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Abstract 

Lean Management principles and methods have been adopted by manufacturing 

companies for decades, as they enable the design, planning, and control of efficient 

production systems. One of the key principles of Lean Management and an essential 

requirement for the effective application of Production Planning and Control tasks is 

the identification of value streams in production. Generally defined as the steps 

required to bring a product to the customer, value streams are specific to a product or 

product family where variants are regarded as one representative product. 

As a key enabling step for future improvements, identifying value streams allows 

the effective application of methods such as Value Stream Mapping, production 

levelling, and push production. In order to identify value streams, having a clear 

understanding of production flows is key. In practice, this task can be challenging, 

particularly for high-mix low volume companies, for which value streams may be 

composed of hundreds of products and parts.  

To analyse the complexity of production flows and identify the similarity 

between products and resources, Burbidge first introduced the principles for 

Production Flow Analysis in 1970s. Intended to simply the material flow and re-

organise factories into groups of machines that complete all parts they make, the 

method enables the identification of product families and related processing steps. As 

such, the principles of Production Flow Analysis can be used for value stream 

identification. However, as the complexity of production systems has grown 

significantly over the last decade, the direct applicability of these principles has 

reached its limits. At the same time, the increasing adoption of emerging technologies 

in industrial contexts has unlocked new opportunities. In the age of Industry 4.0, or 

fourth industrial revolution, advanced digitalisation is increasingly integrated into 

production systems, leading to greater availability of information. To transform this 

data into fact-based insights that can assist Production Planning and Control decisions, 

Data Analytics techniques are key. In particular, recent developments in Process 

Mining have enabled the discovery, analysis, and improvement of processes in the 

manufacturing domain and beyond.  
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By exploiting these advancements and building on the principle of Production 

Flow Analysis, this research provides a method for automatically identifying value 

streams from production data. Through the definition and analysis of process flows 

and their homogeneity, the method uses Process Mining and Machine Learning 

techniques to structure production processes into value streams and visualise the 

associated process models. The effectiveness of the method is validated using a case 

study. Since the characteristics of data collection and management systems used by 

companies may vary across the industry, this method also takes into consideration use 

cases with different levels of data quality. 

By providing a solution for effectively using production data and accurately 

identifying value streams, the method represents a novel contribution to both academia 

and industry. From a theoretical perspective, this work builds on the fundamental 

principles of Production Flow Analysis and further advances them using Process 

Mining techniques to provide a conceptual method for automated value stream 

identification. From a practical perspective, this work addresses practical challenges 

by enabling visibility and transparency in production and facilitating the effective 

application of Production Planning and Control techniques in modern manufacturing 

environments. 

 

 

 



 

vi A Process Mining Approach for Production Flow Analysis 

Table of Contents 

Certificate of Original Authorship ............................................................................................. i 
Acknowledgements .................................................................................................................. ii 
Keywords ................................................................................................................................ iii 
Abstract .................................................................................................................................... iv 
Table of Contents ..................................................................................................................... vi 
List of Figures ....................................................................................................................... viii 
List of Tables ............................................................................................................................. x 
List of Abbreviations .............................................................................................................. xii 
List of Publications ............................................................................................................... xiii 

Chapter 1: Introduction .................................................................................... 15 

Chapter 2: Conceptual Background ................................................................. 19 
2.1 The importance of value stream identification in Lean Production .............................. 19 
2.2 Group technology for identifying value streams .......................................................... 22 
2.3 Industry 4.0 Capabilities and Technologies for Improving the Effectiveness of Value 
Stream Identification ............................................................................................................... 23 

Chapter 3: Systematic Literature Review ........................................................ 31 

3.1 Methodology ................................................................................................................. 31 
3.2 Results ........................................................................................................................... 33 
3.3 Discussion of Results .................................................................................................... 35 
3.4 Summary ....................................................................................................................... 43 
3.5 Research Implications ................................................................................................... 43 

Chapter 4: Industry Analysis and Requirements Definition ......................... 47 

4.1 Data Requirements ........................................................................................................ 47 
4.2 Data Completeness and Use Cases ............................................................................... 50 

Chapter 5: Method Development ..................................................................... 55 

5.1 Optimal Event Log ........................................................................................................ 57 
5.2 Event Log with Missing Attributes ............................................................................... 72 
5.3 Event Log Cleaning and Filtering ................................................................................. 75 

Chapter 6: Method Evaluation ......................................................................... 79 
6.1 Optimal Event Log ........................................................................................................ 80 
6.2 Event Log with Missing Attributes ............................................................................... 92 
6.3 Evaluating the Impact of Quality Issues ..................................................................... 100 

Chapter 7: Conclusions and Outlook ............................................................. 111 

7.1 Summary of Research Results .................................................................................... 111 



 

 vii 

7.2 Implications and Contributions .................................................................................. 112 
7.3 Limitations and Future Work ..................................................................................... 115 

Bibliography ........................................................................................................... 119 

Appendices .............................................................................................................. 137 

Appendix A Intelligent Approaches for Production Flow Analysis ..................................... 137 
Appendix B Process Mining in Manufacturing .................................................................... 141 
Appendix C Process Models Generated by the Heuristics Miner Discovery Algorithm ..... 144 
 



viii A Process Mining Approach for Production Flow Analysis 

List of Figures 

Figure 1-1: Research Design Method based on Blessing & Chakrabarti (2009) ....... 17 

Figure 2-1: Areas of Relevance and Contribution diagram ....................................... 19 

Figure 2-2: Process Mining workflow (adapted from van der Aalst (2016)) ............. 28 

Figure 3-1: Research contributions in Process Mining and Production Flow 
Analysis over time ....................................................................................... 34 

Figure 3-2: Comparison between research areas ........................................................ 35 

Figure 3-3:  Techniques for Intelligent Production Flow Analysis ............................ 36 

Figure 3-4: Research trends of intelligent approaches for PFA over time (M: 
Metaheuristics, ML: Machine Learning, S: Supervised Learning, U: 

Unsupervised Learning) ............................................................................... 37 

Figure 3-5: Process Mining types in Manufacturing .................................................. 41 

Figure 4-1: Class diagram and data quality (based on van der Aalst (2016)) ............ 48 

Figure 4-2: Example of a complete event log (as used for this research) .................. 49 

Figure 4-3: Conceptual structure for Process Mining-based PFA ............................. 51 

Figure 4-4: Visual representation of the relationship between operations and 

scanning points ............................................................................................. 52 

Figure 5-1: Overview of the method for value stream identification considering 

multiple use cases ......................................................................................... 56 

Figure 5-2: Method for value stream identification using optimal event logs ........... 58 

Figure 5-3: Example of an optimal event log ............................................................. 58 

Figure 5-4: Procedure for identifying operations-scanning points associations ........ 73 

Figure 5-5: Example of an event log in Manufacturing ............................................. 75 

Figure 6-1: Volume distribution over a year .............................................................. 80 

Figure 6-2: Example of routing frequency distribution for 2 products in the 
event log ....................................................................................................... 81 

Figure 6-3 - Process Model of the factory floor ......................................................... 81 

Figure 6-4: Directly-Follows-Graph of the entire factory with path frequencies ...... 82 

Figure 6-5: Directly-Follows-Graph of the entire factory with path duration ........... 82 

Figure 6-6: Pareto front for feature selection using an optimal event log .................. 83 

Figure 6-7: Similarity matrix using Jaccard ............................................................... 84 

Figure 6-8: Dendrograms generated by agglomerative clustering (left: single 

linkage, centre: average linkage, right: complete linkage) .......................... 85 

Figure 6-9: Desirability functions w1, w2, w3, w4, w5, w6 .......................................... 85 

Figure 6-10: Desirability index W calculated as mean of the functions w1, w2, 
w3, w4, w5, w6 ............................................................................................... 86 



 

 ix 

Figure 6-11: Product families generated by K-Means and X-Means ........................ 87 

Figure 6-12 - Process models (BPMN) generated by K-Means and X-Means .......... 88 

Figure 6-13: Centroid chart ........................................................................................ 89 

Figure 6-14:  Process Model (BPMN) of the factory using scanning points as 
classifier ....................................................................................................... 93 

Figure 6-15: Associations between scanning points and operations .......................... 93 

Figure 6-16: Scanning Point Clustering ..................................................................... 95 

Figure 6-17: Process Model (BPMN) of the factory after pre-processing the 
event log ....................................................................................................... 95 

Figure 6-18: Event log filtering after clustering scanning points .............................. 97 

Figure 6-19: Comparison between product families identified using an optimal 

event log and using an event log without work operation attributes ........... 97 

Figure 6-20: Process models (BPMN) using clustered scanning points as 

classifier ....................................................................................................... 99 

Figure 6-21: Simulation process for assessing the impact of data quality issues .... 100 

Figure 6-22: Routing frequency threshold comparison for a product in the 
presence of incorrect operations (20% on the left, 5% on the right) ......... 103 

 



 

x A Process Mining Approach for Production Flow Analysis 

List of Tables 

Table 3-1: Search string ............................................................................................. 32 

Table 3-2: Inclusion Criteria ...................................................................................... 32 

Table 3-3: ANN Approaches for Production Flow Analysis ..................................... 38 

Table 4-1: Event Log attributes description ............................................................... 49 

Table 4-2: Maturity levels for event logs defined by van der Aalst et al. (2012) 

and implications for this research ................................................................ 50 

Table 5-1: Routing profile using activities and transitions ........................................ 62 

Table 5-2: Multi-Objective Feature Selection ............................................................ 64 

Table 5-3: Advantages and Disadvantages of clustering approaches for value 

stream identification ..................................................................................... 66 

Table 5-4: Basic Linkage Metrics .............................................................................. 67 

Table 5-5 - Possible quality problems in an event log (Bose et al., 2013, van 
der Aalst, 2016) ............................................................................................ 75 

Table 5-6: Policies for managing quality issues ......................................................... 78 

Table 6-1: Process Model Quality .............................................................................. 81 

Table 6-2: Evaluation of the solution generated by K-Means (K=2) and X-
Means ........................................................................................................... 88 

Table 6-3: Process Models (BPMN) generated by agglomerative clustering and 
evaluation ..................................................................................................... 90 

Table 6-4: Process Model Evaluation Metrics ........................................................... 94 

Table 6-5: Process Model Evaluation Metrics ........................................................... 96 

Table 6-6: Evaluation comparison between value streams generated using 
complete event log and a pre-processed event log ....................................... 98 

Table 6-7: Evaluation of event logs with quality issues and comparison with 
optimal event log ........................................................................................ 102 

Table 6-8: Product family compositions using event logs with quality issues ........ 105 

Table 6-9: Process models (BPMN) evaluation using event logs with quality 

issues for value stream 1 ............................................................................ 106 

Table 6-10: Process models (BPMN) evaluation using event logs with quality 

issues for value stream 2 ............................................................................ 108 

Table 7-1: Methods for Intelligent Production Flow Analysis ................................ 137 

Table 7-2: Process Mining Applications in Manufacturing ..................................... 141 

Table 7-3: Process Models generated by the heuristic miner algorithm for an 

optimal event log and after event log pre-processing ................................ 144 

Table 7-4: Process Models generated by the heuristic miner algorithm using an 

event log with missing attributes ............................................................... 145 



 

 xi 

Table 7-5: Process Models generated by the heuristic miner algorithm using an 

event log with incorrect attributes .............................................................. 146 

Table 7-6: Process Models generated by the heuristic miner algorithm using an 

event log with imprecise attributes ............................................................ 147 

 



 

xii A Process Mining Approach for Production Flow Analysis 

List of Abbreviations 

 

IE Industrial Engineering 

PPC Production Planning and Control 

PFA Production Flow Analysis 

GT Group Technology 

PM 
DRM 

Process Mining 

Design Research Methodology 

IoT Internet of Things 

CPS Cyber Physical Systems 

ML Machine Learning 

ANN Artificial Neural Networks 

 
  



 

 xiii 

List of Publications 

Tomidei, L., Sick, N. & Mathieson, L. (2024). Data-Driven Value Stream Analysis 
Using Process Mining And Machine Learning. In 51st International Conference on 
Computers and Industrial Engineering (CIE51). Sydney, Australia. 

Tomidei, L., Sick, N., Deuse, J. & Guertler, M. (2023). Extracting Key Value Streams 
using Process Mining and Machine Learning. In IEEE Conference on Engineering 
Informatics. 2023 IEEE Engineering Informatics, 1–7. 
https://doi.org/10.1109/IEEECONF58110.2023.10520644  

Tomidei, L., Sick, N., Deuse, J., & Clemon, L. (2022). Production Flow Analysis in the 
Era of Industry 4.0 : How Digital Technologies can Support Decision-Making in the 
Factory of the Future. In 2022 Portland International Conference on Management 
of Engineering and Technology (PICMET) (pp. 1-15). Piscataway, USA: IEEE. 
doi:10.23919/picmet53225.2022.9882711 

 
Other Publications 
 
Wambsganss, A., Tomidei, L., Sick, N., Salomo, S., & Miled, E. B. 

(2024). Machine learning-based method to cluster a converging 
technology system: The case of printed electronics. World Patent 
Information, 78, 102301. 

Tomidei, L., Guertler, M., Sick, N., Paul, G., Carmichael, M. (2024). 
Design Principles for Safe Human Robot Collaboration. 
INTERACTION DESIGN & ARCHITECTURE – IxD&A Journal, 
Special Issue.  

Tomidei, L., Sick, N., Guertler, M., Schallow, J., Lenze, D., & Deuse, J. (2023). 
Dynamic value stream mapping: How Industry 4.0 can help us to learn to 
see better. In 9th Changeable, Agile, Reconfigurable and Virtual 
Production Conference. Bologna, Italy. 

Wambsganss, A., Tomidei, L., Sick, N., Bröring, S., Salomo, S., & Schultz, C. 
(2023). Machine-based anticipation of converging technology systems: The 
case of printed electronics. In International Society for Professional 
Innovation Management. Ljubljana, Slovenia. 

Rokoss, A., Syberg, M., Tomidei, L., Huelsing, C., Deuse, J., & Schmidt, 
M. (2023). Case study on delivery time determination using a machine 
learning approach in small batch production companies. JOURNAL 
OF INTELLIGENT MANUFACTURING, 22 pages. 
doi:10.1007/s10845-023-02290-2 

Guertler, M., Tomidei, L., Sick, N., Carmichael, M., Paul, G., 
Wambsganss, A., . . . Hussain, S. (2023). WHEN IS A ROBOT A 
COBOT? MOVING BEYOND MANUFACTURING AND ARM-
BASED COBOT MANIPULATORS. Proceedings of the Design 
Society, 3, 3889-3898. doi:10.1017/pds.2023.390 

Guertler, M., Carmichael, M., Paul, G., Sick, N., Tomidei, L., Hernandez Moreno, 
V., . . . Hussain, S. (2022). Guidelines for the Safe Collaborative Robot Design 

https://doi.org/10.1109/IEEECONF58110.2023.10520644
http://doi.org/10.23919/picmet53225.2022.9882711
http://doi.org/10.1007/s10845-023-02290-2
http://doi.org/10.1017/pds.2023.390


 

xiv A Process Mining Approach for Production Flow Analysis 

and Implementation. NSW Government: Centre for Work Health and Safety: 
NSW Government: Centre for Work Health and Safety. Retrieved from 
https://www.centreforwhs.nsw.gov.au/ 

Paul, G., Tomidei, L., Sick, N., Guertler, M., Carmichael, M., & Wambsganss, 
A. (2022). Guidelines for Safe Collaborative Robot Design and 
Implementation. In Guidelines for Safe Collaborative Robot Design and 
Implementation. Sydney. 

Frijat, L., Tomidei, L., Guertler, M., & Sick, N. (2022). Collaborative Robotics: 
A new work health and safety risk assessment for a novel technology. In 
Asia Pacific Occupational Safety & Health Organization. Melbourne. 

Tomidei, L., Sick, N., Guertler, M., Frijat, L., Carmichael, M., Paul, G., . . . 
Hussain, S. (2022). BEYOND TECHNOLOGY - THE COGNITIVE AND 
ORGANISATIONAL IMPACTS OF COBOTS. In Australasian 
Conference on Robotics and Automation Vol. 2022. 

Clemon, L., Guertler, M., Tomidei, L., & Edwards, R. (2021). Additive 
manufacturing opportunities for Australia’s agriculture, fisheries and forestry 
sectors (21-089). Wagga Wagga, NSW: AgriFutures - National Rural Issues. 
Retrieved from https://www.agrifutures.com.au/ 

Lammers, T., Tomidei, L., & Trianni, A. (2019). Towards a Novel Framework 
of Barriers and Drivers for Digital Transformation in Industrial Supply 
Chains. In 2019 Portland International Conference on Management of 
Engineering and Technology (PICMET). Portland: IEEE. 
doi:10.23919/picmet.2019.8893875 

Lammers, T., Tomidei, L., & Regatierri, A. (2018). What Causes Companies to 
Transform Digitally? An Overview of Drivers for Australian Key 
Industries. In Portland International Conference on Management of 
Engineering and Technology. Honolulu, HI, USA: IEEE. 
doi:10.23919/PICMET.2018.8481810 

 

  

https://www.centreforwhs.nsw.gov.au/tools/guidelines-for-safe-collaborative-robot-design-and-implementation
https://www.agrifutures.com.au/product/additive-manufacturing-opportunities-for-australias-agriculture-fisheries-and-forestry-sectors/
http://doi.org/10.23919/picmet.2019.8893875
http://doi.org/10.23919/PICMET.2018.8481810


 

Chapter 1: Introduction 15 

Chapter 1: Introduction 

In manufacturing, companies are constantly striving for continuous improvements in 

productivity, quality, and level of service (Ejsmont et al., 2020a). For decades, Lean 

Management has enabled enterprises to achieve these goals through methods and 

techniques that focus on value-added activities while reducing different forms of 

waste in production. One of the key principles of Lean Management is identifying 

and selecting value streams in production (Womack & Jones, 1997). Generally, value 

streams are defined as all the actions needed to bring a product (or a family of 

products) to the customer (Rother & Shook, 2003; Womack & Jones, 1997). 

Although identifying value streams may not always be simple, particularly for high 

mix-low volume companies, whose value streams can be composed of hundreds of 

parts and products (Braglia et al., 2006), it is an essential task for the effective 

application of Production Planning and Control techniques such as layout design 

(Burbidge, 1991), value stream analysis (Rother & Shook, 2003), scheduling 

(Bohnen et al., 2011), and line balancing (Deuse et al., 2013).  

The task of value streams identification requires distinguishing homogenous groups 

of products and resources according to their similarity. In other words, value streams 

identification closely relates to Group Technology (GT), which is an engineering and 

manufacturing approach that identifies the similarity of products as well as the 

equipment or processing steps used to make them (Hameri, 2011). Group 

Technology is essential for optimising production processes, as organising processes 

and structures based on homogenous objects and resources is often more effective 

and efficient (Deuse et al., 2022). Originally, the goal of Group Technology was to 

transfer the benefits of economies of scale to batch and job shop production (Deuse 

et al., 2013). As such, it represents a method of factory organisation where 

organisational units or groups complete all the products they make (Burbidge, 1991). 

To achieve this, several approaches have been introduced over the years. While early 

methods relied on classification and coding systems that group processes and 

machines based on products’ similarity in shape (Mitrofanov, 1961), in 1970s 

Burbidge introduced Production Flow Analysis, a technique that uses component 
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process routes to find groups of processing steps and associated product families 

(Burbidge, 1991).  

