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In 2011, the Professor Gogotsi and Professor Barsum reported the
use of MAX phase Ti3AlC2 as a precursor to prepare two-dimensional
structured Ti3C2Tx MXenes (Tx, various functional groups including
O, F and OH, etc.), and applied them to lithium-ion batteries [1]. In
the past 12 years, researchers have developed a large family of
MXenes by using hydrofluoric acid etching [1,2] and Lewis acidic
molten salt [3,4] to match a large family of MAX. MXenes were
also synthesized through the chemical vapour deposition method
and direct preparation method without using MAX phase materials
[5]. Due to the unique properties of MXenes, such as metallic con-
ductivity, hydrological nature, large interlayer spacing, and rich sur-
face chemistry, researchers have used MXenes for energy storage,
energy harvesting, energy production, catalysis, sensing, electro-
magnetic interference, biomedicine, health care, and environment
[2]. MXenes have demonstrated a vigorous upward trend in recent
years (see Fig. 1). To highlight the recent developments on Mxenes,
we organize this special issue in the Journal of Materiomics (JMAT).

MAX phases and its derived two-dimensional Mxenes have
attracted considerable interest because of their rich structural
chemistry and multifunctional applications. Lewis acid molten
salt route provides an opportunity for structure design and perfor-
mance manipulation of new MAX phases and Mxenes, Although a
series of new MAX phases and Mxenes were successfully prepared
via Lewis acidmolten route [6] in recent years, fewwork is explored
on nitride MAX phases and Mxenes. A new copper-based 413-type
Ti4CuN3 MAX phase was synthesized through isomorphous
replacement reaction using Ti4AlN3MAX phase precursor inmolten
CuCl2 [7]. MXene nanosheets are considered advantageous for
functional materials, but current delamination methods to prepare
MXene nanosheets have many limitations including high cost,
small production scale, low efficiency, and deteriorated structure
integrity of obtained nanosheets. A scalable shear stress-induced
delamination (SSID) strategy to boost the production of single-/
few-layered Ti3C2Tx MXene nanosheets is described [8].

MXenes have captured extensive attention in various fields by
virtue of unique hydrophilicity, high conductivity and tunable sur-
face terminations. In the review [9], the progresses of designing
functional MXenes have been summarized. Firstly, the synthesis
methods of MXenes are classified into HF etching, in-situHF etching
and fluoride-free etching approaches based on the effect on the sur-
face chemistry of MXenes. Secondly, the factors that affect the sur-
face termination groups are discussed, including synthesis
methods, heat treatment temperature and atmosphere. Thirdly,
the synthetic routes of functional MXenes including termination
modification by synthesis methods and heat treatment, heteroatom
(N, S, or P) doping, cation and organic molecule intercalation and
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hybridization with polymer, which inhibit restacking and increase
active sites for intrinsically enhancing the inherent physical and
chemical properties of MXenes. Finally, the applications with
respect to energy storage and conversion, catalysis, sensors, elec-
tromagnetic interference shielding and microwave absorption of
functional MXenes are introduced.

To respond the recent experimental advances, the phase stability,
mechanical properties, phonon aswell as infrared- andRaman-active
modes, thermal expansion and heat capacity were investigated by
density functional theory for the S-containing MAX carbides and bo-
rides (M from III B to VIII B), of importance, well consistent with the
available experimental results. After examining the thermodynamic
competition with all the competing phases and intrinsic stability by
their lattice dynamics, 18 MAX phases were screened out from 138
ones [10]. Reminded by the well-known MAX phases, several an
atomic layers are inserted into the binary borides to form ternary
transition-metal borides named MAB phases for this problem of bi-
nary borides, where M, A and B represent the early transition-metal
element, IIIA-VIA group element, and boron element, respectively.
Similar to theMAX phases, theMAB phases have an interesting com-
bination ofmetal and ceramics-like properties, such as low hardness,
good electrical conductivities, high toughness, and oxidation resis-
tance, rendering them potential applications in many aspects such
as wear-resistant coatings, electrocatalysts, magnetic refrigeration,
etc. A 314-type MAB phase V3PB4 with hexagonal crystal structure is
synthesized by self-propagating high temperature combustion syn-
thesis (SHS) [11].

