
Complex & Intelligent Systems (2024) 10:6867–6883
https://doi.org/10.1007/s40747-024-01504-1

ORIG INAL ART ICLE

Multi-UAV pursuit-evasion gaming based on PSO-M3DDPG schemes

Yaozhong Zhang1 ·Meiyan Ding1 · Jiandong Zhang1 ·Qiming Yang1 · Guoqing Shi1 ·Meiqu Lu2 · Frank Jiang3

Received: 21 October 2023 / Accepted: 15 May 2024 / Published online: 24 June 2024
© The Author(s) 2024

Abstract
The sample data for reinforcement learning algorithms often exhibit sparsity and instability, making the training results
susceptible to falling into local optima. Mini-Max-Multi-agent Deep Deterministic Policy Gradient (M3DDPG) algorithm is
a multi-agent reinforcement learning algorithm, which introduces the minimax theorem into Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) algorithm. It also has unstable convergence caused by sparse sample data and randomization.
However, the Particle Swarm Optimisation (PSO) algorithm, unlike traditional reinforcement learning methods, involves the
construction of independent populations of policy networks to generate sample data, followed by training the reinforcement
learning algorithm. PSO optimizes and updates the policy population based on a fitness function, aiming to enhance the
efficiency and convergence speed of the algorithm in learning from the sample data. In order to address themulti-agent pursuit-
evasion problem,we propose the PSO-M3DDPGalgorithm,which combines the PSO algorithmwith theM3DDPGalgorithm.
Through experimental simulations, the improved algorithm demonstrates superior training results and faster convergence
speeds, thus validating its effectiveness.

Keywords Pursuit-evasion game · Particle swarm optimization algorithm · Reinforcement learning · M3DDPG (mini-max-
multi-agent deep deterministic policy gradient)

Introduction

In the context of aerial military competition, the pursuit-
evasion problem of Unmanned Aerial Vehicles (UAVs)
serves as a typical example. It can be described as a recip-
rocal confrontation between two aircrafts based on some
form of conflicting interests. Researching the optimal solu-
tions for this pursuit-evasion problem involving aircraft is of
paramount practical significance. The pursuit-evasion prob-
lem, as a typical class of Differential Games (DG), is widely
present in the natural world or in military domains [1].

Game theory is a theoretical and methodological frame-
work that models real-world situations of conflict, competi-
tion, and cooperation as mathematical models. Differential
games are an important kind of game theory. It refers to
participants who use differential equations to describe the

B Frank Jiang
frank.Jiang@uts.edu.au

1 Northern Polytechnical University, Xi’an, China

2 Guangxi Minzu University, Nanning, China

3 UTS: University of Technology Sydney, Ultimo, NSW,
Australia

phenomena or rules of the game while playing the game
[2]. Differential games originally originated from military
problems; however, in recent years they have been applied
not only in military research, but also extensively in vari-
ous fields such as life and economics [3]. Differential games
are a method that combines game theory with modern con-
trol theory. It has evolved from unilateral optimal control
to bilateral (or multilateral) optimal control and from static
games to dynamic conflicts. The application areas of this
method have become increasingly extensive. Military prob-
lems often involve complex non-linear models rather than
linear control problems, such as the fixed-time prescribed
performance trajectory tracking control for the unmanned
surface vehicle with unknown dynamics and disturbances
[4], naval combat, satellite interception, and missile defence
[5]. Differential game theory can provide effectivemodelling
and analysis for both unilateral and multilateral conflict sce-
narios. It can also be solved using control methods such as
optimal control, leading to the determination of optimal con-
trol strategies for all parties involved. Therefore, differential
game problems have significant theoretical research value
and promising application prospects.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-024-01504-1&domain=pdf

6868 Complex & Intelligent Systems (2024) 10:6867–6883

The pursuit-evasion game in aerial combat, as a typical
instance of differential games, can be considered a multi-
agent dynamic game system because the objectives of both
sides conflict with each other. Therefore, the choice of opti-
mal control strategies for both aircrafts depends on the
respective interests of the pursuer and the evader [6]. Rein-
forcement Learning (RL), as an important component of
machine learning and a hot topic in current research, is an
intelligent autonomous learning method. It does not require
expert signals or strictmathematicalmodels. Instead, it learns
by interacting with the environment through a "trial-and-
error" approach. RL continuously tries different behavioral
strategies and improves them, adapting to dynamic and
unknown environments. As its applications continue to
expand, the ability of reinforcement learning to address the
performance of multidimensional and complex nonlinear
systems has gained increasing attention from researchers and
leaders in various fields. Reinforcement learning can adap-
tively find optimal control methods for complex nonlinear
systems [7]. It does not rely on precise mathematical models,
is computationally straightforward, and requires relatively
little training data. Based on the characteristics of rein-
forcement learning mentioned above, the control strategies
obtained can comprehensively consider interactions between
multiple agents and the impact of interactions between agents
and the environment. This enables the implementation of
adversarial or cooperative behaviors among multiple agents,
providing rational, reliable, and dynamic strategic support to
multiple agents. Therefore, there is great potential for appli-
cations in the field of differential games.