In the last few decades, as processes are becoming more complex, routing flexibility 

and variability have also increased, ultimately making the task of value stream 

identification more challenging. Mass customisation trends have impacted the 

production characteristics of many enterprises, with higher number of variants, and 

lower volumes of identical parts (Deuse et al., 2013). At the same time, the paradigm 

shift in industrial applications driven both by these application-pull and technology-

push factors described as “fourth industrial revolution”, or “Industry 4.0”, has 

unlocked new opportunities. Thus, advanced digitalisation combined with Internet 

technologies and “smart” objects are being increasingly integrated into the 

production systems. “Smart factories” are characterised by production systems that 

are equipped with sensors, actors, and autonomous systems (Lasi et al., 2014). The 

integration of the physical system with the software system leads to an increasing 

amount of information that can assist Production Planning and Control decisions and 

ultimately improve visibility, transparency, predictive capability, and adaptability in 

production processes (Schuh et al., 2020).  

As a result, existing research has investigated the synergies between many traditional 

approaches and Industry 4.0 technologies. However, the potential of supporting 

Production Flow Analysis with new data-driven techniques has received limited 

attention. In particular, among promising modern techniques, Process Mining (PM) 

is considered a useful tool for addressing Data Analytics tasks with challenges 

arising from process complexity, due to its ability to discover process models from 

event data and provide fact-based insights (Halaska & Sperka, 2018; Knoll et al., 

2019). As such, Process Mining is considered “the logical next step in the 

development of Group Technology” (Deuse et al., 2022, p. 6).  

Therefore, the goal of this thesis is the following: 

Developing a Process Mining-based approach to identify key value streams and 

enable the effective application of Production Planning and Control techniques in 

complex environments. 
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To address this research question, this work follows the key steps outlined in Design 

Research Methodology (DRM) proposed by Blessing & Chakrabarti (2009), an 

established framework in engineering design. In line with the purpose of the DRM, 

this work aims to develop a support system whose goal is to solve a practically 

relevant research problem while simultaneously providing a theoretical contribution. 

While the main steps of the DRM listed below may appear linear, in practice this 

methodology involves iterations that increase the understanding of the problem as 

well as parallel executions (see Figure 1-1). The structure of this thesis follows the 

key steps of the DRM. While Figure 1-1 provides and overview of the overall 

methodology and structure, detailed methodology sections are included in each 

chapter. 

Figure 1-1: Research Design Method based on Blessing & Chakrabarti (2009) 

In the background section, an overview of the areas of relevance and contribution is 

provided by illustrating how this research integrates key elements from Group 

Technology, Industry 4.0, and Lean Production. Driving process analysis and 

improvements for decades, Lean Production methods require identifying value 

streams as a first step, thus highlighting the importance of the task. Group 
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Technology enabled by Production Flow Analysis represents how this task can be 

achieved, while Industry 4.0 capabilities and technologies provide a solution for 

handling complexity and increasing amounts of data in complex environments. 

Among these research areas, two are considered essential for the development of this 

work, namely Process Mining and Production Flow Analysis.  

Based on this consideration, the systematic literature review provides a thorough 

investigation of the essential areas Process Mining and Production Flow Analysis by 

evaluating potential synergies and highlighting research gaps. The goal is to present a 

detailed understanding of the research gaps and validate the research 

objective/question (Blessing & Chakrabarti, 2009).  

The descriptive study I aims to define relevant use cases. To this end, a combination 

of empirical data analysis and literature analysis is used to understand data 

requirements and maturity levels. In fact, companies’ level of digital maturity and the 

characteristics of their data collection and storage systems often vary across the 

industry. Thus, use cases are derived based on the possible data maturity levels and 

their corresponding data requirements.  

The prescriptive study develops a method for identifying value streams 

automatically. The method builds on existing procedures and frameworks to develop 

a new solution for all use cases defined in the previous phase.  

Finally, the descriptive study II evaluates the conceptual methodology by validating 

it with a case study to demonstrate the applicability to practical contexts. Using 

exemplary use cases is an established approach in the broader field of Machine 

Learning, as it enables insights with practical relevance (McCutcheon & Meredith, 

1993). 

 



Chapter 2: Conceptual Background 19 

Chapter 2: Conceptual Background 

The following sections present the conceptual background on which this research has 

been developed. The Areas of Relevance and Contribution Diagram shown in Figure 

2-1 clarifies the foundations on which this research is based as well as the areas of

contribution (Blessing & Chakrabarti, 2009).

Figure 2-1: Areas of Relevance and Contribution diagram 

There are four main research areas involved in the identification of key value 

streams, namely Lean Production, Group Technology, Industry 4.0 capabilities, and 

Industry 4.0 technologies. The following sections provide an overview of each area, 

with a focus on the relation to the task of identifying value streams. First, an 

overview of value streams identification highlights the importance of this task in 

many IE applications, particularly for Lean techniques (2.1). Second, Production 

Flow Analysis is presented as an enabling technique for planning Group Technology 

and identifying key value streams (2.2). Third, an overview of Industry 4.0 illustrates 

the potential opportunities and capabilities that technologies can unlock in industrial 

environments (2.3). Finally, an overview of Processes Mining is presented together 

with the opportunities it unlocks in relation to grasping process complexity (2.4). 

2.1 THE IMPORTANCE OF VALUE STREAM IDENTIFICATION IN 
LEAN PRODUCTION 

A value stream is defined as “all the actions (both value-creating and nonvalue-

creating) required to bring a product through the main flows essential to every 
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product: (1) the production flow from raw material into the arms of the customer, and 

(2) the design flow from concept to launch” (Rother & Shook, 2003). The key 

requirement for value stream representation and analysis is focusing on one product 

family (Rother & Shook, 2003). Therefore, for the purpose of production analysis 

and design, a value stream is identified as the material flow of a single product 

family. Within a product family, all variants are treated as one representative product 

(Erlach, 2013). The identification of value streams is a key step in production 

optimisation. The underlaying idea is that by adopting the value stream perspective it 

is possible to transform the production into a value creating flow (Erlach, 2013). In 

the context of Lean Production, that started in 1950s with the Toyota Production 

System (TPS), following the book “The Machine that Changed the World”, Womack 

& Jones (1997) defined the key principles of Lean Thinking, namely specify value, 

identify and map the value stream, make the value flow, apply pull, and pursue 

perfection. The goal of these principles is identifying and removing sources of waste 

in production, which could come in different forms. While muda refers to 8 types of 

waste, namely transport, inventory, motion, waiting, over-processing, 

overproduction, defects, and skills, mura refers to process variability, and muri to 

excessive workload. To this end, Lean principles are supported by a set of 

established tools that enable the operationalisation of the key goals (Varela et al., 

2019). One of the most widespread Lean tools to uncover waste in production is 

Value Stream Mapping (Richter et al., 2023; Tortorella et al., 2020). In their 

renowned book, “Learning to See”, Rother & Shook (2003) defined the key steps of 

Value Stream Analysis to enable the optimisation of production processes by 

improving the whole. These steps include value stream selection through product 

family identification, current-state mapping, future-state mapping, and 

implementation (Rother & Shook, 2003). After mapping the value stream 

corresponding to a product family, the material and information flows can be 

analysed and improved using various approaches, including pull production, 

production levelling, and line balancing.  

Establishing pull is at the core of both Lean principles and value stream design 

principles (Rother & Shook, 2003; Womack & Jones, 1997). Pull production, 

together with levelled demand, enables a situation in which downstream processes 

obtain precisely the materials they need when they need it and upstream processes 
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are efficient (Smalley, 2004), thus limit the WIP (Hopp & Spearman, 2011). In line 

with the steps of value stream mapping defined by Rother & Shook (2003), creating 

a pull system can be achieved for one value stream at the time, focusing on a specific 

product family (Smalley, 2004).  

Production levelling (“Heijunka”) focusses on distributing the production volume 

and the production mix evenly over short periods. Thus, the levelling pattern is 

comprised of repetitive sequences of short periods that schedule the production 

according to fixed intervals. By decoupling production and customer demand, 

levelling enables the reduction of waste, unevenness, and overburden (i.e. muda, 

mura, muri) (Liker, 2020). Overall, a consistent or levelled production pace allows 

the production flow to predictable and enables quicker detection of anomalies 

(Rother & Shook, 2003). Conventional levelling approaches focus on manufacturing 

every variant in every interval period (i.e. “every part every interval” - EPEI), and 

they are suitable for large scale production with limited product diversity and stable 

demand (Deuse et al., 2013; Slomp et al., 2009). A solution for applying the levelling 

principles to high mix-low volume production environments is to create family-

oriented levelling pattern (i.e. “every family every interval” - EFEI), which requires 

dividing the production mix into roughly equal-sized families (Bohnen et al., 2011, 

2013).  

In the context of the production line assembling of a product, balancing the volume 

of production per shift is an established challenge (Sivasankaran & Shahabudeen, 

2014). While single-model assembly lines allow the production of a single product, 

mixed-model assembly lines allow the simultaneous assembly of different product 

variants or models (Sivasankaran & Shahabudeen, 2014). For mixed-model assembly 

line balancing problems, defining product families is an important step. By 

identifying a sufficiently large subset of products (i.e. product families), it is possible 

to reduce the idle times generated by the balancing lines that produce different 

variants. Then, the balancing problem can be solved for each product family before a 

setup-optimal sequence of product families is computed for a given interval (i.e. 

EFEI) (Deuse et al., 2013). 

After establishing the relevance of value streams for the successful implementation 

of Lean production, the following section presents the existing body of knowledge on 

how value streams can be identified. 
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2.2 GROUP TECHNOLOGY FOR IDENTIFYING VALUE STREAMS 

Identifying value streams, and in particular the associated material flows, requires the 

definition of product families and the identification of the related processing steps or 

resources. To this end, Group Technology is an established engineering philosophy 

that enables the identification of homogenous products from a manufacturing point 

of view and the processes required to make them (Burbidge, 1989; Hameri, 2011). 

For Industrial Engineering, Group Technology is essential for production 

optimisation (Deuse et al., 2022). The term Group Technology was first introduced 

by Mitrofanov as part of his research on the relationship between product shapes and 

processing methods. Central to his research was the idea that a lathe could make a 

“group” of similar parts (Mitrofanov, 1961). Then, the term evolved from group of 

parts to set of machines when an engineering company expanded Mitrofanov’s initial 

idea by adding additional machines to form a “group” that completes all parts it 

made (Burbidge, 1991). Eventually, Burbidge introduced Production Flow Analysis 

as a method for planning Group Technology (Burbidge, 1991). Thus, machines are 

grouped according to the routing of a family of parts (Burbidge, 1989), resulting in a 

factory organisation in which units (groups) complete all parts they make (Burbidge, 

1989, 1992). A detailed overview of Production Flow Analysis and its evolution is 

presented in the chapter dedicated to the systematic literature review (i.e. chapter 3).  

The underlaying philosophy of Group Technology is transferring the advantages of 

mass production to job-shop production. While traditionally manufacturing was 

organised according to processes (i.e. process organisation) in which organisational 

units were specialised in specific manufacturing processes, product organisation 

enabled by Group Technology allows to achieve several advantages (Burbidge, 

1991). These include lead time reduction, reduction in variation, better quality, 

bottleneck reduction, simpler production planning, and low inventories (Hameri, 

2011).  

In recent years, as industrial processes become more complex, simplification 

becomes more difficult, and searching and finding similarities in industrial processes 

is increasingly challenging. Thus, the traditional procedures underlaying 

Mitrofanov’s or Burbidge’s methods for Group Technology reach their limits. 
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However, the capabilities introduced by Industry 4.0 have unlocked the potential to 

couple these established methods with new technologies to improve their 

effectiveness. As such, combining the principles of Production Flow Analysis with 

the consistent use of production data enables streamlining the process of searching 

for similarities in highly complex systems (Deuse et al., 2022).  

As a result of the new opportunities provided by Industry 4.0, recent research has 

focused on combining established IE methods and principles with the capabilities of 

new digital technologies. While there is extensive research examining the synergies 

between Lean production tools and Industry 4.0, PFA has received limited attention 

in existing literature. Overall, the principles of Lean production have been adopted 

by companies across the world because of their ability to increase productivity, 

customer satisfaction, and profitability (Rosin et al., 2020). As a result, recent 

research has investigated the synergies between Lean tools, that are mostly free of 

information technology, and Industry 4.0 technologies that enable inter-connectivity 

and growing decision-making capabilities of systems. A mapping study (Rosin et al., 

2020) reviewing contributions that combine Industry 4.0 with Lean production 

principles and techniques, has observed that technologies including simulation, IoT, 

cloud computing, augmented reality and big Data Analytics have been exploited to 

improve the effectiveness of Lean principles such as takt time planning, pull systems, 

Jidoka and waste reduction. Therefore, companies should continue applying Lean 

methods and tools while improving their effectiveness using Industry 4.0 

technologies (Rosin et al., 2020). In line with this conclusion, this research argues 

that in modern complex environments the integration of Industry 4.0 technologies, 

particularly Process Mining and Data Analytics, with PFA principles enables 

effective value stream identification, which is an essential step for the application of 

Production Planning and Control techniques, including Lean methods. 

2.3 INDUSTRY 4.0 CAPABILITIES AND TECHNOLOGIES FOR 
IMPROVING THE EFFECTIVENESS OF VALUE STREAM 
IDENTIFICATION 

Industry 4.0 has emerged as new technological paradigm shift promoting the 

adoption of new digital technologies in manufacturing systems. The concept was 

introduced at the Hannover Fair in 2011 as part of an initiative to improve German 

competitiveness in manufacturing (Kagermann et al., 2013). As a result of the 
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integration of physical and digital systems, Industry 4.0 changes the traditional trade-

offs among priorities of cost, flexibility, speed, and quality (Olsen & Tomlin, 2020), 

and unlocks new opportunities for increased efficiency of processes and product 

differentiation. To harness these growth opportunities, companies are required to 

upgrade their digital competencies and capabilities (Schuh et al., 2020). 

According to an Industry 4.0 maturity model (Schuh et al., 2020), companies can 

upgrade their systems through six stages, with each building on the previous one and 

each enabling new capabilities. The two initial stages, computerisation and 

connectivity, are the basic requirements for digitalisation. While computerisation 

represents an isolated use of information technologies, connectivity refers to the 

interconnected but not yet completely integrated use of IT systems (Schuh et al., 

2020; Zeller et al., 2018). The four following stages represent the capabilities 

required for Industry 4.0.  

Visibility enables process recording from start to finish through the use of 

technologies such as sensors, which results in up-to-date models of factories (Schuh 

et al., 2020). These models, also called Digital Shadows, are data profiles containing 

the information of a system’s characteristics and historical, current, and future status. 

By providing an overview of what is happening on the factory floor at all times 

through integrated data models, Digital Shadows enable data-driven decisions (Tao 

et al., 2019). Despite of these benefits, generating Digital Shadows is not trivial, as 

companies face challenges including data being located across different sources (i.e. 

decentralised silos) and insufficient data collection (Schuh et al., 2020). Another 

challenge is represented by the fact that even when data is available, often companies 

do not know how to exploit the data they have effectively (Kusiak, 2017). To enable 

visibility, it is necessary to always create up-to-date models of the entire factory, 

instead of focusing on specific analyses (Schuh et al., 2020). 

Transparency enables the causal understanding of events and correlations through 

the analysis of data in engineering contexts. Based on the Digital Shadows generated 

by the previous stage, data is analysed by applying engineering knowledge to 

understand why something is happening, ultimately enhancing process knowledge 

and support complex decision-making (Schuh et al., 2020; Zeller et al., 2018).  

Predictive capacity enables the analysis of future state scenarios through simulation 

to anticipate future developments. The Digital Shadow generated by the previous 
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stages is used to project and analyse various scenarios and assessed in terms of 

likelihood (Schuh et al., 2020; Zeller et al., 2018).  

Finally, adaptability takes predictive capacity to a higher level by enabling 

automated actions and automated decision-making (Schuh et al., 2020). By using 

data and information produced by the Digital Shadow, it is possible to automatically 

trigger corrective actions without human intervention, thus operating as a Digital 

Twin. Although conceptually similar to Digital Shadows, Digital Twins are superior 

as they provide more accurate and comprehensive knowledge. By merging data from 

both the physical and virtual environments, Digital Twins generate high-fidelity 

models operating together with the system, and they are able to provide comparisons 

between real and simulated performances while highlighting deviations (Tao et al., 

2019).  

The realisation of the Industry 4.0 capabilities mentioned above strongly depends on 

the inter-connection and computerisation of traditional manufacturing environments 

(Y. Lu, 2017). Relevant enabling technologies include Internet of Things (IoT), 

Cloud computing, and Cyber Physical Systems (CPS).  

IoT is defined as “a dynamic global network infrastructure with self-configuring 

capabilities based on standard and interoperable communication protocols where 

physical and virtual ‘Things’ have identities, physical attributes, and virtual 

personalities and use intelligent interfaces, and are seamlessly integrated into the 

information network” (S. Li et al., 2015, p. 244) . Initially referring to the uniquely 

identifiable interoperable connected objects using RFID, IoT technology is now used 

in combination with other technologies such as sensors, actuators, and mobile 

devices (L. Da Xu et al., 2018). As a result of integrating tags and sensors into 

“things”, IoT enables information gathering, storing and transmitting. For 

manufacturing processes, this means that identification technologies allow to track 

and monitor products along their life cycle (S. Li et al., 2015). 

Cloud computing enables processing of large amounts of data and supports intensive 

computation. As opposed to traditional manufacturing environments where 

computing resources (e.g. servers, databases) are separate, cloud computing 

represents a solution for centralised computation and storage that supports complex 

decision-making tasks (L. Da Xu et al., 2018).  



 

26 A Process Mining Approach for Production Flow Analysis 

In Cyber Physical Systems (CPS), physical and software components are completely 

integrated, thus merging the physical and virtual world. As such, it is considered a 

key enabling technology for Industry 4.0, where multiple CPS form the Cyber-

Physical Production System (CPPS) for which equipment becomes increasingly 

intelligent. Together with IoT technologies, CPS enable the development of smart 

factories, that are at the core of Industry 4.0 (Alcácer & Cruz-Machado, 2019; L. Da 

Xu et al., 2018). 

As information technologies are integrated into manufacturing processes, large 

amounts of data become available. In general, Industry 4.0 architectures are 

comprised of various layers, with the lower ones collecting and monitoring 

equipment on the factory floor, and the higher ones doing data analysis for decision-

making purposes. This enables the generation of manufacturing data across various 

stages. Typically, data is collected from sources including equipment, products, and 

human operators by means of the IoT, RFID, and other sensors. This data is 

integrated and stored securely in warehouse systems or Cloud systems, and then 

processed to remove redundant or inconsistent information. Through Data Analytics, 

it is possible to generate valuable knowledge that can inform decisions about 

whether, when, and how to adjust the manufacturing processes and equipment (Tao 

et al., 2018).  

The use of Data Analytics in industrial applications is also referred to as Industrial 

Data Science (Deuse et al., 2022). More generally, Artificial Intelligence (AI) has 

been attracting increasing interest among researchers and industry practitioners for 

its capability of automated knowledge acquisition. An important subset of AI is 

Machine Learning, which applies algorithms to structured data in order to learn from 

it and build models without being programmed manually (Stanescu et al., 2018). 

Another important research area closely related to Machine Learning is Data Mining. 

While Machine Learning focuses on the automated induction of models, Data 

Mining focuses on knowledge discovery through the extraction of meaningful 

patterns from empirical data (Hüllermeier, 2011). Within Data Mining, Process 

Mining has been increasingly used for data analysis in production as it is able to 

analyse event logs from the factory and discover, analyse and ultimately suggest 

improvements for existing manufacturing processes (Knoll et al., 2019).   
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Process Mining is an emerging area connecting data science and processes science. 

