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Abstract: Methods based on light field information have shown promising results in depth estimation
and underwater image restoration. However, improvements are still needed in terms of depth
estimation accuracy and image restoration quality. Previous work on underwater image restoration
employed an image formation model (IFM) that overlooked the effects of light attenuation and scat-
tering coefficients in underwater environments, leading to unavoidable color deviation and distortion
in the restored images. Additionally, the high blurriness and associated distortions in underwater
images make depth information extraction and estimation very challenging. In this paper, we refine
the light propagation model and propose a method to estimate the attenuation and backscattering
coefficients of the underwater IFM. We simplify these coefficients into distance-related functions and
design a relationship between distance and the darkest channel to estimate the water coefficients,
effectively suppressing color deviation and distortion in the restoration results. Furthermore, to
increase the accuracy of depth estimation, we propose using blur cues to construct a cost for refocus-
ing in the depth direction, reducing the impact of high signal-to-noise ratio environments on depth
information extraction, and effectively enhancing the accuracy and robustness of depth estimation.
Finally, experimental comparisons show that our method achieves more accurate depth estimation
and image restoration closer to real scenes compared to state-of-the-art methods.

Keywords: underwater image process; light field; underwater image restoration; underwater
depth estimation

1. Introduction

Underwater image restoration and depth estimation are crucial research areas that
have broad applications in underwater scene reconstruction, heritage conservation, and
seabed surveying, among others. However, underwater optical imaging is often compro-
mised by water quality and lighting conditions, which can lead to color distortion and
image blurring. To address these challenges, numerous solutions have been explored, in-
cluding the use of polarization [1], light fields (LF), and stereoscopic imaging techniques [2].
Among these, light field applications in underwater imaging have garnered attention due to
the micro-lens array of light field cameras, which can capture sufficient spatial and angular
information in a single shot. This capability makes it possible to extract accurate depth
information from a single viewpoint, significantly enhancing the quality of restoration in
underwater environments.

A considerable amount of research has utilized light field data to enhance underwater
image restoration [3–6]. These algorithms typically rely on the Image Formation Model
(IFM) proposed by Narasimhan and Nayar [7], which assumes constant and identical
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attenuation and scattering coefficients. However, in real underwater environments, the at-
tenuation coefficient varies with distance and differs from the scattering coefficient, leading
to inaccuracies in the IFM that result in noticeable color biases in the restored images.

In the field of underwater depth estimation, the clarity of target scenes is often com-
promised by backscatter from dense water bodies, leading to blurred images. This effect
renders most traditional refocusing algorithms that rely on correlation cues and methods
using the dark channel prior for long-range depth estimation ineffective, especially in areas
with significant backscatter noise. Recently, researchers like Lu [5] and Huang [8] have pro-
posed using deep neural networks to estimate underwater image depth. However, like all
methods that employ deep learning for underwater depth estimation, they face challenges
due to the scarcity of adequate paired training data. Consequently, these methods perform
poorly in underwater environments where no training data pairs are available.

In this paper, we introduce a method for estimating intrinsic parameters of an under-
water image formation model and propose a depth estimation method for underwater light
field images based on blur cues. Inspired by [9], we use distance as a cue to estimate the
inherent parameters of the water body. However, compared to [9], our method further
simplifies the parameters required by the model while maintaining accuracy. Furthermore,
leveraging the positive correlation between underwater image depth and blurriness, we
propose using blur cues as a cost component for light field depth refocusing, effectively
enhancing the accuracy of depth estimation in underwater scenes. As illustrated in Figure 1,
our approach achieves higher accuracy in depth estimation and improves image restoration
outcomes in underwater settings. The contributions of this paper are outlined as follows:

a

c

b

d

e f

Figure 1. Comparison of Depth Estimation and Image Restoration. (a) Central view of an underwater
light field image captured with a light field camera. (b) Restored image using Huang’s deep learning-
based method [8]. (c) Restored image using Tian’s light field refocusing method [3]. (d) Restored
image using our method. (e) Depth estimation by Tian [3]. (f) Depth estimation image using
our method.
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• We have introduced an underwater light propagation model for image restoration and
developed a method to estimate water body attenuation parameters and backscatter;

• We proposed a method for underwater image depth estimation that utilizes the re-
lationship between blurriness and scene depth as one of the clues for estimating the
depth of underwater light field images, thereby improving the accuracy of underwater
scene depth estimation;

• In an experimental water tank environment, we demonstrated through extensive
experimental data that our method achieves higher depth estimation accuracy and
better restoration effects compared to previous methods.