To harness the strengths of both game theory and rein-
forcement learning methods, some scholars have proposed
intelligent agent adversarial algorithms based on reinforce-
ment learning, incorporating RL into the process of mod-
elling adversarial games. Reference [8] applied the Deep
Deterministic Policy Gradient (DDPG) algorithm to multi-
agent environments and proposed the MADDPG algorithm,
which employs a method of decentralized action execution
and centralized training of policies. This algorithm exhibits
good stability and addresses the issue of high variance in
the policy gradient. It enables groups of agents to develop
cooperative strategies on both the physical and informational
levels in environments characterized by both cooperation and
competition. Reference [9] introduces a cooperative learn-
ing model called the joint action learner and demonstrates
its effectiveness through experiments. Reference [10] uses
G2ANet to model the interactions between two intelligent
agents. It assesses whether there is interaction between the
two agents, and, if so, further evaluates the importance of
this type of interaction on the agents’ strategies to accelerate
the learning convergence speed. Reference [11] introduces
mean field game reinforcement learning, which transforms
multi-agent problems into problems involving two adjacent

agents and replaces the influence of all other agents within
the range with an average value. This approach addresses
the issue of dimensionality explosion caused by a large num-
ber of agents in large-scale problems. Furthermore, there are
many different approaches to solving multi-agent RL prob-
lems, such as ES-Q(Q learning based on experience sharing)
[12], Pareto-Q(Pareto-Q learning) [13] algorithms, and oth-
ers, which offer diverse perspectives and methods.

The M3DDPG algorithm [14] incorporates the minimax
theorem from game theory into the MADDPG algorithm,
enhancing the robustness of the algorithm and achiev-
ing good results in multiagent environments. However, the
M3DDPG algorithm still faces problems of sparse sample
data and instability in convergence caused by randomisa-
tion. In response to the important characteristics of intelligent
agents that are difficult to adapt to complex dynamic environ-
ments andperceive the environment, this paper introduces the
Maximum Minimum Multi Agent Deep Deterministic Pol-
icy Gradient (M3DDPG) algorithm. To improve the learning
efficiency and convergence speed of the algorithm, particle
swarm optimization is introduced to search and optimize the
experience sample set of M3DDPG algorithm to a certain
extent, and good training samples are obtained.

In summary, we use the M3DDPG algorithm as a foun-
dation for improvement and employ the Multi-Agent Adver-
sarial Learning (MAAL) approach to address the issue of
excessive computation in continuous action spaces. The par-
ticle swarm optimisation (PSO) algorithm is introduced to
optimise and update the set of sample experiences. As a
result, this study proposed an enhanced PSO-M3DDPGalgo-
rithm. The main contributions are as follows.

• Using the MAAL approach to construct local linear func-
tions to approximate the nonlinear state value function,
employing gradient descent methods to approximate the
objective instead of inner-loop minimisation methods,
reducing computational complexity.

• Introducing the PSO algorithm to optimise the sample data
set in order for parameter optimisation, addressing issues
related to local optima and unstable convergence.

Problem description andmodelling

Modelling the multi-agent pursuit-evasion task for UAVs,
utilising the PSO-M3DDPG algorithm as the decision-maker
unit for the chasing UAV cluster. These UAVs cooperate with
eachother to effectively perform the task of pursuingmultiple
escaping UAVs in a complex battlefield environment.

123

Complex & Intelligent Systems (2024) 10:6867–6883 6869

Fig. 1 The four-to-two pursuit-evasion game of UAVs

Battlefield environment

This study builds up a two-dimensional continuous battle-
field as the task environment for the many-to-many pursuit
and escape problem of UAVs. The length of the battlefield
is L and the width is W. Setting the task scenario, n(n > m)
pursuit UAVs hunt m(m > 1) escaping UAVs. P � {P1,
P2, · · · , Pn} represents the collection of n pursuit UAVs,
E � {E1, E2, · · · En} represents m escaping UAVs. At the
beginning of the mission, the initial positions and velocities
of both pursuing UAVs and escaping UAVs are randomly
initialized. We set dE as the radius of the safety zone estab-
lished around escaping UAVs. If a pursuing UAV enters this
zone, it successfully completes its tracking mission. When
a pursuing UAV or an escaping UAV flies out of the bat-
tlefield boundary, the mission is considered a failure. The
Fig. 1 illustrates a conceptual representation of a four-to-two
pursuit-evasion UAV mission.

Motionmodel

The UAV is simplified to the mass-point model, and its
motion state is determined by its position and velocity, as
depicted in Fig. 2.

The instantaneous status information Qi
t of UAVs i at the

current moment t is represented as:

Qi
t �

[
xit , y

i
t , vit , αi

t

]T
(1)

In the equations: xit and yit are the position coordinates
of the UAV i at time t; vit is the speed magnitude of the

Fig. 2 UAV motion state diagram

Fig. 3 Acceleration control of unmanned aerial vehicles

UAV i at time t; αi
t is the angle between the speed direction

of the UAV i at time t and the positive X axis direction,
known as the heading angle, defined as positivewhen rotating
counterclockwise from the positive X axis direction.

By utilizing linear acceleration aivt and angular acceler-
ation aiαt to control the speed and direction of the UAV,
maneuverable flight can be achieved, as shown in Fig. 3.

The instantaneous status information of the UAV i at the
moment t + 1 is as follows:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vit+1 � vit + aivt · �t
αi
t+1 � αi

t + aiαt · �t
xit+1 � xit + vit+1 · cosαi

t+1 · �t
yit+1 � yit + vit+1 · sin αi

t+1 · �t

(2)

Qi
t+1 �

[
xit+1, y

i
t+1, vit+1, αi

t+1

]T
(3)

In the formula: �t is the simulation step size.

Task allocationmodel

The task allocation model for the many-to-many pursuit-
evasion game involves modeling the task assignment for
the UAVs of both pursuing parties. The task assignment is
achieved using the Apollo-Apollonius circle design advan-
tage function.