The first significant work in this field was done by Wil van der Aalst in 1998, when 

he developed the first algorithms able to discover process models in the form of Petri 

Nets from event data. He is considered the “Godfather of Process Mining” and over 

the years he has earned multiple awards, including the prestigious German award 

Alexander-von-Humboldt Professorship. Building on Wil van der Aalst’s invention, 

an increasing number of use cases was discovered. Starting from the 2000s, Process 

Mining gained increasing interest within academia, while starting from 2010 it 

became increasingly adopted by companies including BMW and Siemens. In 2010, 

Wil van der Aalst published the first book on Process Mining, which got updated and 

extended in 2016 (i.e. “Process Mining: Data Science in Action”) and became the 

main reference in the field (Reinkemeyer, 2024).  

The increasing interest in Process Mining is due to its ability to facilitate the 

provision of insights based on factual data, enhancing process understanding and 

enabling improvements (van der Aalst, 2016). As opposed to Data Mining, which is 

a data-centric discipline focused on finding relationships and patterns in large 

datasets, Process Mining maintains a process-centric focus, providing as main output 

process representations in the forms of Petri Nets or BPMN (van der Aalst, 2016). 

Some of the questions that Process Mining can answer are: “What happened in the 

past?”, “What is likely to happen in the future?”, “How to control a process better?”, 

“How to redesign a process to improve its performance?” (van der Aalst, 2016). 

Similarl to Data Mining, Process Mining is a discipline based on data and its main 

data input is event logs. As a result, Process Mining algorithms for process discovery 

are able to transform the information contained in event logs into process models 

(van der Aalst, 2016). Event logs are sequential records of events where each event 

represents a specific step in the process (i.e. activities) and is related to a particular 

case. For each case a particular trace, that is a specific sequence of events can be 

recorded. In this perspective an event log can be seen as a collection of traces (van 

der Aalst, 2016).  

The data used for Process Mining applications follows a life cycle similar to that of a 

typical Industry 4.0 architecture (Tao et al., 2018). Thus, raw data can originate from 

different sources scattered across the organisation. Information is recorded by 

physical devices (e.g. RFID, IoT), web services, ERP systems, and transportation 
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systems (Chandra Bose et al., 2012). Then, data needs to be extracted, transformed, 

and loaded (ETL) into a target system such as a data warehouse or a relational 

database that unifies information. Due to the big amounts of data store in the data 

warehouse, different event logs may be extracted. A coarse-grained scope is defined 

based on the use case and questions to be answered. Finally, the event log can be 

further filtered (fine-grained scoping) based on the initial results (van der Aalst, 

2016).  

Figure 2-2: Process Mining workflow (adapted from van der Aalst (2016)) 

This process leads to the generation of an up-to-date digital model of factories 

represented using Petri Nets, process trees, or BPMN models. In other words, 

Process Mining creates a Digital Shadow of manufacturing processes and unlocks 

visibility in production (van der Aalst et al., 2021). As enabling transparency requires 

the application of the engineering knowledge to the captured data (Schuh et al., 

2020), this research integrates the capabilities of Process Mining with the principles 

of PFA to enable the identification of key value streams and ultimately support the 

application of essential Process Planning and Control methods in complex 

environments. As visibility and transparency represent the groundwork for unlocking 

advanced Industry 4.0 capabilities (Schuh et al., 2020), this work also provides the 

foundations for predictive and adaptive capabilities.  
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The following chapter systematically explores existing research in Process Mining 

and PFA, and it provides a detailed overview of the areas for future developments as 

well as the research gaps.  
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Chapter 3: Systematic Literature Review 

This chapter is published in the following conference proceedings:  

Tomidei, L., Sick, N., Deuse, J., & Clemon, L. (2022). Production Flow Analysis in 

the Era of Industry 4.0 : How Digital Technologies can Support Decision-Making in 

the Factory of the Future. In 2022 Portland International Conference on 

Management of Engineering and Technology (PICMET) (pp. 1-15). Piscataway, 

USA: IEEE. doi:10.23919/picmet53225.2022.9882711 

 

This section aims to clarify the research gaps and strengthen the validity of the 

research question. Therefore, the goal of this study is twofold (1) understanding the 

evolution of intelligent approaches in relation to Production Flow Analysis (PFA), and 

(2) capturing the potential of Process Mining to support decisions in manufacturing 

environments. By comparing the developments in PFA with the capabilities of Process 

Mining, it is possible to identify potential synergies and draw a future research agenda. 

The goal is to provide contribution to both academia and industry practice, with a 

particular focus on enhancing decision-making in manufacturing practice.  

3.1 METHODOLOGY 

A systematic literature allows to explore the existing research by using a 

structured approach. The main steps employed for this study follow the guidelines 

provided by (Levy & Ellis, 2006) and include selecting the database, defining the 

search strings and related filters as well as listing the inclusion and exclusion criteria 

used to select the final pool of relevant documents.  

The database used to review a broad range of high-quality scholarly literature is 

Scopus. In accordance with the twofold purpose of this study, two research bodies 

have been analysed. Table 3-1 summarises the search strings and filters. The keywords 

selected are based on the definitions provided in the previous section. In particular, the 

first search string combines definitions related to PFA with Industry 4.0, AI and the 

related subsets. This ensures that all types of intelligent approaches are returned by the 

search. 

http://doi.org/10.23919/picmet53225.2022.9882711


 

32 A Process Mining Approach for Production Flow Analysis 

Table 3-1: Search string 

Research area Search string Filters 

Intelligent 
approaches for 
PFA 

TITLE-ABS-KEY ( ( ( "cellular 
manufacturing"  OR  "cell 
formation"  OR  "cell design"  OR  "group 
technology"  OR  "Production Flow 
Analysis" )  AND  ( "industry 
4.0"  OR  "industrie 4.0"  OR  "artificial 
intelligence"  OR  "machine 
learning"  OR  "data 
mining"  OR  "Process 
Mining"  OR  "neural networks" ) ) ) 

Document 
types: 
articles, 
reviews 

Process Mining 
approaches in 
manufacturing  

TITLE-ABS-KEY ( "Process 
Mining"  AND  manufacturing ) 

 

Document 
types: 
articles, 
reviews 

 

Table 3-2 lists inclusion and exclusion criteria for each research area. Based on 

the definition of Production Flow Analysis proposed by (Burbidge, 1989), only Group 

Technology is considered for the cell formation problem, while other aspects such as 

layout design and machine scheduling are excluded, as they do not strictly focus on 

the concept of Group Technology (i.e. forming families of parts and machines). 

Production Flow Analysis focuses on identifying families of parts that are processed 

by the same machines. Therefore, relevant papers are considered those that focus on 

Group Technology or the cell formation problem and use intelligent approaches. For 

example, Singgih (2021) proposes a Machine Learning based framework to identify 

factors that affect the system throughput level in a semiconductor fab. Although the 

approach is named Production Flow Analysis, the aims do not include those proposed 

(Burbidge, 1989) (i.e. part-machine grouping) and therefore the study has not been 

included.  

Table 3-2: Inclusion Criteria 

Research area Inclusion criteria  

Intelligent 
approaches for PFA 

The methodology fits in the definition of Production 
Flow Analysis proposed by Burbidge. 

The paper addresses group technology and the cell 
formation problem – either in the form of 
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application or literature review (scheduling aspeects 
and layout design are not considered). 

The cell formation problem is solved through an 

intelligent approach. 

 

Process Mining 
approaches in 
manufacturing  

The paper applies Process Mining techniques to a 
manufacturing context. 

The paper applies Process Mining to a context 
applicable to manufacturing. 

 

In order to define intelligent approaches, the framework provided by Burggraf 

et al. (2021) has been applied. Although traditionally within intelligent resolution 

approaches of most interest fuzzy systems and expert systems are included, the authors 

exclude these from their framework. In line with other authors (Drira et al., 2007; 

Hosseini-Nasab et al., 2018) fuzzy data and fuzzy systems are classified as data types 

instead of resolution approaches. As expert systems are a representation of an expert’s 

knowledge, they lack the capability of learning independently and being able to find 

unseen correlations and solutions, which Machine Learning systems have. Therefore, 

within intelligent approaches, their framework focuses on Machine Learning 

approaches and the different models they are comprised of. In particular, Artificial 

Neural Networks (ANN) have been attracting most research interest and for that reason 

this keyword has been added to the search string (Burggraf et al., 2021). In addition to 

the elements included in the framework proposed by Burggraf et al. (2021), data 

mining and Process Mining have also been included in the search string as they both 

represent sub-domains of artificial intelligence. 

For the review of Process Mining applications in manufacturing contexts, 

relevant papers describe applications in manufacturing contexts or applications that 

are applicable to manufacturing contexts.  

3.2 RESULTS 

The final samples have significantly different sizes. The literature focusing on 

intelligent approaches for PFA includes 122 papers, while the one on Process Mining 

approaches in manufacturing includes 49 papers. The main difference lays in the time 

when publication activity started for the two research areas. By comparing the number 

of relevant papers per year (see Figure 3-1), it is possible to see how the research 
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interest varies over time. Machine learning and data mining techniques have been used 

by academics and industry practitioners for decades. In fact, soon after Production 

Flow Analysis was proposed by Burbidge in 1970s, solutions of intelligent approaches 

for group technology have been steadily explored. In line with the findings provided 

by another recent literature review, results show that this research area experienced its 

maturity before the 2000s and maintained popularity in the following years 

(YounesSinaki et al., 2023). On the other hand, research on Process Mining 

applications in manufacturing contexts has gained interest only in the last decade, 

despite of the fact that data mining tools have been available for much longer. The 

reason is that Process Mining provides a representation of production processes based 

on event logs collected from the factory, and through the advent of Industry 4.0, 

manufacturing systems have become more digitalised, and it has been possible to 

collect an increasing amount of data. Therefore, studies in this field have been 

exploring how Process Mining techniques can assist informed decision-making for 

manufacturing systems.  

Figure 3-1: Research contributions in Process Mining and Production Flow 
Analysis over time 

As expected, most contributions for both research areas focus on engineering 

and computer science, respectively. Interestingly, business, management and 

accounting, and decision sciences follow next for both research streams, representing 

8.6% and 9.1% of contributions for PFA, and 8.7% and 7.9% for Process Mining. This 

highlights the importance of these techniques to support decision making processes 

and business decisions.  
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order to find an optimal solution for Group Technology. Experiments are carried out 

to validate performance and only few studies illustrate applications involving 

industrial case studies. Yet, for most of those production data is collected manually, 

and then fed into a proposed algorithm. Figure 3-3 illustrates the different approaches 

that emerged from the literature review. The majority of them relies on Machine 

Learning techniques, often combined with metaheuristics. Appendix A provides a 

more specific analysis of the approaches emerged from this part of the literature.  

Figure 3-3:  Techniques for Intelligent Production Flow Analysis 

Machine Learning techniques include a variety of algorithms, which can be 

classified as either supervised learning or unsupervised learning. In general, supervised 

learning algorithms are able to gain knowledge from a dataset in which targets are 

labelled cases, and then use these to predict new cases (unlabelled). Unsupervised 

learning algorithms handle datasets that have not been classified and group them into 

clusters (Berry et al., 2019).  

In the last few decades, the interest in Machine Learning algorithms for Group 

Technology applications has varied. Figure 3-4 illustrates the different research trends 

that have formed throughout the years. It is possible to note that the research interest 

in specific intelligent approaches has not been constant. Most notably, while 

supervised ANN, ART1 neural networks, and self-organizing maps have been 

extensively explored between 1990 and 2000, the research interest in the following 

decades has visibly dropped. On the other hand, metaheuristics approaches such as ant 

colony and genetic algorithm have regained popularity in the last decade. 
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Figure 3-4: Research trends of intelligent approaches for PFA over time (M: 
Metaheuristics, ML: Machine Learning, S: Supervised Learning, U: 

Unsupervised Learning) 

The literature review also returned a considerable number of reviews, 

demonstrating a generally high interest in the topic. YounesSinaki et al. (2023) 

investigate the cellular manufacturing design problems trends between 1996 and 2021 

by providing a classification for numerous publications concerning the problem 

formulation and solution procedures. Ghosh et al. (2014) conducted a review on the 

evolvement of intelligent approaches based on artificial neural networks (ANN) in the 

context of cellular manufacturing. Similarly, El-Kebbe & Danne (2006) proposed an 

overview of neural networks-based approaches for machine-part grouping. 

Chattopadhyay et al., (2013) slightly broadened the scope by proposing a review on 

ANN and genetic algorithms approaches. Papaioannou & Wilson (2010) conducted a 

review of the evolution of all resolution approaches for the cell formation problem. A 

decade earlier, Venugopal (1999) conducted a review on all soft-computing 

approaches used for the group technology problem. Renzi et al. (2014) focused on a 

wider range of cellular manufacturing problems, including cell formation problem, 
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layout and scheduling, and propose a review of intelligent approaches for these three 

domains.  

As the focus of the reviews suggests, ANN is one of the most popular intelligent 

approaches used for cell formation problems. Table 3-3 shows the types of ANN that 

emerged from the literature review for this study.  

Table 3-3: ANN Approaches for Production Flow Analysis 

ML Approach ANN Algorithm Occurrence  

Supervised Back propagation 60% 

Forward propagation 27% 

Recurrent 13% 

Unsupervised ART1 36% 

Fuzzy ART 25% 

Self-organising maps 23% 

Interactive activation and competition 7% 

Competitive rule 3% 

Fuzzy self-organising maps 2% 

ART2 2% 

Fuzzy min-max 2% 

Transiently Chaotic 2% 

 

Very few contributions in this research area propose methods used for industrial 

applications, and although these use intelligent approaches for the resolution of the cell 

formation problem, data is still collected using traditional methods. The most popular 

intelligent approach for industrial applications is ANN. This is often combined with 

other heuristic approaches and sometimes modified to handle fuzzy datasets that 

represent uncertainty. S. C. Y. Lu & Ham (1989) proposed a goal-directed part 

classification framework for group technology based on an unsupervised learning 

algorithm – conceptual clustering. The authors demonstrated their approach through a 

case study using John Deere’s database which included over 1000 rotational parts. The 

variables representing part features were selected manually based on experts’ 

knowledge and these were used as input for the clustering algorithm proposed by the 

authors. F. F. Chen & Sagi (1995a) developed a decision support system that assist 
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manufacturing cell design as well as definition of cell control functions. By using 

simulation technology and ANN, the authors propose a methodology that 

simultaneously focuses on the cell formation problem and the required cell control 

functions. The approach is applied to an industrial case study consisting of an 

automated manufacturing cell. As the methodology is based on an existing industrial 

scenario, the authors define as a first step the description of operations (DO) and the 

definition of functional specifications (FS). These parameters are collected manually 

at the start, and they are particularly important as the concurrent configuration of the 

cell and its control functions is based on them. Depending on the simulation output 

and the predicted unit cost, DO and FS may need to be revised. Seo & Park (2004) 

proposed a methodology to solve the recycling cell formation problem. In this 

scenario, group technology is used to classify products in recycling part families in 

their end-of-life phase. The authors developed a methodology based on a fuzzy C-

mean algorithm combined with a modified fuzzy neural network. The approach has 

been applied to a scenario which describes the disposal of refrigerators. The dataset 

includes information collected by an experiment of disassembly disposal refrigerators 

and a recycling centre. This information needed to be reviewed manually to extract the 

relevant attributes. Based on these attributes, the methodology was able to define 

recycling cells. Mahmoodian et al. (2019) developed an intelligent particle swarm 

optimisation algorithm that exploits self-organising map neural networks to solve the 

cell formation problem. The authors validated their methodology by applying it to a 

company from the agricultural manufacturing sector. The approach produces an 

incidence matrix in a diagonal block form representing the optimal cell formations. 

For the industrial application, the incidence matrix has been first defined manually and 

then used as a base for the algorithm. Aloudat et al. (2008) built a tool that is exploits 

data mining techniques and ANN to examining factors that impact cell quality 

performance and suggest improvements. Recommendations focus on a variety of 

aspects including the formation of family products, part processing sequence and 

machine process capability. As data mining allows to discover meaningful correlations 

and patterns from structured datasets, the authors use these techniques to analyse how 

different variables in running family products interact and affect the cell quality 

performance. The approach has been applied to an industrial case study in which 261 

quality reports were collected for validation. 
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3.3.2 Process Mining in Manufacturing 

Process Mining is explored in a variety of ways in order to propose approaches 

that can be applied to existing industrial scenarios. The potential of this technique lays 

in its ability to generate automated process models, which allow to obtain a transparent 

and reliable representation of the shop floor. Based on this, it is possible to analyse 

and estimate the performance of the manufacturing system or more generally to 

support the application of other techniques such as value stream mapping. 

Traditionally, Process Mining applications could be distinguished into three 

main categories, namely process discovery, process conformance, and process 

enhancement W. M. P. van der Aalst, 2012). More recently, van der Aalst (2022) 

presented an updated framework categorizing six types of Process Mining tasks, 

namely process discovery, conformance checking, performance analysis, comparative 

Process Mining, predictive Process Mining, and action-oriented Process Mining (van 

der Aalst, 2022).  

Through process discovery, process models are generated based on the example 

behaviour contained in the event log. Conformance checking compares an event log 

(i.e. observed behaviour) and a process model (i.e. modelled behaviour) for evaluation 

purposes. Performance analysis aims to uncover problems such as limited 

productivity, excessive rework, and tardiness to improve processes. Comparative 

Process Mining uses as input multiple event logs referring to different locations, 

categories, or time periods to draw insights. Predictive Process Mining is used in 

combination with Machine Learning to create predictive models to foresee 

performance problems. Finally, action-oriented Process Mining aims to turn 

diagnostics into action by enabling an understanding of events occurred in the past, 

happening in the present, and likely to happen next in the process (van der Aalst, 2022). 

The literature provides a range of studies within the manufacturing context, 

whose purpose can be framed mainly into three of the six categories defined by Van 

Der Aalst (2022), namely process discovery, performance analysis, and predictive 

Process Mining (see Figure 3-5).  
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Figure 3-5: Process Mining types in Manufacturing 

The majority of contributions use Process Mining to analyse the performance of 

manufacturing systems and assist domain experts in production planning and control 

decisions. This portion of the literature evaluates system performance by using Process 

Mining to execute specific operations management tasks, analyse specific KPIs, or 

improve the effectiveness of established Lean tools and techniques for production 

analysis and improvement.  

Several studies focus on specific production tasks including bottleneck analysis 

(Kumbhar et al., 2023; Laghouag et al., 2024; Rudnitckaia et al., 2022), quality 

assurance (Cho, Park, Song, Lee, & Kum, 2021; Duong et al., 2021; C. K. H. Lee et 

al., 2014, 2016), and layout design and optimisation (Ceylan et al., 2023; Rismanchian 

& Lee, 2017). Other contributions focus on the analysis of specific parameters for 

performance evaluation including production throughput (Lugaresi & Matta, 2023) 

and waiting and execution time (J. Park et al., 2014). In some cases, the performance 

of a manufacturing system is evaluated using conformance analysis. For example, 

Lorenz et al. (2021) proposed a three-phase procedure in which two process models 

are built defining both the planned model and the real one, then they are compared to 

check process conformance and analyse production waste, and the findings are used 

to inform decisions for process improvement. A few studies use Process Mining to 

improve the effectiveness of Lean tools and techniques for process improvement. 

Horsthofer-Rauch et al. (2024) propose a framework for sustainability-integrated 

VSM using Process Mining, Tran et al. (2021) propose a method that integrates 

positional and manufacturing data to enable VSM and the collection of Lean KPIs, and 
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Knoll et al. (2019) used multidimensional Process Mining techniques to enable VSM 

and waste analysis for internal logistics. 