2. Related Work

The problem of underwater image degradation has been approached from various
research angles, such as hardware-based and software-based restoration techniques. Im-
age distortions caused by forward attenuation are generally addressed using software
approaches, including the establishment of attenuation functions [10–12], image enhance-
ment [13], or deep learning methods [8]. However, software solutions face limitations
in handling information loss caused by scattering noise, and deep learning approaches
struggle to acquire high-quality data pairs for training.

To mitigate backscatter noise, Schechner and Karpel [1] utilized the polarization
properties of light in the medium, capturing images at different angles with polarizers
to retrieve effective image information. Hitam et al. [14] explored range-gated imaging,
using pulsed lasers and fast-gated cameras to precisely control the imaging process and
reduce backscatter. Additionally, Roser and colleagues [2] employed stereoscopic imaging
techniques to determine object distances by comparing the disparity between images
captured from different angles. These methods have achieved notable results, but harsh
underwater conditions can significantly reduce the imaging quality, thus impacting the
performance of traditional sensors and environmental sensing accuracy.

In recent years, as light field cameras have entered the consumer market, the field of
light field imaging has garnered increased attention. Compared to traditional imaging, light
field cameras can capture not only the intensity of light but also its angular information,
allowing for far superior estimation accuracy in image depth. Tao and others [15] combined
digital refocusing blur cues with corresponding cues to estimate scene depth. Georgiev [16]
further applied this to super-resolution imaging.

However, there has been limited research on using light field cameras for underwater
image restoration. Tian [3] and Lu [4] were the first to attempt applying light field methods
to underwater image restoration, combining the dark channel prior (DCP) [17] method and
digital refocusing cues to estimate depth maps and restore images, which showed better
robustness and restoration effects compared to monocular image strategies. Skinner [18]
applied 2D defogging methods to each sub-aperture image and processed them using
guided image filtering, resulting in 4D defogged underwater light field images. Feng [19]
established an underwater imaging system based on Mie scattering theory for underwater
3D reconstruction and image restoration. Additionally, Lu [20] introduced depth convolu-
tional neural fields in image restoration tasks to address the desaturation problem in light
field images. To tackle the challenge of obtaining underwater image data, Ye [21] proposed
a deep learning-based method to transform images taken in air into underwater images.
However, due to limited training data, the effectiveness of deep learning methods was
not satisfactory. While these methods have achieved good results, they have neglected
the impact of light imaging model parameters in the restoration process. Moreover, the
accuracy of light field depth estimation methods needs improvement due to the noise
caused by backscattering.

Despite the superior performance of light field cameras compared to traditional cam-
eras, there remain significant limitations. In this paper, we employ blur cues from light
field refocusing combined with traditional priors to achieve more accurate depth maps.
We then introduce a refined underwater optical imaging model and estimate more pre-
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cise parameters for light attenuation and scattering to improve the quality of underwater
image restoration.

The remainder of this paper is organized as follows. In Section 3, we describe the pro-
posed method. In Section 4, we set up the experiments and conduct extensive performance
comparisons of the results. In Section 5, we provide some discussions and conclusions.
Specifically, in Section 3.1, we describe the image restoration model and its related param-
eters, and the subsequent subsection details the solving process for these parameters. In
Section 3.2, we explain the methods and processes for solving the scattering and attenuation
coefficients in the model. In Section 3.3, we present our proposed underwater light field
depth estimation method. In Section 3.4, we describe the refocusing restoration process for
light field images.