The positions of the pursuing UAV i is denoted as
(
xPi ,

yPi
)
, and the positions of the escaping UAV j is repre-

sented
(
xE j , yE j

)
. The speed ratio between them is given

as
vE j
vPi

� ki j < 1. With this information, the coordinates

of the Apollonius circle can be calculated as

(
xE j −xPi k

2
i j

1−k2i j
,

123

6870 Complex & Intelligent Systems (2024) 10:6867–6883

yE j −yPi k
2
i j

1−k2i j

)
.The radius of theApollonius circle can be deter-

mined as

⎛
⎝ ki j

√(
xE j −xPi

)2
+
(
yE j −yPi

)2

1−k2i j

⎞
⎠.

The advantage function can be defined as follows:

Xi j (x) �
xE j − k2i j xPi − ki j

√
(xE j − xPi)

2 + (yE j − yPi)
2

1 − k2i j
(4)

The task allocation process can be described as n pur-
suit UAVs completing the pursuit of m escaping UAVs. At
any given time, only one pursuit UAV can pursue a single
escaping UAV. Each escaping UAV is pursued by at least one
pursuit UAV. Task allocation is carried out during the initial
stage, and remains unchanged until the end of the mission.
The following assumptions are made:

ai j �
{
0 The i-th pursuit drone did not perform the j-th task

1 The i-th pursuit drone was assigned to perform the j-th task

(5)

Assign tasks to the pursuit and escape UAVs of both sides,
as shown below, with a formula of 0–1 planning (Fig. 4):

s.t .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i�1

ai j � 1 j� 1, 2 · · · ,m
m∑
j�1

ai j � 1 i � 1, 2, · · · , n

n∑
i�1

m∑
j�1

ai j � m � n

ai j � 0, 1

(6)

The overall objective function is as follows:

V (x) �
n∑

i�1

m∑
j�1

ai j Xi j (7)

The optimal task allocation is as follows:

Fig. 4 The Apollonius circle formed by two-to-two pursuit

A∗
τ � argmax V (x) (8)

Escape strategy

Drawing on the ideas learned in the course, three grad-
ually complex and intelligent escape strategies have been
designed to facilitate progressive training of drones for pur-
suit. The escapingUAVs employ three differentmaneuvering
strategies: straight-line motion, curved motion, and intelli-
gent evasion motion. Straight-line motion: Escaped UAVs
perform variable-speed straight-line motion. Curvedmotion:
escaping UAVs are set to follow a sinusoidal curve motion
pattern within the mission scenario. Intelligent evasion
motion: when multiple pursuing UAVs enter the detection
range of an escaping UAV, the escaping UAV will move in
a direction perpendicular to the geometric center of the pur-
suing UAV cluster. In each round of algorithm training, the
escape UAV randomly adopts a motion mode for maneu-
vering. Three progressively intelligent escape strategies are
expressed as follows (Figs. 5, 6, 7).

123

Complex & Intelligent Systems (2024) 10:6867–6883 6871

Fig. 5 The model diagram of straight-line motion for escape UAV

Fig. 6 The model diagram of curve motion for escape UAV

Fig. 7 The model diagram of intelligent escape motion for escape UAV

Straight-line motion:

{
v′
target � vtarget + av · �t

θ ′
target � θtarget

(9)

av ∈
[
−π

6
, −π

6

]
aθ � 0 (10)

{
x ′
target � xtarget + v′

target · �t · cos θtarget

y′
target � ytarget + v′

target · �t · sin θtarget
(11)

Curved motion:

y′
target � ytarget + k · sin(1

k
(x ′

target − m) (12)

θ ′
target � arctan

(
− cos

(
1

k

(
xtarget − m

))
(13)

⎧⎨
⎩
x ′
target � xtarget + vtarget · �t · cos θ ′

target

y′
target � ytarget + k · sin(1

k
(x ′

target − m)
(14)

av � 0

aθ � (θ ′
target − θtarget)/�t

(15)

Intelligent evasion motion:

xcenter � x1 + x2 + · · · xn
2

ycenter � y1 + y2 + · · · yn
2

(16)

θtar−uav � arctan((ytarget − ycenter)/(xtarget − xcenter))
(17)

θ ′
target � π

2
+ θtar−uav (18)

av ∈
[
0,

π

6

]
aθ �

(π

2
+ θtar−uav − θtarget

)/
�t (19)

Here t represents the simulation step. xtarget , ytarget rep-
resents the coordinates of the escapingUAV. x ′target , y′target
represents the coordinates of the escaping UAV at the next
time step. vtarget , θtarget represents themagnitude and direc-
tion of the escaping UAV’s velocity, where the direction is
the angle between the velocity direction and the positive X-
axis. v′target , θ ′target represents the magnitude and direction
of the escaping UAV’s velocity at the next time step. av , aθ

represents the linear acceleration and angular acceleration of
the escaping UAV. k and m are parameters influencing the
curvature of the curve motion. xcenter center and ycenter are
the coordinates of the geometric center of the pursuing UAV
cluster. θtar−uav is the angle between the line connecting the
escaping UAV and the geometric center of the pursuing UAV
cluster within the detection range.

123

6872 Complex & Intelligent Systems (2024) 10:6867–6883

Algorithm design

MADDPG

The Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [15] is an algorithm used to address reinforce-
ment learning in multi-agent environments where agents
interact with each other. The core idea of this algorithm is dis-
tributed execution and centralized training. In other words,
each agent uses its own state to estimate policies and output
actions. It optimizes the policy network through Q-values.
Additionally, it uses joint states to estimate values and out-
put Q-values, optimizing the action-value function through
environmental rewards.

