
Filter Based Active SLAM in Static
and Deformable Environments

by Mengya Xu

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of
Prof. Shoudong Huang,
Dr. Liang Zhao,
Prof. Qi Hao

University of Technology Sydney
Faculty of Engineering and Information Technology

May 2024

Declaration of Authorship

I, Mengya Xu, declare that this thesis, is submitted in fulfillment of the requirements for

the award of Doctor of Philosophy, in the School of Mechanical and Mechatronic Engineer-

ing, Faculty of Engineering and Information Technology at the University of Technology

Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addi-

tion, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signed:

Date:

i

Production Note:
Signature removed prior to publication.

Abstract

UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Robotics Institute

Doctor of Philosophy

by Mengya Xu

Simultaneous localization and mapping (SLAM) has been a hot topic in mobile robots for

decades. Classical SLAM systems do not control the motion of the robot, which is called

passive SLAM. In contrast, active SLAM algorithms control the motion of the robot to

complete certain tasks and, at the same time, maintain a good SLAM estimate. Active

SLAM is a very important decision-making problem when a robot is navigating in an

unknown environment. A good active SLAM algorithm can help improve the estimation

accuracy of the map and robot localization, and additionally take into consideration other

tasks such as coverage and time of exploration at the same time. Active SLAM in static

environments has been well-studied in the last decades. It is always combined with the

exploration tasks, where the exploration-exploitation dilemma is usually a challenge. Ac-

tive SLAM in deformable environments is also an important research topic due to its wide

applications in many different areas, such as robotic surgery. A few groups have completed

some good work on SLAM in deformable environments. In most of the work, the motion of

the robot is controlled by humans or predetermined. However, it would be more desirable

if the robot could decide on its actions online based on different situations.

There are two typical methods to solve the SLAM back-end problem, including the opti-

mization based method and the filter based method. The Extended Kalman Filter (EKF)

based methods have been dominant in both classical and active SLAM for a long time in

earlier stages of SLAM because of their high computational efficiency as compared with

http://www.uts.edu.au
http://www.eng.uts.edu.au
http://cas.uts.edu.au/
Mengya.Xu@student.uts.edu.au

iii

the optimization based approaches. However, it suffers from the inconsistency problem

because of the incorrectly calculated dimension of unobservable space due to linearization

errors, leading to inaccurate SLAM estimates. Some research has enhanced the consistency

of EKF SLAM in the literature. Especially, a Right Invariant Extended Kalman Filter

(RIEKF) based SLAM algorithm has been proven to outperform other typical algorithms.

Using all the information, the optimization based methods can achieve accurate SLAM

estimates as well as consistent uncertainty estimates. However, the computational cost of

optimization based SLAM is very high due to the large number of robot poses involved.

This dissertation focuses on the EKF method and its invariant format, aiming to solve the

active SLAM problem in both static and deformable environments. Firstly, an improved

EKF based active SLAM method is designed to explore 2D feature-based static envi-

ronments. Simulation results show the great potential of using RIEKF in active SLAM.

Therefore, secondly, we extend the RIEKF based active SLAM algorithm to 3D cases.

The environments are 3D and have obstacles, and we improved the exploration frame-

work accordingly. Both simulations and real experiments demonstrate that our proposed

method performs better than the EKF based methods. Finally, we propose an EKF based

active SLAM algorithm for 3D feature-based deformable environments. The algorithm

is designed based on possible assumptions of the feature dynamic model. We have got

good results in both simulation and real-world experiments, where the robot can observe

the whole environment efficiently with more accurate estimates. This is the first step in

developing an efficient active SLAM algorithm in deformable environments.

Acknowledgements

First and foremost, I would like to express my profound gratitude to my principal super-

visor, Prof. Shoudong Huang, for his unwavering guidance, patience, and encouragement

throughout my PhD journey. His expertise, dedication, and belief in my abilities have

been invaluable in shaping my academic development and research. I am deeply appre-

ciative of the time and effort he invested in mentoring me and for inspiring me to pursue

excellence in robotics research. I would also like to extend my heartfelt thanks to my

co-supervisor, Dr. Liang Zhao, for his practical advice and insightful feedback. His ex-

pertise and support have been crucial in overcoming challenges and refining my work. I

am equally grateful to my external supervisor, Prof. Qi Hao, for his thoughtful guidance

and encouragement, which greatly enriched the quality of my research and broadened my

perspectives on robotics and its applications.

I am profoundly grateful for the opportunity to study at both the Southern University of

Science and Technology (SUSTech) and the University of Technology Sydney (UTS). This

unique collaboration has provided me with access to world-class resources, a vibrant aca-

demic environment, and the chance to work with talented researchers and colleagues from

diverse backgrounds. The experiences and friendships I have gained at both institutions

have made this journey deeply rewarding and memorable.

I would like to express my sincere gratitude to SUSTech for providing the financial support

for my PhD studies through their scholarship. Their generosity has enabled me to focus

on my research and academic pursuits. I also wish to acknowledge the administrative and

technical staff at both institutions for their assistance in managing various aspects of my

studies. Their efforts have ensured the smooth progress of my research and made this

journey more manageable.

I extend my heartfelt thanks to all my colleagues and friends for their support and en-

couragement. I am especially grateful to Yang Song and Yongbo Chen for their invaluable

assistance with my research papers, particularly during the early stages of my PhD study.

I also wish to thank Tiancheng Li, Yang Song, Yingyu Wang, and many other colleagues

who have offered tremendous help not only in my academic pursuits but also in my per-

sonal life, especially during my initial days in Sydney. Additionally, I am deeply thankful

to my friends in the SUSTech Dance Society for bringing joy and good memories to an

otherwise intense and often monotonous research life.

iv

v

Finally, I would like to express my heartfelt gratitude to my parents, whose love, patience,

and constant belief in me have been my greatest source of strength. Your constant support

has provided the foundation that allowed me to pursue my dreams and overcome many

challenges. I am deeply grateful for all your sacrifices, encouragement, and for always

being there for me throughout my life.

To everyone who has contributed to this journey in any capacity, I offer my heartfelt

thanks. This thesis is a testament to your support and inspiration.

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures ix

List of Tables xi

Nomenclature xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and objectives . 3

1.3 Contributions . 4

1.4 Publications . 5

1.5 Thesis outline . 6

2 Literature Review 8

2.1 Traditional methods for solving active SLAM problem 9

2.1.1 Identification of potential actions . 9

2.1.2 Utility computation . 11

2.1.2.1 Uncertainty quantification 12

2.1.2.2 Uncertainty calculation for different SLAM algorithms . . . 14

2.1.3 Action selection and execution . 15

2.2 Active SLAM in deformable environments 16

2.3 Reinforcement learning based active SLAM 17

2.4 The focus of this thesis . 18

3 EKF and RIEKF Algorithms 19

3.1 The general EKF SLAM framework . 19

3.2 The standard EKF SLAM . 21

3.3 RIEKF based SLAM . 21

vi

Contents vii

3.3.1 2D RIEKF . 22

3.3.2 3D RIEKF . 24

3.4 Summary . 25

4 Invariant EKF based 2D Active SLAM with Exploration Task 26

4.1 Problem statement . 26

4.2 Method . 27

4.2.1 Proposed active SLAM method . 27

4.2.2 Goal point selection . 28

4.3 Experiments . 29

4.3.1 Simulation settings . 29

4.3.2 Results of using a predetermined path 31

4.3.3 Comparison of the different active SLAM methods 33

4.3.3.1 Coverage . 33

4.3.3.2 Accuracy . 34

4.3.3.3 Processing time . 35

4.4 Summary . 36

5 Invariant EKF based 3D Active SLAM with Exploration Task 37

5.1 Problem statement . 37

5.2 Method . 38

5.2.1 Global planner . 38

5.2.1.1 Map building . 39

5.2.1.2 Goal selection . 40

5.2.1.3 Visibility graph for robot navigation 41

5.2.2 Local planner . 42

5.2.3 Combined planner . 43

5.3 Experiments . 43

5.3.1 Simulation in MATLAB . 44

5.3.2 Simulation in Gazebo . 49

5.3.3 Real-world experiment . 51

5.4 Summary . 53

6 Active SLAM in 3D Deformable Environments 55

6.1 Problem statement . 55

6.2 EKF SLAM in deformable environments . 56

6.3 Active SLAM in deformable environments 58

6.3.1 The active SLAM problem . 58

6.3.2 Local planner . 58

6.3.3 Global planner . 59

6.3.4 Combined planner . 61

6.4 Models and simulation settings . 63

6.5 Simulation results . 65

6.5.1 Polygon environment . 65

6.5.1.1 Coverage . 66

Contents viii

6.5.1.2 Accuracy . 67

6.5.1.3 Processing time . 68

6.5.2 Heart environment . 69

6.5.2.1 Coverage . 70

6.5.2.2 Accuracy . 70

6.5.2.3 Processing time . 70

6.6 Real-world experiments . 71

6.6.1 Experiment settings . 71

6.6.2 SLAM and active SLAM in the static environment 72

6.6.3 SLAM and active SLAM in the deformable environment 74

6.7 Summary . 76

7 Conclusion and Future Work 77

7.1 Contributions . 77

7.2 Limitations and future work . 79

Bibliography 80

List of Figures

2.1 The relationships among the sub-tasks in modeling unknown environments
[1]. 9

4.1 Result of using the predetermined path based on different SLAM methods
in the environment with 50 randomly distributed features. 31

4.2 The pose error of using the predetermined path based on EKF, the opti-
mization algorithm and the RIEKF. 32

4.3 Result of using different active SLAM methods in the environment with 50
randomly distributed landmarks/features. 33

4.4 The robot pose error of using different active SLAM methods. The results
of the two optimization based methods (NLSI and NLSlb) are very similar. 34

4.5 The comparison of the decision making time. 35

5.1 Our active SLAM framework. 38

5.2 An example of the goal selection and visibility graph building process in the
global planner. 41

5.3 Simulation environment in MATLAB. The gray structures are walls and
obstacles. The green stars are sparsely distributed features. 44

5.4 Results in MATLAB Environment 1 under noise level ii. The yellow dots
are the goal points. The black/blue lines are the actual/estimated robot
paths, and the coordinate systems on the blue line suggest the estimated
robot pose at each step. The robot paths and features are in the 3D space,
and the robot poses are 6 DOF. 45

5.5 Accuracy (RMSE) of different algorithms in MATLAB Environment 1 under
noise level ii. 46

5.6 Results in MATLAB Environment 2 under noise level ii. The yellow dots
are the goal points. The black/blue lines are the actual/estimated robot
paths. The robot paths and features are in the 3D space, and the robot
poses are 6 DOF. 47

5.7 Simulation environment in Gazebo. 49

5.8 Results in the Gazebo environment. 50

5.9 Autonomous robot, LIMO. 51

5.10 Real-world environment. 52

5.11 Results in the real-world environment. 52

6.1 SLAM models in deformable environments. 56

6.2 Environment models. 62

ix

List of Figures x

6.3 Result of using different active SLAM methods in the polygon environment. 63

6.4 Results of using different active SLAM methods in the heart environment. . 66

6.5 Comparison of using different active SLAM methods in the polygon envi-
ronment. 69

6.6 Comparison of using different active SLAM methods in the heart environment. 71

6.7 Real-world phantom experiment settings. 72

6.8 SLAM results of using EKF and RIEKF algorithms in the static phantom
environment. 73

6.9 Active SLAM results of using EKF and RIEKF algorithms in the static
phantom environment. 74

6.10 Results of using different algorithms in the deformable phantom environment. 75

List of Tables

4.1 Estimation error comparison . 32

4.2 Estimation error comparison . 35

5.1 Covariances of noises . 45

5.2 Comparison in MATLAB Environment 1 . 46

5.3 Comparison in MATLAB Environment 2 . 48

5.4 Comparison in Gazebo . 51

5.5 Comparison in real-world environment . 53

6.1 Coverage comparison for the polygon environment 65

6.2 Estimation error comparison for the polygon environment 68

6.3 Coverage comparison for the heart environment 69

6.4 Estimation error comparison for the heart environment 70

6.5 Comparison of feature number and robot pose error in real-world deformable
environment . 75

xi

Acronyms & Abbreviations

UTS University of Technology Sydney

RI Robotics Institute

SLAM Simultaneous Localization and Mapping

EKF Extended Kalman Filter

RIEKF Right Invariant Extended Kalman Filter

2D Two-Dimensional

3D Three-Dimensional

OC-EKF Observability constrained EKF

RRT Rapidly exploring random tree

IT Information theory

TOED Theory of optimal experimental design

EM Expectation-maximization

KLD Kullback-Leibler divergence

FIM Fisher information matrix

DDP Differential dynamic programming

MPC model predictive control

RGB-D Red-Green-Blue-Depth

xii

Acronyms & Abbreviations xiii

GPU Graphics Processing Unit

MIS Minimal invasive surgery

ORB Oriented FAST and rotated BRIEF

NRSfM Non-rigid Structure-from-Motion

RL Reinforcement learning

NLS Nonlinear least squares optimization

NLSI Traditional nonlinear least squares optimization

NLSlb lower bound based nonlinear least squares

Lidar Light Detection And Ranging Sensor

CT Computed tomography

Nomenclature

General Notations

N Gaussian distribution

n = 1, . . . , N Index of time steps

Xn, X̂n The n-th step state and its estimation

Pn The covariance matrix of the n-th step state

Rn Robot orientation

xn Robot position

j = 1, . . . ,M Index of features

f jn The coordinate of the j-th feature

f(·) Process model

un Robot odometry

ωn Angular velocity

vn Linear velocity

wn Noise of the process model

wω
n , w

v
n Noise of the robot angular velocity and linear velocity

Φn Variance of noise wn

Zn The observation at the n-th step

hn(·) Observation model

ξn Observation noise

Ψn Variance of noise ξn

On The set of features observed at time n

i Index of feature in On

Ψi
n Variance of noise of the i-th observed feature at time n

xiv

Nomenclature xv

en Noise of the state

⊕, ⊖ Retraction in differentiable geometry and its inverse

Fn The Jacobian of the robot motion model

Gn The Jacobian of the motion noise

Sn Innovation covariance

Kn Kalman gain

Hn The Jacobian of the observation model

Rn The n-dimensional Euclidean space

θn ∈ R1 2D Robot orientation in Euler Angle

Θn ∈ R3 3D Robot orientation in Euler Angle

SO(n) The special orthogonal group

G(·) State set

g(·) The associated Lie algebra of G(·)

exp(·) The exponential mapping

In The identity matrix

J The skew symmetric matrix

∇ The Jacobian operator

expSO(3)(·) The exponential mapping

S(·) The skew symmetric operator

Jr(·) Right Jacobian

trace(·) The trace of a matrix

obj The objective function

d The distance between the robot and the goal point

wp, wd The weight of trace(P) and d

Le The exploration point list

pexplore The selected exploration point

pgood The feature with low uncertainty

ppoor The feature with high uncertainty

dexplore, dgood,

dpoor

The distance from the robot to pexplore, pgood and ppoor

k The number of the observed features

Nomenclature xvi

wk, wn The weight of k and n described above

const A constant value

upperbound,

lowerbound

The threshold for selecting the goal point

q Distance between the robot and the feature

atan2(y, x) The angle measure (in radians) between the positive x-axis and the

ray from the origin to the point (x, y)

Λn Information matrix

LBn Lower uncertainty bound

t, rt Feature global translation and rotation

d, rd Feature local deformation and rotation

wj=1:M
n Feature motion noise

wt
n,j Feature global translation noise

wd
n,j Feature local deformation noise

zfn,j The observation from the robot sensor to the j-th feature

zcn,j1,j2 The observation of the constraint between feature f j1 and f j2

f loc(n, j) The j-th feature’s position relative to f1n in the local coordinate

ξfn Feature measurement noise

ξcn Structure measurement noise

g A viewpoint in the 3D space

G The set of candidate viewpoints

Ng The number of viewpoints in G

c Cost function

dgi,i+1 The distance between gi and gi+1

U The set of candidate actions

Nu The number of candidate actions in U

Chapter 1

Introduction

1.1 Motivation

SLAM is the process of mapping an area while keeping track of the location of the robot

within that area. SLAM has been a hot topic in mobile robots for decades because of its

wide usage and great importance in various scenarios. Classical SLAM systems do not

control the motion of the robot, which is called passive SLAM. In contrast, active SLAM

algorithms control the motion of the robot to achieve certain tasks and, at the same time,

maintain an accurate SLAM estimate.

Active SLAM is a decision-making problem where the robot’s motion is planned at the

same time as the SLAM process. A good active SLAM algorithm can help improve the

estimation accuracy of the map and robot localization, and additionally take into consid-

eration other tasks such as coverage and time of exploration at the same time. Active

SLAM is important in many scenarios. The research on active SLAM in unknown static

environments was started two decades ago and has been extensively explored [2–4]. One

of the most important performance criteria for active SLAM is the quality of the SLAM

estimate. In most cases, an objective function built by the Fisher information matrix

or covariance matrix in the estimation process is used to select robot motion ([2, 5, 6]).

Active SLAM is always combined with exploration tasks, where the robot is expected to

1

Chapter 1. Introduction 2

explore an unknown environment as soon as possible and, at the same time, keep an accu-

rate SLAM estimation. In these problems, how to deal with the exploration-exploitation

dilemma is usually a challenge.

Active SLAM in deformable environments is also an important research topic due to

its wide applications in many different areas, such as robotic surgery. In recent years,

active SLAM has played an increasingly important role in deformable environments like

those in the human body. A few groups have completed some good work on SLAM in

deformable environments. When an RGB-D sensor is used to observe the environment, a

common approach is to deform the prior or build map directly based on the observations

[7][8][9][10][11]. In some cases, high accuracy is required, but the sensor vision is limited;

extra techniques are needed to provide additional information. For example, in some

surgical cases, a computed tomography (CT) is used to provide an ideal prior model for

recovering the deformation [12][13], while [14] uses GPU and ORB-SLAM to obtain a pose

estimation first. Many works like [15][16] have investigated more challenging cases when

only one monocular camera can be used. In [17], some fundamental questions about SLAM

in deformable environments are discussed, such as the observability and the consistency.

Existing robots have been successfully used to reconstruct the structure of organs like the

stomach and intestine so that the pathological parts can be distinguished. However, the

motion of these robots needs to be predetermined or controlled by humans, which limits

their application scenarios and scope. In this case, it is more desirable if the robot can

autonomously plan its motion online based on different situations. The environment in

the human body is deformable and highly dynamic. It is necessary for the robot to take

these changes into consideration so that it can successfully reach the target region by itself

and describe the environment accurately. Thus, an accurate and efficient active SLAM

algorithm needs to be designed for deformable environments.

The EKF algorithm is a typical estimation-theoretic based approach used to solve SLAM

problems. The EKF based methods have been dominant in both classical and active SLAM

for a long time in earlier stages of SLAM because of their high computational efficiency as

compared with the optimization based approaches. Traditional EKF SLAM takes great

advantage of the low computational cost when the number of features in the environment

is limited. Still, it has been proved to get inconsistent estimates due to the wrongly

Chapter 1. Introduction 3

captured unobservable directions ([18–21]). In particular, the obtained covariance matrix

in EKF SLAM is smaller than the actual estimate uncertainty, especially when the robot

orientation error is large. Clearly, using the over confident covariance matrix obtained in

EKF SLAM to guide the planning may lead to an unreliable robot trajectory in active

SLAM.

Due to the inconsistency of EKF SLAM, optimization based SLAM methods become

popular in the last decade, and it has also been frequently used in active SLAM. Using

all information to estimate the SLAM results, the optimization based methods can obtain

more accurate SLAM estimates and consistent uncertainty estimates. However, using all

information on the other side leads to high computational costs. Especially when it is

applied to the active SLAM problem where the SLAM algorithm needs to be performed

frequently to predict the performance of each candidate action, the computational cost is

really high.

As studied in ([22–24]), the SLAM problem has a nontrivial Lie group structure, and

the Right Invariant EKF (RIEKF) algorithm designed on a specific Lie group structure

is applied to solve the SLAM problem. It has proved that for feature based SLAM,

the linearized system of RIEKF approach can automatically and correctly capture the

unobservable direction of SLAM, ensuring strong consistency properties. The RIEKF

based SLAM method is shown to be able to get better SLAM results with much improved

consistency as compared with not only the traditional EKF based methods but also some

improved ones [23] such as the observability constrained EKF (OC-EKF) [19]. When

compared with the optimization based SLAM, its performance is shown to be comparable

to iSAM [25] and close to full optimization based SLAM in many cases [26, 27].

1.2 Aims and objectives

This research aims to design effective active SLAM algorithms for feature based environ-

ments. We will mainly focus on the EKF based methods, especially the Right Invariant

EKF algorithm. These algorithms will be designed for both static environments and de-

formable environments.

Chapter 1. Introduction 4

According to the aims, this research can be divided into the following tasks:

i. RIEKF based active SLAM in 2D static environments. Motivated by the

recent research results on RIEKF SLAM, the first objective of this thesis is to apply

RIEKF to the active SLAM algorithm, developing an efficient and accurate planning

framework for the robot to explore unknown 2D environments.

ii. RIEKF based active SLAM in 3D static environments. In this task, we aim

to extend our RIEKF based 2D active SLAM algorithm to 3D cases and improve

the planning framework to solve the exploration-exploitation dilemma.

iii. Active SLAM in 3D deformable environments. The third objective of this

thesis focuses on 3D deformable environments. We aim to design an active SLAM

framework, where the robot is expected to take the environment changes into con-

sideration so that it can successfully reach the target region by itself and map the

latest environment accurately.