3. Method
3.1. Underwater Image Formation Model

Figure 2 depicts the underwater image formation model, where the camera captures
underwater image information comprising attenuated direct signals and scattered signals
from the water body. The imaging model is represented as follows:

Ic(x) = Dc(x) + Bc(x), (1)

where c ∈ {R, G, B} represents the color channels, Ic is the distorted image captured by the
camera, Dc is the target information attenuated during propagation through the water, and
Bc is the scattering signal from light reflected off particles suspended in the water, which
degrades and blurs the image.

Light 

Source

Background Light

Scattering Point

Direct Light

Camera

Object

Scattering Light

Figure 2. Schematic diagram of underwater imaging and light propagation in Scattering media.

The extended form of Equation (1) is given as follows [9] :

Ic(x) = Jc(x)e−βD
c z + B∞

c

(
1 − e−βB

c z
)

, (2)

where z denotes the distance from the camera to the target, B∞
c represents the external

input light source, Jc represents the undegraded scene image, βD
c is the beam attenuation

coefficient, and βB
c is the backscattering coefficient of the water body.

The attenuation coefficient βD
c in the attenuation term Dc(x) depends on wavelength λ,

depth d, and distance z. Similarly, the scattering coefficient βB
c is related to the wavelength

and the background light Bc. These coefficients can be expressed as follows [22]:

βD
c = ln

 ∫ λ2
λ1

Sc(λ)ρ(λ)E(d, λ)e−β(λ)zdλ∫ λ2
λ1

Sc(λ)ρ(λ)E(d, λ)e−β(λ)(z+∆z)dλ

/∆z

βB
c = ln

1 −
∫ λ2

λ1
Sc(λ)B∞(λ)(1 − e−β(λ)z)dλ∫ λ2

λ1
B∞(λ)Sc(λ)dλ

/z,

(3)
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where ρ represents the reflectance of the object’s surface, E(d, λ) is the intensity of the
incident light at depth d, Sc is the spectral response of the camera, β is the physical
attenuation coefficient, and λ1 and λ2 represent the visible wavelength range (400 to
700 nm).

The background light B∞
c is the sum of the light received at the position where the

distance z → ∞, represented by the following:

B∞
c =

∫ λ2

λ1

B∞(λ)Sc(λ) dλ. (4)

3.2. Coefficients Estimation

According to Equation (2), to effectively restore underwater images, it is essential
to determine or estimate the parameters associated with light attenuation and scattering
during propagation. As mentioned in Equation (3), (βD

c ) and (βB
c ) depend on the parameters

{z, ρ, E(d), Sc, β} and {E(d), Sc, β}, respectively. The parameters β, E(d) (defined by the
optical water type), the depth d at which photos are taken, the reflectance ρ of each target
in the scene, and the camera response Sc are considered constants once determined at the
time of capture. These parameters are seldom known precisely at the time an underwater
photo is taken. βD

c is significantly influenced by the distance z, and βB
c is highly correlated

with the type of water body and illumination. Here we detail the methods for estimating
these coefficients.

3.2.1. βB
c and B∞

c Estimation

To estimate the backscattering parameters, it is crucial to isolate other influencing
factors. Inspired by He’s [23] dark channel prior method, where the minimum RGB values
in a hazy image’s dark channel represent the relative distance between the camera and the
target and the maximum values indicate the background light region, our approach differs
in that we know the target distance range rather than estimating it.

From Equations (1) and (2):

Bc(x) = Jc(x)e−βD
c z + Ic(x). (5)

It is evident that the backscatter part is related to distance z and reflectance ρ, and
tends to the captured distorted image as distance increases or target reflectance decreases.
Therefore, for reflectance ρ → 0 or Ed → 0 (in shadow regions), the captured target pixel
intensity tends toward the backscatter pixel intensity Bc(x) → Ic(x). This is similar to
the DCP method, but here we look for the lowest 1% of RGB triplets in the image area
represented as Ω where ρc ≈ 0 or Ed ≈ 0, hence B̂c(Ω) ≈ Ic(Ω). Concurrently, to obtain a
more accurate scattering parameter relative to distance, we take the target distance as a
known parameter. Thus, the backscatter in the region Ω can be further expressed as follows:

B̂c ≈ B∞
c (1 − e−βB

c zi ) + J′ce−βD′
c zi , (6)

where zi is the known distance variable and J′ce−βD′
c zi represents a minor residual amount,

retained due to dense scattering conditions in water. Using nonlinear least squares, we
then estimate parameters B∞

c , βB
c , J′c, βD′

c . Note that since the forward signal is minimal, βD′
c

can be temporarily considered constant.

