝐴, 𝐵,𝐶) from 𝜙 to 𝜓 can be obtained by composing the

transformations from 𝜙 to 𝜙 [û] and from𝜓 to𝜓 [û′].

Time analysis of the above algorithm. We assume that the modular arithmetic

complexity in F𝑞 is in time 𝑂 ((log𝑞)2), and the number of arithmetic operations for

𝑛 × 𝑛 matrix computations (such as matrix multiplication and rank computation) is

𝑂 (𝑛3). As in the practical setting, 𝑛 is small and matrices are dense, this should be

a reasonable estimate (rather than using 𝑂 (𝑛𝜔 ) where 𝜔 is the matrix multiplication

exponent).

Step 1 is a For-loop contributing a multiplicative factor of 𝑞 (𝑛−2)/2 to steps (a) to

(d). Step (a) samples vectors in F𝑛𝑞 and computes the ranks of the associated matrices

for 𝑞 times, so its complexity is 𝑂 (𝑞 · (𝑛 · log(𝑞) + 𝑛3 · (log𝑞)2)). Step (b) constructs

three 𝑛-tuples of vectors. Each vector in this 𝑛-tuple is obtained by solving a system

of 𝑛 linear equations in 𝑛 variables. So Step (b) costs 𝑂 (𝑛 · 𝑛3 · (log𝑞)2) = 𝑂 (𝑛4 ·

(log𝑞)2). Step (c) requires 3𝑛 𝑛 × 𝑛 matrix multiplications, so its complexity is also

𝑂 (𝑛4 · (log𝑞)2). For Step (d), the method in Section 7.2 takes 𝑂 (𝑛3 · (log𝑞)2) time.
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Taking into account of the For-loop factor, the total cost for steps 1 and (a) to (d) is

𝑂 (𝑞 (𝑛−2)/2 · (𝑞 · 𝑛3 + 𝑛4) · (log(𝑞))2).

Once the two lists are constructed, finding a collision and using that to construct

an isomorphism takes time𝑂 (log(𝑞 (𝑛−2)/2)) as we can assume that the lists 𝑆𝜙 and 𝑆𝜓

are sorted. Therefore steps 2 to 4 contribute to a running time of lower order, and the

running time of the whole algorithm is 𝑂 (𝑞 (𝑛−2)/2 · (𝑞 · 𝑛3 + 𝑛4) · (log(𝑞))2).

Correctness analysis of the above algorithm. We assume that 𝜙 [û] is a distin-

guishing invariant of û. Then by birthday paradox, the above algorithm returns û

from 𝑆𝜙 , and û′ from 𝑆𝜓 , such that 𝜙 [û] and𝜓 [û′] are the same, with constant proba-

bility.

7.4 Heuristic assumptions for the invariant

We now reflect on several assumptions required for using 𝜙 [u1] for u1 ∈ F𝑛𝑞 with

𝜙 (u1,★,★) being of corank-1.

(1) We assume that we can obtain three vector tuples 𝐿𝑈 , 𝐿𝑉 , 𝐿𝑊 .

(2) We assume that 𝜙 , the trilinear form obtained after applying 𝐿𝑈 , 𝐿𝑉 , and 𝐿𝑊 ,

satisfies Equation 7.1.

(3) We assume that the corank-1 invariant 𝜙 [u1] is distinguishing.

We next argue in favor of each of these heuristics.

Heuristic 1. To build the vector tuples 𝐿𝑈 , 𝐿𝑉 , and 𝐿𝑊 , it suffices (1) to perform a walk

with corank-1 points for 3𝑛 successful steps, and (2) the vectors in 𝐿𝑈 (resp. 𝐿𝑉 , 𝐿𝑊 )

be linearly independent.

We argue for (1), by making the same assumption as in Beullens’ algorithms

[Beu23], namely those points along such a walk are close to independent randomly

sampled. In particular, the probability of getting a walk with corank-1 points for 3𝑛
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steps can be estimated as follows. The probability of a corank-1 point having a corank-

2 neighbor is asymptotically 𝑂 (1/𝑞2) [Beu23]. Therefore, the probability of walking

for 3𝑛 steps with corank-1 points is lower bounded by 1 −𝑂 (𝑛/𝑞2), assuming points

along such a walk are close to independent randomly sampled.