1.3 Contributions

We improved the exploration framework where both the predicted SLAM results for choos-

ing control actions and the actual estimated SLAM results applying the selected control

actions are computed using RIEKF algorithms. This is the first research work in this direc-

tion to consider a 2D case and apply the greedy method in the planning. The advantages

over traditional EKF based active SLAM are the more accurate and consistent predicted

uncertainty estimates, which result in the robustness of the active SLAM algorithm. The

advantage over optimization based active SLAM is the reduced computational cost. Sim-

ulation results are presented to validate the advantages of the proposed algorithm.

As an extension of the 2D algorithm, we consider using the RIEKF method in active

SLAM in 3D environments with obstacles. Similar to the 2D cases, both the predicted

SLAM results for candidate control actions and the actual estimated SLAM results after

applying the selected control actions are computed using RIEKF algorithms. Different

from the previous work that used a weighted objective function to determine the robot’s

Chapter 1. Introduction 5

motion in 2D, the newly designed planner is a combination of an efficient global planner and

an accurate local planner in 3D. Results of the simulation and the real-world experiment

demonstrate that our proposed method improves the estimation accuracy significantly

and, at the same time, maintains a high exploration efficiency.

Finally, we consider the active SLAM problem in 3D deformable environments which has

not been studied yet. Here, we have some reasonable assumptions about the feature dy-

namic model and the observation model. Based on these assumptions, an EKF based active

SLAM framework is designed to estimate the SLAM result accurately and efficiently. The

planner proposed is a combination of a global planner and a local planner. We compare

the combined framework with using the local greedy method only and using the global

planner only. Simulation results under different scenarios have shown that the proposed

active SLAM algorithm provides a good balance between accuracy and efficiency as com-

pared to the local planner and the global planner. Besides the simulation experiments, we

also design an active SLAM system in a real-world phantom environment. This system

uses a UR robot to handle an endoscope, which can move the camera to the expected

poses that are calculated by our active SLAM algorithm. This system has been used to

test the EKF based SLAM and active SLAM algorithms.

1.4 Publications

i. M. Xu, Y. Song, Y. Chen, S. Huang and Q. Hao. Invariant EKF based 2D Active

SLAM with Exploration Task. In 2021 IEEE International Conference on Robotics

and Automation (ICRA), 2021, pp. 5350-5356, doi: 10.1109/ICRA48506.2021.9561951.

ii. S. Huang, Y. Chen, L. Zhao, Y. Zhang and M. Xu. Some research questions for slam

in deformable environments. In 2021 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), 2021, pp. 7653-7660, doi: 10.1109/IROS51168.2021.9635883.

iii. M. Xu, L. Zhao, S. Huang and Q. Hao. Active SLAM in 3D Deformable Envi-

ronments. In 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2022, pp. 7952-7958, doi: 10.1109/IROS47612.2022.9982224.

Chapter 1. Introduction 6

iv. M. Xu, S. Chen, L. Zhao, S. Huang and Q. Hao. Invariant EKF based 3D Active

SLAM with Exploration Task. Submitted to IEEE Transactions on Emerging Topics

in Computing (TETC) in Sep. 2024.

1.5 Thesis outline

This thesis is organized as follows:

� Chapter 1: This chapter discusses the background and motivation of the thesis,

followed by the aims and objectives. We then highlight our contributions and pub-

lications.

� Chapter 2: This chapter presents the review of relevant literature on active SLAM

algorithms in both static environments and deformable environments.

� Chapter 3: This chapter covers the background knowledge of EKF SLAM and RIEKF

SLAM. The general EKF SLAM framework is first introduced, followed by the stan-

dard EKF SLAM. The 2D and 3D RIEKF algorithms are then introduced, respec-

tively.

� Chapter 4: This chapter introduces our first work about RIEKF based active SLAM

framework in 2D static environments. We first describe the problem we considered;

then our proposed RIEKF based active SLAM method is presented in detail. In the

experiments section, we introduce the experiment design and show the experiment

results. The analysis of using different strategies under the considered criterion is

also presented in the experiment section. Finally, we summarize the main results of

this work. This work has been published in the IEEE International Conference on

Robotics and Automation (ICRA) 2021 [28].

� Chapter 5: This chapter proposes a 3D active SLAM framework that is extended from

the 2D case. The problem we consider in this work is given in the problem statement

section. We then introduce each component of our proposed combined planner in

detail. The experiments section presents the results and analysis of different planners

Chapter 1. Introduction 7

in different platforms, including simulation experiments in MATLAB and Gazebo

and real-world experiments. The summary of this work is provided at the end of

this chapter. This work has been submitted to IEEE Transactions on Emerging

Topics in Computing (TETC) in Sep. 2024.

� Chapter 6: This chapter presents our work of active SLAM in deformable envi-

ronments. We first describe the task of active SLAM in deformable environments,

followed by the EKF based deformable SLAM model under reasonable assumptions.

With the SLAM model, we then concretely describe the problem we consider and

propose an efficient active SLAM framework to solve the problem. The framework is

introduced in detail according to its components. We design two simulation environ-

ments to test our algorithms, and in the models and simulation settings section, we

provide the details of these two environments. The simulation results section evalu-

ates the performance of different algorithms in these two environments, respectively.

We also carry out real-world experiments. The experiment settings and the main

results are presented in the real-world experiments section. The summary and some

discussions of this work are given in the summary section. The simulation part of

this work has been published in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) 2022 [29].

� Chapter 7: This chapter contains two sections. The first section gives the conclusion

of this thesis, and the second section discusses potential future works.

Chapter 2

Literature Review

The task of exploring and modeling an unknown environment can be generally divided into

three sub-tasks, including localization, mapping and motion control. Fig. 2.1 proposed

by Makarenko et al. in [1] illustrates the relationships among the sub-tasks. Region I

represents simultaneous localization and mapping (SLAM). As the name shows, SLAM

is a method for autonomous mobile robots to build a map of an unknown environment

while locating the robot within it [30]. Localization and mapping began to be solved

simultaneously after the probabilistic approaches went mainstream in the 1990s. The

poses of the robot and the location of the landmarks need to be estimated without any

prior knowledge of the environment. Several families of algorithms have been designed to

solve the SLAM problem in the last decades [2, 31–33]. The integration of motion control

and mapping is active mapping or classic exploration, as Region II shows. It assumes that

the sensor localization is known, aiming to search the optimal robot motion so that it

can describe the environment accurately. There are different strategies to solve the classic

exploration problem [34–37]. This problem is especially addressed in the field of computer

vision for environment reconstruction [38, 39]. Region III represents active localization,

which is the integration of localization and motion control. It assumes the map of the

environment is known. The aim is to control the robot’s motion to improve the robot pose

estimation. This problem was first formulated by Fox et al. [40] and Borgi and Caglioti

[41] and further investigated by many researchers [42–45]. The integration of all three

components in Region IV is active SLAM. In this problem, the robot motion is planned

8

Chapter 2. Literature Review 9

at the same time as the SLAM process, aiming to reduce the estimation uncertainty of

the robot localization and map representation. Before the name “active SLAM” is given

by Davison and Murray [46], it is also called active exploration [47], adaptive exploration

[48], integrated exploration [1], and autonomous SLAM [49]. Active SLAM is illustrated

as Region IV in Fig. 2.1.

Figure 2.1: The relationships among the sub-tasks in modeling unknown environments
[1].

2.1 Traditional methods for solving active SLAM problem

Motion control in SLAM is firstly addressed by Feder et al. in [2]. The objective of motion

planning is to maximize the information obtained from observations so as to improve

the estimation accuracy. It decouples the active SLAM problem into three stages: 1)

Identification of the potential actions, 2) Utility computation, 3) Action selection and

execution. This a traditional way to solve the active SLAM problem [1, 2, 50]. Placed et

al. [4] have reviewed related work on each stage. Here, we also follow the three stages to

review some of the work and focus more on work in the second stage.

2.1.1 Identification of potential actions

In traditional active SLAM approaches, the first step is to generate a set of available

actions for the robot to execute. The actions can be goal points on the map, and they

Chapter 2. Literature Review 10

can also be the robot motions. The format of the goal points strongly depends on the

map representation. There are mainly four types of map representations to describe the

environment, including topological maps, metric maps, metric-semantic maps, and hybrid

maps. Topological maps use graphs to describe the environment information [51], but they

are not frequently used in active SLAM [52, 53]. Metric maps can be divided into sparse

maps and dense maps. Sparse maps use a set of features to represent the environment.

This kind of representation has been widely used in optimal control [54–56]. They are

the most typically used map representations in active SLAM. Occupancy grid maps are

one of the most typically used dense maps. This kind of map representation is firstly

proposed for perception and navigation [57, 58], and has been widely used in active SLAM

[44, 59–62]. In 3D cases, the map is usually built based on octrees [63, 64] or voxel [65].

All of them have been used in active SLAM problems [66–69]. Metric-semantic maps

extract the semantic information from the environment and associate it to classical metric

maps [70–74], but only a few researchers consider this kind of representation in active

SLAM [75, 76]. Hybrid and hierarchical maps combine some of the map representations to

accomplish certain tasks like navigation [77], SLAM [78], or describing complex dynamic

environments [79]. Only very few works use the hybrid maps in active SLAM [80]. In our

research, we focus on the back end of the SLAM process, and the map we use is metric

based.

A popular framework for active SLAM is selecting the best action from a finite set of

candidate actions [81][82]. Usually, a set of goal points is generated to guide the motion of

the robot. The simplest way to choose the goal position is random-based exploration [83,

84]. In practice, frontier-based exploration [85][36] is a more widely used approach, where

a small subset of locations in the map is selected. The frontier is the region between the

known and unknown areas of the map. It has been used in 2D environments with different

kinds of map representations. Frontiers can be easily identified in topological maps as

nodes without neighbors in certain directions [52]. In 2D occupancy grid maps, different

frontier detection algorithms have been proposed, such as geometric based methods [86–

88], RRTs based method [62, 89, 90] and sample based method [91]. Frontier based method

is not widely used in 3D cases because of the high computational and storage cost to store

and analyze the map information. Some works also use the above method in 3D cases

Chapter 2. Literature Review 11

[92, 93], but most research make efforts to reduce the computational cost by evaluating

map portions incrementally [69, 94] or only along surface [95], or by sampling particles in

the known space [96]. Usually, after the frontiers are detected, a clustering step, like K-

means [97] or mean-shift [89], is applied to restrict the dimension of the frontiers. However,

traditional frontiers base exploration does not consider the estimation uncertainty. As

studied in [49, 98, 99], revisiting previously observed areas may obtain more information.

Therefore, to deal with the exploration-exploitation dilemma, the usual practice is to

include the loop closure areas in the set of the goal points [100, 101], or switch between

exploring frontiers and revisiting the previously observed regions [98, 102, 103]. Despite

identifying global goal points, some work selects the goal points within a local area around

the robot, which is widely used in reinforcement learning based methods [104, 105]. The

disadvantage of this strategy is that only locally optimal results can be obtained, and when

the decision making horizon is too short, wrong decisions may be made [106, 107]. Instead

of selecting a specific destination, [54] introduces an attractor to influence the motion of

the robot. The attractor is also selected from a series of potential points according to

some specific criteria that balance the activities of exploring, improving localization and

improving the map. Once selected, the attractor is in the form of an artificial feature, helps

the robot to decide its action by influencing the information gain of the control actions.

2.1.2 Utility computation

The utility computation stage is the most focused stage by researchers in classical active

SLAM. In this stage, the candidate actions will be evaluated according to some criterion.

In traditional exploration tasks, the utility function is usually formulated by the travel

distance [36] or navigation time [92], and this kind of utility function can be used in all

kinds of map representations [69, 101, 108]. Another typical method is considering the

expected unknown area to be observed [83, 84, 89]. This kind of method is usually used

in occupancy grid maps by counting the number of the known and unknown cells [1].

However, these approaches mainly focus on map coverage and collision avoidance, leaving

the estimation uncertainty during the SLAM process unconsidered.

Chapter 2. Literature Review 12

In classic active SLAM, one of the most important performance criteria is the quality of

the SLAM estimate. Traditionally, the active SLAM problem is solved by minimizing a

certain criterion in terms of the information gain, and the objective is to obtain more

information [2, 5, 6]. To solve the exploration-exploitation dilemma, some works directly

add a term of the information gain into the objective function [1, 52, 59], and some set

thresholds to balance different factors [54, 89, 109]. However, tuning the parameters is

complicated and makes a fair comparison of different metrics difficult [110].

To evaluate the information gain, the most common idea is to compare the uncertainty

matrices. There are two groups of methods to quantify the uncertainty. One is using the

information theory (IT), and the other is based on the theory of optimal experimental

design (TOED). Information theory based methods mainly aim at occupancy grid maps,

while the theory of optimal experimental design based approaches focus on Gaussian dis-

tributions over features and poses. In this section, we will first introduce these two groups

of uncertainty quantifying approaches. After that, we focus on different methods of cal-

culating the uncertainty of SLAM estimate under Gaussian distribution.

2.1.2.1 Uncertainty quantification

By using information theory, the uncertainty is quantified in the joint belief state to rep-

resent the entropy [111]. In the early stage, entropy only considers the map uncertainty,

assuming no error in robot localization [36, 92, 112]. Later, Bourgault et al. [48] noticed

that large errors in robot localization lead to wrong map uncertainties. Therefore, the

robot localization uncertainty is taken into consideration to calculate the entropy [113].

However, the entropy of the SLAM posterior after a candidate action is executed is com-

putationally intractable [113]. To address this challenge, many approaches rely on entropy

approximations. These methods typically involve computing the utility of map and robot

pose independently and then combining them heuristically [48, 102, 113, 114]. However,

additional weights are usually needed to balance the two terms [81, 82]. Some work avoids

this by embedding the robot pose uncertainty in a combined Shannon-Rényi utility func-

tion [59, 115]. Alternatively, the expectation-maximization (EM) algorithm [116] directly

integrates the influence of the robot’s uncertainty within a virtual map. In particle filter

Chapter 2. Literature Review 13

SLAM, a similar approximation can be done by calculating the weighted mean of all possi-

ble particles [113, 117]. Instead of using Shannon’s entropy directly as the utility in active

SLAM, its expected reduction is commonly used to assess the utility. Concretely, the

utility function is the difference between the entropy of the actual state and the expected

entropy after an action is executed as the utility function, which is known as mutual infor-

mation [48, 118]. Another commonly used utility function is Kullback-Leibler divergence

(KLD) [119], which measures not only the change in the form of a probability density

function but also how much its mean has translated [120].

For the approaches based on TOED, the uncertainty is quantified directly in the task

space. Different from the IT based methods that count the number of cells in the grid

map, the TOED based approaches apply to Gaussian variables. In TOED, the covariance

matrix of executing a candidate action is predicted and compared. The one with a smaller

covariance matrix is preferred. To compare the covariance matrices of the candidate

actions, the optimality criteria is proposed and compared, including the A-optimality,

T-optimality, E-optimality and D-optimality. A-optimality and T-optimality calculate

the trace of the covariance matrix, where T-optimality captures the average variance,

while A-optimality captures the harmonic mean variance [121]. E-optimality considers

the maximum/minimum eigenvalue, capturing the radii of the covariance ellipsoid [122].

D-optimality captures the volume of the ellipsoid by calculating the determinant of the

covariance matrix [123]. Feder et al. [2] first used the optimal criteria in their work, where

the inverse of the estimation error covariance matrix of the next step is maximized to

obtain the desired action. After that, many active SLAM methods were proposed based

on TOED, especially on T-optimality [54, 124] and D-optimality [102, 104].

The covariance matrix can be large and dense, which makes the quantification compu-

tationally intensive. Therefore, many works perform quantification on the inverse of the

covariance, that is, the Fisher information matrix (FIM). However, it is still computa-

tionally expensive, especially when the state space gets large. To bypass this problem,

some works alternatively analyze the connectivity of the underlying pose-graph in active

graph-SLAM. It was firstly noticed in [125] that a graph with minimum spanning trees

is D-optimality. Following that, the relationship between the spanning trees and the op-

timality criteria is further investigated and extended [126–129]. These results have been

Chapter 2. Literature Review 14

used to solve different active SLAM tasks [3, 55, 130].

2.1.2.2 Uncertainty calculation for different SLAM algorithms

As one of the most popular SLAM methods, the EKF algorithm is also used in most

of the earlier active SLAM works. However, it has been realized that the EKF based

SLAM may result in inconsistent estimates [18][19][20][21] because of the errors introduced

in the linearization process. Particularly, the covariance matrix obtained in the EKF

based SLAM is too optimistic, which is smaller than the actual estimate uncertainty. The

problem is more serious when the robot orientation error is large. Obviously, using the

over confident covariance matrix in active SLAM may lead to a poor robot trajectory. To

solve the inconsistency problem in SLAM estimates, many researches try to reduce the

influence of the robot orientation errors, like adding constrains and changing the SLAM

format.For example, [19] proposed the observability constrained EKF (OC-EKF) SLAM.

Although the SLAM estimates are improved, the inconsistency problem is not overcome

completely.

The optimization based method is another typical method used to solve the SLAM prob-

lem. As all the information is used, the optimization based methods can obtain consistent

uncertainty estimates and, as a result, much more accurate SLAM estimates. However,

using all information conversely brings a big problem in the computational cost. Especially

when it is used to solve the active SLAM problem, the optimization process will be per-

formed frequently to predict the performance of the candidate robot’s actions, leading to

high computational cost. Therefore, most works on the optimization based active SLAM

focus on improving its efficiency. For example, [131] proposed a sparsification method to

reduce the computational complexity of the decision making process. In [132], an efficient

active SLAM approach based on submap joining, graph topology and convex optimization

is proposed and is shown to be effective in reducing the computational complexity.In [133],

the authors propose a strategy for maintaining a sparse and scalable state representation

for large scale mapping. The matrix operations are performed by blocks, which leads

to extremely fast matrix manipulation and arithmetic operations used in nonlinear least

squares.

Chapter 2. Literature Review 15

Very recently, the Right Invariant Extended Kalman Filter (RIEKF) algorithm was de-

signed and applied in SLAM [22][23][24][134][26]. The RIEKF based SLAM algorithm has

been shown to be able to produce more accurate SLAM estimates with much improved

consistency as compared with the traditional EKF based SLAM, as well as some improved

ones [23]. In [134], the RIEKF SLAM has been shown to have some good convergence

properties. Compared with the optimization based SLAM, the performance of the RIEKF

based SLAM algorithm is also pleasant. The computational cost of RIEKF SLAM is close

to the traditional EKF SLAM. The estimation accuracy of RIEKF SLAM is shown to be

comparable to iSAM [25], and even close to the full optimization based SLAM in many

cases [26][27].

2.1.3 Action selection and execution

In this stage, the candidate actions are evaluated according to the utility function, and the

optimal action is selected and executed. When the set of actions is discrete, the problem

can be solved by enumeration, where the action with the maximum/minimum utility will

be selected [36, 89, 93]. When the actions are the robot motions, the selected action can

be directly executed by the robot. When the actions are the goal points, an additional

path planner is needed to guide the robot to move toward the goal point without collision.

Depending on the representation of the environment, plenty of path planning algorithms

have been well used in simulation and in reality, such as A* [135] and RRT [136] in

occupancy grid map, and visibility graph-based planner in topological feature graph [52].

Recently, [137] presented a visibility graph-based planning framework for navigating in

both known and unknown environments.

Active SLAM problem can also be regarded as a stochastic optimal control problem, and

this can be solved by using differential dynamic programming (DDP) or model predictive

control (MPC). In [2], the greedy method was proposed, which aims to minimize the

estimation error in the next step. Huang et al. [5] extended the greedy method into a

multi-step look-ahead method. A variant of nonlinear MPC was proposed to obtain a

multi-step optimization in EKF based SLAM system within a finite time horizon.

Chapter 2. Literature Review 16

2.2 Active SLAM in deformable environments

SLAM in deformable environments is a very challenging research area. There are some

works focusing on SLAM in dynamic environments, especially in the field of service robots

[138] and autonomous driving [139], where features from moving objects need to be dis-

tinguished and removed from the SLAM process. Dynamic SLAM framework has been

recently investigated by many researchers, where the motion of the moving objects is

considered [140–142]. However, the moving objects are assumed to be rigid, so the envi-

ronments are partially dynamic. For SLAM in deformable environments, there is no static

part, and all the features considered in the SLAM estimate are dynamic.

Although there have been some initial works presented by different research groups, many

basic research questions have not been discussed clearly. Most of the existing researches

focus on the representation of the deformation and the reconstruction work. To build the

deformable map, different data structures and geometric structures are designed according

to different kinds of sensor data. When an RGB-D sensor is used, the observation can

be used to build the map directly. For example, the DynamicFusion algorithm [7] uses

volumetric data structure to represent the non-rigid scenes. In [9], SurfelWarp is pro-

posed using a surfel based representation of the geometry. For surgical cases, a GPU is

usually used to help with real-time stereo vision. MIS-SLAM [14] is a GPU-based SLAM

algorithm. It combines the pose estimation with the ORB-SLAM [143], to deal with the

deformable inside body environment. When using a monocular camera only, the problem

becomes more challenging. DefSLAM, proposed in [15], presents a complete framework fus-

ing energy-minimization pose estimation and isometric Non-rigid Structure-from-Motion

(NRSfM) techniques [144–147]. However, the NRSfM problem itself is still a challenging

problem in computer vision. More recently, [148] proposed NR-SLAM, a novel nonrigid

monocular SLAM system founded on the combination of a dynamic deformation graph

with a visco-elastic deformation model.

Although progress has been made in the area of SLAM in deformable environments, many

fundamental questions remain unanswered. The active SLAM problem is one of the chal-

lenging questions. Planning for mobile robots in deformable environments has also received

Chapter 2. Literature Review 17

attention a couple of decades ago [149, 150]. However, due to the unavailability and com-

plexity of simulators for mobile robots in deformable environments and the difficulty in

map representation, no efforts have been made towards developing a deformable active

SLAM framework.