3.2.2. βD
c (z) Estimation

According to [9], βD
c is strongly related to distance z, and its dependency on any range

z is described using a dual-exponential form:

βD
c (z) = α1 exp(α2z) + α3 exp(α4z), (7)
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where α1, α2, α3, and α4 are constants.
Assuming B∞

c and βB
c have been obtained, Bc can be removed from the original

image Ic, and βD
c (z) can be estimated by processing the direct signal Dc. According to

Equations (2) and (3), the restored image can be expressed as follows:

Ĵc(x) = (Ic(x)− Bc)eβD
c (z)·z. (8)

In our experimental setup, where absolute distances are not extensive, we assume the
corresponding image captured in clear water undergoes minimal scattering and attenuation,
using it as a reference image for restoration effects set as Ĵc(x). Rewriting the formula,
we obtain the following:

z̃ =
ln Ĵc(x)

Ic(x)− Bc
/eβD

c (z). (9)

By minimizing this expression, we obtain discrete βD
c data related to range z.

min
βD

c (z)
∥z̃ − z∥ (10)

Combining with Equations (7) and (9), we derive constants α1, α2, α3, α4 for βD
c .

3.3. Depth Estimation

In densely scattering media such as water, the random scattering of light during
propagation leads to restored images with relatively low signal-to-noise ratios, causing
traditional defocus and correspondence cues to perform poorly. To address this, we propose
using blur cues and incorporating a depth threshold method to reduce the influence of
noise on depth estimation, thereby improving accuracy. Below, we detail our approach.

3.3.1. Construction of Blur Clue Cost

We utilize a parallel plane parameterization to represent the four-dimensional light
field LF(x, y, u, v), where (x, y) and (u, v) correspond to spatial and angular coordinates,
respectively. Following Ng et al. [24], we segment the light field data at different depths
as follows:

Lα(x, y, u, v) = LF

(
x + u

(
1 − 1

α

)
, y + v

(
1 − 1

α

)
, u, v

)
, (11)

where α represents the current focus depth ratio and Lα is the refocused light field image at
the depth ratio α, with the central view located at coordinates (u, v) = (0, 0).

Considering that the further the distance of a target pixel due to attenuation, the
greater its blurriness, and that the blurriness of a target pixel after light field refocusing is
inversely proportional to its true distance, we choose to use blurriness as a cost clue for
depth estimation. We employ a local frequency analysis method using the Discrete Cosine
Transform (DCT) [25] to analyze the characteristics of the area around a pixel. By evaluating
the absence of high-frequency components, we can quantify the image’s blurriness. The
DCT representation for the area Ω around a clue point (x, y) is given as follows:

T(p, q) = c(p)c(q)
N−1

∑
x=0

N−1

∑
y=0

Ω(x, y) cos
[

π(2x + 1)p
2N

]
cos
[

π(2y + 1)q
2N

]
, (12)

where p, q are frequency variables ranging from 0 to N − 1, Ω(x, y) are the pixel values in
an N × N area, and c(p), c(q) are normalization factors defined as follows:

c(p) =


1√
N

if p = 0√
2
N otherwise

. (13)
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The blurriness at that location is then expressed as follows:

Mα(x, y) =
N−1

∑
p=1

N−1

∑
q=1

|T(p, q)|2. (14)

For the refocused light field image at depth ratio α, the cost clue is represented
as follows:

CM
α (x, y) =

1
N ∑

u,v
Mα(x, y, u, v). (15)

This method systematically utilizes the inherent blurriness of the underwater images
caused by scattering to establish a robust depth estimation framework. By integrating blur
as a quantitative measure into the cost function for depth estimation, we can enhance the
accuracy of light field-based depth estimation in challenging underwater conditions.