Contributions using Process Mining for process discovery tasks are focussed on 

automating the generation of process models for creating Digital Twins in smart 

factories (Friederich et al., 2022; Yadav et al., 2023) or some of the complexities of 

manufacturing processes including assembly lines (Lugaresi & Matta, 2023), support 

processes (Lugaresi et al., 2023), and distributed departments (Sarno & Effendi, 2017). 

In general, real-life processes are often unstructured and complex, leading to the 

discovery of “spaghetti-like” process models (Kong et al., 2018). Based on this 

observation, two contributions have addressed the cell formation problem using 

Process Mining combined with the principles of Group Technology, that enable the 

definition of homogenous groups of resources (i.e. machines). Kong et al. (2018) 

developed a two-mode modularity clustering method based on new similarity 

measures to formulate a cell formation solution. The authors use an ordinal part-

machine matrix that represents information about incidence and transitions, and they 

use an event log from a Dutch financial institute to validate their method through ProM 

software package.  Delcoucq et al. (2023) propose a hierarchical cell formation 

algorithm to cluster resources that share the same behaviour. The approach aims to 

connect the resource perspective and activities perspective in Process Mining by using 

a normalised frequency-based incidence matrix combined with a Direct Clustering 

Algorithm, and an evaluation is made by measuring precision and recall values for the 

resources. Finally, although the study proposed by Rismanchian & Lee (2017) focuses 

on a healthcare context, the idea behind the methodology can also apply to a 

manufacturing context. In fact, the authors employed Process Mining to derive process 

models of noncritical patients and critical patients in the emergency department of an 

hospital. These are used to determine the optimal layout of the department with the 

goal of minimising the distance travelled by patients, maximising specific design 

conditions, and minimising the relocation costs. Similarly, in a manufacturing context, 

the same approach can be adopted to use Process Mining in order to assist layout 

design and analysis based on production data. 

Existing contributions using predictive Process Mining focus on the estimation 

of specific process parameters depending on the use case. Thus, contributions 

focussing on sustainable manufacturing propose methods for estimating carbon 
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emissions (Wu et al., 2024) or for the simulation of energy consumption (Kaniappan 

Chinnathai & Alkan, 2023), while those focussing on scheduling and preventive 

maintenance planning focus on time estimation (Ruschel et al., 2021). 

A synoptic table listing contributions of Process Mining in manufacturing is 

included in Appendix B. 

3.4 SUMMARY 

The research areas examined in this literature reviews share some similarities 

and demonstrate potential synergies. Both the research areas use intelligent techniques 

to address challenges emerging from manufacturing systems. In the context of Group 

Technology, the use of Machine Learning has been widely investigated and tested. 

However, as the literature review has shown, the majority of studies share similar 

characteristics: (a) they use intelligent approaches only for the resolution of the cell 

formation problem, (b) few studies validate their methodology through a case study, 

and (c) in these cases production data is collected manually. On the other hand, in the 

era of Industry 4.0, there is an increasing amount of data generated by manufacturing 

systems, which unlocks new opportunities for capturing the real production flows and 

gaining knowledge of the production floor at any time (Lorenz et al., 2021; Lugaresi 

& Matta, 2021). In this context, Process Mining has been receiving increasing interest 

among researchers for its ability to provide an accurate representation of production 

processes, which is crucial for managing the manufacturing system effectively. In fact, 

valuable decisions can only be taken when they are based on the assumption that 

process models are sufficiently aligned with the real system (Lugaresi & Matta, 2021). 

Accordingly, the literature review has demonstrated that Process Mining contributions 

include a significantly higher number of industrial applications.  

3.5 RESEARCH IMPLICATIONS 

Nowadays, manufacturing systems are extremely complex and having an 

accurate representation of real production processes is essential in order to build any 

other analysis. Research on Production Flow Analysis extensively validates the use of 

Machine Learning techniques for the effective resolution of Group Technology. Yet, 

studies in this area include scarce industrial applications and their main characteristics 

have not evolved consistently in the last decade. In order to provide contribution not 

only to academia but also to industry practitioners, new approaches should focus on 
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real production processes and accurate representations of existing manufacturing 

systems. Process Mining has been receiving increasing interest only recently, but it 

has already shown good potential for practical solutions. Contributions in this area 

address a variety of use cases, including Lean applications and layout design. 

Applications of Process Mining to Group Technology problems have hardly been 

explored yet, despite of the high potential for supporting decision making in this 

context. Existing contributions in the area maintain a focus on developing new 

clustering approaches and similarity measures (Kong et al., 2018), or clustering 

algorithms focused on the resource perspective of Process Mining (Delcoucq et al., 

2023). Therefore, a future research agenda for Production Flow Analysis calls for 

approaches that demonstrate high practical applicability and exploit the data available 

on factory floors. In this context, Process Mining has the potential to assist the analysis 

and provide accurate models that can be used as a base for Production Flow Analysis.  

Based on the detailed review provided in this study, the following suggestions 

have been developed: 

• Advance approaches based real production data extracted directly from 

the factory floor to provide a reliable representation of production 

systems on which valuable decisions can be taken 

• Apply the established principles of PFA to real production data and 

Process Mining techniques 

• Further enhance the integration between digital technologies capturing 

the state of production systems at any point in time and decision-making 

models  

• Provide companies with guidelines to implement such approaches 

These recommendations aim to provide an opportunity to advance research in 

the established field of PFA and the emerging area of Industry 4.0.  

It is important to note that this literature review has focused on Manufacturing 

settings and the potential synergies generated by PFA and Industry 4.0 technologies 

and Process Mining in particular. Some results (Rismanchian & Lee, 2017) have 

suggested that some other applicable fields may also contribute to this research. For 

example, Process Mining applications in the healthcare industry has the potential to be 
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applied and adapted to the needs of manufacturing contexts. Thus, expanding the 

research to such industries could enhance contribution. In addition to this, in order to 

specifically focus on PFA, the research design has excluded contributions that do not 

focus on the cell formation problem. These include studies on the scheduling problem 

within cells and layout design. However, these aspects are equally important for 

efficient operation of the factory. At the same time, as Process Mining allows to extract 

a structured dataset from the factory floor, this information could be used to develop 

advanced tools that address multiple aspects at the same time, including the cell 

formation problem, scheduling problem, and layout design.  

After demonstrating the synergies between Production Flow Analysis and 

Process Mining, the following chapter provides a detailed analysis of the requirements 

for the application of Process Mining. This enables the definition of relevant use cases 

and directly informs the characteristics of the method for identifying key value 

streams. 
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Chapter 4: Industry Analysis and 
Requirements Definition 

The quality of the result of Process Mining application is closely related to the input, 

that is event data (van der Aalst et al., 2012). Thus, data quality is crucial for the 

success of Process Mining (van der Aalst, 2016). In practice, the characteristics of 

data collection systems vary, meaning that the ability of generating quality event logs 

cannot be assumed consistent across the industry. Understanding the data 

requirements and the possible implications on the applicability of the method 

developed in this research enables the identification of suitable use cases. 

In his work as inventor and pioneer of Process Mining, Wil van der Aalst has laid the 

essential groundwork for the definition of requirements in the field (Reinkemeyer, 

2024). In particular, in establishing guiding principles for Process Mining, the 

“Process Mining Manifesto” published in 2012 by the IEEE Task Force on Process 

Mining and led by Wil van der Aalst (van der Aalst et al., 2012) sets key 

requirements for these applications. 

4.1 DATA REQUIREMENTS 

Production data including information about product routings is extracted in the form 

of event logs, that are a collection of events describing various process states. In 

regard to the definition of event logs, the IEEE Task Force on Process Mining states 

that: “All Process Mining techniques assume that it is possible to sequentially record 

events such that each event refers to an activity (i.e., a well-defined step in some 

process) and is related to a particular case (i.e., a process instance). Event logs may 

store additional information about events. In fact, whenever possible, Process Mining 

techniques use extra information such as the resource (i.e., person or device) 

executing or initiating the activity, the timestamp of the event, or data elements 

recorded with the event (e.g., the size of order)”(van der Aalst et al., 2012). In other 

words, event logs are generated based on the assumptions that a process includes 

different cases, events are associated to exactly one case, and they can have attributes 

associated (e.g. activity, time, cost, resources) (van der Aalst, 2016). 

 



Definition: Events and Attributes (van der Aalst, 2016)

Let E be the event universe and AN a set of attribute names characterising events.

For any event e  E and name n AN, #n(e) is the value of attribute n for event e.

Standard attributes include #activity(e) and #timestamp(e).

Definition: Classifier (van der Aalst, 2016)

A classifier is a function that maps the attributes of an event onto a label used in the 

resulting process model, where e indicates the name of the event. If events are
identified by their activity name, then e = #activity(e).

Definition: Cases, Traces, Event Log (van der Aalst, 2016)

Event logs consist of cases and cases consist of events. Let L being the case 

universe. Cases, like events have attributes. For any case c  L. and name n  AN:

#c(e) is the value of attribute n for case c. Each case has a special mandatory attribute

trace, cˆ = #trace(e). A trace is a finite sequence of events   E* such event appear

only once. An event log is a set of cases L  E such that each event appears at most

one in the entire log. If an event log contains timestamps, then the ordering in a trace 

should respect these timestamps.

Case
Attribute

Mandatory*

1
1 1 * One of the two 

is mandatory 
(classifier)

*
Process Case Event

*1 1 1

* * * Mandatory
1 Activity 

Instance
Event 

AttributeActivity 1
Optional

Event 
Level

Process Model 
Level

Case/Instance 
Level

…

Optional

Figure 4-1: Class diagram and data quality (based on van der Aalst (2016))
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In Manufacturing, event logs may contain information about a product, what 

scanning point it visited (where), and when, noting that multiple scanning points may 

be associated with different operations. Often event logs also contain additional 

information (i.e. attributes), specifying additional information such as order ID or 

batch number.  

PRODUCT_NAME SERIAL_NO SCAN_POINT OPERATION_ID TIMESTAMP … 

A XYZ SC001 OP_1 29/11/22 10:05 … 

A XYZ SC005 OP_2 29/11/22 10:23 … 

A XYZ SC006 OP_3 29/11/22 11:21 … 

.. .. .. .. .. … 

D XXX SC012 OP_2 30/11/22 16:11 … 

D XXX SC021 OP_3 30/11/22 17:22 … 

Figure 4-2: Example of a complete event log (as used for this research) 

Table 4-1: Event Log attributes description 

 Attribute 
type 

Description  

Product 
Serial 

Case ID Unique product identifier (i.e. process 
instance) 

Product ID Case 
Attribute 

Product name 

Operation 
ID 

Activity Activity in the manufacturing process (may 
be associated to one or more scanning 

points) 

Scanning 
Point 

Location Location where product get recorded 

Timestamp Timestamp Time 

 

The principles of Production Flow Analysis focus on the analysis of product routes 

for identifying product families and the resources they require (Burbidge, 1991). 

Defining product routings requires identifying individual products, resources, and 

times. Therefore, in order to use event logs for automated Production Flow Analysis 

applications, a minimum of three essential attributes need to be present in the event 

log, including unique product identifiers (i.e. case ID), information about work 

operations or location (i.e. Activity or Location), and timestamps. A case or process 

instance is associated to a record of n events, e1, e2, … en. Thus, this process instance 

has a trace !!" , !"" ,…	!#&&& associated to it (van der Aalst, 2016). By using activity names 
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as classifier, the trace corresponds to a sequence of activities. This enables the 

definition of operation sequences for each product in the factory. For PFA 

applications, it is essential to record product routings. 

4.2 DATA COMPLETENESS AND USE CASES 

Event logs should be complete, trustworthy (i.e. they reflect what happened in 

reality), have well-defined semantics, and the data should be safe (van der Aalst et 

al., 2012). However, in practice, even logs often have quality issues, including 

incompleteness, noise, and imprecision. Typically, possible issues regarding event 

log quality include missing data, incorrect data, imprecise data, and irrelevant data 

(Chandra Bose et al., 2012). Based on these considerations, Van Der Aalst et al. 

(2012) defined five maturity levels for event logs. Process Mining techniques can be 

used in scenarios corresponding to the top three levels of the maturity model. While 

theoretically Process Mining can be applied using event logs from the lower two 

levels, the analysis is problematic as the results are not considered trustworthy (van 

der Aalst et al., 2012). 

 

Table 4-2: Maturity levels for event logs defined by van der Aalst et al. (2012) 
and implications for this research 

Level Characterisation  Implications for 
Production Flow Analysis 
applications 

⋆ ⋆ ⋆ ⋆	⋆ Event logs are of excellent 
quality, and they are generated 
automatically, systematically, 
and safely. They are trustworthy 
and complete, and privacy and 
security issues are considered. 
The events have clear 

semantics. 

Optimal Event Log  
 

The event log does not need 
to be pre-processed. The 
event log can be directly 

used for PFA. 

⋆ ⋆ ⋆ ⋆ Event logs are generated 
automatically, and they are 
trustworthy and complete. 

Notations are recorded 

explicitly (e.g. case or activity). 

  

Event Log Pre-Processing 
 

The activity attribute (i.e. 
work operation) is not 
explicitly recorded. Instead, 
the event log only records 
the location products visit 

(i.e. scanning point).  



Chapter 4: Industry Analysis and Requirements Definition 51 

The case attribute specifying 
the association between 
product serial numbers and 
products (i.e. product ID) 
may also be missing. 

⋆ ⋆ ⋆ Event logs are generated 
automatically but not 
systematically. They are 
trustworthy but not necessarily 
complete.  

Event Log Cleaning and 
Filtering 

PFA can be applied. When 
possible, the event log needs 
to be repaired before being 
used for PFA.  

⋆ ⋆ Information in the event logs is 
collected automatically but 
there is no systematic approach 
in deciding which events are 
recorded. Information may not 
be trustworthy.  

Process Mining techniques 
cannot be applied. Therefore, 
it is not possible to have an 
automated approach for 

PFA. 

⋆ Poor quality event logs that may 
not match physical processes 
(e.g. events manually recorded). 
Information may not be 

trustworthy. 

Process Mining techniques 
cannot be applied. Therefore, 
it is not possible to have an 
automated approach for 

PFA. 

Depending on the level of digital maturity of a manufacturing firm, not all the data 

points may be available and/or explicitly included in the event log. In order to 

develop an automated approach for Production Flow Analysis, it is necessary to take 

into account all the possible use cases (see Figure 4-3).  

Figure 4-3: Conceptual structure for Process Mining-based PFA 

Event Log Pre-Processing
⋆ ⋆ ⋆ ⋆

Event Log Cleaning and Filtering
⋆ ⋆ ⋆

Event Log for Production Flow 
Analysis
⋆ ⋆ ⋆ ⋆ ⋆

Establishing policies for handling 
missing, incorrect, and imprecise values

Deriving relevant attributes to PFA 
by using available data

Direct application of PFA



4.2.1 Optimal Event Log

For excellent quality event logs, it is possible to proceed with the Process Mining-

based method for PFA. This is valid whenever the event log contains the attributes

presented in Table 4-1 and there are no missing, incorrect, or imprecise instances.

4.2.2 Event Log Pre-Processing

The simplest form of an event log would only include information related to product

identifiers, the location in which they got recorded, and when (i.e. product serial 

number, scanning point ID, timestamp).

To allow a more detailed analysis, additional attributes may also be needed. On one 

hand, unique product identifiers (i.e. serial numbers) may be associated to a product 

name or ID. For example, if the event log was recording the manufacturing processes 

of an electronic goods manufacturer, the unique product identifier could represent a 

serial number and the product ID could represent the name of a product (e.g. phone 

model, tablet model). On the other hand, to identify the product routes, either a 

scanning point attribute or a work operation attribute may be present. While knowing 

the activity that products undergo enables direct discovery of their routing, knowing 

what scanning point they visited may require additional pre-processing steps before 

identifying value streams and generating the corresponding process models. In fact, 

multiple scanning points may be associated to the same work operation or activity.

For example, this may be the case whenever there are machines executing the same

activity in parallel and products can use any of the available machines.

OP2
X-ray inspection

SC

OP1
Printing

SC SC

SC

SC

OP3
Labelling

OP4
…

SC
SC

SC S
SCSC

SC

Figure 4-4: Visual representation of the relationship between operations and
scanning points
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4.2.3 Event Log Cleaning and Filtering 

In practice, data quality problems can be common (Bose et al., 2013). Yet, the 

presence of these issues may not always be obvious. Missing data can be detected 

easily due to the absence of specific values for some of the events. In this case, the 

event log can be cleaned before continuing with any further data processing. 

Similarly, the limitations of information coarseness generated by imprecise attributes 

are also straight-forward. Instead, incorrect attributes may be harder to detect, 

especially if the behaviour is infrequent, that is attributes are occasionally recorded 

with uncertainty (Pegoraro & van der Aalst, 2019). Therefore, mechanisms for 

filtering out infrequent behaviour need to always be present. 
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Chapter 5: Method Development 

Sections of this chapter have been published in the following conference 

proceedings: 

Tomidei, L., Sick, N. & Mathieson, L. (2024). Data-Driven Value Stream Analysis Using 

Process Mining And Machine Learning. In 51st International Conference on 

Computers and Industrial Engineering (CIE51). Sydney, Australia.  

Tomidei, L., Sick, N., Deuse, J. & Guertler, M. (2023). Extracting Key Value Streams 

using Process Mining and Machine Learning. In IEEE Conference on Engineering 

Informatics. 2023 IEEE Engineering Informatics, 1–7. 

https://doi.org/10.1109/IEEECONF58110.2023.10520644  

 

This section outlines the overall methodology used to develop an automated 

approach for Production Flow Analysis. First, the core method is presented. This 

covers the optimal use case, in which a company is able to record event logs that are 

excellent quality and therefore no repairing or pre-processing is required. Second, the 

algorithm for event log pre-processing is presented. This is required for event logs 

that only record scanning points (i.e. the location that products visit) and not the 

associated operation. Finally, the implications for using event logs with process 

instances that are missing, incorrect, or imprecise are discussed.  

An overview of the method for identifying value streams is illustrated in Figure 5-1. 

 

https://doi.org/10.1109/IEEECONF58110.2023.10520644
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5.1 OPTIMAL EVENT LOG 

In the context of Industry 4.0, Process Mining has been increasingly used for 

data analysis in production as it is able to analyse event logs from the factory and 

discover, analyse and ultimately suggest improvements for existing manufacturing 

processes (Knoll et al., 2019). When the underlaying processes are complex, the 

corresponding even log is characterised by high levels of diversity, which results in 

“spaghetti models” and difficult interpretability (Song et al., 2009). This is the case for 

manufacturing systems that produce a large variety of products. Individual parts are 

associated to specific products, and their routings are recorded in an event log in the 

form of traces. In these scenarios, the assumption is that there are several structured 

process variants within one event log (Song et al., 2009). Based on the definition of 

value streams as sets of actions that bring a product family to the customer, it is 

possible to assume that these process variants represent value streams (i.e. product 

families and associated operations).  

The identification of process variants as groups with homogenous traces is 

enabled by trace clustering, which is a common pre-processing technique in Process 

Mining. The idea behind clustering traces is to establish what makes two traces similar. 

This can be done by defining a profile for the trace, that describe its behaviour from a 

specific perspective (Song et al., 2009). For the purpose of this research, trace profiles 

describe product routings, and the trace clusters represent the key value streams.  

The core method used for the identification of value streams from production 

data follows the framework for trace clustering in Process Mining proposed by 

(Zandkarimi et al., 2020), which is based on five consecutive steps, namely feature 

generation, feature transformation, feature selection, clustering input definition, 

clustering, and evaluation. 