We argue for (2) using algebraic-geometry. To this end, consider a generic start-

ing corank-1 vector u1 and think of its coordinate vector (u1,1, u1,2, . . . , u1,𝑛) as 𝑛 in-

determinates. The corank-1 assumption implies that there is a unique projective v̂1

such that 𝜙 (u1, v1, ∗) = 0 (that is, the zero dual vector). The coordinates of v1 can

be expressed as some vector of polynomials in the coordinate ring of u1, for in-

stance using the adjugate matrix of 𝜙 (u1, ∗, ∗). Call this vector of polynomials as

(𝑓 𝜙v1, 𝑗 )1⩽ 𝑗⩽𝑛 ∈
(
F𝑞 [u1,1, u1,2, . . . , u1,𝑛]

)𝑛
. The superscript 𝜙 signifies that the coeffi-

cients of each 𝑓 𝜙v1, 𝑗 depend only on the tensor 𝜙 . Repeating a similar process starting

with the coordinate vector (𝑓 𝜙v1, 𝑗 )1⩽ 𝑗⩽𝑛 of v1, we obtain the coordinates (𝑓 𝜙w1, 𝑗
)1⩽ 𝑗⩽𝑛 ∈(

F𝑞 [u1,1, u1,2, . . . , u1,𝑛]
)𝑛 of w1 ∈ 𝐿𝑊 . Note that each coordinate is a polynomial in the

coordinate ring of the generic starting vector u1. Continuing this way, we can express

each element of 𝐿𝑈 , 𝐿𝑉 , and 𝐿𝑊 as a vector of polynomials in the co-ordinate ring of u1.

The vectors in 𝐿𝑈 being linearly independent can be expressed as a polynomial con-

dition on the coordinates of u1, namely the determinant of the matrix (𝑓 𝜙u, 𝑗 )𝑢∈𝐿𝑈 ,1⩽ 𝑗⩽𝑛
vanishing. In particular, the variety of dependent 𝐿𝑈 has co-dimension at least one, as

long as the symbolic determinant det
(
(𝑓 𝜙u, 𝑗 )𝑢∈𝐿𝑈 ,1⩽ 𝑗⩽𝑛

)
is not identically zero. The ma-

trix (𝑓 𝜙u, 𝑗 )𝑢∈𝐿𝑈 ,1⩽ 𝑗⩽𝑛 depends only on𝜙 . For the random choice of𝜙 induced by key gen-

eration, the symbolic determinant det
(
(𝑓 𝜙u, 𝑗 )𝑢∈𝐿𝑈 ,1⩽ 𝑗⩽𝑛

)
is almost certainly not identi-

cally zero. Therefore, its roots, which constitute the pathological variety of dependent

𝐿𝑈 have co-dimension at least one. Therefore with probability at least 1− 1/𝑞, we ex-

pect the co-ordinates of a random starting vector u1 to not be in this variety, implying

that the 𝐿𝑈 vectors are linearly independent. The probability 1 − 1/𝑞 is only a crude

estimate. For a precise bound taking into account the structure of the polynomial, we

can invoke the Schwartz–Zippel lemma or more generally the Lang–Weil bound. The

Lang–Weil bound subsumes the Schwartz–Zippel lemma and gives stronger bounds in
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many cases where more (such as number of irreducible components, degree, smooth-

ness, etc.) is known about the polynomial det
(
(𝑓 𝜙u, 𝑗 )𝑢∈𝐿𝑈 ,1⩽ 𝑗⩽𝑛

)
. In either case, to

unconditionally prove that a random u1 is not in this variety, it helps if the degree of

the polynomial is not too big. Naively, the polynomial produced through expansion is

of exponential degree, but this is unlikely to be optimal, as shown in the experiment

part. We leave unconditional proof of the validity of this heuristic to future work.

Heuristic 2. Here we assume that 𝑂 (𝑛) entries in the transformed tensor are non-

zero. Therefore, the probability of this assumption failing increases as q decreases

and n increases. Note that this assumption is used only to deal with diagonal group

actions, and more specialized techniques can be done to reduce the failure probability

of this step.