2.3 Reinforcement learning based active SLAM

In recent years, reinforcement learning (RL) has been used in robot path planning to

accomplish different tasks due to its outstanding performance in large sequential decision

making problems. All the above problems can be solved in a way of RL. In exploration

tasks, RL can be combined with the frontier based exploration to help determine the

frontier [61]. There are also works using RL to generate the robot motion [151][152]

directly according to the current state. When a goal position is given, the problem becomes

a navigation problem, and plenty of RL based methods have been proposed to solve it

[153][154][155]. The objective of the task is usually achieved by adjusting the reward

function. The efficiency of the RL based methods is high when we focus on a single

objective or conflict-free objectives, for example, map completeness in exploration and

traveling time in navigation. However, it is challenging to design an effective reward

function when complex factors are considered at the same time, such as map completeness

and map accuracy. In [151] and [152], map accuracy is considered in the reward function as

information gain and is compared with other reward settings. However, their focus is still

on map completeness and trajectory length. In [156], a two-level framework is designed to

achieve different tasks. The high level planner considers map coverage to determine the

goal positions, and the low level planner calculates the robot path to maximize the map

accuracy. In that work, the RL model is only trained for the low level planner focusing on

map accuracy, and in the high level, traditional geometric coverage planners are used. As

an improvement of [156], [157] designs RL models for the high level planner and low level

planner separately, but both planners exploit the local information of the environment

around the robot.

Chapter 2. Literature Review 18

2.4 The focus of this thesis

In this thesis, we consider the point feature based map representation, where the obser-

vation noises and odometry noises are under Gaussian distribution. Focusing on the EKF

and RIEKF algorithms, we aim to design efficient and accurate active SLAM frameworks

for both static and deformable environments.

Chapter 3

EKF and RIEKF Algorithms

In this chapter, we introduce the mathematical and background knowledge about EKF and

Right Invariant EKF (RIEKF) SLAM, which is required in this thesis. We start with the

general framework of EKF SLAM. The uncertainty representation of the standard EKF

framework will be first recalled. After that, the RIEKF algorithm will be introduced. The

Jacobians of the 2D and 3D EKF and RIEKF will be presented, respectively.

3.1 The general EKF SLAM framework

In the considered SLAM problem, the n-th step state with M point features is a Gaussian

model Xn ∼ N (X̂n,Pn), where X̂n is the mean estimate of Xn and Pn is the covariance

matrix. It can be written as:

Xn = (Rn,xn, f
1
n, · · · , fMn), (3.1)

where Rn, xn and f jn (j = 1, · · · ,M) are respectively the robot orientation, robot position,

and the coordinate of the j-th feature, all described in the fixed world coordinate frame.

A general motion model for a moving robot and static features can be represented by

Xn+1 = f(Xn,un,wn), (3.2)

19

Chapter 3. EKF and RIEKF Algorithms 20

where un is the odometry, and wn ∼ N (0,Φn) is the odometry noise at time n.

Suppose there are K features
{
f1n+1, · · · , fKn+1

}
observed at time step n+1, the observation

model can be given by

Zn+1 = hn+1(Xn+1, ξn+1)

=


h1n+1(R

T
n+1(f

1
n+1 − xn+1))
...

hKn+1(R
T
n+1(f

K
n+1 − xn+1))

+ ξn+1,
(3.3)

where ξn+1 ∼ N (0,Ψn+1) is the observation noise. The covariance matrix Ψn+1 is a

block diagonal matrix consisting of all Ψi
n+1 (i ∈ On+1), where On+1 is the set of features

observed at time n+ 1.

Suppose X̂n is the mean estimate of Xn and en ∼ N (0,Pn) is the Gaussian noise vector,

the RIEKF framework can be given in Algorithm 1.

Algorithm 1 The general EKF framework

Input: X̂n, Pn, un, Zn+1

Output: X̂n+1, Pn+1

Propagation:

X̂n+1|n ← f(X̂n,un,0), Pn+1n ← FnPnF
T
n +GnΦnG

T
n

Update:

Sn+1 ← Hn+1Pn+1|nH
T
n+1 +Ψn+1

Kn+1 ← Pn+1|nH
T
n+1S

−1
n+1

yn+1 ← Zn+1 − hn+1(X̂n+1|n,0)

Xn+1 ← X̂n+1|n ⊕Kn+1yn+1

Pn+1 ← (I−Kn+1Hn+1)Pn+1|n

Here, Sn+1 is the innovation covariance, yn+1 is called innovation, and Kn+1 is the Kalman

gain. The operator ⊕ is called retraction in differentiable geometry [158], and the choices

of ⊕ of EKF and RIEKF are different.

Chapter 3. EKF and RIEKF Algorithms 21

3.2 The standard EKF SLAM

The robot orientation is usually described by Euler angles, and then the state can be

defined as:

Xn = (θn,xn, f
1
n, · · · , fMn), (3.4)

In the standard EKF SLAM, the ⊕ is the standard “+”, so the estimation error can be

written as

en = Xn − X̂n+1|n, en+1|n = Xn+1 − X̂n+1|n (3.5)

The Jacobians in Algorithm 1, Fn,Gn, andHn+1, can be calculated by Fn = ∂f
∂X(X̂n,un,0),

Gn = ∂f
∂w (X̂n,un,0), Hn = ∂hn+1

∂X (X̂n+1|n).

We then get:

en+1|n = Fnen +Gnwn

Zn+1 − hn+1(X̂n+1|n) = Hn+1en+1|n + ξn+1

(3.6)

The Kalman gain Kn+1 can be obtained using Fn, Gn, and Hn+1. Given yn+1 = Zn+1 −

hn+1(X̂n+1|n,0), the estimate of the error Xn+1 − X̂n+1|n can be calculated by en+1 =

Kn+1yn+1. Therefore, the state can be updated accordingly:

Xn+1 = X̂n+1|n +Kn+1yn+1 (3.7)

3.3 RIEKF based SLAM

SLAM problem has a nontrivial Lie group structure. Different from the EKF method,

RIEKF performs the linearization on Lie groups. The linearized system of RIEKF ap-

proach can automatically and correctly capture the unobservable direction of SLAM, en-

suring strong consistency properties [23].

Chapter 3. EKF and RIEKF Algorithms 22

3.3.1 2D RIEKF

The 2D RIEKF SLAM algorithm was first proposed in [23]. In the considered 2D SLAM

problem, the notation Rn in eq. (3.1) is the rotation matrix related to the orientation θ:

R(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

And we denote SO(2) as the set of all 2D rotation matrices.

The set of all such possible states is denoted as

G(M) =
{(

R,x, f1, · · · , fM
)
|R ∈ SO(2),x and f i ∈ R2

}
. (3.8)

It is a Lie group with the group action

X1 ⊕X2 =
(
R1R2,R1x2 + x1, · · · ,R1f

M
2 + fM1

)
, (3.9)

for all X1,X2 ∈ G(M).

Denote g(M) as the associated Lie algebra of G(M), which is isomorphic to R2M+3. And

the exponential mapping exp(·) from g(M) to G(M) is defined by

exp(e) =
(
R(δθ),B(δθ)δx,B(δθ)δf1, · · · ,B(δθ)δfM

)
, (3.10)

where

eT = (δθ, δxT , δf1
T
, · · · , δfMT

),

B(δθ) =

 sin(δθ)
δθ −1−cos(δθ)

δθ

1−cos(δθ)
δθ

sin(δθ)
δθ

 .
(3.11)

Then we can define the stochastic model on the proposed Lie group by

X = exp(e)⊕ X̂, (3.12)

where X̂ represents the mean, and e ∼ N (0,P) is the error with covariance matrix P.

Then X is said to be log-Gaussian, denoted by X ∼ Nlog(X̂,P).

Chapter 3. EKF and RIEKF Algorithms 23

Considering the specific 2D SLAM problem, the process model is

Xn+1 = f(Xn,un,wn) =



R(θn + ωn +wω
n)

R(θn)(vn +wv
n)

T

f1n
...

fMn


, (3.13)

where un =

 ωn

vn

 is the control input, and wn =

 wω
n

wv
n

 is the noise.

Due to different linearization process (compared to the traditional EKF), the Jacobians

in Algorithm 1, Fn is the identity matrix I2M+3, Gn, and Hn+1, are given by

Gn =



1 01,2

−J x̂n R(θ̂n)

−J f̂1n 02,2
...

−J f̂Nn 02,2


, Hn+1 =


∇h1

n+1H
1
n+1

∇h2
n+1H

2
n+1

...

∇hK
n+1H

K
n+1

 , (3.14)

where J represents the skew symmetric matrix:

J =

 0 −1

1 0

 ,

∇hj
n+1 is the Jacobian of hj

n+1 computed at R(θ̂n|n−1)
T (p̂

lj
n|n−1 − x̂n|n−1), and

Hj
n+1 =

[
02,1 −R(θ̂n+1|n)

T 02,2j−2 R(θ̂n+1|n)
T 02,2K−2j

]
.

Chapter 3. EKF and RIEKF Algorithms 24

3.3.2 3D RIEKF

The 3D RIEKF SLAM algorithm was first proposed in [134]. In 3D cases, the set of all

such possible states is denoted as

G(M) =
{(

R,x, f1, · · · , fM
)
|R ∈ SO(3),x and f i ∈ R3

}
. (3.15)

The Lie group action is the same as that in the 2D case:

X1 ⊕X2 =
(
R1R2,R1x2 + x1, · · · ,R1f

N
2 + fN1

)
, (3.16)

for all X1,X2 ∈ G(M).

The process model can be written as:

Xn+1 = f(Xn,un,wn),

= (Rnexp
SO(3)(ωn)R

u
n,xn +Rn(vn +wv

n), f
1
n, · · · , fMn),

(3.17)

where un =

 Ru
n

vn

 is the odometry, and wn =

 ωn

wv
n

 is the odometry noise at time n,

and expSO(3)(·) is the exponential map of SO(3).

Denote g(M) as the associated Lie algebra of G(M), which is isomorphic to R3M+6. The

error state e in Lie algebra can be constructed as:

eT = ((eR)T , (ex)T , (e1)T , · · · , (eM)T). (3.18)

The exponential map on this Lie group can be defined by:

exp(e) =(expSO(3)(eR), Jr(−eR)ex,

Jr(−eR)e1, · · · , Jr(−eR)eM),
(3.19)

where Jr(a) =
∑∞

k=0
(S(a))k

(k+1)! , and S(·) is the skew symmetric operator that transforms a

3D vector into a skew symmetric matrix. Then the error state en, the estimated state X̂n,

Chapter 3. EKF and RIEKF Algorithms 25

and the true state Xn satisfy

Xn = exp(en)⊕ X̂n. (3.20)

The Jacobians in Algorithm 1, Fn is the identity matrix I3M+6, Gn, and Hn+1, are given

by

Gn =



R̂n 03,3

S(x̂n + R̂nu)R̂n R̂n

S(f̂1n)R̂n 03,3
...

S(f̂Mn)R̂n 03,3


, Hn+1 =


∇h1

n+1H
1
n+1

∇h2
n+1H

2
n+1

...

∇hK
n+1H

K
n+1

 , (3.21)

where ∇hj
n+1 is the Jacobian of hj

n+1 computed at R̂T
n|n−1(f̂

j
n|n−1 − x̂n|n−1), and

Hj
n+1 =

[
03,3 − R̂T

n+1|n 03,3j−3 RT
n+1|n 03,3K−3j

]
.

3.4 Summary

We introduced the EKF and RIEKF SLAM algorithms mathematically in this chapter.

We first presented the general EKF SLAM framework; then we gave the detailed equations

of EKF and RIEKF SLAM, respectively. Both 2D and 3D cases are considered. These

equations are the foundation of our active SLAM methods which will be introduced in the

following chapters.

Chapter 4

Invariant EKF based 2D Active

SLAM with Exploration Task

In this chapter, we introduce our first framework in RIEKF based 2D active SLAM prob-

lem. We propose to use the RIEKF SLAM algorithm in active SLAM, where both the

predicted SLAM results for choosing control actions and the actual estimated SLAM re-

sults applying the selected control actions are computed using RIEKF algorithms. The

advantages over traditional EKF based active SLAM are the more accurate and consis-

tent predicted uncertainty estimates, which result in the robustness of the active SLAM

algorithm. The advantage over optimization based active SLAM is the reduced computa-

tional cost. Simulation results are presented to validate the advantages of the proposed

algorithm.

4.1 Problem statement

For the active SLAM problem considered in this chapter, given a complex indoor envi-

ronment, we assume only the size of the environment is known. The robot starts from a

fixed location in the environment. The objective is to plan the robot trajectory for a given

time horizon so that it can explore the environment as much as possible and estimate the

observed features and the robot poses accurately.

26

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 27

4.2 Method

4.2.1 Proposed active SLAM method

In this work, the RIEKF SLAM algorithm is used to predict the uncertainty of the SLAM

estimate after taking a potential control action, and it is also used to perform the SLAM

estimation after a control action is taken.

We use a one-step look-ahead strategy to maximize the information that will be obtained

in the next step. In the RIEKF based method, the information gained in terms of the

SLAM estimate can be described by the resulting covariance matrix after the control action

is taken.

Concretely, given X̂n and Pn, we would like to select the control vector un such that a

certain metric (e.g. the trace) of the covariance matrix of the next step is optimized. That

is, we want trace(Pn+1) to be as small as possible:

obj = min trace(Pn+1), (4.1)

where Pn+1 is obtained by Algorithm 1.

Note that the feature observation Zn+1 is not available when planning is performed, so we

assume that no new feature will be observed. Whether an old feature can be observed at

time n+ 1 is determined according to the predicted state estimate X̂n+1|n and the sensor

range.

In the proposed method, in order to take into account the exploration task in the planning,

we consider not only the SLAM uncertainty, but also the distance, d, between the predicted

robot position, x̂n+1|n, and the goal point.

Thus, the objective function to be minimized is a weighted sum of trace(Pn+1) and d

obj = wptrace(Pn+1) + wdd, (4.2)

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 28

where the relative weights wp and wd are dependent and can be adjusted continuously or

as an abrupt mode switch.

4.2.2 Goal point selection

In each step of the planning, there is one goal point selected to be the next destination

which is used in the objective function (4.2).

We first generate a list of exploration points based on the size of the environment called

Le. For example, the exploration points can be uniformly distributed in the environment.

The number of exploration points depends on the sensor range of the robot.

The goal point is selected according to the current state, similar to [54]. There are three

states in total, called explore, improve localization, and improvemap.

The three states are described as follows.

� Explore. When the uncertainty is below a threshold lowerbound, the state is trans-

formed to explore. The goal point is set to be the closest exploration point selected

from the exploration point list Le. We write the selected point as pexplore. When

the robot has approached the destination, pexplore is labeled to be explored and

deleted from the exploration point list. Once all the exploration points are explored,

the explore state is no longer available, and the lowerbound becomes invalid. The

task of the robot is to improve localization or improve the map according to the

upperbound.

� Improve localization. When the uncertainty is exceeding the threshold upperbound,

the state is changed to improve localization, and we want the robot to re-visit a good

feature, pgood, whose uncertainty is low enough. To keep the re-visiting efficiency,

pgood should not be too far away from the robot. Thus, the goal point is set to be the

feature with the lowest uncertainty within a predetermined distance from the robot.

� Improve map. Otherwise, the state is changed to improvemap and a poor feature,

ppoor, is selected to be the goal point, of which the uncertainty is the highest within

a given distance from the robot.

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 29

With the goal point selected as above, we can obtain the distance d in (4.2) as:

d =



dexplore, trace(P) < lowerbound and Le ̸= ∅

dpoor, lowerbound ≤ trace(P) < upperbound

or (trace(P) < upperbound and Le = ∅)

dgood, trace(P) ≥ upperbound,

(4.3)

where dexplore, dpoor and dgood are the distances from the estimated robot pose to pexplore,

ppoor and pgood respectively. And P is the covariance matrix.

The thresholds are constantly adjusted according to the number of the observed features

and the current steps:

upperbound = wkk + wnn,

lowerbound = wkk + wnn− const,
(4.4)

where wk is the weight of the number of the observed features k, wn is the weight of the

current total step n, and const is a constant. As the values of the objective function are

different in different algorithms, the values of wk and wn are adjusted according to the

environment and the algorithms.

4.3 Experiments

4.3.1 Simulation settings

In this section, we evaluate the proposed RIEKF based active SLAM by comparing it with

EKF based active SLAM and two optimization based active SLAM.

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 30

The process model for the active SLAM is shown in Section 3.3.1. And the specific

observation map hin+1 for the i-th observed feature f i at the (n+ 1)-th step is

hin+1(q) =

 √
q21 + q22

atan2(q2, q1)

 , (4.5)

where q = [q1, q2]
T = R(θn+1)

T (f in+1 − xn+1).

In our simulation, there are 50 features generated randomly in the range of 100 m ×

100 m, and the total step of the robot is set to be 500. The initial robot pose is

[0, 0, 0], and the sensor range is 20 m. The covariance matrix of control noise Φn is

diag[(0.02rad)2, (0.03m)2, (0.03m)2]. And the covariance matrix of observation noise Ψi
n

is set as diag[(0.04m)2, (0.04rad)2].

The compared EKF based active SLAM is similar to that in [54]. It uses the same approach

as RIEKF based active SLAM but replaces RIEKF with EKF.

In the first compared optimization based method, to calculate the next control, the in-

formation matrix of the next step can be directly obtained and maximized. Thus, its

objective function is set to be:

obj = wp log(det(Λn+1)) + wdd, (4.6)

where Λn+1 is the information matrix.

The main computational requirement is the evaluation of the covariance update. In the

EKF based method, the complexity is ∼ O(M2), while in the traditional optimization

based method, the complexity is ∼ O(n2M2), where n is the current time step, and M

is the number of the feature. The dimension of the information matrix is very large due

to the increased robot poses involved. To reduce the computational complexity, in the

second compared optimization based method, we use the lower bound based optimization

method proposed in [132] and [55]. Instead of processing the large information matrix, a

lower uncertainty bound in terms of the log determinant of a weighted Laplacian matrix is

calculated. We write the predicted lower uncertainty bound as LBn+1, then the objective

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 31

function becomes:

obj = wp log(det(LBn+1)) + wdd. (4.7)

The detailed formula about LBn+1 can be found in [132] and [55].

We compare the performance of these algorithms in terms of coverage, accuracy and pro-

cessing time. The coverage is compared by counting the number of unexplored features.

The accuracy is measured by calculating the maximal/average error between the estimated

values and the ground truth, including the robot pose error and the feature position error.

We record the processing time of both the decision making part and the SLAM part to

compare the speed of determining the next control and the speed of estimating the cur-

rent state, respectively. For each algorithm, we perform the simulation several times and

present a representative result.

4.3.2 Results of using a predetermined path

We first present the different SLAM results using a predetermined path based on the EKF,

optimization and RIEKF. The predetermined path is set to be a circle of which the radius

is 45m.

(A) EKF (B) NLS (C) RIEKF

Figure 4.1: Result of using the predetermined path based on different SLAM methods
in the environment with 50 randomly distributed features.

As Fig. 4.1A shows, the result of EKF SLAM is clearly inconsistent, as the actual feature

positions of most of the features are out of the 99% confidence ellipses. The nonlinear least

squares optimization (NLS) based SLAM and RIEKF based SLAM can both obtain good

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 32

quality estimates as shown in Fig. 4.1B and Fig. 4.1C, respectively. However, because the

path is predetermined, 9 features remain undetected.

Figure 4.2: The pose error of using the predetermined path based on EKF, the
optimization algorithm and the RIEKF.

Fig. 4.2 shows the robot pose error of using the predetermined path. Because of the

inconsistency issue, the average errors of the EKF based method are almost ten times

larger than those of the RIEKF based method. The RIEKF based method achieves much

better results, and the pose error is similar to that of the optimization based method.

Table 4.1 shows the pose and feature estimation error of using the different approaches.

The estimation error of optimization based algorithm is the smallest among the three

algorithms.

Table 4.1: Estimation error comparison

Predetermined path
EKF NLS RIEKF

Maximum error robot (m) 7.8303 0.3450 2.4603

Average error robot (m) 4.7247 0.1631 0.5094

Maximum error feature (m) 8.9188 0.3182 0.3548

Average error feature (m) 5.9575 0.1777 0.2032

‘Maximum error robot’ and ‘Average error robot’ are, respectively, the maximal and aver-

age errors of the robot pose. ‘Maximum error feature’ and ‘Average error feature’ represent

the maximal and average errors of the landmarks, respectively.

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 33

4.3.3 Comparison of the different active SLAM methods

4.3.3.1 Coverage

In this part, we show the coverage performance of the different methods under the same

planning environment. The ground truth of the robot trajectory and the features and

the results based on different methods (including the estimated poses and the estimated

features, and the covariance ellipse of the features) are shown in Fig. 4.3A, Fig. 4.3B,

Fig. 4.3C, and Fig. 4.3D.

(A) EKF (B) NLSI

(C) NLSlb (D) RIEKF

Figure 4.3: Result of using different active SLAM methods in the environment with 50
randomly distributed landmarks/features.

The performance of the coverage task is much better when the planning method is used,

compared with the results given by the predetermined path. Fig. 4.3A shows the result of

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 34

the EKF based active SLAM algorithm. The accuracy is improved a lot by using the active

SLAM algorithm. In general cases, there are 3 to 8 features remaining undetected, which is

also better than using the predetermined path. Fig. 4.3B and Fig. 4.3C show the results

of using the traditional optimization method and the lower bound based optimization

method, respectively. There are 3 features left unseen in both of them. As shown in

Fig. 4.3D, when applying the RIEKF based active SLAM algorithm, all features can be

detected. Usually, all features can be detected within 290 steps.

4.3.3.2 Accuracy

In this part, we compare the accuracy performance of the obtained active SLAM results

using the different methods. The results of the pose error based on different methods are

shown in Fig. 4.4.

