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Abstract
In this paper we develop a model to find optimal decisions in retirement with respect
to the consumption, risky asset allocation, access to annuities, reverse mortgage and
the option to scale housing in the presence of a means-tested public pension. To solve
the corresponding high-dimensional optimal stochastic control problem, we use the
Least-Squares Monte Carlo simulation method. The model is applied in the context of
the Australian retirement system. Few retirees in Australia utilise financial products
in retirement, such as annuities or reverse mortgages. Since the government-provided
means-tested Age Pension in Australia is an indirect annuity stream which is typically
higher than the consumption floor, it can be argued that this could be the reason why
many Australians do not annuitise. In addition, in Australia where assets allocated to
the family home are not included in the means tests of Age Pension, the incentive to
over-allocate wealth into housing assets is high. This raises the question whether a
retiree is really better off over-allocating into the family home, while accessing home
equity later on either via downsizing housing or by taking out a reverse mortgage.
Our findings confirm that means-tested pension crowds out voluntary annuitisation in
retirement, and that annuitisation is optimal sooner rather than later once retired. We
find that it is never optimal to downscale housing when the means-tested pension and
a reverse mortgage are available; only when there is no other way to access equity
then downsizing is the only option.
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1 Introduction

Modelling the retirement phase using life cycle models is a complex task in many
aspects. Retirees have many different options for managing and spending their life
savings.Most life cyclemodels offer very limited choices,mainly due to the difficulties
and computational limitations of solving such models. While there is a plethora of
research on life cycle models in retirement, the majority of them only allow very few
control, state or stochastic variables, thus limiting the practical applicability of their
models.

In this paperwe develop a retirement phasemodel based on the basic expected utility
model proposed in Andréasson et al. [4], Andréasson and Shevchenko [2] and Ding
et al. [22] for optimal consumption, housing and investment in a presence of means-
tested public pension. Here, we extend the basic model with a stochastic interest rate,
availability of an investment account with taxable earnings in addition to a tax-free
pension account, and control variables for lifetime annuities, reverse mortgages and
the option to scale housing. This allows to investigate optimal decisions in retirement
with respect to the annuitization, reverse mortgage and house scaling in a presence
of means-tested public pension. The model can be adapted to the retirement phase
of people’s lives in various countries but this requires a good knowledge of country
specific retirement systems. Many countries offering public pension incorporate some
kind of means test, e.g. ‘Supplemental Security Income’ in United States or ‘Social
Solidarity Benefit’ in Greece.

The basic model developed in Andréasson et al. [4] was calibrated to the empirical
data of consumption and housing in Australia and we apply the extended model in the
context of the Australian retirement system too. We use the Australian pension system
rules from 2017 as in the basic model analysed in Andréasson et al. [4] and Andréas-
son and Shevchenko [2] for consistency and comparison purposes. It is important to
note that the pension system rules are reviewed regularly, e.g. the currently applied
minimum regulatory withdrawal rates from pension accounts are different from the
2017 rates but will change back to the 2017 rates from July 2023. Thus, our numerical
results cannot be used for direct analysis of the current pension rules in Australia.
However, only the values of some rates and thresholds in pension rules are different
from the 2017 rules while the rules are structurally the same. The model developed in
this paper can be easily adjusted for new pension rules if needed.

The extended model is not feasible to solve numerically using deterministic
methods due to too many state and control variables. To solve the corresponding
high-dimensional optimal stochastic control problem,we use the Least-SquaresMonte
Carlo (LSMC) simulationmethod by utilising the control randomisationmethod intro-
duced inKharroubi et al. [31] to handle state variables affectedby controls (endogenous
variables) with additional improvements fromAndréasson and Shevchenko [3] for the
life cycle utility based models. The method is based on simulation of all state and con-
trol variables and does not require a deterministic grid for endogenous state variables
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as in the LSMC methods developed in Brandt et al. [11] and Koijen et al. [33] for life
cycle portfolio choice problems; for more discussion see “Appendix A”.

The government-provided Age Pension in Australia is means-tested to provide
support for retirees with lowwealth and/or low income. The Age Pension is an indirect
annuity stream higher than the consumption floor of ‘average’ retiree1 and thus should
have a strong impact on annuitisation. Also, the assets allocated to the family home
are not included in the means tests of Age Pension and the incentive to over-allocate
wealth into housing assets is high. This raises the question whether a retiree is really
better off over-allocating into the family home, while accessing home equity later on
either via downsizing housing or by taking out a reverse mortgage. This motivates us
to study the optimal annuitisation and housing decisions in a presence of means-tested
pension.

The traditional fact in retirement modelling is that a risk averse retiree tends to be
better off by annuitising part of his/her wealth [18, 38, 48]. As the means-tested Age
Pension provides an income stream typically exceeding the consumption floor, the
Age Pension becomes a possible substitute for a voluntary annuitisation. We there-
fore examine the optimal level of wealth allocation into a lifetime annuity, which in
turn relates to the means tests. A lifetime annuity is a financial product that pays a
guaranteed income and insures against outliving one’s savings (longevity risk). By
purchasing an annuity the retiree gives up wealth that could potentially earn a higher
return and which could be used as bequest. Even after the mortality credit,2 the payout
rate is generally low but insures the retirees from outliving their savings. Risk averse
agents,3 however, discount the risk premium more and value a protected income over
potentially higher future consumption, thus annuitising more wealth [29]. There are
alternative annuities that address the negative aspects of a lifetime annuity, such as
variable annuities with guaranteed minimum withdrawal and guaranteed minimum
death benefits, which allow for equity growth and bequest motives respectively; see
e.g. seminal works [34, 47] or more recent review in Shevchenko and Luo [43]. These
products tend to be more expensive due to the additional benefits.

The retiree needs to find a balance between a guaranteed consumption and the pos-
sibility to leave a bequest. Yaari [48] showed that if no bequest motive is present, then
a full annuitisation is optimal. If such bequest motive exists, however, annuitisation is
still optimal but typically only partial [18, 24], which is also the case when a certain
consumption floor is present. Lockwood [35] and Arandjelović et al. [5] also showed
that bequest motives play a central role in limiting the demand for annuities and can
eliminate annuitisation completely in the presence of annuity price loadings. Hubener
et al. [26] studied a lifecycle consumption model with bequest motive and optimal
portfolio choice for stocks, bonds, life insurance and annuities. Very few Australians
annuitise any wealth [29, 32], which is consistent with retirees globally who receive
other stable income streams [23, 28, 32]. The exception is Switzerland, where the

1 For some households with, e.g. health complications, the Age Pension may not be larger than the con-
sumption floor.
2 Mortality credit refers to the discounting of future income streams based on survival probabilities. The
value of the future income stream is weighted by the probability of being alive to receive this future income.
3 This is true for rational investors only. Irrational investors, however, may value their current level of
consumption too much and therefore defer annuitisation [37].
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majority of retirees do annuitise [9, 10]. Results of our modelling confirm that means-
tested pension crowds out voluntary annuitisation in retirement, and that annuitisation
is optimal sooner rather than later once retired.

In the life cycle modelling, it is critical to include investment in housing because
owner-occupied house is typically the most expensive asset for many households.
Important research in this direction includes studies on the investment portfolio choice
in the presence of housing [16, 49]. In our paperwe study the optimal housing decisions
in the presence of means-tested public pension. An important aspect of the means
tests is the lenient treatment of the family home. Most Australian households do not
convert housing assets into liquid assets in order to cover expenses in retirement, with
the exception of certain events such as the death of a spouse, divorce, or moving to an
aged care facility [6, 41]. However, by allocating more assets to the family home, the
means-tested assets can be loweredwhich in turn results inmoreAge Pension received,
and home equity can be accessed later in retirement if needed. As with annuities, this
raises the question whether retirees should access home equity, either by selling the
home or through home equity products, or if the means tests crowd out such products
as well. Sun et al. [45] find that the reverse mortgage is a very risky asset, owing to
the uncertainty of interest rates and housing markets.

However, the decision to access home equity cannot be made purely for financial
reasons and needs to be set in the context of typical Australian retirement behaviour.
Due to both financial benefits and attachment to their home, and especially neigh-
bourhood, retirees tend to stay homeowners late in life [41]. The possibility to borrow
money decreases with age, mainly due to having no labour income, and the retiree
becomes increasingly locked into their home equity [40].

An increasingly popular solution is therefore a reverse mortgage, which allows
the retiree to borrow against home equity, up to a certain loan-to-value ratio (LVR)
threshold. The LVR threshold tends to increase with age. The initial principal limit
generally starts with 20–25% at age 65 (subject to expected interest rate and property
value), which translates to either the lump sum or the present value of future payments,
and increases 1% per year. The house equity is used as collateral and allows the retiree
to access housing equity while maintaining residence in the house. The retiree can
typically choose between six repayment options: lump sum, line of credit (allowing
flexible amounts and payment times), tenure (equal monthly payments), term (tenure
but with a fixed time horizon) and combinations of line of credit with either tenure
or term [14]. The loan is charged with either fixed or variable interest, but instead of
requiring amortisation or interest payments they accumulate (although the retiree is
free to make repayments at any time to reduce debt). The main benefits of such an
arrangement are that it limits the risk as the loan repayments are capped at the house
value, and allows the retiree to access more equity with age (contrary to traditional
loans). However, interest rates are higher due to lending margins and insurance.

Chiang and Tsai [15] find that the desire for reverse mortgages is negatively corre-
lated with the costs (application costs and insurance/spread added to the interest rate)
as well as the income for a retiree, and according to Nakajima [40] the loans are very
expensive for retirees. In addition, if a lump sum is received and allocated to what is
considered an asset in the means tests, such as a risky investment or simply a bank
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account, it will affect the Age Pension. On the other hand, if the funds are spent right
away they will not have an impact on the Age Pension received.