Heuristic 3. We prove that the invariants generated by our algorithm are distinguish-

ing with high probability, under the following well-studied conjecture from [RST24],

which we re-phrase in tensor notation. To this end, define the automorphism group

of a tensor 𝜙 ∈ 𝑇𝐹 (F𝑞) as the subgroup Aut(𝜙) ⩽ GL(𝑛, 𝑞)3 such that

∀(𝐴, 𝐵,𝐶) ∈ Aut(𝜙),∀(𝑥,𝑦, 𝑧) ∈ F𝑛𝑞, 𝜙 (𝐴𝑥, 𝐵𝑦,𝐶𝑧) = 𝜙 (𝑥,𝑦, 𝑧).

Clearly, scalar matrices of the form

{(𝜆𝐼𝑛, 𝜇𝐼𝑛, 𝜈𝐼𝑛) | 𝜆𝜇𝜈 = 1, (𝜆, 𝜇, 𝜈) ∈
(
F×𝑞

)3
} ⩽ Aut(𝜙)

form a subgroup of the automorphism group. We say that the automorphism group

Aut(𝜙) is trivial or equivalently that 𝜙 has trivial automorphism group if and only if

{(𝜆𝐼𝑛, 𝜇𝐼𝑛, 𝜈𝐼𝑛) | 𝜆𝜇𝜈 = 1, (𝜆, 𝜇, 𝜈) ∈
(
F×𝑞

)3
} = Aut(𝜙).

That is, all automorphisms are merely triples of scalar matrices.

Conjecture 7.4.1. For uniformly random 𝜙 ∈ 𝑇𝐹 (F𝑛𝑞), with probability negligibly

close to 1, the automorphism group Aut(𝜙) is trivial.
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This conjecture is stated as a “mild assumption" in [RST24], where the authors

provide convincing theoretic and empirical evidence. In fact, this conjecture is

assumed true in half of the complexity theoretic reductions in the web of problems

centered around MCE ( [RST24, Fig. 1]), that lay as the foundation forMEDS.

Consider the corank-1 invariant 𝜙 [û] constructed at a successful completion of

the first step of the algorithm. We prove in the subsequent lemma 7.4.2 that 𝜙 [û] is

distinguishing if the isomorphism class of 𝜙 has a trivial automorphism group.

Lemma 7.4.2. If𝜙 ∈ 𝑇𝐹 (F𝑛𝑞) has the trivial automorphism group, then the isomorphism

invariant (𝜙, û) ↦−→ 𝜙 [û] determined by step 1 of the algorithm is distinguishing.

Proof. Recall the notation in the description of the algorithm, to aid in the proof sketch.

Let (𝐿𝑈 , 𝐿𝑉 , 𝐿𝑊 ) and (𝐿′𝑈 , 𝐿′𝑉 , 𝐿′𝑊 ) be the two vector tuples produced starting from dif-

ferent u and u′, respectively. Let 𝜙 [û] and 𝜙 [û′] respectively denote the images of the

invariant computed by step 1 of the algorithm. If the algorithm samples two 𝜙 [û] and

𝜙 [û′] that are the same, then the respective vector tuples (𝐿𝑈 , 𝐿𝑉 , 𝐿𝑊 ) and (𝐿′𝑈 , 𝐿′𝑉 , 𝐿′𝑊 )

can be composed to get a non-trivial automorphism in Aut(𝜙). But 𝜙 ∈ 𝑇𝐹 (F𝑛𝑞) has

the trivial automorphism group, therefore 𝜙 [û] and 𝜙 [û′] are distinct, implying the

invariant is distinguishing. □

The MEDS key generation algorithm chooses a 𝜙 uniformly at random from

𝑇𝐹 (F𝑛𝑞). Assuming conjecture 7.4.1, Aut(𝜙) is trivial with probability negligibly close

to 1. Therefore, lemma 7.4.2 applies in our setting (except possibly with negligibly

small probability), implying (𝜙, ū) ↦−→ 𝜙 [û] is distinguishing.

Experimental support. We carry out experiments on Magma [BJP97] for 𝑛 = 6 to

10 and 𝑞 = 1021 to verify the assumptions as above.

We examine Assumptions 1, 2, and 3 sequentially as follows. That is, for a point u,

we first verify if assumption 1 holds. If so, then we check if assumption 2 holds for u.

