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Abstract: In spatial econometrics, traditional spatial weight matrix (SWM) methods often 

fail to capture the complex spatial dynamics of large cities. This study optimizes 

SWM calculations within spatial econometric models, constructing Graph-

Based Spatial Weight Matrices (GBSWM) through the Simple Shortest Path 

Algorithm by analyzing urban road networks, thereby capturing the intricate 

spatial relationships within the city. The methodology compares the 

performance of GBSWM with traditional Simple Distanced Spatial Weight 

Matrices (SDSWM) using Geographically Weighted Regression (GWR) 

models. The results show that GBSWM significantly outperforms SDSWM in 

predicting minor crime events (e.g., 'summonses') in New York City. Improved 

p-values, Pseudo R-squared values, and model accuracy matrices attest to the 

improved predictive accuracy of GBSWM. These findings demonstrate the 

superior capability of GBSWM in capturing complex spatial relationships and 

interactions within urban settings. The integration of graph theory into spatial 

econometrics represents a theoretical and methodological advancement. The 

findings of this study are essential for improving the calculation of spatial weigh 

matrices, providing a more accurate tool for prediction and analysis in spatial 

econometric models. This result emphasizes the potential of applying graph 

methods in spatial econometrics, paving the way for implementing more 

detailed and practical urban spatial analysis. 

1. INTRODUCTION  

In spatial econometrics, the analysis of complex urban dynamics is crucial, 

especially in policy decision-making and economic evaluation (Anselin, 

2010). Traditional methods for constructing spatial weight matrices (SWMs) 

are usually based on simple distances, which often do not adequately reflect 

the complexity of urban spatial structure (ESRI, n.d.-b; Piquero and Weisburd, 

2010). This study addresses this limitation by proposing a finer-grained 

approach that considers the contribution of the urban road network to the 

connectivity between regions, thus filling in the details of the road network 

that tend to be neglected in traditional SWM calculations. By embedding 

intricate road networks into SWM calculations, this study is expected to 

improve the model's predictive power significantly.  
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This study aims to optimize the computation of the SWM through a graph 

theoretic perspective, replacing the traditional simple distance spatial weight 

matrix (SDSWM) by integrating urban road networks and shortest path 

algorithms. The differences between the graph-based spatial weight matrix 

(GBSWM) and SDSWM are compared in a combination of Global Moran's 𝐼 

of spatial autocorrelation analysis (SAA) and geographically weighted 

regression (GWR) to improve the accuracy of the spatial econometric model 

in an urban context.  

The research methodology includes a comparative analysis between a 

conventional SWM and a SWM optimized using a graph theory algorithm 

under the same spatial econometric model. This comparison is essential to 

validate the effectiveness of graph theory-based approaches in improving the 

accuracy and robustness of spatial econometric models. This study tests the 

hypothesis that graph theory can enhance the accuracy and efficacy of spatial 

econometric models in complex urban environments by considering the crime 

phenomenon in the New York City study area. Through this methodological 

framework, this study aims to contribute to spatial econometrics, especially in 

understanding and modeling urban dynamic spaces, to improve the stability 

and accuracy of spatial econometric models. The significance of these 

objectives is that such methodological improvements have the potential to 

influence urban planning and policy-making and contribute to theoretical 

advances in spatial econometrics.  

2. REVIEW OF FUNDAMENTAL CONCEPTS  

2.1 Spatial econometric models  

Spatial econometric models are specialized econometric models that 

incorporate spatial relationships and dependencies within their analytical 

framework (Anselin, 1988; Mitchell, 2013). These models are essential in 

addressing many economic phenomena' spatial dependence and 

heterogeneity. Spatial dependence implies that values influence values 

observed in one location in neighboring locations, while spatial heterogeneity 

recognizes the variation in relationships between variables across different 

areas (Anselin, 2010; LeSage and Pace, 2009). This study includes spatial 

autocorrelation analysis and geographically weighted regression among many 

spatial econometric models. These two models allow the exploration of spatial 

dynamics in economic data and improve the robustness and depth of spatial 

econometric analysis. 

2.1.1 Spatial autocorrelation analysis  

Spatial autocorrelation analysis refers to the correlation observed in a 

measured variable with its own values, and this correlation is a result of the 

spatial arrangement of neighboring elements. Global Moran's I  and Local 

Moran's I are widely used inferential statistic methods in spatial econometrics 

for identifying clustering patterns and detecting local anomalies in a variable 

across a study area (Anselin, 1988; Anselin, Florax, et al., 2004).  

Global Moran's I  provides a singular metric summarizing spatial 

autocorrelation, indicating the presence of a clustering pattern for a specific 

variable throughout the study area. Global Moran's I can be represented in 

Equation (1) as follows:  
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Here, N is the number of spatial units, 𝑤𝑖𝑗  represents the spatial weight 

between observations i  and j , 𝑋𝑖 and 𝑋𝑗 are the variable values for 

observations i and j, and 𝑋̅ is the mean of the variable (ESRI, n.d.-a).  

Local Moran's I identifies specific areas of intense high or low values 

(hotspots or cold spots), facilitating targeted interventions. It evaluates spatial 

autocorrelation at the individual unit level. Local Moran's I can be represented 

in Equation (2) as follows:  

𝐼𝑖 =

(𝑋𝑖 − 𝑋̄)∑ 𝑤𝑖𝑗(𝑋𝑗 − 𝑋̄)
𝑁

𝑗=1

𝑉𝑎𝑟(𝑋)
(2)

 

Both global and local Moran’s I come with statistical tests to assess the 

significance of the autocorrelation, providing a robust mechanism to validate 

observations. These statistics describe the tendency for similar values to be 

clustered across the entire spatial domain or at individual units within the 

dataset. A value close to +1 indicates strong positive spatial autocorrelation, 

a value close to −1 indicates strong negative spatial autocorrelation and a 

value around zero suggests a random spatial pattern. Ignoring such spatial 

effects could lead to model misspecification, biased parameter estimates, and 

incorrect inferences (Anselin, 1988; Anselin, Florax, et al., 2004).  