Previous research found that the Age Pension crowds out decisions that otherwise
are optimal [12, 29]. In our paper we evaluate whether such findings are consistent
in a more realistic framework. Asher et al. [6] finds evidence that few households
use financial products to access home equity, such as reverse mortgages. For these
reasons, we investigate whether the retiree is better off based on two additional control
variables: borrowing against housing assets with a reverse mortgage or up/downsizing
the housing in retirement. Since the family home is exempt from the means tests,
it might be optimal to over-allocate in housing and then draw it down by a reverse
mortgage. We find that it is never optimal to downscale housing with the means-tested
Age Pension when a reverse mortgage is available; only when there is no other way
to access equity then downsizing is the only option.

The paper is structured as follows. First, the benchmark stochastic model is defined
in Sect. 2 which is the foundation used in this paper. In Sect. 3, additional optimal
controls with respect to annuitisation decisions and home equity access are modelled
individually. The results of each extended model are evaluated in Sect. 4. Finally, the
paper is concluded in Sect. 5.

2 Benchmarkmodel

We utilise the basic model developed in Andréasson et al. [4], with the same utility
functions and parameters, but extend the model in several important aspects. First, a
stochastic interest rate is introduced, which is important due to long time horizon of
the retirement phase. Second, an investment account is now available in addition to
the pension account, which is important since the pension account does not allow for
deposits in retirement. This investment account allows financial investments, interest
rate investments, and yearly withdrawals and deposits with no restrictions on size as
long as the account balance is non-negative. Later, in Sects. 3.1 and 3.2, the model
is extended to cover annuitisation (extension 1) and decisions on scaling housing
and reverse mortgage (extension 2). These extensions are applied separately due to
numerical complexity caused by too many state and control variables. Solving the
model incorporating both extensions at the same time will be a subject of future
research.

2.1 Stochastic model

Weassume that the objective of the retiree is tomaximise the expected utility generated
from consumption, housing and bequest. Consider the retiree starting off with a total
wealthW > 0 (total wealth includes current house value if the retiree is a homeowner)
at the age of retirement t = t0 years; hereafter t is the age of the retiree. It is assumed
that a proportion � of this total wealth can be allocated to purchase an owner-occupied
house Ht0 = �W ∈ {0, [˜HL ,W]}, where ˜HL is a minimum house price. This means
that if the retiree is already a homeowner just before t0, then the house up/down sizing
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maybe required. The remainingwealthWt0 = W(1−�) is placed in a pension account,
which is a special type of account that does not have a tax on investment earnings and
is subject to the regulatory minimum withdrawal rates (Table 3) that depend on the
age of the retiree.

In addition to the pension account Wt , the retiree has access to an investment
account ˜Wt (assumed to be zero at t = t0) which is an account that holds a liquid
wealth separate from the pension account. The earnings of this investment account
are taxable and the account balance is included in the Age Pension means tests. The
purpose of such account is that the retiree will be able to save part of the Age Pension
and/or drawdowns from the pension account when minimum withdrawals are larger
than what is optimal to consume. Such account is also necessary later in Sects. 3.1
and 3.2 when model is extended to include annuitization, housing scaling and reverse
mortgage because pension accounts do not allow funds to be added to them after
retirement.

2.1.1 Wealth account evolution

At the start of each year t = t0, t0+1, . . . , T−1, the retireewill receive ameans-tested
Age Pension Pt and will decide what amount of saved liquid wealth from the pension
account Wt and investment account ˜Wt will be used for consumption Ct . Here, T
is the maximum age of the agent beyond which survival is deemed impossible. The
Age Pension Pt is a function of Wt and ˜Wt , and depends on the household being a
couple/single and homeowner/non-homeowner; it will be fully defined in Sect. 2.3. It
is assumed that the investment account (whose earnings are taxable) is invested in the
sameway as the pension account and thus it is always optimal to deplete the investment
account before drawing from the pension account. Thus, the retiree has to draw from
the pension account up to the minimum regulatory withdrawal rate νt ∈ (0, 1) each
period, and in case the consumption exceeds this amount the difference is taken from
the investment account (and if the investment account balance is not sufficient then the
difference is taken from the pension account). This leads to the following evolution
for the pension and investment accounts:
If Ct ≤ ˜Wt + Pt + νtWt , then

W+
t = Wt (1 − νt ),

˜W+
t = ˜Wt + Pt + νtWt − Ct ,

(1)

otherwise

W+
t = Wt + ˜Wt + Pt − Ct ,

˜W+
t = 0.

(2)

Here,W+
t and ˜W+

t are the pension and investment account balances immediately after
the consumption withdrawal. Note that in this model setup, the pension Pt is received
just before consumptionCt , andWt and ˜Wt correspond to the wealth account balances
just before receiving pension. Also, the consumption should satisfy the following
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constraint to ensure the pension account is non-negative

˜Wt + Wt + Pt − Ct ≥ 0. (3)

The remaining liquid wealth after drawdown is invested in a risky asset with real4

stochastic annual log-return Zt and a cash asset growing at the real rate r̃t,t+1. We
assume that stochastic log-returns of the risky asset Zt , t = t0, t0 +1, . . . are indepen-
dent and identically distributed random variables from a normal distributionN (μ, σ 2

Z )

withmeanμ defined in real terms and variance σ 2
Z . Denote the proportion of thewealth

invested in the risky asset as δt ∈ [0, 1], then the evolution of the wealth accounts over
(t, t + 1) is given by

Wt+1 = W+
t

(

δt e
Zt+1 + (1 − δt )e

r̃t,t+1
)

,

˜Wt+1 = ˜W+
t (δt e

Zt+1 + (1 − δt )e
r̃t,t+1)

− �
(

˜W+
t (δt e

Zt+1 + (1 − δt )e
r̃t,t+1) − ˜W+

t

)

,

(4)

where function �(x) calculates the tax on the investment account earnings.

2.1.2 Stochastic interest rate

The cash asset annual growing rate is

r̃t,t+1 =
∫ t+1

t
rudu,

where the short rate rt is assumed to follow the Vasicek model5

drt = b(r̄ − rt )dt + σRdB(t), (5)

with b > 0 is the speed of reversion to the mean, r̄ is the mean level the process reverts
to, σR > 0 is the volatility and B(t) is the standard Brownian motion. In this case the
distribution of rt+1 and r̃t,t+1 conditional on rt can be found in closed form; see e.g.
Shevchenko and Luo [44]. It is bivariate normal with

E[rt+1] = r̄ + e−b(rt − r̄), var[rt+1] = σ 2
R

2b
(1 − e−2b),

E[r̃t,t+1] = 1

b
(1 − e−b)(rt − r̄) + r̄ ,

var[r̃t,t+1] = σ 2
R

2b3
(2b − 3 + 4e−b − e−2b),

cov[rt+1, r̃t,t+1] = σ 2
R

2b2
(1 − 2e−b + e−2b). (6)

4 By defining the model in real terms (adjusted for inflation), time-dependent variables do not have to
include inflation, which otherwise would be an additional stochastic variable.
5 A single-factor short rate model commonly used in economics introduced in Vasicek [46].
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Note that the Vasicek process allows for negative interest rates, which is suitable
as the rate is defined in real terms. A negative interest rate would then indicate that
inflation is higher than the nominal risk-free rate. To simplify, we could also assume
that the cash account grows at the annual deposit rate derived from 1-year bond prices,
or approximate r̃t,t+1 by rt , but it does not lead to a material difference in the results.

2.1.3 Mortality model

We consider couple and single retiree households (the Age Pension treats couples as
a single entity) where possible life states of the household are modelled by a family-
status random variable Gt defined as follows: Gt = −1 corresponds to the household
already deceased at time t − 1, Gt = 0 corresponds to the household deceased during
(t − 1, t], and Gt = 1 and Gt = 2 correspond to the household being alive at time t
in a single or couple state respectively.

We consider the households that do not change a single state to a couple in the
retirement. That is, if the household starts the retirement as a couple and one of the
spouses passes away, the household is treated as a single for the remaining years.
Also, if the household starts the retirement as a single then it is assumed to stay in
a single state. Correspondingly, we assume that evolution in time of the family state
variable Gt is fully specified by transition probabilities q(gt+1, gt ) := Pr[Gt+1 =
gt+1 | Gt = gt ]:

q(2, 2) = pCt , q(1, 2) = 1 − pCt ,

q(1, 1) = pSt , q(0, 1) = 1 − pSt ,

q(−1, 0) = q(−1,−1) = 1,

(7)

where pCt and pSt are the probabilities of surviving for one more year as a couple
and single respectively that can be easily estimated from the official Life Tables as in
Andréasson et al. [4]. All other transition probabilities q(gt+1, gt ) are 0.

2.2 Utility model

Denote the vector of state variables as Xt = (Wt , ˜Wt ,Gt , rt ) and the value of family
home as Ht at time t . The agent receives utility reward each period t = t0, . . . , T −1:

Rt (Xt ,Ct ) =
⎧

⎨

⎩

UC (Ct ,Gt , t) +UH (Ht ,Gt ), if Gt = 1, 2,
UB(Wt + ˜Wt + Ht ), if Gt = 0,
0, if Gt = −1

(8)

and the terminal reward at t = T :

˜R(XT ) =
{

UB(WT + ˜WT + HT ), if GT ≥ 0,
0, if GT = −1.

(9)
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Here, UC (·), UH (·), UB(·) are consumption, housing and bequest utility functions
respectively. That is, if the household is alive, it receives reward (utility) based on
consumption UC and housing UH ; if the household died during the year (t − 1, t],
the reward comes from the bequest UB ; and if the household died before or at t − 1,
there is no reward. Note that the reward received when the household is alive depends
on whether the household family state is a couple or single due to different utility
parameters and Age Pension thresholds.

We use the same definition of consumption, bequest and housing utility functions
as in Andréasson et al. [4], where parameterization and interpretation are discussed in
detail.

