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Abstract
Sequential recommender systems (SRSs) aim to recommend the
next items to well match users’ preferences. In addition to recom-
mendation accuracy, diversity is another critical aspect in evalu-
ating SRSs. Recently, the emerging diffusion models (DMs) have
been widely adopted in SRSs. Their employed learning-to-generate
paradigm allows them to cover a much broader range of users’ pref-
erences and thus generate more diversified items. However, existing
DM-based SRSs still face two significant gaps that prevent them
from further improving the recommendation diversity: (1) they
often rely on non-diversified users’ preferences as guidance
to direct the training of diffusion networks, restricting networks’
ability to generate diverse items; and (2) they are based on a ho-
mogeneous diffusion inference mechanism to generate the
next items and thus can only accommodate users’ major prefer-
ences. Such a practice neglects users’ heterogeneous preferences
towards various types of items, further limiting recommendation
diversity. To bridge these two critical gaps and to further unleash
the potential of DMs in enhancing the recommendation diversity
of SRSs, we propose a novel diversity-guided diffusion model for
sequential recommendations, called DiffDiv for short. To be spe-
cific, first, a new diversity-aware guidance learning mechanism is
devised to direct the training of DMs to effectively capture users’
diversified preferences from their historical interactions. Then, a
novel heterogeneous diffusion inference mechanism is designed to
generate diversified items to accommodate users’ heterogeneous
preferences, further boosting the recommendation diversity. Exten-
sive experiments on real-world datasets validate the effectiveness
of DiffDiv in terms of both recommendation accuracy and diversity.
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1 Introduction
Sequential recommender systems (SRSs) aim to predict the next
item a user may want to interact with according to their historical
interactions with items [18, 36, 53]. Despite remarkable progress,
most of the existing SRSs primarily focus on enhancing recommen-
dation accuracy, neglecting recommendation diversity [49, 61]. This
will lead to significant issues, such as filter bubbles [32], where users
are confined to a narrow range of items they are familiar with. This
significantly reduces the utility of recommendations as well as user
experience. Therefore, it is of great significance to develop novel
SRSs to effectively generate diversified recommendations [61].

Although some approaches have been proposed to enhance the
recommendation diversity of SRSs [6, 25, 47], they generally follow
the learning-to-classify paradigm to match candidate items with
users’ recently interacted items. Such practice inevitably push them
to prioritize recommending items which are similar to those ones
which have been already interacted with by users [60], limiting
their ability to effectively capture users’ diverse preferences.

As an emerging type of generative models, diffusion models
(DMs) have been increasingly adopted in SRSs in recent years
[24, 60]. Specifically, DM-based SRSs generate the next items for
users from scratch (e.g., from Gaussian noise) during a progressive
process [24, 60]. This particular process enables them to discover a
broader range of users’ preferences, thereby providing more diver-
sified recommendation results compared to traditional diversified
SRSs [24]. Generally, existing DM-based SRSs can be divided into
two classes: (1) approaches for target item generation [24, 33, 60],
and (2) approaches for augmented data generation [26, 29, 56]. The
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Figure 1: A toy example in movie recommendation scenario.
From (a) to (b) demonstrates how existing DM-based SRSs
generate recommendations. The process from (a) to (c) illus-
trates what a diversified SRS is supposed to achieve.

former directly generates the next items that match users’ pref-
erences while the latter generate additional data to enhance the
learning of users’ preferences. This paper focuses on the former.

Typically, a DM-based SRS involves two main stages: (1) Stage
1: diffusion model training, where users’ preferences learned by a
sequence encoder from their historical interactions are utilized to
guide the model training process; (2) Stage 2: next-item inference,
where the diffusion inference is employed for generating the next
item with the trained diffusion model [60]. However, existing DM-
based SRSs have significant gaps in both stages, preventing them
from delivering more diversified recommendations.

Gap 1 (In Stage 1): Non-diversified users’ preferences-guided
diffusion model training. Existing DM-based SRSs typically uti-
lize users’ preferences learned by sequence encoders as a guidance
to guide the training of DMs [24, 33, 60]. However, the learned
users’ preferences are encoded in the form of deterministic em-
beddings (i.e., fix-point vectors). Deterministic embeddings often
express limited scope of information embedded in users’ interaction
sequences, making them insufficient for capturing users’ diverse
preferences [24]. Therefore, relying on such non-diversified users’
preferences as the guidance to train DMs hinders the ability of
existing DM-based SRSs to generate diversified recommendations.
The restricted ability of deterministic embeddings to learn data
diversity has also been demonstrated in other domains, such as
image recognition [34] and cross-modal retrieval [9].

Gap 2 (In Stage 2): Homogeneous diffusion inference mech-
anism for generating the next item. Existing DM-based SRSs
employ a homogeneous diffusion inferencemechanism, i.e., generat-
ing a single item embedding to best match a user’s major preference
towards a certain type of items only, while overlooking their pref-
erences towards other types of items. Subsequently, the top several
candidate items that are similar to the generated item are recom-
mended to the user [60]. As a result, such an inference mechanism
causes existing DM-based SRSs to recommend non-diversified items
which are all highly similar to the single generated item. For in-
stance, the process from (a) to (b) in Figure 1 illustrates the core idea
of current DM-based SRSs. Suppose a user has recently watched
three cartoon movies, one action movie, and one horror movie. In
this case, cartoon elements (i.e., major preference) dominate the
watching sequence, guiding DMs to generate a cartoon movie. As a
result, a movie list dominantly comprised of cartoon movies will be
selected as the recommendation result according to this generated
one. Clearly, such recommendation neglects user’s heterogeneous
and diversified preferences for action and horror movies.

To bridge these two significant gaps to further unleash the capa-
bility of DMs in enhancing the diversity of SRSs, in this work, we
propose a novel diversity-guided diffusion model for SRSs, termed
DiffDiv. To be specific, to tackle Gap 1, we design a new diversity-
aware guidance learning module (DAGL). DAGL first employs a
sequence encoder to extract users’ preferences from their historical
interaction sequences. Afterwards, a new diversity-aware guidance
is constructed by capturing uncertainty and variations in users’
preferences from a probabilistic perspective. Benefiting from such
diversity-aware guidance, DiffDiv can be trained to comprehen-
sively learn users’ more diversified preferences. In addition, to
avoid improving diversity at an unacceptable cost to accuracy in
this process, we further design a new accuracy-diversity balanced
optimization strategy (ADBO). ADBO is built on controllable robust
divergences to strike a balance between recommendation accuracy
and diversity. To overcomeGap 2, we devise a novel heterogeneous
diffusion inference mechanism (HDI) to capture heterogeneous user
preferences. Specifically, HDI generates various types of items dur-
ing the diffusion inference process guided by diversified preferences
learned from users’ historical interactions. Each generated item
embedding will result in a particular type of items to be selected to
accommodate users’ certain preference. Finally, the various gener-
ated item embeddings lead to the recommendation of multi-type
items to facilitate users’ diversified preferences. Such a novel de-
sign further boosts the capability of DiffDiv in providing more
diversified recommendation results.

