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ABSTRACT

G
raph neural networks (GNNs) have proven their efficacy in a variety of real-

world applications, but their underlying mechanisms remain a mystery. To

address this challenge and enable reliable decision-making, many GNN ex-

plainers have been proposed in recent years. The explanation of GNNs, which is essential

to understanding the fundamental working mechanism of complex GNNs, guaranteeing

the safety of their applications and promoting the reliability of GNNs, has attracted

significant attention in recent years. These active research works could be categorized

into two mainstreams–factual explanations (FE) and counterfactual explanations (CFE).

FE aims to answer the question: why GNNs make that particular decision by find-

ing the most important subgraphs/features. CFE, on the contrary, attempts to answer

the question: how to modify the original graphs so that GNNs could make the desired

predetermined prediction. CFE typically generates a new graph conditioned by the de-

sired predetermined prediction. This thesis is dedicated to exploring both CF and CFE

explainers for GNN, with a focus on addressing three special research questions.

In particular, for generating FE explanations, we propose the primary research ques-

tion, “how to generate FE for GNNs?” To solve this research question, we propose a novel

GNN explainer called GAN-GNNExplainer, which is a Generative Adversarial Network

(GAN) – based explanation method. Specifically, for GAN-GNNExplainer, the generator

learns to produce explanations for the input graph G, which requires an explanation.

Meanwhile, the discriminator distinguishes between “real” and generated explanations.
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The discriminator provides feedback to the generator, refining the explanation process.

Through repeated interactions between the generator and discriminator, the generator

eventually produces explanations that closely resemble the desired “real” ones. As a

result, the quality of the explanations improves, leading to a significant boost in overall

explanation accuracy. GAN-GNNExplainer demonstrates a notable advancement in the

accuracy of explanations, successfully addressing some limitations of current popular

GNN explainers. However, it has inadequate reliability on real-world datasets and lacks

fidelity.

To overcome these constraints, the second research question posited is, “how to gen-

erate faithful FE for GNNs?” For this research question, we aim to improve the fidelity

of explanations on real-world datasets. Specifically, we introduce an enhanced method

on top of the GAN-GNNExplainer, dubbed ACGAN-GNNExplainer, which leverages the

Auxiliary Classifier Generative Adversarial Network (ACGAN) as its backbone to gener-

ate explanations for GNNs. To be specific, the input graph G, along with its corresponding

label F (G) determined by the target GNN model F , is fed into the generator, which then

learns to generate explanations; to ensure the validity and accuracy of the generated

subgraph, a discriminator is incorporated. The discriminator distinguishes between

“real” and generated explanations, assigns a prediction label to each explanation, and

provides feedback to the generator, overseeing the entire generation process. Extensive

experiments on both synthetic and real-world datasets demonstrate the effectiveness of

our method, showcasing its superiority over existing GNN explainers.

On the other hand, the CFE for GNNs plays a crucial role in explaining GNNs from

the perspective of “how to minimally modify the input graphs so that the GNNs are

able to make predictions as predetermined”. Several recent works have emerged to

generate CFE using different strategies. However, these methods typically require a

large amount of training data, which might not be practical when such training data are
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not available, and worse, they have no control over ensuring the generated explanations

are unbiased. Hence, we present the third research question, “how to generate fair CFE

for GNNs?" To address this research question, we propose fairCFE, which uses a deep

decoder as our generative model and is conditioned by predetermined predictions. We

jointly optimize the input seed and the network parameters of the deep decoder for

a given graph, requiring no additional training data sets. In addition, we introduce a

novel fair loss to guide the entire generation process so that the generated counterfactual

explanations are guaranteed to be unbiased. To verify the effectiveness of our method,

we have conducted experiments on both synthetic and real-world datasets and compared

with state-of-the-art baselines. The experimental results demonstrate the superiority of

our method over other models.
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1
INTRODUCTION

1.1 Background

A graph G can be viewed as a representation of a certain relationship formed by a set of

nodes N and edges E. The graph is an ideal data structure that can be used to model

a variety of real-world datasets (e.g., social networks [33], transaction networks [54],

and molecules [57], see Figure 1.1). With the resurgence of deep learning, Graph Neural

Networks (GNNs) have been a powerful tool to model graph data and have achieved

impressive performance in many domains and applications, such as recommendation

systems, credit estimation, drug design and development, to name a few [19, 61, 71].

Notwithstanding its widespread adoption, its internal working mechanism remains a

mystery, presenting potential challenges to its credibility and hindering its broader

adoption in critical domains where explainability and transparency are essential.

The explanation for GNNs has attracted significant attention in recent years. These

active research works could be categorized into two mainstreams–factual explanations

(FE) and counterfactual explanations (CFE). FE aims to answer the question: why GNNs

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of Graph Data. In the domain of social networks, Graph Neural
Networks (GNNs) have been effectively utilized for tasks such as friend recommen-
dations [33], advertising optimization [74], and other pertinent applications. Within
transaction networks, GNNs have demonstrated utility in fraud detection [39], credit
estimation [54], and related endeavours. In the realm of molecular data analysis, GNNs
have found applications in drug design [72], drug development [55], and various other
areas of pharmaceutical research and development.

make that particular decision by finding the most important subgraphs/features. Notable

examples include GNNExplainer [76], OrphicX [38], and ACGAN-GNNExplainer [34].

CFE, on the contrary, attempts to answer the question: how to modify the original graphs

so that GNNs could make the desired predetermined prediction. CFE typically generates

a new graph conditioned by the desired predetermined prediction. Recent works in this

direction include CF-GNNExplainer [40], CFF [59], and CLEAR [42].

Particularly, FE elucidates the influential subgroups within graphs, shedding light

on the underlying mechanisms driving GNN decisions. By understanding these crucial

factors, stakeholders gain valuable insights into the rationale behind GNN predictions,

enabling informed decision-making and fostering trust in model outcomes. For instance,

consider a scenario in social network analysis where a GNN is employed to predict user

engagement with online content. FE might reveal specific clusters of interconnected

users whose collective behaviour strongly correlates with the predictions made by the

GNN. These clusters could represent tightly-knit communities or influential nodes whose

interactions contribute disproportionately to the overall network dynamics. By identify-

ing and highlighting such important subgroups, FE not only enhances our understanding

of GNN decisions but also unveils underlying patterns and structures within complex

datasets, enabling more informed decision-making in practical scenarios.
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On the other hand, CFE empowers stakeholders to explore hypothetical scenarios

by identifying minimal modifications to input graphs that alter GNN predictions. This

capability is invaluable for sensitivity analysis, risk assessment, and model refinement,

as it allows stakeholders to assess the robustness of GNN predictions and proactively

mitigate potential biases or errors. For instance, consider a recommendation system

employing GNNs to suggest personalized items to users based on their historical interac-

tions. A CFE approach might explore subtle adjustments to the user-item interaction

graph, such as adding or removing edges representing past interactions, to influence

the recommendations towards desired outcomes, such as increased user engagement or

satisfaction. By discerning these minimal modifications, CFE empowers stakeholders to

fine-tune GNNs for specific objectives while preserving the integrity of the underlying

data structure.

Overall, both FE and CFE hold significant significance and importance in the realm

of GNNs. They play pivotal roles in elucidating the decision-making processes of GNNs

and enhancing their utility and reliability in real-world applications. Hence, this thesis

is dedicated to elucidating the mechanisms of FE and CFE by devising three distinct

GNN explainers. These innovative explanation methodologies not only enhance the

explainability and transparency of GNN decision-making processes but also facilitate

the responsible integration of GNNs into various domains, thereby contributing to the

overarching objective of harnessing Artificial Intelligence (AI) for societal benefit.

1.2 Motivations

GNNs have been effectively implemented in a variety of real-world applications, while

their underlying work mechanisms remain a mystery. To unveil this mystery and advo-

cate trustworthy decision-making, many GNN explainers have been proposed. These

methods have provided some elucidation of GNNs; however, substantial work is still
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required in the following aspects:

• Explanation Scale (Local or Global Explanation). Evaluate whether the explanation

focuses on a specific instance (local) or captures broader patterns shared by a

group (global). Local explanations provide precision, while global explanations offer

insights into overarching trends.

• Generalizability. Assess the explainer’s ability to work on unseen graphs without

retraining. High generalizability is essential for scalable and dynamic applications.

• Versatility. Measure whether the explainer can adapt to different tasks, such as

node classification, graph classification, or link prediction. A versatile explainer

should perform well on diverse objectives.

• Fidelity. Check whether the explanation accurately reflects the model’s decision-

making process. High fidelity ensures reliability and builds user trust in the

explanations.

• Fairness. Evaluate whether the explainer generates unbiased explanations across

different subgroups. Fairness is crucial to promoting equity in sensitive applica-

tions.

• Agnostic. Determine whether the explainer maintains consistent performance

across various GNN architectures. An agnostic explainer is versatile and broadly

applicable to different models.

Therefore, the primary objective of this thesis is to devise GNN explainers possessing

the aforementioned desirable properties.
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1.3 Research Questions and Objectives

This thesis is dedicated to offering comprehensive insights into the realms of FE and

CFE, specifically for GNNs. Below, we outline our research questions and objectives.

1. How to Generate FE for GNNs?

GNNs have gained a lot of attention in recent years because of their ability to

capture the structural information of graphs and make predictions based on that

information. Explaining GNNs is important for improving our understanding

of these models and their applications and for building trust with users and

stakeholders in the domains where they are used.

The motivations behind developing techniques for explaining GNNs are to enhance

the transparency, explainability, and trustworthiness of GNN models. GNNs are

powerful models for processing graph-structured data and have been successful in

various applications such as social network analysis, drug discovery, and recom-

mendation systems. However, due to their complex structure and high-dimensional

representations, GNNs can be challenging to understand and interpret. This lack

of explainability can limit their application in domains where model explainability

is crucial, such as healthcare and finance. Therefore, the development of explain-

ability techniques for GNNs is motivated by the need to provide insights into how

these models make predictions and build trust with users and stakeholders.

Objective: Generating FE for GNNs. We are inspired by the explanations gener-

ated by other explainers, such as GNNExplainer [76], XGNN [77], and OrphicX [38].

These methods explain GNNs to some degree, while they often suffer from one

or more limitations—1) the explanation scale is tied to a specific instance; 2) the

explanation cannot be easily generalised for unseen graphs; 3) the explanation may

not be a valid graph; 4) the explanation may limit to a specific task (e.g., node clas-
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sification, graph classification, etc.). To solve these limitations, this work proposes

a GAN-GNNExplainer, which is a GAN-based explanation method. Specifically, a

generator is employed to generate explanations for original input graphs. And a

discriminator is adopted to monitor the generation process to ensure the quality of

the explanations and further improve the explanation accuracy. We experiment

with our proposed method on both synthetic and real-world graph datasets and

demonstrate the superiority of our proposed methods over other GNN explainers.

2. How to Generate Faithful FE for GNNs?

As we mentioned before, proposing faithful explanations for GNNs is an important

research topic that aims to ensure the reliability, stability, and explainability of

these models in practical applications. GNNs are complex models that can capture

complex patterns and relationships in graph-structured data, but their internal

workings are often opaque and difficult to understand. This lack of explainability

can limit their adoption and trust in domains where model explainability is critical,

such as healthcare, finance, and law enforcement. Therefore, developing methods

to generate reliable and faithful explanations of GNNs is essential to build trust

and confidence in GNN models. These explanations offer insights into factors

influencing model predictions, help identify potential errors, and assist domain

experts in making informed decisions based on the model’s outputs.

Objective: Generating Faithful FE for GNNs. High accuracy and faithful ex-

planations increase the trust level of the GNN models. This work aims to propose a

GNN explainer that explains GNN models with high fidelity. In this work, we intro-

duce the Auxiliary Classifier Generative Adversarial Network (ACGAN) [46] into

the field of GNN explanation and propose a new GNN explainer dubbed ACGAN-

GNNExplainer. Our approach leverages a generator to produce explanations for the

original input graphs while incorporating a discriminator to oversee the generation
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process, ensuring explanation fidelity and improving accuracy. Experimental evalu-

ations conducted on both synthetic and real-world graph datasets demonstrate the

superiority of our proposed method compared to other existing GNN explainers.

3. How to Generate Fair CFE for GNNs?

Counterfactual explanations for GNNs play a crucial role in explaining GNNs from

the perspective of “how to minimally modify the input graphs so that the GNNs

are able to make predictions as predetermined”. Fairness is also an important

part of GNNs. Although current CFE explainers have demonstrated impressive

performance in synthetic graph datasets, the present CFE models are limited

to generating a new graph that enables the GNNs to make the desired given

prediction, like CF-GNNExplainer [40], CFF [59], and CLEAR [42]. They do not

consider fairness, which has significant impacts in real-world applications. Without

taking fairness into account, a CFE model may produce counterfactual explana-

tions that exhibit a bias towards a specific gender or ethnicity. Such explanations

could potentially mislead or even endanger practitioners in real-world applications

such as credit evaluation and job marking. Thus, this work revolves around the

development of fair counterfactual explanations for GNNs.

Objective: Generating Fair CFE for GNNs. Our objective is to develop a method

for generating fair CFE for GNN models. Several recent works have emerged to

generate CFE with different strategies. However, these methods typically require

a large amount of data for training, which might not be practical when such

training data are not available, and worse, they have no control on ensuring the

generated explanations are unbiased. To overcome these limitations, in this work,

we propose fairCFE, which uses a deep decoder as our generative model and

is conditioned by predetermined predictions. We jointly optimize the input seed

and the network parameters of the deep decoder for a given graph, requiring no
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additional training data sets. In addition, we introduce a novel fair loss to guide the

entire generation process so that the generated CFE are guaranteed to be unbiased.

To verify the effectiveness of our method, we have conducted experiments on both

node classification and graph classification with different datasets (synthetic and

real-world) and compared with state-of-the-art baselines. The experimental results

demonstrate the superiority of our method over other models.

1.4 Research Contributions

Each objective, as we mentioned above, has certain contributions. To resolve the first

research question, we propose GAN-GNNExplainer, a Generative Adversarial Network

(GAN)-based explainer for GNN models that provides consistent explanations for predic-

tions made by the GNN model. To be specific, GAN-GNNExplainer uses a GAN [20] as

the backbone for generating explanations. The original graph G that we want to explain

is fed into the generator and then learns to generate the explanations. To enhance the

explanation accuracy and ensure the validity of a generated subgraph, a discriminator is

adopted, and it attempts to distinguish “fake” and “real” graphs, which signals feedback

to the generator and monitors the whole generation process. Although GAN has been

widely used in the fields of computer vision [65], image processing [50], natural language

processing [49], and healthcare [56], to the best of our knowledge, this is the first time

to use GAN to explain GNN models. Our method GAN-GNNExplainer demonstrates

the following merits: 1) it provides global explanation in nature; 2) it can generate

explanations for unseen graphs without retraining; 3) the discriminator monitors the

generation process and increases the chance of generating valid important subgraphs; 4)

it performs consistently well across different tasks and graph datasets. Our contributions

can be summarized below:
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• We present a novel explainer, dubbed GAN-GNNExplainer, for GNN models, which

uses a generator to generate explanations and uses a discriminator to monitor the

generation process;

• We empirically evaluate and demonstrate the superiority of GAN-GNNExplainer in

different datasets, including synthetic and real-world graph datasets, and different

tasks, including node classifications and graph classifications.

In order to address the second research question, we propose a new GNN explanation

method dubbed ACGAN-GNNExplainer, which uses the auxiliary classifier Generative

Adversarial Network (ACGAN) [46] as its backbone to generate explanations for GNNs.

In particular, it consists of a generator and a discriminator. The generator learns to

produce explanations based on these two pieces of information—the original graph G

that requires an explanation and its corresponding label F (G), which is determined by

the target GNN model F . In addition, a discriminator is adopted to distinguish whether

the generated explanations are “real” or “fake” and to designate a prediction label to each

explanation. In this way, the discriminator could provide “feedback” to the generator

and further monitor the entire generation process. Through iterative iterations of this

interplay learning process between the generator and the discriminator, the generator

ultimately is able to produce explanations akin to those deemed “real”; consequently, the

quality of the final explanation is enhanced, and the overall explanation accuracy is sig-

nificantly increased. Our method ACGAN-GNNExplainer has the following merits: 1) it

learns the underlying pattern of graphs, thus naturally providing explanations on a goal

scale; 2) after learning the underlying pattern, it can produce explanations for unseen

graphs without retraining; 3) it is more likely to generate valid important subgraphs

with the consistent monitoring of the discriminator; 4) it is capable of performing well

under different tasks, including node classification and graph classification. Our main

contributions to this research question could be summarized as the following points:
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• We present a novel explainer, dubbed ACGAN-GNNExplainer, for GNN models,

which employs a generator to generate explanations and a discriminator to consis-

tently monitor the generation process;

• We empirically evaluate and demonstrate the superiority of our method ACGAN-

GNNExplainer over other existing methods on various graph datasets, including

synthetic and real-world graph datasets, and tasks, including node classification

and graph classification.