Thus, production data is extracted in the form of an event log and used to 

discover the process model representing all material flows. Then, the key value streams 

are identified using the key consecutive steps for trace clustering (Zandkarimi et al., 

2020): feature generation, feature selection, clustering input definition, and clustering. 

The evaluation is done on both the process models of each value stream and clustering 

performance metrics.  



1. Generation of Comprehensive 
Production Process Model

Core Method for trace clustering 
Metadata in the model 

Figure 5-2: Method for value stream identification using optimal event logs 

In production contexts, event logs are expected to include traces for each unique 

product moving across the factory floor. In order to be able to create the model of a 

production process, the event log should include information about unique product 

serials and associated product name or ID, the operations they go through, and the 

timestamps. As mentioned in chapter 4.2, operations may have more than one scanning 

point associated, meaning that multiple stations executing the same activity may be 

present. 

Figure 5-3: Example of an optimal event log 
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PRODUCT_ID SERIAL_NO OPERATION_ID SCAN_POINT TIMESTAMP 

P1 XYZ OP_1 SC1 29/11/23 10:05 

P1 XYZ OP_2 SC3 29/11/23 10:23 

P1 XYZ OP_3 SC6 29/11/23 11:21 

.. .. .. .. .. 

P5 XXX OP_2 SC4 30/11/23 16:11 

P5 XXX OP_3 SC5 30/11/23 17:22 

3. Evaluation

Generation of Process Models for 
each value stream 

Process Model Evaluation 

Process Model Discovery 

2. Value Streams 
Identification

2.4 Clustering 

2.3 Clustering Input 

2.2 Feature Selection 

2.1 Feature Generation 

Process Model Evaluation 

Process Model Discovery 
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5.1.1 Process Model Generation 

The event log representing the process flows in the factory is used to derive a 

process model representing all value streams. Typically, this results in a spaghetti 

diagram, that is unstructured and difficult to interpret and thus not suitable to inform 

decisions. However, this is a valuable starting point, as it allows to generate a big 

picture of product routings and all the operations involved. 

Process Model Discovery 

By definition, a “discovery algorithm is a function that maps an event log L onto 

a process model such that the model is representative for the behaviour of the event 

log”. (van der Aalst, 2016, p. 163). Several process discovery algorithms have been 

introduced over the last two decades, and generally the three main approaches are 

alpha miner algorithms (van der Aalst et al., 2004), heuristic miner (Weijters & 

Ribeiro, 2011), and inductive miner (Leemans et al., 2014). The alpha miner algorithm 

was the first one to be introduced and it creates a process model based on the 

relationship between events algorithms (Peng et al., 2021). However, this type of 

algorithms has several shortcomings including underfitting, overfitting, and non-

fitting (van der Aalst, 2016). Heuristic and inductive algorithms are considered 

advanced discovery techniques. While the heuristic miner is a frequency-based 

approach, the inductive miner is a divide and conquer strategy by splitting the event 

log into recursively sub-sections (Peng et al., 2021). In practical applications, it is 

essential to use discovery techniques that can handle noise and incompleteness issues, 

and inductive and heuristic miner algorithms have this ability (van der Aalst, 2016). 

In this research, process models are generated primarily using the inductive 

miner discovery algorithm, as it represents a good solution when using large size event 

logs. It guarantees both soundness and re-discoverability and can be applied to a 

variety of use cases (Leemans et al., 2015). The inductive miner-infrequent is an 

extension of the inductive miner algorithm and enhances the original method by 

filtering infrequent behaviour. Compared to other algorithms, the inductive miner-

infrequent generates models with lower fitness, higher precision, and equal 

generalisation and comparable simplicity (Leemans et al., 2014). Process models 

generated by the heuristic miner algorithm are included in Appendix C. 
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Process Model Evaluation 

In order to evaluate the quality of a process model automatically discovered from 

an event log, conformance checking techniques are required (Adriansyah et al., 2015). 

These enable the comparison between the behaviour observed in the data and the one 

in the process model and the generation of diagnostics information (Berti & Van Der 

Aalst, 2019). The four main evaluation metrics are replay fitness, precision, 

generalisation, and simplicity.  

Replay fitness indicates the extent to which the model can reproduce or replay 

the behaviour recorded in the event log (Buijs et al., 2012). Replay approaches can be 

alignment-based or token-based. Although alignment-based approaches return optimal 

results, their performance of complex models or large datasets is poor. Instead, token-

based approaches are much faster and scalable. The application uses a trace of an event 

log and a Petri Net to measure the transitions that are enabled during the replay and 

whether there are remaining or missing tokens (Berti & Van Der Aalst, 2019).  

Precision aims to check whether the process model is not underfitting the log by 

quantifying the extent of the behaviour allowed by the process model that is not 

observed in the event log (Buijs et al., 2014). Precision is measured by quantifying 

instances where the model deviates from the event log (Muñoz-Gama & Carmona, 

2010). 

Generalisation indicates whether the process model is not overfitting to the 

behaviour in the event log and describes the actual system (Buijs et al., 2014). The 

generalisation value is calculated through a token-based replay operation, using the 

formula below where avg_t is the average of the inner value over all transitions and 

freq(t) is the frequency of t after the replay (Berti et al., 2023). 

(!)!*+,-.+/-0) = 1 − +45_/ 781 9*!:(/)= > 

Simplicity quantifies the extent to which a model is easy to interpret and 

understand by humans and it is calculated as the inverse arc degree, where the average 

degree of a place/transition is defined as the sum of input arcs and output arcs (Blum, 

2015). 

?-@A,-B-/C = 	
1

1 + max	(@!+)_H!5*!! − I, 0)
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5.1.2 Value Stream Identification 

Feature Generation 

Depending on the size of the event log and other characteristics such as routing 

frequencies, it may be beneficial to reduce the data size and potential noisy behaviours 

by using sampling and filtering techniques. 

Then, using the dataset in  Figure 5-3, new features are generated to represent 

the similarity between individual traces (Zandkarimi et al., 2020). In other words, the 

new features need to represent the key characteristics of the part and product routings 

(i.e. traces). For this, trace profiles have been created based on the given event log. 

Trace profiles are vectors that include a set of items describing a trace from a specific 

perspective (Song et al., 2009), which in this case is value streams. In this phase, an 

activity profile is created as a “bag of operations” where every item in the profile vector 

represents an operation in the event log. This approach is in line with the traditional 

part-machine matrix used in group technology approaches such as Rank Order 

Clustering (King, 1980) and more recent methods that consider both activities and 

transitions (Kong et al., 2018).  As the activity profile alone does not represent the 

sequence of operations that a part goes through, an additional transition profile is 

created. The transition vector includes the binary combination of operations of a 

specific part routing. In general, the trace profiles are generated using the formulations 

below. 

Let S be a set of unique product serials, and O be a set of operations. 

S = {s1, s2, .. , si, .. , sn} 0 < i < n  

O = {o1, o2, .. , oj, .. , om} 0 < j < m 

Trace profiles are defined by R = [A | T], where A is the activity profile and T is the 

transition profile. 

!!" = #1, &'	)*+,-./	01*&23	&	-010	2./&4&/5	6
0, +/ℎ1*9&01  

:!	$%& = #1, &'	)*+,-./	01*&23	&	/*2;0&/0	'*+<	2./&4&/5	=	/+	2./&4&/5	3, 9&/ℎ	= ≠ 3
0, +/ℎ1*9&01  

For example, if a part goes through operations aàbàc the resulting activity and 

transition profiles are the ones represented below (see Table 5-1).  
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Table 5-1: Routing profile using activities and transitions 

CASE ID Activity Profile Transition Profile 
Product ID – Serial 
no. a b c a-b a-c b-c 

P1 - XYZ 1 1 1 1 0 1 

 

Feature Selection 

Typically, most products undergo several operations or transformations before 

being ready to leave the factory. Therefore, the dataset resulting from the feature 

generation phase is likely to have a significant number of features. Among these, some 

may be redundant, irrelevant or even misguide the clustering algorithm. To address 

this issue and improve comprehensibility at the same time, a selection of relevant 

features needs to be defined (Dy & Brodley, 2004). The features generated through 

profiling the traces in the event log are filtered using a multi-objective selection 

approach. Multi-objective optimisation is a common choice for selecting the most 

representative features (Mierswa & Wurst, 2006). The key objectives are (1) 

maximising the cluster density and (2) maximising the number of features (Mierswa 

& Wurst, 2006). Cluster density is measured using the Davies Bouldin index, which is 

calculated using the formula below. In the formula, n is the number of clusters, ci is 

the centroid of cluster i, K$ is the average distance of all points of cluster i to their 

centroid, and d(ci,cj) is the distance between the centroids of cluster i and j (Davies & 

Bouldin, 1979).  

LM =	
1
)
Nmax

%&!
O
K$ + K%
H(B$ , B%)

P

#

$'!
 

Maximising the number of features nfp prevents the clustering algorithm from 

selecting trivial solutions. The trade-off between Davies Bouldin indices and the 

number of features is denoted by the pair (DBp, nfp) and the different values are 

represented in Pareto plots (Mierswa & Wurst, 2006). From this representation it is 

possible to choose the optimal number of features.  

To solve the optimisation problem, an evolutionary approach is used. 

Evolutionary algorithms are population-based approaches that mimic natural evolution 

(Bartz‐Beielstein et al., 2014). Generally, evolutionary algorithms are defined as a 

“collective term for all variants of (probabilistic) optimization and approximation 
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algorithms that are inspired by Darwinian evolution. Optimal states are approximated 

by successive improvements based on the variation-selection-paradigm. Thereby, the 

variation operators produce genetic diversity, and the selection directs the evolutionary 

search” (Beyer et al., 2002). Genetic algorithms are a variant of evolutionary 

algorithms, and they use binary strings inspired by the genetic code in natural life to 

solve computational problems (Holland, 1973). In feature selection problems, a 

population is comprised of a set of binary vectors (i.e. indiviauls) representing whether 

features are selected or not (Hamdani et al., 2007).  In particular, the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) is chosen for this research. The algorithm was 

developed by Deb et al. (2002) and it has become an established method for multi-

objective optimisation problems (X.-S. Yang, 2014). The key principles of NSGA-II 

include non-dominated sorting, elite-preserving operator, crowding distance 

calculating, and selection operator (Verma et al., 2021). 

According to the principle of non-dominated sorting, the population of 

individuals is sorted using the concept of Pareto dominance. Given a set of feasible 

solutions to the multi-objective optimisation problem, when a solution is not 

dominated by any other one (i.e. a solution is better than any other one), it is called 

Pareto optimal solution. The objective vector corresponding to the set of all Pareto 

optimal solutions (i.e. Pareto set) is defined as Pareto front. From the initial population, 

a first rank is assigned to the non-dominated individuals, which are then removed and 

placed in the first Pareto front. In the rest of the population, the non-dominated 

individuals are placed in the second Pareto front with a second rank. The process 

continues until all individuals are allocated to different fronts with their corresponding 

ranks. According to the elite-preserving principle, elite solutions are retained and 

directly moved to the next generation. The crowding distance principle measures the 

density of solutions surrounding a particular solution and it considers a solution to be 

in a less crowded region when its crowded distance is large. The population in the next 

generation is selected using the crowded tournament principle, according to which an 

individual is chosen over another one of the population if it has better rank or higher 

crowding distance in case of equal rank (Verma et al., 2021).  

The key steps of NSGA-II can be summarised as follows (Verma et al., 2021). 

Step 1: A random population Pt of size N is initialised. 
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Step 2: A new population Qt is generated from Pt through mutation and crossover 

operations. Crossover is a form of recombination of two parents, while mutation is a 

Crossover is performed choosing two individuals from the population with a given 

probability pc and combining the corresponding genes (0-1 bits) to form two 

offspring (Mitchell, 1998). In particular, with uniform crossover, the 1-bits from the 

parent individuals are uniformly distributed with a chance of 0.5 (Syswerda, 1989). 

Mutation is the random negation of a bit position of an individual occurring with 

probability pm (Beyer et al., 2002).    

Step 3: The populations Pt and Qt are combined to form a new population Rt and the 

non-dominated sorting is applied to Rt.  

Step 4: The population individuals of Rt are ranked into different fronts according to 

the non-dominated principle. 

Step 5: From Rt, N individuals are selected to generate the next population Pt+1. 

• If the size of the first front is grater or equal to N, then the N individuals are 

selected from the least crowded region. 

• If the size of the first front is less than or equal to N, then all individuals in 

the first front are moved to the next generation and the remaining individuals 

in the least crowded region of the second front are added. 

Step 6: The populations Pt+2, Pt+3, Pt+4, etc. are generated until the stopping criteria is 

met.  

The tuning parameters chosen for the NSGA-II algorithm used for multi-objective 

feature selection are summarised in Table 5-2. 

Table 5-2: Multi-Objective Feature Selection 

Optimisation 

Objectives 

Objective 1 Maximise the number of features 

Objective 2 Maximise cluster density 

Population size  Number of features (i.e. number of attributes in 
the trace profiles dataset) 

Crossover Uniform crossover with 50% probability 
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NSGA-II 

Tuning 

Parameters 

Mutation Mutation with probability [1/(number of 

features)] 

Stopping criteria Convergence  

 

Clustering Input 

The dataset generated by the application of the previous steps is used to calculate 

the distance between traces representing routings of parts and products. In fact, the 

goal of cluster analysis is identifying “natural” clusters by grouping “similar” objects 

together (Dy & Brodley, 2004). This concept of similarity is expressed as optimisation 

problem using a specific measure. As the profile vectors contain only binary 

information, arithmetic distance measures can be used to measure the similarity 

between routings. Among the various similarity metrics, the Jaccard index is an 

established and intuitive measurement suitable for comparing binary vectors. Given 

two sets S and T, the Jaccard similarity is defined as the intersection divided by the 

size of the union of the two (Fletcher & Islam, 2018). 

Q(?, R) =
|?⋂R|
|? ∪ R|

 

Clustering 

In unsupervised learning tasks, the aim of the cluster analysis is to group data 

into sets of similar data points. In the context of this research, clusters represent 

product families, and the data points represent related products. Clustering algorithms 

can be broadly classified into two main categories, namely hierarchical clustering 

algorithms, and partitional clustering algorithms (Ezugwu et al., 2022). Depending on 

the desired level of visibility and user interactivity, different approaches can be used. 

In this research, three algorithms are evaluated and compared, namely agglomerative 

clustering, K-Means, and X-Means. One of the key tasks of unsupervised learning is 

identifying the number of clusters. While X-Means is able to achieve this without any 

user specification, K-Means and agglomerative clustering require manual input. On 

the other hand, the first two allow for easier application of domain knowledge KPIs in 

the selection of the optimal number of clusters. 
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Table 5-3: Advantages and Disadvantages of clustering approaches for value 
stream identification 

 Advantages Disadvantages 

Agglomerative 
Clustering 

Hierarchically 
generates value 
streams and related 

sub-value streams. 

Requires domain knowledge to 
interpret the data and select 
partitions. Interpretability may 
be difficult when numerous 
products are recorded.  

K-Means with 
fitness function 

Enables the selection 
of optimal partitions 
based on various 
domain knowledge 

KPIs. 

Requires domain knowledge to 
interpret the data and select 

partitions. 

X-Means Fully automated 
approach. 

Partitions are generated based 
on product routings only. 

 

The clustering phase results in clusters of product serials (case IDs). Based on 

the product ID that the serials are associated to, the product families are derived. In 

some cases, product IDs may have their serials associated to different clusters. Based 

on the assumption that product routings may have abnormal sequences due to events 

such as recording errors, re-work operations, or machine failures, the smaller 

proportion of product serials associated to a different cluster is treated as outlier and 

removed.  

Agglomerative Clustering 
Hierarchical, agglomerative clustering is an established unsupervised learning 

technique (Müllner, 2011). The algorithm takes in input a dataset combined with a 

dissimilarity index (i.e. 1 – Jaccard similarity) and clusters are formed using a bottom-

up approach (Ezugwu et al., 2022; Müllner, 2011). Thus, single objects are iteratively 

combined into larger clusters based on a similarity or distance metric until all objects 

are merged into a single cluster. This process results in a dendrogram representing the 

hierarchical structure of the clusters (Ezugwu et al., 2022). Merging subset of points 

is determined using a linkage metric that generalises the distance between individual 

points and subset of points. The three basic linkage metrics are single linkage, average 

linkage, and complete linkage (Ezugwu et al., 2022). While single linkage (or nearest 

neighbour) calculates the closest distance from any points of one cluster to any other 

cluster point, complete linkage measures the longest distance. Average distance 
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calculates the means of all distances of all data points between clusters (Ezugwu et al., 

2022). The formulas for the three basic linkage metrics are presented in Table 5-4, 

where the distance is calculated assigning for all points i in cluster u and j in cluster v. 

Table 5-4: Basic Linkage Metrics 
Linkage Metric Formula 
Single H(V, 4) = min	(H-./(V[-], 4[[])) 

Average H(V, 4) = max	(H-./(V[-], 4[[])) 

Complete 
H(V, 4) =N

H(V[-], 4[[])
(|V| ∗ |4|)

$%
 

 
For the identification of key value streams using agglomerative clustering, the 

chosen distance or dissimilarity measure is 1 – Jaccard similarity, and all three basic 

linkage metrics are evaluated and compared. From the binary dataset with the trace 

profiles, a distance matrix for the product IDs is generated by aggregating the 

corresponding product serials and calculating the mode. Then the matrix is used to 

generate a dendrogram displaying the hierarchical cluster formation. Based on a pre-

defined similarity threshold, it is then possible to identify the key product families. 

The advantage of this method is that it enables clear visualisation of the main product 

families as well as sub-families and the associated similarity scores. The disadvantage 

of this solution is that it requires the user to interpret the results and define a similarity 

threshold to obtain results. This is particularly critical for companies that manufacture 

hundreds of products, as the resulting dendrogram would be complex and potentially 

difficult to interpret. 

K-Means  
K-Means is an established partitional clustering algorithm that clusters data 

based on a number of partitions K defined a priori. After the algorithm initialises K 

centroids, the algorithm iteratively assigns each data point to the nearest centroid and 

then recalculates the position of the K centroids by taking the mean value of all the 

data points previously assigned to that centroid until the centroids no longer move 

(Velmurugan & Santhanam, 2011). The objective function used to choose the centroid 

is the within-cluster-sum-of-squares. 

N@-)(!∈% ]^_$ − `%^
"
a

#

$'*
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While K-Means has relatively low time complexity and high computing 

efficiency (D. Xu & Tian, 2015), one of the main shortcomings is that the number of 

clusters is required to be supplied by the user a priori (Pelleg & Moore, 2000). An 

established way to overcome this limitation is to generate a fitness function by iterating 

over different values of K and calculating the corresponding performance metric. A 

fitness function that considers formal aspects as well as aspects related to a specific 

application is also called as desirability function (Harrington, 1965). Since the goal of 

this research is to identify key value streams, domain knowledge KPIs are used to 

generate a fitness function that enables the selection of the optimal number of 

partitions. Based on the information contained in an event log, it is possible to calculate 

the following metrics: routing homogeneity within product families, volume 

distribution across clusters, product distribution across clusters, operations across 

clusters, critical operations, and critical product serials. The first three metrics focus 

on the product families associated to each value stream, while the remaining three 

focus on the resources used by the product families. Thus, the desirability index W 

(Harrington, 1965) is defined as:  

b:	{e!, e", … , e+} 	⟶ [0,1] 

where 0 represent the worst desirability, and 1 the best. 