If both assumptions 1 and 2 hold, we call u an effective point. In Table 7.1, we sample
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𝑞

𝑛 6 7 8 9 10 11 12 13 14

509 7/26/967 1/39/960 5/40/955 5/41/954 1/70/929 12/58/930 6/57/937 11/67/922 5/81/914
1021 8/10/982 5/16/979 10/20/970 4/28/968 2/18/980 1/27/972 3/31/966 2/30/968 1/29/970
2039 1/13/986 1/13/986 3/14/983 2/8/990 0/18/982 0/18/982 1/15/984 2/17/981 0/18/982
4093 1/5/994 1/7/992 1/5/994 1/7/992 0/6/994 2/6/992 0/13/987 2/11/987 0/10/990
8191 0/3/997 0/2/998 1/2/997 0/2/998 1/4/995 0/3/997 0/5/995 1/8/991 1/5/994
16381 0/0/1000 0/1/999 0/4/996 0/0/1000 0/4/996 0/1/999 0/3/997 1/4/995 0/3/997

𝑞

𝑛 15 16 17 18 19 20 21 22

509 1/88/911 11/99/890 6/90/904 3/119/878 3/104/893 7/99/894 6/128/866 3/116/881
1021 1/27/972 3/45/952 5/49/946 1/54/945 5/58/937 2/54/944 2/67/931 7/59/934
2039 4/18/978 1/19/980 0/28/972 2/20/978 2/25/973 2/31/967 2/29/969 2/28/970
4093 2/8/990 1/10/989 1/18/981 0/16/984 3/15/982 1/23/976 1/11/988 1/22/977
8191 1/3/996 0/4/996 1/7/992 0/4/996 1/10/989 1/9/990 0/4/996 0/8/992
16381 0/7/993 0/2/998 0/1/999 0/1/999 0/8/992 0/4/996 0/3/997 1/3/996

Table 7.1: Statistics of effective points. a/b/c in the table are defined as follows: a (resp.
b) is the number of points for which Assumption 1 (resp. Assumption 2) does not hold,
and c is the number of effective points.

1000 points, and record the number of points failing assumption 1, and the number

of points satisfying assumption 1 but failing assumption 2, as well as the number of

effective points.

Finally, to verify assumption 3, we do experiments on these effective points. Our

results show that for the instances in Table 7.1, the isomorphism invariants corre-

sponding to all points are pairwise distinguishable. This is expected, because each

sample is generated randomly, these points are essentially distinct from one another.

Note that it is enough for all but a small fraction of corank-1 u1 to satisfy the

above. Furthermore, if some assumption is not satisfied, this would also constitute as

an invariant. That is, if in 𝐿𝑈 , u1, . . . , u𝑖 becomes linearly dependent, then this number

𝑖 also becomes an invariant which can be utilized. We do not attempt to deal with such

cases because they rarely happen in experiments.

7.5 Experimental results for the algorithm

We implemented the algorithm in Section 7.3 in Magma [BJP97]. We tested our im-

plementation on a server (AMD EPYC 7532 CPU at 2.40GHz) to solve some instances
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Parameter set 𝑛 𝑞
Number of Number of Time

effective points sampling times (seconds)

MCE-instance-1 6 61 2702 3721 420
MCE-instance-2 7 61 20053 29062 5638
MCE-instance-3 8 61 149149 226981 100900
MCE-instance-4 9 31 64202 165870 137715

Table 7.2: SolvingMCE instances

of theMCE problem. The results are given in Table 7.2. Our experiments demonstrate

that when running ten instances, two to four of them successfully discover collisions

and recover the secret matrices (𝐴, 𝐵,𝐶).

Because we conduct 𝑞 (𝑛−2)/2 samplings, we cannot set 𝑞 to be too large for a prac-

tical running. Therefore, we set 𝑞 to be 61 or 31. As a result, the fraction of effective

points is not as large as for 𝑞 = 1021 as in Table 7.1. For example, inMCE-instance-1,

we conducted 3721 samplings and obtained 2702 effective points. Therefore, when 𝑞

is large, the success rate should increase with the number of effective points.

Remark 7.5.1. Following [Beu23], a possible improvement on the sampling step (Step

(a) of the algorithm in Section 7.3) is as follows.

Recall that in Step (a) of the algorithm in Section 7.3, a corank-1 point is obtained

by sampling a random vector in F𝑛𝑞 for 𝑞 times. However, note that starting from

a corank-1 vector û, the vectors in the vector tuple 𝐿𝑈 , if successfully built, are all

corank-1. So these vectors can be utilized, instead of starting from a fresh random

corank-1 vector. In general, we can walk along the path in the tripartite graph starting

from a corank-1 vector until we hit a vector of corank larger than 1. This has the

potential of reducing the complexity of the algorithm from 𝑂 (𝑞 (𝑛−2)/2 · (𝑞 · 𝑛3 + 𝑛4) ·

(log(𝑞))2) to 𝑂 (𝑞 (𝑛−2)/2 · 𝑛4 · (log(𝑞))2), as we would only need to sample a fresh

corank-1 vector very few times during the execution of the algorithm.