In the third research work, we attempt to propose a practical counterfactual explana-

tion model for GNNs. It should not only produce faithful counterfactual explanations, but

also ensure fairness in its explanations. To achieve this goal, we adopt deep decoders Dω

parameterized by ω and Dθ parameterized by θ as our CFE-generative model and learn

a tailored optimal Dω and Dθ for each given graph. By doing so, our model eliminates

the need for massive training data and has naturally addressed the data distribution-

shift issue. This untrained idea has been increasingly gaining popularity in the field

of computer vision [23, 28, 30–32, 62, 85]. Furthermore, in order to guarantee that our

CFE-generative model generates explanations that are fair, we propose a new fairness

loss and incorporate it into the decoder’s loss function to achieve our final optimization

objective. Our main contributions to this research question include the following:

• We propose a novel untrained CFE-generative model dubbed fairCFE which could

generate faithful CFEs, requiring no extra massive training data;

• We introduce a new fairness loss to guide the generation procedure of our fairCFE

so that the generated CFEs are fair and unbiased;

• We demonstrate the effectiveness of our fairCFE through extensive experiments

on different datasets.
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1.5 Thesis Structure

This thesis tries to scrutinize explanations for GNNs. Three research questions are pro-

posed and solved, including how to generate explanations, generate faithful explanations

and generate fair counterfactual explanations. The structure of the remaining chapters

of this thesis is organized as follows (see Figure 1.2.):

Figure 1.2: Thesis Structure. In this figure, “RQ” is the abbreviation for “Research
Question”. “M” is the abbreviation for “Method”. “FE” means factual explanations, and
the “CFE” means counterfactual explanations.
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• Chapter 2 summarizes the literature on explainability, fairness, generative adver-

sarial attack networks, and metrics for evaluating explainability.

• Chapter 3 presents a new framework to explain GNNs by incorporating GAN,

dubbed as GAN-GNNExplainer, which is a Generative Adversarial Network (GAN)

-based explanation method. Specifically, a generator is employed to generate ex-

planations for original input graphs. And a discriminator is adopted to monitor

the generation process to ensure the quality of the explanations and further im-

prove the explanation accuracy. We experiment with our proposed method on both

synthetic and real-world graph datasets and demonstrate the superiority of our

proposed methods over other GNN explainers.

• Chapter 4 presents a novel faithful GNN explainer called ACGAN-GNNExplainer

that adopts ACGAN as our backbone. Our approach leverages a generator to pro-

duce explanations for the original input graphs while incorporating a discriminator

to oversee the generation process, ensuring explanation high fidelity and improving

accuracy. Experimental evaluations conducted on both synthetic and real-world

graph datasets demonstrate the superiority of our proposed method compared to

other existing GNN explainers.

• Chapter 5 presents a fair counterfactual explainer for GNNs, named fairCFE, which

uses a deep decoder as our generative model and is conditioned by predetermined

predictions. We jointly optimize the input seed and the network parameters of

the deep decoder for a given graph, requiring no additional training data sets. In

addition, we introduce a novel fair loss to guide the entire generation process so

that the generated counterfactual explanations are guaranteed to be unbiased. To

verify the effectiveness of our method, we have conducted experiments on both

node classification and graph classification with different datasets (synthetic and
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real-world) and compared with state-of-the-art baselines. The experimental results

demonstrate the superiority of our method over other models.

• Chapter 6 summarizes the findings of this thesis and points out the directions of

future work.
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LITERATURE REVIEW

2.1 Graph Neural Network Explainers

Explaining the decision-making process of GNNs is a challenging and important research

topic, as it could greatly benefit users by improving safety and promoting trust in these

models. To achieve this goal, several popular approaches have emerged in recent years

that aim to explain GNN models by leveraging the unique properties of graph features

and structures. In this regard, we briefly review several representative GNN explainers

below.

GNNs have emerged as a potent tool for handling datasets structured as graphs,

demonstrating remarkable efficacy in diverse real-world applications, including social

recommendation [73], credit estimation [54], and drug design and development [18].

An essential aspect lies in comprehending the functioning of GNN models. Research

efforts have delved into explicating these models, broadly categorised into factual and

counterfactual reasoning [35]. Within the domain of GNN explanations, factual reason-

ing entails generating sub-graphs that adhere to the condition “With these subgraphs,
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consistent with the fact, the GNN prediction remains unchanged.” Conversely, counter-

factual reasoning involves generating sub-graphs that satisfy the condition “Without

these subgraphs, inconsistent with the fact, the GNN prediction diverges.” Essentially,

factual reasoning strives to identify a sufficient set of edges/features that yield original

predictions, while counterfactual reasoning seeks a necessary set of edges/features whose

absence alters the prediction. The taxonomy of GNN explainers is shown in Figure 2.1.

Factual Explanations. Factual explanations elucidate the reasoning underlying indi-

vidual predictions by identifying the minimal subgraph sufficient to produce the same

prediction as the entire input graph. The GNNExplainer [76] as a pioneering method

to provide factual explanations for GNNs, which identifies crucial subgraphs pivotal

to the GNN model’s predictions, offering localised explanations for GNN models. Simi-

larly, GraphLIME [25] employs LIME values to generate local explanations for GNNs.

In contrast, PGExplainer [41] utilises a probabilistic graph to provide instance-specific,

model-level explanations with robust generalizability, distinguishing itself from GNNEx-

plainer. While SubgraphX [80] explores subgraph information for GNN explanations.

Moreover, reinforcement learning offers another avenue for generating factual expla-

nations in GNN models. For instance, Yuan et al. [77] introduce XGNN, a model-level

explainer that trains a graph generator to maximise specific model predictions through

generated graph patterns. Shan et al. [53] propose RG-Explainer, an enhanced explainer

leveraging reinforcement learning in the inductive setting, showcasing superior generali-

sation capabilities.

Counterfactual Explanations. Counterfactual explanations aim to identify the

smallest perturbation to the input graph that induces a change in the GNN’s prediction.

These perturbations typically involve edge removal or modifications to node features. For

instance, CF-GNNExplainer [40] is designed to generate counterfactual explanations,
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Figure 2.1: The Taxonomy of GNN Explainers.

primarily focusing on node classification datasets. Subsequently, Juntao et al. [59]

enhanced CF-GNNExplainer, introducing CFF, a method that explicates GNNs through

both factual and counterfactual perspectives. CFF enables the generation of both factual

and counterfactual explanations controlled by a parameter.

Further advancements include the proposal by Bajaj et al. [7] of RCExplainer, specifi-

cally designed to generate robust counterfactual explanations. Jing et al. [42] present

Clear, leveraging a generative model to produce counterfactual explanations for GNNs.

Jialin et al. [10] introduce D4Explainer, utilising a discrete denoising diffusion model to

generate counterfactual explanations for GNNs.

Expanding to specific domains, Carlo et al. [1] proposed a comprehensive density-
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based counterfactual search framework. These contributions aim to generate counterfac-

tual explanations for the explainable classification of brain networks, illustrating the

diverse approaches undertaken to enhance understanding within this domain.

2.2 Evaluation Metrics for Graph Neural Network

Explainers

Since explainers are used to explain why a certain decision has been made instead of de-

picting the whole black box, there is uncertainty about the fidelity of the explainer itself.

Therefore, it is crucial to use the right metrics to evaluate the correctness and complete-

ness of the interpretability techniques. Recently, GraphFramEx [5] and GRAPHXAI [2]

have focused on defining the explainability metrics to evaluate the fidelity of GNNs

explanations. Further, some evaluation metrics for XAI [83] are also available to be

applied to GNN explainers. This section provides a short review of the prevalent eval-

uation metrics for GNNs explanations. Generally, we evaluate a GNN explainer from

two aspects: performance and explanatory capability. Specifically, explanatory capability

can be evaluated from qualitative and quantitative analyses, including accuracy and

explainability evaluation. The taxonomy of metrics can be found in Figure 2.2.

2.2.1 Performance Evaluation

Efficiency. An efficient graph explanation algorithm should be able to provide expla-

nations for a large number of decisions made by a machine learning model quickly and

with minimal computational resources. This is particularly important in scenarios where

real-time decision-making is required or where the volume of data is extremely large. In

addition to being time and resource-efficient, an efficient graph explanation algorithm

should also produce explanations that are accurate, interpretable, and fair. Achieving a
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Figure 2.2: The Taxonomy of Metrics.

balance between efficiency and accuracy/fairness is an active research area in the field

of graph explanation. In the paper [7], authors evaluate efficiency by comparing the

average computation time taken for inference on unseen graph samples.

Robustness. It means the explanations of interpretation methods resist attacks such

as input corruption/perturbation, adversarial attack and model manipulation. A robust

interpretation method can provide similar explanations despite the presence of such at-

tacks [41, 81]. Mohit et al. [7] define robustness by quantifying how much an explanation

changes after adding noise to the input graph.

2.2.2 Explanatory Evaluation: Qualitative Analyses

Qualitative Analyses. Qualitative analyses are an important aspect of explainability

in GNNs. These analyses involve examining the internal workings of a GNN to gain

insight into how it makes decisions. This can be accomplished through techniques
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such as visualization, feature importance analysis, and interpretation of node and edge

embeddings. By conducting qualitative analyses, researchers and practitioners can

better understand the factors that contribute to GNN decision-making, identify potential

biases or errors, and improve the overall transparency and interpretability of the model.

Ultimately, qualitative analyses are crucial for ensuring that GNNs are trustworthy

and can be used effectively in real-world applications. Qualitative analyses have been

widely used in recent research, such as GNNExplainer [76], PGExplainer [41], and

GAN-GNNExplainer [36].

2.2.3 Explanatory Evaluation: Quantitative Analyses

2.2.3.1 Accuracy Evaluation

Accuracy evaluation refers to the process of assessing the correctness and fidelity of the

explanations generated by an algorithm or model. Accurate explanations are essential for

building trust in the machine learning model’s decision-making process and for ensuring

fairness and transparency. Therefore, accuracy evaluation is a crucial step in developing

and evaluating graph explanation algorithms.

Accuracy (ACC). ACC is the proportion of explanations that are “correct”. There are

two definitions to measure the accuracy of explainable methods. First, one can use the

percentage of the identified important features (e.g., nodes, node features, and edges) to

the true important truth [81] (see Equation 2.1):

(2.1) Accuracy= 1
N

N∑
i=1

|si|
|Si|gt

where |Si|gt represents the ground-truth important number of features; while |si| is

the important features identified by the explainable methods; N is the total number of

samples. While this approach is simple and intuitive, however, it requires the ground-
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truth explanations of datasets, which is often hard to obtain in the real world. The other

one is explanation accuracy.

Explanation Accuracy. This is derived from the perspective of model predictions

and measures the prediction accuracy [36]. They use the predictions of the target GNN

for the explanations to calculate the accuracy of the explanation. The accuracy of the

explanation can be defined as Equation 3.3:

(2.2) ACCexp = |F (G)=F (Gs)|
|T|

where F is the pre-trained target GNN, G is the original graph we want to explain, and

Gs is its corresponding explanation (e.g., the important subgraph), |F (G)=F (Gs)| is the

corrected classified number which means F (G)=F (Gs), |T| is the total number of the

test set.

2.2.3.2 Explainability Evaluation

Fidelity. It measures whether the explanations are faithfully important to the model’s

predictions. The Fidelity+ [79, 80] metric indicates the difference in predicted probabil-

ity between the original predictions and the new prediction after removing important

input features. In contrast, the metric Fidelity− [79, 80] represents prediction changes

by keeping important input features and removing unimportant structures.

(2.3) Fidelity+ = 1
N

N∑
i=1

(F (G i)yi −F (G1−mi
i )yi )

(2.4) Fidelity− = 1
N

N∑
i=1

(F (G i)yi −F (Gmi
i )yi )
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where N is the total number of samples, and yi is the class label. F (G i)yi and F (G1−mi
i )yi

are the prediction probabilities of yi when using the original graph G i and the occluded

graph G1−mi
i , which is gained by occluding important features found by explainers from

the original graph. Thus, a higher Fidelity+ (↑) is desired. F (Gmi
i )yi is the prediction

probabilities of yi when using the explanation graph Gmi
i , which is obtained by important

structures found by explainable methods. Thus a lower Fidelity− (↓) is desired. Specifi-

cally, Fidelity+ and Fidelity− are used to quantify the necessity and sufficiency of the

explanations, respectively. The higher Fidelity+, the more necessary the explanation.

On the contrary, the lower Fidelity−, the more sufficient the explanation.

Characterization Score. The characterization score [5, 9] is a global evaluation met-

ric that attempts to balance the sufficiency and necessity requirements. This approach is

analogous to combining precision and recall in the Micro-F1 metric. The characterization

score is the weighted harmonic mean of Fidelity+ and Fidelity- as defined below:

(2.5) Charact = 2×Fidelity+× (1−Fidelity−)
Fidelity++ (1−Fidelity−)

Sparsity. It measures the fraction of features selected as important by explanation

methods [48, 80], which is defined in Equation 2.6:

(2.6) Sparsity= 1
N

N∑
i=1

(1− |si|
|Si|total

)

where the |Si|total represents the total number of features (e.g., nodes, nodes features,

or edges) in the original graph model; while |si| is the size of important features/nodes

found by the explainable methods and it is a subset of |Si|; N is the total number of

samples. Note that higher sparsity values indicate that explanations are sparser and

likely to capture only the most essential input information. Hence, a higher Sparsity (↑)

is desired.
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Contrastivity (CST). CST means the ratio of the Hamming distance between bi-

narized heat-maps for positive and negative classes [48]. The underlying idea behind

contrastivity is that the highlighted features by an explanation method should vary

across classes. [48] and [70] defined and used CST to evaluate the explainability of

their methods. One can define fidelity as shown in Equation 2.7. And a lower CST− (↓)

is desired.

(2.7) CST= EG∼GEs ̸= ŷ[ρ(Φ(G , s),Φ(G , ŷ))]

Stability. Graph explanation stability refers to the ability of a GNN to produce con-

sistent explanations even when the input graph is slightly altered or perturbed. This is

important for ensuring the reliability and interpretability of the model’s decisions. In [2],

authors measure graph explanation stability by computer the instability degree. They

calculate the instability as Equation 2.8.

(2.8) GES
(
Mp

Su′
,MS

p
u

)
=maxD

(
MS

p
u′

,MS
p

u′

)
, ∀Su′ ∈β (Su)

where, Su is the subgraph of node u, and the Su′ is the subgraph of perturbed node u′;

maxD represents the cosine distance metric, MS
p

u
and MS

p
u′

are the predicted explana-

tion masks for Su and Su′ ; and β represents a δ-radius ball around Su for which the

model behavior is same.

Fairness. It is the concept that explanations provided by machine learning models

should be accurate and fair, and should not perpetuate or amplify existing biases. It

promotes transparency, accountability, and fairness in decision-making processes. In

the paper [2], authors propose Graph Explanation Counterfactual fairness mismatch

(GECF) and Graph Explanation Group Fairness mismatch (GEGF) to evaluate the

explanations on the respective datasets. To measure counterfactual fairness, they verify
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if the explanations corresponding to Su and its counterfactual counterpart are similar

if the underlying model predictions are similar. They calculate counterfactual fairness

mismatch as:

(2.9) GECF
(
Mp,Mp

s
)= D

(
Mp,Mp

s
)

where Mp and Mp
s are the predicted explanation mask for Su and for the counterfactual

counterpart of Su. D(·) means to computer the difference. It should be noted that they

anticipate a decrease in the GECF score for graphs that have ground-truth explanations

that exhibit weak forms of unfairness. This is because the explanations for both the

original and counterfactual graphs are likely to be similar. In contrast, for graphs with

ground-truth explanations that exhibit strong forms of unfairness, we expect to observe

an increase in the GECF score. This is because modifying the protected attribute is likely

to result in changes to the explanations provided by the model.

They measure group fairness mismatch as follows:

(2.10) GEGF
(
ŷK , ŷEu

K

)
= ∥SP(ŷK )−SP

(
ŷEu

K

)
∥

where ŷK and ŷEu
K are predictions for a set of K graphs using the original and the

essential features identified by an explanation, respectively. And SP is the statistical

parity. The higher values of GEGF indicate that the explanation does not preserve group

fairness.

There are various evaluation metrics, and each one has its respective emphasis

and reflects different aspects of an explainable model. One should, therefore, use a

combination of multiple metrics to attain reasonable and practical explainable systems.

However, as mentioned above, it is also important that one should take the characteristics

of datasets and explainable methods into account in order to choose suitable evaluation

metrics.
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Figure 2.3: The Example of GAN Architecture.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [20] are composed of two neural networks: a

generator and a discriminator, trained in a game-like manner. The structure can be found

in Figure 2.3. The generator takes random noise as input and generates samples intended

to resemble the training data distribution. On the contrary, the discriminator takes both

real and generated samples as input and distinguishes between them. The generator

tries to fool the discriminator by generating realistic samples while the discriminator

learns to distinguish between real and fake samples accurately. GANs have demonstrated

successful applications across a wide range of tasks, including image generation, style

transfer, text-to-image synthesis, and video generation.

Furthermore, the increasing utilization of GANs has led to the proposal of various

variations, reflecting ongoing innovation and refinement within the field. These novel

approaches introduce new architectural designs, optimization techniques, and training

strategies to improve the stability, convergence, and overall quality of GAN models.

Specifically, one strategy for expanding GANs involves incorporating side information.

For instance, CGAN [44] proposes providing both the generator and discriminator with

class labels to produce class conditional samples. Researchers in [63] demonstrate that

class conditional synthesis significantly improves the quality of generated samples. An-
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other avenue for expanding GANs involves tasking the discriminator with reconstructing

side information. This is achieved by modifying the discriminator to include an auxiliary

decoder network that outputs the class label of the training data or a subset of the latent

variables used for sample generation. For example, Chen et al. [11] propose InfoGAN, a

GAN-based model that maximizes the mutual information between a subset of latent

variables and the observations. It is known that incorporating additional tasks can en-

hance performance on the original task. In the paper [45], the auxiliary decoder leverage

pre-trained discriminators, such as image classifiers, to further improve the quality of

synthesized images.