• Consumption utility function:

UC (Ct ,Gt , t) = 1

ψ t−t0γd

(

Ct − cd
ζd

)γd

, d =
{

C, if Gt = 2 (couple),
S, if Gt = 1 (single),

(10)

where γd ∈ (−∞, 0) denotes the risk aversion, cd is the consumption floor, ζd
is an equivalence scale parameter that normalises utility of couple and single
households. These parameters are subject to family state Gt . Finally, ψ ∈ [1,∞)

is the parameter to model the effect of reducing utility gain from consumption as
the retiree ages (note that it is not applied to housing and bequest utilities). This
parameter was introduced in Andréasson et al. [4], Andréasson and Shevchenko
[2] and Ding [21, pp. 43–33] to get better fit of the model to the consumption and
housing data in Australia.

• Bequest utility function:

UB(Wt + ˜Wt + Ht ) =
(

θ

1 − θ

)1−γS

(

θ
1−θ

a + Wt + ˜Wt + Ht

)γS

γS
, (11)

where Wt denotes the liquid assets available for bequest, γS denotes the risk aver-
sion parameters of a singles household, θ ∈ [0, 1) the utility parameter for bequest
preferences over consumption, and a ∈ R

+ the threshold for luxury bequest.
• Housing utility function:

UH (Ht ,Gt ) =
{

1
γH

(

λd Ht
ζd

)γH
, if Ht > 0,

0, if Ht = 0,
(12)

where γH is the risk aversion parameter for housing (different from risk aversion
for consumption and bequest), Ht is the value of the family home and λd ∈
(0, 1] is the housing preference defined as a proportion of the market value. In
the benchmark model, Ht is assumed to be constant (in real terms) for all t .
Note that some researchers choose to work with Cobb-Douglas utility function
combining housing and consumption in amultiplicative way that leads to spending
on consumption and housing in a fixed proportion, e.g. Yao and Zhang [49] and
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Cocco [16]. This is somewhat inconsistent with an increasing ratio of housing
services over consumption by age observed in the data, e.g. Jeske [30]. Thus some
researchers, e.g. Chambers et al. [13], prefer toworkwith additivemodel by adding
utility of housing to the utility of consumption like in our benchmark model.

The retiree has to find the decisions that maximise the total expected utility with
respect to the consumption, investment and housing. This is defined as a stochastic
control problem, where decisions (controls) at time t depend on the realisation of
stochastic state variable vector Xt at time t with unknown future realisations. Then,
the overall problem of maximization of expected utility is defined as:

max
�

[

sup
π

E

[

βt0,T
˜R(XT ) +

T−1
∑

t=t0

βt0,t Rt (Xt ,Ct )

∣

∣

∣ Xt0

]]

, (13)

where E[·] is the expectation with respect to the state vector Xt at t = t0 + 1, . . . , T ,
conditional on the state variables at time t = t0 and the use of control policy
π = (πt )t=t0,...,tT−1 , πt = (Ct , δt ). The subjective discount factor βt,t ′ is a proxy
for personal impatience between time t and t ′.

This problem can be solved numerically with dynamic programming using back-
ward in time recursion of the Bellman equation

Vt (Xt ) = sup
πt∈At

{

Rt (Xt ,Ct ) + E
[

βt,t+1Vt+1(Xt+1) | Xt
]}

, (14)

for t = T − 1, . . . , 0, starting from the terminal condition VT (XT ) = ˜R(XT ) and
optimal value of control is found as

π∗
t (Xt ) = arg sup

πt∈At

{

Rt (Xt ,Ct ) + E
[

βt,t+1Vt+1(Xt+1) | Xt
]}

, (15)

where At is a space of possible actions πt that may depend on Xt . Then, optimal
housing decision control � maximising V0(X0) is calculated. Note that the death
probabilities are not explicit in the objective function, but affect the evolution of the
family status and, thus, are involved in the calculation of the conditional expectation.
Later in Sect. 3.2 we will also consider housing decisions over time.

2.3 Model and age pension parameters

The utility model parameters are taken from Andréasson and Shevchenko [2]; for
details of calibration to the Australian empirical retirement data and S&P/ASX 200
market prices, see Andréasson et al. [4]. The Age pension rule parameters are taken
from Andréasson and Shevchenko [2], i.e. date back to 2017. All utility model param-
eter values are shown in Table 1, the risky asset annual log-return Zt is from normal
distribution with E[Zt ] = 0.056 and var[Zt ] = 0.018, the terminal age T = 100,
the minimum house price ˜HL = $30, 000, and the time impatience discounting factor

123



Optimal annuitisation, housing and reverse mortgage in… 881

Table 1 The utility model parameters

γd γH θ a cd ψ λ ζd

Single household −1.98 −1.87 0.96 $27,200 $13,284 1.18 0.044 1.0

Couples household −1.78 −1.87 0.96 $27,200 $20,607 1.18 0.044 1.3

βt,t+1 is set to β = 0.995 for all time steps.6 In addition, for simplicity, we assume
15% tax on the investment account earnings, i.e. �(x) = 0.15max(x, 0) in (4).

In Australia, retirees aged 65.57 are entitled to Age Pension and can receive at
most the full Age Pension, which decreases as assets and/or income increase and is
determined by the income and asset tests. In the income test, the income streams from
the pension accounts8 and financial assets are based on the deemed income, which
refers to a progressive assumed return from financial assets without reference to the
actual returns on the assets held. Therefore, the income test can depend on both labour
income (if any), deemed income from financial investments not held in the pension
account and deemed income on pension accounts. Two different deeming rates may
apply based on the value of the account: a lower rate ς− for assets under the deeming
threshold κd and a higher rate ς+ for assets exceeding the threshold.

TheAge Pension received depends on the current liquid assets, where the combined
investment and pension account values are used for the asset test. The Age Pension
function can be defined as

Pt := f (Wt + ˜Wt ) = max
[

0,min
[

Pd
max,min [PA, PI]

]]

, (16)

where Pd
max is the full Age Pension, PA is the asset test and PI is the income test

functions.
The PA function is defined as

PA := Pd
max − (Wt + ˜Wt − Ld,h

A )� d
A, (17)

where Ld,h
A is the threshold for the asset test and � d

A is the taper rate for assets
exceeding the thresholds. Superscript d ∈ {S,C} is the categorical index indicating
couple or single household status. The variables are subject to whether it is a single
or couple household, and the threshold for the asset test is also subject to whether the
household is a homeowner or not (h ∈ {0, 1}).
6 In the model, the subjective discount factor βt,t+1 can be time dependent and even stochastic if defined
via the stochastic cash rate r̃t,t+1, e.g. some modellers use financial discount factor βt,t+1 = exp(−r̃t,t+1)

or it can be estimated as in Andersen et al. [1]. For numerical experiments it is set to β = 0.995 as was used
in Andréasson et al. [4] where it was observed that changes in the discount rate have no significant impact
on results if model is re-calibrated.
7 This is the retirement age as of July 2017, which is increased by 6months every 2years up to 67 from 1
July 2023 (https://www.humanservices.gov.au/individuals/enablers/age-rules-age-pension).
8 This applies to pension accounts opened after 1 January 2015 (http://guides.dss.gov.au/guide-social-
security-law/3/9/3/31). Older accounts may have different rules which are not considered in this paper.
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Table 2 Age pension rates published by Centrelink in June 2017 (www.humanservices.gov.au/customer/
services/centrelink/age-pension, accessed June 5, 2017)

Single Couple

Pd
max Full age pension per annum $22,721 $34,252

Income-test

LdI Threshold $4,264 $7,592

� d
I Rate of reduction $0.5 $0.5

Asset-test

Ld,h=1
I Threshold: homeowners $250,000 $450,000

Ld,h=0
I Threshold: non-homeowners $375,000 $575,000

� d
A Rate of reduction $0.078 $0.078

Deeming income

κd Deeming threshold $49,200 $81,600

ς− Deeming rate below κd 1.75% 1.75%

ς+ Deeming rate above κd 3.25% 3.25%

Table 3 Minimum regulatory withdrawal rates for pension accounts (https://www.ato.gov.au/rates/key-
superannuation-rates-and-thresholds/?page=10, accessed June 5, 2017)

Age ≤64 65–74 75–79 80–84 85–89 90–94 ≤95

Min. drawdown 4% 5% 6% 7% 9% 11% 14%

The function for the income test is defined as

PI := Pd
max − (PD(Wt + ˜Wt ) − Ld

I )�
d
I , (18)

PD(Wt + ˜Wt ) = ς− min
[

Wt + ˜Wt , κ
d
]

+ ς+ max
[

0,Wt + ˜Wt − κd
]

, (19)

where Ld
I is the threshold for the income test and� d

I the taper rate for income exceed-
ing the threshold. Function PD(Wt + ˜Wt ) calculates the deemed income, where κd is
the deeming threshold, and ς− and ς+ are the deeming rates that apply to assets below
and above the deeming threshold, respectively. The parameters for the Age Pension
policy are presented in Table 2.

The Age Pension parameters from July 2017 are shown in Table 2, while the min-
imum withdrawal rates νt for pension accounts in 2017 are shown in Table 3 (note
that these rates were halved during 2019–2023 and will reset back to values in Table 3
from 1 July 2023). Mortality probabilities are based on unisex data, and taken from
Life Tables published by Australian Bureau of Statistics [8].
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3 Model extensions

The model is now extended to include: annuitisation (extension 1) and scaling hous-
ing/reverse mortgage (extension 2). Note that extension 1 does not apply in extension
2 and vice versa—they are separate and independent extensions to isolate the impact
of each extension.

3.1 Extension 1—annuitisation

The argument why the Australian market has shown such a lack of interest in annuities
comes down to the fact that the Age Pension is indirectly an indexed life annuity which
pays a known and increasing amount as wealth and income decrease, hence crowding
out annuitisation [12, 29]. The Age Pension provides an implicit insurance against
both longevity and financial risk, which otherwise is the main argument to annuitise.
If annuitieswere exempt from theAgePensionmeans tests, then itwould be reasonable
to expect an increased interest in annuities. However, the annuity value as well as the
annuity payment are included in the means tests. If the retiree annuitises, then the Age
Pension decreases if any of the means tests are binding.