MADDPG is a framework-based reinforcement learning
algorithm, with each agent corresponding to one framework.
The algorithm model consists of two parts: the actor and the
critic. The actor is responsible for policy estimation,while the
critic is responsible for value estimation. The shared infor-
mation among all agents is the joint state action space. For an
agent, the basic process to achieve the optimal strategy is as
follows: First, the actor network selects a policy based on its
input state, which yields an action. Then, the critic network
calculates the agent’s action value, i.e., the Q-value, based on
the joint state-action information. Finally, the critic network
performs value estimation and optimizes the value based on
environmental feedback, while the actor network simultane-
ously performs policy estimation and optimizes the policy
based on the value. This cycle continues, ultimately leading
to the maximum value and the optimal strategy for all agents.

During the training phase, a batch of s samples, denoted

as S
(
x j , a j , r j , s′

j

)
is randomly sampled from the sample

buffer D and fed into the critic network [15]. This process
calculates the Q-values as follows:

y j � r j
i + γ Qμ

i

(
x ′ j , a′

1, · · · , a′
n

)∣∣∣
a′
k�μ′

k (ok)
(20)

The loss function for the critic network is as follows:

L(θi) � 1

s

∑
j

[(
Qμ

i (x
j , a j

1 , · · · , a j
n

)
−y j

)2]
(21)

Then, the parameters of the critic network are updated
through gradient descent using the following update formula.

θ ′
cri tic � θcri tic − α

∂(y′ − y)

∂θcri tic
(22)

After receiving the Q values, the actor network is trained
and updated using the gradient update formula as follows.

∇θi J (μi) � 1

s

∑
j
∇θi μi (ai |o j

i)∇ai Q
μ
i (x

j , a j
1 , ..., a j

n)
∣∣∣ai

� μi (o
j
i) (23)

Since the goal of the actor network is to maximise the
Q values, it is updated by gradient ascent, and the update
formula is as follows [16]:

θ ′
actor � θactor + β∇θi J (μi) logπθactor (st , at) · y (24)

where α and β are the weighting parameters.

Max–min principle

The application of the max–min principle in reinforcement
learning algorithms involves considering, in the worst-case
scenario, finding the maximum value of the minimum value
of the Q function [17]. To learn more robust strategies, it
is assumed that other agents make the most unfavourable
actions for themselves, meaning that other UAVs that pursue
adopt actions with the minimumQ-values. This optimization
of the agent’s cumulative rewards enhances the robustness
of the strategy. This results in the formation of the minimax
learning objective JM (θi):

∇θi JM (θi) � Ex∼D[∇θiμi (Oi)∇ai Q
μ
M , i

(x , a∗
1 , . . . a∗

i , . . . a∗
N)]

ai � μi (Oi)

a∗
i �� j � argmin

ai �� j
Qμ

M , i (x , a1, a2 . . . aN) (25)

The critic network is updated by minimizing the estima-
tion error. The loss function is as follows:

L(θi) � Ex , a, r , x ′∼D[(Q
μ
M , i (x , a1, a2 . . . aN) − y)2]

y � r + γ Qμ′
M , i (x

′, a∗′
1 , . . . ai ′, . . . a∗′

N)

a′i � μ′i (Oi)

a∗′
i �� j � argmin

ai �� j
Qμ′

M , i (x
′, a′1, a′2 . . . a′N) (26)

123

Complex & Intelligent Systems (2024) 10:6867–6883 6873

The actor network is updated using the sampled policy
gradients to optimize its parameters. The optimization for-
mula is as follows:

∇θi J ≈ 1

S

∑
k
∇θi μi (oi)∇ai Q

μ
M , i (x

k ,

a∗
1 , · · · , ai , · · · , , a∗

N)

ai � μi (27)

Multi-agent adversarial learning

Using the max–min principle for objective solving, the con-
tinuous action space and non-linear Q function result in a
tremendous computational load. The introduction of Multi-
Agent Adversarial Learning (MAAL) methods involves
approximating the nonlinear state-value function, i.e., the
Q-function, by constructing local linear functions. This
approach replaces the inner-loop minimization method with
a one-step gradient descent approximation to effectively
address the problem.

Introducing a set of perturbations ε to disrupt the behavior
a∗ thatminimizes theQ-value, and linearizing theQ-function
Qμ

M , i

(
x , a′, · · · a′

n

)
. A perturbation value ε j is sought that

can locally approximate the Q-function in the gradient direc-
tion. Then, by taking a small gradient step, the value of this
perturbation, which leads to the behavior a∗ that minimizes
the Q-value reduction, is approximated as expressed in the
following equation:

a∗′
j ��i � a′

j ��i + ε j ��i

ε j ��i � arg min∈ j ��i
Qμ′

M , i (x
′, a′

1 + ε1, . . . a′
i . . . a

′
N + εN)

ε̂ j ��i � −α∇ai Q
μ′
M , i (x , a

′
1, . . . ai , . . . a′

N) (28)

where α represents an adjustable coefficient that can influ-
ence the step size of the gradient descent solver. A smaller
α results in a smaller step size, which can improve computa-
tional precision but may make it more challenging to find an
appropriate perturbation value. Conversely, a larger α leads
to a larger step size but may result in poor performance of
the linear fitting function, which is not conducive to effective
training and learning.

Minimaxmulti-agent deep deterministic policy
gradient

The M3DDPG algorithm, proposed as an improvement on
the aforementioned algorithm, addresses the issue of deep
reinforcement learning agents that are often fragile and sen-
sitive to the training environment, especially in multi-agent
scenarios [14].

To learn robust policies, the M3DDPG algorithm intro-
duces the maximin principle, assuming that other agents
make the most disadvantageous decisions for one’s own
agent. It also employs a multi-agent adversarial learning
approach to reduce the significant computational complex-
ity associated with nonlinear Q-function maximization and
minimize. This enhances the robustness and convergence of
the M3DDPG algorithm.