Depending on the use case, that is the purpose for which value streams are being 

identified (e.g. scheduling problems, layout design, process visualisation), different 

sets of indices W may be selected. Then all indices can be combined using the 

geometric mean of W, as suggested by Harrington (1965). 

b(e!, e", … , e,) = 	 hie$

,

$'!

"
 

The homogeneity of the product families is calculated as the mean similarity of 

products within clusters (i.e. average within-cluster similarity). Given S the set of 

product serial numbers, and K the set of partitions, the value is calculated as: 

e!jk
(.)l = 	

1
m
N Q0#

1

.'!
 

Where JCk is the average pairwise Jaccard similarity of product serials in cluster Ck. 
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The volume distribution is calculated as the number of product serials per cluster, 

while the products distribution is calculated as the number of product IDs per cluster. 

In both cases, the distribution across clusters is calculated using a range-to-total ratio, 

where 0 indicates perfect evenness. These metrics provide information regarding the 

size of the product families which is useful for applications such as production 

levelling and scheduling, for which even-sized product families are preferred 

(Bohnen et al., 2011).  

The volume distribution across clusters is calculated as: 

e"jk
(.)l = 1 −	

k2345 − k23$#
∑ o.1
.'!

 

Where k(.)is a partition with k clusters, Vk = |Sk| is the volume defined as the number 

of product serials recorded in the partition, and k2345 = arg@+_.∈{!,..,1}o. and 

k23$# = arg@-).∈{!,..,1}o. are the maximum and the minimum volumes across all 

clusters. 

Similarly, given P the set of product IDs, the product ID distribution across clusters 

is calculated as: 

e:jk
(.)l = 1 −	

k;345 − k;3$#
∑ r.1
.'!

 

Where IK = |PK| is the number of product IDs recorded in the partition, and k;345 =

arg@+_.∈{!,..,1}r. and k;3$# = arg@-).∈{!,..,1}r. are the maximum and the 

minimum volumes across all clusters. In other words, the volume distribution and the 

product distribution are calculated as the inverse of the a range-to-total measure 

across partitions.  

The operations across clusters are quantified as a percentage of the total activities 

that are present in more than one cluster process model. Although this provides an 

indication of how separate the process models for each cluster are, it does not 

provide an accurate indication of the value stream independence.  

Given O the set of operations recorded across partitions, the index is calculated as: 

e<jk
(.)l = 1 −

|{0|0	 ∈ 	t. ∩ t=}|
|t|

				where	I, ,	Î	m, and	I¹	, 
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Operations across clusters, is calculated as a the inverse of the  percentage of the 

total operations. 

Typically, the application of PFA for the resolution of the cell formation problem has 

as key objective to minimise inter-cell movements (YounesSinaki et al., 2023), that 

is minimising the amounts of products using resources allocated to different clusters. 

Since operations are associated to multiple scanning points, indicating the presence 

of multiple stations executing the same activity, the presence of the same operation 

in different clusters does not necessarily imply inter-cluster movements. Therefore, 

critical operations are defined as the activities that are present in multiple clusters 

and whose scanning points are less than the number of clusters in which they are 

recorded. The critical product serials are the ones that use critical activities in a 

specific cluster configuration, thus causing inter-cluster movements.  Similarly, to 

w3, the critical operations w4 and critical product serials w5 are calculated as a 

percentage of the total operations and product serials respectively.  

Given O the set of operations recorded across partitions, SC the set of scanning 

points, and S the set of product serials recorded in the event, log, w4 and w5 are 

calculated as: 

e>jk
(.)l = 1 −

|{0|0	 ∈ 	t. ∩ t=}|
|t|

				where	I, ,	Î	m, I¹	,, +)H	|?k?| < |m@| 

e,jk
(.)l = 1 −

{|.|.	V.!.	+)C	{m@}}{
|?|

				 

X-Means 
X-means builds on the principles of the popular algorithm K-means with some 

improvements. In particular, X-Means provides a solution to the problem of selecting 

the optimal number of clusters, and automatically determines the number of clusters. 

The criteria used to search the space of cluster locations and number of clusters is the 

Bayesian Information Criterion (BIC) (Pelleg & Moore, 2000). The BIC is a statistical 

measure for model selection that calculates the trade-off between model fit and 

complexity (i.e. number of parameters). In the formula below, given a dataset D and a 

set of alternative models Mj,  ,A~(L) is the log-likelihood of the data according to the j-

th model and taken at the maximum likelihood point, and pj is the number of 

parameters in Mj (Kass & Wasserman, 1995; Pelleg & Moore, 2000). 
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Mrkj�%l = ,A~(L) −
A%
2
∙ ,05Ç 

Overall, X-means enables the generation of clusters based on the Jaccard 

similarity between profile vectors and returns easily interpretable results. Compared 

to the previous approaches X-Means has the advantage of fully automating the 

identification of the optimal number of value streams. The number of clusters is 

derived using the BIC calculated on the features in the input dataset, which represent 

the parameters of the trace profiles. Therefore, while this approach offers the 

advantage of increased speed and full automation, it does not allow for additional 

considerations regarding the number of value streams (e.g. production volume, critical 

operations). 

5.1.3 Evaluation 

The clusters representing the product families are evaluated using statistical 

performance metrics and Process Mining evaluation metrics. To evaluate the clusters 

from a Machine Learning perspective, the average within-cluster similarity and the 

Davies Bouldin index are used. On one hand, the average within-cluster similarity is a 

quality measure quantifying the homogeneity between product routings within the 

same cluster. On the other hand, the Davies Bouldin index measures the relationship 

between intra-cluster and inter-cluster distances. Solutions with Davies Bouldin index 

values close to 0 are preferred.  

The resulting clusters represent the different value streams. Based on the 

associated products, the original event log can be divided into smaller ones. Using 

Process Mining techniques, these can be used to map the process models of each value 

stream, and the process models can be evaluated using replay fitness, precision, 

generalisation, and simplicity.  

Finally, the process models of each value stream can also be evaluated from a 

domain knowledge perspective by visually inspecting the models and compare them 

to the physical manufacturing processes. 
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5.2 EVENT LOG WITH MISSING ATTRIBUTES 

5.2.1 Product ID is Missing 

The core method presented in chapter 6.1 uses the unique serial number of the 

different products to create a vector describing their routing. As a result, the clustering 

algorithm finds partitions representing the product families as distinct groups of 

product serial numbers. By knowing the association between serial number and 

product name, it is then possible to derive the clusters of product families identified by 

groups of product names.  

If the product name is not recorded in the event log, the method is still able to 

identify product families based on the routings of products identified by unique serial 

number. However, results would not be as informative as the optimal use case in which 

product families would include a group of product names.  

For this case, deriving the relationship between unique serial numbers and 

associated products is not possible. This is due to the underlaying definition of product 

families according to the PFA principles. In fact, based on this definition, products 

belonging to the same product family share highly similar material flows. Therefore, 

the proposed approach would not be able to distinguish between products within a 

product family, as by definition the product routings are the same or very similar.  

5.2.2 Operation ID is Missing 

In case the relationship between scanning points and operations is unknown, the 

event log needs to be pre-processed before the PFA principles can be applied. In 

practice, this scenario represents situations in which manufacturing firms are able to 

collect production data recording products moving around the factory through different 

scanning points. In this scenario, multiple scanning points may be associated to the 

same operation, meaning that there are multiple parallel stations dedicated to the same 

activity. 

The event log is used to generate a dataset that contains the product names and 

the routings representing the serial numbers (i.e. different instances of the products) 

and their routings. For each product name, the examples in the dataset are filtered down 

to the most frequent number of operations. For example, in Figure 5-4, product A goes 

through 3 activities 83% times, therefore only examples of product A containing 3 

operations are included. 
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Figure 5-4: Procedure for identifying operations-scanning points associations 

Then, for each product name, the scanning points are grouped into clusters 

representing a specific operation based on the order of occurrence. Thus, for product 

A, SC0, SC1, SC2 are grouped into a cluster. The key underlaying assumption is that 

different serial numbers of the same product undergoing a specific number of 

operations are likely to undergo work operations in the same order. Although this 

assumption might be valid in many cases, some work operations may occur in a 

different sequence. For example, after activity 1 a product can undergo activity 2 and 

then activity 3, or alternatively after activity 1 a product can undergo activity 3 and 

then activity 2. To reduce the possibility of grouping scanning points incorrectly, the 

algorithm checks for each product if any of the scanning points is recorded in a 

different sequence. In case a scanning point is recorded at different positions in the 

product routings, then the algorithm checks for anomalies. Based on the average 

occurrence of a specific scanning point, the algorithm attempts to identify and remove 

anomalies. In the example, for product A, the average occurrence of SC0 is 1, meaning 

that on average the work operation related to that scanning point is required once by a 

specific product. However, while most routings record SC0 as first activity, one 

records it twice. Thus, the algorithm removes the outlier before grouping scanning 

points based on the order of occurrence. For product B, SC6 and SC7 occur twice on 

average, meaning that the work operation they are associated to is repeated. Therefore, 

only the routing in which the scanning point is recorded more than twice is removed 

before clustering. The algorithm starts mapping scanning points starting from product 

RoutingProduct ID
SC1, SC3, SC5A
SC2, SC4, SC7A
SC0, SC3, SC2, SC5A
SC0, SC4, SC6A
SC0, SC0, SC5A
SC0, SC4, SC6A
SC3, SC7, SC8, SC9, SC7, SC12B
SC5, SC6, SC8, SC10, SC6, SC11B
……

Scanning PointSC Cluster
Routings per Product Initialise Mapping

RoutingProduct ID
SC1, SC3, SC5A
SC2, SC4, SC7A
SC0, SC3, SC2, SC5A
SC0, SC4, SC6A
SC0, SC0, SC5A
SC0, SC4, SC6A
……

Product A
RoutingProduct ID
SC1, SC3, SC5A
SC2, SC4, SC7A
SC0, SC4, SC6A
SC0, SC0, SC5A
SC0, SC4, SC6A
……

Scanning pointSC Cluster
SC0Cluster 1
SC1Cluster 1
SC2Cluster 1
SC3Cluster 2
SC4Cluster 2
……

Updated Mapping

RoutingProduct ID
SC3, SC7, SC8, SC9, SC7, SC12B
SC5, SC6, SC8, SC10, SC6, SC11B
SC2, SC6, SC8, SC9, SC6, SC13B
SC3, SC7, SC7, SC10, SC7, SC11B
SC2, SC6, SC8, SC10, SC6, SC11B
SC2, SC7, SC8, SC9, SC7, SC12B

Product B
RoutingProduct ID
SC3, SC7, SC8, SC9, SC7, SC12B
SC5, SC6, SC8, SC10, SC6, SC11B
SC2, SC6, SC8, SC9, SC6, SC13B
SC3, SC7, SC7, SC10, SC7, SC11B
SC2, SC6, SC8, SC10, SC6, SC11B
SC2, SC7, SC8, SC9, SC7, SC12B

Scanning pointSC Cluster
SC0Cluster 1
SC1Cluster 1
SC2Cluster 1
SC5Cluster 2
SC3Cluster 2
SC4Cluster 2
……

Updated Mapping
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with the shortest routing (i.e. products undergoing the smallest number of operations) 

and identifies clusters of scanning points progressively product-by-product based on 

the steps explained above. Each cluster is mapped in a new dataset that identifies this 

relationship. When the algorithm analyses a different product and the related routings, 

it checks if any of the scanning points has already been mapped. In this case, the cluster 

including the scanning point already mapped gets associated to the cluster in the 

mapping. In the example, SC5 will be associated to cluster 2, since product B 

undergoes SC2, SC3, and SC5 for the first work operation and SC2 and SC3 were 

previously assigned to the same cluster. 

The algorithm continues to analyse product routings progressively and updates 

the dataset accordingly. In case a product only records two routings, or the sequence 

lengths have equal frequencies (e.g. for a given product 50% of sequences record two 

activities, 50% sequences record three activities), the algorithm ignores that product 

and moves to the following. 
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5.3 EVENT LOG CLEANING AND FILTERING 

The ability to collect quality production data depends on a company’s 

infrastructure, and ultimately on their level of digital maturity. Event logs that are not 

excellent quality may have issues related to event attributes. These include the 

following (Bose et al., 2013; van der Aalst, 2016). 

• Missing attributes: the entity has occurred in reality but has not been recorded in 

the event log, therefore an attribute has not been recorded for a specific event. 

• Incorrect attributes: the recorded value for a specific attribute is wrong, for 

example it may refer to a different case. 

• Imprecise attribute: the value of a specific attribute is not informative enough, 

for example it may be too coarse-grained. 

Typically, in Manufacturing, event logs may record a variety of attributes. Based 

on the requirements of Process Mining techniques as well as the principles of PFA, the 

most important entities are case, activity, and timestamp. In the context of a production 

event log, these are serial number, operation ID, and timestamps, respectively.  

PRODUCT_NAME SERIAL_NO SCANNING_POINT OPERATION_ID TIMESTAMP 
P1 XYZ SC2 OP_1 29/11/23 10:05 

P1 XYZ SC4 OP_2 29/11/23 10:23 

P1 XYZ SC1 OP_3 29/11/23 11:21 

.. .. .. .. .. 

P5 XXX SC4 OP_2 30/11/23 16:11 

P5 XXX SC3 OP_3 30/11/23 17:22 

Figure 5-5: Example of an event log in Manufacturing 

Table 5-5 provides a detailed overview of the quality problems for the most 

important entities in an event log recording production processes. 

Table 5-5 - Possible quality problems in an event log (Bose et al., 2013, van der 
Aalst, 2016) 

 Missing 
attribute 

Incorrect 
attribute 

Imprecise 
attribute 

Case: serial 
number 

The event does 
not refer to a 
case. 

The event refers 
to the wrong 
case. 

The event may 
be related to 
multiple cases 
due to the 
ambiguity. 
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Activity name: 
operation ID  

The event does 
not refer to an 

activity. 

The event refers 
to the wrong 

activity. 

The event is too 
coarse-grained 
(e.g. multiple 
activities 
recorded as 
one). 

Timestamp The event has 
no timestamp. 

The event as an 
incorrect 
timestamp. 

The event is too 
coarse-grained 
(e.g. day only) 

Any attribute: 
scanning point 
or product 
name 

The event has a 
missing 

attribute. 

The event has 
the incorrect 
value for the 
attribute. 

The event may 
be related to 
multiple 
attributes. 

 

As mentioned in section 4.2, in practice, the presence of some quality issues may 

not always be obvious, especially for infrequent behaviours. Based on this observation, 

different policies are established (see Table 5-6).  

The presence of missing attributes can be verified directly due to the absence of 

specific values. Thus, if missing attributes are detected, the affected traces can be 

removed (Pegoraro & van der Aalst, 2019). In fact, Process Mining algorithms 

generate a process model describing the behaviour of various entities (i.e. products) 

based on a sample. Each product ID has numerous unique serial numbers associated. 

In other words, for each product type, there are multiple unique instances being 

manufactured on a regular basis. If some of these routings are filtered out of the event 

log, the clustering method would use different instances of the same product ID to 

define product families.  Therefore, the behaviour should not change when a different 

sample of the same process is used (Bose et al., 2013), and the process model of the 

whole factory, as well as the process models of the different value streams should not 

change significantly.  

As opposed to missing attributes, detecting the presence of incorrect values is 

more challenging, especially when the occurrence is infrequent. Incorrect data is 

typically caused by recording errors during the data collection such as faults of the 

information system or human error during data entry (Pegoraro & van der Aalst, 2019). 

Logging errors may cause situations in which instances of a process are incorrectly 

recorded as instances of a different one, incorrect operations are recorded in the traces, 

or the timestamps do not match the exact times at which products have undergone 
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certain activities. One of the potential risks is that causal relationships may be 

represented incorrectly (i.e. “A” then “B” vs. “B” then “A”) (Bose et al., 2013). More 

generally, the impact of incorrect values is twofold. On one hand, the discovery 

algorithm may be misled and generate incorrect process models. On the other hand, 

the identification of product families may be less accurate. Most existing research 

handles incorrect behaviours by analysing path frequencies, and available solutions 

include filtering or repairing incorrect values (Conforti et al., 2017; Pegoraro & van 

der Aalst, 2019; Sani et al., 2018; Wang et al., 2015). Since the presence of incorrect 

values is not obvious, filtering out infrequent behaviour at the start can prevent 

inaccurate results and reduce the complexity of process models. Thus, for each 

product, the routings with the lowest frequency are treated as outliers and filtered out 

before applying the Process Mining-based method for PFA. Similar to the solution for 

finding associations between scanning points and operations, the assumption is that 

due to technological constraints, most products require a fairly consistent sequence of 

operations, and exceptions may be due to infrequent events such as re-work operations 

or equipment failures. 

Issues related to imprecise data often relate to its coarseness. Information 

systems may have limited data collection and recording capabilities and therefore they 

may be able to record limited information, such as the date but not the time or only 

certain operations. This is also typical of processes that are recorded manually and then 

digitalised (Pegoraro & van der Aalst, 2019). In contrast to missing and incorrect data, 

the uncertainty generated by coarse data can be addressed only by improving the data 

collection systems and procedures, for example by retrofitting existing equipment. For 

this reason, the impact of imprecise attributes is only evaluated for the scope of this 

research.  
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Table 5-6: Policies for managing quality issues 

 Policy Applicable 

Missing 

Attributes 

Remove affected traces When missing values are detected 

Incorrect 

Attributes 

Filter out infrequent 

routings 

Always 

Imprecise 

Attributes 

Evaluate the impact of 

coarse information  

When using information systems with 

limited data collection capabilities 
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Chapter 6: Method Evaluation 

Sections of this chapter have been published in the following conference 

proceedings: 

Tomidei, L., Sick, N. & Mathieson, L. (2024). Data-Driven Value Stream Analysis Using 

Process Mining And Machine Learning. In 51st International Conference on 

Computers and Industrial Engineering (CIE51). Sydney, Australia.  

Tomidei, L., Sick, N., Deuse, J. & Guertler, M. (2023). Extracting Key Value Streams 

using Process Mining and Machine Learning. In IEEE Conference on Engineering 

Informatics. 2023 IEEE Engineering Informatics, 1–7. 

https://doi.org/10.1109/IEEECONF58110.2023.10520644  

 

The evaluation of the methodology presented in chapter 6 aims to cover all 

possible use cases, as defined in chapter 4.2. The event log used is complete, and 

although the presence of incorrect values is unknown, there are no missing values, and 

the data has appropriate granularity. First, the core methodology is presented using the 

entire dataset. Second, the pre-processing algorithm is evaluated by simulating a 

scenario in which only scanning points are recorded in the event log. Third, the 

performance of the methodology is evaluated in case of missing, incorrect, and 

imprecise attributes by artificially altering 10% of the events. 

The implementation has been done using the Process Mining for Python 

(PM4Py) library, which provides algorithm customisation and integration with other 

state-of-the-art data science libraries (Berti et al., 2019), as well as RapidMiner. 
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Case Study Background 

The event log used for the evaluation has been provided by a European 

manufacturer that produces electronic components. This event log includes 57 

different products and over a million unique components and it records the movement 

of these components as they pass through various work operations, with a total of 34 

distinct work operations recorded. The majority of these products are produced in low 

volumes, with less than 5000 pieces per year (see Figure 6-1). 

 

Figure 6-1: Volume distribution over a year 

 

6.1 OPTIMAL EVENT LOG 

The event log includes several attributes, and it provides data related to a one-

year period. In addition to the ones represented in Figure 6-3, information about the 

order number, the specific production line, the batch number, and batch status is also 

included. Firstly, from the original event log, that includes over 1 million events, the 

cases associated with only one activity have been removed. These represent the parts 

that have gone through a single processing operation in the factory.  