3.1.1 Model

The retiree can each year decide to annuitise part of the wealth and have the remaining
wealth to be available for annuitisation later; see e.g. Milevsky and Young [38]. This
introduces the possibility for the retiree to receive additional equity growth on the
wealth yet to be annuitised, although with the risk associated but without requiring
more complex annuity products.

In the context of ourmodel, we assume that a retiree can at any time t ∈ {t0, . . . , T−
1} make a (non-reversible) decision to purchase an annuity for amount At that will
provide annual life time payments yt (constant in real terms) starting from t + 1. This
leads to a new state variable Yt , which holds the information of the size of annuity
payments each period evolving as

Yt+1 = Yt + yt , Yt0 = 0. (20)

The evolution of the pension Wt and investment ˜Wt accounts (1,2) is updated as
follows.
If Ct + At ≤ ˜Wt + Pt + νtWt + Yt , then

W+
t = Wt (1 − νt ),

˜W+
t = ˜Wt + Pt + νtWt − Ct + Yt − At ,

(21)

otherwise

W+
t = Wt + ˜Wt + Pt − Ct + Yt − At ,

˜W+
t = 0,

(22)
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and the evolution of accounts over (t, t + 1) is the same as before, i.e. given by (4).
To ensure that the pension account Wt is nonnegative, the possible actions Ct and At

should satisfy the constraint:

Wt + ˜Wt + Pt + Yt − Ct − At ≥ 0 (23)

in addition to At ≥ 0, Ct > c̄d . Then the optimal stochastic control problem (13–
15) should be solved with the state vector extended to Xt = (Wt , ˜Wt ,Gt , rt ,Yt ) to
find optimal value of πt = (Ct , δt , At ) from (15) for t = t0, . . . , T − 1. This will
be accomplished numerically using the LSMC method described in “Appendix A”
and results will be discussed in Sect. 4.1. The budget constraint (23) and conditions
At ≥ 0, Ct > c̄d fully specify space At of possible values of control πt .

If the annuity purchased by the retiree provides lifetime annual payments constant
in real terms, then its actuarial present value can be written as

at (y) :=
T
∑

i=t+1

i p
1−h
t J (t, i, y), (24)

where J (t, i, y) represents the price of an inflation linked zero coupon bond at time t
with maturity i and face value y (the constant real annuity payment, i.e. adjusted for
inflation), i pt is the probability of surviving from year t to i , and h ≥ 0 is an annuity
commercial price loading factor (h = 0 corresponds to the fairly priced annuity).
In practice, the annuity price loading tends to exceed the transaction costs of other
financial instruments [39]. The price of this kind of annuity is the sum of the mortality
risk weighted bonds with maturities from t + 1 up to T , adjusted with the annuity
loading factor, which is set h = 0.15 as in Huang and Milevsky [25]. Note that this
means that yt in (20) should be calculated from the annuity price formula (24) by
solving At = at (yt ).

At time t , the price of a bond with maturity t ′ is

J (t, t ′, y) = yE
˜Q[e− ∫ t ′

t rτ dτ ] := ye−r(t,t ′)(t ′−t), (25)

where ˜Q is the risk-neutral probability measure for pricing interest rate derivatives
and r(t, t ′) is the zero rate (yield) from t to t ′. The corresponding Vasicek risk-neutral
process is

drt = [b(r̄ − rt ) − λσR]dt + σRd B̃(t), (26)

where λ is the market price of risk and ˜Bt is the standard Brownian motion under ˜Q.
The formulas for the bond price and corresponding zero rate can easily be calculated
(see, e.g., Hull [27])

r(t, t ′) = − ln A(t, t ′) + B(t, t ′)rt
t ′ − t

, (27)
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where

A(t, t ′) = exp

[

(B(t, t ′) − t ′ + t)

(

r̄ − λσR

b
− σ 2

R

2b2

)

− σ 2
R

4b
B(t, t ′)2

]

, (28)

B(t, t ′) = 1

b

(

1 − e−b(t ′−t)
)

. (29)

Equation (27) gives the full term structure of zero rates of different maturities. This
means that at (y) depends on rt .

3.1.2 Calibration of Vasicek model

In order to estimate parameters of the interest rate Vasicek model (both real and risk-
neutral processes), we follow a simple two-stage procedure outlined in Hull [27]. First,
the real rt process is estimated using spot interest rate data and then the market price
of risk λ is estimated using term structure of zero coupon bonds.

The Australian cash rate adjusted for inflation is chosen to represent a real risk-free
rate rt which the retiree has access to, where the dataset9 contains rates for 1990–2017
in quarterly intervals. Then parameters of the Vasicek model are estimated using the
maximum likelihood method applied to the discretized version of the Vasicek model
(5)

max
b,r̄ ,σ

n
∑

i=1

⎛

⎝−1

2
ln

(

πσ 2
R

b

(

1 − e−2b�t
)

)

− (ri − r̄ − e−b�t (ri−1 − r̄))2

σ 2
R

2b (1 − e−2b�t )

⎞

⎠ ,

(30)

where ri is the observed real cash rate at time ti and �t = ti − ti−1, i = 1, . . . , n.
The parameter estimates can be found in closed form and for the considered dataset
are b̂ = 0.120, ˆ̄r = 0.021 and σ̂R = 0.012. The current real risk-free rate is set to
r0 = −0.003 that corresponds to the last available datapoint in the considered dataset
(it is negative because inflation was higher than the cash rate).

Then, the market price of risk λ can be estimated by minimising the sum of squared
difference between the observed term structure of the zero coupon market rates10 and
model predicted zero rates (27) over the trading dates ti , i = 1, . . . , n and maturities
Tj , j = 1, . . . , J :

min
λ

∑

i

∑

j

(

r(ti , ti + Tj ) − robsi, j

)2
, (31)

9 Taken from https://www.quandl.com/data/RBA/F13-International-Official-Interest-Rates and https://
tradingeconomics.com/australia/inflation-cpi
10 Taken from https://www.quandl.com/data/RBA/F17_0-Zero-Coupon-Interest-Rates-Analytical-
Series-Yields
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where robsi, j represents the observed yield at time ti with maturity Tj . The estimate

comes out as λ̂ = −0.050, hence the risk-neutral parameter for the mean rate is
ˆ̄r − λ̂σ̂R/b̂ = 0.026.

3.1.3 Treatment of annuity in the age pension means tests

Annuities are included in the Age Pension means tests. Annuities are assessed based
on the income they provide with a deduction for part of the annuity value [20]. The
definition of annuity income for the income test is

yt − atx (yt )

ex − tx
, (32)

where tx is the annuity purchasing time and ex is the life expectancy at time tx . The
assessment value in the income test is therefore the annuity payments received each
year, adjusted for an income test deduction determined at the time of purchase. In
the asset test, the value of the annuity is assumed to be equal to the original purchase
price of the annuity with a linear yearly value decrease until the life expectancy age
is reached, i.e.

max

(

atx (yt ) − atx (yt )

ex − tx
(t − tx ), 0

)

. (33)

These rules cause some implications to our model, as it will require additional state
variables in terms of annuity purchase price and annuity purchasing time (which
complicates the problem definition further as it is allowed to add on to annuities later
in retirement). Even if a numerical solution using LSMC method technically could
handle the additional states, it is preferred to avoid this as the additional state variables
will have a very minor impact on the value function but are prone to unnecessary
regression errors.

To avoid this, the calculations in Eqs. (32) and (33) are approximated. The annuity
income deduction for the income test is approximated with a constant proportion
ϒ = 0.9 of the annuity payments, which tends to match the deduction amount in the
income test very well over time as illustrated in Fig. 1. The annuity value in the asset
test is approximated using Eq. (24) to re-value the annuity in the actuarially correct
way at the current time given the known annuity payments, thus the asset test annuity
assessment approximately equals at (Yt ). This approximation is correct at the time
of purchase, but overestimates the asset test annuity value after that. However, the
asset test tends to impose less penalty on the Age Pension received compared with the
income test, and only binds for lower levels of wealth [2]. The overestimation of the
annuity value in the asset test therefore has a very minor impact on the Age Pension
received, and does not have a material effect on the optimal annuitisation.

Themeans test Age Pension functions (17,18) nowneed to be updated. The function
for the income test becomes

PI := Pd
max −

(

PD(Wt + ˜Wt ) + Yt (1 − ϒ) − Ld
I

)

� d
I , (34)
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Fig. 1 The value of the annuity income deduction in the income test (for annuities purchased at different
ages) compared to the approximation of the annuity income deduction by a constant proportion ϒ = 0.9
of annuity payments. The annual annuity payment is set to $10,000

and the function for the asset test is

PA := Pd
max −

(

Wt + ˜Wt + at (Yt ) − Ld,h
A

)

� d
A. (35)

3.2 Extension 2—scaling housing and reverse mortgages

The second main extension to the model allows the retiree to either scale the housing
by selling the current home and acquiring a new one of a different size or standard.
Although downsizing is more common in retirement, especially in the case of a spouse
passing away [6, 41], in our model the retiree is allowed to both up- and downscale
at any point in time by making a decision τt ∈ [−1,∞) for t = t0 + 1, . . . , T − 1 so
that the evolution of the house value state variable becomes

Ht+1 = Ht (1 + τt ). (36)

A positive value of τt represents the proportion of the current house value added to
housing (upsizing from the current house) while negative corresponds to the house
downscaling. The decision variable is therefore bounded below by the current house
value, and the upper bound depends on wealth. Decision is made at the start of each
period and any house scaling is assumed to be instantaneous (no delay between the
decision, the sale of the house and buying a new on).