The main contributions of this paper are summarized as follows:

• To further unleash the potential of DMs in enhancing the recom-
mendation diversity of SRSs, we propose a novel diversity-guided
diffusion model, termed DiffDiv.
• A new diversity-aware guidance learning module (DAGL) is de-
signed to construct a diversity-aware guidance by capturing the
uncertainty and diversity of users’ preferences from a probabilistic
perspective. Such guidance directs the training of DiffDiv towards
more diversified generation.
• A new accuracy-diversity balanced optimization strategy (ADBO)
is devised to strike a balance between recommendation accuracy
and diversity through controllable robust divergences.
• A new heterogeneous diffusion inference (HDI) is devised to gener-
ate multi-type items to accommodate users’ diversified preferences.

Extensive experiments on two real-world datasets validate the supe-
riority of DiffDiv over representative and/or state-of-the-art meth-
ods in terms of both recommendation accuracy and diversity.

2 Related Work
2.1 Sequential Recommendations
Sequential recommender systems (SRSs) have been widely explored
due to its significant real-world application values [41, 42, 68].
Sequential recommendation methods can be technically catego-
rized into three categories: traditional sequential models, latent
representation models, and neural network-based models [44, 46].
Traditional sequential models utilize sequential pattern mining or
Markov chain models to model item dependencies in a sequence
[13]. While simple, they cannot model long- and short-term de-
pendencies. Latent representation models learn latent factors for
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users and items, typically through techniques like matrix or tensor
factorization [15]. However, they can only capture simple relation-
ships. In recent years, many kinds of neural networks have been
applied to SRSs. Within these, recurrent neural networks (RNNs)
[53], convolutional neural networks (CNNs) [62], and Transformers
[18, 36] are the most commonly used ones that capture complex
interaction relationships. Additionally, some works also explore
graph neural networks (GNNs) for SRSs, representing items in se-
quences as nodes in a graph and learn user-item features through
graph-based aggregation [5, 65]. Recently, researchers have begun
extending DMs to SRSs, leveraging DMs to generate the target item
or augment data [24, 56, 60].
2.2 Diversified Recommendations
Diversity in recommender systems can be categorized into individ-
ual diversity and aggregate diversity, focusing on recommendation
list for each individual user or all users as a whole, respectively
[61, 67]. In this paper, we focus on the former. The diversified
recommendation methods can be classified into multi-stage and
one-stage approaches based on whether the recommendation lists
are generated iteratively or all at once. Many diversified methods
employ a re-ranking strategy, such as a greedy algorithm (e.g.,
maximal marginal relevance (MMR) [3]). MMR recommends items
one-by-one and regulates that current items are not too similar with
previously recommended ones [69]. These methods belong to the
multi-stage category, as they iteratively adjust the recommendation
lists rather than generating them at once. Some learning-to-rank
methods incorporate diversity-aware objectives into the training
process to guide models towards high diversity during training [21].
Clustering-based methods recommend items from various clusters,
assuming that similar items will be grouped into the same cluster
[2]. These methods belong to the one-stage category, producing
the recommendation results in a single step.

In SRSs, diversification methods can also be divided into multi-
stage paradigm [4, 6, 7, 27] and one-stage paradigm [25, 39, 47].
Since the multi-stage paradigm requires iterative adjustments to
the recommendation lists and thus will significantly increase time
consumption, this paper focuses on the one-stage paradigm.

Existing diversified SRSs generally follow a learning-to-classify
paradigm and thus recommend items highly similar to those items
which have already been interacted with by users. This significantly
limits their ability to provide diversified recommendations.
2.3 Diffusion Models for SRSs
With the remarkable success of DMs in image synthesis [10, 16],
recent research has explored extending DMs to various recom-
mendation tasks, including Top-𝐾 recommendations [51, 66] and
multimodal recommendations [22, 31]. In SRSs, DM-based methods
can be categorized into two main types: models for target item
generation [24, 33, 60] and models for sequence data augmentation
[26, 29, 56]. The former one relies on users’ historical sequential
interactions as guidance to direct the generation of the target item
[17, 20, 23, 30, 50, 52, 57]. For example, somemethods employ Trans-
formers to capture users’ overall preferences and use the output of
Transformers to guide the reverse phrase of DMs [24, 60]. Models
for sequence data augmentation leverage DMs to generate addi-
tional items and augment the original sequences, alleviating the
sequence sparsity problem [26, 29, 56].

Although DMs have significant potential to enhance recommen-
dation diversity, existing DM-based SRSs tend to prioritize improv-
ing the recommendation accuracy, frequently neglecting the crucial
aspects of modeling recommendation diversity. This gap motivates
us to develop DM-based methods that aim to improve both recom-
mendation accuracy and diversity in SRSs.

3 Problem Formulation
The sequential recommendation task aims to leverage users’ his-
torical interaction sequences to predict what they are likely to
engage with next [40, 43, 45]. The whole sequence set is denoted
as S = {𝑠1, ..., 𝑠 |𝑆 | }, where each sequence 𝑠 = {𝑖1, ..., 𝑖𝑛} (𝑠 ∈ S)
contains 𝑛 items ordered by the timestamps at which they were
interacted with by a user. The number of items is𝑀 . The sequence
longer than 𝑛 will be truncated while shorter ones will be padded.
The task involves utilizing previous 𝑛 − 1 items ({𝑖1, · · · , 𝑖𝑛−1}, also
called context items) and their embeddings {e1, · · · , e𝑛−1} to train a
model to predict the target item 𝑖𝑛 (i.e., the last item of the sequence).
𝑖𝑛 is available during the training stage for model optimization and
is unavailable during the test stage, where it needs to be predicted.
For clarity and brevity, we use a single sequence to explain our
model throughout the paper.