Motivated by the aforementioned variations, Odena et al. [46] introduce the Auxiliary

Classifier Generative Adversarial Network (ACGAN), a model combining both strate-

gies to leverage side information. Specifically, the proposed model is class-conditional,

incorporating an auxiliary decoder tasked with reconstructing class labels. ACGAN is

an extension of CGANs. ACGANs are designed not only to generate samples that are

similar to the training data and conditioned on the input information but also to classify

the generated samples into different categories. In ACGANs, both the generator and

the discriminator are conditioned on auxiliary information, such as class labels. The

generator takes random noise as input and generates samples conditioned on the input

information and a set of labels, while the discriminator not only distinguishes between

real and fake samples but also classifies them into different categories based on the

input information.

ACGANs provide a way to generate diverse samples that are conditioned on the

input information and classified into different categories, making them useful tools in

many applications, such as image processing, data augmentation, and data balancing. In

particular, the authors [52] propose a semi-supervised image classifier based on ACGAN.

Waheed et al. [66] apply ACGAN in medical image analysis. Furthermore, in [84], authors
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augment the data by applying ACGAN in the electrocardiogram classification system.

Ding et al. [15] propose a tabular data sampling method that integrates the Knearest

neighbour method and tabular ACGAN to balance normal and attack samples.

2.4 Summary

In the literature review chapter, we provided an overview of contemporary techniques

for elucidating GNNs and the criteria employed for assessing the effectiveness of GNN

explainers. Following this, we delved into an exposition of pertinent literature con-

cerning GANs, which serves as the generative framework underpinning our proposed

methodology.
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3
GAN-BASED EXPLAINER FOR GRAPH NEURAL

NETWORKS

GNNs have proven their efficacy in a variety of real-world applications, but their un-

derlying mechanisms remain a mystery. To address this challenge and enable reliable

decision-making, many GNN explainers have been proposed in recent years. However,

these methods often encounter limitations, including dependency on specific instances,

limited generalizability to unseen graphs, the potential for producing invalid explana-

tions, and restrictions to specific tasks like node or graph classification. To overcome

these limitations, we, in this work, introduce the Generative Adversarial Networks

(GANs) [20] into the field of GNN explanation and propose a new GNN explainer

dubbed GAN-GNNExplainer. Our approach leverages a generator to produce expla-

nations for the original input graphs while incorporating a discriminator to oversee the

generation process, ensuring explanation quality and improving accuracy. Experimental

evaluations conducted on both synthetic and real-world graph datasets demonstrate the

superiority of our proposed method compared to other existing GNN explainers.
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3.1 Introduction

GNNs have swiftly progressed as a powerful method for processing graph-structured

data, showing outstanding performance across various real-world applications, including

crime prediction [68], traffic flow estimation [26], event forecasting [14], and medical di-

agnosis [4]. GNNs are proficient in capturing intricate node relationships and extracting

valuable features from graph data, making them an ideal option for tasks that require

graph-based analysis.

Although GNNs demonstrate strong performance, their lack of explainability reduces

their trustworthiness in key fields like healthcare and finance. The inherent black-

box characteristic of GNNs complicates the comprehension of their decision-making

mechanisms, making it challenging to uncover the reasoning behind their predictions

and to detect potential biases. These challenges have restricted the wider adoption of

GNNs in vital sectors where interpretability and transparency are essential, including

healthcare [58], recommendation systems [43], and other areas.

To address this challenge, a multitude of GNN explainers have been proposed to shed

light on the decision-making process of GNNs. These methods provide explanations at

the node or graph level, helping to identify important graph structures and features that

contribute to the model’s predictions. Specifically, explaining GNN models is encouraged

and even required to increase confidence in the GNN model’s predictions, guarantee

the security of real-world applications, and promote trustworthy artificial intelligence

(AI) [51, 64].

The explanation of GNN has attracted substantial scholarly interest, and many

explainers [24, 37, 41, 75, 78] have been proposed over the past few years. Although

these methods provide some useful explanations for complex GNN models, their practical

application is hampered by their inherent constraints— 1) the explanation scale is tied to

a specific instance; 2) the explanation cannot be easily generalised for unseen graphs; 3)
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the explanation may not be a valid graph; 4) the explanation may limit to a specific task

(e.g., node classification, graph classification, etc.). In particular, the seminal method

GNNExplainer [75] limits itself to local explanation and lacks the generalizability. After

that, XGNN [78], which trains a graph generator to explain a class by displaying class-

specific graph patterns, addressed the limitation of the explanation scale. However, it

still lacks the generalizability, and worse, it may generate some nonexisting important

subgraphs. Recent Gem [37] has mitigated the limitations faced by previous methods,

while its precision in explaining different tasks can vary significantly and lacks stability

due to the inherent nature of the generation process.

To tackle the existing limitations, this work introduces a novel GNN explainer, GAN-

GNNExplainer, which uses the generative method to produce explanations for GNNs.

Our method consists of a generator and a discriminator. In particular, the generator

learns to produce explanations for the input graph G, which requires an explanation.

Meanwhile, the discriminator distinguishes between “real” and generated explanations.

The discriminator provides feedback to the generator, refining the explanation process.

Through repeated interactions between the generator and discriminator, the generator

eventually produces explanations that closely resemble the desired “real” ones. As a

result, the quality of the explanations improves, leading to a significant boost in overall

explanation accuracy.

Key contributions of this work include:

• We introduce a novel explainer, GAN-GNNExplainer, specifically designed for

GNN models. This method leverages a generator to produce explanations guided

by a discriminator to ensure reliability and consistency throughout the process.

• Our methods are rigorously evaluated on diverse graph datasets, including both

synthetic and real-world data. The results consistently demonstrate the superiority

of our approach compared to existing methods.
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3.2 Method

3.2.1 Problem Formulation

The concepts of “Interpret” and “Explain” are crucial in understanding how GNNs

generate predictions. Interpretation involves comprehending how the model arrived

at its decision, focusing on transparency and the ability to track the decision-making

process. In contrast, an explanation provides a rationale or justification for the GNN’s

prediction, aiming to offer clear and concise reasoning for the results.

In this study, our primary objective is to identify the specific subgraph within a

test graph that has a significant influence on the GNN’s prediction for that particular

test graph. To generate explanations that elucidate the reasoning behind the GNN’s

predictions, we train our GNN explainer using the real explanation subgraphs (or

explanation ground truth) we obtained.

A GNN explainer generates a faithful and compact subgraph that identifies essential

features, providing clues as to why the GNN model makes its predictions. The explained

subgraph must be a valid subgraph for the original input graph, containing a subset of the

vertices and edges from the input graph. Ultimately, our aim is to improve explainability

in machine learning models, which is critical for their adoption in real-world applications.

We represent a graph as G= (V,A,X), where V is the set of nodes, A ∈ {0,1} denotes

the adjacency matrix that Ai j = 1 if there is an edge between node i and node j, otherwise

Ai j = 0, and X indicates the feature matrix of the graph G. We also have a GNN model

F and Y denotes its predictions, F (G) → y. We further define E (F (G),G)) → Gs as

the explanation of a GNN explainer. Ideally, when feeding the explanation into the

GNN model F , it would produce the exact same prediction y, which means that F (G)

equals F (E (F (G),G)). We also expect that the explanation E (F (G),G))→Gs should be a

subgraph of the original input graph G, which means that Gs ∈G, so that the explained
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graph is a valid subgraph.

3.2.2 Obtaining Causal Real Explanations

Our objective in this work is to elucidate the reasoning behind the predictions made

by the target GNN model F . To achieve this, we regard the target GNN model F

as a black box and refrain from investigating its internal mechanisms. Instead, we

attempt to identify the subgraphs that significantly affect the predictions of the target

GNN model F . In particular, we employ a generative model to autonomously generate

these subgraphs/explanations. In order for the generative model to generate faithful

explanations, it must first be trained under the supervision of “real” explanations (ground

truth). However, these ground truths are typically unavailable in real-world applications.

In this work, we employ Granger causality [21], which is commonly used to test whether

a specific variable has a causal effect on another variable, to circumvent this difficulty.

Specifically, in our experiments, we mask an edge and then observe its effect on

the prediction of the target GNN model F . We then calculate the difference between

the prediction probability of the original graph and the masked graph and set this

difference as an edge weight to indicate its effect on the prediction of the target GNN

model F . After that, we sort all edges of the graph according to the weight values we

have obtained and save the resulting weighted graph. Therefore, edges with the highest

weights correspond to actual explanations (important subgraphs). However, it should

also be noted that using Granger causality [21] directly to explain a target GNN model

F is computationally intensive and has limited generalizability. Our method, on the

other hand, could naturally overcome this challenge, as our parameterized explainer

could capture the fundamental patterns shared by the same group and is adaptable and

transferable across different graphs once the shared patterns have been comprehensively

learned.
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Figure 3.1: The Framework of GAN-GNNExplainer. The ⊙ means element-wise multipli-
cation. This figure is comprised of two phases: Training and Test. During the Training
Phase, the objective is to train the generator and discriminator components of the GAN-
GNNExplainer model. Following successful training, the Test Phase then utilizes the
trained generator to generate explanations for the testing data.

3.2.3 GAN-GNNExplainer

By leveraging the GAN’s generating capacity, in this work, we propose a GAN-based

explanation method for GNN, which is called GAN-GNNExplainer. It consists of a

generator (G1) and a discriminator (D1), which is depicted in Figure 3.1.

Unlike the typical way of training GAN where random noise z is fed into the generator

G , in our model, we feed G with the original graph G which is the graph we want to ex-

plain. Doing so ensures that the generator G provides a corresponding explanation to the

original input graph G. In addition, the generator G trained under this mechanism can

be easily generalized to unseen graphs without significant retraining and thus can save

computational cost. For our G , we employ an encoder-decoder network where the encoder

would project the original input graph G into a compact hidden representation and then

the decoder would reconstruct the explanation from the compact hidden representation.
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In our case, the reconstructed explanation is a mask indicating the significance of each

edge. When we conduct experiments on synthetic datasets, we have a six-layer encoder

and a two-layer decoder; when we experiment with real-world datasets, we keep the

decoder complexity but slightly increase the complexity of the encoder. Thus, we end

with a seven-layer decoder.

In principle, G1 can generate both valid and invalid explanations, which may conflict

with the goal of accurately explaining a GNN. To regulate the generation process, a

discriminator D1 is introduced. D1 acts as a graph classifier, receiving both the “real” and

generated explanations generated by the explainer. Its role is to differentiate between

the “real” and generated explanations, ensuring that the generator produces reliable

outputs.

To train G1 and D1, we first need to obtain the “real” explanations. This is done

through a pre-processing step in our framework (Figure 3.1), where Granger causality

generates the “real” explanations as ground truth for training the discriminator. Details

of this process can be found in Section 3.2.2. Once the input graph G and corresponding

subgraph are identified, the model is trained to generate a weighted mask that empha-

sizes the important edges and nodes in G that play a key role in the decision-making

process of the GNN model F . By applying this weighted mask to the adjacency matrix,

we extract the relevant explanations or key subgraphs. These explanations are essential

for understanding the reasoning behind the complex predictions made by the GNN

model.

3.2.4 Improved Loss Function

In a GAN framework, the generator and discriminator engage in a minimax game,

competing against each other. The generator learns to mimic the underlying distribution

of training data and generates “fake” samples that deceive the discriminator into treating
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them as real. The objective of this minimax game is defined in Equation (3.1):

(3.1) min
G

max
D

EGgt∼p(Ggt)
[logD(Ggt)]+EG∼p(G)[log(1−D(G (G)))],

where G represents the original graph requiring explanation, and Ggt refers to its ground

truth explanation (e.g., the significant subgraph).

When we simply adopt Equation (3.1) as our objective function to train our G1 and

D1 simultaneously, we empirically observe that the accuracy of the final explanation is

not optimistic. We suppose it is because Equation (3.1) does not explicitly encode the

information of the accuracy of the explanation from a target GNN model. To address

this issue and improve the precision of the explanation, we then explicitly incorporate

the accuracy of the explanation into our objective function and obtain an improved

GAN-based loss function defined in Equation (3.2).

(3.2)

min
G1

max
D1

EGgt∼p(Ggt)
[logD1(Ggt)]

+EG∼p(G)[log(1−D1(G1(G)))]

+λ
1
N

N∑
i=1

( f (G)− f (G1(G)))2 ,

where F denotes a pre-trained target GNN model, N represents the node set of G, and

G is the input graph we aim to explain, while Ggt is its corresponding ground truth ex-

planation (e.g., the important subgraph). The parameter λ is a trade-off hyperparameter

that balances the influence of the GAN model and the explanation accuracy derived from

the pre-trained target GNN F . If λ is set to zero, Equation (3.2) becomes identical to

Equation (3.1).
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3.2.5 Pseudocode of GAN-GNNExplainer

GAN-GNNExplainer is a powerful method for providing explanations for the predictions

generated by GNNs. To better comprehend the methodology behind GAN-GNNExplainer,

we present the following pseudo-code Algorithm 1.

Algorithm 1: Training a GAN-GNNExplainer
Input: Training graph data G = {g1, · · · , gn}, real explanations for training graphs

Ggt = {ggt
1 , · · · , ggt

n } (obtained in preprocess phase), trained GNN F .
Output: Generator G1, discriminator D1.

1 Initialize G1 and D1 with random weights.
2 for epoch in epochs do
3 Sample a minibatch of m real data samples {g(1), · · · , g(m)} from training data

G
4 Generate fake data samples { g̃(1), · · · , g̃(m)}=G(g(1), · · · , g(m))
5 Update D1 by taking m gradient steps on the objective function in order to

maximize its classification ability:

∇θd

1
m

m∑
i=1

[
log(D1(ggt(i)))+ log(1−D1( g̃(i)))

]
Update G1 by taking m gradient steps on the objective function in order to
confuse the D1 maximally:

∇θg

1
m

m∑
i=1

log(1−D1( g̃(i)))+
(
F (g(i))−F ( g̃(i))

)2

6 end

Once the input graph and target GNN have been acquired, the GAN-GNNExplainer

can be trained to produce a weighted mask that effectively highlights the edges and nodes

in the original graph and significantly contributes to the GNN’s decision-making process.

By multiplying the mask with the original adjacency matrix of the input graph, we can

obtain the corresponding explanation. These explanations are particularly useful for

understanding the reasoning behind the GNN’s predictions and identifying the salient

features of the input graph.
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Table 3.1: Details of Synthetic and Real-world Datasets.

Node Classification Graph Classification

BA-Shapes Tree-Cycles Mutagenicity NCI1

# of Graphs 1 1 4,337 4110
# of Edges 4110 1950 266,894 132,753
# of Nodes 700 871 131,488 122,747
# of Labels 4 2 2 2

3.3 Experiments

In this section, we conduct experiments to evaluate the performance of our GAN-

GNNExplainer. We first describe the datasets we used and our implementation details in

Section 3.3.1. After that, we present and analyze the experimental results on synthetic

datasets in Section 3.3.2 and real-world datasets in Section 3.3.3.

3.3.1 Experimental Settings

Datasets. We focus on two widely used synthetic node classification datasets, includ-

ing BA-Shapes and Tree-Cycles [75], and two real-world graph classification datasets,

Mutagenicity [27] and NCI1 [67]. Details of these datasets are shown in Table 3.1.

The BA-Shapes dataset comprises a Barabasi-Albert (BA) graph with 300 nodes. It

incorporates 80 “house”-structured network motifs randomly attached to nodes within

the base graph. Nodes are classified into four categories based on their structural roles:

those at the top, middle, and bottom of houses, and those not part of any house.

The Tree-Cycles dataset originates from an initial 8-level balanced binary tree. It

incorporates 80 six-node cycle motifs attached randomly to nodes within the base graph.

Nodes are divided into two classes based on whether they belong to the tree or the cycle.

The Mutagenicity datasets consist of 4337 molecule graphs representing atoms as

nodes and chemical bonds as edges. These graphs are categorized into two classes:
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non-mutagenic and mutagenic, indicating their effects on the Gram-negative bacterium

Salmonella Typhimurium. Specifically, carbon rings containing NH2 or NO2 groups

are known to be mutagenic. However, carbon rings are present in both mutagenic and

non-mutagenic graphs, rendering them non-discriminative.

NCI1 is a curated subset of chemical compounds evaluated for their efficacy against

non-small cell lung cancer. It encompasses over 4,000 compounds, each tagged with a

class label indicating positive or negative activity. Each compound is depicted as an

undirected graph, with nodes representing atoms, edges denoting chemical bonds, and

node labels indicating atom types.

Baseline Approaches. With the wide application of GNNs, more and more GNN

explainers have been proposed to address the problem of explaining GNN models. GN-

NExplainer is a seminal method in explaining GNN models. In addition, the PGExplainer

and Gem are more related to our method. However, Gem has shown its superiority over

PGExplainer methods. Thus, we only consider GNNExplainer and Gem as alterna-

tive approaches. We set all the hyperparameters of the baselines as reported in the

corresponding papers.