To capture the illiquid nature of housing assets, we will apply a proportional trans-
action cost. This will reflect the actual costs associated with a sale of the house, as
well as avoiding the risk of the optimal decision being a gradual yearly change in the
housing asset. The transaction cost only affects the sale of the house, as any transaction
cost for a new purchase is assumed to be absorbed by the other party.
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The retiree can also choose to take out a reverse mortgage on the house. The
assumptions of the loan structure is based on Shao et al. [42], although not limited
to a single payment at issuance. Define Lt to be the loan value at time t . The loan
is based on a variable interest rate, where the outstanding loan amount accumulates
over time. The retiree can at any time make the decision to loan a certain proportion
lt ∈ [0, I (t)] of the house value, and it is possible to increase an existing loan at any
time up to Lt , which is given by

Lt = Ht I (t), (37)

where I (t) is a maximum LVR ratio that changes with age, and is defined as

I (t) = 0.2 + 0.01(min(85, t) − 65). (38)

The maximum LVR therefore starts at 20% for age 65, which increases with 1% per
year to a maximum of 40% at age 85.11 The retiree is not liable to repay part of the
loan if the maximum LVR is exceeded or if the loan value exceeds the house value due
to accumulated interest(the so-called cross-over risk). If the retiree dies, or decides to
sell the house, any remaining house value after loan repayments goes to the bequest
wealth.

As Australian reverse mortgages include a ‘no negative equity guarantee’,12 the
retiree (or the beneficiaries) are not required to cover any remaining negative house
asset if Lt > Ht at time of death or if the house is sold.13 From the lender’s point of
view, this results in two main risks: house price risk and longevity risk. If the house
price decreases, or the retiree lives too long so that the loan value accumulates over
the house value, the lender is liable for any losses unless these are forwarded to a
third party via insurance. Increased interest rates can also speed up compounding of
the loan, which increases cross-over risk. These risks are in practice covered with a
mortgage insurance premium rate added to the loan, in addition to any lending margin
required by the lender.

The loan value state variable therefore evolves as

Lt+1 = (Lt I{τt=0} + lt Ht (1 + τt ))e
r̃t,t+1+ϕ, (39)

where I{·} is the indicator symbol equals 1 if condition in brackets {·} is true and zero
otherwise (i.e. the first term in the above equation is nonzero if no changes to the
house asset are made), and ϕ represents the lending margin and mortgage insurance
premium combined. In the case τt �= 0, any outstanding loan value must be repaid,
hence the loan is reset and a new loan can be taken out subject to the new house value.

11 The parameterisation follows ‘Equity Unlock Loan for Seniors’ offered by the Commonwealth Bank of
Australia in 2017, but does not impose a minimum or maximum dollar value for the loans.
12 The guarantee is still subject to default clauses which can negate the guarantee, such as not maintaining
the property, malicious damage to the property by the owner, failure to pay council rates and failure to
inform the provider that another person is living in the house.
13 Even if the possibility exists, it will not be optimal to sell the house if the net house asset is negative
as the retiree will give up ‘free’ housing utility and receive no extra wealth. The exception is a significant
upsizing at old age, which is not very likely.
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The costs of any decision (transaction cost, the difference in house assets in case
of scaling and repayment of loan) is reflected in the wealth process. Define

b(lt , τt , Lt , Ht ) := lt Ht (1 + τt ) − Iτt �=0 (Ht (τt + η) + Lt )

to represent all changes to the wealth from house scaling and reverse mortgage deci-
sions, where η is the proportional transaction cost. The evolution of the pension Wt

and investment ˜Wt accounts (1,2) is updated as follows.
If Ct ≤ ˜Wt + Pt + νtWt + b(lt , τt , Lt , Ht ), then

W+
t = Wt (1 − νt ),

˜W+
t = ˜Wt + Pt + νtWt + b(lt , τt , Lt , Ht ) − Ct ,

(40)

otherwise

W+
t = Wt + ˜Wt + Pt + b(lt , τt , Lt , Ht ) − Ct ,

˜W+
t = 0.

(41)

In addition, the bequest function needs to include the house asset after any reverse
mortgage has been repaid, and becomes UB(Wt + ˜Wt ,max(Ht − Lt , 0)). Then the
optimisation problem (13–15) should be solved with the state vector extended to
Xt = (Wt , ˜Wt ,Gt , rt , Ht , Lt ) to find optimal value of πt = (Ct , δt , τt , lt ) for
t = t0, . . . , T − 1. This will be accomplished numerically using the LSMC method
described in “Appendix A” and results will be discussed in Sect. 4.2.

Some constraints need to be imposed on the control variables. The option to take
out (or add to) a reverse mortgage is bounded from above by the difference of any
outstanding mortgage and the LVR, hence

lt ≤ max

(

0,
Lt − Lt Iτt=0

Ht (1 + τt )

)

. (42)

Note that if the control variable τt for scaling housing is not 0, any outstanding reverse
mortgage must be paid back in full and a new reverse mortgage is available against the
new house value. The max-condition in the formula is to ensure that the upper bound
does not fall below the lower bound to ensure a feasible solution.

For the scaling of housing, an upper bound for how much the house asset can be
increased is determined by the available wealth after costs associated with selling
the current house (and repaying any outstanding reverse mortgage) and allocating
additional wealth to the new house

τt ≤ Wt + ˜Wt − Iτ �=0 (ηHt + Lt )

Ht
. (43)

The lower bound is simply −1, because the retiree cannot downscale further than
selling the house and not buying a new one, and the cost associated with the sale is
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reflected in the transitions of the state variables. Finally, the budget constraint should
be satisfied

b(lt , τt , Lt , Ht ) + Wt + ˜Wt + Pt − Ct ≥ 0. (44)

The constraint ensures that the wealth is enough to cover consumption and scaling
housing/reverse mortgage costs. The conditions (44), (43), (42) with τt ≥ −1, lt ≥ 0,
Ct > c̄d fully specify space At of possible values of control πt .

In our numerical calculations in the next section, the transaction cost of house
selling is set to η = 6% as in Nakajima [40] and Shao et al. [42]. The markup to the
interest rate is set according to Chen et al. [14], ϕ = 0.0242, but does not require a
starting cost to access the loan. In addition, it is assumed there is no current debt on the
house and it is not used as security for other liabilities, and that there are no monthly
fees in addition to ϕ.

4 Results

In this section we present results for optimal decisions for each model extension.
Extension 1 is focused on the optimal annuitisation over time in retirement and is
considered for a single status household. Extension 2 is focused on the optimal changes
to the house asset in retirement subject to the age and total wealth. The numerical
solution for both extensions utilises the LSMC method with control randomisation
presented in “Appendix A” and implemented in Matlab. On a modern computer (Intel
i7, 16GB RAM) using 10,000 sample paths the calculation takes approximately few
days, subject to the number of control variables and extension type.

4.1 Extension 1: annuitisation

The optimal annuitisation is expected to differ from previous research due to a number
of reasons. In both Iskhakov et al. [29] and Bütler et al. [12], the retirement is modelled
with a starting wealth that is assumed to be fully consumed and cannot be bequeathed.
This means that the level of annuitisation identified given a certain wealth, age and
parameters is optimal on a relative basis compared to alternative investment options.
Since the model utilised in this paper was calibrated to the behaviour of Australian
retirees [4], where wealth appears in the bequest function, the annuitisation rate is
expected to be lower. Similarly, as consumption declines with age,14 any desired
consumption above the consumption floor which can be covered with annuitising early
in retirement is not as desirable at older age. In many cases this excess consumption
is fully covered by the Age Pension payments. In addition to this, Iskhakov et al. [29]
do not allow for a risk-free asset, hence the annuity is the only (non-reversible) option
to access risk-free investments. As the extension model allows the retiree to choose a
risk-free asset allocation, this option can decrease the annuitisation further.

14 Optimal consumption calculated using our model is decreasing with age matching the empirical data;
for details see Andréasson et al. [4] and references therein.
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Fig. 2 Optimal annuitisation at age t years versus liquid wealth Wt + ˜Wt assuming no prior annuitisation.
The risky asset and interest rate are assumed to follow the expected paths. In addition to the default case
(“extension model”) where the risk-free asset is available, the scenarios when no risk-free asset is available
are presented

Figure 2 presents the results for the optimal annuitisation at different ages for the
cases when risk-free investment is available (default case) and is not available. The
latter corresponds to setting δt = 1 for t = t0, . . . , T − 1. Each scenario assumes
no prior annuitisation. The case where no risk-free asset is available is significantly
higher than the default case (at least for early retirement age). Despite the presence
of mortality credit in an annuity, the annuity price loading removes at least part of
the incentive to annuitise at a higher rate. If the interest rates happen to be higher
than normal, then allocation to annuities is slightly higher, even if the interest rate is
expected to revert back to normal levels. The annuitisation level peaks around age 75
and quickly decreases with age, and is close to constant for higher levels of wealth.
Already at age 85 the level of annuitisation is virtually non-existing and stays there.
For low wealth levels, where full Age Pension is received, the optimal allocation
quickly goes towards zero. A retiree with $500,000 in liquid wealth at retirement
optimally allocates 15% to annuities, which results in approximately $4,800 in annual
annuity payments. If the decision is deferred to age 75, the optimal annuitisation is
approximately the same for the same wealth, but the resulting annual payments are
higher at $7,900. Although an Australian retiree has a lower desire for consumption
at an older age, the mortality credit at this age is significant and the retiree can access
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Fig. 3 Optimal total allocation to annuities over the life time in retirement relative to initial liquid wealth

a large boost in yearly consumption for a relatively small wealth sacrifice, resulting
in higher overall utility.

To set this in relation to the previous research, the results from Iskhakov et al.
[29] suggest on average a higher level of annuitisation, where the range of the authors’
different risk preference and return parameters cover the ones calibrated inAndréasson
et al. [4] and used in this paper. The suggested allocation in Iskhakov et al. [29] is
expected to be higher, owing to the constraint that all wealth is to be consumed. That
aside, the result confirms the general findings in Iskhakov et al. [29] and Bütler et al.
[12]—annuitisation is crowded out by the Age Pension and annuitisation increases
with wealth. Both papers find evidence that the means tests impact annuitisation,
especially when binding. This can be seen as the decreasing annuitisation rate around
$200,000 for early years in retirement in Fig. 2, which represents the transition from
full to partial Age Pension. By annuitising at this (or lower) wealth level, no more Age
Pension can be received by decreasing assets held, but the annuity payments lead to
less Age Pension due to the income test. When a partial pension is received, however,
any annuity payments are only partly assessed in the income test, hence annuitisation
is still high until full Age Pension is received. The means-tested Age Pension thus
effectively crowds out annuitisation at lower wealth, but not for wealthier households.
There are no indications of high sensitivity to means-tested thresholds, other than
decreasing annuitisation rate when the means tests bind.