The valley index is a promising degree of freedom for informa-
tion processing in electronic devices. However, the researches on
valley polarization are mainly focused on ferromagnetic order,
which breaks the time reversal symmetry simultaneously. A
example for achieving stacking order modulated anomalous valley
Hall (AVH) effect is proposed in antiferromagnetic monolayers [12].
The example involves the introduction and reversal of nonuniform
potentials by modulating the position of substrate, to break the
combined symmetry of spatial inversion and time reversal (PT sym-
metry) and achieve stacking-dependent valley spin splitting.

MXenes have potential applications in energy conversation such
as water splitting and solar cells, as well as in energy storage such
as Li-ion batteries, supercapacitors, and hydrogen energy are
comprehensively elaborated [13]. The escalating demand for
micro/nano-sized devices, such as micro/nano-robots, intelligent
portable wearable microsystems, and implantable medical micro-
devices, necessitates the expeditious development of integrated
microsystems incorporating energy conversion, storage, and con-
sumption. Critical bottlenecks in microscale energy storage/sensors
and their integrated systems are being addressed by exploring new
technologies and new materials, e.g., MXenes, holding great
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Fig. 1. Publication number of MXenes by year (Web of Science, 2023.12.05).
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potential for developing lightweight and deformable integrated
microdevices. These reviews summarize the latest progress and
milestones in the realization of MXenes-based micro-supercapaci-
tors (MSCs) [14,15] and sensor arrays [14], and thus discusses the
design fundamentals and key advancements of MXenes-based en-
ergy conversion-storage consumption integrated microsystems.

With the rapid growth in renewable energy, researchers world-
wide are trying to expand energy storage technologies. The develop-
ment of beyond-lithium battery technologies has accelerated in
recent years, amid concerns regarding the sustainability of battery
materials. However, the absence of suitable high-performancemate-
rials has hampered the development of the next-generation battery
systems. The extraordinaryelectronic conductivity, compositional di-
versity, expandable crystal structure, superiorhydrophilicity, and rich
surface chemistries make MXenes promising materials for electrode
and other components in rechargeable batteries. This report espe-
cially focuses on the recent MXenes applications as novel electrode
materials and functional separator modifiers in rechargeable batte-
ries beyond lithium [16]. Three-dimensional crosslinked nanoarchi-
tectonics of CoP@NC anchored on Ti3C2Tx with high ionic diffusion
has been enhanced sodium storage performance [17].

Precise assembly of active component with sophisticated
confinement in electrocatalyst are promising to increase the active
site exposure for enhanced hydrogen evolution reaction (HER).
Here, PCN-333 films with mesopores are firstly assembled on tita-
nium carbide MXenes with the assistance of atomic layer deposited
oxide nanomembrane. With the whereafter pyrolysis process, the
composite is converted to N-doped porous carbon multi-layer con-
taining Fe nanoparticles. The strong confinement of Fe active parti-
cle in carbon as well as great contact between metal and carbon
effectively enhance active site exposure [18]. Heterostructure engi-
neering of MoS2/Mo2CTx nanoarray via molten salt synthesis has
been enhanced hydrogen evolution reaction [19]. MXenes
exhibited a highly efficient adsorption capability as hemoperfusion
absorbent towards middle-molecular mass and protein bound ure-
mic toxins in the end stage of renal disease treatment [20].

We thank all the authors for their contributions to this special
issue on the development of MXenes. Many aspects of MXenes
are still unknown. This includes the number of family members
and the large-scale preparation and environmentally friendly syn-
thesis methods for preparing stable products. Accurate control of
structure and surface chemical treatment. Theoretical predictions
and experimental proofs of physical and chemical properties such
as topological insulation and ferromagnetic MXenes. Applied on
printable and wearable self-powered electronic instruments.
With all these questions in mind, we hope this special issue stimu-
lates new ideas crossing the traditional disciplines in this increas-
ingly prominent research area.
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