2.1.2 Geographically weighted regression  

Geographically Weighted Regression (GWR) is a statistical technique that 

allows for local parameter estimation rather than global, making it more 

sensitive to spatial variations in the data. The GWR's location-specific 

coefficients enable detailed analysis of variable relationships across different 

areas, proving invaluable in urban planning, environmental science, and 

epidemiology, where spatial context is vital (Anselin, 1988; Anselin, Florax, 

et al., 2004; Gollini, Lu, et al., 2015).  

By considering the spatial context, GWR often provides better predictive 

accuracy than traditional regression models that assume stationary 

relationships. The general form of the GWR model for an observation at 

location i can be represented in Equation (3) as follows:  

𝑌𝑖 = β0𝑖 + β1𝑖𝑋1𝑖 + β2𝑖𝑋2𝑖 + ⋯+ β𝑘𝑖𝑋𝑘𝑖 + ϵ𝑖 (3) 

In this model, 𝑌𝑖 represents the dependent variable, 𝑋1𝑖, 𝑋2𝑖…, 𝑋𝑘𝑖 are the 

independent variables, and β0𝑖, β1𝑖…, β𝑘𝑖 are the local regression coefficients 

at location i. The estimation of local regression coefficients is described in 

Equation (4):  

β𝑖 = (𝑋𝑖
𝑇𝑊𝑖𝑋𝑖)

−1
𝑋𝑖

𝑇𝑊𝑖𝑌𝑖 (4) 

Where 𝑊𝑖 is the spatial weighting matrix (SWM) centered at location i. 
The choice of kernel function and bandwidth in GWR affects how the weights 

decay with distance, influencing the local nature of the model. A small 

bandwidth will make a model susceptible to local variations but also more 
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susceptible to overfitting. The bandwidth parameter needs careful selection as 

too large a bandwidth will make the model essentially global, while too small 

a bandwidth will make it overly sensitive to local noise.  

2.2 Spatial weights matrices  

A spatial weight matrix (SWM), symbolized as W , is a structured 

representation in spatial econometrics and geography used to quantify the 

spatial relationships among a set of geographic entities (Anselin, 1988). This 

matrix is constructed by assigning weights to each pair of entities based on 

their spatial proximity, contiguity, or other relevant spatial criteria. The 

calculation of these weights varies: they can be binary (1 for neighboring 

entities, 0 otherwise), based on inverse distance (where weights decrease with 

increasing distance, such as Simple Distanced Spatial Weight Matrices 

(SDSWM)), or other functions capturing specific spatial interactions (ESRI, 

n.d.-b; Piquero and Weisburd, 2010). The structure of W is typically an n  ×  n 

matrix, where n  represents the number of spatial units considered. Each 

element 𝑤𝑖𝑗  in the matrix represents the weight assigned to the spatial 

relationship between the 𝑖𝑡ℎ  and 𝑗𝑡ℎ  units. The diagonal elements of this 

matrix are usually set to zero, indicating that a unit does not have a spatial 

relationship with itself (Anselin, 1988). The design of W  is crucial, as it 

directly influences the analysis of spatial dependence or autocorrelation.  

SWMs play a pivotal role in urban spatial analysis, offering a framework 

to understand and quantify the relationships and interactions between different 

areas within a city (LeSage and Pace, 2009; Mitchell, 2013). These matrices 

are instrumental in evaluating urban areas' prominence and spatial structure, 

facilitating a more nuanced understanding of urban dynamics. The primary 

types of SWMs include binary, distance decay, generalized, and k-order 

neighbors. Each type offers unique advantages and disadvantages. Binary 

matrices are straightforward to interpret but may oversimplify complex spatial 

relationships. Distance decay matrices, which factor in the diminishing 

influence of distance on spatial relationships, provide a more realistic 

representation of spatial interactions, but they require careful calibration of 

the decay function. Generalized matrices offer flexibility in defining spatial 

relationships but can be complex to construct and interpret. K-order neighbor 

matrices extend the analysis to include broader neighborhood effects, yet this 

approach might incorporate irrelevant spatial units, potentially diluting the 

analysis (C. Zhang, 2012).  

The choice of weights and the matrix structure must be carefully 

considered to reflect the underlying spatial dynamics of the data accurately 

(Florax and De Graaff, 2004). The choice can affect the assessment of area 

prominence and the interpretation of spatial patterns, thus influencing model 

application and data analysis (Bauman, Drouet, et al., 2018; X. Zhang and Yu, 

2018). While these matrices provide valuable insights into urban structures, 

their effectiveness is often contingent upon the specific urban context and the 

objectives of the analysis (Anselin, 2002). Therefore, selecting an appropriate 

SWM requires careful consideration of the urban area's unique characteristics 

and the specific goals of the study (Ermagun and Levinson, 2018). The 

automatic selection of SWMs discussed by Seya, Yamagata, et al. (2013), the 

autoregressive model with an endogenous SWM proposed by Qu and Lee 

(2015), and the optimization choices in eigenvector-based methods examined 

by Bauman, Drouet, et al. (2018) illustrate the evolving methods to improve 

SWM calculations. These approaches often grapple with the complexities of 

real-world data and the generalizability of their findings, such as the 
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sensitivity of results to the chosen SWM and the difficulty in capturing the 

complexity of urban spatial structures (Stakhovych and Bijmolt, 2009).  