Different Top Edges (K or R). After obtaining the weight (importance) of each

edge for the input graph G, it is also important to select the right number of edges

to serve as the explanations, as selecting too few edges may lead to an incomplete

explanation/subgraph while selecting too many edges may introduce a lot of noisy

information into our explanation. To overcome this uncertainty, we specifically define a

top K (for synthetic datasets) and a top Ratio (R) (for real-world datasets) to indicate

the number of edges we would like to select. We test different K and R to show the

stability of our method. To be specific, we set K = {5,6,7,8,9} for the BA-Shapes dataset,

K = {6,7,8,9,10} for the Tree-Cycles dataset, and R = {0.5,0.6,0.7,0.8,0.9} for real-world
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datasets.

Data Split. To maintain consistency and fairness in our experiments, we divide the

data into three sets: 80% for training, 10% for validation, and 10% for testing. Testing

data remain untouched throughout the experiments. We maintain the consistency of the

testing data. Both training data and validation data are used in their entirety during

the training process. The value of K /R and the split ratio of the data set are consistent

with the experimental settings of Gem so that we can fairly compare our results to those

of Gem, which are our baseline.

Evaluation Metrics. A better explainer should be able to generate more compact

subgraphs yet maintain the prediction accuracy while the associated explanations are

fed into the target GNN. After comparing the characteristics of each metric [35], we chose

quantitative and qualitative evaluations. In particular, we generate explanations for the

test set using GNNExplainer [75], Gem [37], OrphicX [38], and ACGAN-GNNExplainer

(our method), respectively. We then feed these generated explanations to the pre-trained

target GNN F to compute the accuracy, which can be formally defined as Equation (3.3):

(3.3) ACCexp = |F (G)=F (Gs)|
|T|

where G signifies the initial graph necessitating explanation, and Gs denotes its associ-

ated explanation (e.g. the significant subgraph); |F (G)=F (Gs)| represents the count of

accurately classified instances in which the predictions of F on G and Gs are exactly the

same, and |T| is the total number of instances.

3.3.2 GAN-GNNExplainer on Synthetic Datasets

Firstly, we conduct experiments on synthetic datasets, including BA-Shapes and Tree-

Cycles. We evaluate the accuracy of explanations provided by GNNExplainer, Gem,

40



3.3. EXPERIMENTS

Table 3.2: The Accuracy of Explanations on the BA-Shapes Dataset.

K (edges) 5 6 7 8 9

GNNExplainer 0.7941 0.8824 0.9118 0.9118 0.9118

Gem 0.9412 0.9412 0.9412 0.9412 0.9412

GAN-GNNExplainer 0.6764 0.9706 0.9706 0.9706 0.9412

Table 3.3: The Accuracy of Explanations on the Tree-Cycles Dataset.

K (edges) 6 7 8 9 10

GNNExplainer 0.2000 0.5429 0.7143 0.8571 0.9429

Gem 0.7142 0.8285 0.5714 0.8285 0.9428

GAN-GNNExplainer 0.9429 0.9715 0.9429 1.0000 1.0000

and GAN-GNNExplainer (our model). We also present quantitative and qualitative

evaluations of our experiments.

Quantitative Analysis. The accuracy of explanations for synthetic datasets with

various K settings is detailed in Table 3.2 and Table 3.3. The results indicate that

GAN-GNNExplainer consistently provides the most accurate explanations in all cases.

On the BA-Shapes dataset, GNNExplainer, Gem, and GAN-GNNExplainer perform

well for synthetic datasets. However, GAN-GNNExplainer also incorporates a number of

enhancements. GAN-GNNExplainer outperforms GNNExplainer and Gem on BA-Shapes.

On the Tree-Cycles dataset, GAN-GNNExplainer performs well, whereas GNNExplainer

and Gem cannot get good explanations.

It should be noted that while our experiments were conducted on the relatively simple

BA-Shapes dataset, the performance of the Gem may be favourable when K is relatively

low. However, even when we increase the value of K, the accuracy of the Gem remains

unchanged. In contrast, our model’s accuracy improves as more information is provided,

that is, as the value of K increases. This distinction between the Gem and our model is

41



CHAPTER 3. GAN-BASED EXPLAINER FOR GRAPH NEURAL NETWORKS

particularly relevant when dealing with more complex datasets. In such cases, our model

may require more information to achieve optimal performance, but it may ultimately

yield higher accuracy than the Gem.

Qualitative Analysis. Qualitative evaluation is an effective way to compare the

explanations. We obtain the difference in explanations among GNNExplainer, Gem, and

GAN-GNNExplainer by qualitative analysis. We visualize the explanations of BA-Shapes

when K = [8,9], and Tree-Cycles when K = 8, as shown in Figure 3.2 and Figure 3.3,

respectively. In particular, we select two types of nodes whose predictions of GNN are

correct or incorrect, respectively, for visualization. In Figure 3.2, the first row is the

visualization of nodes where GNN makes a correct prediction. That is, F (G) equals to

the node label LG. We can find the visualization of nodes where GNN makes an incorrect

prediction in the second row. That is, F (G) is different from the label of the node LG. For

the explanations, we expect to get the same prediction as the original adjacency matrix

prediction of GNN. However, after getting the explanations, we fed the explanations into

the target GNN, and we got different predictions for different explanations. We note

that the explanation of Gem (Gs
gem) gives the wrong prediction. While the explanations

of GNNExplainer (Gs
gnnex) and GAN-GNNExplainer (Gs

ganex) get the correct prediction.

That is, F (Gs
gem) is distinct from F (G), while F (Gs

gnnex) and F (Gs
ganex) are equivalent

to F (G). Thus, we observe that the GNNExplainer and GAN-GNNExplainer provide

accurate explanations.

Similarly, Figure 3.3 visualizes, in the first and second rows, the explanations of

various Tree-Cycles nodes whose GNN predictions are incorrect and correct, respectively.

We observe that Gem is unable to obtain accurate explanations for nodes that GNN

predicts incorrectly or correctly, whereas GAN-GNNexplainer does. To put it another

way, when node F (G) differs from the label of node LG, we achieve F (Gs
ganex) being

equivalent to F (G), while F (Gs
gem) and F (Gs

gnnex) differ from F (G). Furthermore,
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Figure 3.2: The Explanation Visualization on BA-Shapes, When K = {8,9}. The 1st

column is the original graph structure and the prediction by the pre-trained GNN. The
2nd column to the 4th column is explanations from GNNExplainer, Gem, and GAN-
GNNExplainer, respectively when K is set to be 8 (the 1st row) and 9 (the 2nd row). When
K is set to be 8 (the 1st row), the GNN prediction for explanations from GNNExplainer
and GAN-GNNExplainer are identical to the original graph while the GNN prediction for
explanations from Gem is wrong. When K is set to be 9 (the 2nd row), a similar pattern
is observed as the K of 8.
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Figure 3.3: The Explanation Visualization on Tree-Cycles, When K = 8. The first column
is the original graph structure that the GNN predicts. The second through fourth columns
contain the respective explanations from GNNExplainer, Gem, and GAN-GNNExplainer.

for these that F (G) equal to the label of the node LG, we find that F (Gs
gnnex) and

F (Gs
ganex) are equivalent to F (G), while F (Gs

gem) is distinct from F (G). Thus, the

GAN-GNNExplainer precisely explains the GNN model.

3.3.3 GAN-GNNExplainer on Real-world Datasets

This subsection reports the experimental results with real-world datasets. The quantita-

tive evaluation is shown in Table 3.4 and Table3.5. As shown in the table, the reported

results successfully demonstrate that the proposed GAN-GNNExplainer can generate

explanations with consistently high accuracy across all datasets compared with other

explainers.
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Table 3.4: The Accuracy of Explanations on the Mutagenicity Dataset.

R (edge ratio) 0.5 0.6 0.7 0.8 0.9

GNNExplainer 0.6175 0.5968 0.6313 0.6935 0.7811

Gem 0.5737 0.6014 0.6590 0.7235 0.7903

GAN-GNNExplainer 0.5914 0.5956 0.6929 0.7215 0.7598

Table 3.5: The Accuracy of Explanations on the NCI1 Dataset.

R (edge ratio) 0.5 0.6 0.7 0.8 0.9

GNNExplainer 0.5961 0.6107 0.6788 0.7616 0.8127

Gem 0.5645 0.6083 0.6837 0.7518 0.8321

GAN-GNNExplainer 0.6375 0.6496 0.7105 0.7616 0.7762

Quantitative Analysis. In the case of the Mutagenicity datasets, our proposed method

outperformed Gem only when R = 0.7. However, for the NCI1 datasets, our method

showed better accuracy compared to Gem across most R values. The results of the

real-world datasets align with those of the BA-Shapes dataset, suggesting that when

dealing with complex data, additional information is necessary to generate accurate

explanations. Furthermore, our findings indicate that our approach has the potential to

achieve higher accuracy than Gem when provided with more information.

Qualitative Analysis. To further check the explainability of the generated explana-

tions, we report the qualitative evaluation of Mutagenicity and NCI1, setting K = 15 in

Figure 3.4 and Figure 3.5, respectively. We visualize the explanations of these selected

nodes where GNN predicts correctly and incorrectly, respectively. When the target GNN

gets the prediction of the graph, we expect to get the same prediction for the explana-

tion. In particular, when the GNN makes an incorrect prediction (e.g. the second-row

in Figure 3.4), we want to explain why the target GNN makes the incorrect prediction.

Thus, we visualize the explanations from GNNExplainer, Gem, and GAN-GNNExplainer,
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Figure 3.4: The Explanation Visualization on Mutagenicity, When K = 15. The 1st column
represents the initial graph structure from which the GNN makes a prediction. The
explanations from GNNExplainer, Gem, and GAN-GNNExplainer are displayed in the
2nd through 4th columns, respectively.

respectively. From Figure 3.4, we note that the explanations from GNNExplainer and

GAN-GNNExplainer get the same prediction as the original graph, after feeding the

explanations into the target GNN. However, the explanation from Gem makes a different

prediction. Thus, we can conclude that the explanations provided by GNNExplainer and

GAN-GNNExplainer are correct, while the explanation from Gem is incorrect. Further-

more, comparing the explanation of GNNExplainer and GAN-GNNExplainer, we note

that the explanation of GAN-GNNExplainer provides a more integrated explanation.

Specifically, in Figure 3.5, we observe that for the graph that GNN correctly predicts,

the GNNExplainer and GAN-GNNExplainer get correct explanations. Furthermore, for
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Figure 3.5: The Explanation Visualization on NCI1, When K = 15. The 1st column
contains the initial graph structure that the GNN predicts. The explanations from GN-
NExplainer, Gem, and GAN-GNNExplainer are located in the 2nd through 4th columns,
respectively.

another graph in that GNN makes an incorrect prediction, only the GAN-GNNExplainer

obtains a correct explanation. To put it another way, in the case where F (G) equals

to the graph label, we note that F (Gs
gnnex) and F (Gs

ganex) correspond to F (G), while

F (Gs
gem) is distinct from F (G). However, when F (G) is different from the graph label,

we find that only F (Gs
ganex) is equivalent to F (G), while F (Gs

gnnex) and F (Gs
gem) is

distinct from F (G). Thus, we obtain precise explanations from the GAN-GNNExplainer

for the GNN.

3.4 Limitations and Discussions

As highlighted in Section 3.1, GAN-GNNExplainer represents a notable advancement in

the accuracy of GNN explainability, successfully addressing some limitations of current
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popular GNN explainers. However, several challenges still require further investigation:

Insufficient Reliability on Real-world Datasets. Performance of GAN-GNNExplainer

falls short when applied to real-world datasets, lacking the necessary accuracy and relia-

bility to produce meaningful results. This deficit in accuracy poses significant challenges

in practical applications, where the discrepancy between model predictions and real-

world outcomes can lead to ineffective decision-making and compromised solutions.

Addressing this issue requires a concerted effort to enhance the model’s robustness

through rigorous data collection, preprocessing, and algorithmic refinement, ensuring its

viability and trustworthiness in real-world scenarios.

Absence of Fidelity. In our evaluation criteria, fidelity isn’t treated as a measure of

performance. While fidelity typically denotes faithfulness or accuracy in various contexts,

such as relationships or data modelling, we prioritize other aspects in our assessments.

This approach suggests that our focus lies elsewhere, perhaps emphasizing different

metrics or qualities deemed more pertinent to the task or objective at hand.

Therefore, future work could concentrate on creating a model that can generate faith-

ful and accurate explanations, which will improve its performance on real-world datasets

and make it more reliable and faithful. Finally, it is worth considering the possibility of

training the interpreter using a simulated dataset and subsequently applying the trained

interpreter to interpret real datasets, which could hold greater practical significance.

3.5 Summary

Explaining the underlying work mechanism of a GNN is crucial for increasing confi-

dence in the model’s predictions, assuring the security of real-world applications, and

facilitating the development of trustworthy GNNs. To achieve these goals, many recent

approaches have been proposed in recent years. While they function relatively well
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in some respects, they suffer from limitations in different aspects. To mitigate these

limitations, in this work, we proposed GAN-based explanations for GNNs, dubbed GAN-

GNNExplainer. It is composed of a generator and a discriminator where the generator is

used to generate the corresponding explanations for the original input graphs and the

discriminator is used to monitor the generation process and signal feedback to the gener-

ator to ensure the fidelity of the generated explanations. To verify the effectiveness of our

proposed method, we experimented with our approach on synthetic and real-world graph

datasets and conducted qualitative and quantitative comparisons with other popular

GNN explainers. The experimental results demonstrated the superiority of our proposed

method.
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ACGAN-BASED EXPLAINER FOR GRAPH NEURAL

NETWORKS

To address the shortcomings observed in our GAN-GNNExplainer, specifically its in-

adequate reliability on real-world datasets and lack of fidelity, we introduce ACGAN-

GNNExplainer, which leverages the Auxiliary Classifier Generative Adversarial Network

(ACGAN) [46] as its backbone to generate explanations for GNNs. This novel approach is

distinguished by four key attributes: global scope explanation, enhanced generalizability,

versatility across different tasks, and high fidelity. ACGAN-GNNExplainer employs

a generator to create explanations while integrating a discriminator to supervise the

generation process. Specifically, the input graph G, along with its corresponding label

F (G) (determined by the target GNN model F ), is fed into the generator, which learns to

produce explanations. To ensure the validity and accuracy of the generated subgraph, the

discriminator distinguishes between “real” and generated explanations, assigns a predic-

tion label to each, and provides feedback to the generator, thereby reinforcing fidelity and

enhancing accuracy. Extensive experimentation on synthetic and real-world datasets

demonstrates the effectiveness of ACGAN-GNNExplainer, showcasing its superiority
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over existing GNN explainers.

4.1 Introduction

Due to GNNs ability to capture complex relationships between nodes and extract mean-

ingful features from graphs, they have emerged as a powerful tool for modelling graph-

structured data and a natural choice for a variety of real-world applications. Notwith-

standing its widespread adoption, its internal working mechanism remains a mystery,

presenting potential challenges to its credibility and hindering its broader adoption in

critical domains where explainability and transparency are essential.

GNN explainers such as GNNExplainer [75], XGNN [78], and PGExplainer [41] have

gained increasing attention in the field of explainable artificial intelligence (XAI), which

attempts to identify the most important graph structures and/or features that contribute

to GNNs’ predictions. These methods have contributed valuable insights into GNNs;

however, significant challenges remain in the following areas:

• Explanation Scale: This refers to the scope of the explanation‚Äîwhether it focuses

on specific instances for fine-grained insights or captures overarching patterns

that generalize across similar instances. Ideally, explanations should balance these

perspectives, encompassing both instance-specific details and broader patterns

shared among similar cases.

• Generalizability: A generalizable explainer should deliver effective explanations

for unseen graphs or tasks without requiring retraining. This adaptability ensures

consistent performance across diverse datasets and scenarios, enhancing usability

and efficiency in dynamic environments.

• Fidelity: Explanations must accurately reflect the truly influential subgraphs

within the input graphs, faithfully representing the decision-making process of the
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underlying model. High-fidelity explanations accurately reflect the decision-making

processes of the underlying model, bolstering their reliability and trustworthiness.

• Versatility: This is the ability of an explainer to provide reliable and insightful

explanations across a variety of tasks, such as node classification, graph classi-

fication, and link prediction. A versatile explainer demonstrates robustness and

adaptability, ensuring applicability to a wide range of graph analysis scenarios.

The pioneering method GNNExplainer [75], for instance, is limited to local expla-

nation and lacks generalizability. Later, XGNN [78] addressed this limitation but still

lacks generalizability. Recent Gem [37] has overcome the limitations of its predecessors,

but the nature of its generation process makes its precision in explaining various tasks

unstable.

In order to address the aforementioned challenges, we, in this work, propose a new

GNN explanation method dubbed ACGAN-GNNExplainer, which uses the auxiliary

classifier Generative Adversarial Network (ACGAN) [46] as its backbone to generate

explanations for GNNs. In particular, it consists of a generator and a discriminator. The

generator learns to produce explanations based on these two pieces of information—the

original graph G that requires an explanation and its corresponding label F (G), which

is determined by the target GNN model F . In addition, a discriminator is adopted to

distinguish whether the generated explanations are “real” or “fake” and to designate

a prediction label for each explanation. In this way, the discriminator could provide

“feedback” to the generator and further monitor the entire generation process. Through

iterative iterations of this interplay learning process between the generator and the

discriminator, the generator ultimately is able to produce explanations akin to those

deemed “real”; consequently, the quality of the final explanation is enhanced, and the

overall explanation accuracy is significantly increased. Although ACGAN has been widely

used in various domains (e.g., image processing [52], data augmentation [84], medical
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image analysis [66], etc.), to the best of our knowledge, this is the first time that ACGAN

has been used to explain GNN models. Our method ACGAN-GNNExplainer has the

following merits:

• Global-scale Explanations: The method captures the underlying patterns of graphs,

enabling it to naturally provide explanations at a global level.