The pseudocode for theM3DDPG algorithm is as follows:

123

6874 Complex & Intelligent Systems (2024) 10:6867–6883

Algorithm: M3DDPG Algorithm

For training = 1⋯ :

Ini�alize the agent's environment, ini�al state x, perform random explora�on N to obtain ac�ons.

For training rounds numbered = 1⋯ :

For each agent , select ac�on = () + the current-�me policy and random explora�on.

For agent = 1⋯ :

Sample random sample (, ,) from the memory replay buffer for training.

 Update the cri�c_eval network parameters by minimizing the loss.

Train the cri�c network and compute the objec�ve func�on.

′
≠ = ′ + ′

′ = ― ∇ ′

′

, (′, ′
1,⋯ ′)

Calculate the loss func�on and obtain the corresponding gradients.

=
1

― , (, 1,⋯,)
2

Update the actor_eval network parameters through gradient descent.

Train the actor network and update the gradients.

∇ ≈
1

∇ ()∇ , (, 1,⋯,)

| = () ≠ = +

′ = ― ∇ ′

′

, (′, ′
1,⋯ ′)

If the "target" network update period is reached:

 Perform a so� update to update the parameters of the actor_target and cri�c_target networks.

 end for

end for

end for

Particle swarm optimization algorithm

Particle Swarm Optimization (PSO) algorithm is an evolu-
tionary computing technique initially proposed by Eberhart
andKennedy in 1995 [18]. PSO is the only evolutionary algo-
rithm that does not involve survival of the fittest. Due to its
simplicity and low computational cost, it has been success-
fully applied to a range of continuous optimization problems.
In the particle swarm algorithm, each particle represents a
potential solution to the problem. Optimization problems are
solved through the simple behaviors of individual particles
and the exchange of information within the population. In

the context of RL problems, each particle represents a can-
didate policy and, through iterations, the PSO aims to find
the optimal policy [19]. In each iteration, particles update
their velocities and positions by tracking two "extremes":
One is the best solution found by the particle itself (pbest),
and the other is the best solution found by the entire popula-
tion (global best or gbest).

The update process for particles is as follows (Fig. 8).
In the diagram, −→x (t) represents the particle’s position at

time t, −→x (t + 1) represents the particle’s position at the next
time step, −→v (t) represents the particle’s velocity at time t,−→v (t + 1) represents the particle’s velocity at the next time

123

Complex & Intelligent Systems (2024) 10:6867–6883 6875

Fig. 8 Update method of the particle

step, −→p (t) represents the best solution found by the particle
at time t, −→g (t) represents the historical best solution found
by the entire particle swarm up to time t.

Each particle determines its own velocity and adjusts its
trajectory based on its individual experience −→p (t) and the
collective experience−→g (t) of the group. They move towards
the optimal point. Different particles calculate their indi-
vidual fitness values based on the corresponding objective
function and assess their own quality [20]. The update for-
mulas for particle velocity and position are as follows:

vid(t + 1) � wvid(t) + c1r1(pi (t) − xid(t))

+c2r2(g(t) − xid(t))
(29)

xid(t + 1) � xid(t) + vid(t + 1) (30)

In the equations above:w is the Inertia weight, which con-
trols the change in particle velocity.r1, r2 express the random
numbers between [0, 1], used to control the weight.c1, c2
are learning factors representing the random acceleration
weights by which particles move towards their individual
and global best values, respectively.

The PSO-M3DDPG algorithm

TheM3DDPG algorithm is capable of conducting rapid local
exploration and acquiring a significant amount of sample
data. However, due to the sparsity of the sample space, it is

prone to getting stuck in local optima or facing challenges
in convergence. Therefore, by using the PSO algorithm to
initialise multiple policy networks, creating a population of
policy networks that interact with the environment, generat-
ing sample data, storing them in a buffer and applying them
to train theM3DDPG algorithm, continuously improving the
set of sample experience, and combining their strengths, it
becomes possible to effectively address the problems inher-
ent to each algorithm. This enables them to learn more
efficiently which using PSO for the strategy improvement
that is called the PSO-M3DDPG algorithm.

To address the issue of the enormous computational bur-
den that arises when solving the objective in the M3DDPG
algorithm using the principle of minimax optimization,
a multi-agent adversarial approach is introduced. This
approach involves linearly approximating the complex Q
function to obtain a simpler linear function. Furthermore,
improvements are made to the inner-loop minimization pro-
cess by replacing it with a one-step gradient descent method.
This modification significantly reduces the computational
load and achieves algorithm optimization.

The workflow of the PSO-M3DDPG algorithm is as fol-
lows (Fig. 9):

Step 1: Initialize N policy network populations and
M3DDPG network parameters.

Step 2: Compute the cumulative reward R for all policies
within the population and store the transitions (st , at , rt ,
st+1).

Step 3: Agents interact with the environment based on
decisions made by deep neural networks, completing one
episode of operation.

Step 4: Rank the policy networks based on the cumulative
reward provided by the environment as the fitness value.