Figure 4.4: The robot pose error of using different active SLAM methods. The results
of the two optimization based methods (NLSI and NLSlb) are very similar.

Two optimization algorithms achieve the best accuracy. The estimation error of the

RIEKF based method is much smaller than the EKF based method in most cases. The

average robot pose error and maximum robot pose error shown in Table 4.2 suggest that

the RIEKF based method can obtain much smaller errors than EKF.

Besides the robot pose error, Table 4.2 also shows the maximum feature estimation error

and the average feature estimation error in the last step. Similar to Section 4.3.2, the

optimization algorithms have some advantages. Compared with the EKF based algorithm,

the RIEKF based one can get smaller maximum error and average error.

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 35

By comparing Table 4.1 and Table 4.2, we can see the improvement in the accuracy by

using planning algorithms.

Table 4.2: Estimation error comparison

Active SLAM
EKF NLSI NLSlb RIEKF

Maximum error robot 4.4331 0.0592 0.0459 0.2634

Average error robot 2.3257 0.0186 0.0161 0.1254

Maximum error feature 4.5722 1.8556 1.1315 0.1629

Average error feature 2.8808 1.1821 0.7541 0.1175

4.3.3.3 Processing time

For efficiency, we first compare the processing time in the SLAM part. The result is as

expected. The optimization based method takes much longer time than the EKF and

RIEKF based method. EKF based method and RIEKF based method take almost the

same time for the SLAM part. Then, our focus is on the processing time in the decision

making part.

Figure 4.5: The comparison of the decision making time.

We can see in Fig. 4.5 that the EKF based method costs the least time, and the tradi-

tional optimization method NLSI costs much more time than others. The average value

shows that the RIEKF based method costs about two times longer than the EKF based

method. The lower bound based optimization method NLSlb is remarkable in reducing

the computation time. Its speed in the first 300 steps is almost the same as the RIEKF

Chapter 4. Invariant EKF based 2D Active SLAM with Exploration Task 36

based method. However, with the increase in the number of steps, its computation time

increases gradually.

4.4 Summary

In this chapter, we proposed an RIEKF based active SLAM algorithm in 2D cases. Be-

cause of the improved consistency, the proposed algorithm shows superior performance in

accuracy as compared with EKF based active SLAM. It is also demonstrated that the pro-

posed algorithm has acceptable performance in accuracy and much lower computational

cost as compared with optimization based active SLAM algorithms. In the next chapter,

we will consider 3D cases.

Chapter 5

Invariant EKF based 3D Active

SLAM with Exploration Task

In this chapter, we introduce the RIEKF based active 3D SLAM algorithm that is extended

from the 2D case. A new framework that combines a local planner and a global planner

is proposed to solve the exploration problem. We first introduce the planning method

that minimizes a certain criterion to get the action in each step, which we call the local

planner here. Secondly, a global planner for efficient exploration is presented. Finally,

we propose a combined planner that combines the local planning method and the global

planning method.

5.1 Problem statement

For the active SLAM problem considered in this chapter, given a complex indoor envi-

ronment, we assume the size of the environment is known. The robot starts from a fixed

location in the environment. The objective is to plan the robot trajectory for a given

time horizon so that it can explore the environment as much as possible and estimate the

observed features and the robot poses accurately.

37

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 38

5.2 Method

To solve this problem, we propose an RIEKF based active SLAM framework as shown

in Fig. 5.1. In our proposed method, the RIEKF SLAM algorithm is used in the SLAM

module and the local planner module. In the SLAM process, it is used to perform the

SLAM estimation after a control action is taken, as presented in Section 3. In the local

planner, RIEKF is used to predict the uncertainty of the SLAM estimate after taking a

potential control action, which will be introduced in Section 5.2.2.

Figure 5.1: Our active SLAM framework.

In the following part of this section, we first introduce the global planner for efficient

exploration. Secondly, we introduce the planning method that minimizes a certain criterion

to get the action in each step, which we call the local planner here. Finally, we show how

the combined planner works by combining the global planner and the local planner.

5.2.1 Global planner

The global planner takes the estimated robot pose and the observation information as

input and outputs the goal points to guide the robot to explore the environments. In this

part, a coarse occupancy grid map and a visibility graph are built. In each episode of the

planning process, a goal point is generated according to the grid map, and a rough path is

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 39

planned from the robot to the goal point using the visibility graph method. An episode is

ended once the robot reaches the current goal point. The visibility graph is also updated

at the end of each episode.

5.2.1.1 Map building

In our work, we assume only the size of the environment is known, but the actual robot

pose is unknown. The estimated robot pose from the SLAM process and observation are

used to build the grid map. The grid map here is independent of the feature map estimated

in the SLAM module. The resolution of the occupancy grid is determined by the robot

sensor range and the environment complexity. As the global planner is a rough planner

aiming to guide the robot to explore the environment as soon as possible, the resolution

of the grid can be lowered to improve the planning efficiency.

There are three states of the cells in the grid, occupied, free, and unknown. When

determining the state of a cell, we consider the center of each cell. We use Le to represent

the set of the centers of all cells, as shown in the global planner module in Fig. 5.1. Here, we

call these centers exploration points. The states of the exploration points roughly indicate

the environment information, and they are only updated at the end of each episode.

The introduction of the three states is as follows.

� Occupied. An exploration point is labeled as occupied if the point is within the

robot sensor range but currently unobserved. The state occupied means the point is

blocked by some obstacles and currently unreachable by the robot.

� Free. Once an exploration point is observed by the robot, it is marked as free. An

exploration point with state free is thought to be reachable by the robot.

� Unknown. All exploration points that are never covered by the robot sensor range

are thought to be unknown. If the state of an exploration point is unknown, the

area around the point is thought to be unexplored by the robot.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 40

5.2.1.2 Goal selection

The goal point is selected from Le according to the current state of the exploration points

and the pose of the robot. We first determine the frontiers of the explored area of the

environment. Similar to the definition in [36], a frontier represents the boundary between

the known and unknown areas. Here, an exploration point is defined to be a frontier if

its state is free and there is at least one unknown point adjacent to it. More specifically,

given a free exploration point p, whose coordinate is [x, y, z], if one of the six points,

whose coordinates are [x ± 1, y, z], [x, y ± 1, z], or [x, y, z ± 1], is labeled to be unknown,

the point p is determined to be a frontier.

We determine all frontiers in this way and save them in a frontier set Lf ∈ Le. These

frontiers will be evaluated by calculating an objective function, and the one with the

highest score will be selected as the goal point. Here, we consider the exploration efficiency,

where the robot is expected to observe more unknown areas. Therefore, the point that is

surrounded by more unknown points will get a higher score. When counting the number of

the unknown points surrounding a frontier pf , we just consider the local area surrounding

pf . In our work, the local area is set to be an a× b× c box centered at pf , and only the

points within the box will be counted. The values of a, b and c are determined according

to the robot sensor range. We use the notation r(pf) to represent the number of unknown

points surrounding pf , then the objective function can be formulated by:

objg = r(pf). (5.1)

Fig. 5.2 gives an example. Fig. 5.2A shows an indoor environment where the robot starts

from [1, 1.5, 0.5] and has reached the first goal point. The coordinate of the first goal point

is [3.5, 3.8, 0.5], and is shown by a yellow dot. The corresponding exploration points and

their states have been updated and are shown in Fig. 5.2B, where the blue points are free,

the red points are occupied, and the yellow points are unknown. With the information of

the point state, the goal point can be determined by maximizing objg in eq. (5.1) resulting

the yellow dot at [6.5, 5.3, 0.5] in Fig. 5.2A.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 41

(A) Indoor environment (B) Exploration points

Figure 5.2: An example of the goal selection and visibility graph building process in
the global planner.

5.2.1.3 Visibility graph for robot navigation

The visibility graph in our method aims to guide the robot to avoid obstacles so that it

can reach the goal point without being blocked. As this is a rough planner, a set of sparse

sub-goals is enough to guide the robot.

To make the robot successfully avoid the obstacles on the way to the goal point, we need

to indicate the corners of the obstacles first.

When considering the 3D environment, we can identify the corners in different layers. As

shown in Fig. 5.2B, the environment is divided into 3 layers. We take the second layer as

an example. An occupied point p is labeled as a corner if two points that are adjacent to

p and along different axes are free. Specifically, given the coordinate of p is [x, y], then

there are four points adjacent to p, and their coordinates are [x, y ± 1] and [x± 1, y]. We

take [x, y+1] and [x− 1, y] as an example. They are along different axes. If both of them

are free, we consider p as a corner. In the figure, the larger red point is a corner of the

second layer.

When planning the robot path, we need a free point to guide the robot to bypass the

corner. We still use the example of p that is described above. We have assumed that p is

a corner, and [x, y + 1] and [x− 1, y] are free. Then, if [x− 1, y+ 1] is free, we assign the

point [x− 1, y+1] to be a visibility vertex of the visibility graph. As Fig. 5.2B shows, the

blue asterisk (*) is a visibility vertex. After indicating the vertices, the visibility graph

can be built by connecting the vertices with non-blocking visibility edges. Two vertices

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 42

can be connected if the edge between them does not go through any occupied or unknown

regions.

Given the robot position and the goal, we would like to search the graph for the shortest

path between them. This can be solved by the visibility graph method [159]. The visibility

vertices involved in the path are set to be the sub-goals for the robot to follow.

5.2.2 Local planner

The input of the local planner module is the goal point generated from the global planner,

the estimated robot pose and feature positions and the covariance matrix from the SLAM

module. The local planner uses the greedy method, where the information that will be

obtained in the next step is maximized to obtain the control action of the robot. The

information gained in terms of the SLAM estimate can be described by the resulting

covariance matrix after the control action is taken and the information from the new

observations is used.

Specifically, given X̂n andPn, the trace of the covariance matrix of the next step, trace(Pn+1),

is minimized to obtain the optimal control vector un:

obj = min trace(Pn+1), (5.2)

where Pn+1 is obtained by Algorithm. 1.

Note that the feature observation Zn+1 is not available when the planning is performed, so

we assume that no new feature will be observed. Whether an old feature can be observed

at time n + 1 is determined according to the predicted state estimate X̂n+1|n and the

sensor range.

Note that the covariance matrix here is also calculated using RIEKF, so the final robot

action is determined by the RIEKF result.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 43

5.2.3 Combined planner

The combined planner is a combination of the local planner and the global planner, aiming

to improve the SLAM estimation accuracy while exploring the environment.

In each episode, we use the global planner to generate a goal point to guide the robot to

observe more unknown regions. A series of sub-goals from the robot to the goal point is

also generated by the global planner to avoid collision. Then, we use the local planner to

follow the sub-goals in order and, at the same time, improve the accuracy by minimizing

the SLAM estimation uncertainty of the next step calculated using RIEKF.

In particular, the robot action un is selected from a set of candidate actions U = {ui
n | i =

1, 2, ..., Nu} in each step, where Nu is the number of the candidate actions. The robot pose

after taking each candidate action is predicted, and the distance D between the predicted

robot pose and the current sub-goal is calculated. The action set is sorted according to

the distances from small to large, and then the first nu candidate actions are selected to

be the new action set. This process ensures that all actions in the new action set are likely

to guide the robot to approach the goal point. The final action will be selected from the

new action set using the local planner, which minimizes the trace of the covariance matrix

that is based on RIEKF, as shown in eq. (5.2).

5.3 Experiments

Our algorithm is tested both in simulation and in the real world. In each of the exper-

iments, the robot starts from a fixed pose, aiming to explore the whole environment as

soon as possible and, at the same time, obtain more accurate SLAM estimates.

We do simulations in both MATLAB and Gazebo. In the simulation part, four algorithms

are compared:

i. RIEKF based combined planner. This is our proposed method, as Fig. 5.1

shows, where RIEKF is used in the local planner and SLAM modules.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 44

ii. RIEKF based global planner. In this algorithm, we still use the global planner

that we propose to generate the goal points. After the goal point is generated, a short

distance prior strategy is used for the robot to reach the goal. Therefore, RIEKF is

not used in the planning process, but only used in the SLAM process.

iii. RIEKF based circle planner. In this algorithm, we still use the global planner

that we propose to generate the goal points. After the goal point is generated, a

short distance prior strategy is used for the robot to reach the goal. After reaching

each goal, the robot rotates on the spot for 360 degrees. RIEKF is not used in the

planning process, but only used in the SLAM process.

iv. EKF based combined planner. The framework is the same as Fig. 5.1, except

that we use EKF instead of RIEKF in both the local planner and the SLAMmodules.

After testing and evaluating in the simulation platforms, our proposed combined planner

is also applied to the real-world robot for further verification.

(A) Environment 1 (B) Environment 2

Figure 5.3: Simulation environment in MATLAB. The gray structures are walls and
obstacles. The green stars are sparsely distributed features.

5.3.1 Simulation in MATLAB

We designed two complex indoor environments in MATLAB, as shown in Fig. 5.3. En-

vironment 1 is a room-like environment with obstacles. Environment 2 is a corridor-like

environment with passages of varying widths. The features are sparsely distributed in the

environments, and the simulated robot can move in the 3D space.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 45

In our experiments, we set two groups of noise levels for both environments. Table

5.1 shows the covariance of odometry noise, Φn, and covariance of observation noise,

Ψn+1. In each environment, each algorithm is run 10 times starting at the same pose

[0, 0, 0, 1, 1.5, 0.5], and the total time step is set to be 300.

Table 5.1: Covariances of noises

Noise level Φn Ψn

i 0.0052 × I6
1 0.0052 × I3

ii 0.012 × I6 0.012 × I3
1 Im is the m×m identity matrix.

(A) RIEKF based combined planner (B) RIEKF based fast gobal planner

(C) RIEKF based circle global
planner

(D) EKF based combined planner

Figure 5.4: Results in MATLAB Environment 1 under noise level ii. The yellow dots
are the goal points. The black/blue lines are the actual/estimated robot paths, and the
coordinate systems on the blue line suggest the estimated robot pose at each step. The

robot paths and features are in the 3D space, and the robot poses are 6 DOF.

Fig. 5.4 shows the resulting robot trajectories and the estimates of robot pose and feature

positions by using different algorithms in Environment 1 in a representative run of noise

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 46

(A) RMSE for robot
orientation

(B) RMSE for robot
position

(C) RMSE for feature
position

Figure 5.5: Accuracy (RMSE) of different algorithms in MATLAB Environment 1
under noise level ii.

level ii as described in Table 5.1. Instead of searching for the shortest path to the goal

point, the RIEKF and EKF based combined planners consider minimizing the estimation

uncertainty at each step.

We use the root mean squared error (RMSE) to evaluate the accuracy of each algorithm.

Fig. 5.5 shows the average RMSE of 10 runs at each step under noise level ii. We can see

that our proposed RIEKF based combined planner can get more accurate robot pose and

feature position estimates during the whole time horizon.

Table 5.2: Comparison in MATLAB Environment 1

Noise RIEKF RIEKF RIEKF EKF
level Combined Global Circle Combined

Num i 49.1 47.1 45 49.1
features ii 49.9 43.8 42 46.6

Steps i 207 212 299 207
ii 208 205 299 227

RMSE i 0.1253 0.2419 0.2599 0.2510
(Pose) ii 0.3574 0.5046 0.5046 0.9115

RMSE i 0.1253 1.4862 1.4058 0.2510
(Feature) ii 0.3574 2.4530 1.9899 0.9115

Plan i 0.2368 0.1771 0.1299 0.2340
time ii 0.3248 0.3886 0.1478 0.3098

1 The total number of features in the environment is 50.

We record the detailed data in Table 5.2 to compare the performance of different al-

gorithms. Besides the accuracy (RMSE), the table also shows the number of features

observed in the whole time horizon (Num features), the time steps used to cover the entire

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 47

environment (Steps) and the planning time (Plan time). The number of features (Num

feature) can be used to evaluate the exploration completeness, and Steps can be used to

evaluate the exploration efficiency. The planning time is the time for the robot to decide

its motion according to the current situation at each step. It includes the time for map

building, goal selection, reference path planning and motion planning. For each noise level,

the corresponding values in the table are the average values of 10 runs, so the values could

be non-integers.

(A) RIEKF based combined planner (B) RIEKF based gobal planner

(C) RIEKF based circle global
planner

(D) EKF based combined planner

Figure 5.6: Results in MATLAB Environment 2 under noise level ii. The yellow dots
are the goal points. The black/blue lines are the actual/estimated robot paths. The

robot paths and features are in the 3D space, and the robot poses are 6 DOF.

The data supports that the RIEKF based combined planner can always get the most

accurate estimates of the robot poses and feature positions. What’s more, by using the

RIEKF based combined planner, the robot can cover the entire environment and finish the

exploration task in fewer time steps. All features can be observed during the exploration

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 48

process in almost all runs. The planning time of the circle global planner is the smallest

because no decision needs to be made when the robot rotates at the goal point. For the

RIEKF based combined planner, RIEKF based global planner and EKF based combined

planner, the planning time doesn’t differ too much, but because of the use of RIEKF in

the planning process, the accuracy of RIEKF based combined planner improved a lot.

Similarly, we compare different algorithms in Environment 2 under two noise levels. Fig.

5.6 shows the results of using different algorithms in a representative run of noise level ii.

Obviously, the EKF based planner cannot complete the exploration task because of the

large errors caused by inconsistency. The results of the three RIEKF based planners are

hard to evaluate according to the figures.

Table 5.3: Comparison in MATLAB Environment 2

Noise RIEKF RIEKF RIEKF EKF
level Combined Global Circle Combined

Num i 58 58 58 56
features 1 ii 58 57 58 42

Steps i 399 355 506 399
ii 399 356 546 -2

RMSE i 0.0017 0.0021 0.0017 0.1317
(Pose) ii 0.0275 0.0560 0.0794 2.3583

RMSE i 0.0007 0.0008 0.0015 0.2824
(Feature) ii 0.0331 0.0382 0.0543 1.6312

Plan i 0.0539 0.00375 0.0361 0.0686
time ii 0.0666 0.0680 0.0256 0.0448

1 The total number of features in this environment is 60.
2 The EKF based planner cannot complete the exploration task
within the given time steps (1000 steps).

We also record the average data in Table 5.3. The data supports that the EKF based

method can only succeed in the exploration task when the noise level is really small.

Otherwise, it will fail because of the large estimation errors. It cannot select a proper goal

point to guide the robot to explore the environment. For three RIEKF based methods,

the RIEKF based circle planner has advantage over others in terms of observed features,

but it takes much more time steps to complete the exploration task. The RIEKF based

global planner takes relatively fewer time steps to complete the exploration task, but its

estimation errors are larger than the combined planner. The RIEKF based combined

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 49

planner has great advantages in estimation accuracy. The planning time of the RIEKF

based circle planner is the smallest, because no decision needs to be made when the robot

rotates at the goal point. For the RIEKF based combined planner, RIEKF based global

planner and EKF based combined planner, the planning time doesn’t differ too much.

In general, the use of RIEKF in the SLAM estimation process can help obtain more

accurate estimates than using EKF, and further helps the planning process. The use of

RIEKF in the planning process can help select an efficient and accurate trajectory for the

robot to complete the exploration task.

5.3.2 Simulation in Gazebo

In the Gazebo simulator, TurtleBot equipped with lidar (Rplidar) and RGB-D (Kinect)

camera is used. Images of AprilTag are set on the wall and will be detected and recog-

nized as features by the robot during the exploration process. Note that the features and

observations are all 3D in the experiments, and the system is based on 3D algorithms.

The simulation environment is as shown in Fig. 5.7.

Figure 5.7: Simulation environment in Gazebo.

Similarly, we test three RIEKF based planners and an EKF based combined planner in

this environment. Each of them is tested three times under the same noise level, and the

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 50

(A) RIEKF based combined planner (B) RIEKF based gobal planner

(C) RIEKF based circle global
planner

(D) EKF based combined planner

Figure 5.8: Results in the Gazebo environment.

average results are calculated. The results of the four planners in a representative run are

shown in Fig. 5.8.

All of the RIEKF based planners can guide the robot in exploring the environment com-

pletely. The EKF based combined planner failed to complete the exploration task within

the given time horizon in two of the three tests. Because the EKF based planner cannot

build an accurate map for the environment, the selected goal point cannot guide the robot

in exploring the whole environment.

The detailed data are recorded in Table 5.4. The RIEKF based combined planner can

get the most accurate SLAM estimates and leave fewer features undetected. The RIEKF

based circle planner takes the fewest steps in exploring the whole environment, because

the environment is relatively small, but its estimation accuracy is the worst. The EKF

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 51

Table 5.4: Comparison in Gazebo

RIEKF RIEKF RIEKF EKF
Combined Global Circle Combined

Num features 1 9.3 8.6 9.0 7.3

Steps 50 53 44 - 2

RMSE (Pose) 0.0921 0.1247 0.1672 0.2163

RMSE (Feature) 0.1112 0.1528 0.1926 0.2076

Plan time 0.0506 0.0273 0.0168 0.0558

1 The total number of features in this environment is 10.
2 The EKF based planner cannot complete the exploration task
within the given time steps (500 steps).

based combined planner only successfully explores the environment once, but the errors

are very large compared with the RIEKF based ones.

5.3.3 Real-world experiment

To test the performance of the proposed framework in real-time operating systems, we

implement these three RIEKF based planners and an EKF based planner in an autonomous

robot, LIMO, shown in Fig. 5.9. This robot can be viewed as a size-scaled road vehicle

equipped with a 2D Lidar and an RGB camera. For the real-world experiments, due to

equipment limitations, the robot can only move in a 2D plane. However, the features and

observations are all in 3D, and the system is still based on 3D algorithms.

Figure 5.9: Autonomous robot, LIMO.

We design the testing environments in a squared area, as shown in Fig. 5.10. Obstacles

are built within this area, and images of AprilTag are posted randomly on the walls and

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 52

Figure 5.10: Real-world environment.

obstacles. We test the same four planners in this environment three times under the same

noise level. The results of a representative run are shown in Fig. 5.11.