Contrary to Iskhakov et al. [29] and Bütler et al. [12], but similar to Milevsky and
Young [38], in our model the retiree is allowed to purchase annuities at any time, rather
than only at time of retirement (t = 65). Figure 3 shows the total annuity allocation
for a given initial liquid wealth during the retirement. In order to calculate this, it is
assumed the retiree follows the optimal decision rules and that the wealth grows with
the expected return (the risky asset and interest rate follow the expected paths). This
gives a very different perspective of optimal annuitisation than what is seen in Fig. 2.
Households with lower wealth now have a significant proportion of annuities. This
is due to the effect of quickly decreasing consumption with age, hence Age Pension
payments accumulate and wealth increases, which is then partly annuitised. It is sub-
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Fig. 4 Optimal allocation to annuities over time in retirement given initial liquidwealthWt0+˜Wt0 , assuming
no previous annuitisation at t0

optimal for poor households to annuitise, but if their wealth grows it is optimal to
annuitise at a later stage of retirement.

The calculations of total annuitisation in retirement can also be used to evaluate
when in retirement annuitisation is optimal. The longer the retiree waits to annuitise,
the larger the mortality credit will be in relation to price (due to the higher death
probability), but on the other hand the desired excess consumption decreases towards
the consumption floor. By deferring the choice to annuitise, the assets can instead be
used to generate investment returns.

Figure 4 shows the cumulative wealth allocated to annuities with age. The majority
of total annuitisation happens during the first year in retirement, and then increases
slightly between ages 70 to 85. This supports the findings in Milevsky and Young
[38] who showed that it is optimal to have immediate partial annuitisation, which
also increases with wealth. Early annuitisation indicates that it is not optimal to delay
annuities in order to get increased risky exposure. Iskhakov et al. [29] found that
deferred annuities are more attractive to less wealthy retirees owing to the cheaper
price. The extensionmodel does not obtain the same result, due to the lack of additional
mortality credit for immediate annuities compared to the deferred annuities which are
purchased before the annuity payments start.

It should be noted that since wealthier households tend to live longer than less
wealthy [19], the annuitisation is potentially underestimated for the wealthier house-
holds and overestimated for the less wealthy household. As the model does not include
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medical expenses at older age, nor aged care expenses, it can be argued that additional
annuitisation is optimal when these costs are included. At the same time, since enter-
ing aged care (i.e. a retirement village) attracts rather large one-time costs, this can
decrease the optimal level of annuitisation. The finding that annuitisation is optimal
only early in retirement might also change in this case.

4.2 Extension 2: scaling housing and reverse mortgage

The purpose of this extension of the model is to evaluate whether scaling housing or
accessing home equity is optimal in retirement. In order to test this, it is important
that the retiree starts with the optimal house asset at the time of retirement. If not,
then the solution might suggest scaling housing just to meet the initial optimal ratio
of house assets to liquid wealth. This does not reflect whether it is optimal to scale
housing in retirement, only that it is optimal with a certain level of housing assets in
relation to wealth once retired. The retiree therefore starts with the optimal house asset
at retirement for a given liquid wealth, and the wealth paths and optimal controls are
then simulated until terminal time T .

Figure 5 shows the wealth, housing and reverse mortgage paths throughout retire-
ment based on optimal decisions and assuming expected return on risky assets. Three
different levels of total initial wealth at retirement are considered: $0.5m, $1m and
$2m where it is optimal to allocate approximately 84%, 80% and 77.5% respectively
into housing for a single status household.15 This corresponds to realistic house prices;
e.g. the mean dwelling price in Australia is $728,500 in December quarter 2020 as
reported by Australian Bureau of Statistics.16 As can be seen, it is not optimal to
downscale housing in any of the cases, while all of them take advantage of the reverse
mortgage to keep liquid wealth at a constant or higher level. The loan value is added
on during retirement when required, but it also grows due to the interest accumulated.

The optimal reverse mortgage as a proportion of the house value decreases with
wealth, and increases with the house value. Irrespective of house value, the loan pro-
portion starts at the same value for households with no wealth. One might expect that
the proportion would be less for a higher house value, as this would still access more
wealth for the retiree, but this is not the case. However, the higher the house value, the
more liquidwealth the retiree can have and still optimally takes out a reversemortgage.
This confirms the results in Chiang and Tsai [15], who found that as age increases,
and the higher the initial wealth and house price are, the more the retiree is willing to
use reverse mortgages.

Figure 6 shows the optimal loan proportion for different house values in relation to
liquid wealth for single households, where the proportion in relation to wealth has a
very linear relationship. A less wealthy household, which might need the wealth more
than awealthier household, generally should not take out a reversemortgage unless the

15 These ratios of wealth allocation into housing are larger than approximately 50–60% ratio typically
mentioned in the literature. It is not clear if this is due limitations of the dataset used in Andréasson et al.
[4] to calibrate the base model or because retirees are not behaving optimally.
16 www.abs.gov.au/statistics/economy/price-indexes-and-inflation/residential-property-price-indexes-
eight-capital-cities/dec-2020
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Fig. 5 Wealth, house and reverse mortgage paths in retirement given low, medium and high initial total
wealth

house value is substantially higher than the liquid wealth. Each line in Fig. 6 reaches
zero before it equals the optimal liquid wealth given the house value, hence a reverse
mortgage is never optimal until wealth is drawn down enough to differ significantly
from the house asset. The same relationship holds true for couple households, although
at a slightly higher wealth level than for singles.
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Fig. 6 Optimal proportion of reverse mortgage given housing wealth and liquid wealth at retirement age t0
for a single household

When comparing the optimal loan proportion over time in retirement, the initial
maximum level of approximately 10% increases yearly, but flattens out around year 80
and then remains constant at approximately 20%. The LVR threshold therefore never
binds when a loan is created, given the calibrated parameters. It is reasonable to expect
that if the risk aversion or preferences for bequest decreases, then the optimal loan
value might increase. The optimal reverse mortgage in the solution is also an upper
bound, as additional commercial loadings such as a fee to initiate the loan might apply
in reality. However, a reverse mortgage could theoretically be refinanced if interest
rates drop, thus any costs associated with the loan can be lowered that way.

If the retiree’s housing asset is significantly less than optimal, then the solution will
quickly suggest that the retiree should scale (or acquire) housing assets to get close to
the optimal level. However, the opposite does not hold true. If the retiree starts with
housing assets significantly larger than optimal, then it is not optimal to downscale,
with the exception if the retiree has close to no wealth at all but significant wealth
in the house asset. In general, it is therefore never optimal to downscale housing in
retirement, not even when reverse mortgages are not available. Only in the case of
an event which would incur a significant cost, such as a medical issue, it would be
reasonable to downscale; this type of events is not considered in the model.

It is not optimal to upscale housing once retired either, with the exception of very
low house assets (∼$100,000 or less) which only reflects the desire to get close to the
initial optimal ratio rather than an actual upsizing decision.

The reason why downsizing housing is not optimal stems from a combination of the
high cost associated with the sale of the house while housing is included in the bequest
(hence wealth is given up by downsizing), and that the calibrated consumption floor
is already covered by Age Pension payments. If the retiree wants to access just part of
his/her house wealth, then downsizing the house will first incur a transaction cost on
the full home value, even if the retiree only downscales slightly. To access 10% of the
housing wealth, he/she needs to give up 6% of this equity in costs. It is therefore much
more economical to take out a reverse mortgage. At the same time, housing utility
is received based on the value of the house, even if there is an outstanding reverse
mortgage. By utilising the reverse mortgage the retiree can therefore keep a high
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housing utility, while still accessing the equity. The retiree will give up bequeathable
wealth as the loan value accumulates interest, but the funds received from the reverse
mortgage can either be invested at a higher (although risky) return and the loss of utility
in bequest is partly compensated with higher housing utility through retirement. The
house and the pension act as fixed income but the retiree’s risk preferences lead to a
desire of a higher overall equity exposure; only the liquid wealth can be invested in
equity and thus if there is not enough liquid wealth then retiree borrows money against
the house in order to attain the desired equity exposure.

It should also be noted that unlike other jurisdictions, Australia does not tax the
imputed rent of housing, further adding to the bias towards holding housing as an
asset. A retiree can avoid having assets included in themeans tests by over-allocating to
housing assets, and therefore receive additional ‘free’wealth from theAge Pension. As
the liquid wealth is consumed, it can be replenished by taking out a reverse mortgage,
while still accessing the Age Pension.

Even though the demand for the reverse mortgage products has increased in Aus-
tralia since the 2008 global financial crisis (from $1.3 billion in 2008 to $2.5 billion
in 2017), there are still negative perceptions against equity release products [7]. Here,
we would like to note that the results reported in this section correspond to a very
specific set of preference parameters representing an ‘average’ retiree, and market
parameters such as transaction cost for selling house and lending margin; changing
these parameters will have an impact on the results.

5 Conclusion

In this paper we developed a retirement phase model with the option to annuitise
wealth, andoption to scale housing andaccess thehomeequitywith a reversemortgage.
It was applied in the context of the Australian retirement system and the following
results were obtained.

In general, the optimal annuitisation in a realistic retirement model setup verifies
previous research performed with more restricted models. The government provided
means-tested Age Pension crowds out annuitisation, and allocation of wealth to a
lifetime annuity is preferred over the risk-free asset. Even when a partial Age Pen-
sion is received it is optimal to have partial annuitisation, although the annuitisation
decreases quickly when liquid wealth is close to the threshold of the full Age Pension.
For wealthier households, the annuity payments are much higher than the partial Age
Pension received, so even if ‘free’ wealth is given up the retiree is better off annuitis-
ing. The wealth allocation to annuities and allocation times during retirement are not
known in advance and depend on the realisations of stochastic factors during time in
retirement.