• Generalizability: After capturing the underlying patterns, it can generate explana-

tions for unseen graphs without requiring retraining.

• High-fidelity Explanations: The consistent monitoring of the discriminator in-

creases the likelihood of identifying valid and significant subgraphs.

• Task Versatility: The method performs effectively across various tasks, including

node classification and graph classification.

Our main contributions to this work could be summarized as the following points:

• We present a novel explainer, dubbed ACGAN-GNNExplainer, for GNN models,

which employs a generator to generate explanations and a discriminator to consis-

tently monitor the generation process;

• We empirically evaluate and demonstrate the superiority of our method ACGAN-

GNNExplainer over other existing methods on various graph datasets, including

synthetic and real-world graph datasets, and tasks, including node classification

and graph classification.
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4.2 Method

4.2.1 Problem Formulation

Interpretation and explanation are crucial for gaining insights into the inner workings

of GNNs. While interpretation aims to uncover the model’s decision-making process,

emphasizing the transparency and traceability of decisions, explanation supports GNN

predictions by providing a logical and coherent rationale for the observed outcomes.

As previously defined, a graph is represented as G= (V,A,X), with a GNN model F

producing predictions F (G)→Y . We also use E (F (G),G)→Gs to denote the explanation,

which satisfies F (G)=F (E (F (G),G)) and ensures Gs ∈G as a valid subgraph. (Refer to

Section 3.2.1 for detailed definitions.)

4.2.2 Obtaining Causal Real Explanations

The aim of our study is to uncover the rationale behind the predictions produced by

the target GNN model F . Instead of delving into the intricate internal mechanisms of

F , we treat it as a black box. Our focus lies in identifying the subgraphs that exert a

significant influence on predictions of F . To accomplish this, we employ a generative

model ACGAN to autonomously produce these subgraphs (explanations). For the genera-

tive model to generate accurate explanations, it must first undergo training with “real”

explanations (ground truth). However, obtaining such ground truths is often unfeasible

in real-world scenarios. To address this challenge, we adopt the approach utilised in

GAN-GNNExplainer (Section 3.2.2), leveraging Granger causality [21] - a method com-

monly used to assess causal relationships between variables. This allows us to overcome

the absence of ground truth explanations and proceed with our investigation.
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4.2.3 ACGAN-GNNExplainer

Using the generating capacity of ACGAN, in this work, we propose an ACGAN-based

explanation method for GNN models, which is termed ACGAN-GNNExplainer. It consists

of a generator (G2) and a discriminator (D2). The generator G2 is used to generate the

explanations, while the discriminator D2 is used to monitor the generation process. The

detailed framework of our method ACGAN-GNNExplainer is depicted in Figure 4.1. In

Figure 4.1: The Framework of ACGAN-GNNExplainer. The ⊙ means element-wise
multiplication. This figure includes two phases: the training phase and the test phase.
During the Training Phase, the objective is to train the generator and discriminator of
the ACGAN-GNNExplainer model. After successful training, the Test Phase then utilizes
the trained generator to generate explanations for the testing data.

contrast to the conventional strategy of training an ACGAN, in which random noise z

is fed into the generator G2, our model feeds the generator G2 with the original graph

G, which is the graph we want to explain, and the label L, which is predicted by the

target GNN model F . Employing this strategy, we ensure that the explanation produced

by the generator G2, which plays a crucial role in determining the predictions of the

GNN model F , corresponds to the original input graph G. In addition, the generator

G2 trained under this mechanism can be easily generalized to unseen graphs without
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significant retraining, thus saving computational costs. For the generator G2, we employ

an encoder-decoder network where the encoder would project the original input graph

G into a compact hidden representation, and the decoder would then reconstruct the

explanation from the compact hidden representation. In our case, the reconstructed

explanation is a mask matrix that indicates the significance of each edge.

Conceptually, the generator G2 is capable of generating any explanation (valid or

invalid) if it is sufficiently complex, which contradicts the objective of explaining a GNN.

Inspired by ACGAN, we adopt a discriminator D2 to monitor the generating process of

G2. Specifically, our discriminator D2 is a graph classifier with five convolutional layers.

It is fed with the real explanation and the explanation generated by our generator G2. It

attempts to identify whether the explanation is “real” or “fake” and, at the same time

classify the explanation, which serves as “feedback” to the generator G2 and further

encourages the generator G2 to produce faithful explanations.

In addition, in order to train our generator G2 and discriminator D2, we need to

obtain the “real” explanations first. To achieve this goal, we incorporate pre-processing

in our framework (Figure 4.1), which uses the Granger causality [21] to acquire the

“real” explanations. The details can be found in Section in Section 4.2.2. Once the

input graph G, its corresponding real subgraphs (ground truth), and the labels have

been acquired. We can train our ACGAN-GNNExplainer to produce a weighted mask

that effectively highlights the edges and nodes in the original input graph G that

significantly contributes to the decision-making process of the given GNN model F .

Then, by multiplying the mask by the original adjacency matrix of the input graph, we

obtain the corresponding explanations/important subgraphs. These explanations are

particularly useful for comprehending the reasoning behind the complex GNN model.
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4.2.4 Improved Loss Function

The generator G2 produces explanations or subgraphs Gs ⊆G based on two key inputs:

the original graph G and the predicted label Y , expressed as Gs ←G2(G,Y ). Simultane-

ously, the discriminator D2 evaluates both the origin probability P(S |G) (whether “real”

or generated) and the probability of class classification P(Y |G), where Y represents the

predicted label of the graph G, denoted as F (G)→Y . The loss function of the discrimi-

nator consists of two components: the likelihood of the correct source LS, as defined in

Equation (4.1), and the likelihood of the correct class LY , as defined in Equation (4.2).

(4.1) LS = E [logP (S = real |G)]+E
[
logP

(
S = generated |Gs)] ,

(4.2) LY = E [logP (Y = L |G)]+E
[
logP

(
Y = L |Gs)] .

where G means the original graph that requires an explanation, and L means its class

label.

The discriminator D2 and generator G2 engage in a minimax game, competing with

each other. The primary goal of D2 is to maximize the probability of correctly distinguish-

ing between “real” and generated graphs (LS) while also accurately predicting the class

label (LY ) for all graphs. This leads to a combined objective of maximizing (LS +LY ).

Conversely, the generator G2 seeks to minimize the ability of D2 to distinguish

between “real” and generated graphs while simultaneously maximizing its capacity to

classify them correctly. This results in a combined objective of maximizing (−LS +LY ).

Therefore, based on Equation (4.1) and Equation (4.2), the objective functions for D2 and

G2 are given in Equation (4.3) and Equation (4.4), respectively.
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(4.3)

L(D2) =−EGgt∼P(Ggt) logD2(Ggt)

−EG∼P(G) log[1−D2(G2(G,L))]

−EGgt∼P(Ggt)P(Y |Ggt)

−EG∼P(G) log(P(Y |G2(G,L)),

(4.4)
L(G2) =−EG∼P(G) logD2(G2(G,L))

−EG∼P(G) logP(Y |G2(G,L)),

where G represents the original graph that requires an explanation, while Ggt signifies

its corresponding actual explanation (e.g., the “real” important subgraph).

Using the objective functions from Equation (4.3) and Equation (4.4) to train D2

and G2, we observe that the fidelity of the generated explanations is unsatisfactory.

This may be because the generator loss L (G2), as defined in Equation (4.4), does not

explicitly consider fidelity information from the target GNN model F . To resolve this and

improve both fidelity and accuracy, we incorporate fidelity directly into the generator‚Äôs

objective function. Consequently, we derive an enhanced loss function for G2, as shown

in Equation (4.5).

(4.5)

L(G2) =−EG∼P(G) logD2(G2(G,L))

−EG∼p(G) logP(Y |G2(G,L))

+λLFid,

(4.6) LFid = 1
N

N∑
i=1

||F (G)−F (G2(G))||2,

where LFid denotes the component of the loss function that captures fidelity. The symbol

F refers to a pre-trained target GNN model, while N represents the number of nodes
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in the graph G, which is the original graph being explained. The term Ggt refers to the

ground truth explanation, such as the true important subgraph. The parameter λ is a

trade-off hyperparameter that balances the relative importance of the ACGAN model’s

learning objectives with accuracy of the explanations derived from the pre-trained GNN

model F .

Algorithm 2: Training a ACGAN-GNNExplainer
Input: Graph data G= {g1, · · · , gn} with labels L = {l1, · · · , ln}, real explanations

for graph data Ggt = {ggt
1 , · · · , ggt

n } (obtained in preprocessing phase), a
pre-trained GNN model F .

Output: A well-trained Generator G2, a well-trained discriminator D2.
1 Initialize the Generator G2 and the Discriminator D2 with random weights
2 for epoch in epochs do
3 Sample a minibatch of m real data samples {g(1), · · · , g(m)} and real labels

{l(1), · · · , l(m)}
4 Generate fake data samples {gs(1), · · · , gs(m)}←G2(g(1), · · · , g(m)) and obtain

their labels {ls(1), · · · , ls(m)}
5 Update D2 with the gradient:

∇θd

1
m

m∑
i=1

[
L(D2)

]
6 Update G2 with the gradient:

∇θg

1
m

m∑
i=1

[
L(G2)

]
7 end

4.2.5 Pseudocode of ACGAN-GNNExplainer

In Equations (4.2.3) and (4.2.4), we detailed our framework and loss functions. For

further clarity, the pseudocode is provided in Algorithm 2.
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4.3 Experiments

In this section, we undertake a comprehensive evaluation of the performance of our

proposed method, ACGAN-GNNExplainer. We first introduce the datasets we used in

our experiments, as well as the implementation details in Section 4.3.1. After that, we

show the quantitative evaluation of our method in comparison with other representative

GNN explainers on synthetic datasets (see Section 4.3.2) and real-world datasets (see

Section 4.3.3). Finally, we also provide a qualitative analysis and visualize several

explanation samples generated by our method, as well as other representative GNN

explainers in Section 4.3.4.

4.3.1 Implementation Details

Datasets. In alignment with the methodology employed in GAN-GNNExplainer, in

this work, our experimentation also utilizes four datasets: two synthetic datasets, namely

BA-Shape and Tree-Cycles, and two real-world datasets, Mutagenicity and NCI1. Com-

prehensive descriptions of each dataset are available in Section 3.3.1.

Baseline Approaches. Due to the growing prevalence of GNN in a variety of real-

world applications, an increasing number of research studies seek to explain GNN,

thereby enhancing its credibility and nurturing trust. Among them, we identify three

representative GNN explainers as our competitors: GNNExplainer [75], OrphicX [38]

and Gem [37]. For these competitors, we adopt their respective official implementations.

Different Top Edges (K or R). The parameters K and R are configured identically

to those in the GAN-GNNExplainer. Further elaboration on these settings is provided in

Section 3.3.1.
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Data Split. To maintain consistency and fairness in our experiments, we divide the

data into three sets: 80% for training, 10% for validation, and 10% for testing. Testing

data remain untouched throughout the experiments.

Evaluation Metrics. A good GNN explainer should be able to generate concise expla-

nations/subgraphs while maintaining high prediction accuracy when these explanations

are fed into the target GNN. Therefore, it is desirable to evaluate the method with differ-

ent metrics [35]. In our experiments, we use the accuracy and fidelity of the explanation

as our performance metrics. The definition of accuracy is available in Section 3.3.1.

In addition, fidelity is a measure of how faithfully the explanations capture the

important subgraphs of the input original graph. In our experiments, we employ the

Fidelity+ and Fidelity− to evaluate the fidelity of the explanations.

Fidelity+ quantifies the variation in the predicted accuracy between the original

predictions and the new predictions generated by excluding the important input features.

On the contrary, Fidelity− denotes the changes in prediction accuracy when significant

input features are retained while non-essential structures are removed. Evaluation of

both Fidelity+ and Fidelity− provides a comprehensive insight into the precision of

the explanations to capture the behaviour of the model and the importance of different

input features. Fidelity+ and Fidelity− are mathematically described in Equation (4.7)

and Equation (4.8), respectively.

(4.7) Fid+ = 1
N

N∑
i=1

(F (Gi)l i −F (G1−s
i )l i )

(4.8) Fid− = 1
N

N∑
i=1

(F (Gi)l i −F (Gs
i )l i )

In these equations, N denotes the total number of samples, and l i represents the class

label for instance i. F (Gi)l i and F (G1−s
i )l i correspond to the prediction probabilities
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for class l i using the original graph Gi and the occluded graph G1−s
i , respectively. The

occluded graph is derived by removing the significant features identified by the explainers

from the original graph. A higher value of Fidelity+ is preferable, indicating a more

essential explanation. In contrast, F (Gs
i )l i represents the prediction probability for class

l i using the explanation graph Gs
i , which encompasses the crucial structures identified by

explainers. A lower Fidelity− value is desirable, signifying a more sufficient explanation.

In general, the accuracy of the explanation (ACCexp) assesses the accuracy of the

explanations, while Fidelity+ and Fidelity− assess their necessity and sufficiency,

respectively. A higher Fidelity+ suggests a more essential explanation, while a lower

Fidelity− implies a more sufficient one. Through comparison of accuracy and fidelity

across different explainers, we can derive valuable insights into the performance and

suitability of each approach.

4.3.2 ACGAN-GNNExplainer on Synthetic Datasets

We first conduct experiments on two common synthetic datasets, including BA-Shapes

and Tree-Cycles [75], of which the details can be found in Section 3.3.1. We assess the

fidelity and accuracy of the explanations generated by GNNExplainer, Gem, OrphicX,

and our proposed ACGAN-GNNExplainer (our method). Table 4.1 and Table 4.2 present

the fidelity and accuracy of explanations for BA-Shapes and Tree-Cycles datasets across

different K , respectively.
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Table 4.1: The Fidelity and Accuracy of Explanations on BA-Shapes Dataset: Fid+(↑), Fid−(↓), ACCexp(↑).

K 5 6 7 8 9

(top edges) Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp

GNNExplainer 0.7059 0.1471 0.7941 0.6765 0.0588 0.8824 0.7059 0.0294 0.9118 0.7353 0.0000 0.9412 0.7353 0.0294 0.9118

Gem 0.5588 0.0000 0.9412 0.5588 -0.0294 0.9706 0.5882 -0.0294 0.9706 0.5882 -0.0294 0.9706 0.5882 -0.0294 0.9706

OrphicX 0.7941 0.2059 0.7353 0.7941 0.2059 0.7353 0.7941 0.0882 0.8529 0.7941 0.0588 0.8824 0.7941 0.0588 0.8824

Our Method 0.6471 0.1471 0.7941 0.5882 0.0882 0.8529 0.6176 -0.0294 0.9706 0.6471 -0.0294 0.9706 0.6471 -0.0588 1.0000
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Table 4.2: The Fidelity and Accuracy of Explanations on Tree-Cycles Dataset: Fid+(↑), Fid−(↓), ACCexp(↑).

K 6 7 8 9 10

(top edges) Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp

GNNExplainer 0.9143 0.8000 0.1714 0.9429 0.4571 0.5143 0.9714 0.1714 0.8000 0.9714 0.0571 0.9143 0.9714 0.0571 0.9143

Gem 0.9714 0.2571 0.7143 0.9714 0.1429 0.8286 0.9714 0.2571 0.7143 0.9714 0.1143 0.8571 0.9714 0.0857 0.8857

OrphicX 0.9429 0.0000 0.9714 0.9429 0.0000 0.9714 0.9429 -0.0286 1.0000 0.9429 -0.0286 1.0000 0.9429 -0.0286 1.0000

Our Method 0.9714 0.0000 0.9714 0.9714 -0.0286 1.0000 0.9714 0.0286 0.9429 0.9714 0.0571 0.9143 0.9714 0.0000 0.9714
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When examining the results for the BA-Shapes, as shown in Table 4.1, it is evident

that no single model consistently surpasses the others across all metrics. However, as

the value of K increases, ACGAN-GNNExplainer progressively achieves competitive

explanation accuracy ACCexp and better performance of Fidelity−. On the contrary,

OrphicX consistently exhibits higher Fidelity+ values for various K , highlighting its

proficiency in capturing essential subgraphs. However, its performance in terms of

explanation accuracy ACCexp and Fidelity− lags behind, indicating that it struggles to

provide comprehensive and precise explanations.

Upon analyzing the results presented in Table 4.2, it is evident that all methods

demonstrate a commendable performance on the Tree-Cycles datasets with different K

values. However, no single method consistently outperforms the others in all evaluation

metrics, which shows a trend similar to the results in the BA shapes (see Table 4.1).

Notably, within the range of K = {6,7}, ACGAN-GNNExplainer emerges as the superior

choice among all the alternatives. It maintains the highest fidelity compared to the other

methods on all K values. Although outperformed by Orphicx in terms of Fidelity− and

accuracy ACCexp when K is in the range of {8,9,10}, ACGAN-GNNExplainer still shows

competitive performance.