4 The DiffDiv Model
As shown in Figure 2, DiffDiv consists of four main components: (1)
sequence data processing, (2) diversity-guided diffusion training, (3)
heterogeneous diffusion inference, and (4) item recommendations.
First, given a user’s sequentially interacted items, which are divided
into context items and a target item, we map them into embedding
vectors. Then, the diversity-aware guidance learning module ex-
tracts diversity-aware guidance from the user’s context items to
guide the training of diffusion network towards more diversified
generation. During this process, the accuracy-diversity balanced
optimization is applied to balance recommendation accuracy and
diversity. Subsequently, the heterogeneous diffusion inference gen-
erates various types of items based on the trained diffusion network.
Finally, item recommendations that align with the user’s diversified
preferences are produced based on the generated items.

4.1 Diversity-guided Diffusion Training
4.1.1 Diversity-aware guidance learning. At the beginning of diversity-
guidance learning, a sequence encoder is applied to learn user’s
overall preferences from his/her sequentially interacted items:

c = SeqEncoder({e1, · · · , e𝑛−1}), (1)

where e ∈ R𝑑 refers to the embedding of an item in a sequence. c ∈
R𝑑 denotes contextual embedding that represents the user’s overall
preferences implied in a sequence. 𝑑 is the embedding dimension.
We select the Transformer as the SeqEncoder in this paper, which
has shown promising performance in recent research [18, 36]. The
Transformer architecture applied in this paper follows the standard
configuration [1], including multi-head attention, position-wise
feed-forward network, layer normalization and dropout. Since the
design of the Transformer network is not the focus of this paper,
we omit the details of Transformer network for simplicity.
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Figure 2: Framework of DiffDiv. DiffDiv begins by utilizing context items to construct a diversity-aware guidance. This guidance
then is utilized to guide the direction of diffusion training. To balance accuracy and diversity, an accuracy-diversity balanced
optimization strategy is employed. After training, a heterogeneous diffusion inference mechanism generates items that align
with users’ diversified preferences. Finally, these generated items are utilized to make recommendations.

Existing DM-based SRSs generally utilize c as the guidance to
direct the generation process. However, c is encoded in the form
of deterministic embedding. Such deterministic embedding often
expresses limited semantic information in user behaviors, making
it insufficient to capture the uncertainty and diversity of users’ pref-
erences. As a result, using such non-diversified guidance to direct
the item generation fails to produce diversified recommendations.

To tackle this problem, we devise a diversity-aware guidance
learning module (DAGL). Previous studies have shown that model-
ing data in a distribution space can enhance the ability to learn data
diversity [9, 34, 55]. Motivated by these works, we explore to con-
struct a diversity-aware guidance from a probabilistic perspective.
Formally, we first learn a latent variable z from c:

𝑞(z|c) = N(z; 𝝁𝜙 (c),𝝈2
𝜙
(c)), (2)

where 𝝁𝜙 (c) and 𝝈2
𝜙
(c) are mean and variance estimated by a en-

coder network (R𝑑 → R𝑑
′
, where𝑑′ is the dimension of latent layer)

with parameters 𝜙 . Then, the latent variable can be derived through
a reparameterization trick: z = 𝝁𝜙 (c) + 𝝈𝜙 (c)𝝐 for 𝝐 ∼ N(0, I).
Subsequently, a decoder network (R𝑑

′ → R𝑑 ) with parameter Ψ is
applied to get the diversity-aware guidance: ĉ = 𝑓Ψ (z) ∈ R𝑑 .

Our constructed probabilistic guidance ĉ offers higher diversity
compared to c, since it represents each sequence information as
a probability distribution rather than a deterministic embedding.
This probabilistic nature allows for multiple possible embeddings
to be sampled from the distribution, capturing different variations
and uncertainties in the sequence.

To optimize DAGL’s parameters, the following loss is applied:

L𝐷𝐴𝐺𝐿 = −Ez [𝑙𝑜𝑔𝑝 (ĉ|z)]︸             ︷︷             ︸
reconstruction term

+𝐷𝐾𝐿 [𝑞(z|c) | |𝑝 (z)]︸                 ︷︷                 ︸
prior matching term

, (3)

where 𝐷𝐾𝐿 is the KL-divergence between two distributions.
Discussion: The proposed DAGL module is straightforward yet

effective. More complex and sophisticated network architectures
could also be employed for this purpose. We leave it to our future
work. To note that although DMs can also represent embeddings
in the probabilistic form, we do not use DMs to construct ĉ. This is
because the inference of DMs requires multiple steps and would be

applied at each reverse step of DiffDiv. Consequently, this nesting
structure would lead to exponential increase in time consumption.
4.1.2 Diversity-guided diffusion. After constructing the diversity-
aware guidance, we next illustrate how to utilize it to guide the
training direction of DiffDiv to learn more diversified users’ pref-
erences. To improve training efficiency, DiffDiv implements the
diffusion process on the embedding of target item 𝑖𝑛 . Specifically,
let x0 ← e𝑛 ∈ R𝑑 denotes the initial variable of the forward stage.
Forward Stage. Given the initial variable x0 ∼ 𝑞(x0), DiffDiv pro-
gressively adds Gaussian noise into x0 at each step until reaching
the maximum diffusion step𝑇 . Formally, the transition is as follows:

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I), (4)

where x𝑡 and x𝑡−1 are variables at step 𝑡 and 𝑡 − 1. N(x𝑡 ; 𝝁,𝝈2)
indicates that x𝑡 follows a Gaussian distribution with mean 𝝁 and
variance 𝝈2. 𝛽𝑡 controls the degree of noise added at the 𝑡-th step,
and I refers to an identity matrix. 𝛽𝑡 is pre-defined using a linear
schedule, with values ranging between 0.0001 and 0.02 [16].

Following Markov chain principle, x𝑡 can be derived from x0:

𝑞(x𝑡 |x0) = N(x𝑡 ;
√︁
𝛼𝑡x0, (1 − 𝛼𝑡 )I), (5)

where 𝛼𝑡 =
∏𝑡
𝑡 ′=1 𝛼𝑡 ′ and 𝛼𝑡 ′ = 1− 𝛽𝑡 ′ . Then, a reparameterization

trick is applied: x𝑡 =
√
𝛼𝑡x0 +

√︁
(1 − 𝛼𝑡 )𝝐 , where 𝝐 ∼ N(0, I).