An annuity provides a significant discount in terms of mortality credits, where the
additional utility is higher compared with the alternative to invest the funds in risky
assets and annuitise at a later stage in retirement. As consumption decreases with age,
this could make annuitisation less desirable, and the results indicate this to be true
once the retiree passes age 85 even though the mortality credit is higher at older ages.
It is optimal to annuitise sooner rather than later as it is cheaper to store wealth in an
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annuity rather than risk-free investments. In the Australian setting, it is not optimal to
take a one-off decision to annuitise, but rather to gradually increase allocation in the
first 10years in retirement, and to annuitise additional wealth depending on the wealth
evolution.

A retiree is in general better off utilising a reverse mortgage rather than downsizing
the house, despite the accumulated interest of the loan. By keeping a house that is larger
than optimal while drawing down the housing assets, the retiree still receives utility
from living in the house, while it is still partly bequeathable. The additional utility
from this outweighs the cost of an outstanding reverse mortgage. A reverse mortgage
does therefore not necessarily benefit a retiree financially, unless the retiree can access
additional Age Pension payments by ‘hiding’ assets in the family home, but it does
help maximising the household utility throughout retirement. The optimal decisions
are, however, subject to wealth levels and housing assets, where wealthier retirees with
more housing assets optimally access a higher proportion reverse mortgage than less
wealthier households.

In this paper, the extensions for annuitisation and housing decisions were applied
separately due to numerical complexities. Solving themodel incorporating both exten-
sions at the same time will be a subject of future research. Then the marginal values
of these extensions/financial instruments can be evaluated using certainty-equivalent
consumptions as e.g. in Cocco et al. [17] or using the annual fee a household is willing
to pay to have access to the financial instruments under these extensions as proposed
in Koijen et al. [33]. Given the long term nature of the retirement phase, consideration
of the regime switching model for stochastic interest rate instead of a simple Vasicek
model is another avenue for future research.

The developed model can be easily adapted in the case of future changes to the
Australia retirement system or extended to suit the retirement systems in other coun-
tries by adjusting the Age Pension function and necessary constraints. For example,
in the case of the pension system in United States, the assumptions for the pension
account need to be adjusted to match those of an ‘Individual Retirement Account’ or
‘401(k)’ (defined-contribution retirement savings plan sponsored by the employer),
and the Age Pension needs to be replaced with the ‘Supplemental Security Income’
and its associated means test function.

Appendix A Bias-corrected Least-Squares Monte Carlo

In stochastic control problems corresponding to the life cycle models there is always a
choice to be made between the model complexity and the computational cost. Closed
form solutions are limited to the problemswith only few stochastic factors with restric-
tions on the dynamics and dimensions, otherwise one has to use the numericalmethods.
Dynamic programming solution via partial differential equation or direct integration
methods suffers from the curse of dimensionality and simulation methods are required
when the number of state variables and controls increases.

The Least-Squares Monte Carlo (LSMC) method received increasing interest
among researchers due to its effectiveness in dealing with high dimensional problems,
fewer restrictions on the constraints, and flexibility in the dynamics of the underlying
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stochastic processes. The idea is based on simulating the underlying stochastic vari-
ables over time and replacing the conditional expectation of the value function in the
dynamic programming backward in time recursive solution of the stochastic control
problem with an empirical least-squares regression estimate. The transition density of
the underlying process is not even required to be known in closed form. The LSMC
method was originally developed in Longstaff and Schwartz [36] for pricing Ameri-
can options with important extension (the so-called control randomisation method) to
handle endogenous state variables (state variables affected by controls) developed in
Kharroubi et al. [31].When applied to the expected utility stochastic control problems,
some further extensions are needed as proposed in Andréasson and Shevchenko [3]
to achieve a stable and accurate solution.

Note that the LSMC methods developed in Brandt et al. [11] and Koijen et al. [33]
for solving the life cycle portfolio choice problems require the deterministic grid for
endogenous state variables after controls applied and thus are not practical for solving
the model in our paper because there are three endogenous state variables for model
extension 1 and four endogenous state variables for model extension 2.

The models considered in our paper involve six state variables and 3–4 control
variables depending on extension. To solve these models numerically we implemented
the LSMC algorithm with control randomisation adapted for expected utility optimal
stochastic control problems described in Andréasson and Shevchenko [3]. Themethod
is based on approximation of the conditional expectation of a value function in the
Bellman equation using the ordinary least-squares regression applied on the trans-
formed value function. In our implementation, the regression basis functions consist
of the fourth order ordinary polynomials of the state and control variables. The excep-
tion is for model Extension 2, where the state variable covariate for the outstanding
loan value Lt is replaced with the covariate max(0, Ht −Lt ) as this is how it appears in
the bequest function. To avoid the transformation bias in the regression estimate of the
conditional expectation, the smearing estimate with controlled heteroskedasticity is
used as proposed in Andréasson and Shevchenko [3]. The solution is run with 10,000
sample paths, and the optimal values of controls are estimated numerically at each
time t with constraints corresponding to the space of possible values of controlsAt . In
particular, we used Matlab optimisation function patternsearch which is deriva-
tive free method that was checked to produce results consistent with a simple grid
search method. This method is faster and more accurate than a grid search and does
not require specification of the grid size. A brief description of the LSMC algorithm
is provided below.

Let t = 0, 1, . . . , N correspond to equispaced points in the time interval [0, T ].
Consider the standard discrete dynamic programming problem with the objective to
maximise the expected value of the utility-based total reward function
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V0(x) = sup
π

E

[

βN RN (XN ) +
N−1
∑

t=0

β t Rt (Xt , πt )

∣

∣

∣ X0 = x

]

, (45)

where π = (πt )t=0,...,N−1 is a control policy, X = (Xt )t=0,...,N is a controlled state
variable, RN and Rt are the reward functions and β is a time discount factor over a
time step. Here, we assume that the evolution of the state variable is specified by a
transition function Tt (·) such that

Xt+1 = Tt (Xt , πt , Zt+1) , (46)

where Z1, . . . , ZN are independent disturbance terms, i.e. the state of the next period
depends on the state of the current period, the control decision and the realisation of
the disturbance term. This type of problem can be solved with the backward recursion
of the Bellman equation

Vt (x) = sup
πt∈At

{

Rt (x, πt ) + E

[

βVt+1(Xt+1)

∣

∣

∣ Xt = x
]}

, t = N − 1, . . . , 0,

VN (x) = RN (x)
(47)

and optimal control is found as

π∗
t (x) = arg sup

πt∈At

{

Rt (x, πt ) + E

[

βVt+1(Xt+1)

∣

∣

∣ Xt = x
]}

.

Here,At denotes a space of possible values of πt that may depend on x . It is not com-
putationally feasible to use a quadrature based methods for evaluation of expectation
in (47) when the number of state variables is more than three and simulation methods
such as LSMC are favoured.

The idea behind utilitising the LSMC method is to approximate the conditional
expectation in (47)

�t (Xt , πt ) = E
[

βVt+1(Xt+1)|Xt
]

, (48)

by a regression schemewith independent variables Xt and randomisedπt , and response
variableβVt+1(Xt+1). The approximationof the function is denoted aŝ�t . Themethod
is implemented in two stages. First, the random state, control and disturbance variables
are simulated Xm

t , πm
t , m = 1, . . . , M , t = 0, . . . , T (forward in time simulation)

usingAlgorithm 1, whereπt are sampled independent from Xt . Then, optimal stochas-
tic control problem (45) is solved with the backward recursion (47) using Algorithm
2.

To avoid difficulties in the approximation of the value function due to the extreme
curvature of utility functions, a transformation H(x) that has a similar shape as the
value function is required (in our implementationwe use H(x) = (ex )γ /γ, γ < 0). At
each time t < T , the value function is approximated using the ordinary least-squares
regression
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H−1(βVt+1(X
m
t+1)) = �′

tL(Xm
t , πm

t ) + εmt , m = 1, . . . , M, (49)

where εmt , m = 1, . . . , M are zero mean and independent, L(Xm
t , πm

t ) is a vector
of basis functions, �t the regression coefficient vector and H−1 the inverse of the
transformation function. Thus,

�t (Xt , πt ) =
∫

H(�′
tL(Xt , πt ) + εt )dFt (εt ). (50)

Here, Ft (εt ) is the distribution of disturbance term εt . The corresponding estimated
regression coefficient vector is denoted ̂�t , and the empirical distribution of residuals

ε̂mt = H−1(βVt+1(X
m
t+1)) − ̂�

′
tL(Xm

t , πm
t ) (51)

can be used to perform this integration. To handle heteroscedasticity in residuals, the
conditional variance is modelled as

var[εt |Xt , πt ] = (�(L′
tC(Xt , πt )))

2, (52)

where �(·) is a positive function, Lt is the vector of coefficients and C(Xt , πt ) is a
vector of basis functions that can be estimated e.g. as described in Andréasson and
Shevchenko [3]. Then, the estimate of �t (Xt , πt ) is given by

̂�t (Xt , πt ) = 1

M

M
∑

m=1

H

(

̂�
′
tL(Xt , πt ) + �(̂L′

tC(Xt , πt ))
ε̂mt

�(̂L′
tC(Xm

t , πm
t ))

)

.

(53)

The optimal control for each sample can now be calculated, and the value function
needs to be updated with the optimal paths for t, . . . , T as the control at time t affect
the future states. The algorithm is then iterated for all samples M backward in time to
the starting time t = 0 as described in Algorithm 2. In general, finding optimal values
π∗
t (x) in step 8 of Algorithm 2 should be accomplished numerically.