In summary, all GNN explainers manifest robust performance in synthetic datasets,

largely attributed to their intrinsic simplicity in contrast to real-world datasets. Notably,

ACGAN-GNNExplainer consistently outperforms alternative methods in several scenar-

ios. Moreover, even in situations where ACGAN-GNNExplainer does not outshine its

counterparts, it maintains competitive levels of performance. To offer a comprehensive

evaluation of ACGAN-GNNExplainer, we extend our exploration to real-world datasets

in the forthcoming Section 4.3.3, facilitating a thorough analysis.
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4.3.3 ACGAN-GNNExplainer on Real-world Datasets

Here we further experiment with our method with two popular real-world datasets

including Mutagenicity [27] and NCI1 [67]. The experimental results for Mutagenicity

and NCI1 are shown in Table 4.3 and Table 4.4, respectively.

From Table 4.3, it can be seen that ACGAN-GNNExplainer demonstrates supe-

rior performance in both fidelity (Fidelity+, Fidelity−) and accuracy ACCexp in most

settings where R ranges from 0.5 to 0.8. While OrphicX marginally outperforms ACGAN-

GNNExplainer in terms of explanation accuracy ACCexp when R = 0.9, its fidelity lags

behind. However, maintaining high fidelity without sacrificing accuracy is crucial when

explaining GNNs in practice. From this perspective, our method shows an obvious advan-

tage over others. Similarly, from Table 4.4, one can observe that ACGAN-GNNExplainer

consistently outperforms other competitors in terms of fidelity and accuracy in different

values of R.

Our method consistently yields higher Fidelity+ scores, suggesting that our gener-

ated explanations have successfully covered the important subgraphs. On the other hand,

our method achieved lower Fidelity− scores compared to other methods. This highlights

the sufficiency of our explanations, as they effectively conveyed the necessary informa-

tion for accurate predictions while mitigating inconsequential noise. Furthermore, in

terms of accuracy, our method consistently yields higher explanation accuracy compared

with other methods, underscoring its proficiency in effectively capturing the underlying

rationale of the GNN model. In general, these results highlight the effectiveness of our

proposed method in producing faithful explanations.
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Table 4.3: The Fidelity and Accuracy of Explanations on Mutagenicity Dataset: Fid+(↑), Fid−(↓), ACCexp(↑).

R 0.5 0.6 0.7 0.8 0.9

(edge ratio) Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp

GNNExplainer 0.3618 0.2535 0.6175 0.3825 0.2742 0.5968 0.3963 0.2396 0.6313 0.3641 0.1774 0.6935 0.3641 0.0899 0.7811

Gem 0.3018 0.2972 0.5737 0.3295 0.2696 0.6014 0.2857 0.2120 0.6590 0.2581 0.1475 0.7235 0.2120 0.0806 0.7903

OrphicX 0.2419 0.4171 0.4539 0.2949 0.3111 0.5599 0.2995 0.2465 0.6244 0.3157 0.1613 0.7097 0.2949 0.0599 0.8111

Our Method 0.3963 0.2535 0.6175 0.3828 0.2673 0.6037 0.3986 0.1636 0.7074 0.3602 0.1037 0.7673 0.3871 0.0806 0.7903
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Table 4.4: The Fidelity and Accuracy of Explanations on NCI1 Dataset: Fid+(↑), Fid−(↓), ACCexp(↑).

R 0.5 0.6 0.7 0.8 0.9

(edge ratio) Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp Fid+ Fid− ACCexp

GNNExplainer 0.3358 0.2749 0.5961 0.3625 0.2603 0.6107 0.3844 0.1922 0.6788 0.3747 0.1095 0.7616 0.3236 0.0584 0.8127

Gem 0.3796 0.3066 0.5645 0.4307 0.2628 0.6083 0.4282 0.1873 0.6837 0.4404 0.1192 0.7518 0.3212 0.0389 0.8321

OrphicX 0.3114 0.3090 0.5620 0.3431 0.3236 0.5474 0.3382 0.2628 0.6083 0.3698 0.1630 0.7080 0.3139 0.0608 0.8102

Our Method 0.4015 0.2141 0.6569 0.4523 0.2214 0.6496 0.4453 0.1849 0.6861 0.4672 0.0779 0.7932 0.3942 0.0254 0.8446
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4.3.4 Qualitative Analysis

Qualitative evaluation is another effective way to compare explanations generated

by different explainers. Here, we present visualizations of the explanations on NCI1

with R = 0.5 and visualize two examples of explanations—the target GNN model F

successfully classifies one example but fails to classify the other one. We try to investigate

the factors that affect the predictions of the target GNN model F—resulting in a correct

prediction or causing a wrong prediction. Specifically, when the target GNN model F

yields a correct prediction (e.g., the first-row visualization example in Figure 4.2), our

objective is to provide an explanation that would highlight the key elements that lead to

the correct prediction. Conversely, when the target GNN model F produces an incorrect

prediction (e.g., the second-row visualization example in Figure 4.2), we hope to offer an

explanation that elucidates the factors contributing to the incorrect prediction.

Therefore, our goal is to ensure that the explanation generated by our proposed

method aligns well with the prediction made by the target GNN model F . In particular,

when the target GNN model F accurately predicts the label for a given graph, we

expect our explanation to yield the same prediction. As illustrated in the first row

of Figure 4.2, we observe that GNNExplainer, Orphicx, and ACGAN-GNNExplainer

provide correct explanations for the graph that the GNN correctly predicts. However,

it is worth noting that the explanation subgraph generated by ACGAN-GNNExplainer

exhibits the closest resemblance to the real explanation subgraph extracted in the

preprocessing phase. Furthermore, when examining another graph for which the target

GNN model F makes an incorrect prediction, we find that only ACGAN-GNNExplainer

is capable of producing a correct explanation. Notably, the ACGAN-GNNExplainer model

demonstrates a tendency to select other molecules as part of the explanation subgraph

rather than the Cl circles. In contrast, other methods we have compared tend to include

the Cl molecule circle as part of the explanation subgraph.
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Figure 4.2: The Explanation Visualization on NCI1, When R = 0.5. F (·)→ {0,1} means
predictions made by the target GNN model F . The 1st column contains the initial graph.
The 2nd column showcases the real explanation that we obtained during the prepro-
cessing stage. The 3rd to 5th columns are the explanations produced by GNNExplainer,
Gem, OrphicX and ACGAN-GNNExplainer, respectively. On analyzing the first row, we
observe that GNNExplainer, OrphicX, and ACGAN-GNNExplainer successfully obtain
the explanations that are successfully classified by the target GNN model F . However,
upon examining the visualization of the explanation subgraph, it is obvious that the
explanation produced by ACGAN-GNNExplainer exhibits the closest resemblance to the
real explanations. Moving on to the second row, we find that ACGAN-GNNExplainer
tends to select molecules other than the Cl circle as part of the explanation subgraph. In
contrast, other competitors have a tendency to include the Cl molecule circle as part of
the explanation subgraph.

Visually, our method demonstrates a higher degree of visual similarity to the actual

explanation in comparison to other competing methods. This observation provides addi-

tional evidence supporting the efficacy of our method in producing faithful explanations.

4.4 Limitations and Discussions

Despite achieving competitive performance in terms of accuracy and fidelity, our ACGAN-

GNNExplainer is still with its limitations, warranting further investigation and refine-

ment.
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Need for Preprocessing. The current preprocessing step utilized to distillate real

explanations for training data imposes significant computational overheads and time

constraints. Future research endeavours could concentrate on refining the model ar-

chitecture to mitigate the reliance on ground-truth data, thereby streamlining the

preprocessing stage and improving efficiency.

Requirement of a Large Number of Training Graphs. Another limitation arises

from the substantial requirement for a large number of training graphs to effectively

train our method. This demand for extensive training data may pose practical challenges

in scenarios where acquiring such datasets is costly or labour-intensive. Addressing

this limitation may involve exploring techniques for efficient data augmentation or

semi-supervised learning to alleviate the demand for extensive training data.

Lack of Consideration for Fairness. Additionally, our current methodology over-

looks the crucial aspect of fairness by not explicitly considering the balance between

different subgroups when generating explanations. This oversight raises ethical con-

cerns regarding the potential perpetuation or exacerbation of biases within the model’s

explanations. Addressing this limitation calls for integrating fairness-aware techniques

into the explanation generation process, ensuring equitable treatment across diverse

demographic groups and mitigating the risk of algorithmic bias.

By acknowledging and addressing these limitations, we can advance the capabili-

ties and applicability of ACGAN-GNNExplainer, fostering more robust and equitable

interpretability solutions for graph-based models in various domains.

4.5 Summary

Unboxing the intrinsic operational mechanisms of a GNN is of paramount importance in

bolstering trust in model predictions, ensuring the reliability of real-world applications,
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and advancing the establishment of trustworthy GNNs. In pursuit of these objectives,

many methods have emerged in recent years. Although they demonstrate commendable

functionality in certain aspects, most of them struggle to obtain good performance on

real-world datasets.

To address this limitation, we, in this work, propose an ACGAN-based explainer,

dubbed ACGAN-GNNExplainer, for GNNs. This framework comprises a generator and a

discriminator, where the generator is used to generate the corresponding explanations

for the original input graphs and the discriminator is used to monitor the generation

process and signal feedback to the generator to ensure the fidelity and reliability of

the generated explanations. To assess the effectiveness of our proposed method, we

conducted comprehensive experiments on synthetic and real-world graph datasets. We

performed fidelity and accuracy comparisons with other representative GNN explainers.

The experimental findings decisively establish the superior performance of our proposed

ACGAN-GNNExplainer in terms of its ability to generate explanations with high fidelity

and accuracy for GNN models, especially on real-world datasets.
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5
DECODER-BASED COUNTERFACTUAL EXPLAINER FOR

GRAPH NEURAL NETWORKS

In response to the limitations identified in ACGAN-GNNExplainer, this work intro-

duces fairCFE, a method designed to produce fair CFEs for GNNs. CFEs for GNNs are

essential in explaining these models by addressing the question: “How can we minimally

modify input graphs to make GNNs produce specific, predetermined predictions?” While

recent approaches have emerged to generate CFEs using various strategies, these meth-

ods typically require extensive training data, which may not always be feasible, and

lack mechanisms to ensure unbiased explanations. Unlike prior approaches, fairCFE

simultaneously optimizes both the input seed and the deep decoder’s network parameters

for a specific graph, eliminating the need for additional training data. To further ensure

fairness, we incorporate a novel fairness loss component into the optimization process,

guiding the generation procedure to produce fair CFEs. This work not only advances

GNN explainability but also ensures fairness in explanation generation. Extensive exper-

iments on diverse datasets demonstrate the superiority of fairCFE over state-of-the-art
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baselines, affirming its effectiveness in generating fair CFEs for GNNs.

5.1 Introduction

The explanation of GNNs, which is essential to understanding the fundamental working

mechanism of complex GNNs, guaranteeing the safety of their applications and promot-

ing the reliability of GNNs, has attracted significant attention in recent years. These

active research works could be categorized into two mainstreams–factual explanations

(FE) and counterfactual explanations (CFE). FE aims to answer the question: why GNNs

make that particular decision by finding the most important subgraphs/features. Notable

examples include GNNExplainer [76], OrphicX [38], and ACGAN-GNNExplainer [34].

CFE, on the contrary, attempts to answer the question: how to modify the original graphs

so that GNNs could make the desired predetermined prediction. CFE typically generates

a new graph conditioned by the desired predetermined prediction. Recent works in this

direction include CF-GNNExplainer [40], CFF [59], and CLEAR [42]. In this work, we

also focus on CFE.

CFE empowers stakeholders to explore hypothetical scenarios by identifying minimal

modifications to input graphs that alter GNN predictions. This capability is invaluable

for sensitivity analysis, risk assessment, and model refinement, as it allows stakeholders

to assess the robustness of GNN predictions and proactively mitigate potential biases

or errors. For instance, consider a recommendation system employing GNNs to suggest

personalized items to users based on their historical interactions. A CFE approach might

explore subtle adjustments to the user-item interaction graph, such as adding or re-

moving edges representing past interactions, to influence the recommendations towards

desired outcomes, such as increased user engagement or satisfaction. By discerning

these minimal modifications, CFE empowers stakeholders to fine-tune GNNs for specific

objectives while preserving the integrity of the underlying data structure.
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Practical Issues Although current CFE explainers have demonstrated impressive

performance in synthetic graph datasets, they present several limitations in the following

aspects that hamper the practical deployment of CFE models.

Data. The existing CFE models generally require a substantial amount of graph

dataset for training in order to produce satisfactory counterfactual explanations. How-

ever, it might be expensive or even impossible to collect such a large training data set due

to concerns about privacy, legal constraints, and ethical implications. Worse, real-world

graph datasets are never ideal and could be contaminated by different corruptions. Thus,

a data-driven trained CFE model may be easily broken down during reference time when

the test graphs stem from a distribution that differs from the training graphs.

Figure 5.1: Motivation for fairCFE. A CFE refers to a graph that is minimally modified
from its original form to achieve a desired prediction. Higher-quality CFEs lead to
different predictions in the target GNN models. This figure illustrates the difference
between unbalanced CFEs, which fail to maintain performance parity between subgroups
(e.g., G0 and G1), and balanced CFEs, which ensure consistent performance across these
subgroups. In this figure, F@PS, F@PN, and F@FID represent the differences in
probability of sufficiency, probability of necessity, and fidelity of explanations between
different subgroups, respectively.

Fairness. The present CFE models are limited to generating a new graph that enables

the GNNs to make the desired given prediction. They do not consider other important

factors, such as fairness, significantly impacting real-world applications. Without tak-

ing fairness into account, a CFE model may produce counterfactual explanations that

exhibit a bias towards a specific gender or ethnicity. Such explanations could poten-
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tially mislead or even endanger practitioners in real-world applications such as credit

evaluation and job marking.

As illustrated in Figure 5.1, the original graph consists of subgroups differentiated

by the value of a sensitive feature: G0 when the sensitive feature is 0, and G1 when

the sensitive feature is 1. The CFE generator should maintain a balanced performance

across different subgroups, such as G0 and G1. However, the current CFE generator does

not account for group fairness during the generation process, resulting in CFEs that

fail to maintain subgroup balance. To address this issue, we propose fairCFE, a method

designed to generate fair CFEs by actively regulating the distribution of nodes among

different subgroups throughout the generation process.

Our Focus and Contributions In this work, we attempt to propose a practical CFE

model for GNNs. It should not only produce faithful CFEs but also ensure fairness in

its explanations. To achieve this goal, we employ deep decoders Dω parameterized by

ω for the adjacency matrix and Dθ parameterized by θ for the feature matrix as our

CFE-generative model, learning a tailored optimal Dω and Dθ for each given graph. By

doing so, our model eliminates the need for massive training data and has naturally

addressed the data distribution-shift issue. This untrained idea has been increasingly

gaining popularity in the field of computer vision [23, 28, 30–32, 62, 69, 85]. Furthermore,

in order to guarantee that our CFE-generative model generates explanations that are

fair, we propose a new fairness loss and incorporate it into the decoder’s loss function to

achieve our final optimization objective. We defer the details of our method to Section 5.2.

Our main contributions to this work include the following:

• Novel Untrained CFE-Generative Model: We introduce fairCFE, an innovative

untrained model capable of generating faithful counterfactual explanations (CFEs)

without the need for massive training data.
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• Fairness Loss for Unbiased CFEs: We propose a new fairness loss to guide the

generation process in fairCFE, ensuring that the resulting CFEs are both fair and

unbiased.

• Comprehensive Evaluation: We demonstrate the effectiveness of our fairCFE

method through extensive experiments conducted on diverse datasets, comparing

it against state-of-the-art baseline methods.

5.2 Method

5.2.1 Problem Formulation

Counterfactual explanations (CFEs) for GNNs answer the question: how can we adjust

the original graphs so that we can expect the GNNs to yield the desired given predictions?

Consider a graph G = (V,A,X), where V= {v1,v2, . . . ,vn} means the set of graph nodes;

A is the adjacency matrix with A i j = 1 indicating an edge between nodes i and j, and

A i j = 0 otherwise; and X= {X1, X2, . . . , Xn} represents the set of node features. For each

node, it has m features such that X i = { f1, f2, . . . , fm−1, f s}, where f s is the sensitive

feature within this set (e.g., f s could correspond to a feature such as gender or ethnicity).

We define the subgraph neighborhood of a node v as the set of the nodes and edges within

a specified range, represented as a tuple: Gv = (Av,Xv), where Av is the adjacency matrix

of the subgraph, and Xv is the feature matrix of the nodes that are at most h hopes away

from v. And we define a set G = {G1,G2, ·,Gn} conclude all neighborhood subgraphs.

Further consider a GNN Fφ which is parameterized by φ. For node classification,

the function Fφ is employed to accurately classify each node. We assume that we have

obtained predictions Y = {y1, y2, . . . , yn} from Fφ for nodes. Fφ(Gv)→ y.

We define the corresponding counterfactual predictions as Y ∗ = {y∗1 , y∗2 , . . . , y∗n}, where

y∗i ̸= yi representing our desired predictions/labels. We further define Gc f
v as the CFE
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of the original graph Gv generated by the explainer model D, which should meet the

requirements: Fφ(Gv) → y and Fφ(Gc f
v ) → y∗ and y ̸= y∗. In this work, our goal is to

propose an explanation model D that is able to generate faithful and fair/unbiased

CFEs.

5.2.2 Preliminaries

Fair CFE is crucial for ensuring fairness, transparency, and accountability in GNNs

by mitigating biases and providing equitable explanations. This work seeks to achieve

fairness in CFE generation by tackling data distribution shifts and inherent group biases.

Specifically, we apply the decoder as the backbone to mitigate data distribution shifts and

incorporate a fairness loss to guide the generation process, ensuring that the resulting

CFEs exhibit group fairness.