Diversity-guided Reverse Stage. In reverse stage, the goal of Diff-
Div is to generate more diversified items that reflect various aspects
of users’ preferences. To this end, the diversity-aware guidance ĉ is
utilized to direct the reverse process of DiffDiv:

𝑝𝜃 (x𝑡−1 |x𝑡 , ĉ) = N(x𝑡−1; 𝝁𝜃 (x𝑡 , ĉ, 𝑡), 𝚺𝜃 (x𝑡 , ĉ, 𝑡)), (6)

where 𝚺𝜃 (x𝑡 , ĉ, 𝑡) is fixed to 𝜎2 (𝑡) = 1−𝛼𝑡−1
1−𝛼𝑡 𝛽𝑡 as in previous work

[51, 60]. 𝝁𝜃 (x𝑡 , ĉ, 𝑡) is the predicted mean from a network 𝒇𝜃 (·):

𝝁𝜃 (x𝑡 , ĉ, 𝑡) =
√
𝛼𝑡 (1 − 𝛼𝑡−1)√

1 − 𝛼𝑡
x𝑡 +

√︁
𝛼𝑡−1𝒇𝜃 (x𝑡 , ĉ, 𝑡), (7)

where 𝒇𝜃 (x𝑡 , ĉ, 𝑡) utilizes a network with parameters 𝜃 to predict
x0, based on x𝑡 , the diversity-aware guidance ĉ and step 𝑡 . For
simplification, we use the MLP instead of more complex networks
such as U-net [35]. Since user interaction data is much simpler than
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image data, using overly complex network architectures can lead
to overfitting and unnecessarily increase training time [60].
Diffusion Optimization. To optimize the parameters of the diffu-
sion network, the following learning object is applied:

L𝐷𝑖𝑓 𝑓 = E𝑞 [−𝑙𝑜𝑔𝑝𝜃 (x0 |x1)]︸                   ︷︷                   ︸
L0: reconstruction term
+∑𝑇𝑡=2 E𝑞 [𝐷𝐾𝐿 (𝑞(x𝑡−1 |x𝑡 , x0) | |𝑝𝜃 (x𝑡−1 |x𝑡 , ĉ))︸                                               ︷︷                                               ︸

L𝑡−1: denoising matching term

] . (8)

Note that the prior matching term in the complete loss is omitted
because it is a constant and does not influence the optimization
process [16]. A step 𝑡 is sampled for each data point x0 to minimize
the denoising matching term, which can be simplified as the mean
square error between x0 and its prediction 𝒇𝜃 (x𝑡 , ĉ, 𝑡) at step 𝑡 :

L𝐷𝑖𝑓 𝑓 = E𝑡∼𝑈 (1,𝑇 ) [| |x0 − 𝒇𝜃 (x𝑡 , ĉ, 𝑡) | |22], (9)

where 𝑡 is sampled from a uniform distribution U(1,𝑇 ).

4.1.3 Accuracy-diversity balanced optimization. Although the diversity-
aware guidance can significantly improve the model’s capacity in
capturing data diversity, it may also inevitably introduce some
noisy information due to its probabilistic nature. To be specific,
as ĉ becomes more diverse, the distance between ĉ and a user’s
overall preferences c increases. The guidance that diverges too far
from a user’s overall preferences can impair recommendation ac-
curacy. Hence, to improve recommendation diversity while
ensuring that the accuracy does not decrease, we apply robust
divergences [11, 19] to replace the reconstruction term in Eq.3:

L𝐷𝐴𝐺𝐿 = Ez [𝐷𝛼,𝛽,𝛾 (𝑝 (c) | |𝑝 (ĉ|z))]︸                          ︷︷                          ︸
robust divergence term

+𝐷𝐾𝐿 [𝑞(z|c) | |𝑝 (z)]︸                 ︷︷                 ︸
prior matching term

, (10)

where 𝑝 (c) refers to the empirical distribution of c. The robust
divergence term can be calculated using the following formulas
(𝑝 (c) | |𝑝 (ĉ|z)) is omitted due to space limitation):

𝐷𝛼 =
1

𝛼 − 1 log
©« 1
(2𝜋𝜎2

𝜙
(c))𝛼/2

exp©« −1
2𝜎2
𝜙
(c)
| |c − ĉ| |22

ª®¬
1−𝛼ª®¬ , (11)

𝐷𝛽 = − 𝛽 + 1
𝛽

©«
1

(2𝜋𝜎2
𝜙
(c))𝛽/2

exp ©« −1
2𝜎2
𝜙
(c)
| |c − ĉ| |22

ª®¬
𝛽

− 1
ª®®¬ , (12)

𝐷𝛾 =
𝛾 + 1
𝛾

©« 1
(2𝜋𝜎2

𝜙
(c))𝛾/2

exp ©« −1
2𝜎2
𝜙
(c)
| |c − ĉ| |22

ª®¬
𝛾 ª®¬ , (13)

where 𝛼 , 𝛽 and 𝛾 are coefficients for 𝛼-, 𝛽- and 𝛾-divergence, respec-
tively. The working principle behind robust divergence involves
down-weighting the contributions of samples with smaller densi-
ties, as the probability densities of outliers (i.e., noisy information
introduced by probabilistic guidance) are generally much smaller
than those of inliers. By controlling these values, the model can
adjust the balance between recommendation accuracy and diversity.

Finally, by combiningL𝐷𝑖𝑓 𝑓 andL𝐷𝐴𝐺𝐿 , the accuracy-diversity
balanced optimization (ADBO) loss for DiffDiv is:

L𝐷𝑖𝑓 𝑓 𝐷𝑖𝑣 = L𝐷𝑖𝑓 𝑓 + L𝐷𝐴𝐺𝐿 . (14)

4.2 Heterogeneous Diffusion Inference
Mechanism for Generating Diversified Items

Current DM-based SRSs typically employ a homogeneous inference
mechanism to generate a single item that reflects the user’s main
preference. Then, the top several similar items to this generated item
are selected for recommendation. Such a mechanism often results
in a highly homogeneous set of selected items, as the generated
item reflects only the user’s primary preference to a certain type of
items, overlooking other preferences to other types.

To address this issue, we design a heterogeneous diffusion infer-
ence mechanism (HDI) that contains multiple inference channels,
to capture users’ multifaceted preferences. Each inference chan-
nel is directed by a specific guidance signal learned by the DAGL
module (e.g., ĉ𝑙 to direct channel 𝑙 ). In this way, we reinforce each
channel to generate items to reflect the users’ preference towards
one type of items. ĉ𝑙 is constructed by sampling different Gaussian
noise to create the latent variable in Eq.2. Due to the nature of
probabilistic guidance, the guidance in each channel can express
relatively distinct semantic information, thereby reflecting vari-
ous aspects of users’ preferences. In each inference channel, we
initialize it with x̂𝑙

𝑇 ′ = 𝝐𝑙 ∼ N(0, I) and follow the reverse chain
x̂𝑙
𝑇 ′ → x̂𝑙

𝑇 ′−1 → · · · → x̂𝑙0 to obtain the output of the 𝑙-th channel:

x̂𝑙
𝑡 ′−1 = 𝝁𝜃 (x̂𝑙𝑡 ′ , ĉ

𝑙 , 𝑡 ′) +
√︃
𝚺𝜃 (x̂𝑙𝑡 ′ , ĉ𝑙 , 𝑡 ′)𝝐

𝑙

=
√
𝛼𝑡−1𝒇𝜃 (x̂𝑙𝑡 ′ , ĉ

𝑙 , 𝑡 ′) +
√
𝛼 ′𝑡 (1−𝛼𝑡 ′−1 )√

1−𝛼 ′𝑡
x̂𝑙
𝑡 ′ +

√︂
1−𝛼𝑡 ′−1
1−𝛼 ′𝑡

𝛽′𝑡𝝐
𝑙 .