One question for this approach is whether it results in a distribution close to the

uniform one. To test this, we implemented the above approach. In the case of MCE-

instance-1, our preliminary experimental results show that when running 6 instances,
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one of them successfully finds a collision and recovers the secret matrices. We leave

a more careful analysis and more experiments to future work.
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Chapter 8

Algorithms for alternating trilinear

form equivalence

In this chapter, we present our algorithm for the ATFE problem. That is, given two

alternating trilinear forms 𝜙 ∈ ATF(F𝑛𝑞) and𝜓 ∈ ATF(F𝑛𝑞), the algorithm computes an

equivalence 𝐴 ∈ GL(𝑛, 𝑞) from 𝜙 to𝜓 , if such 𝐴 exists.

As will be explained later, there is a component missing for implementing this

algorithm for ATFE, namely the transformation of isomorphism testing procedures to

canonical forms. (On the contrary, the corresponding component in our algorithm for

matrix code equivalence is automatically a canonical form algorithm.) Still, as it is a

widely held belief that isomorphism testing procedures can be upgraded to canonical

forms, the time complexity of this algorithm is used in the parameter setup of ALTEQ .

Before introducing our algorithm, we review the algorithms for ATFE.

8.1 The direct Gröbner basis attack

Let 𝜙,𝜓 ∈ ATF(𝑛, 𝑞) be two alternating trilinear forms. We wish to decide if there

exists 𝐴 ∈ GL(𝑛, 𝑞) such that 𝜙 = 𝜓 ◦ 𝐴. The Gröbner basis attack is the following.

First, formulate a polynomial system whose solutions are isomorphisms from 𝜙 to



CHAPTER 8. ALGORITHMS FOR ALTERNATING TRILINEAR FORM EQUIVALENCE134

𝜓 . Second, use the polynomial solvers, such as Göbner basis and XL, to solve such

systems.

Two ways of formulating as polynomial systems are as follows. Both depend on

the following data from 𝜙 and𝜓 .

From 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 be an alternating trilinear form. Then construct a

matrix tuple A = (𝐴1, . . . , 𝐴𝑛) ∈ M(𝑛, 𝑞)𝑛 , where 𝐴𝑘 (𝑖, 𝑗) = 𝜙 (𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘). Recall that 𝑒𝑖
is the 𝑖th standard basis vector.

Similarly, from𝜓 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 , we construct B = (𝐵1, . . . , 𝐵𝑛) ∈ M(𝑛, 𝑞)𝑛 .

The direct cubic modeling. The following modeling is straightforward. Let 𝑋 =

(𝑥𝑖, 𝑗 )𝑖, 𝑗∈[𝑛] be an 𝑛 × 𝑛 variable matrices. Set up the following equations.

(1) For 𝑖 ∈ [𝑛], set ∑ 𝑗∈[𝑛] 𝑥𝑖, 𝑗 · 𝑋 𝑡𝐴𝑖𝑋 = 𝐵𝑖 .

Note that by alternating, the above setup uses 𝑛2 variables to set up
(𝑛
3
)
inhomo-

geneous equations. Also note that here we do not need to impose that 𝑋 is invertible,

because 𝜙 and𝜓 are non-degenerate1 with high probability.

Thequadraticwith inversemodelling. This is the formulation studied in [TDJ+22],

which traced back to [BFFP11] for cubic form equivalence.

Let 𝑋 = (𝑥𝑖, 𝑗 )𝑖, 𝑗∈[𝑛] and 𝑌 = (𝑦𝑖, 𝑗 )𝑖, 𝑗∈[𝑛] be two 𝑛 × 𝑛 variable matrices. Set up the

following equations.

(1) Set 𝑋𝑌 = 𝐼𝑛 and 𝑌𝑋 = 𝐼𝑛 . This imposes that 𝑋 and 𝑌 are inverses to each other.