(A) RIEKF based combined planner (B) RIEKF based gobal planner

(C) RIEKF based circle planner (D) EKF based combined planner

Figure 5.11: Results in the real-world environment.

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 53

Similarly, for each algorithm, we record the average data in the three tests to compare

their performance. For the performance in accuracy, it is hard to obtain the ground truth

of the robot pose, so we just compare the RMSE for feature position. The results of the

four planners are shown in Table 5.5. For the EKF based combined planner, it cannot

complete the exploration task because of large estimation errors caused by inconsistency.

Then, we compare the performance of three RIEKF based methods. As we can see, the

number of observed features of the three planners doesn’t differ much, but in general, the

RIEKF based combined planner costs the fewest time steps to complete the task. The

RMSE (feature) of the combined planner is also smaller than the other two. The main

gap in planning time lies in reference path planning, because recursion is used to find

the reference points, and the time varies depending on the robot position, goal position

and the current map. The combined planner can make decisions with less average time,

and more importantly, it is more stable, which means the robot can always explore the

environment in an efficient path.

Table 5.5: Comparison in real-world environment

RIEKF RIEKF RIEKF EKF
Combined Global Circle Combined

Num features 1 12 12 12 11

Steps 128 135 158 - 2

RMSE (Pose) 0.1078 0.1394 0.1189 0.4526

RMSE (Feature) 0.0772 0.5311 0.3221 0.5138

1 The total number of features in this environment is 16.
2 The EKF based planner cannot complete the exploration task
within the given time steps (500 steps).

5.4 Summary

In this chapter, we propose a combined planner based on RIEKF for efficient and accurate

exploration of unknown 3D static environments. Our proposed planner contains an efficient

global planner that generates goal frontiers for the robot to explore the environment as soon

as possible and an accurate local planner that determines the robot’s motion considering

SLAM estimation uncertainty. Our method is tested in both simulation and real-world

environments. The combined framework is shown to have a good balance in exploration

Chapter 5. Invariant EKF based 3D Active SLAM with Exploration Task 54

efficiency and estimation accuracy. Compared with using the global planner only, the

combined planner can guide the robot to explore the environments in fewer time steps

and, at the same time, describe the environment more accurately. Comparison with EKF

based framework demonstrates large advantages of using RIEKF in active SLAM. In the

next chapter, we will consider active SLAM in deformable environments.

Chapter 6

Active SLAM in 3D Deformable

Environments

This chapter considers the active SLAM problem for 3D deformable environments where

the trajectory of the robot is planned to optimize the SLAM results. We first introduce

the EKF SLAM framework in deformable environments. Secondly, a planning strategy

combining an efficient global planner with an accurate local planner is proposed to solve

the problem. We test our algorithms in two simulation environments and present the

results. Finally, we design a real-world system to test our deformable SLAM and active

SLAM algorithms.

6.1 Problem statement

We consider the active SLAM problem in 3D deformable environments. In our proposed

method, the RIEKF SLAM algorithm is used to predict the uncertainty of the SLAM

estimate after taking a potential control action in the local planning part, and it is also

used to perform the SLAM estimation after a control action is taken in the SLAM pro-

cess. The environment we consider is deformable and highly dynamic. Active SLAM in

dynamic environments has also been investigated by many researchers, but it’s different

from deformable environments. The environments they considered are usually partially

55

Chapter 6. Active SLAM in 3D deformable environments 56

dynamic, and the moving objects need to be distinguished and removed from the SLAM

process. However, in deformable environments, there are no static parts, and the dynamic

part needs to be taken into consideration. The robot considers the environment changes,

aiming to reach the target region by itself successfully and map the latest environment

accurately.

6.2 EKF SLAM in deformable environments

It is well known that the SLAM problem in deformable environments is not solvable unless

some assumptions on the possible deformation and/or robot trajectory are made [17].

In our considered problem, the robot odometry model, observation model and feature

dynamic models are formulated according to the available information considering the

3D case. In this section, we will introduce the EKF based 3D SLAM in deformable

environments.

In the considered 3D feature based EKF SLAM problem, the state with M features at

n-th step is

Xn = (R(Θn),xn, f
1
n, · · · , fMn), (6.1)

where R(Θn) ∈ SO(3), xn ∈ R3 and f jn ∈ R3 (j = 1, · · · ,M) are respectively the robot

orientation, robot position, and the coordinate of the j-th feature, all described in the

fixed world coordinate frame. Note that the feature positions are also changing over time.

Figure 6.1: SLAM models in deformable environments.

Chapter 6. Active SLAM in 3D deformable environments 57

The SLAM models in deformable environments are shown in Fig. 6.1. The robot motion

model is the same as in SLAM in static environments. In general, for the SLAM problem

in deformable environments, some knowledge of both the global rigid motion and the local

deformation of the features is available. Therefore, we can assume that the movement of

the features includes the global transformation t and the local deformation d, and rt and

rd are the corresponding rotation matrices.

Thus, the process model of the SLAM problem is

Xn+1 = f (Xn,un,wn) =



R(Θn + ωn +wω
n)

xn +R(Θn)vn +wv
n

f1n + rttn + rdd
1
n +w1

n

...

fMn + rttn + rdd
M
n +wM

n


, (6.2)

whereXn ∼ N (X̂n,Pn), un = [ωn,vn] is the control input, andwn =
[
wω

n ,w
v
n,w

j=1:M
n

]
∼

N (0,Φn) is the noise.

Note that the feature movement noise wj
n contains two parts, the global transformation

noise wt
n,j and the local deformation noise wd

n,j . That is, w
j
n = wt

n,j +wd
n,j .

The observation model also contains two parts, the measurement of the features and the

measurement of the structure.

Zn = [zfn; z
c
n] = hn(Xn, ξn). (6.3)

Feature measurement zfn,j is the observations from the robot sensor to the j-th feature,

just as in static environment.

Structure measurement zcn,j1,j2 are the observations of the constraints between each pair

of features, f j1=1:M and f j2=1:M . In our experiment, the structure measurement between

feature f j1 and f j2 is set to be the relative position between them:

zcn,j1,j2 = f loc(n, j2)− f loc(n, j1) + ξcn, (6.4)

Chapter 6. Active SLAM in 3D deformable environments 58

where f loc(n, j) is the feature’s position relative to f1n in the local coordinate, given by

f loc(n, j) = f jn − f1n. (6.5)

The observation noise ξn = [ξfn, ξcn] ∼ N (0,Ψn), where ξfn and ξcn correspond to the

feature measurement noise and the structure measurement noise, respectively.

Similarly, the EKF based SLAM algorithm in deformable environments is also as Algorithm

1 shows.

6.3 Active SLAM in deformable environments

In this section, we first introduce the traditional planning method that minimizes a cer-

tain criterion to get the action in each step, which we call local planner here. Secondly,

the global planner that is similar to [160] but for deformable environments is presented.

Finally, we propose a combined planner that combines the local planning method and the

global planning method.

6.3.1 The active SLAM problem

For the active SLAM problem considered in this thesis, given a deformable object of which

the global transformation model and the local deformation model are known, we assume

there are a known number of features distributed on the surface of the object, and some

prior knowledge of the feature distribution is known. The robot starts from a fixed location

in the environment. The objective is to plan the robot trajectory for a given time horizon

so that it can observe the object completely and estimate the observed features and the

robot poses accurately.

6.3.2 Local planner

The local planner is the greedy method, where the information that will be obtained in the

next step is maximized to obtain the control action of the robot. The information gained

Chapter 6. Active SLAM in 3D deformable environments 59

in terms of the SLAM estimate can be described by the resulting covariance matrix after

the control action is taken and the information from the new observations is used.

Concretely, given X̂n and Pn, we would like to select the control vector un such that a

certain metric (e.g. the trace) of the covariance matrix in the next step is optimized. That

is, the trace(Pn+1) is expected to be as small as possible:

obj = min trace(Pn+1), (6.6)

where Pn+1 is obtained by Algorithm 1.

Note that the feature observation Zn+1 is not available when the planning is performed, so

we assume that no new feature will be observed. Whether an old feature can be observed

at time n + 1 is determined according to the predicted state estimate X̂n+1|n and the

sensor range.

6.3.3 Global planner

In global planning, the objective is to generate a set of viewpoints so that the robot can

observe each feature at least once by visiting the viewpoints. Here, a viewpoint g is a 3D

position. The reward of each viewpoint, r, is defined as the number of unobserved features

that can be observed at g. In our proposed method, the global planner is a coarse but

efficient planner. To simplify the calculation process, we do not consider the orientation

of the robot, so features that are within the distance of the sensor range are considered

to be able to be observed. Note that the reward of each candidate viewpoint is updated

according to the previously selected viewpoints. As the same feature can be observed from

multiple viewpoints, once it is observed by the selected viewpoint, it needs to be removed

from others’ field-of-view, and thus the reward needs to be updated accordingly.

Algorithm 2 presents the process of viewpoint set generation, which is similar to the sam-

pling process shown in [160]. The algorithm first generates a set of viewpoint candidates

Gcand distributed uniformly in the 3D space around the object. Secondly, the rewards of

all viewpoint candidates in Gcand are computed based on the initial robot pose and the

Chapter 6. Active SLAM in 3D deformable environments 60

initially estimated feature positions. More concretely, the reward of each candidate view-

point is the number of features that can be observed in the viewpoint minus the number

of features that have been observed by the robot in the initial pose.

Algorithm 2 Viewpoint set generation algorithm

Require: traversable space S

Ensure: viewpoint set Gfinal
1: Generate a set of viewpoint candidates Gcand in S

2: For each candidate gi, calculate the number of the unobserved features that can be

observed at gi, and set it to be its reward ri

3: cbest =∞

4: for i = 1 : K do

5: G = ∅

6: G′cand = Gcand
7: R =

∑length(G′
cand)

i=1 ri

8: while R ̸= 0 do

9: Probabilistically pick viewpoint g′ from G′cand
10: Remove g′ from G′cand
11: G ← G ∪ g′

12: Update ri for all viewpoints in G′cand
13: R =

∑length(G′
cand)

i=1 ri

14: end while

15: Compute cost c using equation (6.7)

16: if c < cbest then

17: Gfinal = G, cbest = c

18: end if

19: end for

20: return Gfinal

Next, a process is iterated K times to determine the final viewpoint set Gfinal that contains

the viewpoints to be visited in order. Here, K is the number of sample sets to be compared,

which can be determined according to the experiment requirement. In each iteration, a

Chapter 6. Active SLAM in 3D deformable environments 61

subset of viewpoints G is generated from Gcand according to their rewards. Concretely, the

viewpoints are selected with probabilities proportional to their rewards and put in G. After

a viewpoint is selected, the rewards of the remaining viewpoints are reduced accordingly.

Each iteration process finishes when the total reward of the remaining candidate viewpoints

is zero.

After the sampling process, we obtain K sets of viewpoints. The one with the minimum

cost function will be selected to be the final viewpoint set Gfinal. The cost function is

defined as

c =

I∑
i=1

dgi,i+1, (6.7)

where dgi,i+1 is the Euclidean distance between two adjacent viewpoints gi and gi+1 in G.

After the viewpoint set is determined, the viewpoint gi is set to be the current goal

point gcur one by one from i = 1 : Ng in the order of the set, where Ng is the number

of viewpoints in the set. In each step, the robot selects the action that minimizes the

distance d between the position of the robot xn+1|n and the position of the current goal

point gcur:

obj = min d(xn+1|n,gcur), (6.8)

Once all the viewpoints are visited, the next viewpoint will be the first viewpoint of the

set. That is, visiting these viewpoints in sequence and repeating in a loop.

6.3.4 Combined planner

The combined planner is a combination of the local planner and the global planner, aiming

to balance the performance in accuracy, coverage and processing time. We use the global

planner to generate the viewpoint set to ensure that all features can be observed as soon

as possible. At the same time, the local planner, which aims to minimize the uncertainty,

will be used to improve the accuracy.

In particular, the robot action un is selected from a set of candidate actions U = {ui
n|i =

1, 2, ..., Nu} in each step, where Nu is the number of the candidate actions. The robot pose

after taking each candidate action is predicted, and the distance d between the predicted

Chapter 6. Active SLAM in 3D deformable environments 62

robot pose and the current goal point is calculated. The action set is sorted according to

the distances from small to large, and then the first nu candidate actions are selected to

be the new action set. This process ensures that all actions in the new action set are likely

to guide the robot to approach the goal point. The final action will be selected from the

new action set using the local planner, which minimizes the trace of the covariance matrix,

as shown in eq. (6.6). Here, nu is the number of actions in the new action set, where a

smaller value of nu means a larger probability of the robot to approach the goal point. If

nu = 1, it becomes the global planner. On the contrary, if nu = Nu, it is the same as the

local planner.

(A) Mesh model of the polygon
environment

(B) Feature model of the polygon
environment

(C) Mesh model of the heart
environment

(D) Feature model of the heart
environment

Figure 6.2: Environment models.

Chapter 6. Active SLAM in 3D deformable environments 63

(A) Predetermined (B) Local

(C) Global (D) Combined

Figure 6.3: Result of using different active SLAM methods in the polygon
environment.

6.4 Models and simulation settings

The process model and feature movement models for the active SLAM are described in

Section 6.2. As stated above, the movement of the features includes the global transforma-

tion t and the local deformation d. Here, we consider the linear case only, that is, rt = I3

and rd = I3.

For the feature measurement model, the j-th feature observed at the n-th step is given by

zfn,j = R(Θn)(xn − f jn) + ξfn. (6.9)

Two environments with different target deformable objects are used to validate the al-

gorithms in simulation, where the target object is what we want to estimate. One is a

Chapter 6. Active SLAM in 3D deformable environments 64

polygon environment that contains a created simple object model, as shown in Fig. 6.2A

and 6.2B. The other is a heart environment that contains a heart model segmented from

a CT scan, downloaded from OpenHELP [161], as shown in Fig. 6.2C and 6.2D. Our

objective is to observe the target object and obtain an accurate SLAM estimate.

For the polygon model, we set 14 point features to form a prismatic impenetrable object,

as shown in Fig. 6.2B. Globally, the object moves back and forth along the x-axis regularly

by small degrees; that is, all features move forward 0.1 cm and then come back in the next

step. Locally, the deformation is a regular expansion and shrinkage. In our simulation,

we set the first feature to be the anchor point. All the other features move away from

the anchor point 0.2 cm in each time step for 3 steps and then move back 3 steps in the

same distance. The total step of the robot motion is set to be 100. The initial robot

pose is [0, 0, 0, 0, 0, 0], and the sensor range is 3 cm. The covariance matrix of control

noise [wω
n ,w

v
n] is diag[(0.02rad)2, (0.02rad)2, (0.02rad)2, (0.03cm)2, (0.03cm)2, (0.03cm)2].

The covariance matrix of feature movement noise wj
n = wt

n,j + wd
n,j is diag[(0.03cm)2 +

(0.05cm)2, (0.03cm)2 + (0.05cm)2, (0.03cm)2 + (0.05cm)2]. And the covariance matrix of

observation noise ξjn also contains two parts. For the feature measurement noise ξfn, the

corresponding covariance matrix is diag[(0.02cm)2, (0.02cm)2, (0.02cm)2]. For the struc-

ture measurement noise ξcn, the corresponding covariance matrix is diag[(0.5cm)2,

(0.5cm)2, (0.5cm)2]. Note that the deformable objects are impenetrable, so in the planning

algorithms, we restrict the robot to keep a safe distance of 0.3 cm from the object’s surface.

The heart model was segmented from a CT scan of a healthy, young male undergoing shock

room diagnostics. There are thousands of vertex that form the mesh model, as shown in

Fig. 6.2C. In the experiment, we randomly picked fifty of them to be the features that

are used in the decision making process and the SLAM estimation process, as the green

stars show in Fig. 6.2D. The models and parameters used in the heart model are the

same as those in the polygon model, except that the sensor range is set to be 10 cm, and

the safe distance between the robot and the object surface is 3 cm. Note that the global

transformation and local deformation are applied to all vertex of the model, but we just

consider the estimate of the selected features. The total step of the robot is set to be 200.

Chapter 6. Active SLAM in 3D deformable environments 65

6.5 Simulation results

The coverage is compared by counting the total number of the observed feature times in

the whole time horizon, and the time steps that all features have been observed at least

once. The accuracy is measured by calculating the maximum/average error between the

estimated values and the ground truth, including the robot pose error (position error and

orientation error) and the feature position error. We record the processing time of the

decision making part to compare the computational cost of determining the next control.

For each algorithm, we perform the simulation 5 times and label them as No. 1-5. The

corresponding figures shown in this section are the representative ones.

6.5.1 Polygon environment

We first present the SLAM results in the polygon environment. The ground truth of the

robot trajectory and the features and the results based on different methods (including

the estimated poses and the estimated features, and the covariance ellipse of the features)

are shown in Fig. 6.3.

Table 6.1: Coverage comparison for the polygon environment

No. Predetermined Local Global Combined

1 354 681 289 583
Observed 2 393 687 257 515
feature 3 359 750 266 505
times 1 4 338 655 324 586

5 292 702 253 518

1 35 – 3 19 24
2 24 – 26 24

Steps 2 3 24 – 22 29
4 25 – 22 24
5 24 – 19 22

1 The total number of feature times that are observed in the whole
time horizon. If 3 features are observed 2 times each, then the feature
times is 6.

2 The time steps that all features have been observed at least once.
3 ‘–’ means the robot does not observe all the features within the time
horizon.

Chapter 6. Active SLAM in 3D deformable environments 66

6.5.1.1 Coverage

In this part, we show the coverage performance of the different methods. The performance

of the coverage task is evaluated by counting the total number of the observed feature times

in the whole time horizon and the time steps needed to observe all the features at least

once, as Table 6.1 shows. Four methods are performed, including using a predetermined

path, the global planner, the local planner and using the proposed combined planner.

(A) Predetermined (B) Local

(C) Global (D) Combined

Figure 6.4: Results of using different active SLAM methods in the heart environment.

When the predetermined path is used, although all features can be observed at least once

eventually, it takes at most 35 steps. What’s more, as the path is predetermined without

considering the movement of the object, it has the risk of collision. Although this can be

solved by setting the path radius larger, the premise is that there is enough free space

around the object, which is impractical in many cases. However, this can be easily solved

by using active SLAM algorithms by restricting the motion of the robot.

Chapter 6. Active SLAM in 3D deformable environments 67

The number of observed features by using the local planner is the largest. However, it

cannot observe all features within the time horizon. This is because the local planner only

considers the information gain to improve the accuracy, causing the robot to continuously

revisit the previously observed features to reduce the estimation error, as shown in Fig.

6.3B.

The global planner costs the least steps (i.e., 19 steps) to observe all features at least

once in this experiment. However, the total number of the observed feature times in the

whole process is the least. The reason is that when we select the viewpoints, we consider

the largest number of features that can be observed at that viewpoint. In the planning

process, we only consider to minimize the distance between the robot and the goal point. It

is possible that the total number of the observed feature times is small, because the robot

may not observe all features that are expected to be observed at the selected viewpoints,

especially when the environment is deforming. For the same reason, it is possible that the

steps needed for observing all features are large.

For the proposed combined planner, its performance is as expected. More features can

be observed during the whole process compared with the global planner and using a

predetermined path. The number of steps used to observe all features is much smaller

when compared with the predetermined path and the local planner.

6.5.1.2 Accuracy

In this part, we compare the accuracy performance of the obtained active SLAM results

using different methods. The results of the pose error based on different methods in a

single run are shown in Fig. 6.5A.

Here, the robot position error and robot orientation error at the n-th step are calculated

by:

eθ =

√
(Θn − Θ̂n)T(Θn − Θ̂n), ex =

√
(xn − x̂n)T(xn − x̂n) (6.10)

where Θn − Θ̂n is the error between the orientation ground truth and the estimated ori-

entation, and xn − x̂n is the error between the position ground truth and the estimated

position.

Chapter 6. Active SLAM in 3D deformable environments 68

The combined planner and the local planner perform almost the same in terms of the pose

error. The global planning algorithm, using the predetermined path, obtains relatively

larger errors. The average robot pose error and maximum robot pose error of all runs are

shown in Table 6.2. It suggests that the combined planner can obtain much smaller errors

than the global planner or using a predetermined path. Compared with the local planner,

the combined planner is roughly the same.

Table 6.2: Estimation error comparison for the polygon environment

Active SLAM
Predetermined Local Global Combined

Max error position (cm) 0.7433 0.240 0.2750 0.2258

Ave error position (cm) 0.1878 0.0810 0.1219 0.0925

Max error orientation (rad) 0.1153 0.0983 0.1956 0.1283

Ave error orientation (rad) 0.0562 0.0427 0.0985 0.0596

Max error feature (cm) 0.3316 0.3477 0.3434 0.2622

Ave error feature (cm) 0.1799 0.1199 0.1421 0.1109

Besides the robot pose error, Table 6.2 also shows the maximum and average feature

estimation errors in the last step. The error of the j-th feature can be obtained by

calculating the Euclidean distance between the feature position ground truth and the

estimated feature position.

ep =

√
(f j − f̂ j)T(f j − f̂ j), (6.11)

Obviously, the combined planner has advantages over the local planner. Compared with

the global planner or using a predetermined path, the combined one can get much smaller

maximum errors and average errors.

6.5.1.3 Processing time

For efficiency, we compare the processing time in the decision making part, that is, the

time used to calculate the next action of the robot. Fig. 6.5C shows the results of a

single run. We can see that using a predetermined path costs the least time, since there is

no decision to make. The combined method costs about 2.5 times longer than the global

planning method. The local planner costs much longer time than the others. What’s more,

Chapter 6. Active SLAM in 3D deformable environments 69

(A) Robot position error (B) Robot orientation error

(C) Decision making time

Figure 6.5: Comparison of using different active SLAM methods in the polygon
environment.

the decision making time cost by the local planner is related to the number of features,

because we need to predict the visibility of all features to calculate the covariance matrix.