(15)

Afterwards, we can get a set of item embedding {x̂10, · · · , x̂
𝑙
0, · · · x̂

𝐿
0 },

where each represents one certain aspect of the user’s preferences.
𝐿 is the number of inference channels.

In practice, a user may interact with items that align well with
one of his/her preferences, rather than all of his/her preferences.
Therefore, we apply a max operation to predict the likelihood that
a user will interacted with a item next:

𝑦 (𝑠, 𝑖) = max
1≤𝑙≤𝐿

(x̂𝑙⊤0 · e𝑖 ), (16)

where 𝑦 (𝑠, 𝑖) is a score that quantifies the relevance between item
𝑖 and the given user whose interaction sequence is 𝑠 . e𝑖 refers to
the embedding of item 𝑖 . Finally, the top-𝐾 items with the highest
scores are recommended to the user.
Discussion: During the experiments, we found that setting the
maximum reverse step 𝑇 ′ to a value between 3 and 10 for DiffDiv
can produce comparable results compared to setting 𝑇 ′ = 𝑇 , where
𝑇 generally ranges from 500 to 2000 in [33, 60]. It may be explained
that DiffDiv utilizes the diversity-aware guidance to direct the
training, making quicker capture of users’ wide range of preferences
and thus accelerating the generation process. Therefore, in DiffDiv,
we set𝑇 ′ ≪ 𝑇 , which makes the inference time of DiffDiv to remain
comparable to existing SRSs [33, 60].

5 Experiments
In this section, we conduct extensive experiments to answer the
following four research questions:
RQ1: How does DiffDiv perform compared with other competitive
methods in terms of accuracy and diversity?
RQ2:How does each component affect the performance of DiffDiv?
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Table 1: Statistics of Datasets.

Datasets #ori_seq #items #training #validation #test
Zhihu 11,714 4,838 61,641 8,160 7,911

YooChoose 92,090 7,261 427,128 57,061 55,244

RQ3: How does different hyper-parameters affect DiffDiv?
RQ4: How efficient is DiffDiv compared with other methods?

5.1 Experimental Setup
5.1.1 Datasets. We select two commonly used publicly available
datasets: Zhihu and YooChoose to verify the effectiveness of our pro-
posed method. Zhihu [12] dataset was collected from a knowledge-
sharing platform. Users are recommended with a list of Q&A, and
they may read what they are interested in. YooChoose dataset
comes from ACM RecSys Challenge 2015 1. It consists of sequences
or sessions of click or purchase behaviors.

We follow [59, 60] to preprocess the datasets: first sort all se-
quences in chronological order and then split them into training,
validation and test sets at the ratio of 8:1:1. The statistics of original
datasets and the number of sequences in training, validation and
test sets after processing are reported in Table 1.
5.1.2 Baselines. We choose competitive methods from four classes:
General SRS methods:
• GRU4Rec (ICLR’16) [14] utilizes Gated Recurrent Units (GRUs)
to model the sequential relationships in user behaviors.
• LRURec (WSDM’24) [63] designs linear and lightweight recur-
rent units for sequential recommendations.
• SASRec (ICDM’18) [18] employs the Transformer to model the
dependencies between items in a sequence.
• BERT4Rec (CIKM’19) [36] utilizes a bidirectional Transformer
architecture to model complex item dependencies.

Contrastive learning-based SRS methods:
• CL4SRec (ICDE’22) [58] employs contrastive learning to address
the data sparsity problem in SRSs. Transformer is applied as the
sequence encoder of CL4SRec in our implement.
• ContraRec (TOIS’23) [38] proposes context-target contrast and
context-context contrast to enhance the performance of con-
trastive learning-based SRSs. Transformer is used as the sequence
encoder of ContraRec in our implement.

Diversified SRS methods:
• MCPRN (IJCAI’19) [47] proposes a mixture-channel model to
learn users’ multiple purposes for SRSs.
• ComiRec (KDD’20) [4] employs an attention mechanism and
dynamic routing technique to model users’ multiple interests.
• TEDDY (IPM’24) [25] proposes an adaptive masking module to
disentangle diversity from users’ main interest.

Diffusion model-based SRS methods:
• DiffuRec (TOIS’23) [24] employs a diffusion model to repre-
sent item embeddings in a distribution space and then utilizes a
approximator to generate target item representations.
• DreamRec (NeurIPS’23) [60] utilizes the Transformer to learn
users’ preferences, which then serve as the diffusion guidance
for generating the oracle item for each user.

1https://recsys.acm.org/recsys15/challenge/

• DiffRIS (WWW’24) [33] combines CNN and LSTM to learn a
diffusion guidance to direct the item generation process.

5.1.3 Parameter Settings. For fair comparisons, we carefully tune
all models, including both competitive methods and our proposed
DiffDiv. Specifically, for each competitive method, we first initialize
hyper-parameter values according to the instructions provided in
the original papers and then fine-tune them on our used datasets
to ensure their best performances. To be fair, the dimension of item
embeddings is fixed to 64 across all models. The dimensions of
MLP utilized to predict x0 is: 192→64. We conduct grid searching
strategy to select the optimal model hyperparameters. Specifically,
the dimension of hidden layer in DAGL is tuned within {8, 16, 32,
48}. The learning rate is tuned within {0.0001, 0.001, 0.005, 0.01,
0.02, 0.05}. The maximum diffusion step 𝑇 is searched within {500,
1000, 1500, 2000}, and the maximum reverse step 𝑇 ′ is selected
within {3, 4, · · · , 10}. We tune 𝐿 from {2, 4, 8, 16, 32}. The values of
𝛼 , 𝛽 , and 𝛾 are selected from {0.01, 0.05, 0.1, 0.5}. The batch size is
tuned in {128, 256, 512, 1024}. To ensure fairness, we use the same
item embedding initialization method, N(0, I), across all models,
as the embedding initialization can significantly affect the diversity
metrics. The maximum number of epochs is set to 1000. Adamw
[28] is used to optimize the model parameters. Each method was
run five times, and the average results are reported.
Experimental Environment: All methods are implemented using
an NVIDIA L4 GPU with 24GB memory.