3.3.2. Single Image Preprocessing

Given the initial high blurriness of underwater images, it is crucial to obtain more
texture detail information through preprocessing before depth estimation. As discussed in
Section 3.2, having acquired the parameters of the light propagation model, we now only
need an initial depth estimate to retrieve more detailed textures from underwater images.

Inspired by the methods of Peng [11] and Carlevaris-Bianco [26], we combine the
characteristics of these two approaches for our image preprocessing depth estimation.

First, considering the relationship between imaging distance and blurriness in the
captured images, Peng [11] introduced an image formation model based on blurriness prior,
where the pixel blurriness related to depth distance is represented as follows:

F(x) = max
y∈Ω(x)

{
1
n

n

∑
i=1

∣∣Igrey(y)− G(Igrey(y))
∣∣}, (16)

where Igrey is the grayscale version of the input image Ic, G is a spatial filter of size h × h
with variance σ2, set as h = 2i+n+1, with n set to 4. Ω(x) is a local patch centered at x.

Next, we estimate depth distances based on the absorption rate differences of light at
various wavelengths in the medium, where attenuation of red wavelengths is greater than
that of blue and green wavelengths. Carlevaris-Bianco [26] suggested using the difference
between the maximum intensities of the red channel and the green and blue channels as
depth cues, represented as follows:

Q(x) = max
y∈Ω(x)

Ir(y)− max
y∈Ω(x)

{Ig(y), Ib(y)}. (17)

We combine the distance cues from Equations (16) and (17) to estimate an initial depth
map, expressed as follows:

z̃F = 1 − Nnorm(F(x))

z̃Q = 1 − Nnorm(Q(x))
, (18)

where Nnorm is a stretching normalization function. Then, depending on the input’s average
red channel value, we choose between light absorption-based or image blurriness-based
methods to estimate the underwater scene depth:

z̃init = d̃F + (1 − θ)d̃Q, (19)

where θ = S(avg(Ir), 0.1), avg is the mean function, and S is the sigmoid function
defined as follows:

S(a, b) =
1

1 + e−s(a−b)
, (20)
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where s controls the slope of the activation function, thereby controlling the amplitude of
the output change when the input values have slight differences. We experimented with
different values and found that the model performs best when s = 32.

Finally, based on Equation (19), we can obtain the initial depth estimation map. By
substituting the depth results into the process described in Section 3.1, we can obtain the
preliminary restored underwater image.

3.3.3. Depth Cue Fusion and Depth Estimation

After obtaining the blur-based depth cues to enhance the robustness of depth estima-
tion, we also introduce Tao’s [15] defocus cost as a supplementary metric. The spatial point
defocus cost response is represented as follows:

CF
α (x, y) =

1
|WF| ∑

x′ ,y′∈WF

∣∣∆Lα(x′, y′)
∣∣, (21)

where WF is the window size around the current pixel, ∆ is the Laplacian operator in both
horizontal and vertical directions, and Lα(x, y) is the mean of all angular positions for that
pixel, expressed as follows:

Lα(x, y) =
1
N ∑

u,v
Lα(x, y, u, v). (22)

Combining the depth cost clues from Equations (15) and (21), the depth relationship is
finally established as follows:

zα∗(x, y) = arg min
α

{
CF

α (x, y) + CM
α (x, y)

}
. (23)

By inputting the restored light field image into this formula, we obtain the depth
estimation map for the underwater light field image. This comprehensive approach ef-
fectively merges various depth cues to produce a more accurate and robust estimation of
underwater depths.

3.4. Underwater LF Image Restoration

Although attenuation and scattering effects have been removed in light field imaging,
the random scattering of light by particles in water often still results in noise in the restored
images, especially in waters with high turbidity. To address this, we take into account that
the noise patterns and their distributions formed at the same object point across different
sub-apertures vary. By averaging multiple light field views through a light field refocusing
algorithm, we can further suppress noise and reduce the impact of backscatter noise.