6.5.2 Heart environment

Further tests were run for the heart environment. The same four strategies are compared,

and the results are shown in Fig. 6.4.

Table 6.3: Coverage comparison for the heart environment

No. Predetermined Local Global Combined

1 1358 2042 864 1619
Observed 2 1181 2098 1233 1597
feature 3 1579 2134 1089 1515
times 4 1216 2019 1097 1594

5 844 2108 922 1664

1 66 31 72 25
2 71 62 63 35

Steps 3 70 51 48 35
4 65 75 47 35
5 65 74 30 30

Chapter 6. Active SLAM in 3D deformable environments 70

6.5.2.1 Coverage

The coverage performance in terms of the observed feature times and the steps to observe

all features are shown in Table 6.3. We can see the great advantage of using the combined

planner over using a predetermined path and the global method. The combined planner

uses much fewer steps to observe all features, and during the whole time horizon, the

observed feature times are much more than those two. Although the local planner has

more observed feature times in the whole time horizon, it costs more steps to observe all

features at least once.

Table 6.4: Estimation error comparison for the heart environment

Predetermined Local Global Combined

Max error position (cm) 11.0275 0.4094 0.6529 0.5740

Ave error position (cm) 0.6714 0.0998 0.1582 0.1203

Max error orientation (rad) 0.0825 0.0432 0.0747 0.0694

Ave error orientation (rad) 0.0215 0.0178 0.0233 0.0206

Max error feature (cm) 0.4554 0.3384 0.2892 0.1975

Ave error feature (cm) 0.1670 0.1025 0.1186 0.1047

6.5.2.2 Accuracy

The robot pose errors based on different methods in a single run are shown in Fig. 6.6A. It

is obvious that the combined method gets relatively smaller errors than using a predeter-

mined path and the global method. The detailed values about the maximum and average

errors of 5 runs are shown in Table 6.4. It also suggests that the combined planner can

get much more accurate results compared with those two methods. The errors obtained

by the local planner and the combined planner are close, and much smaller than those

obtained by the other two methods.

6.5.2.3 Processing time

The performance in processing time is as expected. The result of a single run is shown in

Fig. 6.6C. The combined planner costs about 2 times longer than the global planner.

Chapter 6. Active SLAM in 3D deformable environments 71

(A) Robot position error (B) Robot orientation error

(C) Decision making time

Figure 6.6: Comparison of using different active SLAM methods in the heart
environment.

6.6 Real-world experiments

In this section, we design an active SLAM system in a real-world phantom environment.

This system uses a UR robot to handle an endoscope, which can move the camera to

the expected poses that are calculated by our active SLAM algorithm. We first keep the

environment static and test the SLAM and active SLAM algorithms. Both EKF based

methods and RIEKF based methods are tested. After that, we make the environment

deformable and analyze the motion model of the features. We design an EKF based active

SLAM method and test it in the deformable environment.

6.6.1 Experiment settings

In the experiment, we use Olympus ENDOEYE FLEX 3D to detect the AprilTags inside a

phantom. As we focus on the active SLAM algorithms rather than the feature recognition,

we skip the feature extraction step. Instead, we put some AprilTags on the manikin surface

to be the features. We use the first 12 tags in the tag family “TAG36H11”. These AprilTags

can be detected by the endoscope cameras. Here, we use the images from the left camera

to recognize the tags and calculate the poses of these tags. We use a UR16e robot to

Chapter 6. Active SLAM in 3D deformable environments 72

control the endoscope to move to the desired poses. A 3D printed handler is used to link

the UR robot and the endoscope. The phantom environment and the robot system are

shown in Fig. 6.7A and Fig. 6.7B.

(A) Environment inside the phantom (B) Endoscope handled by the
UR16e robot

Figure 6.7: Real-world phantom experiment settings.

In this system, we first keep the environment static, testing the EKF and RIEKF SLAM

algorithms with a predetermined path, and the EKF and RIEKF based active SLAM

algorithms where the camera pose at each step is determined by the greedy method. Then

we make the environment deformable. With the motion model of the features, we test the

EKF based SLAM and active SLAM algorithms in this system.

6.6.2 SLAM and active SLAM in the static environment

For the SLAM algorithms, the camera pose at each step is predetermined. A serials of

control command are given to the UR robot, so that it can move the endoscope camera to

the specific poses. The SLAM results of using EKF and RIEKF are shown in Fig. 6.8A

and Fig. 6.8B, respectively. Obviously, the RIEKF based SLAM algorithm can get much

more accurate results than the EKF based one.

Chapter 6. Active SLAM in 3D deformable environments 73

(A) EKF result algorithm (B) RIEKF result algorithm

Figure 6.8: SLAM results of using EKF and RIEKF algorithms in the static phantom
environment.

The active SLAM algorithm is to use a greedy method to improve the predetermined

path. Concretely, given a predetermined pose at step i, noted as pi, we aim to find a

better pose around pi, so that a more accurate SLAM estimate can be obtained. At

each step, given a predetermined pose pi, we sample a serial of available poses centered

at pi. We predict the features that can be detected at each candidate pose, and further

predict the corresponding SLAM result. The one with the smallest uncertainty, that is,

the smallest trace of the covariance matrix, will be selected to be the next camera pose.

Once the next camera pose is determined, the UR robot can control the endoscope to the

desired pose. The pose of the end effector can be calculated from the camera pose by

frame transformation. The translation matrix between the end effector and the camera

can be obtained by doing hand-eye calibration. We use MoveIt to control the end effector

to move to a specific pose. MoveIt is a toolbox that incorporates the latest advances in

motion planning, manipulation, 3D perception, kinematics, control and navigation. Here,

we send the calculated goal pose to it; then it can control the end effector to move to that

pose.

The results are shown in Fig. 6.9. No clear difference is observed between EKF and

RIEKF based active SLAM. This might be due to the small environment used.

Chapter 6. Active SLAM in 3D deformable environments 74

(A) EKF based active algorithm (B) RIEKF based active
algorithm

Figure 6.9: Active SLAM results of using EKF and RIEKF algorithms in the static
phantom environment.

6.6.3 SLAM and active SLAM in the deformable environment

To make the phantom deformable, we use a pump to inflate and deflate the model regularly.

We use an RGB camera to record the motion of the features several times and analyze

their motion model. The motion of each tag is described under the frame of Tag0 at

time 0, which we denote as f0. Tag0 is the tag whose tag id is 0. As the motion of the

environment is regular, we divided the motion period into several phases. For each phase,

we analyze the position of each feature under f0 and store the data accordingly. In the

experiment, as long as anyone tag is observed and f0 is known, we can derive the current

phase of the feature motion, and further infer the current positions of each feature. We

can also predict the next positions of the features using the feature motion model, so that

we can better determine the next robot motion.

Similarly, we test the EKF based deformable SLAM algorithm in the deformable envi-

ronment, and compare it with the traditional EKF based SLAM, where the features are

assumed to be all stationary. A predetermined path of the robot is given to test the al-

gorithms. For the active SLAM algorithm, we also use the greedy method to improve the

predetermined path, as we do in the static phantom environment. The results are as Fig.

6.10 shows.

We compare the number of features that are observed within the given time horizon.

As Table 6.5 suggests, by using the predetermined path, the robot leaves two features

unobserved. By considering the feature motion model in the decision making process, the

Chapter 6. Active SLAM in 3D deformable environments 75

(A) Traditional EKF based SLAM

(B) EKF based deformable SLAM (C) EKF based active deformable
SLAM

Figure 6.10: Results of using different algorithms in the deformable phantom
environment.

active SLAM algorithm successfully observes all features within the given time horizon. We

also calculate the average robot pose errors of using each algorithm. We can see in Table

6.5 that the deformable SLAM algorithm where the feature motion model is considered

can get smaller estimation errors than the traditional EKF SLAM. By using the active

SLAM algorithm, we can get the most accurate SLAM estimates.

Table 6.5: Comparison of feature number and robot pose error in real-world
deformable environment

EKF Deformable EKF Active

Number of observed features 10 10 12

Average pose error (cm) 0.2888 0.0925 0.0582

Chapter 6. Active SLAM in 3D deformable environments 76

6.7 Summary

In this chapter, we proposed an active SLAM algorithm for 3D deformable environments.

Because of the combination of the efficient global planner and the accurate local planner,

the proposed algorithm shows better performance in accuracy as compared with the global

planner. It is also demonstrated that the proposed algorithm has satisfactory performance

in accuracy and much lower computational cost as compared with the local planner.

We also developed a real-world active SLAM system. We successfully test the EKF and

RIEKF based SLAM and active SLAM algorithms in a static manikin environment. The

RIEKF based algorithms are shown to be able to get more accurate SLAM results than the

EKF based ones in the real-world static environment. After that, we make the phantom

deformable and get an approximate motion model of the features. With the motion model,

we test the EKF based deformable SLAM algorithm in the deformable environment and

get better SLAM results than the EKF SLAM algorithm. We also test the active SLAM

algorithm and get some good results.

Currently, we haven’t applied RIEKF in deformable environments. As the use of RIEKF

is to solve the inconsistency problem in EKF SLAM, firstly, we need to prove that the

inconsistency problem also exists in the EKF based deformable SLAM. However, no one

has proven the inconsistency of EKF based deformable SLAM yet. If the inconsistency does

exist, we also need to prove that the RIEKF algorithm can solve the inconsistency problem.

If RIEKF is theoretically proven to be able to work better in deformable environments

than standard EKF, we will carry out experiments to test the SLAM results, and then

design active SLAM algorithms accordingly.

Chapter 7

Conclusion and Future Work

This chapter briefly reviews our contributions, identifies limitations and explores future

research plans.

7.1 Contributions

This thesis has developed three active SLAM algorithms as follows.

i. We applied RIEKF to the active SLAM algorithm, developing an efficient and accu-

rate planning framework for the robot to explore unknown 2D environments.

ii. We extend our RIEKF based 2D active SLAM algorithm to 3D cases, and improve

the planning framework to solve the exploration-exploitation dilemma.

iii. Taking the environment changes into consideration, we developed an EKF based

active SLAM framework for 3D deformable environments.

In Chapter 4, we proposed to use RIEKF SLAM algorithm in 2D active SLAM where

both the predicted SLAM results for choosing control actions and the actual estimated

SLAM results applying the selected control actions are computed using RIEKF algorithms.

This is the first research work in this direction that considers the 2D cases and applies the

greedy methods in the planning. The advantages over traditional EKF based active SLAM

77

Chapter 6. Conclusion and Future Work 78

are the more accurate and consistent predicted uncertainty estimates, which result in the

robustness of the active SLAM algorithm. The advantage over optimization based active

SLAM is the reduced computational cost. Simulation results are presented to validate the

advantages of the proposed algorithm.

In Chapter 5, we consider using RIEKF method in active SLAM in 3D environments with

exploration tasks. Similar to the 2D cases, both the predicted SLAM results for candidate

control actions and the actual estimated SLAM results after applying the selected control

actions are computed using RIEKF algorithms. Different from the previous work that used

a weighted objective function to determine the robot’s motion in 2D, the newly designed

planner is a combination of an efficient global planner and an accurate local planner in 3D.

Results of the simulation and the real-world experiment demonstrate that our proposed

method improves the estimation accuracy significantly and, at the same time, maintains

a high exploration efficiency.

In Chapter 6, we consider the active SLAM problem in 3D deformable environments. An

EKF based active SLAM framework is designed to estimate the SLAM result accurately

and efficiently. The planner proposed in this work is a combination of a global planner

and a local planner. We compare the combined framework with using the local greedy

method only and using the global planner only. Simulation results under different scenarios

have shown that the proposed active SLAM algorithm provides a good balance between

accuracy and efficiency as compared to the local planner and the global planner. Besides

the simulation experiments, we also design an active SLAM system in a real-world manikin

environment. This system uses a UR robot to handle an endoscope, which can move the

camera to the expected poses that are calculated by our active SLAM algorithm. This

system has been used to test the EKF based SLAM and active SLAM algorithms, and the

RIEKF based SLAM and active SLAM algorithms. We have got good and stable SLAM

and active SLAM results when the environment is static.

Throughout this thesis, the experimental evaluations of our proposed active SLAM algo-

rithms show good performance in the environments we considered.

Chapter 6. Conclusion and Future Work 79

7.2 Limitations and future work

The research topics covered in this thesis are long-standing robotic problems, and our

solutions are far from being completed. Here, we present some limitations of this thesis

and provide a few possible future research directions.

Firstly, in our active SLAM algorithms, we mainly consider the greedy method when

determining the robot pose of the next step. Although greedy methods are computationally

efficient, their global optimality is not guaranteed. Some other planning strategies, such

as multiple steps look ahead, will be investigated and evaluated. Future research work will

also include other active SLAM problems where not only an exploration task is needed.

Secondly, the environments used for testing our algorithms are relatively simple. Our work

is based on a point feature map, which assumes the features are known to us. However, in

reality, how to extract and recognize features from various environments is an important

and challenging task. In the future, we will investigate more practical non-feature-based

active SLAM problems.

Finally, we will consider to investigate the use of RIEKF in deformable SLAM. As the

use of RIEKF is to solve the inconsistency problem in EKF SLAM, firstly, we need to

prove that the inconsistency problem also exists in the EKF based deformable SLAM. If

it exists, the next task is to find whether there is a specific Lie group structure to set up

RIEKF SLAM in deformable environments, and whether the RIEKF algorithm can solve

the inconsistency problem. Finally, experiments will be carried out to test the results, and

the active SLAM algorithm will be designed accordingly.

Bibliography

[1] Alexei Makarenko, Stefan Williams, Frédéric Bourgault, and Hugh Durrant-Whyte.

An experiment in integrated exploration. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, volume 1, pages 534–539 vol.1, 2002. doi:

10.1109/IRDS.2002.1041445.

[2] Hans Jacob S. Feder, John J. Leonard, and Christopher M. Smith. Adaptive mobile

robot navigation and mapping. The International Journal of Robotics Research, 18:

650 – 668, 1999.

[3] Yongbo Chen, Liang Zhao, Ki Myung Brian Lee, Chanyeol Yoo, Shoudong Huang,

and Robert Fitch. Broadcast your weaknesses: Cooperative active pose-graph slam

for multiple robots. IEEE Robotics and Automation Letters, 5(2):2200–2207, 2020.

doi: 10.1109/LRA.2020.2970665.

[4] Julio A. Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim Indelman,

Luca Carlone, and José A. Castellanos. A survey on active simultaneous localization

and mapping: State of the art and new frontiers. IEEE Transactions on Robotics,

39(3):1686–1705, 2023. doi: 10.1109/TRO.2023.3248510.

[5] Shoudong Huang, N.M. Kwok, G. Dissanayake, Q.P. Ha, and Gu Fang. Multi-step

look-ahead trajectory planning in slam: Possibility and necessity. In Proceedings of

the 2005 IEEE International Conference on Robotics and Automation, pages 1091–

1096, 2005. doi: 10.1109/ROBOT.2005.1570261.

[6] Vadim Indelman, Luca Carlone, and Frank Dellaert. Planning under uncertainty

in the continuous domain: A generalized belief space approach. In 2014 IEEE

80

http://dx.doi.org/10.1109/IRDS.2002.1041445
http://dx.doi.org/10.1109/IRDS.2002.1041445
http://dx.doi.org/10.1109/LRA.2020.2970665
http://dx.doi.org/10.1109/TRO.2023.3248510
http://dx.doi.org/10.1109/ROBOT.2005.1570261

Bibliography 81

International Conference on Robotics and Automation (ICRA), pages 6763–6770,

2014. doi: 10.1109/ICRA.2014.6907858.

[7] Richard A. Newcombe, Dieter Fox, and Steven M. Seitz. Dynamicfusion: Recon-

struction and tracking of non-rigid scenes in real-time. In 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 343–352, 2015. doi:

10.1109/CVPR.2015.7298631.

[8] Wei Gao and Russ Tedrake. Surfelwarp: Efficient non-volumetric single view dy-

namic reconstruction. In Robotics: Science and System (RSS), 06 2018. doi:

10.15607/RSS.2018.XIV.029.

[9] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Geometric skinning

with approximate dual quaternion blending. ACM Trans. Graph., 27(4), November

2008. ISSN 0730-0301. doi: 10.1145/1409625.1409627.

[10] Matthias Innmann, Michael Zollhöfer, Matthias Nießner, Christian Theobalt, and

Marc Stamminger. Volumedeform: Real-time volumetric non-rigid reconstruction.

In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision

– ECCV 2016, pages 362–379, Cham, 2016. Springer International Publishing.

[11] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Fanello,

Adarsh Kowdle, Sergio Orts, Christoph Rhemann, David Kim, Jonathan Taylor,

Pushmeet Kohli, Vladimir Tankovich, and Shahram Izadi. Fusion4d: Real-time

performance capture of challenging scenes. ACM Transactions on Graphics, 35, 07

2016. doi: 10.1145/2897824.2925969.

[12] Mingsong Dou, Jonathan Taylor, Henry Fuchs, Andrew Fitzgibbon, and Shahram

Izadi. 3d scanning deformable objects with a single rgbd sensor. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 493–501,

2015. doi: 10.1109/CVPR.2015.7298647.

[13] Jingwei Song, Jun Wang, Liang Zhao, Shoudong Huang, and Gamini Dissanayake.

Dynamic reconstruction of deformable soft-tissue with stereo scope in minimal in-

vasive surgery. IEEE Robotics and Automation Letters, 3(1):155–162, 2018. doi:

10.1109/LRA.2017.2735487.

http://dx.doi.org/10.1109/ICRA.2014.6907858
http://dx.doi.org/10.1109/CVPR.2015.7298631
http://dx.doi.org/10.1109/CVPR.2015.7298631
http://dx.doi.org/10.15607/RSS.2018.XIV.029
http://dx.doi.org/10.15607/RSS.2018.XIV.029
http://dx.doi.org/10.1145/1409625.1409627
http://dx.doi.org/10.1145/2897824.2925969
http://dx.doi.org/10.1109/CVPR.2015.7298647
http://dx.doi.org/10.1109/LRA.2017.2735487
http://dx.doi.org/10.1109/LRA.2017.2735487

Bibliography 82

[14] Jingwei Song, Jun Wang, Liang Zhao, Shoudong Huang, and Gamini Dissanayake.

Mis-slam: Real-time large-scale dense deformable slam system in minimal invasive

surgery based on heterogeneous computing. IEEE Robotics and Automation Letters,

3(4):4068–4075, 2018. doi: 10.1109/LRA.2018.2856519.

[15] Jose Lamarca, Shaifali Parashar, Adrien Bartoli, and J. M. M. Montiel. Defslam:

Tracking and mapping of deforming scenes from monocular sequences. IEEE Trans-

actions on Robotics, PP:1–13, 09 2020. doi: 10.1109/TRO.2020.3020739.

[16] Antonio Agudo. Total estimation from rgb video: On-line camera self-calibration,

non-rigid shape and motion. In 2020 25th International Conference on Pattern

Recognition (ICPR), pages 8140–8147, 2021. doi: 10.1109/ICPR48806.2021.9412923.

[17] Shoudong Huang, Yongbo Chen, Liang Zhao, Yanhao Zhang, and Mengya Xu. Some

research questions for slam in deformable environments. In 2021 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages 7653–7660,

2021. doi: 10.1109/IROS51168.2021.9635883.

[18] Shoudong Huang and Gamini Dissanayake. Convergence and consistency analysis

for extended kalman filter based slam. IEEE Transactions on Robotics, 23(5):1036–

1049, 2007. doi: 10.1109/TRO.2007.903811.

[19] Guoquan P. Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. Analysis

and improvement of the consistency of extended kalman filter based slam. In 2008

IEEE International Conference on Robotics and Automation, pages 473–479, 2008.

doi: 10.1109/ROBOT.2008.4543252.

[20] Jose Castellanos, Ruben Martinez-Cantin, Juan Tardos, and José Neira. Robocentric

map joining: Improving the consistency of ekf-slam. Robotics and Autonomous

Systems, 55:21–29, 01 2007. doi: 10.1016/j.robot.2006.06.005.

[21] Guoquan P. Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis.

Observability-based rules for designing consistent ekf slam estimators. Int. J. Rob.

Res., 29(5):502–528, April 2010. ISSN 0278-3649. doi: 10.1177/0278364909353640.

[22] Silvere Bonnabel. Symmetries in observer design: review of some recent results and

applications to ekf-based slam, 2011. URL https://arxiv.org/abs/1105.2254.

http://dx.doi.org/10.1109/LRA.2018.2856519
http://dx.doi.org/10.1109/TRO.2020.3020739
http://dx.doi.org/10.1109/ICPR48806.2021.9412923
http://dx.doi.org/10.1109/IROS51168.2021.9635883
http://dx.doi.org/10.1109/TRO.2007.903811
http://dx.doi.org/10.1109/ROBOT.2008.4543252
http://dx.doi.org/10.1016/j.robot.2006.06.005
http://dx.doi.org/10.1177/0278364909353640
https://arxiv.org/abs/1105.2254

Bibliography 83

[23] Axel Barrau and Silvere Bonnabel. An ekf-slam algorithm with consistency proper-

ties, 2016. URL https://arxiv.org/abs/1510.06263.

[24] Axel Barrau and Silvère Bonnabel. The invariant extended kalman filter as a stable

observer. IEEE Transactions on Automatic Control, 62(4):1797–1812, 2017. doi:

10.1109/TAC.2016.2594085.

[25] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard,

and Frank Dellaert. Isam2: Incremental smoothing and mapping using the bayes

tree. Int. J. Rob. Res., 31(2):216–235, February 2012. ISSN 0278-3649. doi:

10.1177/0278364911430419.