5.1.4 Evaluation Metrics. We select metrics from two perspectives:
(1) Accuracy: Normalized Discount Cumulative Gain (NDCG) and
Mean Reciprocal Rank (MRR); (2)Diversity: Since the datasets lack
categorical information, we select Intra-List Distance (ILD) and
History-Recommendation Distance (HRD) to evaluate the recom-
mendation diversity. ILD measures the average distance between
each two items in the recommendation lists and has been commonly
used to measure recommendation diversity [61, 64]. HRD is a new
metric proposed in this paper to measure the average distance be-
tween recommended items and users’ historically interacted items.
HRD can assess the recommendation diversity and the ability to
mitigate filter bubbles. The higher the ILD and HRD, the greater
the diversity. Their calculation formulas are as follows:

ILD@𝐾 =
1

|R𝐾 | ( |R𝐾 | − 1)
∑︁
𝑖∈R𝐾

∑︁
𝑗∈R𝐾 \𝑖

𝑑𝑖 𝑗 , (17)

HRD@𝐾 =
1
|R𝐾 |

∑︁
𝑖∈R𝐾

𝑑𝑖𝑚, (18)

where R𝐾 and R𝐾\𝑖 refer to the whole recommendation list and the
list without item 𝑖 . 𝑑𝑖 𝑗 is Euclidean distance between embeddings
of item 𝑖 and 𝑗 . 𝑑𝑖𝑚 is Euclidean distance between embedding of
item 𝑖 and the mean embedding of a user’s historical items.

Inspired from F1-score [8, 48], we aggregate accuracy and diver-
sity metrics into two unified metrics: NI and MH. These metrics
assess a method’s ability to balance accuracy and diversity. Their
calculation formulas are as follows:

NI@𝐾 =
2 × NDCG@𝐾 × (ILD@𝐾)/𝜏
NDCG@𝐾 + (ILD@𝐾)/𝜏 , (19)

MH@𝐾 =
2 ×MRR@𝐾 × (HRD@𝐾)/𝜏
MRR@𝐾 + (HRD@𝐾)/𝜏 , (20)
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Table 2: Performance comparison of DiffDiv and competitive methods on Zhihu and YooChoose datasets. The best performances
are in bold, and the second-best performances are underlined. *the improvement is significant at p<0.05.

Datasets Models NDCG↑ MRR↑ ILD↑ HRD↑ NI↑ MH↑
10 20 10 20 10 20 10 20 10 20 10 20

Zhihu

GRU4Rec 0.00384 0.00544 0.00266 0.00309 5.58115 5.61662 4.28040 4.28076 0.00323 0.00370 0.00237 0.00253
LRURec 0.00333 0.00543 0.00213 0.00268 4.10125 4.08863 5.52386 5.59038 0.00254 0.00297 0.00240 0.00274
SASRec 0.00369 0.00620 0.00235 0.00303 5.81507 5.89957 4.43189 4.45563 0.00325 0.00400 0.00228 0.00257

BERT4Rec 0.00448 0.00588 0.00293 0.00331 4.33884 4.36479 3.35486 3.34901 0.00292 0.00318 0.00213 0.00222
CL4SRec 0.00462 0.00709 0.00278 0.00345 5.37627 5.43871 4.16747 4.17547 0.00340 0.00393 0.00238 0.00260
ContraRec 0.00495 0.00732 0.00317 0.00380 5.67480 5.64416 4.29346 4.23113 0.00361 0.00407 0.00256 0.00272
MCPRN 0.00443 0.00647 0.00280 0.00335 5.66089 5.70987 7.54057 7.49499 0.00345 0.00396 0.00321 0.00354
ComiRec 0.00416 0.00716 0.00236 0.00316 7.33751 7.17321 5.65078 5.56705 0.00390 0.00478 0.00257 0.00296
TEDDY 0.00479 0.00689 0.00310 0.00365 6.26600 6.48836 5.13651 5.20878 0.00379 0.00441 0.00281 0.00304
DiffuRec 0.00475 0.00718 0.00280 0.00345 4.86578 4.83749 4.76312 4.73844 0.00322 0.00362 0.00258 0.00281
DreamRec 0.00570 0.00742 0.00336 0.00381 10.85885 11.01705 7.81129 7.88157 0.00556 0.00632 0.00361 0.00388
DiffRIS 0.00391 0.00675 0.00235 0.00312 10.73667 10.82377 7.99747 7.82952 0.00452 0.00601 0.00296 0.00347
DiffDiv 0.00588* 0.00858* 0.00403* 0.00476* 11.94270* 11.77684* 8.52111* 8.37391* 0.00592* 0.00698* 0.00414* 0.00445*

YooChoose

GRU4Rec 0.01247 0.01537 0.00896 0.00975 3.23436 3.24180 2.55922 2.53235 0.00852 0.00912 0.00652 0.00667
LRURec 0.01281 0.01604 0.00774 0.00863 2.84228 2.74068 5.63873 5.71688 0.00788 0.00817 0.00918 0.00983
SASRec 0.01234 0.01546 0.00753 0.00838 2.59397 2.59537 2.10353 2.07503 0.00730 0.00777 0.00540 0.00555

BERT4Rec 0.01155 0.01417 0.00783 0.00854 2.43285 2.46163 2.03550 2.02278 0.00685 0.00731 0.00536 0.00549
CL4SRec 0.01200 0.01501 0.00743 0.00826 3.70284 3.71801 3.20326 3.13796 0.00916 0.00994 0.00688 0.00713
ContraRec 0.01373 0.01684 0.00868 0.00953 4.02736 3.89121 3.24740 3.07876 0.01015 0.01064 0.00743 0.00748
MCPRN 0.01421 0.01720 0.00998 0.01080 2.64548 2.66976 4.75372 4.72608 0.00771 0.00815 0.00974 0.01008
ComiRec 0.01507 0.01764 0.01047 0.01118 4.22483 4.14645 3.81138 3.62569 0.01083 0.01128 0.00882 0.00880
TEDDY 0.01550 0.01794 0.01099 0.01166 5.18791 5.49729 5.25560 5.23578 0.01243 0.01363 0.01075 0.01103
DiffuRec 0.01477 0.01669 0.01042 0.01095 3.03897 3.09295 2.72284 2.70464 0.00861 0.00903 0.00715 0.00724
DreamRec 0.01955 0.02221 0.01260 0.01333 11.24598 11.10570 8.38581 8.21427 0.02092 0.02221 0.01439 0.01472
DiffRIS 0.01734 0.02009 0.01056 0.01130 11.05444 11.04874 8.16722 8.14155 0.01943 0.02105 0.01283 0.01334
DiffDiv 0.02205* 0.02697* 0.01588* 0.01722* 11.88060* 11.76550* 8.69080* 8.57745* 0.02288* 0.02513* 0.01660* 0.01719*

Table 3: Performance comparison of DiffDiv and its variants without one of the key components.