Step 5: Select the top ϕ% of policy networks as elites.
Step 6: Add random noise to the remaining policy net-

works to induce mutations.
Step 7: Store the transitions (st , at , rt , st+1) for the

mutated policy networks.
Step 8: Train the M3DDPG network using the acquired

experience dataset from the samples.
Step 9: Copy the M3DDPG network parameters to the

policy network population.
The structure diagram of the PSO-M3DDPG algorithm is

as follows:
The pseudocode for the PSO-M3DDPG algorithm:

123

6876 Complex & Intelligent Systems (2024) 10:6867–6883

Algorithm: PSO-M3DDPG Algorithm

123

Complex & Intelligent Systems (2024) 10:6867–6883 6877

Multi-agent pursuit and evasion strategies
for UAVs based on the PSO-M3DDPG
algorithm

State space

In multi-agent pursuit-evasion decision tasks for UAVs, the
local observation of the chasing UAVs includes their own
state information, local interaction information, and the state
information of the evading UAVs. The self-state information
of a UAV can be described as (xi , yi , vi , θi , team), where

xi and yi represent the position information, vi is the speed
magnitude, θi is the speed direction, and ’team’ indicates
whether the UAV i is part of a pursuit team, with ’team’
taking values 0,1.

The local interaction information includes data from the
three nearest UAVs within communication range, expressed
based on their relative distances (xk , yk , vk , θk), (xl , yl , vl ,
θl), and (xm , ym , vm , θm), representing the positions, speed
magnitudes, and speed directions of nearby friendly UAVs.
When there are not enough other pursuingUAVswithin com-
munication range, the information content is filledwith zeros.

123

6878 Complex & Intelligent Systems (2024) 10:6867–6883

Fig. 9 PSO-M3DDPG algorithm
structure diagram

Fig. 10 State space for many-to-many pursuit and escape missions of
UAVs

In multi-UAV multi-pursuer evasion decision tasks, the
state information of evading UAVs can be represented as(
x j
tar , y

j
tar , v

j
tar , θ

j
tar

)
, j � 1,2, · · ·, where j � 1,2, · · ·,

represents different evading UAVs, respectively indicating
the position, speed magnitude, and direction of each evading
UAV.

The complete state space is as follows (Fig. 10).

Action space

For the control of UAV motion, an acceleration-based
approach is employed, where the UAV’s action at each step

Fig. 11 Action space of UAV

consists of velocity acceleration av and angular acceleration
aα. This forms a two dimensional motion space represented
as (av , aα), as shown in Fig. 11.

Networkmodel

The particle swarm algorithm optimized M3DDPG algo-
rithm is applied to decision-making in multi-UAV pursuit-
evasion tasks. Both the actor network and the critic network
are constructed with 4 layers of fully connected neural net-
works, and the specific number of neurons in each layer is
shown in Fig. 12.

Reward function

In multi-UAV pursuit-evasion tasks, the primary considera-
tions revolve around the completionof the pursuit task and the

123

Complex & Intelligent Systems (2024) 10:6867–6883 6879

Fig. 12 Neural network structure diagram

collaborative requirements among the pursuit team. Regard-
ing the completion of the pursuit task, two types of guiding
global rewards are designed based on distance and direction,
along with two local rewards for successful capture and task
failure. In terms of the collaborative requirements among the
pursuit team, two local rewards are designed for forming a
pursuit team and avoiding collisions among UAVs.

The reward function for pursuing UAV i in the multi-UAV
pursuit-evasion task is defined as follows:

ri � r iglobal + r ilocal (31)

The configurationof the global reward rgolbal is as follows:

r iglobal � r id + r ia (32)

In the global reward rglobal , rd represents the reward
generated by the relative distance change between pursuing
UAVs and evading UAVs, and its expression is as follows:

r id � β · (disi − disi_) (33)

ra represents the directional guidance reward, and its expres-
sion is as follows:

r ia � γ · cosϕ (34)

where dis represents the current–time relative distance;dis−
represents the next-time relative distance;ϕ represents the
angle between the velocity vector of the pursuing UAV and
the line connecting both the pursuing and evading UAVs’
positions;β and γ are hyperparameters representing weight
coefficients.

The expression for the local reward, rlocal , is as follows:

r ilocal � r if inal + r ibound + r iteam + r idanger (35)

The expression for the task completion reward, r f inal ,
which represents the reward value for a UAV successfully
capturing a single escaping UAV, is as follows:

r if inal �
{
20 success f ully captured target
0 other

(36)

The expression for the boundary reward/punishment,
rbound , which is used to assess whether both the pursuing
and escaping UAVs have flown out of the mission area, sig-
nifying a mission failure, is as follows:

r i
bound

�
{

−20 pursui t drone f lies out o f the mission area
−20 escape drone f lies out o f the mission area

(37)

The expression for the team reward, rteam , which is used
to determine whether the pursuing UAV has formed a sub-
pursuit team and has been assigned a pursuit mission, and
provides a positive reward when pursuing UAV i forms a
sub-pursuit team, is as follows:

r iteam �
{
10 drones f orm a pursuit team
0 other

(38)

The expression for the danger reward, rdanger , which rep-
resents the reward or penalty for collisions between pursuing
UAV and is used to ensure that pursuing UAVs maintain a
safe distance from each other, is as follows:

r i
danger

�

⎧⎪⎨
⎪⎩

−20 i f di j ≤ ddanger
αdanger

(
dsa f e − di j

)
i f ddanger < di j ≤ dsa f e

0 other

(39)

where αdanger represents the weight coefficient.

Simulation experiments

Simulation parameters are set as follows (Table 1).

Training process

Using both the basic M3DDPG algorithm and the improved
PSO-M3DDPG algorithm as decision units for pursuing
UAVs, model training is conducted for the task of multi-UAV
pursuit-evasion game. In each training round, the initial state
of the UAVs is randomly initialized. The different initial sce-
narios for the multi-UAV pursuit and evasion task examples
are illustrated in Figs. 13, 14.