As it is unknown whether the data contains incorrect values, the event log has 

been further reduced in size by filtering out routings with low frequency. For each 

product, only the routings corresponding to the top 20% percentile are kept in the event 

log, while the others are treated as outliers (see examples in Figure 6-2). This approach 

is in line with the policies for handling data quality issues defined in Table 5-6. 
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Figure 6-2: Example of routing frequency distribution for 2 products in the 
event log 

6.1.1 Process Model Generation and Evaluation 

First, the event log is fed into a Process Mining discovery algorithm to generate 

a process model of the entire factory. The chosen algorithm is inductive miner - 

infrequent, filtering infrequent events is set to 30%. The resulting process model using 

the BPMN representation is shown in Figure 6-3.  

 

Figure 6-3 - Process Model of the factory floor 

The process model is evaluated using the key four quality measures (i.e. replay 

fitness, precision, generalisation, and simplicity). While most of the evaluation metrics 

return good results, the simplicity score supports the apparent complexity of the 

process model. 

Table 6-1: Process Model Quality 

Metric Value 

Replay fitness 94.4% 

Precision 67.7% 

Generalisation 88.9% 

Simplicity 65.2% 

In addition to the process model generated by the inductive miner, the event log 

is also processed through a discovery algorithm that generates a Directly-Follows 

Graph (DFG), which is a model where the nodes represent activities, and the edges 
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directly follows relationships, and is able to represent frequencies (see Figure 6-4) and 

durations (see Figure 6-5) (van der Aalst, 2019a). 

 

Figure 6-4: Directly-Follows-Graph of the entire factory with path frequencies 

 

Figure 6-5: Directly-Follows-Graph of the entire factory with path duration 

6.1.2 Value Stream Identification 

Feature Generation 

Filtering out infrequent traces allows to reduce the event log size by two thirds, 

from 1 million events to 360,073 events. The remaining dataset is sampled using a 

stratified approach. When handling big or complex event logs, strategies such as 

sampling can be helpful (Leemans et al., 2015). To do this, two new attributes are 

created, one representing the trace (i.e. routing) of each part (e.g. aàbàc), and the 

other one representing the frequency of each specific routing. Then, a 40% stratified 

sample is taken from each trace. By doing this the size of the event log is reduced while 

maintaining the distribution of the various traces and reducing noise. Thus, the event 

log size is reduced to 143,838 events, capturing the movements 57 products and over 

16,000 unique serial numbers. 

c
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This event log is processed to generate the activity and transition profiles. As a 

result, a dataset with 87 attributes is produced. Each example represents a trace 

identified by a specific product identified by a unique serial number.  

Feature Selection 

The 87 attributes generated from the previous phase result in a dataset 

characterised by high dimensionality. To reduce complexity and improve 

interpretability, the features generated through profiling the traces in the event log are 

filtered using a multi-objective selection approach. The optimisation problem for 

selecting features is based on the two non-conflicting objectives of (1) maximising 

cluster density measured by the Davies Bouldin index and (2) maximising the number 

of attributes. A genetic algorithm has been used to solve the multi-objective 

optimisation problem and the results are shown in the Pareto front in Figure 6-6. 

 

Figure 6-6: Pareto front for feature selection using an optimal event log 

Each point in the chart represents a feature set associated with a specific Davies 

Bouldin Index. The optimal feature set can be determined by the point in the Pareto 

part with the Davies Bouldin index closest to 0. Thus, the multi-optimisation 

approach for feature selection reduces the number of features from 87 to 57.  

Clustering Input 

The new dataset is comprised of 14,617 traces corresponding to product serials 

and 57 features. Twenty of these features represent individual work operations, while 

the remaining represent transitions between operations. In the cluster analysis, profile 
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vectors are compared using the Jaccard distance. From the similarity matrix in Figure 

6-7, it is possible to visually notice two main product families. 

 

Figure 6-7: Similarity matrix using Jaccard 

 

Clustering 

Agglomerative Clustering 
The dendrogram generated from the agglomerative clustering algorithm returns 

a structured hierarchy of product families. Based on the definition of similarity 

threshold, different clusters can be identified. Assuming a threshold of 20% similarity, 

three to four product families are identified, depending on the linkage approach (see 

Figure 6-8). 
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Figure 6-8: Dendrograms generated by agglomerative clustering (left: single 
linkage, centre: average linkage, right: complete linkage) 

 

K-Means and X-Means Clustering 
When applying K-Means clustering the number of partitions k needs to be 

defined by the user. As mentioned in section 5.1.2, by using a set of desirability 

functions, it is possible to identify the optimal value of partitions k. The set of 

desirability functions to be considered ultimately depends on the application for which 

value streams need to be identified. For the evaluation of this case study, all functions 

have been included, assuming the identification of value streams has general purpose.  

 

Figure 6-9: Desirability functions w1, w2, w3, w4, w5, w6 

The average similarity within clusters remains steady across the possible partitions, 

with values close to 80%. Both the volume imbalance and the product family 

imbalance increase for partitions above 2. The number of operations present in 
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multiple process models also increases from partitions above 2, and more 

significantly for partitions above 3. The number of critical operations, that is the 

number of operations that can cause inter-cellular movements, increases only 

marginally for partitions above 3 and more significantly for partitions above 4. 

However, the marginal increase in critical operations triggers the inter-cellular 

movement of a significant number of products for partitions above 3. 

The similarity functions also explain the solutions provided by the agglomerative 

clustering algorithms, for which clusters are generated hierarchically based on intra-

cluster similarity. Accordingly, the average similarity w1 slightly improves for 

partitions above two, but the consideration of additional elements (w2 to w6) reveals 

that selecting two partitions is more appropriate. 

The six desirability functions shown in Figure 6-9 are combined to calculate the 

desirability index W which directly informs the decision of the best number of 

partitions (see Figure 6-10). 

 

Figure 6-10: Desirability index W calculated as mean of the functions w1, w2, w3, 
w4, w5, w6 

By selecting 2 partitions, the K-Means algorithm returns two product families with 

37 and 19 products each. 

The same partitions are generated by the X-Means algorithm, which measures the 

distance between the routings represented by the profile vectors and determines the 

optimal number of product families as well as the which products belong to each 

family.  
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Figure 6-11: Product families generated by K-Means and X-Means 

 

6.1.3 Evaluation 

The quality of the clusters generated by the agglomerative clustering approaches is 

influenced by the similarity threshold applied to the dendrogram. In the use case, the 

threshold was set to 20% to include product families in which products have routing 

similarities equal or above that value. The clusters returned by the algorithm display 

average similarities well above 20%, with values ranging from 49.4% to 80.2% 

depending on the value stream and the linkage method, thus indicating a satisfactory 

solution in terms of product family formation. However, the process models 

generated by the product family configurations score low quality, with some 

precision values as low as 14% (see Table 6-3).  

Compared to the solutions generated by agglomerative clustering, the ones returned 

by K-Means (K=2) and X-Means provide better results both in terms of clusters and 

process models. The average similarity within clusters indicates high routing 

homogeneity within the product families (see Table 6-2).  
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are unique to each value stream, ultimately enabling better visibility. From a domain 

knowledge perspective, this is particularly important as it enables direct interpretation 

of results and the evaluation of the solution. 

 

Figure 6-13: Centroid chart1 

 
 
1 The attributes names indicating operations names and codes in the x-axis have been removed to 
maintain confidentiality. The same applies for the activities in the process models. 
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6.2 EVENT LOG WITH MISSING ATTRIBUTES 

6.2.1 Case Attribute Missing: Product ID 

The core method presented in section 6.1 uses the unique serial number of the 

different products to create a vector describing their routing. As a result, the clustering 

algorithm finds partitions representing the product families as distinct groups of 

product serial numbers. By knowing the association between serial number and 

product name, it is then possible to derive the clusters of product families identified by 

groups of product names.  

If the product name is not recorded in the event log, the method is still able to 

identify product families based on the routings of products identified by unique serial 

number. However, results would not be as informative as the optimal use case in which 

product families would include a group of product names.  

For this case, deriving the relationship between unique serial numbers and 

associated products is not possible. This is due to the underlaying definition of product 

families according to the PFA principles. In fact, based on this definition, products 

belonging to the same product family share the highly similar material flows. 

Therefore, the proposed approach would not be able to distinguish between products 

within a product family, as by definition the product routings are the same or very 

similar.  

6.2.2 Activity Name Missing: Operation ID 

For complete event logs, the process model can be discovered by using activity 

names as classifier, with traces corresponding to a sequence of activities, thus enabling 

the definition of operation sequences for each product in the factory. However, in this 

scenario, activities (i.e. work operations) are not recorded in the event log. Therefore, 

to generate a process model of the factory, the scanning points can be used as event 

classifier.  
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Figure 6-14:  Process Model (BPMN) of the factory using scanning points as 
classifier 

The process model represented as a BPMN is discovered using an inductive 

miner infrequent. The model appears more complex than the one generated using work 

operations as classifier, as the simplicity score indicates (see Table 6-4). This is due to 

the fact that most work operations have multiple scanning points associated. 

Additionally, while most scanning points are uniquely associated to specific 

operations, a few are associated to multiple operations (see Figure 6-15). 

 

Figure 6-15: Associations between scanning points and operations 

In addition to the low simplicity, the precision score indicates that the process 

model is underfitting the event log, thus representing behaviours that are not present 

in the data. 
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Table 6-4: Process Model Evaluation Metrics 

Metric Value 

Replay fitness 97.4% 

Precision 20.9% 

Generalisation 85.6% 

Simplicity 58.8% 

 

Event Log Pre-Processing 

Firstly, the event log is reduced by removing product serials undergoing one 

operation and reducing the observation period to one year. The resulting event log has 

34 distinct work operations. By applying the algorithm described in the previous 

section, it is possible to obtain the results shown in Figure 6-16. The event log pre-

processing results in 30 clusters and this is caused by two factors. On one hand, the 

work operations-scanning points associations are not exclusive, as some scanning 

points are associated to multiple work operations (see Figure 6-15). On the other hand, 

the serial numbers associated to some product IDs exclusively use certain scanning 

points. This means that the algorithm is not able to cluster scanning points based on 

the work operation sequence for those products, and when the algorithm progressively 

checks new products, it considers the clusters as separate.  



���������� ����������������� ��

������������ �������������������������

������������������������������������������������������������������������������������

���������������

������������ �������������������������������������������������������������

����������



 

96 A Process Mining Approach for Production Flow Analysis 

Compared to the process model discovered using scanning points as classifier, the 

process model in Figure 6-17 appears less complex and easier to interpret. This is 

reflected by the evaluation metrics (see Table 6-5), that indicate a substantial 

improvement in regard to all quality aspects, particularly precision. 

Table 6-5: Process Model Evaluation Metrics 

 Scanning Points Clustered Scanning Points 

Replay fitness 97.4% 90.7% 

Precision 20.9% 73.4% 

Generalisation 85.6% 92.1% 

Simplicity 58.8% 63% 

 

Value Stream Identification 

In this scenario, since the operation attribute is not recorded, the attributes 

created to enable the sampling process are two, one for the trace of each part 

represented by the sequence of scanning point clusters (e.g. cluster_terminal_1à 

cluster_terminal_2à cluster_terminal_3), and the other one representing the 

frequency of each routing. Because the clusters of scanning points do not fully match 

with the work operations, the number of different traces per product is higher, thus 

requiring a re-evaluation of the threshold used for filtering out infrequent traces (see 

Figure 6-18). Instead of taking the traces from the top 20% of frequency values, as for 

the use case with operations as classifier, the traces corresponding to the top 10% 

frequency are retained. This accounts for the additional variability created from the 

clustering of scanning points, while retaining only the most frequent routings for each 

product.  

The subsequent steps are the same used for identifying key value streams from 

an optimal event log. The trace profiles for product serials are generated from the 

filtered event log, creating a binary dataset with several attributes representing 

activities (i.e. clustered scanning points) and transitions between activities. The 

optimal subset of features is selected using a genetic algorithm that executes a multi-

objective approach aiming to maximise cluster density and maximise the number of 

features.  
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Figure 6-18: Event log filtering after clustering scanning points 

 

By applying the X-means algorithm it is possible to identify the clusters 

representing the product families. The algorithm returns a product family formation 

that matches the one generated by the optimal event log, including 2 product families 

with 37 and 19 products each. 

 

 

Figure 6-19: Comparison between product families identified using an optimal 
event log and using an event log without work operation attributes 
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Evaluation 

By clustering scanning points into operations using the algorithm defined in 

chapter 5.2.2, it is possible to identify key value streams with a clustering performance 

close to the one generated by using a complete event log. While the Davies Bouldin 

Index shows minor deviations from the optimal use case, the similarity within products 

for value stream 2 is 14% lower (see Table 6-6).  

Table 6-6: Evaluation comparison between value streams generated using 
complete event log and a pre-processed event log 

  Optimal Event Log Pre-Processed 
Event Log 

  Value 
Stream 
1 

Value 
Stream 
2 

Value 
Stream 
1 

Value 
Stream 
2 

Clusters 
Evaluation 

Davies 
Bouldin Index 

0.567 0.549 

Average 
Similarity 

96.4% 99.4% 98.9% 84.9% 

Process 
Models 
Evaluation 

Replay fitness 97.8% 91.9% 99.1% 98.7% 

Precision 86.5% 72.9% 56.8% 92.6% 

Generalisation 93.4% 66.2% 91.8% 87.7% 

Simplicity 86% 65.7% 72.6% 69.2% 

 

The process models are generated using the inductive miner infrequent. 

Compared to the ones created by applying the method to an optimal event log, the 

process models show slightly higher complexity, mainly due to the presence of 

additional parallel activities. However, compared to the process model representing 

the material flows for the entire factory, particularly when using scanning points as 

classifier, the value stream process models still improve in simplicity.  
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6.3 EVALUATING THE IMPACT OF QUALITY ISSUES 

The use of a complete event log enables the simulation of different scenarios. 

Therefore, the event log is modified to simulate each quality problem and evaluate the 

effect compared to the optimal event log. 

For the analysis of the individual effect of missing, incorrect, or imprecise 

attributes, the original event log is manipulated to simulate the different scenarios by 

altering 10% of the events. Depending on the implications of each quality issue, the 

event log is cleaned or filtered using the policies defined in Table 5-5. In some cases, 

a stratified sample is taken from the modified event log based on the routing 

frequencies, with the size of the sample being chosen depending on the size of the 

repaired dataset. Finally, the core method for PFA is applied and the results are 

evaluated by comparing the product family composition and related process models to 

the ones generated using an optimal event (see Figure 6-21). 

Figure 6-21: Simulation process for assessing the impact of data quality issues 
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6.3.1 Simulation of Quality Issues 

To simulate data with missing attributes, values associated with 10% of the 

events are removed and replaced with missing ones. 

For the scenarios simulating incorrect attributes, 10% of events are modified by 

changing the case or operation to another random value among the ones contained in 

the event log. For incorrect timestamps, 10% of the events is replaced with a random 

later date within the same month. 

To simulate imprecise cases, 10% of the events is duplicated and the product 

serial associated to them (i.e. case) is changed to a random value among the ones 

present in the event log. For imprecise operations 8 operations have been grouped into 

4 clusters with two activities each. Finally, for imprecise timestamps, the original 

format of the timestamps “dd/MM/yyyy hh:mm:ss” is changed to a date-only format 

“dd/MM/yyyy”. 

 

6.3.2 Results 

Quality issues in production data can have different effects on the proposed 

method for identifying and visualising value streams. For the purpose of PFA, the 

quality of the event log can affect results in two different ways. On one hand, it may 

affect the ability to identify product families. On the other hand, it may impact the 

quality and the interpretability of the process models.  

In regard to the ability to identify product families, the results demonstrate that 

the method is robust in presence of quality issues affecting up to 10% of events or data 

coarseness. This means that the method is able to identify product families even when 

random data collection errors occur, or when data management infrastructures that 

collect coarse-grained data are used.  
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Table 6-7: Evaluation of event logs with quality issues and comparison with 
optimal event log 

 
Davies Bouldin 

Index 

Average within cluster 
similarity 

Value 
Stream 1 

Value 
Stream 2 

Optimal Event Log 0.597 96.4% 99.4% 

M
iss
in
g 

A
ttr
ib
ut
e Cases 0.597 95.7% 99.6% 

Operations 0.529 96.9% 97.9% 

Timestamps 0.543 96.7% 99.3% 

In
co
rr
ec
t 

A
ttr
ib
ut
e Cases 0.546 99.5% 93.9% 

Operations 0.545 99.7% 97.9% 

Timestamps 0.535 97.7% 98.2% 

Im
pr
ec
ise
 

A
ttr
ib
ut
e Cases 0.560 99.7% 64.9% 

Operations 0.623 97.4% 95.8% 

Timestamps 0.464 98.9% 98.5% 

 

Random collection errors can be caused by logging errors that affect the 

correctness of specific attributes. The same applies to issues related to imprecise cases, 

for which events may be attributed to multiple cases. This generates higher variability 

in the distribution of routing frequencies, as there are additional inaccurate routings 

recorded in the event log. Filtering out infrequent traces for each product proves to be 

an essential step for limiting the effect of such issues. For these scenarios, increasing 

the threshold for routing frequency is required to prevent the generation of inaccurate 

product families. Within the core method for value stream identification, feature 

selection is also an important step for handling the presence of incorrect values. When 

trace profiles are generated, a higher number of transitions is created, and feature 

selection can reduce the presence of such attributes.  
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Figure 6-22: Routing frequency threshold comparison for a product in the 
presence of incorrect operations (20% on the left, 5% on the right) 

The impact of coarse-grained data (i.e. imprecise operations and imprecise 

timestamps) is limited by the characteristics of the trace profiles that include both 

activities and transitions. The presence of imprecise operations and imprecise 

timestamps affects the ability to capture transitions within a sequence of operations or 

within the time interval of data collection (e.g. a day) respectively. However, the 

inclusion of activities in the trace profiles provides enough information for identifying 

homogeneity within routings, thus overcoming the issue of coarse-grained data. 

Robustness in these scenarios is important for ensuring applicability in situations 

where companies with limited traceability capabilities may not be able to collect 

enough data from their factories. 

While the ability to identify product families does not get affected, the quality of 

process models worsens in the presence of quality issues, particularly for incorrect and 

imprecise attributes.  

The presence of missing operations has little impact on the process models. This 

is because Process Mining generates models by abstracting the behaviour contained in 

a sample of data, and removing the traces affected by missing values does not affect 

the recorded behaviour. Based on which traces get affected, the model may not be able 

to capture some material flows, potentially displaying some minor deviations from the 

optimal use case.  

Despite filtering out infrequent traces, the presence of incorrect attributes and 

imprecise cases has a small impact on the accuracy and quality of process models, 

particularly in precision for value stream 2.  
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Finally, coarse-grained data results in process models depicting inaccurate 

sequences. Imprecise operations are generated from situations where multiple 

activities are recorded as one, and they translate in process models that are less accurate 

and precise. The presence of imprecise timestamps, generated by situations where 

events are only recorded sporadically (e.g. on a daily basis), results in less precise 

process models with a higher number of operations occurring in parallel, as it is not 

possible to capture sequences occurring within the recording interval. 
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Table 6-8: Product family compositions using event logs with quality issues 

 Missing attribute Incorrect attribute Imprecise attribute 
Case: serial number 

   

Activity name: 
operation ID  

   

Timestamp 
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Operations 

 

95.8% 71.8% 71.1% 69.2% 

Timestamps 

 

97.9% 80.4% 76.7% 64.4% 
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Chapter 7: Conclusions and Outlook 

7.1 SUMMARY OF RESEARCH RESULTS 

This research has developed a Process Mining-based approach to identify key value 

streams and enable the effective application of Production Planning and Control 

techniques in complex environments. 