Datasets Models NDCG MRR ILD HRD NI MH
10 20 10 20 10 20 10 20 10 20 10 20

Zhihu
w/o DAGL 0.00531 0.00734 0.00357 0.00413 11.62495 11.54263 8.34158 8.24507 0.00555 0.00646 0.00385 0.00413
w/o ADBO 0.00493 0.00738 0.00318 0.00384 12.06756 11.87712 8.67164 8.48404 0.00543 0.00658 0.00367 0.00403
w/o HDI 0.00519 0.00725 0.00353 0.00408 11.33497 11.17212 8.22859 7.99547 0.00542 0.00631 0.00380 0.00404
DiffDiv 0.00588 0.00858 0.00403 0.00476 11.94270 11.77684 8.52111 8.37391 0.00592 0.00698 0.00414 0.00445

YooChoose
w/o DAGL 0.02182 0.02472 0.01542 0.01619 11.32020 11.29961 8.43169 8.35417 0.02222 0.02361 0.01611 0.01645
w/o ADBO 0.01541 0.02057 0.01090 0.01229 11.93148 11.82510 8.65367 8.54469 0.01873 0.02200 0.01338 0.01430
w/o HDI 0.02079 0.02514 0.01571 0.01687 11.26834 11.28909 8.41865 8.35876 0.02163 0.02379 0.01625 0.01679
DiffDiv 0.02205 0.02697 0.01588 0.01722 11.88060 11.76550 8.69080 8.57745 0.02288 0.02513 0.01660 0.01719

where 𝜏 rescales diversity metrics to align with accuracy metrics.
Without this rescaling, the unified metrics would be disproportion-
ately influenced by the significantly smaller values of accuracy
metrics. Specifically, 𝜏 is set to 2000 and 500 for Zhihu and Yoo-
Choose datasets, respectively.

5.2 Overall Performance (RQ1)
From the results in Table 2, we have the following observations:
(1) DiffDiv significantly outperforms competitive methods in terms
of both accuracy (NDCG, MRR), diversity (ILD, HRD), and unified
metrics (NI, MH). Specifically, DiffDiv demonstrates average im-
provements of 18.6%, 6.4%, and 15.9% over the two datasets in terms
of NDCG@20, ILD@20, and MH@20, respectively, compared to
the second best method. This can be attributed to three key compo-
nents of DiffDiv: DAGL, ADBO and HDI. It should be noted that
the improvement in recommendation diversity achieved by DiffDiv
does not lead to the decline of recommendation accuracy. This ob-
servation aligns with the findings in [54, 61], which suggest that
the relationship between accuracy and diversity can be a "win-win".

The simultaneous improvement in accuracy and diversity suggests
that users, in practice, seek to interact with a diverse range of items
rather than homogeneous ones. This also validates the significance
of our research motivation to enhance the diversity of SRSs.
(2) Contrastive learning-based methods (CL4SRec and ContraRec)
outperform general methods in both accuracy and diversity. This
is because constructing multiple sequence views can alleviate the
data sparsity problem and capture more of users’ potential intents.
(3) Diversified methods (MCPRN, ComiRec, TEDDY) generally
perform better in recommendation diversity metrics than non-
diversified SRS methods. These methods typically apply multi-
interest modeling modules or disentangle diversity factors from the
main interest factors to capture users’ diverse preferences.
(4) DM-based methods (DreamRec, DiffRIS, DiffDiv) consistently
outperform general methods in recommendation accuracy and di-
versity. DMs generate the next item from scratch, leading to more
diverse outcomes. An exception is DiffuRec, which does not exhibit
better diversity modeling capacity than general methods, primarily
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Figure 3: Recommendation performances under different
type of robust divergences (𝛼−, 𝛽− and 𝛾−divergence).

Figure 4: Recommendation performances of DiffDiv under
different values of 𝛼 , 𝛽 and 𝛾 .

because it is based on a classification loss function that pushes gen-
erated item embeddings to resemble users’ historical interactions.
5.3 Ablation Study (RQ2)
5.3.1 Evaluation of different model components. To validate the
effectiveness of the key components of DiffDiv, we compare DiffDiv
with three variants: w/o DAGL (replacing diversity-aware guidance
ĉ with c), w/o ADBO (replacing accuracy-diversity balanced opti-
mization with commonly used diffusion optimization), and w/o HDI
(replacing heterogeneous diffusion inference with single-channel
inference). From Table 3, we have the following observations:
(1) w/o DAGL and w/o HDI deteriorate both accuracy and diversity
of DiffDiv. This demonstrates that our designed diversity-aware
guidance and heterogeneous diffusion inference modules actually
benefit the model in terms of both accuracy and diversity.
(2) w/o ADBO raises model diversity but significantly degrades
model accuracy. Without ADBO, the noise introduced by DAGL
cannot be suppressed, leading to increased diversity at the expense
of a huge decline in accuracy, which is unacceptable in practice.
5.3.2 Evaluation of different types of robust-divergence. To evaluate
DiffDiv’s performance with different types of robust divergence (𝛼-,
𝛽-, and 𝛾-divergence) employed in the accuracy-diversity balanced
optimization, we conduct experiments using each divergence type
individually. Figure 3 shows that 𝛽-divergence performs best on
Zhihu dataset, while 𝛼-divergence excels on YooChoose dataset.
This suggests that different robust divergence methods are suited to
different scenarios and should be selected according to the specific
characteristics of the datasets.

5.4 Analysis of Parameter Sensitivity (RQ3)
5.4.1 Performance w.r.t. values of 𝛼 , 𝛽 and 𝛾 . The values of 𝛼 , 𝛽 ,
and 𝛾 can be utilized to balance the recommendation accuracy and
diversity. Smaller values tend to bias the model towards diversity,
while larger values favor accuracy. Figure 4 shows that the general

Figure 5: Recommendation performances of DiffDiv under
different numbers of inference channel 𝐿.

trend for NI@20 and MH@20 initially increases and then declines,
indicating that by appropriately tuning 𝛼 , 𝛽 , and 𝛾 , DiffDiv can
effectively balance the recommendation accuracy and diversity.