123

6880 Complex & Intelligent Systems (2024) 10:6867–6883

Table 1 UAVs pursuit-evasion task training parameters

Parameters Value

The horizontal width of the battlefield (m) W � 500

The vertical length of the battlefield (m) H � 500

The number of our UAVs N � 2/4

The speed of our UAVs (m/s) vit ∈ [1, 2.5]

The number of enemy UAVs M � 2

The speed of enemy UAVs (m/s) v
j
t ∈ [2, 5]

UAVs linear acceleration (m/s2) aivt ∈ [−1, 1]

UAVs angular acceleration (rad/s2) aiαt ∈ [− π
6 ,

π
6]

Learning rate α � 0.005

Reward discount factor γ � 0.98

Sample size Batch_si ze �
128

Training rounds T � 3000

Fig. 13 Initial situation map of UAVs two-to-two pursuit and escape
mission

Fig. 14 Initial situation map of UAVs four-to-two pursuit and escape
mission

After initialization, in each round of the training process,
the escape UAV randomly adopts one of the maneuvering
modes of linear motion, curved motion, or intelligent motion
to escape, and the training effects are introduced below.

An analysis of the convergence of artificial neural net-
work parameters is conducted. The following figure shows
the numerical changes in the mean and variance of net-
work weight parameters in the ’actor_eval’ neural network
of both algorithms as the training epochs process, as shown
in Fig. 15.

From the above figure, it can be seen that in the initial
training of the M3DDPG algorithm, due to the random ini-
tialization of neural network parameters following a normal
distribution, it is prone to local optima during the pursuit-
evasion decision-making process. Therefore, in the training
process, there is a large optimization range for the parame-
ters, resulting in slow convergence. On the other hand, in the
training of the PSO-M3DDPG algorithm, the use of the PSO
algorithm to optimize the strategy network population that
generates sample data, combined with the M3DDPG algo-
rithm for exploration, results in a better sample data set that is
applied to algorithm training. In the neural network updates,
the overall parameter optimization range is smaller, and the
convergence speed is significantly faster. As the learning
process progresses, the neural network parameters gradually
approach their optimal values until they converge, reaching
a stable state and obtaining a stable decision-making model
for the UAVs behavior.

The UAVs was trained by using both the PSO-M3DDPG
algorithm and the M3DDPG algorithm. The mean individ-
ual round rewards and the overall rewards for the UAVs were
recorded in each training round. These metrics serve as crit-
ical indicators of how well the UAVs interacted with the
environment. The results are shown in Fig. 16.

From the above figure, it can be observed that as the train-
ing progresses, the rewards gradually increase and eventually
converge. However, the initial reward value for the PSO-
M3DDPG algorithm is higher than that for the M3DDPG
algorithm. Furthermore, the overall learning efficiency and
final convergence results are significantly better for the PSO-
M3DDPG algorithm compared to the M3DDPG algorithm.
This indicates that the use of the PSO algorithm to optimize
the sample data set significantly promotes the learning pro-
cess of neural networks, accelerates the convergence speed
of the algorithm, and leads to a better convergence result.

Validation process

Training the pursuit UAVs to engage with escape UAVs
that employing different evasion strategies. Validate the per-
formance of the trained neural network models. Employ
the converged artificial neural networks as decision-making
units for the pursuit UAVs. Conduct multi-UAV pursuit and

123

Complex & Intelligent Systems (2024) 10:6867–6883 6881

Fig. 15 Mean and variance variations of ’actor_eval’ network weight parameters

Fig. 16 Average individual and global rewards during training process

evasion tasks under varying conditions, including different
quantities and initial states of UAVs. Analyze the trajectory
of the pursuit UAVs to assess their performance.

When the escape UAVs perform simple straight-line
movements, the trajectory diagram is as follows (Figs. 17,
18).

When the escape UAVs perform simple curved move-
ments, the trajectory diagram is as follows (Figs. 19, 20).

When the escape UAVs perform complex adversarial
movements, the trajectory diagram is as follows (Figs. 21,
22).

From the motion trajectory diagram above, it can be seen
that different numbers of UAVs can effectively completed the
pursuit and evasion tasks for targets with different movement
patterns, performingwell. The target decomposition and task
allocation for the pursuit of drones have been designed, so
that multiple pursuit drones can form an effective sub team
to capture the escaping drones one by one. In response to the

Fig. 17 Trajectory diagram of UAVs for two-to-two pursuit and escape
mission

problem of falling into local minima caused by unreasonable
initial value assignment in neural networks, which may lead
to convergence oscillation or non convergence, the particle

123

6882 Complex & Intelligent Systems (2024) 10:6867–6883

Fig. 18 Trajectory diagram of UAVs for four-to-two pursuit and escape
mission

Fig. 19 Trajectory diagram of UAVs for two-to-two pursuit and escape
mission

Fig. 20 Trajectory diagram of UAVs for four-to-two pursuit and escape
mission

swarm optimization algorithm and M3DDPG algorithm are
combined to search and learn the experience sample set of
deep neural networks to a certain extent. The particle swarm
algorithm is used to obtain a relatively optimal solution in the
overall optimization process, and then the gradient descent of
the neural network is used for detailed optimization learning,
ultimately obtaining the optimal solution.

Fig. 21 Trajectory diagram of UAVs for two-to-two pursuit and escape
mission

Fig. 22 Trajectory diagram of UAVs for four-to-two pursuit and escape
mission

Use the improved PSO-M3DDPG algorithm for specific
model construction and algorithm design. Through training,
use the artificial neural network constructed by the improved
algorithm to command the pursuit of drone clusters and grad-
ually achieve the pursuit task of multiple escaping drones.
The simulation verified the effectiveness of the improved
algorithm as a behavioral decision-making unit for pursu-
ing drones in achieving multi to many pursuit and evasion
tasks.Moreover, the improved PSO-M3DDPG algorithm has
a faster convergence speed and better decision-making strat-
egy compared to the original algorithm.