(2) For 𝑖 ∈ [𝑛], set 𝑋 𝑡𝐴𝑖𝑋 =
∑
𝑗∈[𝑛] 𝑦𝑖, 𝑗𝐵 𝑗 , and 𝑌 𝑡𝐵𝑖𝑌 =

∑
𝑗∈[𝑛] 𝑥𝑖, 𝑗𝐴 𝑗 .

The above setup uses 2𝑛2 variables to set up 2𝑛2 + 2 · 𝑛 ·
(𝑛
2
)
= 2𝑛(

(𝑛
2
)
+𝑛) inhomo-

geneous quadratic equations.

The quadratic dual modeling. This formulation is due to [RST23]. Let 𝑋 =

(𝑥𝑖, 𝑗 )𝑖, 𝑗∈[𝑛] be an 𝑛 × 𝑛 variable matrix. Let 𝑦 be a variable.
1𝜙 is degenerate if there exists a non-zero vector𝑢 ∈ F𝑛𝑞 such that for every 𝑣,𝑤 ∈ F𝑛𝑞 ,𝜙 (𝑢, 𝑣,𝑤) = 0.
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Let ℓ =
(𝑛
2
)
− 𝑛, and let 𝐶1, . . . ,𝐶ℓ be a basis of the linear space {𝐷 ∈ Λ(𝑛, 𝑞) |

Tr(𝐵𝑖𝐷𝑡 ) = 0}, where Tr denotes taking the trace of a matrix.

Set up the following equations.

(1) For 𝑖 ∈ [𝑛], 𝑗 ∈ [ℓ], Tr(𝑋 𝑡𝐴𝑖𝑋𝐷𝑡 ) = 0.

(2) Let the (1, 2) entry of 𝑋 𝑡𝐴1𝑋 be 𝑞, which is a homogeneous quadratic polyno-

mial in 𝑥𝑖, 𝑗 . Set 𝑞 · 𝑦 = 1.

The above setup uses 𝑛2 + 1 variables to set up (
(𝑛
2
)
− 𝑛) · 𝑛 + 1 equations. Among

them, (
(𝑛
2
)
− 𝑛) · 𝑛 are homogeneous quadratic polynomials in 𝑛2 variables. The extra

cubic equation, 𝑞 · 𝑦 = 1, is introduced to prevent some undesirable solutions such as

rank-1 matrices.

8.2 Beullens’ algorithms for ATFE

In [Beu23], Beullens presented some novel algorithms for ATFE. Here we describe two

algorithms there that work for general 𝑛.

The first algorithm is a collision algorithm based on low-rank points based on

the graph-walking sampling method. That is, suppose a random 𝜙 ∈ ATF(𝑛, 𝑞) has

approximately 𝑞𝑘-many projective points of rank 𝑟 . Then for 𝜙,𝜓 ∈ ATF(𝑛, 𝑞) that

are equivalent via 𝐴 ∈ GL(𝑛, 𝑞), one can sample 𝑞1/2·𝑘-many rank-𝑟 points for 𝜙 ,

and another 𝑞1/2·𝑘-many rank-𝑟 points for 𝜓 . Then by the birthday paradox, with

constant probability there exists a pair of points (u, v) from these two lists, such that

𝐴(u) = v. Combined with a Gröbner basis with partial information procedure2, this

correspondence enables to recover the whole 𝐴. To sample rank-𝑟 points, Beullens

invented the graph-walk sampling method, which allows for sampling e.g. corank-3

points for odd 𝑛 more efficiently than directly using min-rank for relatively small 𝑞.
2Beullens discovered that Gröbner basis with partial information still works well given that (1) a

correspondence between projective points, and (2) the kernel information of low-rank points.
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The major cost of this approach is usually the collision step, with time complexity

𝑞𝑘 · poly(𝑛, log𝑞).

The second algorithm is a birthday algorithm based on isomorphism invariants.

Such an algorithm was already proposed for the polynomial isomorphism problem

by Bouillaguet, Fouque, and Véber in [BFV13] for 𝑞 = 2. Beullens observed that for

radius-1 or 2 neighbors of corank-1 (for odd 𝑛) or corank-2 (for even n), the rank

information should serve as distinguishing isomorphism invariants. The major cost

of this approach is the number of corank-1 or corank-2 points, so Beullens estimated

the running time as 𝑞𝑛/2+𝑐 · poly(𝑛, log𝑞).

