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Some brief fundamentals of 
laser Doppler vibrometry
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How does a laser vibrometer 
measure target surface vibration?
In an interferometer arrangement:
 Split laser into target and reference beams
 Back-scattered light collected on photodetector 
What turns it into a vibrometer: 
 Introduce a known reference frequency shift

Some further important points:
 Any path length changes lead to Doppler signal, c.f. “Refracto-Vibrometry”
 Will work in other fluids, e.g. underwater (noting different µ…subject to absorption)
 Other interferometric optical arrangements (e.g. D-LDV)
 Other Doppler signal demodulation techniques (e.g. signal diversity)
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Ok, but what do we really measure with LDV?!

Fundamentally,
where U is the (arbitrary target) velocity 
in the direction of the beam:

But…
…if the target vibration is complex (e.g. 6DoF vibration), is U still what we expect it to be? 
And…
…what happens if the beam orientation changes with time, e.g. scanning LDV?
…or, if the instrument itself or a device used to steer the beam vibrates, does this 
motion/vibration also appear as U?

Yes, of course – it all does!
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Base vibration correction… 

…using time and frequency 
domain approaches
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Base vibration correction challenges

Instrument vibration measurement sensor locations/orientation
 Geometrical model shows us where to put them!

Sensors must deliver flat amplitude and phase freq. response
 Choose a rigid location on the sensor head!
 Accels. “easiest” but must be integrated and time-aligned

Early attempts used frequency domain processing
 Easier to implement, including “jw” integration

Contemporary approaches use time domain processing 
 Application to transient signals
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Base vibration correction procedure…
…frequency domain based approach
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Base vibration correction procedure…
…time domain based approach
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Scanning LDV measurements 
from vibrating platforms
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Scanning LDV base motion 
correction

Remember, LDV measures 
velocity in direction of laser beam:

We can correct for the non-scanning case:
 Use AccR; same as for single beam

But what about when the laser beam moves?
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Correction during scanning

How does changing the beam angle affect the correction performance?
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Example results during scanning
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6 DoF correction for 
scanning LDV measurements

Vibrating
target (1 DoF)

Vibrating 
SLDV (6 

DoF)

2qx
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Frequency domain processing 
for scanning LDV correction

𝑈0122 = −𝑈3 cos 𝜙145 sin 𝜃145 +	𝑈6 sin 𝜙145 	− 𝑈7 cos 𝜙145 cos 𝜃145
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LDV measurements using 
a vibrating steering mirror
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Compensating for 
steering mirror vibration

Measurement inherently sensitive to steering mirror/optic vibration 
Sensitivity can be predicted from knowledge of geometry … 

     𝑈! = −$𝑏$. 𝑉%! + $𝑏$ − $𝑏& . 𝑉'!
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Experimental validation I – 
lab-based scenario
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Experimental validation II – 
“real-world” scenario
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Experimental validation III – 
“Flyable Mirror” project
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“Refracto-Vibrometry” 
across an aperture/opening 
for active noise control
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Wide Area Refracto-Vibrometry 
(to replace a microphone array)

Remember, LDVs measure path length fluctuations…which includes refractive index changes!

vs.
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Experimental arrangement 
and (some) signal processing
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Results

Simulation vs. microphone array vs. refracto-vibrometry:
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ANC at a window opening

vs.
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Experimental setup



© UTS 2024 – KINDLY DO NOT CIRCULATE/REDISTRIBUTE WITHOUT EXPLICIT ORIGINATOR PERMISSION

39

Sound Field Reconstruction @ 2 kHz (two sound fields)



© UTS 2024 – KINDLY DO NOT CIRCULATE/REDISTRIBUTE WITHOUT EXPLICIT ORIGINATOR PERMISSION

40

ANC Performance with 15 Secondary Sources @ 2 kHz
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Manipulation of an 
acoustically levitated object 
using externally excited 
standing acoustic waves
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Experimental demonstration – 
object trap change and chaos
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Laser vibrometry etc. in 
insect biomechanics 
research
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LDV measurements of bee wing dynamics



© UTS 2024 – KINDLY DO NOT CIRCULATE/REDISTRIBUTE WITHOUT EXPLICIT ORIGINATOR PERMISSION

56

Laser intensity causing 
damage (when focusing)

Damage to the bee wing occurs at 
above 30% intensity ~ 0.25 mW 
(green line)

LDV system used is MSA-100-3D
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μCT scans of termite leg and its subgenual organ (SGO)
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μCT scans of termite leg and its subgenual organ (SGO)



© UTS 2024 – KINDLY DO NOT CIRCULATE/REDISTRIBUTE WITHOUT EXPLICIT ORIGINATOR PERMISSION

59

Summary and conclusions

Modelling LDV velocity sensitivity allows prediction of (some) measurement “uncertainties”
Predictions can be used to determine which correction measurements are required for scenarios 
where additional velocity contributions are present
 Correction can be done in both frequency and time domain processing

 Vibrating scanning LDV, even for 6DoF sensor head vibration!
 Vibrating steering mirror, applicable to “Flyable Mirrors”!
Refracto-Vibrometry can be used for effective active noise control at an opening

Active vibration control benefits from LDV reference sensor 
Acoustic levitation for manipulation of lightweight structures
Insect biomechanics
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An upcoming opportunity!
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Some (optional) further reading!
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Vibrometry and Unmanned Aerial Systems: A Review and Outlook, accepted, (2025)

http://hdl.handle.net/10453/117394
http://hdl.handle.net/10453/117394
http://dx.doi.org/10.1016/j.optlaseng.2016.11.006
http://hdl.handle.net/10453/117393
http://hdl.handle.net/10453/117393
https://doi.org/10.1016/j.jsv.2017.05.014
http://hdl.handle.net/10453/141667
http://hdl.handle.net/10453/141667
https://doi.org/10.1016/j.ymssp.2020.107255
http://hdl.handle.net/10453/148267
http://hdl.handle.net/10453/148267
https://doi.org/10.1016/j.jsv.2021.116607


© UTS 2024 – KINDLY DO NOT CIRCULATE/REDISTRIBUTE WITHOUT EXPLICIT ORIGINATOR PERMISSION

64

Some (optional) further reading continued?!

Rothberg, S, … Halkon, B, et al., An international review of laser Doppler vibrometry: Making light 
work of vibration measurement, Optics and Lasers in Engineering, 99, (2017), DOI: 
10.1016/j.optlaseng.2016.10.023
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Sansom et al., … (2022)  https://doi.org/10.1016/j.asd.2022.101191
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