While existing research provides valuable insights into the spatial nature 

of understanding spatial econometrics, a clear gap exists in optimizing SWM 

calculations. The limitations of distance-based and shared boundary-based 

SWM calculations in such areas call for innovative approaches incorporating 

urban road network systems, as Ermagun and Levinson (2018) suggested. The 

abovementioned shortcomings in traditional methods hinder a comprehensive 

understanding of spatial relationships in urban settings. The failure to 

adequately account for unique geographical features and road networks in 

SWM calculations potentially leads to suboptimal predictions in spatial 

econometric models, thereby impacting the efficacy of policy interventions 

based on these models.  

While effective in specific contexts, traditional SWM approaches often fail 

to capture the nuanced spatial relationships in complex urban environments, 

leading to suboptimal predictions and inefficient policy interventions. This 

problem is significant given the increasing complexity of urban transportation 

systems and the need for more precise policy formulation and urban planning 

tools. Innovative approaches are required to incorporate urban road network 

systems, as highlighted by the groundbreaking work of Getis and Aldstadt 

(2004). They introduced a new method for constructing SWMs using a local 

statistics model (LSM) based on the 𝐺𝑖 * local statistic. This method 

emphasizes the importance of considering spatial structures in two parts: those 

influenced by distance effects and those not. The LSM method, conducted by 

Getis and Aldstadt (2004), based on the 𝐺𝑖* statistic, effectively identifies 

critical distances for clustering in spatial data and demonstrates superior 

performance in identifying spatial structures compared to traditional SWM 

specifications. This method, showcasing flexibility and adaptability, 

outperformed traditional SWM specifications in simulation experiments, 

although its performance in real-world settings requires further exploration.  

However, the abovementioned approaches often need to be further revised 

in complex urban environments, particularly in areas with a complex road 

network and unique island and peninsula geographic features like New York 

City, where intricate topographies and diverse socioeconomic landscapes 

challenge the efficacy of standard SWMs. Therefore, the primary objective of 

this study is to address the critical gap in optimizing SWM calculations in 

intricate urban road networks by enhancing the prediction accuracy of spatial 

econometric models in urban crime analysis by applying graph theory to 

optimize SWM calculations considering the urban road system. The 

significance of achieving this objective lies in its potential to offer more 

precise and context-sensitive econometric models, thereby impacting 

theoretical frameworks and practical policy-making in urban planning and 

crime prevention.  

2.3 Graph theory  

Graph theory, a pivotal branch of discrete mathematics, concerns the study 

of graphs, mathematical structures used to model pairwise relations between 

objects. A graph in this context comprises vertices (or nodes) and edges (or 

lines) that connect them. This theory finds applications across various fields, 

from computer science to social sciences, where it aids in modeling and 

analyzing networks, such as communication networks, social networks, 

biological networks, and transport networks. Graph theory algorithms, a 

critical subset of this field, are procedures or formulas for graph problems 
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(Yannakakis, 1990). These algorithms serve a broad range of purposes, from 

finding the shortest path between two nodes (as in Dijkstra's or Bellman-Ford 

algorithms) to detecting cycles (like Tarjan's algorithm for strongly connected 

components) and determining the most efficient way to 'traverse' or 'visit' each 

vertex in a graph (illustrated by Eulerian and Hamiltonian path algorithms) 

(Goldberg and Harrelson, 2005; Han, Wang, et al., 2021; Khuller and 

Raghavachari, 2010). These algorithms are fundamental in solving complex, 

real-world problems, offering efficient and effective means to manage and 

analyze the intricate networks that permeate numerous aspects of modern life.  

Graph theoretic algorithms are pivotal in optimizing spatial weight 

matrices, offering several inherent advantages that make them particularly 

suitable for complex spatial analyses (Khuller and Raghavachari, 2010). 

These algorithms efficiently handle complex networks encompassing 

numerous nodes and connections. This efficiency is crucial when dealing with 

large datasets where understanding spatial relationships is critical. Moreover, 

their flexibility and adaptability are notable; they can be tailored to various 

data types and accommodate different spatial interactions, including 

adjacency, distance, or flow. This adaptability ensures a broad applicability 

across various spatial analysis scenarios. Graph theoretic algorithms also 

provide an accurate and nuanced representation of spatial relationships. 

Unlike simpler models, these algorithms are adept at capturing direct 

interactions between areas and the more subtle indirect interactions that can 

be critical in understanding spatial dynamics. This depth of analysis is 

essential for a comprehensive understanding of spatial patterns and 

relationships. Lastly, the scalability of graph algorithms is a significant 

advantage. As data sizes increase, these algorithms maintain their efficiency 

and accuracy, making them invaluable for large-scale spatial analyses where 

traditional methods might falter. This scalability ensures that graph theoretic 

algorithms remain effective even as the complexity and size of spatial data 

continue to grow (Yannakakis, 1990).  

This study situates itself in filling the existing gap, focusing on integrating 

graph theory into spatial econometric models, through which this new 

approach incorporates road network systems into spatial econometric 

considerations. The graph-based spatial weight matrix (GBSWM), denoted as 

𝑊𝐵, is structured to reflect the underlying spatial graph, where nodes represent 

the spatial units (e.g., regions, districts) and edges symbolize the spatial 

relationships or connections between these units. The matrix is essential for 

quantifying the intensity and directionality of spatial interactions, which are 

pivotal in modeling spatial processes. The elements of 𝑊𝐵 are standardized to 

ensure row-sum consistency, facilitating the interpretation and comparability 

of spatial effects. Incorporating a GBSWM in spatial econometric models 

allows for the explicit consideration of spatial autocorrelation, enhancing the 

robustness and accuracy of inferential statistics derived from spatial data 

(Yannakakis, 1990).  

The expectation of this experimental study is predicated on the hypothesis 

that integrating graph theory into spatial econometric models, specifically 

through the development and application of a GBSWM, will significantly 

enhance the accuracy and efficacy of these models in complex urban 

environments. This enhancement is anticipated to arise from the GBSWM's 

ability to more precisely capture the intricate spatial relationships and 

interactions dictated by urban road network systems. While effective in more 

straightforward contexts, traditional SWMs often fall short of accurately 

representing the spatial dynamics within urban areas characterized by 

complex road networks and unique geographical features. The hypothesis 
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underpinning this study asserts that by incorporating a graph-theoretical 

approach, the GBSWM will offer a more nuanced and context-sensitive 

representation of spatial relationships, leading to improved predictive 

accuracy in spatial econometric models.  