[26] Martin Brossard, Axel Barrau, and Silvère Bonnabel. Exploiting symmetries to

design ekfs with consistency properties for navigation and slam. IEEE Sensors

Journal, 19(4):1572–1579, 2019. doi: 10.1109/JSEN.2018.2882714.

[27] Yanhao Zhang, Teng Zhang, and Shoudong Huang. Comparison of ekf based slam

and optimization based slam algorithms. In 2018 13th IEEE Conference on Indus-

trial Electronics and Applications (ICIEA), pages 1308–1313, 2018. doi: 10.1109/I-

CIEA.2018.8397911.

[28] Mengya Xu, Yang Song, Yongbo Chen, Shoudong Huang, and Qi Hao. Invariant

ekf based 2d active slam with exploration task. In 2021 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 5350–5356, 2021. doi: 10.1109/I-

CRA48506.2021.9561951.

[29] Mengya Xu, Liang Zhao, Shoudong Huang, and Qi Hao. Active slam

in 3d deformable environments. In 2022 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 7952–7958, 2022. doi:

10.1109/IROS47612.2022.9982224.

[30] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelli-

gent Robotics and Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.

[31] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach to con-

current mapping and localization for mobile robots. Auton. Robots, 5(3–4):253–271,

jul 1998. ISSN 0929-5593. doi: 10.1023/A:1008806205438.

https://arxiv.org/abs/1510.06263
http://dx.doi.org/10.1109/TAC.2016.2594085
http://dx.doi.org/10.1109/TAC.2016.2594085
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1177/0278364911430419
http://dx.doi.org/10.1109/JSEN.2018.2882714
http://dx.doi.org/10.1109/ICIEA.2018.8397911
http://dx.doi.org/10.1109/ICIEA.2018.8397911
http://dx.doi.org/10.1109/ICRA48506.2021.9561951
http://dx.doi.org/10.1109/ICRA48506.2021.9561951
http://dx.doi.org/10.1109/IROS47612.2022.9982224
http://dx.doi.org/10.1109/IROS47612.2022.9982224
http://dx.doi.org/10.1023/A:1008806205438

Bibliography 84

[32] Gamini Dissanayake, Paul Newman, Steven Clark, Hugh F. Durrant-Whyte, and

M. Csorba. A solution to the simultaneous localization and map building (slam)

problem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

doi: 10.1109/70.938381.

[33] David Charles Lee. The Map-Building and Exploration Strategies of a Simple Sonar-

Equipped Mobile Robot: An Experimental, Quantitative Evaluation. Distinguished

Dissertations in Computer Science. Cambridge University Press, 1996.

[34] Christopher I. Connolly. The determination of next best views. In Proceedings.

1985 IEEE International Conference on Robotics and Automation, volume 2, pages

432–435, 1985. doi: 10.1109/ROBOT.1985.1087372.

[35] Jasna Maver and Ruzena Bajcsy. Occlusions as a guide for planning the next view.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5):417–433,

1993. doi: 10.1109/34.211463.

[36] Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceed-

ings 1997 IEEE International Symposium on Computational Intelligence in Robotics

and Automation CIRA’97. ’Towards New Computational Principles for Robotics and

Automation’, pages 146–151, 1997. doi: 10.1109/CIRA.1997.613851.

[37] Richard Pito. A solution to the next best view problem for automated surface

acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21

(10):1016–1030, 1999. doi: 10.1109/34.799908.

[38] Dimitrios Gallos and Frank Ferrie. Active vision in the era of convolutional neural

networks. In 2019 16th Conference on Computer and Robot Vision (CRV), pages

81–88, 2019. doi: 10.1109/CRV.2019.00019.

[39] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. Active vision in robotic systems:

A survey of recent developments. The International Journal of Robotics Research,

30(11):1343–1377, 2011. doi: 10.1177/0278364911410755.

http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1109/ROBOT.1985.1087372
http://dx.doi.org/10.1109/34.211463
http://dx.doi.org/10.1109/CIRA.1997.613851
http://dx.doi.org/10.1109/34.799908
http://dx.doi.org/10.1109/CRV.2019.00019
http://dx.doi.org/10.1177/0278364911410755

Bibliography 85

[40] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Active markov localization for

mobile robots. Robotics and Autonomous Systems, 25(3):195–207, 1998. ISSN 0921-

8890. doi: https://doi.org/10.1016/S0921-8890(98)00049-9. Autonomous Mobile

Robots.

[41] Giuseppe Borghi and Vincenzo Caglioti. Minimum uncertainty explorations in the

self-localization of mobile robots. IEEE Transactions on Robotics and Automation,

14(6):902–911, 1998. doi: 10.1109/70.736774.

[42] Patric Jensfelt and Steen Kristensen. Active global localization for a mobile robot

using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation,

17(5):748–760, 2001. doi: 10.1109/70.964673.

[43] Christian Mostegel, Andreas Wendel, and Horst Bischof. Active monocular local-

ization: Towards autonomous monocular exploration for multirotor mavs. In 2014

IEEE International Conference on Robotics and Automation (ICRA), pages 3848–

3855, 2014. doi: 10.1109/ICRA.2014.6907417.

[44] Sai Krishna Gottipati, Keehong Seo, Dhaivat Bhatt, Vincent Mai, Krishna Murthy,

and Liam Paull. Deep active localization. IEEE Robotics and Automation Letters,

4(4):4394–4401, 2019. doi: 10.1109/LRA.2019.2932575.

[45] Jared Strader, Kyohei Otsu, and Ali-akbar Agha-mohammadi. Perception-aware

autonomous mast motion planning for planetary exploration rovers. Journal of Field

Robotics, 37(5):812–829, December 2019. ISSN 1556-4967. doi: 10.1002/rob.21925.

[46] Andrew Davison and David Murray. Simultaneous localization and map-building

using active vision. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 24:865–880, 08 2002. doi: 10.1109/TPAMI.2002.1017615.

[47] Sebastian Thrun and Knut Möller. Active exploration in dynamic environments. In

Neural Information Processing Systems, 1991.

[48] Frédéric Bourgault, Alexei Makarenko, Stefan Williams, Ben Grocholsky, and Hugh

Durrant-Whyte. Information based adaptive robotic exploration. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, volume 1, pages 540–

545 vol.1, 2002. doi: 10.1109/IRDS.2002.1041446.

http://dx.doi.org/https://doi.org/10.1016/S0921-8890(98)00049-9
http://dx.doi.org/10.1109/70.736774
http://dx.doi.org/10.1109/70.964673
http://dx.doi.org/10.1109/ICRA.2014.6907417
http://dx.doi.org/10.1109/LRA.2019.2932575
http://dx.doi.org/10.1002/rob.21925
http://dx.doi.org/10.1109/TPAMI.2002.1017615
http://dx.doi.org/10.1109/IRDS.2002.1041446

Bibliography 86

[49] Paul Newman, Michael Bosse, and John Leonard. Autonomous feature-based

exploration. In 2003 IEEE International Conference on Robotics and Au-

tomation (Cat. No.03CH37422), volume 1, pages 1234–1240 vol.1, 2003. doi:

10.1109/ROBOT.2003.1241761.

[50] Hans Jacob S. Feder, John J. Leonard, and Christopher M. Smith. Adaptive mobile

robot navigation and mapping. The International Journal of Robotics Research, 18

(7):650–668, 1999. doi: 10.1177/02783649922066484.

[51] Richard Bormann, Florian Jordan, Wenzhe Li, Joshua Hampp, and Martin Hägele.

Room segmentation: Survey, implementation, and analysis. In 2016 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1019–1026, 2016. doi:

10.1109/ICRA.2016.7487234.

[52] Beipeng Mu, Matthew Giamou, Liam Paull, Ali-akbar Agha-mohammadi, John

Leonard, and Jonathan How. Information-based active slam via topological fea-

ture graphs. In 2016 IEEE 55th Conference on Decision and Control (CDC), pages

5583–5590, 2016. doi: 10.1109/CDC.2016.7799127.

[53] Leonardo Fermı́n-Leon, José Neira, and José A. Castellanos. Tigre: Topological

graph based robotic exploration. In 2017 European Conference on Mobile Robots

(ECMR), pages 1–6, 2017. doi: 10.1109/ECMR.2017.8098718.

[54] Cindy Leung, Shoudong Huang, and Gamini Dissanayake. Active slam using model

predictive control and attractor based exploration. In 2006 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 5026–5031, 2006. doi:

10.1109/IROS.2006.282530.

[55] Yongbo Chen, Shoudong Huang, and Robert Fitch. Active slam for mobile robots

with area coverage and obstacle avoidance. IEEE/ASME Transactions on Mecha-

tronics, 25(3):1182–1192, 2020. doi: 10.1109/TMECH.2019.2963439.

[56] Nikolay Atanasov, Jerome Le Ny, Kostas Daniilidis, and George J. Pappas. Decen-

tralized active information acquisition: Theory and application to multi-robot slam.

In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages

4775–4782, 2015. doi: 10.1109/ICRA.2015.7139863.

http://dx.doi.org/10.1109/ROBOT.2003.1241761
http://dx.doi.org/10.1109/ROBOT.2003.1241761
http://dx.doi.org/10.1177/02783649922066484
http://dx.doi.org/10.1109/ICRA.2016.7487234
http://dx.doi.org/10.1109/ICRA.2016.7487234
http://dx.doi.org/10.1109/CDC.2016.7799127
http://dx.doi.org/10.1109/ECMR.2017.8098718
http://dx.doi.org/10.1109/IROS.2006.282530
http://dx.doi.org/10.1109/IROS.2006.282530
http://dx.doi.org/10.1109/TMECH.2019.2963439
http://dx.doi.org/10.1109/ICRA.2015.7139863

Bibliography 87

[57] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6):46–57, 1989. doi: 10.1109/2.30720.

[58] Hans P. Moravec. Sensor fusion in certainty grids for mobile robots. AI Mag., 9(2):

61–74, jun 1988. ISSN 0738-4602. doi: 10.1609/aimag.v9i2.676.

[59] Henry Carrillo, Philip Dames, Vijay Kumar, and Jose Castellanos. Autonomous

robotic exploration using a utility function based on rényi’s general theory of entropy.

Autonomous Robots, 42, 02 2018. doi: 10.1007/s10514-017-9662-9.

[60] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Kumar Gupta,

and Ruslan Salakhutdinov. Learning to explore using active neural slam. ArXiv,

abs/2004.05155, 2020.

[61] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep reinforce-

ment learning robot for search and rescue applications: Exploration in unknown

cluttered environments. IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

doi: 10.1109/LRA.2019.2891991.

[62] Julio A. Placed and José A. Castellanos. Fast uncertainty quantification for active

graph slam. ArXiv, abs/2110.01289, 2021.

[63] Armin Hornung, Kai M. Wurm, Maren Bennewitz, C. Stachniss, and Wolfram Bur-

gard. Octomap: an efficient probabilistic 3d mapping framework based on octrees.

Autonomous Robots, 34:189 – 206, 2013.

[64] Emanuele Vespa, Nikolay Nikolov, Marius Grimm, Luigi Nardi, Paul H. J. Kelly,

and Stefan Leutenegger. Efficient octree-based volumetric slam supporting signed-

distance and occupancy mapping. IEEE Robotics and Automation Letters, 3(2):

1144–1151, 2018. doi: 10.1109/LRA.2018.2792537.

[65] Manasi Muglikar, Zichao Zhang, and Davide Scaramuzza. Voxel map for visual slam.

In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages

4181–4187, 2020. doi: 10.1109/ICRA40945.2020.9197357.

http://dx.doi.org/10.1109/2.30720
http://dx.doi.org/10.1609/aimag.v9i2.676
http://dx.doi.org/10.1007/s10514-017-9662-9
http://dx.doi.org/10.1109/LRA.2019.2891991
http://dx.doi.org/10.1109/LRA.2018.2792537
http://dx.doi.org/10.1109/ICRA40945.2020.9197357

Bibliography 88

[66] Narćıs Palomeras, Marc Carreras, and Juan Andrade-Cetto. Active slam for au-

tonomous underwater exploration. Remote Sensing, 11(23), 2019. ISSN 2072-4292.

doi: 10.3390/rs11232827.

[67] Magnus Selin, Mattias Tiger, Daniel Duberg, Fredrik Heintz, and Patric Jens-

felt. Efficient autonomous exploration planning of large-scale 3-d environ-

ments. IEEE Robotics and Automation Letters, 4(2):1699–1706, 2019. doi:

10.1109/LRA.2019.2897343.

[68] Di Deng, Zhefan Xu, Wenbo Zhao, and Kenji Shimada. Frontier-based automatic-

differentiable information gain measure for robotic exploration of unknown 3d envi-

ronments. ArXiv, abs/2011.05288, 2020.

[69] Ana Batinovic, Tamara Petrovic, Antun Ivanovic, Frano Petric, and Stjepan

Bogdan. A multi-resolution frontier-based planner for autonomous 3d explo-

ration. IEEE Robotics and Automation Letters, 6(3):4528–4535, 2021. doi:

10.1109/LRA.2021.3068923.

[70] Sean L. Bowman, Nikolay Atanasov, Kostas Daniilidis, and George J. Pappas. Prob-

abilistic data association for semantic slam. In 2017 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 1722–1729, 2017. doi: 10.1109/I-

CRA.2017.7989203.

[71] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf. Quadricslam: Dual

quadrics from object detections as landmarks in object-oriented slam. IEEE Robotics

and Automation Letters, 4(1):1–8, 2019. doi: 10.1109/LRA.2018.2866205.

[72] Margarita Grinvald, Fadri Furrer, Tonci Novkovic, Jen Jen Chung, Cesar Cadena,

Roland Siegwart, and Juan Nieto. Volumetric instance-aware semantic mapping and

3d object discovery. IEEE Robotics and Automation Letters, 4(3):3037–3044, 2019.

doi: 10.1109/LRA.2019.2923960.

[73] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an open-

source library for real-time metric-semantic localization and mapping. In 2020 IEEE

International Conference on Robotics and Automation (ICRA), pages 1689–1696,

2020. doi: 10.1109/ICRA40945.2020.9196885.

http://dx.doi.org/10.3390/rs11232827
http://dx.doi.org/10.1109/LRA.2019.2897343
http://dx.doi.org/10.1109/LRA.2019.2897343
http://dx.doi.org/10.1109/LRA.2021.3068923
http://dx.doi.org/10.1109/LRA.2021.3068923
http://dx.doi.org/10.1109/ICRA.2017.7989203
http://dx.doi.org/10.1109/ICRA.2017.7989203
http://dx.doi.org/10.1109/LRA.2018.2866205
http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.1109/ICRA40945.2020.9196885

Bibliography 89

[74] John Mccormac, Ronald Clark, Michael Bloesch, Andrew Davison, and Stefan

Leutenegger. Fusion++: Volumetric object-level slam. In 2018 International Con-

ference on 3D Vision (3DV), pages 32–41, 2018. doi: 10.1109/3DV.2018.00015.

[75] Robert Eidenberger and Josef Scharinger. Active perception and scene model-

ing by planning with probabilistic 6d object poses. In 2010 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 1036–1043, 2010. doi:

10.1109/IROS.2010.5651927.

[76] Nikolay Atanasov, Bharath Sankaran, Jerome Le Ny, George J. Pappas, and

Kostas Daniilidis. Nonmyopic view planning for active object classification and

pose estimation. IEEE Transactions on Robotics, 30(5):1078–1090, 2014. doi:

10.1109/TRO.2014.2320795.

[77] Sebastian Thrun and Arno Bü. Integrating grid-based and topological maps for

mobile robot navigation. In Proceedings of the Thirteenth National Conference on

Artificial Intelligence - Volume 2, AAAI’96, page 944–950. AAAI Press, 1996. ISBN

026251091X.

[78] Nicola Tomatis, Illah Nourbakhsh, and Roland Siegwart. Hybrid simultaneous

localization and map building: a natural integration of topological and met-

ric. Robotics and Autonomous Systems, 44(1):3–14, 2003. ISSN 0921-8890. doi:

https://doi.org/10.1016/S0921-8890(03)00006-X. Best Papers of the Eurobot ’01

Workshop.

[79] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jing-

nan Shi, Arjun Gupta, and Luca Carlone. Kimera: From slam to spatial perception

with 3d dynamic scene graphs. The International Journal of Robotics Research, 40

(12-14):1510–1546, 2021. doi: 10.1177/02783649211056674.

[80] Clara Gomez, Alejandra C. Hernandez, and Ramon Barber. Topological frontier-

based exploration and map-building using semantic information. Sensors, 19(20),

2019. ISSN 1424-8220. doi: 10.3390/s19204595.

http://dx.doi.org/10.1109/3DV.2018.00015
http://dx.doi.org/10.1109/IROS.2010.5651927
http://dx.doi.org/10.1109/IROS.2010.5651927
http://dx.doi.org/10.1109/TRO.2014.2320795
http://dx.doi.org/10.1109/TRO.2014.2320795
http://dx.doi.org/https://doi.org/10.1016/S0921-8890(03)00006-X
http://dx.doi.org/https://doi.org/10.1016/S0921-8890(03)00006-X
http://dx.doi.org/10.1177/02783649211056674
http://dx.doi.org/10.3390/s19204595

Bibliography 90

[81] Jose Luis Blanco, J.-A Fernández-Madrigal, and Javier González-Jiménez. A novel

measure of uncertainty for mobile robot slam with rao blackwellized particle filters.

I. J. Robotic Res., 27:73–89, 01 2008. doi: 10.1177/0278364907082610.

[82] Luca Carlone, Jingjing Du, Miguel Kaouk, Basilio Bona, and Marina Indri. Active

slam and exploration with particle filters using kullback-leibler divergence. Journal

of Intelligent and Robotic Systems, 75, 08 2013. doi: 10.1007/s10846-013-9981-9.

[83] Héctor H. González-Baños and Jean-Claude Latombe. Navigation strategies for

exploring indoor environments. The International Journal of Robotics Research, 21

(10-11):829–848, 2002. doi: 10.1177/0278364902021010834.

[84] Benjamı́n Tovar, Lourdes Muñoz-Gómez, Rafael Murrieta-Cid, Moisés Alencastre-

Miranda, Raúl Monroy, and Seth Hutchinson. Planning exploration strategies for

simultaneous localization and mapping. Robotics and Autonomous Systems, 54(4):

314–331, 2006. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.2005.11.006.

[85] Matan Keidar and Gal A. Kaminka. Efficient frontier detection for robot ex-

ploration. Int. J. Rob. Res., 33(2):215–236, feb 2014. ISSN 0278-3649. doi:

10.1177/0278364913494911.

[86] Phillip Quin, Dac Dang Khoa Nguyen, Thanh Long Vu, Alen Alempijevic, and Gavin

Paul. Approaches for efficiently detecting frontier cells in robotics exploration. Fron-

tiers in Robotics and AI, 8, 2021. ISSN 2296-9144. doi: 10.3389/frobt.2021.616470.

[87] Matan Keidar and Gal A. Kaminka. Robot exploration with fast frontier detection:

theory and experiments. In Proceedings of the 11th International Conference on Au-

tonomous Agents and Multiagent Systems - Volume 1, AAMAS ’12, page 113–120,

Richland, SC, 2012. International Foundation for Autonomous Agents and Multia-

gent Systems. ISBN 0981738117.

[88] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven Behnke. Evaluating the effi-

ciency of frontier-based exploration strategies. In ISR 2010 (41st International Sym-

posium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics),

pages 1–8, 2010.

http://dx.doi.org/10.1177/0278364907082610
http://dx.doi.org/10.1007/s10846-013-9981-9
http://dx.doi.org/10.1177/0278364902021010834
http://dx.doi.org/https://doi.org/10.1016/j.robot.2005.11.006
http://dx.doi.org/10.1177/0278364913494911
http://dx.doi.org/10.1177/0278364913494911
http://dx.doi.org/10.3389/frobt.2021.616470

Bibliography 91

[89] Hassan Umari and Shayok Mukhopadhyay. Autonomous robotic exploration based

on multiple rapidly-exploring randomized trees. In 2017 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1396–1402, 2017. doi:

10.1109/IROS.2017.8202319.

[90] Cheng-Yan Wu and Huei-Yung Lin. Autonomous mobile robot exploration in un-

known indoor environments based on rapidly-exploring random tree. In 2019 IEEE

International Conference on Industrial Technology (ICIT), pages 1345–1350, 2019.

doi: 10.1109/ICIT.2019.8754938.

[91] Wenchuan Qiao, Zheng Fang, and Bailu Si. Sample-based frontier detection for au-

tonomous robot exploration. In 2018 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 1165–1170, 2018. doi: 10.1109/ROBIO.2018.8665066.

[92] Anna Dai, Sotiris Papatheodorou, Nils Funk, Dimos Tzoumanikas, and Stefan

Leutenegger. Fast frontier-based information-driven autonomous exploration with an

mav. In 2020 IEEE International Conference on Robotics and Automation (ICRA),

pages 9570–9576, 2020. doi: 10.1109/ICRA40945.2020.9196707.

[93] Christian Dornhege and Alexander Kleiner. A frontier-void-based approach for au-

tonomous exploration in 3d. In 2011 IEEE International Symposium on Safety, Se-

curity, and Rescue Robotics, pages 351–356, 2011. doi: 10.1109/SSRR.2011.6106778.

[94] Cheng Zhu, Rong Ding, Mengxiang Lin, and Yuanyuan Wu. A 3d frontier-based

exploration tool for mavs. In 2015 IEEE 27th International Conference on Tools with

Artificial Intelligence (ICTAI), pages 348–352, 2015. doi: 10.1109/ICTAI.2015.60.

[95] Namal Senarathne and Danwei Wang. Towards autonomous 3d exploration using

surface frontiers. In 2016 IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), pages 34–41, 2016. doi: 10.1109/SSRR.2016.7784274.