Algorithm 1 Forward simulation
1: for t = 0 to N − 1 do
2: for m = 1 to M do

[Simulate random samples ]
3: sample Xm

t in the domain of its possible values 
 State
4: sample π̃m

t in the domain of its possible values At 
 Control
5: sample Zm

t+1 from the distribution specified by the model 
 Disturbance
[Compute the state variable after control]

6: ˜Xm
t+1 := Tt (Xm

t , π̃m
t , Zm

t+1) 
 Evolution of state
7: end for
8: end for
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Algorithm 2 Backward solution (Realised value)
1: for t = N to 0 do
2: if t = N then
3: ̂Vt (˜Xt ) := RN (˜Xt )

4: else if t < N then
[Regression of transformed value function]

5: ̂�t := argmin�t

∑M
m=1

[

�′
tL(Xm

t , π̃t ) − H−1(β̂Vt+1(˜X
m
t+1))

]2

Approximate conditional expectation ̂�t (Xt , π̃t ) using eq. (53)
6: for m = 1 to M do
7: ̂Xm

t := ˜Xm
t

[Optimal control]
8: π∗

t (̂Xm
t ) := arg supπt∈At

{

Rt (̂Xm
t , πt ) + ̂�t (̂Xm

t , πt )
}

[Update value function with optimal paths]
9: ̂Vt (̂Xm

t ) := Rt (̂Xm
t , π∗

t (̂Xm
t ))

10: ̂Xm
t+1 := Tt (̂Xm

t , π∗
t (̂Xm

t ), Zm
t )

11: for τ = t + 1 to N − 1 do
12: ̂Vt (̂Xm

t ) := ̂Vt (̂Xm
t ) + βτ−t Rτ (̂Xm

τ , π∗
τ (̂Xm

τ ))

13: ̂Xm
τ+1 := Tt (̂Xm

τ , π∗
τ (̂Xm

τ ), Zm
τ )

14: end for
15: ̂Vt (̂Xm

t ) := ̂Vt (̂Xm
t ) + βN−t RN (̂Xm

N )

16: end for
17: end if
18: end for
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5. Arandjelović A, Kingston G, Shevchenko PV (2023) Life cycle insurance, bequest motives and annuity
loads. J Econ Dyn Control 157:104759

6. Asher A, Meyricke R, Thorp S, Wu S (2017) Age pensioner decumulation: responses to incentives,
uncertainty and family need. Aust J Manag 42:583–607

123

http://creativecommons.org/licenses/by/4.0/


Optimal annuitisation, housing and reverse mortgage in… 903

7. ASIC (2018) Review of reverse mortgage lending in Australia. Australian Securities and Investments
Commision,Report 586. https://download.asic.gov.au/media/4851420/rep-586-published-28-august-
2018.pdf. Accessed 21 April 2021

8. Australian Bureau of Statistics (2014) 3302.0.55.001—life tables, states, territories and Australia,
2012–2014. http://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0.55.001. Accessed 04 Nov 2014

9. Avanzi B (2010) What is it that makes the Swiss annuitise? A description of the Swiss retirement
system. Austr Actuar J 16:135–162

10. Avanzi B, Purcal S (2014) Annuitisation and cross-subsidies in a two-tiered retirement saving system.
Ann Actuar Sci 8:234–252

11. Brandt MW, Goyal A, Santa-Clara P, Stroud JR (2005) A simulation approach to dynamic portfolio
choice with an application to learning about return predictability. Rev Financ Stud 18:831–873

12. Bütler M, Peijnenburg K, Staubli S (2017) How much do means-tested benefits reduce the demand for
annuities? J Pension Econ Finance 16:419–449

13. Chambers M, Garriga C, Schlagenhauf DE (2009) Accounting for changes in the homeownership rate.
Int Econ Rev 50:677–726

14. Chen H, Cox SH, Wang SS (2010) Is the home equity conversion mortgage in the United States
sustainable? Evidence from pricing mortgage insurance premiums and non-recourse provisions using
the conditional Esscher transform. Insur Math Econ 46:371–384

15. Chiang SL, Tsai MS (2016) Analyzing an elder’s desire for a reverse mortgage using an economic
model that considers house bequest motivation, random death time and stochastic house price. Int Rev
Econ Finance 42:202–219

16. Cocco JF (2005) Portfolio choice in the presence of housing. Rev Financ Stud 18:535–567
17. Cocco JF, Gomes FJ, Maenhout PJ (2005) Consumption and portfolio choice over the life cycle. Rev

Financ Stud 18:491–533
18. Davidoff T, Brown JR, Diamond PA (2005) Annuities and individual welfare. Am Econ Rev 95:1573–

1590
19. De Nardi M, French E, Jones JB (2010)Why do the elderly save? The role of medical expenses. J Polit

Econ 118:39–75
20. Department of Social Services (2016) Guides to social policy law. http://guides.dss.gov.au/guide-

social-security-law. Accessed 04 Jan 2016
21. Ding J (2014) Essays on post-retirement financial planning and pension policy modelling in Australia.

Phd dissertation, Macquarie University, Sydney, Australia
22. Ding J, Kingston G, Purcal S (2014) Dynamic asset allocation when bequests are luxury goods. J Econ

Dyn Control 38:65–71
23. Dushi I, Webb A (2004) Household annuitization decisions: simulations and empirical analyses. J

Pension Econ Finance 3:109–143
24. Friedman BM, Warshawsky MJ (1990) The cost of annuities: implications for saving behavior and

bequests. Q J Econ 1:135–154
25. Huang H, Milevsky MA (2008) Portfolio choice and mortality-contingent claims: the general HARA

case. J Bank Finance 32:2444–2452
26. Hubener A, Maurer R, Rogalla R (2014) Optimal portfolio choice with annuities and life insurance for

retired couples. Rev Finance 18:147–188
27. Hull JC (2012) Options, futures and other derivatives, 8th edn. Pearson Higher Ed, Upper Saddle River
28. Inkmann J, Lopes P, Michaelides A (2011) How deep is the annuity market participation puzzle? Rev

Financ Stud 24:279–319
29. Iskhakov F, Thorp S, Bateman H (2015) Optimal annuity purchases for Australian retirees. Econ Rec

91:139–154
30. JeskeK (2005)Macroeconomicmodelswith heterogeneous agents and housing. EconRev-FedReserve

Bank Atlanta 90:39
31. Kharroubi I, Langrené N, Pham H (2014) A numerical algorithm for fully nonlinear HJB equations:

an approach by control randomization. Monte Carlo Methods Appl 20:145–165
32. Kingston G, Thorp S (2005) Annuitization and asset allocation with HARA utility. J Pension Econ

Finance 4:225–248
33. Koijen RSJ, Nijman TE, Werker BJM (2010) When can life cycle investors benefit from time-varying

bond risk premia? Rev Financ Stud 23:741–780
34. Ledlie MC, Corry DP, Finkelstein GS, Ritchie AJ, Su K, Wilson DCE (2008) Variable annuities. Br

Actuar J 14:327–389

123

https://download.asic.gov.au/media/4851420/rep-586-published-28-august-2018.pdf
https://download.asic.gov.au/media/4851420/rep-586-published-28-august-2018.pdf
http://www.abs.gov.au/ausstats/abs@.nsf/mf/3302.0.55.001
http://guides.dss.gov.au/guide-social-security-law
http://guides.dss.gov.au/guide-social-security-law


904 J. G. Andréasson, P. V. Shevchenko

35. Lockwood LM (2012) Bequest motives and the annuity puzzle. Rev Econ Dyn 15:226–243
36. Longstaff FA, Schwartz ES (2001) Valuing American options by simulation: a simple least-squares

approach. Rev Financ Stud 14:113–147
37. Marín-Solano J, Navas J (2010) Consumption and portfolio rules for time-inconsistent investors. Eur

J Oper Res 201:860–872
38. MilevskyMA,YoungVR (2007)Annuitization and asset allocation. J EconDynControl 31:3138–3177
39. Mitchell OS, Poterba JM, Warshawsky MJ, Brown JR (1999) New evidence on the money’s worth of

individual annuities. Am Econ Rev 89:1299–1318
40. Nakajima M (2017) Reverse mortgage loans: a quantitative analysis. J Finance 72:911–950
41. Olsberg D,WintersM (2005) Ageing in place: intergenerational and intrafamilial housing transfers and

shifts in later life. Technical Report 88. Australian Housing and Urban Research Institute, Melbourne
42. Shao AW, Hanewald K, Sherris M (2015) Reverse mortgage pricing and risk analysis allowing for

idiosyncratic house price risk and longevity risk. Insur Math Econ 63:76–90
43. Shevchenko PV, Luo X (2016) A unified pricing of variable annuity guarantees under the optimal

stochastic control framework. Risks 4:22:1-22:31
44. Shevchenko PV, Luo X (2017) Valuation of variable annuities with guaranteed minimum withdrawal

benefit under stochastic interest rate. Insur Math Econ 76:104–117
45. Sun W, Triest RK, Webb A (2008) Optimal retirement asset decumulation strategies: the impact of

housing wealth. Asia-Pac J Risk Insur 3:123–149
46. Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5:177–188
47. Walden ML (1985) The whole life insurance policy as an options package: an empirical investigation.

J Risk Insur 52:44–58
48. Yaari M (1965) Uncertain lifetime, life insurance, and the theory of the consumer. Rev Econ Stud

32:1–137
49. YaoR, ZhangHH (2005)Optimal consumption and portfolio choiceswith risky housing and borrowing

constraints. Rev Financ Stud 18:197–239

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Optimal annuitisation, housing and reverse mortgage in retirement in the presence of a means-tested public pension
	Abstract
	1 Introduction
	2 Benchmark model
	2.1 Stochastic model
	2.1.1 Wealth account evolution
	2.1.2 Stochastic interest rate
	2.1.3 Mortality model

	2.2 Utility model
	2.3 Model and age pension parameters

	3 Model extensions
	3.1 Extension 1—annuitisation
	3.1.1 Model
	3.1.2 Calibration of Vasicek model
	3.1.3 Treatment of annuity in the age pension means tests

	3.2 Extension 2—scaling housing and reverse mortgages

	4 Results
	4.1 Extension 1: annuitisation
	4.2 Extension 2: scaling housing and reverse mortgage

	5 Conclusion
	Appendix A Bias-corrected Least-Squares Monte Carlo
	Acknowledgements
	References