Conclusion

This article focuses on the research of multi-UAV pur-
suit and evasion games [21], and improves upon traditional
multi-agent cooperative algorithms [22] based on minimax
optimization. It adopts a multi-agent adversarial learning
approach for minimax target solving, co mbining the PSO
algorithm with the M3DDPG algorithm, proposing the
PSO-M3DDPG algorithm. This algorithm utilizes the PSO

123

Complex & Intelligent Systems (2024) 10:6867–6883 6883

algorithm to generate and continuously optimize the empiri-
cal sample set. Simulation experiments show that compared
to theM3DDPGalgorithm, this algorithmexhibits faster con-
vergence, better robustness, and achieves a higher success
rate in pursuit and evasion tasks.

Currently, most reinforcement learning algorithms are
limited to small-scale intelligent agent environments and
applied to large-scale cluster control problems, which suffer
from dimension explosion and extremely high environmen-
tal complexity. The population optimization characteristics
of evolutionary algorithms are expected to solve this prob-
lem, and future work will pay more attention to the deep
combination of evolutionary algorithms and reinforcement
learning.

Data availability Thedata supporting thefindings of this study are avail-
able within the article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang X, Li L, Jia LL (2015) Research and simulation of multi
robot pursuit and escape strategies based on differential games.
Equip Manuf Technol 09:9–12

2. Tan FX, Liu DR, Guan XP et al (2014) Review and prospect
of nonlinear control based on differential game theory. J Autom
40(1):1–15

3. Zhao L, Li C, Guo X (2018) Research of cooperative relief strategy
between government and enterprise based on differential game.
Syst Eng Pract 38:885–898

4. Song X,Wu C, Stojanovic V et al (2023) 1 bit encoding–decoding-
based event-triggered fixed-time adaptive control for unmanned
surface vehiclewith guaranteed tracking performance. Control Eng
Pract 135:105513

5. FuL,WangXG(2012)Research on differential gamemodelling for
close range air combat of unmanned aerial vehicles. Def Technol
33(10):1210–1216

6. Li YL, Juan L, Liu C et al (2022) Application research of differ-
ential games in attack and defence of unmanned aerial vehicles
clusters. Unmanned Syst Technol 5(05):39–50

7. Liu J, Wang G, Fu Q et al (2023) Task assignment in ground-to-
air confrontation based onmultiagent deep reinforcement learning.
Def Technol 19:210–219

8. Lowe R, Wu Y I, Tamar A, et al (2017) Multi-agent actor-critic for
mixed cooperative-competitive environments. Adv Neural Inform
Process Syst 30

9. Hao J, Huang D, Cai Y et al (2017) The dynamics of reinforcement
social learning in networked cooperative multiagent systems. Eng
Appl Artif Intell 58:111–122

10. Donghua LI, Jiang J, Jiang C (2009) A flight path planning
algorithm based on multi-agent reinforcement learning method.
Electron Opt Control 16(10):10–14

11. Wang Q, Huang Y, Chang J (2021) Research on a downlink trans-
mission power control algorithm for dense unmanned aerial vehicle
networks. Electr Measure Technol 44(13):59–67

12. Fang M, Groen FCA (2013) Collaborative multi-agent reinforce-
ment learningbasedon experience propagation. J SystEngElectron
24(4):683–689

13. SongMP,GuGC,ZhangGY, et al. (2007)Cooperativemulti-agent
learning in general sum games. Control Theory Appl (02):317–321

14. Li S, Wu Y, Cui X et al (2019) Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradient. Proceed
AAAI Conf Artif Intell 33:4213–4220

15. Zhang TT, Lan YS, Song AG (2021) Behavior decision learning
reward mechanism for unmanned cluster systems. J Beijing Univ
Aeronaut Astronaut 47(12):2442–2451

16. Wang S, Duan J, Shi D et al (2020) A data-driven multi-agent
autonomous voltage control framework using deep reinforcement
learning. IEEE Trans Power Syst 35(6):4644–4654

17. Martins RM,GresseVonWangenheimC (2023) Findings on teach-
ingmachine learning in high school: a ten-year systematic literature
review. Inform Educ 22(3):421–440

18. Eberhart R, Kennedy J (1995) Particle swarm optimization. Pro-
ceed IEEE Int Conf Neural Netw 4:1942–1948

19. Yang W, Li QQ (2004) Overview of particle swarm optimization
algorithms. Chin Eng Sci 6(5):87–94

20. Li AG, Qin Z, Bao FM et al (2002) Particle swarm optimization
algorithm. Comput Eng Appl 38(21):1–3

21. Li B, Yang Z, Chen D et al (2021) Maneuvering target tracking
of UAV based on MN-DDPG and transfer learning. Def Technol
17(02):457–466

22. Fan J, Li D, Li R et al (2020) Analysis on MAV/UAV cooperative
combat based on complex network. Def Technol 16(01):150–157

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/

	Multi-UAV pursuit-evasion gaming based on PSO-M3DDPG schemes
	Abstract
	Introduction
	Problem description and modelling
	Battlefield environment
	Motion model
	Task allocation model
	Escape strategy

	Algorithm design
	MADDPG
	Max–min principle
	Multi-agent adversarial learning
	Minimax multi-agent deep deterministic policy gradient
	Particle swarm optimization algorithm
	The PSO-M3DDPG algorithm

	Multi-agent pursuit and evasion strategies for UAVs based on the PSO-M3DDPG algorithm
	State space
	Action space
	Network model
	Reward function

	Simulation experiments
	Training process
	Validation process

	Conclusion
	References