Integrating graph theory in optimizing SWM calculations is a pivotal 

theoretical advancement in addressing the gaps in spatial econometrics. The 

proposed optimization of SWM calculations through graph theory aligns with 

and expands upon these existing frameworks. By addressing the unique spatial 

configurations of urban environments like New York City, this research 

promises a more accurate and context-sensitive analysis of spatial 

econometrics analysis, thus offering valuable insights for policy-making and 

urban planning. This approach, aligning with the theoretical underpinnings of 

spatial econometrics, offers a nuanced understanding of urban spatial 

dynamics. Integrating graph theory in optimizing SWM calculations 

complements existing frameworks like the GWR, potentially enhancing the 

precision and applicability of these models in complex urban contexts 

(Stakhovych and Bijmolt, 2009; X. Zhang and Yu, 2018). The experimental 

study, therefore, aims to empirically validate this hypothesis and demonstrate 

the superiority of the GBSWM over traditional SWMs in complex urban 

settings, marking an advancement in spatial econometrics and its application 

to urban studies.  

3. EXPERIMENTAL DESIGN  

This study innovatively applies graph theory to enhance the spatial 

weighting matrix (SWM) calculation by integrating urban road networks. 

Graph theory's robust framework is particularly suited for modeling these road 

networks' intricate, interconnected structures. This approach's reliability 

hinges on its systematic integration of graph-theoretic principles into the 

construction and optimization of the SWM, ensuring that spatial dependencies 

within the urban road network are precisely and nuancedly captured, thereby 

increasing the accuracy and effectiveness of spatial econometric models 

(Khuller and Raghavachari, 2010). As a result, the optimized SWM becomes 

an invaluable tool for a more accurate interpretation of spatial patterns and 

dynamics.  

3.1 Data collection and study area  

This study used data collected from community districts, street centerlines, 

complaints, citations, shootings, and economic indicators to test the variability 

of GBSWM and SDSWM performance through GWR. New York City (NYC) 

street centerlines are critical for incorporating the physical layout of the 

roadway network into the spatial weighting matrix, a critical factor in the 

practical application of graph theory algorithms. Additionally, complaints, 

citations, and shootings between March 1, 2021, and September 30, 2021, 

were used as dependent variables in the spatial econometrics model for this 

study. The New York City Department of City Planning's Economic 

Indicators dataset and its socioeconomic variables provide essential 

background information and constitute the independent variables in the spatial 

econometrics model for this study.  

The selection of datasets for this research is strategically aligned to 

optimize the computation of spatial weight matrices through the integration of 
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road systems, employing graph theory algorithms to enhance the predictive 

robustness of spatial econometric models. The utilization of Community 

Districts data from NYC Open Data provides a detailed spatial framework 

essential for defining the study area and ensuring that the spatial relationships 

are accurately represented. The data collected from community districts, street 

centerline, complaint, summons, shooting, and economic indicators are 

presented in Table 1.  

Table 1. Data description 

Characteristics Source Variable code Variable description 

Community 

Districts 

NYC Open Data (NYC 

Open Data, 2020) 

CD New York City 

Community Districts 
boundaries  

NYC Street 

Centerline  

NYC Open Data (NYC 

Open Data, 2015) 

SC New York City Streets 

Shapefile Data: address 

ranges and additional 

details including traffic 

direction, roadway type, 

and segment type  

Complaint NYC Open Data (NYC 

Open Data, 2023a) 

Complaint Complaint Incident Level 

Data 

Summons NYC Open Data (NYC 

Open Data, 2023b) 

Summons Summons Incident Level 

Data 

Shooting NYC Open Data (NYC 

Open Data, 2023c) 

Shooting Shooting Incident Level 

Data 

Economic 

Indicators 

NYC Department of 

City Planning (NYC 

Department of City 

Planning, 2021) 

Economic 

Indicators 

American Community 

Survey (ACS) Data 

Tables: Economic 

indicators such as income 

levels, employment status, 

and housing characteristics 

These datasets offer diverse and detailed insights into the dynamics of 

urban life, which are integral to understanding and modeling spatial 

interactions within the city. The combined use of these datasets ensures a 

comprehensive and nuanced approach to spatial econometric modeling, 

enabling a thorough examination of the interactions within urban 

environments. This careful selection of data sources substantiates the 

methodological approach and supports the overall research aim, maintaining 

an objective and balanced perspective on their use. 

New York City is the selected study area. New York City is in the State of 

New York, United States, and presents an intricate topography, a complex 

network of islands and peninsula (Figure 1). Much of New York City is built 

on three islands: St Staten Island, Manhattan, and Western Long Island. The 

Hudson River flowing from Hudson Valley into New York Bay becomes an 

estuary that separates Manhattan and the Bronx from Northern New Jersey. 

Additionally, the Harlem River separates Manhattan from the Bronx. This 

metropolis, known for its diverse and densely populated boroughs, offers a 

multifaceted environment for examining urban phenomena—New York City 

accounts for five boroughs and is within these 59 community districts. The 

city's geographical layout poses intriguing challenges for traditional SWM 

calculations, particularly in understanding and representing the connective 

dynamics between various urban segments. Additionally, the city's prominent 

global position and status as a microcosm of urban diversity and complexity 
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make it an ideal subject for spatial studies aiming to generate insights with 

broader applicability. 