4. Experimental Results

This section introduces the experimental setup, displays results from our experimental
apparatus, compares them against various state-of-the-art algorithms, and discusses the
limitations of our approach.

4.1. Experimental Methodology

In this study, we conducted experiments in a dark environment using a water tank
with dimensions of 0.7 × 0.4 × 0.4 m. All sides of the tank, except the shooting face, were
covered with opaque black film to prevent external light reflections. We used white LED
lights as the light source. The Lytro Illum camera was positioned 2 cm away from the tank.
Figure 3 illustrates this experimental setup. Note that the selection of the tank size was
based on the physical space constraints of the laboratory and the practical feasibility of
operations. Ideally, a larger water tank would better simulate the light propagation paths
in real environments. However, due to the limitations of our laboratory conditions, we
could only use the available size of the water tank for our experiments.
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In the experiment, we gradually added milk to the water tank, totaling 4 mL. This
incremental addition method allowed us to precisely control the turbidity of the water,
thereby simulating different levels of scattering effects.

We chose milk as the scattering medium because it can evenly disperse in water,
providing consistent optical scattering effects. Although other studies have used substances
like red wine, milk is more suitable for simulating suspended particles and turbidity in
water. Additionally, milk is easy to control and measure, and its optical properties better
meet the requirements of our experiment.

Light 

Source

LF Camera

Object

Y

Z

X

Water

Figure 3. Our experimental setup.

4.2. Results Comparisons

In this experiment, we evaluated the performance of our proposed method against
the latest techniques in image restoration and depth estimation. We selected prior-based
single image methods for depth estimation and restoration [11,27], light field (LF)-based
methods [3], and deep learning-based methods [8,28] for comparison. It should be noted
that the LF-based methods were not optimized specifically for this task during replication,
leading to discrepancies between their replication results and practical outcomes. Note that
the methods selected above all have publicly available source code or authors willing to
provide the code. This allows us to accurately reproduce the results of these methods and
make fair comparisons.

The original image data used in Figures 4 and 5, labeled LF1 to LF5, were collected in
a medium turbidity environment created by adding 4ml of milk. To verify robustness to
distance, the targets in these five scenes were randomly placed at different positions in the
water tank, with designs including both single target and varying positions of front and
back targets.

Figure 4 presents a comparison of depth estimation results between our method and
other methods, corresponding to the original images in column (a). In columns (b–c) of
Figure 4, methods based on blur and light attenuation priors show relatively stable perfor-
mance but are significantly affected by high blur in the background regions. In column (d),
the light field-based depth estimation method performs well in blurred background regions,
second only to our method. However, it exhibits poor robustness in the halo regions caused
by light scattering around the target. Column (e) shows good detail in the target area but
performs poorly in noisy regions. Column (f) has the worst performance due to the limited
generalization capability caused by the underwater image data constraints. Column (g)
of our method exhibits more target depth details and smoother, more accurate results in
noisy background regions. From a subjective evaluation perspective, our method exhibits
certain advantages over other methods in terms of depth estimation accuracy in areas with
background light noise interference and target details.
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LF 2 

LF 3 

LF 4 

LF 5 

LF 1 

(a) (b) (c) (d) (f)(e) (g)

Figure 4. Comparison of depth estimation results. (a) Original image. (b) UDCP [27]. (c) ULAP [10].
(d) IBLA [11]. (e) Tian’s method [3]. (f) UW-Net [28]. (g) Our method.

LF 2 

LF 3 

LF 4 

LF 5 

LF 1 

(a) (b) (c) (d) (f)(e) (g)

Figure 5. Comparison of restoration results. (a) Original image. (b) UDCP [27]. (c) ULAP [10].
(d) IBLA [11]. (e) Tian’s method [3]. (f) Semi-UIR [8]. (g) Our method.
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Figure 5 provides a comparison of restoration effects between our method and other
methods based on the original images shown in column (a). Columns (b–c) in Figure 5
show that prior-based methods result in noticeable red color casts in the restored images.
Additionally, due to incorrect depth map estimation, the target blur remains significant.
Columns (d) and (f) display a certain degree of blue-green cast, and the image in column (f)
is relatively blurred. Column (e) performs well in the background region but still exhibits
some red color cast in the target area. Column (g) of our method effectively removes
backscatter from both the target and background, reducing noise. Additionally, light field
refocusing brings about better clarity, and the colors are more aligned with human visual
perception. Therefore, from a subjective evaluation perspective, our method demonstrates
better restoration effects compared to the other methods.