8.3 An algorithm for ATFE based on a new

isomorphism invariant

The main innovation of our algorithm for ATFE is to associate distinguishing isomor-

phism invariants to low-rank points.

Let 𝜙 : F𝑛𝑞 × F𝑛𝑞 × F𝑛𝑞 → F𝑞 . Suppose by Theorem 6.1.3, it is expected that there

are roughly 𝑞𝑘 many û ∈ P(F𝑛𝑞), such that rk𝜙 (û) = 𝑟 . Let us assume that there is an

easy-to-compute, distinguishing, isomorphism invariant3 for those rank-𝑟 û.

Then the algorithm goes as follows: first sample 𝑂 (𝑞𝑘/2)-many rank-𝑟 points for

𝜙 , and 𝑂 (𝑞𝑘/2)-many rank-𝑟 points for 𝜓 . For each point, compute this isomorphism

invariant. Then by the birthday paradox, there exists one point û from the list of 𝜙 ,

and one point v̂ from the list of𝜓 , such that their isomorphism invariants are the same.

Finally, use Gröbner basis with partial information for û and v̂ to recover the desired

isomorphism.

Following Equation 6.1, the running time of the above algorithm can then be esti-

mated as

𝑂 (𝑞𝑘/2 · (samp-cost + inv-cost) + gb-cost),
3That is a function 𝑓 from low-rank points to some set 𝑆 , such that 𝑓 (û) ≠ 𝑓 (v̂) for û ≠ v̂, and 𝑓

is unchanged by basis changes.
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where samp-cost denotes the sampling cost, the inv-cost denotes the invariant com-

puting cost, and gb-cost denotes the Gröbner basis with partial information cost.

The sampling step can be achieved by either the min-rank method (Section 8.4)

or Beullens’ graph-walking method [Beu23]. For the min-rank method, it can be es-

timated for concrete values of 𝑛, 𝑘 , and 𝑟 by e.g. [BBC+20, KS99, VBC+19]. For the

graph-walking method, it can be estimated based on certain statistics of graphs asso-

ciated with alternating trilinear forms by Beullens [Beu23, Theorem 1].

The gb-cost can be estimated as 𝑂 (𝑛6) as in [Beu23]. This is based on the hybrid

Gröbner basis method with the first row known in the variable matrix. The effec-

tiveness of this hybrid Gröbner basis method was first discovered in [FP06] and then

utilized in [BFV13, TDJ+22]. Beullens further improved this method by noting that

(1) knowing the first row up to scalar suffices, and (2) for low-rank points, the kernel

information can be incorporated [Beu23, Section 4].

Themain innovation of the above algorithm is a new isomorphism invariant which

we describe next.

8.4 Low-rank point sampling via min-rank step

The sampling step can be done by either the min-rank method, or the graph-walking

method. The graph-walking method involves 𝑞, so it works best for relatively small

𝑞. When 𝑞 is large, the min-rank method is more effective. To use min-rank to do

sampling requires a bit of twist, so we record the idea here.

Suppose we wish to sample a rank-𝑟 point v̂ ∈ P(F𝑛𝑞) for an alternating trilinear

form 𝜙 , and suppose that there are 𝑞𝑘-many rank-𝑟 projective points for a random 𝜙 .

To sample such points, we make a heuristic assumption that the first 𝑘 coordinates of

these rank-𝑟 points are in uniform random. Therefore, to sample one point, we can

randomly choose the first 𝑘 coordinates and then resort to the min-rank procedure.

More specifically, for 𝑖 ∈ [𝑛], let 𝐴𝑖 be the alternating matrix representing the

bilinear form 𝜙𝑒𝑖 , where 𝑒𝑖 is the 𝑖th standard basis vector. Let 𝑥𝑖 , 𝑖 ∈ [𝑛], be formal
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variables, and set 𝐴 =
∑
𝑖∈[𝑛] 𝑥𝑖𝐴𝑖 . So for 𝑖 ∈ [1 . . . 𝑘], let 𝑥𝑖 = 𝛼𝑖𝑥1, where 𝛼𝑖 ∈𝑅 F𝑞 .

This gives us a min-rank instance with 𝑛 − 𝑘 matrices of size 𝑛 × 𝑛.