 

Figure 1. NYC Community District and Road Network Map  

 

3.2 Experimental steps and explanations  

This research is structured around a series of methodologically rigorous 

steps that collectively form a comprehensive approach to spatial analysis. The 

experimental study evolved around four phases: 1) the preparatory phase, 2) 

the calculation of Graph-Based Spatial Weighted Matrices (GBSWM), 3) the 

application of spatial econometric models, and 4) the interpretations of the 

results. These phases are presented in Figure 2 and further discussed in the 

subsections below.  

 

Figure 2. Process Flowchart   

3.2.1 Preparatory steps 

The experiment involved several libraries, notably Numpy, Pandas, 

GeoPandas, NetworkX, Seaborn, Matplotlib, PySAL, ESDA, and LibPysal 

(Anselin, Florax, et al., 2013; Anselin and Hudak, 1992; PySAL Developers, 
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2018; Rey and Anselin, 2010). Each of these libraries plays a pivotal role in 

the processing and visualization of spatial data, establishing a robust 

foundation for subsequent analytical procedures (Bivand, Millo, et al., 2021). 

The first step shifted to loading spatial data by using GeoPandas. Two primary 

GeoDataFrames (CD and SC) were loaded in this stage. Subsequently, the 

coordinate reference system for the community area was confirmed, and the 

street centerline data were aligned with it. This alignment was imperative to 

ensure the accuracy and integrity of spatial data and avoid the misalignment 

of spatial joints caused by the Coordinate Reference System. 

3.2.2 Calculation of the Graph-Based Spatial Weight Matrices 

The process of calculating graph-based spatial weight matrices 

commenced with the filtering of streets based on their spatial relationships 

with community district boundaries. Custom functions were utilized to 

selectively filter streets that either overlapped or intersected with these 

boundaries. This filtration was crucial in ensuring the analysis focused solely 

on spatial interactions relevant to the community districts. 

Subsequently, a connectivity matrix (𝑀𝐶) was built. The calculation of the 

connectivity matrix involved two key steps: Firstly, a buffer zone of 5 meters 

was created around each street within the selected dataset. The buffer design 

considers the potential for roads to act as CD boundaries, ensuring that roads 

that provide connectivity are correctly identified and screened out when 

connectivity is retrieved. Secondly, using this buffered street data, a 

connectivity matrix was constructed. This matrix quantified the number of 

shared buffered streets among community districts, thereby providing a 

numerical representation of their spatial interconnectivity. The connectivity 

information gleaned was formatted into an original SWM. The matrix helps 

to quantitatively represent the direct road connectivity between different 

community zones and paves the way for the next step of introducing graph 

theory into SWM calculations. 

The third step involved the normalization of the connectivity matrix, 

followed by the construction of a graph, visually represented to depict the 

nodes (CD) and their interconnections (edges). This graph was an abstract 

representation of the community districts and their interconnections, serving 

as a foundational structure for further spatial analysis. The normalized 

connectivity matrix is represented in Equation (5):  

𝑀𝐶 =

[
 
 
 
 
 

0 0.2558 0.3372 0 ⋯ 0
0.2558 0 0.5348 0.1395 ⋯ 0
0.3372 0.5348 0 0 ⋯ 0

0 0.1395 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 0]

 
 
 
 
 

(5) 

The research then delved into calculating weights for compartmentalized 

propagation through the Simple Shortest Path Algorithm, a cornerstone 

concept in graph theory. In computational graph theory, the Simple Shortest 

Path Algorithm is a pivotal concept employed to ascertain the most efficient 

route between two vertices (Khuller and Raghavachari, 2010). The 

overarching objective is to minimize the path length, typically quantified as 

the sum of the weights assigned to the edges traversed. The implementation 

of such algorithms varies, contingent upon the graph's characteristics - 

whether it is directed or undirected and whether its edges are weighted. 



Song & Cibin 191 

 

Renowned algorithms under this category include Dijkstra's Algorithm, the 

Bellman-Ford Algorithm, and the Floyd-Warshall Algorithm, each tailored to 

specific graphs and weight conditions  (Khuller and Raghavachari, 2010; 

Madkour, Aref, et al., 2017). 

In the context of this project, the adoption of Dijkstra's Algorithm was 

driven by the specific attributes of the graph matrix. Dijkstra's Algorithm is 

renowned for its efficiency in traversing weighted graphs where edge weights 

are non-negative (Goldberg and Harrelson, 2005). The utilization of this 

Algorithm was predicated on the fact that the graph matrix is normalized, 

implying that the weights are standardized and, crucially, non-negative. This 

normalization eliminates the presence of negative weights, rendering 

Dijkstra's Algorithm an optimal choice. Its ability to efficiently compute the 

shortest path from a single source vertex to all other vertices in a weighted 

graph, coupled with its suitability for graphs with non-negative weights, made 

it the most viable and effective Algorithm for application (Goldberg and 

Harrelson, 2005). The process involves graph representation, initialization of 

nodes with specific distances, iterative updating of shortest distances for 

neighboring nodes, determining the shortest path by backtracking, and 

optimization and termination when the shortest paths are identified. The 

Simple Shortest Path Algorithm confirms the shortest path between each CD 

and its non-adjacent CDs, which is the unique possibility of the most robust 

connectivity among the many potential relationships between non-adjacent 

CDs. Consequently, the most significant correlations between non-

neighboring CDs were calculated based on probabilistic reasoning and 

weighted undirected graphs.  

The utilization of multiplicative cumulative weights in spatial analysis, 

particularly within the context of crime propagation through various 

geographic compartments, is underpinned by probabilistic reasoning and the 

nature of spatial relationships as represented in a weighted undirected graph. 

The foundational premise for this approach lies in the normalization of the 

original weights as proper fractions, which represent the probabilities 

associated with the event (such as a crime) transiting from one compartment 

to another. 

In a weighted undirected graph, each edge signifies the likelihood or 

probability of transition between nodes (or compartments in this context). 