5.4.2 Performance w.r.t. number of inference channel 𝐿. The number
of inference channels, 𝐿, is a crucial hyperparameter that signifi-
cantly impacts model performances. Figure 5 shows that increasing
𝐿 consistently improves recommendation diversity, although there
is some fluctuation. This suggests that our proposed heterogeneous
diffusion inference does actually improve the model diversity. The
recommendation accuracy initially improve with an increase in
𝐿, reaching its peak at 𝐿 = 16, before declining. This may be ex-
plained that an excessively large 𝐿 can blur user intents, potentially
diminishing recommendation performance to some extent.

5.4.3 Performance and time consumption w.r.t. number of reverse
steps 𝑇 ′. We select the reverse step 𝑇 ′ from 3 to 10 for efficiency
consideration. DiffDiv leverages a diversity-aware guidance to di-
rect the training process, enabling the model to quickly capture a
wide range of users’ preferences. As a result, fewer reverse steps are
required compared to forward steps. To validate this, we compare
recommendation performances and the inference time of DIffDiv
under different 𝑇 ′ values from range {5, 10, 50, 100, 200, 500}.

As shown in Figure 6, the recommendation performance with
𝑇 ′ = 5 is comparable to that with higher 𝑇 ′ values. However, as
𝑇 ′ increases, the inference time grows significantly. To be specific,
while setting 𝑇 ′ = 50 yields slightly better recommendation perfor-
mance than 𝑇 ′ = 5, the corresponding increase in inference time is
impractical. Therefore, DiffDiv generally selects a smaller 𝑇 ′ value,
such as 3 or 5, to enhance its generalizability and scalability without
incurring an unacceptable performance drop.

5.5 Efficiency Analysis (RQ4)
We measured the average training and inference time per epoch
for DiffDiv and competitive methods. Since the sequence encoder
influences time efficiency significantly, we compare DiffDiv with
Transformer-based methods and design a GRU version of DiffDiv
for comparison with RNN-based methods. To ensure fairness, we
set 𝐿 = 16which leads to the best performances and fix the training
batch size at 256 and the test batch size at 100 across all methods.
Notably, the inference stage, which includes the calculation of all
evaluation metrics, is generally longer than the training stage.

As shown in Table 4, the training time of DiffDiv-G and DiffDiv
is comparable to competitive methods. Additionally, DiffDiv’s infer-
ence time is shorter than other DM-based models, as the maximum
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Figure 6: Recommendation performances of DiffDiv under different number of reverse step 𝑇 ′ from {5, 10, 20, 50, 100, 200, 500}.

Figure 7: Visualization of the embeddings of the top 200 items recommended for six randomly selected users (sequences) using
T-SNE. Each color represents a different user (sequence). The more dispersed the points, the greater the distance between items
in the recommendation lists, indicating higher diversity in the recommendation results.

Table 4: Efficiency comparison of DiffDiv and competitive
methods. DiffDiv-G is a GRU version of DiffDiv.

Zhihu
Models (RNNs) GRU4Rec MCPRN DiffRIS DiffDiv-G
Training time (s) 0.834 13.772 1.229 1.046
Inference time (s) 4.346 5.118 15.324 6.712
Models (Transformer) SASRec DiffuRec DreamRec DiffDiv
Training time (s) 4.038 3.398 4.014 4.264
Inference time (s) 4.454 27.936 24.167 6.795

YooChoose
Models (RNNs) GRU4Rec MCPRN DiffRIS DiffDiv-G
Training time (s) 12.428 176.001 15.242 13.956
Inference time (s) 31.069 38.724 108.465 41.483
Models (Transformer) SASRec DiffuRec DreamRec DiffDiv
Training time (s) 34.681 35.044 35.509 36.024
Inference time (s) 32.060 133.956 168.394 42.004

reverse step of DiffDiv is much smaller. While DiffDiv-G and Diff-
Div have slightly longer inference time than GRU4Rec and SASRec,
this is totally acceptable given the substantial improvements in
both recommendation accuracy and diversity.

Furthermore, as shown in Table 1, the YooChoose dataset con-
tains approximately 9.4 times more interactions than Zhihu (737,163
vs 77,712). From Table 4, we observe that the training time of Diff-
Div on YooChoose is approximately 8.4 times that on Zhihu (36.024s
vs 4.264s). This linear relationship between time consumption and
dataset size highlights the scalability of DiffDiv for larger datasets.

5.6 Case Study
Since both two datasets used do not contain item information such
as categories, text, or images, we were unable to conduct a case
study showcasing the textual or visual features of the recommended
items. Instead, to validate DiffDiv’s effectiveness in enhancing di-
versity, we conduct a case study by randomly selecting six users

and visualizing the embeddings of the top 200 items recommended
to each user using the T-SNE technique [37]. We present the results
of three methods: DiffDiv, and two competitive methods: DiffRIS
[33] and DreamRec [60]. These two methods have demonstrated
superior performances in diversity metrics among all baselines. The
greater the dispersion of points within each group, the higher the
diversity in recommendations.

As shown in Figure 7, the embeddings of the recommended
items provided by DiffRIS are slightly more crowded than those of
DreamRec. This observation alignswith the results in Table 2, where
DreamRec outperforms DiffRIS in diversity metrics. Compared with
both DiffRIS and DreamRec, the embeddings of the recommended
items provided by DiffDiv are more decentralized, confirming that
DiffDiv can provide more diversified recommendation results.

6 Conclusion and Future Work
In this paper, we proposed a diversity-guided diffusion model, Diff-
Div, to unleash the potential of DMs towards diversified sequen-
tial recommendations. First, we designed a new diversity-aware
guidance learning module (DAGL) to construct a diversity-aware
guidance to guide the training of DiffDiv towards capturing more
diversified preferences of users. Additionally, we devised a new
accuracy-diversity balanced optimization strategy (ADBO) to trade
off between recommendation accuracy and diversity. Afterwards,
we designed a novel heterogeneous diffusion inference mechanism
(HDI) to generate multiple types of items to accommodate users’
heterogeneous preferences. Extensive experiments conducted on
two real-world datasets demonstrate the effectiveness of DiffDiv
in terms of both recommendation accuracy and diversity. In fu-
ture work, our proposed diversity-guided diffusion model can be
extended to other recommendation scenarios (e.g., multimodal rec-
ommendations) to enhance their recommendation diversity.
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