The systematic literature review provided an original synthesis of the evolution 

of Production Flow Analysis over three decades and the more recent developments in 

Process Mining applications in Manufacturing contexts. The analysis was motivated 

by the observation that Process Mining is a suitable technique for assisting Group 

Technology planning tasks (Deuse et al., 2022). Despite the potential, results from the 

literature review have shown that while the combination of these two techniques has 

received limited coverage in existing literature, Process Mining has been proven to be 

a useful solution for the analysis of real production processes across a variety of 

Manufacturing applications. As such, the review defines research gaps and by 

validating the research goal, it provides the theoretical groundwork for the method 

developed in this thesis.  

While the literature review supports the theoretical foundations of this research, 

the industry analysis and requirements definition support its applicability. In this 

phase, relevant Process Mining literature has been combined with empirical data 

analysis to understand requirements and define possible use cases, thus informing the 

conceptual development of the methodology. As a result, the proposed solution takes 

into consideration different levels of data quality to address the challenge represented 

by the fact that the data capture and storage capabilities of information systems used 

by companies vary.  

To validate the method and demonstrate its applicability, a case study is 

evaluated using real production data. Starting from an event log with one million 

events, the method was able to identify the key value streams and generate the 

corresponding process models, taking into account different use cases corresponding 

to various levels of data quality and maturity. 
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7.2 IMPLICATIONS AND CONTRIBUTIONS 

The methodology developed in this research provides a solution for using event 

data for the purpose of value stream identification, which is an essential prerequisite 

for many Industrial Engineering improvement techniques, including Lean methods 

such as Value Stream Mapping, pull production, production levelling, and line 

balancing (Deuse et al., 2013).  

From a theoretical perspective, the method developed in this research contributes 

to disciplines from Industrial Engineering as well as Data Science. From an Industrial 

Engineering perspective, this method contributes to the area of Production Planning 

and Control by building on the fundamental principles of Production Flow Analysis 

and enhancing them using Industry 4.0 techniques.  While this type of synergy has 

received limited coverage in existing practice-oriented research (see literature review 

in chapter 3), a greater proportion of research has investigated the influence of Industry 

4.0 on established practices in Lean Production (Buer et al., 2018; Rosin et al., 2020). 

In the latter case, results show that Industry 4.0 technologies can improve the 

implementation of Lean principles, but they do not cover their integration. Therefore, 

companies should continue to implement fundamental Industrial Engineering 

techniques such as Lean principles, while improving certain aspects using Industry 4.0 

technologies (Rosin et al., 2020). The same observation can be made for Production 

Flow Analysis principles, as their capability to identify key value streams represents 

an essential enabling step for many Lean techniques and methods, including Value 

Stream Mapping, pull production, production levelling, and line balancing (Deuse et 

al., 2013). As such, the method proposed in this research demonstrates that Data 

Analytics techniques, namely Process Mining and Machine Learning, improve the 

effectiveness of Production Flow Analysis. By building on existing frameworks for 

trace clustering (Zandkarimi et al., 2020) and event log maturity (van der Aalst et al., 

2012), this work proposes a conceptual method for value stream identification. From 

a Data Science perspective, the method proposed in this research demonstrates the 

ability to solve engineering problems related to the identification of value streams. 

Compared to existing research in the field of Industrial Data Science, this work 

provides a comprehensive methodology that takes into consideration various use cases, 

depending on data quality as a most relevant practical challenge. As such, while some 

parts of the methodology build on existing research and use established techniques, a 



  

Chapter 7: Conclusions and Outlook 113 

significant contribution is provided by the algorithm for event log pre-processing that 

enables the identification of the association between scanning points and operations.  

From a practical perspective, this method contributes to the research enabling 

Industry 4.0 capabilities and foundations. Through the identification of value streams 

as product families and the work operations they are associated to, this method 

addresses some of the practical challenges of IE and enables visibility and transparency 

in production by facilitating the effective application of Production Planning and 

Control techniques.  

One of the key challenges that modern manufacturing companies face is what to 

do with the increasing amount of data that they are able to collect from the factory 

floor (Kusiak, 2017). This work provides a solution to this problem, as the automated 

product clustering based on routings allows companies to master an unmanageable 

amount of data.  

More broadly, the method proposed in this research demonstrates the ability to 

unlock visibility and transparency in production, both fundamental maturity levels of 

Industry 4.0 (Schuh et al., 2020). The method allows to intuitively see what happens 

on the factory floor by creating Digital Shadows (i.e. visibility) and apply engineering 

knowledge to derive and visualise key value streams (i.e. transparency).  Overall, the 

visibility and transparency provided by this method can directly inform Production 

Planning and Control decisions while laying the foundations for predictive and 

adaptability capabilities. In terms of immediate feedback, the identification of key 

value streams can inform decisions related to multiple activities including production 

planning and scheduling, production levelling, production design, and supply chain 

design. In regard to the ability to unlock future capabilities, this method can serve as 

basis for the ability to simulate and analyse future scenarios, as representative Digital 

Shadows combined with engineering knowledge enable the generation of relevant 

recommendations and forecasts (Schuh et al., 2020). This can be taken one step further 

to develop Digital Twins that are able to automatically respond to changes in physical 

processes, thus completing the feedback loop.  

Finally, in line with existing Industry 4.0 policy implications, this work 

represents industry-oriented research. In fact, Industry 4.0 is still at a conceptual state 

trying to integrate various dynamic technological concepts (F. Yang & Gu, 2021), and 

countries across the world are introducing different policies and national strategies to 
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harness the advantages of this technological shift. Since 2011, when Industry 4.0 

concepts were first announced at the Hannover Fair and then included as a German 

strategic initiative by the government two years later (Kagermann et al., 2013), various 

countries followed in introducing industrial plans for enabling Industry 4.0. Some of 

the commonalities between the different national initiatives include a strong focus on 

collaboration with industry, universities, and governments, and the adoption of 

interdisciplinary approaches in research and development. Since 2017, as part of the 

Prime Minister’s Industry 4.0 Taskforce, now renamed Industry 4.0 Manufacturing 

Forum (Gallagher, 2017), Australia has been encouraging research organisations to 

collaborate with industry to facilitate technological innovation in manufacturing. As a 

result of these national imperatives, Australian universities have adjusted the focus of 

their research programs, promoting PhD projects that are industry-relevant, provide 

‘tangible innovation’ and ‘identifiable impact’ (Molla & Cuthbert, 2019). Other 

countries including Denmark, Italy, Portugal, Singapore, the United Kingdom, and the 

United States of America, have introduced programmes with similar goals, namely 

enabling to facilitate the technology transfer to the industry enabled by the 

collaboration between government, academia, and industry to facilitate the technology 

transfer to the industry (F. Yang & Gu, 2021). In line with the Industry 4.0 policy 

imperatives shared by countries across the world, this research contributes to the 

development of Industry 4.0 innovation by proposing an industry-oriented research 

work with ‘identifiable impact’. This is achieved by proposing a method that considers 

multiple practical scenarios and demonstrating its applicability using real production 

data. 
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7.3 LIMITATIONS AND FUTURE WORK 

This research proposes a methodology for identifying value streams and 

demonstrates the practical impact using an exemplary case study. In research, 

exemplary case studies are considered suitable methods for exploratory research 

investigating a contemporary set of events over which the investigator has little or no 

control (Yin, 2009). Multiple case experiments can lead to more generalizable 

conclusions by showing that findings can either be idiosyncratic to the single case 

study or consistently replicated (Eisenhardt & Graebner, 2007). In this research, the 

data used for the case study is good quality and complete, making it possible to 

simulate different use cases with different levels of data quality. This attempts to 

overcome some of the limitations of a single case study. However, exploratory 

research benefits from being further verified with additional experiments involving 

production data from other manufacturing companies. More broadly, this methodology 

could be adapted to processes beyond Manufacturing. While, Production Flow 

Analysis has been used by manufacturing companies for decades, due to its ability to 

objectively analyse existing material flow systems and inform restructuring planning 

decisions, more recent research has highlighted the potential for applying PFA to 

contexts beyond Manufacturing, such as service operations management (Hameri, 

2011). Similarly, Process Mining techniques have demonstrated to be highly effective 

in discovering, analysing, and improving process across various industries, including 

healthcare, banking, government, education, and transportation (van der Aalst, 2016). 

Therefore, future research may also evaluate the applicability of the methodology 

proposed in this research beyond Manufacturing contexts. 

This work demonstrates that the ability to identifying key value streams depends 

on the digital capabilities of manufacturing companies. The accuracy of results is 

directly correlated to the accuracy of data collection, as shown by the different use 

cases examined. Many manufacturers gradually introduce data collection systems by 

retrofitting existing equipment, as replacing old machines with limited sensory 

capabilities is often expensive (Lorenz et al., 2021). Therefore, in some cases the 

required data may simply not be captured from the physical processes, making the 

application of Process Mining techniques impossible. It is important to note that even 

in cases where data collection practices are optimal, domain expertise may be required 

in the interpretation of the value stream process models. In fact, the resulting process 
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models are the representation of the product routings, with the products being 

represented by unique serial numbers and a product IDs and the work operations by an 

activity code or a scanning point description. In practice, products may get recorded at 

specific check points and in some cases, these may not coincide with a specific activity. 

In such cases, domain knowledge is required to obtain interpretable results, and it can 

be applied before the event log is processed to identify value streams or after the 

process models have been generated. If applied in the first phases, domain knowledge 

requires analysing the list of unique work operations recorded in the event log and 

filtering down this list to the representative ones. If applied after the final results have 

been generated, domain knowledge requires interpreting the process models and 

adjusting them accordingly.  

As the scope of this work is limited to the final stages of the data life-cycle (Tao 

et al., 2018), namely data processing, data visualisation, and data application, future 

research may focus on integrating this methodology with appropriate implementation 

architecture and technologies, thus integrating the earlier stages of the data life-cycle, 

from sources to data collection and storage, and addressing the limitations related to 

data availability. Another possible research direction is the extension of data 

application to enable more advanced capabilities. In fact, most Process Mining 

applications, including the one proposed in this research, generate Digital Shadows, 

that are reflections of reality automatically generated from data. While digital shadows 

are very useful in providing actionable insights, they do not have real-time feedback-

loops, meaning that the awareness derived from the Digital Shadow does not 

automatically trigger actions. Instead, Digital Twins are able to trigger changes based 

on the insights produced (van der Aalst et al., 2021). Process Mining, and in particular 

object-centric Process Mining, is key in transitioning from Digital Shadows to Digital 

Twins (van der Aalst, 2023). As such, future research could integrate and expand the 

methodology developed in this work with Digital Twin applications. Similarly to the 

design approach used in this research, such work could be evaluated using an 

exemplary case study or multiple case studies.  

Finally, the methodology developed in this research can be generalised to 

discrete production settings, where products undergo transformations individually. 

Potentially, the methodology can also be adapted to process manufacturing, where 

process models would be generated based on the movements of batches. However, 



  

Chapter 7: Conclusions and Outlook 117 

assembly production environments pose additional challenges due to merging process 

flows representing assembly operations of different parts identified by their own 

unique IDs (i.e. case IDs). Thus, identifying key value streams in these scenarios 

requires different Process Mining techniques. The Process Mining approaches used in 

this work are based on the assumption that there is a single case notation for each 

product, and events refer specifically to one case. Instead, assembly processes require 

object-centric approaches, for which it is assumed that “there are multiple case notions 

(called object types) and that an event may refer to any number of objects 

corresponding to different object types” (van der Aalst, 2019b, p. 3). Recent research 

has addressed the problem of single case Process Mining approaches by proposing 

discovery algorithms (Van Der Aalst & Berti, 2020). 
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Appendices  

Appendix A 

Intelligent Approaches for Production Flow Analysis 

Table 7-1: Methods for Intelligent Production Flow Analysis 
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(Delcoucq et al., 2023)               x 

(Bortolini et al., 2021)             x   

(Raguraman et al., 2020)            x    

(Mahmoodian et al., 2019)           x     

(Forghani & Fatemi Ghomi, 2019)             x   

(Kong et al., 2018)               x 

(Tambuskar et al., 2018)   x             

(Rabbani et al., 2017)          x      

(Karthikeyan et al., 2016)         x       

(Yuguang et al., 2014)     x           

(Berlec et al., 2014)   x        x     

(Boutsinas, 2013)            x    

(Zeidi et al., 2013) x               

(Rafiei & Ghodsi, 2013)         x x      

(Chattopadhyay et al., 2012)   x             

(Sengupta et al., 2012)        x        

(Rezaeian et al., 2011) x        x       

(Mukattash et al., 2011)    x            

(Agrawal et al., 2011)          x      

(Sengupta et al., 2011b)       x         

(Sengupta et al., 2011a)       x         
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(X. Li et al., 2010)          x      

(Solimanpur et al., 2010)          x      

(Durán et al., 2010)           x     

(Pandian & Mahapatra, 2010)    x            

(Sudhakara Pandian & Mahapatra, 2009)    x            

(M. S. Yang & Yang, 2008)    x            

(Aloudat et al., 2008)              x  

(SudhakaraPandian & Mahapatra, 2008)    x            

(Özdemir et al., 2007)      x          

(Chien-Ta Bruce et al., 2007)                

(Saidi-Mehrabad & Safaei, 2007)             x   

(Mahdavi et al., 2007)             x   

(Won & Currie, 2007)      x          

(Kuo et al., 2006)      x          

(Car & Mikac, 2006)         x       

(Vosniakos et al., 2006) x               

(Venkumar & Haq, 2006)    x            

(Bhide et al., 2005)            x    

(Arikan & Güngör, 2005)             x   

(Peker & Kara, 2004)      x          

(K. K. Seo & Park, 2004)      x          

(Solimanpur et al., 2004)       x         

(S. Park & Suresh, 2003)      x          

(M. C. Chen, 2003)              x  

(Hu et al., 2002)              x  

(Dobado et al., 2002)      x          

(M. L. Chen et al., 2002)      x          

(Lozano et al., 2001) x               

(Pai & Lee, 2001)   x             

(S. Y. Lee & Chen, 2001)      x          

(Mahdavi et al., 2001)    x            

(Kuo et al., 2001)       x         

(Josien & Liao, 2000)  x              

(Enke et al., 2000)    x            

(Liang & Zolfaghari, 1999) x               

(S. Y. Lee & Fischer, 1999)      x          

(Suresh et al., 1999)      x          

(Pilot & Knosala, 1998)   x             

(Christodoulou & Gaganis, 1998) x               
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(Zolfaghari & Liang, 1998)            x    

(Kao & Moon, 1998)       x         

(Enke et al., 1998)    x            

(Kao & Moon, 1997) x               

(Jang & Rhee, 1997)   x             

(Chu, 1997)   x             

(Gwiazda & Knosala, 1997)   x             

(D.-S. Chen et al., 1996)    x            

(Kamal & Burke, 1996)      x          

(Kulkarni & Kiang, 1995)   x             

(Sagi & Chen, 1995) x               

(F. F. Chen & Sagi, 1995b) x               

(Kamal, 1995)      x          

(Burke & Kamal, 1995)      x          

(Kiang et al., 1995)   x             

(Kao & Moon, 1995)       x         

(Suresh et al., 1995)      x          

(S. J. Chen & Cheng, 1995)    x            

(Rao & Gu, 1995) x               

(Dagli & Huggahalli, 1995)    x            

(S. J. Chen & Cheng, 1994)    x            

(Chung & Kusiak, 1994) x               

(Rao & Gu, 1994)   x             

(Suresh & Kaparthi, 1994)    x            

(Liao, 1994)    x            

(Liao & Lee, 1994)    x            

(H. G. Chen & Guerrero, 1994)            x    

(Venugopal & Narendran, 1994)   x x            

(Kaparthi et al., 1993)    x            

(Y. B. Moon & Kao, 1993)    x            

(Liao & Chen, 1993)    x            

(Chakraborty & Roy, 1993)   x             

(Chu & Chu, 1993)       x         

(Caudell, 1992)    x            

(H. Lee et al., 1992)   x             

(Y. B. Moon, 1992) x               

(Y. B. Moon & Roy, 1992) x               

(Y. B. Moon & Chi, 1992) x               

(Currie, 1992) x               
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(Kaparthi & Suresh, 1992)    x            

(Malavé & Ramachandran, 1991) x               

(Kao & Moon, 1991) x               

(Y. B. Moon, 1990)       x         

(S. C. Y. Lu & Ham, 1989)        x        

(ElMaraghy & Gu, 1989)  x              

(Heragu, 1989)             x   

(ElMaraghy & Gu, 1988)  x              

(Ham et al., 1988)  x              

(Kusiak, 1988)             x   

(Shtub, 1988)             x   
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Appendix B 

Process Mining in Manufacturing 

Table 7-2: Process Mining Applications in Manufacturing 
Reference Process Mining Type  Application 

(Ramos-Soto et al., 2024) Performance analysis 
Performance analysis of Automated 

Guided Vehicles (AGVs) 

(Krajčovič et al., 2024) Performance analysis 
General procedure for the analysis of 

manufacturing processes  

(Laghouag et al., 2024) Performance analysis Process value optimisation in family SMEs  

(Horsthofer-Rauch et al., 2024) Performance analysis Sustainability-integrated VSM 

(dos Santos et al., 2024) Performance analysis 

Method for enabling risk and criticality 

analysis of machines and support 

maintenance planning  

(Aslan et al., 2023) Performance analysis 
Methodology for identifying opportunities 

to improve capacity allocation decisions  

(Kumbhar et al., 2023) Performance analysis 
Digital twin framework for bottleneck 

analysis 

(Ceylan et al., 2023) Performance analysis Process analysis and layout optimisation 

(Rudnitckaia et al., 2022) Performance analysis 
Approach for process modelling and 

bottleneck analysis 

(Duong et al., 2021) Performance analysis Framework for assessing product quality 

(Choueiri & Portela Santos, 2021a) Performance analysis Framework for multi-level scheduling  
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(Cho, Park, Song, Lee, & Kum, 

2021) 
Performance analysis 

Quality-aware resource model mining 

algorithm  

(Cho, Park, Song, Lee, Lee, et al., 

2021) 
Performance analysis 

Methodology for discovering a resource-

oriented transition system  

(Lugaresi & Matta, 2021) Performance analysis 

Automated model generation of a 

manufacturing system for perfornmance 

estimation 

(Tran et al., 2021) Performance analysis Dynamic Value Stream Mapping 

(Lorenz et al., 2021) Performance analysis 
Procedure to improve productivity in 

make-to-stock manufacturing 

(Knoll et al., 2019) Performance analysis Value stream mapping for internal logistics 

(Rismanchian & Lee, 2017) Performance analysis Layout design and optimisation 

(C. K. H. Lee et al., 2016) Performance analysis 
Intelligent system to support quality 

assurance in the garment manufacturing 

(J. Park et al., 2014) Performance analysis 
Block manufacturing process evaluation in 

the shipbuilding industry 

(C. K. H. Lee et al., 2014) Performance analysis 
Intelligent system to support quality 

assurance in the garment manufacturing 

(S. K. Lee et al., 2013) Performance analysis 
Block manufacturing process evaluation in 

the shipbuilding industry 

(Yadav et al., 2023) Process discovery 
Framework for automating the creation of 

simulation models for Digital Twins 

(Lugaresi & Matta, 2023) Process discovery 
Method for modelling manufacturing 

systems with complex material flows 

(Lugaresi et al., 2023) Process discovery 
Approach for discovery and analysis of 

production support processes 

(Delcoucq et al., 2023) Process discovery Hierarchical cell formation approach  
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