These probabilities are not arbitrary but are determined by the correlation 

between two regions in the connectivity matrix. Suppose the likelihood of a 

crime event traveling from one region to another is directly proportional to the 

accessibility between the two regions. In that case, the correlation probabilities 

of our connectivity matrix between the two regions are normalized to reflect 

the actual likelihood of an event crossing from one node to another. When 

considering the path that an event, like a criminal activity, takes through a 

network of compartments, it becomes necessary to compute the probability of 

traversing through a particular sequence of compartments, making the concept 

of multiplicative cumulative weights crucial. 

The multiplicative nature of these weights is grounded in basic probability 

theory. When an event moves through multiple independent pathways, the 

total probability of this sequential occurrence is the product of the 

probabilities of each pathway. Therefore, in the context of a spatial network, 

the probability of a crime propagating through a sequence of compartments 

(or nodes) is determined by multiplying the weights (probabilities) of each 

edge (pathway) involved in the shortest path through the network. This 

approach accurately represents the cumulative effect of multiple, 

interconnected transitions. 
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Furthermore, this methodology captures spatial interactions and dynamics 

of a nuanced and compound nature. It considers the direct links between 

adjacent compartments and the more complex and often less intuitive indirect 

connections that can significantly influence the spatial behavior of phenomena 

like crime. By using multiplicative cumulative weights, analysts can more 

accurately model and understand the probabilistic flow of events through 

spatial networks, leading to more informed and effective decision-making and 

planning, especially in fields such as urban development, law enforcement, 

and public policy.  

The GBSWM calculated by the Simple Shortest Path Algorithm is 

represented in Equation (6):  

𝑊𝐺 =

[
 
 
 
 
 

0 0.2558 0.3372 0.0356 ⋯ 5𝐸 − 10
0.2558 0 0.5348 0.1395 ⋯ 7𝐸 − 12
0.3372 0.5348 0 0.0002 ⋯ 2𝐸 − 10
0.0356 0.1395 0.0002 0 ⋯ 2𝐸 − 10

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
5𝐸 − 10 7𝐸 − 12 2𝐸 − 10 2𝐸 − 10 ⋯ 0 ]

 
 
 
 
 

(6) 

 

Figure 3. Weighted Network Graph through the Simple Shortest Path Algorithm 

Lastly, the graph was visualized using NetworkX and Matplotlib as shown 

in Figure 3. This visualization effectively illustrated the nodes, representing 

community districts, and the edges, denoting the connections between these 

districts (Han, Wang, et al., 2021). The employment of such visualization tools 

was pivotal in providing a graphical representation of the spatial relationships 

and interactions within the community districts. 
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3.2.3 Spatial econometric models’ application, output, and 

interpretation  

In the final stage, the results of the spatial econometric model were used 

to compare the differences between the spatial weight matrices of graph- 

theoretic optimization and those of traditional methods. The research design 

advanced by applying spatial weight matrices, a critical component for spatial 

econometrics analysis models such as spatial autocorrelation and conducting 

Geographically Weighted Regression (GWR) analysis (Anselin, 1988).  

Before these analyses, data preparation encompasses the alignment and 

normalization of spatial weight matrices and the refinement of economic 

indicators through feature selection and Principal Component Analysis (PCA) 

(Hall, 1999). The feature selection process was instrumental in identifying and 

selecting the most relevant variables for each target variable based on their 

correlation. The feature selection result is represented in Figure 3. This 

process simplifies the model and enhances performance by concentrating on 

the most informative data. PCA, a statistical technique widely used in data 

analysis and machine learning, was employed for dimensionality reduction 

while preserving as much of the data's variance as possible. This technique is 

a powerful feature extraction and reduction tool, facilitating data visualization, 

model simplification, and performance enhancement.  

 

Figure 4. Dependent Variables Feature Selection Results  

The SWMs were then converted into the LibPysal format weight matrix, 

facilitating their use in spatial econometric analyses (PySAL Developers, 

2018; Rey and Anselin, 2010).  

Spatial autocorrelation analysis followed, where Moran's 𝐼  statistic was 

computed. The computation of Moran's 𝐼 statistic allows for assessing spatial 

autocorrelation in various variables (Griffith and Anselin, 1989). This statistic 

measures spatial autocorrelation, which can be calculated using different 

spatial weight matrices to gain insight into the spatial relationship between 

various variables, thus eliminating confounding terms by filtering out 

variables with significant autocorrelation among several dependent variables. 

The final step was implementing GWR analysis. This analytical approach 

allows for exploring spatial heterogeneity and identifying local variations in 

the relationships between variables across different geographical areas 

(Anselin, 1988; Anselin, Florax, et al., 2004). In this experiment, the GWR 

model was applied for outputting model predictions to compare the 

performance differences between different SWM approaches.  

In the output and interpretation phase, the study analyses the GWR models 

applied to SWMs before and after optimization. This part of the study involves 

presenting a concise comparison of the GWR results, highlighting the effects 

of optimization. It also includes identifying and listing significant variables 

revealed in the models. The aim is to understand how optimization influences 

spatial dynamics and interactions within the urban framework, offering 
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insights into the effectiveness of spatial weight matrix optimization in urban 

spatial analysis. 

4. EXPERIMENTAL SIMULATION RESULTS  

The comparative analysis of Graph-Based Spatial Weight Matrices 

(GBSWM) and Simple Distanced Spatial Weight Matrices (SDSWM) within 

Geographically Weighted Regression (GWR) models yields insights into the 

dynamics of urban spatial interactions. This experiment evaluates the efficacy 

of GBSWM optimization against the conventional SDSWM in analyzing 

urban road networks.  