[96] Shaojie Shen, Nathan Michael, and Vijay R. Kumar. Stochastic differential equation-

based exploration algorithm for autonomous indoor 3d exploration with a micro-

aerial vehicle. The International Journal of Robotics Research, 31:1431 – 1444, 2012.

http://dx.doi.org/10.1109/IROS.2017.8202319
http://dx.doi.org/10.1109/IROS.2017.8202319
http://dx.doi.org/10.1109/ICIT.2019.8754938
http://dx.doi.org/10.1109/ROBIO.2018.8665066
http://dx.doi.org/10.1109/ICRA40945.2020.9196707
http://dx.doi.org/10.1109/SSRR.2011.6106778
http://dx.doi.org/10.1109/ICTAI.2015.60
http://dx.doi.org/10.1109/SSRR.2016.7784274

Bibliography 92

[97] Liang Lu, Carlos Redondo, and Pascual Campoy. Optimal frontier-based au-

tonomous exploration in unconstructed environment using rgb-d sensor. Sensors,

20(22), 2020. ISSN 1424-8220.

[98] Cyrill Stachniss, D. Hahnel, and Wolfram Burgard. Exploration with active loop-

closing for fastslam. In 2004 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 2, pages 1505–

1510 vol.2, 2004. doi: 10.1109/IROS.2004.1389609.

[99] Robert Grabowski, Pradeep Khosla, and H. Choset. Autonomous exploration via

regions of interest. In Proceedings 2003 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 2, pages

1691–1696 vol.2, 2003. doi: 10.1109/IROS.2003.1248887.

[100] Rafael Valencia, Jaime Valls Miró, Gamini Dissanayake, and Juan Andrade-Cetto.

Active pose slam. In 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 1885–1891, 2012. doi: 10.1109/IROS.2012.6385637.

[101] Narćıs Palomeras, Natalia Hurtós, Eduard Vidal, and Marc Carreras. Autonomous

exploration of complex underwater environments using a probabilistic next-best-

view planner. IEEE Robotics and Automation Letters, 4(2):1619–1625, 2019. doi:

10.1109/LRA.2019.2896759.

[102] Sudharshan Suresh, Paloma Sodhi, Joshua G. Mangelson, David Wettergreen, and

Michael Kaess. Active slam using 3d submap saliency for underwater volumetric

exploration. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 3132–3138, 2020. doi: 10.1109/ICRA40945.2020.9196939.

[103] Ayoung Kim and Ryan Eustice. Active visual slam for robotic area coverage: Theory

and experiment. The International Journal of Robotics Research, 34:457–475, 04

2014. doi: 10.1177/0278364914547893.

[104] Julio A. Placed and José A. Castellanos. A deep reinforcement learning approach

for active slam. Applied Sciences, 2020.

[105] Delong Zhu, Tingguang Li, Danny Ho, Chaoqun Wang, and Max Q.-H. Meng. Deep

reinforcement learning supervised autonomous exploration in office environments.

http://dx.doi.org/10.1109/IROS.2004.1389609
http://dx.doi.org/10.1109/IROS.2003.1248887
http://dx.doi.org/10.1109/IROS.2012.6385637
http://dx.doi.org/10.1109/LRA.2019.2896759
http://dx.doi.org/10.1109/LRA.2019.2896759
http://dx.doi.org/10.1109/ICRA40945.2020.9196939
http://dx.doi.org/10.1177/0278364914547893

Bibliography 93

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages

7548–7555, 2018. doi: 10.1109/ICRA.2018.8463213.

[106] Hans Jacob S. Feder, John J. Leonard, and Christopher M. Smith. Adaptive mobile

robot navigation and mapping. The International Journal of Robotics Research, 18:

650 – 668, 1999.

[107] Jur P. van den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under

uncertainty using iterative local optimization in belief space. The International

Journal of Robotics Research, 31:1263 – 1278, 2012.

[108] Clara Gómez, Alejandra Carolina Hernández, and Ramón Barber. Topological

frontier-based exploration and map-building using semantic information. Sensors

(Basel, Switzerland), 19, 2019.

[109] Alan C. Schultz, William Adams, and Brian Yamauchi. Integrating exploration,

localization, navigation and planning with a common representation. Auton. Robots,

6(3):293–308, June 1999. ISSN 0929-5593. doi: 10.1023/A:1008936413435.

[110] Miguel Juliá, Arturo Gil, and Óscar Reinoso. A comparison of path planning

strategies for autonomous exploration and mapping of unknown environments. Au-

tonomous Robots, 33:427–444, 2012.

[111] Claude Elwood Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[112] Rafael Gonçalves Colares and Luiz Chaimowicz. The next frontier: combining infor-

mation gain and distance cost for decentralized multi-robot exploration. Proceedings

of the 31st Annual ACM Symposium on Applied Computing, 2016.

[113] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Information gain-based

exploration using rao-blackwellized particle filters. In Robotics: Science and Systems,

2005.

[114] Joan Vallvé and Juan Andrade-Cetto. Dense entropy decrease estimation for mo-

bile robot exploration. In 2014 IEEE International Conference on Robotics and

Automation (ICRA), pages 6083–6089, 2014. doi: 10.1109/ICRA.2014.6907755.

http://dx.doi.org/10.1109/ICRA.2018.8463213
http://dx.doi.org/10.1023/A:1008936413435
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/ICRA.2014.6907755

Bibliography 94

[115] Marija Popović, Teresa Vidal-Calleja, Jen Jen Chung, Juan Nieto, and Roland Sieg-

wart. Informative path planning for active field mapping under localization uncer-

tainty. In 2020 IEEE International Conference on Robotics and Automation (ICRA),

pages 10751–10757, 2020. doi: 10.1109/ICRA40945.2020.9197034.

[116] Jinkun Wang and Brendan Englot. Autonomous exploration with expectation-

maximization. In International Symposium of Robotics Research, 2017.

[117] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit. Fast-

slam: a factored solution to the simultaneous localization and mapping problem. In

AAAI/IAAI, 2002.

[118] Cyrill Stachniss and Wolfram Burgard. Mapping and exploration with mobile robots

using coverage maps. In Proceedings 2003 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), volume 1, pages

467–472 vol.1, 2003. doi: 10.1109/IROS.2003.1250673.

[119] Solomon Kullback and R. A. Leibler. On information and sufficiency. The Annals

of Mathematical Statistics, 22(1):79–86, 1951. ISSN 00034851.

[120] Lyudmila S. Mihaylova, Tine Lefebvre, Herman Bruyninckx, Klaas Gadeyne, and

Joris De Schutter. A comparison of decision making criteria and optimization meth-

ods for active robotic sensing. In Numerical Methods and Application, 2002.

[121] Herman Chernoff. Locally optimal designs for estimating parameters. Annals of

Mathematical Statistics, 24:586–602, 1953.

[122] Sylvain Ehrenfeld. On the Efficiency of Experimental Designs. The Annals of Math-

ematical Statistics, 26(2):247 – 255, 1955. doi: 10.1214/aoms/1177728541.

[123] Abraham Wald. On the efficient design of statistical investigations. Annals of Math-

ematical Statistics, 14:134–140, 1943.

[124] Robert Sim and Nabadip Roy. Global a-optimal robot exploration in slam. In

Proceedings of the 2005 IEEE International Conference on Robotics and Automation,

pages 661–666, 2005. doi: 10.1109/ROBOT.2005.1570193.

http://dx.doi.org/10.1109/ICRA40945.2020.9197034
http://dx.doi.org/10.1109/IROS.2003.1250673
http://dx.doi.org/10.1214/aoms/1177728541
http://dx.doi.org/10.1109/ROBOT.2005.1570193

Bibliography 95

[125] Ching-Shui Cheng. Maximizing the total number of spanning trees in a graph:

Two related problems in graph theory and optimum design theory. Journal of

Combinatorial Theory, Series B, 31(2):240–248, 1981. ISSN 0095-8956. doi:

https://doi.org/10.1016/S0095-8956(81)80028-7.

[126] Kasra Khosoussi, Shoudong Huang, and Gamini Dissanayake. Novel insights

into the impact of graph structure on slam. In 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2707–2714, 2014. doi:

10.1109/IROS.2014.6942932.

[127] Kasra Khosoussi, Matthew Giamou, Gaurav S. Sukhatme, Shoudong Huang, Gamini

Dissanayake, and Jonathan P. How. Reliable graphs for slam. The International

Journal of Robotics Research, 38:260 – 298, 2019.

[128] Yongbo Chen, Shoudong Huang, Liang Zhao, and Gamini Dissanayake. Cramér–rao

bounds and optimal design metrics for pose-graph slam. IEEE Transactions on

Robotics, 37(2):627–641, 2021. doi: 10.1109/TRO.2020.3001718.

[129] Julio A. Placed and José A. Castellanos. Fast autonomous robotic exploration

using the underlying graph structure. In 2021 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 6672–6679, 2021. doi:

10.1109/IROS51168.2021.9636148.

[130] Julio A. Placed and José A. Castellanos. Enough is enough: Towards autonomous

uncertainty-driven stopping criteria. ArXiv, abs/2204.10631, 2022.

[131] Vadim Indelman. No correlations involved: Decision making under uncertainty in

a conservative sparse information space. IEEE Robotics and Automation Letters, 1

(1):407–414, 2016. doi: 10.1109/LRA.2016.2518224.

[132] Yongbo Chen, Shoudong Huang, Robert Fitch, and Jianqiao Yu. Efficient active

slam based on submap joining, graph topology and convex optimization. In 2018

IEEE International Conference on Robotics and Automation (ICRA), pages 5159–

5166, 2018. doi: 10.1109/ICRA.2018.8460864.

http://dx.doi.org/https://doi.org/10.1016/S0095-8956(81)80028-7
http://dx.doi.org/https://doi.org/10.1016/S0095-8956(81)80028-7
http://dx.doi.org/10.1109/IROS.2014.6942932
http://dx.doi.org/10.1109/IROS.2014.6942932
http://dx.doi.org/10.1109/TRO.2020.3001718
http://dx.doi.org/10.1109/IROS51168.2021.9636148
http://dx.doi.org/10.1109/IROS51168.2021.9636148
http://dx.doi.org/10.1109/LRA.2016.2518224
http://dx.doi.org/10.1109/ICRA.2018.8460864

Bibliography 96

[133] Viorela Ila, Lukas Polok, Marek Solony, and Pavel Svoboda. Slam++ -a

highly efficient and temporally scalable incremental slam framework. The In-

ternational Journal of Robotics Research, 36:027836491769111, 02 2017. doi:

10.1177/0278364917691110.

[134] Teng Zhang, Kanzhi Wu, Jingwei Song, Shoudong Huang, and Gamini Dissanayake.

Convergence and consistency analysis for a 3-d invariant-ekf slam. IEEE Robotics

and Automation Letters, 2(2):733–740, 2017. doi: 10.1109/LRA.2017.2651376.

[135] James Doran and Donald Michie. Experiments with the graph traverser program.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical

Sciences, 294:235 – 259, 1966.

[136] Steven LaValle and James Kuffner. Randomized kinodynamic planning. volume 20,

pages 473–479, 01 1999. doi: 10.1109/ROBOT.1999.770022.

[137] Fan Yang, Chao Cao, Hongbiao Zhu, Jean Oh, and Ji Zhang. Far planner: Fast,

attemptable route planner using dynamic visibility update. In 2022 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 9–16,

2022. doi: 10.1109/IROS47612.2022.9981574.

[138] Su-Yong An, Lae-Kyoung Lee, and Se-Young Oh. Ceiling vision-based active slam

framework for dynamic and wide-open environments. In Autonomous Robots, page

40:291–324, 2015.

[139] Nikolas Brasch, Aljaz Bozic, Joe Lallemand, and Federico Tombari. Semantic

monocular slam for highly dynamic environments. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 393–400, 2018. doi:

10.1109/IROS.2018.8593828.

[140] Mina Henein, Jun Zhang, Robert Mahony, and Viorela Ila. Dynamic slam: The

need for speed. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 2123–2129, 2020. doi: 10.1109/ICRA40945.2020.9196895.

[141] Berta Bescos, Carlos Campos, Juan D. Tardós, and José Neira. Dynaslam ii: Tightly-

coupled multi-object tracking and slam. IEEE Robotics and Automation Letters, 6

(3):5191–5198, 2021. doi: 10.1109/LRA.2021.3068640.

http://dx.doi.org/10.1177/0278364917691110
http://dx.doi.org/10.1177/0278364917691110
http://dx.doi.org/10.1109/LRA.2017.2651376
http://dx.doi.org/10.1109/ROBOT.1999.770022
http://dx.doi.org/10.1109/IROS47612.2022.9981574
http://dx.doi.org/10.1109/IROS.2018.8593828
http://dx.doi.org/10.1109/IROS.2018.8593828
http://dx.doi.org/10.1109/ICRA40945.2020.9196895
http://dx.doi.org/10.1109/LRA.2021.3068640

Bibliography 97

[142] Jesse Morris, Yiduo Wang, and Viorela Ila. The importance of coordinate frames in

dynamic slam, 2024.

[143] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos. Orb-slam: A versatile and

accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163,

Oct 2015. ISSN 1941-0468. doi: 10.1109/tro.2015.2463671.

[144] Pan Ji, Hongdong Li, Yuchao Dai, and Ian Reid. ”maximizing rigidity” revisited:

a convex programming approach for generic 3d shape reconstruction from multiple

perspective views. 07 2017. doi: 10.48550/arXiv.1707.05009.

[145] Ajad Chhatkuli, Daniel Pizarro, Toby Collins, and Adrien Bartoli. Inextensible

non-rigid structure-from-motion by second-order cone programming. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 40(10):2428–2441, 2018. doi:

10.1109/TPAMI.2017.2762669.

[146] Shaifali Parashar, Daniel Pizarro, and Adrien Bartoli. Local deformable 3d recon-

struction with cartan’s connections. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 42(12):3011–3026, 2020. doi: 10.1109/TPAMI.2019.2920821.

[147] Shaifali Parashar, Mathieu Salzmann, and Pascal Fua. Local non-rigid structure-

from-motion from diffeomorphic mappings. In 2020 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2056–2064, 2020. doi:

10.1109/CVPR42600.2020.00213.

[148] Juan J. Gómez Rodŕıguez, José M.M. Montiel, and Juan D. Tardós. Nr-slam: Non-

rigid monocular slam. IEEE Transactions on Robotics, 40:4252–4264, 2024. doi:

10.1109/TRO.2024.3422004.

[149] Elliot Anshelevich, Scott Owens, Florent Lamiraux, and Lydia E. Kavraki. De-

formable volumes in path planning applications. Proceedings 2000 ICRA. Mil-

lennium Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No.00CH37065), 3:2290–2295 vol.3, 2000.

[150] Samuel Rodŕıguez, Jyh-Ming Lien, and Nancy M. Amato. Planning motion in com-

pletely deformable environments. Proceedings 2006 IEEE International Conference

on Robotics and Automation, 2006. ICRA 2006., pages 2466–2471, 2006.

http://dx.doi.org/10.1109/tro.2015.2463671
http://dx.doi.org/10.48550/arXiv.1707.05009
http://dx.doi.org/10.1109/TPAMI.2017.2762669
http://dx.doi.org/10.1109/TPAMI.2017.2762669
http://dx.doi.org/10.1109/TPAMI.2019.2920821
http://dx.doi.org/10.1109/CVPR42600.2020.00213
http://dx.doi.org/10.1109/CVPR42600.2020.00213
http://dx.doi.org/10.1109/TRO.2024.3422004
http://dx.doi.org/10.1109/TRO.2024.3422004

Bibliography 98

[151] Nicolò Botteghi, Beril Kallfelz Sirmacek, R. Schulte, Mannes Poel, and Christoph

Brune. Reinforcement learning helps slam: Learning to build maps. The Inter-

national Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLIII-B4-2020:329–335, 2020. doi: 10.5194/isprs-archives-XLIII-B4-2020-

329-2020.

[152] Mikhail Frank, Juxi Leitner, Marijn Stollenga, Alexander Förster, and Jürgen

Schmidhuber. Curiosity driven reinforcement learning for motion planning on hu-

manoids. Frontiers in neurorobotics, 7:25, 01 2014. doi: 10.3389/fnbot.2013.00025.

[153] Lei Tai and Ming Liu. A robot exploration strategy based on q-learning network. In

2016 IEEE International Conference on Real-time Computing and Robotics (RCAR),

pages 57–62, 2016. doi: 10.1109/RCAR.2016.7784001.

[154] Jingwei Zhang, Lei Tai, Ming Liu, Joschka Boedecker, and Wolfram Burgard. Neural

slam: Learning to explore with external memory, 2020.

[155] Kaichena Zhang, Farzad Niroui, Maurizio Ficocelli, and Goldie Nejat. Robot naviga-

tion of environments with unknown rough terrain using deep reinforcement learning.

In 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics

(SSRR), pages 1–7, 2018. doi: 10.1109/SSRR.2018.8468643.

[156] Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforcement

learning for map exploration. I. J. Robotic Res., 27:175–196, 02 2008. doi:

10.1177/0278364907087426.

[157] Bastian van Manen. Learning to explore and map with ekf slam and rl, August 2021.

URL http://essay.utwente.nl/88118/.

[158] Pierre-Antoine Absil, Christopher G. Baker, and Kyle A. Gallivan. Trust-region

methods on riemannian manifolds. Foundations of Computational Mathematics, 7:

303–330, 2007.

[159] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-

free paths among polyhedral obstacles. Commun. ACM, 22(10):560–570, oct 1979.

ISSN 0001-0782. doi: 10.1145/359156.359164.

http://dx.doi.org/10.5194/isprs-archives-XLIII-B4-2020-329-2020
http://dx.doi.org/10.5194/isprs-archives-XLIII-B4-2020-329-2020
http://dx.doi.org/10.3389/fnbot.2013.00025
http://dx.doi.org/10.1109/RCAR.2016.7784001
http://dx.doi.org/10.1109/SSRR.2018.8468643
http://dx.doi.org/10.1177/0278364907087426
http://dx.doi.org/10.1177/0278364907087426
http://essay.utwente.nl/88118/
http://dx.doi.org/10.1145/359156.359164

Bibliography 99

[160] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. TARE: A Hier-

archical Framework for Efficiently Exploring Complex 3D Environments. In

Proceedings of Robotics: Science and Systems, Virtual, July 2021. doi:

10.15607/RSS.2021.XVII.018.

[161] Hannes Kenngott, J Wünscher, Martin Wagner, A Preukschas, anna-laura Wekerle,

Peter Neher, Stefan Suwelack, Stefanie Speidel, Felix Nickel, Dare Oladokun, Lena

Maier-Hein, Rüdiger Dillmann, Hans-Peter Meinzer, and Beat Müller. Openhelp

(heidelberg laparoscopy phantom): development of an open-source surgical evalua-

tion and training tool. Surgical endoscopy, 29(11):3338—3347, November 2015. ISSN

0930-2794. doi: 10.1007/s00464-015-4094-0.

http://dx.doi.org/10.15607/RSS.2021.XVII.018
http://dx.doi.org/10.15607/RSS.2021.XVII.018
http://dx.doi.org/10.1007/s00464-015-4094-0

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Aims and objectives
	1.3 Contributions
	1.4 Publications
	1.5 Thesis outline

	2 Literature Review
	2.1 Traditional methods for solving active SLAM problem
	2.1.1 Identification of potential actions
	2.1.2 Utility computation
	2.1.2.1 Uncertainty quantification
	2.1.2.2 Uncertainty calculation for different SLAM algorithms

	2.1.3 Action selection and execution

	2.2 Active SLAM in deformable environments
	2.3 Reinforcement learning based active SLAM
	2.4 The focus of this thesis

	3 EKF and RIEKF Algorithms
	3.1 The general EKF SLAM framework
	3.2 The standard EKF SLAM
	3.3 RIEKF based SLAM
	3.3.1 2D RIEKF
	3.3.2 3D RIEKF

	3.4 Summary

	4 Invariant EKF based 2D Active SLAM with Exploration Task
	4.1 Problem statement
	4.2 Method
	4.2.1 Proposed active SLAM method
	4.2.2 Goal point selection

	4.3 Experiments
	4.3.1 Simulation settings
	4.3.2 Results of using a predetermined path
	4.3.3 Comparison of the different active SLAM methods
	4.3.3.1 Coverage
	4.3.3.2 Accuracy
	4.3.3.3 Processing time

	4.4 Summary

	5 Invariant EKF based 3D Active SLAM with Exploration Task
	5.1 Problem statement
	5.2 Method
	5.2.1 Global planner
	5.2.1.1 Map building
	5.2.1.2 Goal selection
	5.2.1.3 Visibility graph for robot navigation

	5.2.2 Local planner
	5.2.3 Combined planner

	5.3 Experiments
	5.3.1 Simulation in MATLAB
	5.3.2 Simulation in Gazebo
	5.3.3 Real-world experiment

	5.4 Summary

	6 Active SLAM in 3D Deformable Environments
	6.1 Problem statement
	6.2 EKF SLAM in deformable environments
	6.3 Active SLAM in deformable environments
	6.3.1 The active SLAM problem
	6.3.2 Local planner
	6.3.3 Global planner
	6.3.4 Combined planner

	6.4 Models and simulation settings
	6.5 Simulation results
	6.5.1 Polygon environment
	6.5.1.1 Coverage
	6.5.1.2 Accuracy
	6.5.1.3 Processing time

	6.5.2 Heart environment
	6.5.2.1 Coverage
	6.5.2.2 Accuracy
	6.5.2.3 Processing time

	6.6 Real-world experiments
	6.6.1 Experiment settings
	6.6.2 SLAM and active SLAM in the static environment
	6.6.3 SLAM and active SLAM in the deformable environment

	6.7 Summary

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Limitations and future work

	Bibliography
	Blank Page