Underwater images have various objective evaluation methods. The underwater color
image quality evaluation (UCIQE) [29] is the most widely used set of criteria, providing
a no-reference metric specifically for assessing underwater image quality by analyzing
color, saturation, and contrast. This standard addresses image quality degradation caused
by light attenuation, scattering, and color shifts. A higher score indicates better image
quality. Table 1 presents the evaluation scores for Figure 5. It can be observed that the
image restoration results of our method achieve better overall performance across the five
different image scenes compared to other methods.

Table 1. Comparison of restoration results using the UCIQE scores corresponding to Figure 5.

Method LF1 LF2 LF3 LF4 LF5 Average

UDCP 20.32 20.75 21.16 19.07 20.44 20.34
ULAP 25.09 32.43 23.89 25.11 22.03 25.31
IBLA 18.35 14.38 10.02 10.12 9.447 12.86
Tian’s method 26.11 28.72 21.88 19.43 30.09 25.24
Semi-UIR 16.72 25.13 24.64 21.16 19.43 21.01
Our method 27.21 27.99 30.27 28.42 37.24 30.22

The best result is shown in Red.

Furthermore, We also tested the robustness of our method in environments with
varying degrees of turbidity. We evaluated the restoration performance of our approach in
waters of different turbidity levels using the underwater color image quality evaluation
(UCIQE) and the structural similarity index (SSIM) [30] as quality metrics. SSIM, which
mimics the human visual system to measure the structural similarity between two images,
is a widely used reference-based index. We used images captured in clear water as the real
image reference. The restoration results, as shown in Figures 6 and 7, demonstrate that
our method outperforms others across various turbidity levels. However, our method has
limitations; when the water reaches a certain level of turbidity, the quality of our restored
images rapidly deteriorates.

In summary, we subjectively compared the latest methods with our proposed approach
in terms of depth maps and image restoration. Our method demonstrates better accuracy
and image texture details in the depth maps compared to other methods. Additionally, due
to the full-focus characteristics of the light field, our method significantly outperformed
single image approaches in controlling noise in the final restored images. Objectively, we
used the reference-free UCIQE to compare the restoration effects of different models and
the reference-based SSIM to assess the restoration performance under various turbidity
levels. The results conclusively showed that our method performed better than existing
methods in both respects.
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Degree of Turbidity

Reference Truth

Figure 6. Comparison of restoration results across various turbidity levels using the SSIM index. For
better display, our data begins recording from the third addition of an equal amount of milk. Note
that aside from our results and Tian’s results, all other views are from the LF’s central perspective.
Note that all images are from the same original target with turbidity being the only variable.
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Figure 7. Comparison of restoration effects across various turbidity levels using the UCIQE index.
Note that all image data is the same as in Figure 6.

5. Discussion and Conclusions

In this paper, we proposed a method for underwater depth estimation and image
restoration in near-field illumination environments. Our contributions include introducing
a novel approach that utilizes blurriness and backscatter as depth estimation cues, propos-
ing an image restoration scheme based on state-of-the-art underwater imaging models in
near-field illumination and dense scattering environments, and a method to improve the
accuracy of light field depth estimation in dense noisy environments. Through comparisons
with existing methods, our approach demonstrates improved accuracy in depth estima-
tion, image restoration, and stability compared to color prior-based methods and several
state-of-the-art light field-based restoration methods. However, our results also have some
errors and limitations, such as inaccuracies in depth estimation in shadow regions and
a significant decline in restoration performance in highly turbid water. Future research
will further optimize our method and validate its effectiveness under more experimental
conditions. Our next step is to establish a database of underwater light field images to
analyze the impact of different lighting conditions and water parameters on imaging.
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