The selection of "Shooting" and "Summons" as the primary dependent 

variables for subsequent analysis in this study is grounded in preliminary 

findings derived from Spatial Autocorrelation: Moran's 𝐼 analysis. This initial 

analysis, focusing on various potential dependent variables, aims to determine 

the extent of spatial autocorrelation about highly correlated independent 

variables. The results from this analysis were pivotal in guiding the choice of 

dependent variables; "Shooting" and "Summons" emerged as the only 

variables exhibiting statistically significant spatial autocorrelation. This 

significance underscores their relevance in optimizing spatial weight matrices 

and validates their selection for detailed examination in the following 

comparative analysis.  

In the comparative analysis of the GBSWMs and SDSWMs for examining 

"Shooting" and "Summons" incidents, distinct advantages and characteristics 

emerge. Both models have unique methodological underpinnings: SDSWM 

calculates weights based on the inverse of distance, whereas GBSWM 

incorporates the inverse ratio of distance and integrates the road network 

system, offering a more complex and potentially context-sensitive approach.  

Table 2. GWR results for the dependent variable 'Shooting' 

 Graph-Based Spatial Weight 

Matrices  

Simple Distanced Spatial 

Weight Matrices  

Dependent Variable p-value 0.003 0.008 

Mean dependent var -0.0053 

S.D. dependent var 1.0162 

Pseudo R-squared 0.6192 0.6225 

Spatial Pseudo R-squared 0.6198 0.6151 

Sigma-square ML 0.387 0.383 

S.E of regression 0.622 0.619 

Log likelihood -55.683 -55.482 

Akaike info criterion 125.366 124.964 

Schwarz criterion 139.909 139.506 

Table 2 presents the GWR result for the dependent variable 'Shooting', 

both models demonstrate a commendable ability to explain the variability in 

the dependent variable, as evidenced by their significant p-values (GBSWM: 

0.003 SDSWM: 0.008). This result indicates a robust relationship between the 

predictors and shooting incidents in both models. The slight edge of SDSWM 

in terms of Pseudo R-squared (0.6225) over GBSWM (0.6192) is marginal, 

suggesting that both models are nearly equivalent in their explanatory power. 

Similarly, while SDSWM exhibits a marginally lower Sigma-square ML and 
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Standard Error (S.E.) of Regression, the differences are minimal, underscoring 

the comparable precision and error variance in both models. 

Table 3. GWR results for the dependent variable ‘Summons’  

 Graph-Based Spatial Weight 

Matrices  

Simple Distanced Spatial 

Weight Matrices  

Dependent Variable p-value 0.029 Not Significant 

Mean dependent var 0.0133 

S.D. dependent var 1.0118 

Pseudo R-squared 0.2488 0.2132 

Spatial Pseudo R-squared 0.1935 0.1959 

Sigma-square ML 0.757 0.792 

S.E of regression 0.870 0.890 

Log likelihood -76.148 -77.051 

Akaike info criterion 166.297 168.102 

Schwarz criterion 180.840 182.645 

Table 3 presents the GWR results for the dependent variable ‘Summons’. 

The GBSWM's superiority becomes pronounced. GBSWM demonstrates 

statistical significance with a p-value of 0.029, unlike SDSWM, which does 

not show a significant relationship. This result underscores the enhanced 

capability of GBSWM in capturing the dynamics related to summons-related 

incidents. Moreover, GBSWM's performance in terms of lower Sigma-square 

ML (0.757) and lower S.E. of Regression (0.870) compared to SDSWM 

(Sigma-square ML: 0.792, S.E.: 0.890) indicates its superior precision in 

estimation and lower error variance.  

Integrating the road network system in GBSWM likely contributes to this 

enhanced performance of the spatial econometric models, especially in urban 

studies or geographical analyses where road networks significantly impact 

spatial relationships. Additionally, GBSWM's better scores in Log Likelihood, 

Akaike Information Criterion (AIC), and Schwarz Criterion (BIC) for both 

variables suggest a higher likelihood of the model producing the observed data 

and a more optimal balance between model complexity and goodness of fit. 

While both GBSWM and SDSWM show close performance for the 

'Shooting' variable, GBSWM demonstrates a clear advantage in analysing the 

'Summons' variable. The marginal differences in performance for 'Shooting' 

indicate that both models are competent. However, the distinct edge of 

GBSWM in 'Summons' analysis, particularly in statistical significance and 

model selection criteria, highlights its suitability for more complex spatial 

analyses of minor crime events. Including road networks in GBSWM 

enhances its applicability to diverse urban and geographical contexts and 

underscores its potential as a more comprehensive tool in spatial modelling.  

The comparative analysis between GBSWM and SDSWM reveals 

intriguing patterns. For instance, GBSWM's integration of road networks 

suggests a more nuanced understanding of urban spatial dynamics, 

particularly evident in the 'Summons' data for minor crime events. This result 

implies that urban planning and policy development should consider spatial 

interdependencies for more effective outcomes. 

The empirical findings delineate differential impacts on the variables 

'Shooting' and 'Summons,' with GBSWM demonstrating superior statistical 

significance and model fit in specific metrics. This outcome of better p-values 

suggests that the GBSWM approach engenders a model with enhanced 

statistical robustness. The 'Summons' variable analysis under GBSWM 

yielded a statistically significant p-value, contrasting with the non-significant 
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result of the SDSWM. Such disparities, particularly in Sigma-square ML and 

the Standard Error of regression across both models, underscore the distinct 

methodological impacts attributable to the differing GBSWM constructions. 

These empirical outcomes are congruent with the previous theoretical 

postulates, particularly the premise that graph-theoretical approaches can 

augment the comprehension of spatial interdependencies within urban 

matrices. The apparent superiority of GBSWM in certain aspects corroborates 

the hypothesis that a more intricate portrayal of spatial interactions is 

beneficial, thus supporting and extending the traditional SWM application 

paradigms in econometric analyses. 