We introduce two novel definitions for evaluating CFE quality: Probability of Suf-

ficiency (PSc f ) and Probability of Necessity (PN c f ), based on established principles of

PS and PN [59]. Furthermore, we propose new fairness metrics derived from PSc f and

PN c f , detailed in Section 5.3.3.

Definition 1. Probability of Sufficiency for CFEs (PSc f ). It represents the proportion

of generated explanations that suffice for an instance to attain the intended prediction,

distinct from the prediction derived from the entire graph. The formulation for PSc f is

articulated in Equation (5.1).

(5.1) PSc f =
∑

G i∈G psc f
i

|G| , where psc f
i =

 1, if F (Gc f ) ̸=F (G)

0, else

Specifically, PSc f measures the proportion of graphs for which the explanation

(subgraph) alone induces a modification in the GNN prediction, signifying its sufficiency
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for CFEs. The calculation of PSc f is elucidated in Equation (5.2).

(5.2) PSc f = 1(F (Gc f )= y∗)
|G | = 1(F (Gc f ) ̸= y)

|G | ,

where |G| represents the size of the set G. The function 1(·) is an indicator function,

producing 1 when the specified condition is true and 0 otherwise.

Definition 2. Probability of Necessity for CFEs (PN c f ). It represents the proportion

of CFEs that are necessary for the instance to achieve the desired prediction, distinct

from the prediction derived using the entire graph. The PN c f is formally defined as

Equation (5.3).

(5.3) PN c f =
∑

G i∈G pnc f
i

|G| , where pnc f
i =

 1, if F (Gc f )=F (G)

0,else

Intuitively, PN c f measures the percentage of graphs where removing the CFE sub-

graph maintains the GNN prediction similar to using the entire graph, indicating its

necessity. The computation of PN c f is determined in Equation (5.4).

(5.4) PN c f = 1(F (Gpn) ̸= y∗)
|G | = 1(F (Gpn)= y)

|G | ,

where the |G| and 1(·) have the same meaning as defined in Equation (5.2).

5.2.3 Counterfactual Explanations Generation

Precursors of Decoder The seminal work [60] discovers that jointly optimizing

both the network input seed and parameters of the decoder is sufficient to capture the

non-linear correlations among the data, resulting in more efficient in reducing data

dimensionality than training an encoder-decoder network. Later, this idea has been

expanded to deep nonlinear matrix factorization [17], 3D shape representation [47], and

robust manifold learning [29]. Especially, [8] shows that a deep decoder can function as a

81



CHAPTER 5. DECODER-BASED COUNTERFACTUAL EXPLAINER FOR GRAPH
NEURAL NETWORKS

generative model and exhibits numerous desirable properties of generative adversarial

networks (GANs). More recently, Deepdecoder [23] and ConvDecoder [13] have further

explored this idea for image restoration without using additional training datasets.

Decoder for Counterfactual Explanations Generation In this work, we also

adopt deep decoders as our backbone to generate counterfactual explanations. To our

knowledge, this is the first time that this idea—deep decoder functions as a generative

model—has been introduced into the domain of GNN explanation. To be specific, we

elaborately split a counterfactual explanation into two parts: an adjacency matrix Ac f

indicating the connections between the nodes and a feature matrix Xc f containing the

information of the nodes’ features. We employ Dω parameterized by ω to generate the

adjacency matrix Ac f and utilize Dθ parameterized by θ to generate the feature matrix

Xc f . In contrast to a traditional encoder-decoder architecture, where the decoder receives

a learned latent code generated by the encoder, our Dω and Dθ are fed a random input

seed z sampled from a Gaussian distribution N (0,0.001). Furthermore, during the

optimization process, we update the input seed z and the network parameters ω and θ

so that an optimal z∗, ω∗, and θ∗ together determine the final desired CFE.

Empirically, if no constraints are present, the deep decoders could generate arbitrary

explanations that could substantially deviate from the original input graphs. This

undermines a fundamental principle of our initial goal: explanations should be faithful

such that they should be meaningful explanations with minimal modifications to the

original input graphs and should not be too different from the original input graphs.

To prevent the generation of arbitrary and trivial explanations, we first introduce a

similarity loss that measures the similarity between the generated explanation and the

original input graph, as shown in Equation (5.5):

(5.5)
Lsim =CE(A, Ac f )+η ·Dist( X,Xc f )

Ac f =Dω(z, y∗),Xc f =Dθ(z, y∗) ,
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where A is the adjacency matrix of the given graph G, X is the feature matrix of the

given graph G, z is the input seed for our deep decoders, and y∗ is the predetermined

counterfactual prediction label, the CE(·) means to calculate the Cross-Entropy, the

Dist(·) represents the distance, in here, we adopt Mean Square Error (MSE); the first

term measures the similarity between the original adjacency matrix and the generated

counterfactual adjacency matrix and the second term measures the similarity between

the original features and the generated counterfactual features; the hyperparameter η is

used to weigh the importance of these two similarities.

Figure 5.2: The Framework of fairCFE. It adopts a Decoder as its generative model.
The input seed z is sampled from a Gaussian distribution N (0,0.001). The generation
of counterfactual explanations is conditioned by the desired given prediction Y ∗. The
input seed z and the Decoder are updated simultaneously by the combined optimization
objective: L f airCFE =αLsim +βLpred +γL f air.

Furthermore, simply focusing on the similarity between the generated and original

input graph is insufficient, as it may cause the decoder to become a “lazy learner”,

overfitting to the original input graph and producing trivial generations. To overcome this

and ensure the generation of counterfactual explanations (CFEs) that achieve the desired

prediction from the GNN models, we condition the decoders D on the predetermined

target prediction Y∗. This is achieved by incorporating a prediction loss, as outlined in

Equation (5.6):
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(5.6) Lpred =CE(Fφ(Ac f ,Xc f ), y∗) ,

where CE(·) means to calculate the Cross-Entropy, Fφ(Gc f ) is the prediction of a pre-

trained/target GNN Fφ on the explanation generated by the decoder D and y∗ is the

desired predetermined prediction. We then calculate the negative log-likelihood between

these two predictions. Ideally, these two predictions should be as close as possible.

5.2.4 Fairness Safeguard

Adopting the deep decoders as our generative models and the learning strategy that we

have mentioned in Section 5.2.3, our model is able to generate faithful counterfactual

explanations. However, it ignores one important practical factor—fairness. For example,

the generated counterfactual explanations might be biased to a particular gender or

ethnicity. To ensure that the decoders produce unbiased counterfactual explanations, in

this work, we introduce a novel loss to guide the entire generation process so that each

node/feature in the generated explanations from different subgroups (according to their

sensitive feature) has an equal probability (see Equation (5.7)):

(5.7) L f air =Dist( Ac f
0 ,Ac f

1 )+Dist( Xc f
0 ,Xc f

1 ) ,

where Ac f
0 and Xc f

0 denote the adjacency and feature matrices of a graph with the

sensitive feature as 0 ( f s = 0), respectively, while Ac f
1 and Xc f

1 represent the adjacency

and feature matrices of a graph with the sensitive feature set as 1 ( f s = 1), respectively.

The term Dist(·) denotes the distance; in this context, we utilize the MSE as our chosen

distance metric.
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5.2.5 fairCFE Optimization Objective

Now, we have our final model dubbed fairCFE that is capable of generating faithful

and unbiased counterfactual explanation conditioned by the desired predetermined pre-

diction for an input graph without additional training datasets. We depict its framework

in Figure 5.2. In addition, we jointly optimize the input seed z and the parameters θ of the

decoder Dθ according to the combined optimization objective, as shown in Equation (5.8):

(5.8) L f airCFE =αLsim +βLpred +γL f air ,

where α, β, and γ are there hyper-parameters used to balance the trade-off: 1) to

what degree of minimal modifications should we make to the original input graph

(faithful); 2) how to ensure the generated explanation lead the target GNN to make a

desired prediction (counterfactual); and 3) how to guarantee the generated explanation

is unbiased (fairness).

5.3 Experiments

5.3.1 Experimental Datasets

To demonstrate the effectiveness of our method, fairCFE, we conduct experiments across

a range of node classification datasets. Specifically, we select three real-world datasets:

Math [12], Por [12], and German [6]. Each dataset incorporates a sensitive feature, such

as gender. Detailed statistics for these datasets are presented in Table 5.1, followed by

detailed descriptions of each dataset.

Student-Mathematics (Math)/Portuguese (Por) [12]: Math and Por datasets are the

same students but differ in their class labels, i.e., performance in a Math or Portuguese

course. The sensitive attribute is gender, and the task is to predict whether a student‚Äôs

final year grade in the Math/Portuguese course is high.
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Table 5.1: Dataset Statistics. In the table, #F denotes the count of node features; S
represents the sensitive feature.

Datasets #Graphs #Nodes #Edges #F #Classes S Label

Math 1 395 1,540 32 2 Gender Grade

Por 1 649 3,125 32 2 Gender Grade

German 1 1,000 24,970 27 2 Gender Credit Risk

German Credit (German) [6]: This dataset has 1,000 nodes representing customers

in a German bank, connected based on the similarity of their credit applications. The

sensitive attribute is gender, and the task is classifying clients into good vs. bad credit

risks.

5.3.2 Experimental Settings

We systematically evaluate the efficacy of our fairCFE by conducting comparative

evaluations against four state-of-the-art baselines: Random [40], CFF [59], RCEx-

plainer [7], and CLEAR [42]. To ensure consistency, we adopt the experimental setup of

CF-GNNExplainer [40] for Random [40], and adhere to the parameters outlined in the

original paper for CFF [59]. We extend the original implementations of RCExplainer [7]

and CLEAR [42], initially designed for graph classification, to suit the node classification

datasets used in our evaluation.

For our fairCFE, we assign the desired label y∗ for each node as its flipped label

(e.g., if y = 0, then y∗ = 1) across all experiments. We use SGD as our optimizer. For

each setting, we run five different initializations and report their mean and standard

deviation.

The dataset split details and the accuracy of GNNs are provided in Table 5.2. Addi-

tionally, Table 5.3 presents the parameters used for fairCFE on each dataset.
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Table 5.2: Datasets Split and Accuracy. We split each dataset into training, validation, and test data by the ratio of 0.8, 0.2,
and 0.2, respectively. We keep the training, validation, and test data the same in modelling GNNs and explainers.

Datasets # Training # Val # Test GIN (Acc) GCN (Acc) GAT (Acc) SAGE (Acc)

German 799 100 101 0.7400 0.7200 0.7400 0.7300

Math 301 39 40 0.8750 0.8750 0.8500 0.8250

Por 404 65 65 0.9077 0.8923 0.8923 0.8615
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Table 5.3: Parameters for fairCFE. In this table, lr-exp means the learning rate for
training fairCFE, and lr-noise means the learning rate for updating the input noise.

GNNs Datasets α β γ lr-exp lr-noise

GCN
Math 10 5 3 0.001 0.001

Por 10 3 3 0.001 0.001

German 10 3 5 0.001 0.001

GIN
Math 10 5 3 0.001 0.001

Por 10 3 10 0.0005 0.001

German 10 3 5 0.0001 0.0001

GAT
Math 10 10 1 0.005 0.0001

Por 10 15 10 0.001 0.0005

German 10 5 3 0.001 0.01

SAGE
Math 10 5 3 0.001 0.001

Por 10 5 3 0.001 0.001

German 10 3 5 0.01 0.001

5.3.3 Evaluation Metrics

We evaluate the generated CFEs from the perspective of reliability and fairness. To

evaluate reliability, we use Counterfactual Accuracy (ACCc f ) and Fidelity (FID). To

evaluate fairness, we adopt group fairness preservation (GFP), CFE fairness under PS

(F@PS), CFE fairness under PN (F@PN), and CFE fairness under fidelity (F@FID).

Ideally, we should expect high values in reliability-evaluation metrics—ACCc f (↑)

and FID(↑) and low values in the fairness-evaluation metrics—-GFP(↓), F@PS(↓), and

F@PN(↓), F@FID(↓).

Counterfactual Accuracy. It is defined as the proportion of generated explanations

that change the model‚Äôs prediction. The definition of CF accuracy is shown in the

Equation (5.9).

(5.9) ACCc f = 1− 1
|G|

∑
G∈G

(1(F (G)=F (Gc f ))),

where |G| denotes the size of G. 1(·) is the indicator function to check whether F (G)
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equals to F (Gc f ). Since we aim to generate counterfactual explanations, a higher coun-

terfactual accuracy (↑) is better.

Fidelity. It measures the change in output probability over the original class. The

definition of Fidelity is shown in the Equation (5.10).

(5.10) FID = 1
|G|

∑
G∈G

[F (G | y)−F (Gc f | y)],

where F (G | y) denotes the output probability of the GNN model F for graph G over

class y. A higher fidelity (↑) score indicates better counterfactual explanations.

CFE Fairness@Group Fairness Preservation [3]. It is to preserve the group fairness

property of the underlying model (e.g. GNN models) without exhibiting significant bias

against any sensitive group.

For a given sensitive attribute (e.g., gender or race), we partition the nodes into

different groups. Group Fairness Preservation requires that the explanation method

treats instances within the same sensitive group similarly, avoiding any systematic

unfair treatment towards certain instances, thereby preserving the inherent fairness

properties of the underlying model. Formally, we calculate the degree of group fairness

preservation by the following Equation (5.11):

(5.11) GFP = ∥GF(F (G))−GF(F ((Gc f )))∥,

where GF(·) is to computer the group fairness of a model. There are two traditional

metrics to evaluate group fairness, including statistical parity (SP) [16] and equality of

opportunity (EO) [22]. In our work, we choose SP to evaluate group fairness. The metric

GFP measures the fairness preservation ability of the explainers, and a smaller value

relates to a fairer model.
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Additionally, we propose novel metrics, F@PS and F@PN, to evaluate the group

fairness of CFE based on Definition 1 and Definition 2. These metrics assess the quality

gap of CFE among subgroups, using sufficiency and necessity ratios as quality indicators.

CFE Fairness@PS. Inspired by the definition of SP, the value of PS should remain

consistent across different subgroups. Therefore, we define CFE fairness in terms of PS,

as illustrated in Equation (5.12).

(5.12) F@PS = ∥(PSc f | f s = 1)− (PSc f | f s = 0)∥,

The fairness indicator for explanation quality is determined by the discrepancy in PSc f

values between subgroups, with a smaller difference indicating higher fairness.
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Table 5.4: Results for GCN. The presented outcomes encompass averages from five runs alongside their corresponding
standard deviations. Notably, the best-performing results have been emphasised in bold.

Dataset Explainers ACCc f (↑) FID(↑) F@PS(↓) F@PN(↓) F@FID(↓) GFP(SP)(↓)

M
at

h

Random 0.3400 ± 0.0285 0.4113 ± 0.0405 0.1283 ± 0.0767 0.0546 ± 0.0446 0.0988 ± 0.1094 0.1624 ± 0.0871
CFF 0.5350 ± 0.0487 0.4977 ± 0.1441 0.1609 ± 0.0936 0.1589 ± 0.0903 0.0122 ± 0.0047 0.1188 ± 0.0965

RCExplainer 0.0526 ± 0.0322 0.3276 ± 0.1559 0.0526 ± 0.0322 0.5526 ± 0.0000 0.1623 ± 0.0422 0.0305 ± 0.0206
CLEAR 0.6300 ± 0.0512 0.5684 ± 0.0400 0.2035 ± 0.0860 0.0441 ± 0.0288 0.1359 ± 0.0621 0.1023 ± 0.0967
fairCFE 0.9500 ± 0.0012 0.7230 ± 0.0019 0.0251 ± 0.0021 0.0052 ± 0.0015 0.0052 ± 0.0015 0.0301 ± 0.0043

Po
r

Random 0.1754 ± 0.0371 0.2266 ± 0.0217 0.0884 ± 0.0721 0.0597 ± 0.0000 0.1484 ± 0.0388 0.0297 ± 0.0277
CFF 0.5077 ± 0.0713 0.4101 ± 0.2421 0.0816 ± 0.0822 0.1254 ± 0.0973 0.1465 ± 0.0813 0.1441 ± 0.1137

RCExplainer 0.1556 ± 0.0465 0.5855 ± 0.0955 0.0074 ± 0.0101 0.3333 ± 0.0000 0.6901 ± 0.1783 0.1024 ± 0.0469
CLEAR 0.6115 ± 0.2529 0.6036 ± 0.1939 0.0481 ± 0.0509 0.0275 ± 0.0000 0.0413 ± 0.0160 0.0182 ± 0.0217
fairCFE 0.9938 ± 0.0084 0.9239 ± 0.0076 0.0121 ± 0.0210 0.0597 ± 0.0000 0.0653 ± 0.0148 0.0121 ± 0.0166

G
er

m
an

Random 0.3060 ± 0.0404 0.3850 ± 0.0251 0.2026 ± 0.0933 0.0478 ± 0.0974 0.0955 ± 0.0451 0.1276 ± 0.1043
CFF 0.5520 ± 0.0526 0.5019 ± 0.1275 0.0669 ± 0.0517 0.0982 ± 0.0611 0.0683 ± 0.0641 0.0912 ± 0.0962

RCExplainer 0.5200 ± 0.0204 0.6201 ± 0.0130 0.1360 ± 0.0062 0.1290 ± 0.0105 0.1651 ± 0.0135 0.1460 ± 0.0580
CLEAR 0.7880 ± 0.2504 0.6680 ± 0.2504 0.1360 ± 0.0000 0.1360 ± 0.0000 0.1360 ± 0.0000 0.1360 ± 0.0000
fairCFE 0.9700 ± 0.0000 0.8446 ± 0.0000 0.0478 ± 0.0000 0.0478 ± 0.0000 0.0286 ± 0.0000 0.0478 ± 0.0000
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CFE Fairness@PN. Similarly, the difference in PN c f values between f s = 1 and f s = 0

determines the fairness of CFEs, with a smaller difference indicating increased fairness.