To estimate the min-rank cost, we use the algorithm from [BBC+20]. Consider an

(𝑛, 𝐾, 𝑟 ) minrank instance, namely finding a rank-𝑟 matrix in a linear span of 𝐾 𝑛 × 𝑛

matrices. First, we need to compute the smallest 𝑏 such that 𝑏 < 𝑟 + 2 and(
𝑛

𝑟

) (
𝐾 + 𝑏 − 1

𝑏

)
− 1 ≤

𝑏∑︁
𝑖=1
(−1)𝑖+1

(
𝑛

𝑟 + 𝑖

) (
𝑛 + 𝑖 − 1

𝑖

) (
𝐾 + 𝑏 − 𝑖 − 1

𝑏 − 𝑖

)
.

Based on this 𝑏, the complexity is estimated as

𝑂
(
𝐾 · (𝑟 + 1) · (

(
𝑛

𝑟

)
·
(
𝐾 + 𝑏 − 1

𝑏

)
)2

)
.

For concrete values of 𝑛, 𝐾 = 𝑛 −𝑘 and 𝑟 , the above formulas allow for the estimation

of the concrete security parameters.

Note that the min-rank instance above has some structural constraints due to

alternating trilinear forms. As pointed out in [Beu23], such structures should im-

pact the min-rank algorithm from [BBC+20] adversely. Still, we use the estimates

from [BBC+20] as they should serve as a lower bound. We also compare the estimates

from [BBC+20] with the analysis of the Kipnis–Shamir modeling [KS99] in [VBC+19],

and found the ones from [BBC+20] are lower.

8.5 The isomorphism invariant step

Suppose û ∈ P(F𝑛𝑞) satisfies that rk𝜙 (û) = 𝑟 . Then 𝐾 := ker(𝜙û) ≤ F𝑛𝑞 is a dimension-

(𝑛 − 𝑟 ) space, also preserved by any isomorphism. This allows us to consider the

trilinear form 𝜙û : 𝐾 ×F𝑛𝑞 ×F𝑛𝑞 → F𝑞 , and it can be verified easily that the isomorphism

type of 𝜙û under GL(𝐾) × GL(𝑛, 𝑞) is an isomorphism invariant.

To use the isomorphism type of 𝜙û in the algorithm, we need the isomorphism

types to be (1) easy to compute, and (2) distinguishing; that is, for different û, v̂ ∈

P(F𝑛𝑞), 𝜙û and 𝜙v̂ are different.

To verify these, we perform the following experiment in Magma [BJP97].
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(1) Sample a random 𝜙 ∈ ATF(𝑛, 𝑞).

(2) Sample a random rank-𝑟 point û ∈ P(F𝑛𝑞).

(3) Sample 𝑡 random rank-𝑟 point v̂ ∈ P(F𝑛𝑞). For each such point, do:

a) Use the Gröbner basis with partial information to decide whether 𝜙û and

𝜙v̂ are isomorphic.

Our experiments give the following.

• For 𝑛 = 9, 𝑟 = 4, and 𝑝 = 3, 10 experiments (i.e. for 10 û from 10 random

alternating trilinear forms) with 𝑡 = 100 comparisons (i.e. for 100 different v̂ to

compare with û). On average, 75 out of 100 𝜙v̂ are not isomorphic with 𝜙û.

• For 𝑛 = 10, 𝑟 = 6, and 𝑝 = 3, 10 experiments (i.e. for 10 û from 10 random

alternating trilinear forms) with 𝑡 = 100 comparisons (i.e. for 100 different v̂ to

compare with û) all return “different isomorphism type”. On average, 95 out of

100 𝜙v̂ are not isomorphic with 𝜙û.

For 𝑛 = 11, our code do not work for 𝑛 = 11 on a laptop, due to the Gröbner basis step.

From these experiments we see that (1) the Gröbner basis with partial information

algorithm is effective in practice to test isomorphism between 𝜙û and 𝜙v̂, and (2) the

isomorphism type of 𝜙û is close to distinguishing for 𝑛 = 10. These give support that

the isomorphism types of 𝜙û do serve as a easy-to-compute, distinguishing, isomor-

phism invariant.

Note that testing isomorphism here is not enough, and canonical forms are re-

quired to serve as an isomorphism invariant. Even though to transform an isomor-

phism invariant algorithm to a canonical form one may not be an easy process, it

is generally regarded as doable, at least from the experience from graph isomor-

phism [Bab16]. We leave the construction of the canonical form as future work.
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