5. CONCLUSIONS, LIMITATIONS, AND FURTHER 

RESEARCH  

5.1 Conclusions  

This study presents an advancement in spatial econometrics by integrating 

graph theory with traditional spatial econometric methodologies. The 

application of Graph-Based Spatial Weight Matrices (GBSWM) has enhanced 

the prediction accuracy and ubiquity of spatial econometric models in this 

context. Through comparative analysis with Simple Distanced Spatial Weight 

Matrices (SDSWM), the superior capability of GBSWM in capturing complex 

spatial relationships in urban settings has been demonstrated. In doing so, the 

study utilized crime and spatial phenomena in its to examination. Compared 

to traditional spatial weighting matrices, the GBSWM improves the 

interpretability and accuracy of modeling minor crime incidents without 

significantly negatively affecting the analysis of serious crime incident data 

guided by traditional methods. This result is particularly evident in the study 

comparisons. 

The significance of this research lies in its theoretical and methodological 

contributions to spatial econometrics. Blending graph theory into SWM offers 

novel insights into urban spatial analysis, emphasizing the importance of 

considering intricate road network interdependencies for effective 

policymaking. These findings also provide practical implications for urban 

planning, law enforcement strategies, and policy interventions in densely 

populated areas. 

Based on these findings, applying GBSWM presents a promising avenue 

for enhancing analytical models, particularly in understanding and managing 

urban phenomena for scholars and professionals in spatial econometrics. 

Integrating GBSWM can refine models forecasting urban economic 

indicators, offering more precise and extensive tools for economic 

policymakers and urban planners. The GBSWM enables scholars to gain a 

nuanced understanding of spatial dependencies and interactions under varying 

environmental conditions, thereby methodologically facilitating and 

supporting specific case studies. This advancement contributes to addressing 

complex issues such as urban expansion, land use planning, and 

environmental sustainability, as well as enhancing existing road network 

analyses, including assessments of transportation efficiency and modal 

analysis of travel (Chen, Yuan, et al., 2023; Eom and Suzuki, 2019; Li, Zhao, 

et al., 2016).   

This research underscores the evolving nature of spatial econometrics and 

highlights the potential of methodologies like graph theory in enriching our 
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understanding of complex urban phenomena. As cities continue to grow and 

evolve, the importance of sophisticated spatial analysis tools becomes 

increasingly paramount. This study contributes to spatial econometrics and 

paves the way for more nuanced and contextually relevant urban 

policymaking, ultimately enhancing our capacity to create safer and more 

resilient urban environments.  

5.2 Limitations and further research  

The methodological framework of the study, delineated by the application 

of GBSWM for analyzing urban road networks, represents a significant 

progression in spatial analysis. However, this approach encounters several 

limitations. A primary limitation concerns the generalizability of the findings. 

The concentration on urban road networks might not seamlessly translate to 

disparate types of spatial networks or diverse urban environments, particularly 

in rural locales where the nature of road networks and spatial interplays 

substantially diverge that the infrastructure of rural roads frequently leads to 

direct or indirect socio-economic effects on the population (Wagale, Singh, et 

al., 2021). This specificity engenders queries regarding the applicability of the 

study's conclusions across varied spatial structures. Additionally, the research 

confronts constraints linked to the intrinsic assumptions and sensitivities 

inherent in Geographically Weighted Regression (GWR) models. GWR 

models, especially those incorporating GBSWM, exhibit sensitivity to data 

and bandwidth selection, the application context, and the SWM computation. 

These elements can profoundly affect model outcomes, potentially leading to 

challenges like overfitting, particularly in models designed to encapsulate 

intricate spatial relationships. These sensitivities may impinge upon the 

robustness and veracity of the research's findings. Furthermore, the research's 

comparative analysis is primarily confined to juxtaposing GBSWM with 

SDSWM, limiting insights into GBSWM's efficacy relative to a broader 

spectrum of spatial weight matrix methodologies or econometric models and 

a thorough appraisal of GBSWM's position within the spatial analysis 

techniques. Addressing these limitations is imperative for a more holistic and 

critical evaluation of the research's methodological advancements.  

Given the identified limitations, future research should bridge these gaps 

and further test the potential of GBSWM in more expansive contexts. Firstly, 

there is a need to expand the scope of GBSWM's application across different 

spatial networks and in various urban and rural settings. Such exploration 

would provide valuable insights into the model's adaptability and versatility 

across diverse geographical landscapes and varying spatial data types. 

Secondly, enhancing the computational efficiency of GBSWM stands as a 

critical objective. This improvement could be achieved by developing more 

streamlined algorithms and creating simplified models that maintain the core 

aspects of graph-based approaches while reducing computational burdens. 

Such advancements would render GBSWM more accessible and practical for 

a broader user base. Thirdly, there is a compelling opportunity to explore the 

integration of GBSWM with other spatial econometric models or urban 

planning tools. This integration could lead to the development of hybrid 

models that amalgamate the strengths of GBSWM with those of other 

established methodologies, offering a more comprehensive approach to spatial 

analysis. Fourthly, addressing the sensitivity and robustness of the model is 

crucial. Refining the GWR methodologies to overcome challenges like 

bandwidth selection and model overfitting is essential. Establishing guidelines 

or best practices for model selection and parameterization in GBSWM 
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applications would greatly benefit practitioners. Lastly, conducting 

comparative studies of GBSWM against various spatial weight matrix 

methods and other spatial econometric models is necessary. Such comparative 

analyses would yield more profound insights into the relative strengths and 

weaknesses of GBSWM, aiding in its accurate positioning within the spectrum 

of spatial analysis tools.  

The abovementioned improvements would broaden the scope of spatial 

econometric models and contribute to a more comprehensive understanding 

of urban and environmental issues. Addressing the sensitivity of these models 

and conducting comparative studies with alternative approaches are also 

essential steps to contextualize and refine the insights drawn from this 

research. By tackling these areas, future research can significantly enhance the 

understanding and efficacy of GBSWM in spatial econometrics, paving the 

way for more sophisticated and comprehensive urban spatial analysis.  
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