We define CFE fairness in terms of PN, as illustrated in Equation (5.13).

(5.13) F@PN =∥(PN c f | f s = 1)− (PN c f | f s = 0)∥,

where lower values (↓) signify enhanced fairness.

CFE Fairness@Fidelity [82]. It measures the unfairness of the average explanation

quality by computing the difference of the subgroup‚Äôs average explanation quality as

shown in Equation (5.14):

(5.14) F@FID =∥ 1
|G0|

∑
Gi∈G0

Fid(Gc f
i )− 1

|G1|
∑

Gi∈G1

Fid(Gc f
i )∥,

here, Fid(·) means the fidelity score of the CFE, which we compute by the Equation (5.10).

The G0 means the subgroup when the sensitive feature of nodes is 0 ( f s = 0), and the G1

means the subgroup when the sensitive feature of nodes is 1 ( f s = 1). Similarly, a smaller

value indicates a higher level of fairness.

5.3.4 Performance Analysis

We conduct the experiments on various datasets (Math, Por, and German). We adopt

the pretrained GCN as our target GNN model. We then explore five different GNN

explainers—Random, CFF, RCExplainer, CLEAR, and fairCFE (ours)—to generate coun-

terfactual explanations. We then evaluate the generated results and report the results

in Table 5.4.

Based on the experimental results presented in Table 5.4, we observe that the

proposed method, fairCFE, consistently outperforms other explainers across multiple

datasets. The results are evaluated using several metrics: ACCc f , FID, F@PS, F@PN,
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F@FID, and GFP(SP), where higher values for ACCc f and FID are preferred, while

lower values for the remaining metrics indicate better performance.

Across all datasets, the fairCFE method consistently achieves the highest accuracy,

indicating that it provides the most reliable and accurate explanations. Similarly, fairCFE

shows the highest FID scores, with values such as 0.9239 for the Por dataset, suggesting

that the generated explanations are of the highest quality in terms of diversity and

realism.

In contrast, the other methods, such as Random, CFF, RCExplainer, and CLEAR,

demonstrate inferior performance across these metrics, with notable deviations in accu-

racy and FID. For instance, the Random method exhibits significantly lower accuracy,

particularly on the Por dataset, with a score of 0.1754, indicating a high degree of

inconsistency and unreliability in its explanations.

When examining the metrics intended to be minimized (F@PS, F@PN, F@FID,

GFP(SP)), fairCFE consistently produces the lowest values, which highlights the fair-

ness of generated CFEs. This quality is particularly evident in the German dataset,

where fairCFE scores 0.0478 for F@PS and GFP(SP), substantially outperforming other

methods.

The experimental results clearly demonstrate that fairCFE outperforms other ex-

planation methods across all evaluated metrics. The high accuracy and FID scores,

coupled with the minimal values in F@PS, F@PN, F@FID, and GFP(SP), indicate

that fairCFE is not only effective in producing accurate and high-quality explanations

but also robust in maintaining fairness. These findings suggest that fairCFE is the most

reliable and faithful method for generating explanations in GCN models across diverse

datasets.
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5.3.5 Ablation Studies

We further conduct ablation studies to explore how our method works for different

target GNNs, as discussed in Section 5.3.5.1. The findings emphasise the versatility

and effectiveness of fairCFE in delivering accurate explanations across various GNN

architectures.

Additionally, in Section 5.3.5.2, we investigate how the proposed fairness loss, L f air,

affects the performance of fairCFE. The results reveal that the inclusion of fairness

loss significantly enhances the overall performance, further improving the quality and

fairness of the generated explanations.

Figure 5.3: Comparative Performance of Various Explainability Methods Across Four
GNN Architectures (GCN, GIN, GAT, and SAGE) on the Math Dataset.

5.3.5.1 Agnostic to Target GNNs

Our analysis involves a comparative assessment of various explainability methods across

different target GNNs, specifically GCN, GIN, GAT, and SAGE, using two reliability
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Figure 5.4: Comparative Performance of Various Explainability Methods Across Four
GNN Architectures (GCN, GIN, GAT, and SAGE) on the Por Dataset.

Figure 5.5: Comparative Performance of Various Explainability Methods Across Four
GNN Architectures (GCN, GIN, GAT, and SAGE) on the German Dataset.
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metrics (ACCc f and FID) and four fairness-related metrics (F@PS, F@PN, F@FID,

and GFP). This investigation aims to assess the agnosticism of the explainers, with an

expectation of higher values on reliability metrics and lower values on fairness-related

metrics across diverse GNNs. The results for the Math, Por, and German are presented

in Figure 5.3, Figure 5.4, and Figure 5.5, respectively.

Figure 5.3 demonstrates that fairCFE consistently outperforms other explainability

methods across all GNN architectures in both reliability and fairness-related metrics.

fairCFE achieves the highest scores in accuracy (ACCc f ) and FID, reflecting the high

reliability and quality of the generated counterfactuals. Additionally, it records the lowest

values across all fairness-related metrics (F@PS, F@PN, F@FID, GFP), showcasing

its ability to minimize bias between different subgroups while maintaining high fidelity.

These results underscore fairCFE’s effectiveness and versatility, establishing it as the

most reliable and fair method across various GNN models.

As depicted in Figure 5.4, fairCFE consistently outperforms other explainability

methods across all GNN architectures on the Por. It achieves the highest accuracy

(ACCc f ) and FID scores, indicating its superior reliability and the high quality of its

generated counterfactuals. Additionally, fairCFE records the lowest values across all

fairness metrics (F@PS, F@PN, F@FID, and GFP), highlighting its effectiveness in

minimizing bias and ensuring fidelity to the original data. These results underscore

fairCFE’s robustness and versatility, establishing it as the most reliable and fair method

across diverse GNN models.

Figure 5.5 illustrates the performance of various explainability methods across four

GNN architectures on the German dataset. fairCFE consistently demonstrates superior

performance, achieving the highest accuracy (ACCc f ) and FID scores, indicating reliable

and high-quality counterfactuals across all GNNs. It also excels in fairness metrics,

consistently showing the lowest values in F@PS, F@PN, F@FID, and GFP, reflecting
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its ability to minimize errors and biases effectively. fairCFE consistently outperforms

other methods, achieving higher reliability and fairness with minimal variation across

different GNN models.

These figures clearly demonstrate that fairCFE is the most effective method for

generating fair, accurate, and faithful CFEs across a range of GNN models. The consistent

performance of fairCFE across all evaluated metrics and various datasets underscores

its robustness and reliability in ensuring fairness in GNN applications. In contrast, the

other methods, particularly Random and CFF, show significant variability and generally

underperform, especially in maintaining fairness across subgroups.

5.3.5.2 The Impact of L f air

Another ablation study was undertaken to evaluate the relevance and significance of

the introduced fairness loss incorporated into our method. We anticipated observing

enhanced performance, reflected in increased values in reliability metrics and reduced

values in fairness metrics. Results for various datasets (Math, Por, and German) based

on different GNN architectures (GCN, GIN, GAT, and SAGE) are presented in Figure 5.6,

Figure 5.7, and Figure 5.8 respectively.

Figure 5.6 illustrates the impact of incorporating fairness loss into our explainability

method across four GNN architectures. The results demonstrate that the inclusion of

fairness loss significantly enhances the fairness of the generated explanations, as evi-

denced by the substantial reduction in F@PS, F@PN, F@FID, and GFP values across

all GNN architectures. Notably, these improvements in fairness metrics are achieved

without compromising the reliability of our method, as the ACCc f remains consistently

high and FID scores improve with the inclusion of fairness loss. These findings high-

light the effectiveness of the fairness loss in producing high-quality, reliable, and fair

counterfactual explanations, confirming its importance in the overall performance of the

method.
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Figure 5.6: Fairness Loss Evaluation on Various GNNs Using the Math. We compare the
performance of fairCFE with and without the proposed fairness loss. The results show
that our proposed fairness loss significantly improves the performance of fairCFE.

Figure 5.7 shows the impact of incorporating fairness loss into the explainability

method across four GNN architectures on the Por. The results clearly indicate that

the inclusion of fairness loss leads to significant improvements in both reliability and

fairness metrics. Specifically, the FID scores are markedly higher with fairness loss across

all GNNs, reflecting enhanced quality and diversity in the generated counterfactuals.

Furthermore, all fairness-related metrics (F@PS, F@PN, F@FID, GFP) exhibit lower

values when fairness loss is applied, demonstrating a substantial reduction in biases and
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Figure 5.7: Fairness Loss Evaluation on Various GNNs Using the Por. We compare the
performance of fairCFE with and without the proposed fairness loss. The results show
that our proposed fairness loss significantly improves the performance of fairCFE.
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Figure 5.8: Fairness Loss Evaluation on Various GNNs Using the German. We compare
the performance of fairCFE with and without the proposed fairness loss. The results
show that our proposed fairness loss significantly improves the performance of fairCFE.
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errors. Importantly, these improvements are achieved without compromising accuracy

(ACCc f ), which remains consistently high across all architectures. Overall, the figure

underscores the effectiveness of fairness loss in improving the fairness and reliability of

counterfactual explanations across diverse GNN models.

Figure 5.8 presents the effect of incorporating fairness loss into our explainability

method across four GNN architectures on the German dataset. The results show a

consistent improvement in both reliability and fairness metrics when fairness loss is

applied. Specifically, the inclusion of fairness loss leads to significantly higher FID scores

across all GNN architectures, indicating enhanced quality and diversity in the gener-

ated counterfactuals. Additionally, fairness metrics (F@PS, F@PN, F@FID, and GFP)

show marked reductions, demonstrating that the method with fairness loss effectively

mitigates biases while maintaining high fidelity to the original data. The ACCc f scores

remain high in both scenarios, suggesting that the integration of fairness loss does not

compromise the accuracy of the generated counterfactuals. These findings underscore

the importance of fairness loss in improving the overall performance of the explainability

method, ensuring both fairness and reliability across different GNN models.

These results clearly demonstrate that incorporating a fairness loss component into

GNN models significantly enhances both the accuracy and fairness of CFEs. Fairness

loss not only improves the alignment of explanations with desired outcomes but also

ensures that these explanations are equitable across different subgroups. The consistent

improvements across all evaluated metrics suggest that fairness loss is an effective way

of mitigating biases and promoting fairness. This is particularly important in sensitive

domains where fairness is a critical consideration.
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5.4 Limitations and Discussions

Our method, fairCFE, offers several notable advantages. First, it does not rely on training

data, which makes it robust to data distribution shifts. This characteristic is particularly

valuable in real-world applications where distribution shifts are common. Second, the

method ensures group fairness in the generated CFEs, addressing critical equity concerns

in machine learning applications.

Despite these strengths, there are limitations that warrant further investigation.

One significant limitation is that the generated explanations are not constrained to be

subsets of the original graph. While this design choice allows for greater flexibility in

generating explanations, it may reduce the explainability and fidelity of the explanations.

Additional justification for this approach and potential ways to refine it are needed.

Another limitation is the reliance on group fairness metrics, which are inherently

designed for evaluating fairness across multiple samples. This reliance makes the method

less applicable in scenarios where only a single sample is available, posing challenges for

fairness evaluation in such cases.

To address these limitations, future work will focus on two key directions. First, we

will explore ways to justify and improve the explanation subset constraint, potentially by

incorporating subset-based constraints without sacrificing the model’s flexibility. Second,

we will investigate methods to evaluate fairness in scenarios with limited or single

samples, possibly by adapting existing metrics or developing new ones tailored to such

contexts. These efforts aim to enhance the explainability, applicability, and fairness of

the method in a broader range of scenarios.
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5.5 Summary

In this work, we propose a novel counterfactual explainer for GNNs, dubbed fairCFE,

which utilizes deep decoders as its backbone to generate counterfactual explanations. The

deep decoders are conditioned by the desired predetermined prediction and fed with a

random input seed. During the optimization process, both the input seed and the network

parameters are updated jointly. To ensure the generation of unbiased explanations, a

fair loss is introduced to guide the generation process.

We conduct extensive experiments on various datasets, rigorously testing the perfor-

mance of our proposed method. Compared with state-of-the-art baselines, our fairCFE

demonstrates superior in generating reliable, faithful, and unbiased counterfactual ex-

planations for GNNs. This highlights the versatility of fairCFE across different contexts

and its potential to be widely applicable in real-world scenarios. For future work, it

would be valuable to explore additional dimensions of fairness, such as causal fairness, to

further enhance the fairness of explanations and address more complex biases that may

arise in real-world data. Additionally, investigating the scalability of fairCFE to more

complex graphs could provide further insights into its applicability in broader contexts.
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CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

6.1 Conclusions

In conclusion, this thesis delves into the critical realm of explaining GNNs, an area

of increasing importance due to the widespread applications of GNNs in real-world

scenarios. Through the exploration of FE and CFE, this research contributes to the

understanding of GNN mechanisms, ensuring their safe and reliable deployment.

The investigation commenced with the development of GAN-GNNExplainer, a novel

GNN explanation method utilizing GAN to produce explanations for original input

graphs. Despite its initial promise, it was noted that this approach encounters perfor-

mance limitations and fidelity constraints when applied to real-world datasets.

In response to these limitations, the study progressed to address the research question

of generating fidelity explanations for GNNs. Introducing the ACGAN into the GNN

explanation domain led to the creation of the ACGAN-GNNExplainer. This method

significantly enhanced the fidelity of explanations on real-world datasets, outperforming

existing GNN explainers through comprehensive experimental evaluations.
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Moreover, the exploration extended to CFE for GNNs, focusing on the generation of

CFE facilitating desired predictions through minimal modifications to input graphs. The

development of fairCFE addressed challenges posed by the need for extensive training

data and the risk of bias in generated explanations. Leveraging a deep decoder and

a novel fairness loss, fairCFE ensures unbiased counterfactual explanations without

additional training datasets, demonstrating superior performance compared to existing

models across diverse datasets.

In this thesis, we made significant contributions towards addressing key questions in

the realm of GNNs and their explainability.

• Firstly, we introduced GAN-GNNExplainer, a novel approach that leverages GANs

to provide consistent explanations for GNN predictions. Our method stands out

by offering global explanations, versatility across diverse datasets and tasks, and

the ability to generate explanations without the need for retraining. Through

comprehensive empirical evaluations, we demonstrated the superior performance

of GAN-GNNExplainer compared to existing methods.

• Secondly, we proposed ACGAN-GNNExplainer, an innovative GNN explanation

model that utilizes an ACGAN to generate explanations. By iteratively refining the

generation process through the interplay between the generator and discriminator,

our method achieves enhanced explanation accuracy and scalability to unseen

graphs. Empirical validations across various datasets and tasks reaffirmed the

effectiveness and robustness of ACGAN-GNNExplainer, establishing it as a leading

solution in the domain of GNN explainability.

• Lastly, we introduced fairCFE, a groundbreaking counterfactual explanation model

for GNNs designed to produce faithful explanations while ensuring fairness. No-

tably, fairCFE eliminates the reliance on massive training data and addresses data
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distribution-shift issues. By incorporating a novel fairness loss into the genera-

tion process, our method generates unbiased and fair counterfactual explanations.

Through extensive experiments spanning node and graph classifications across

diverse datasets, we showcased the efficacy and fairness of fairCFE, underscoring

its significance in advancing the explainability of GNN models.

In essence, this thesis advances the frontier of GNN explanation methodologies,

providing insights and techniques crucial for understanding, deploying, and ensuring

the reliability of GNNs in real-world applications. Future research may further refine

and expand upon these methodologies to address emerging challenges and complexities

in the evolving landscape of graph-based machine learning.

6.2 Future Research Directions

Our exploration of GNN explainability highlights several intriguing research directions

that warrant further investigation:

1. Exploration of More Effective Explanation Methods with Subgraphs: Ex-

panding on the notion of using subgraphs to explain GNNs, future work could focus

on refining and implementing more effective methods for leveraging subgraph-

based explanations. By delving deeper into the structure and dynamics of sub-

graphs within GNNs, researchers can potentially unlock richer insights into model

behaviours and predictions. This approach holds promise for enhancing the ex-

plainability of GNNs by providing more granular and intuitive explanations rooted

in the underlying subgraph structures.

2. Development of a Fair FE Generative Explainer for GNNs: Given the

paramount importance of fairness in GNNs and their explanations, a compelling fu-

ture direction involves the creation of a fair GNN explainer. This future endeavour
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would seek to devise an explainability framework specifically tailored to preserve

the fairness of GNNs while simultaneously ensuring high levels of counterfactual

fairness. By integrating fairness considerations into the explainability process, this

proposed Fair GNN Explainer could contribute significantly to the creation of more

transparent and equitable GNN models.

3. Evaluation and Validation of Explainability Techniques: In the pursuit of

advancing GNN explainability, future research could prioritize the rigorous evalua-

tion and validation of various explainability techniques. This entails conducting

comprehensive empirical studies to assess the efficacy, robustness, and fairness im-

plications of different explanation methods, including fidelity explanations and fair

counterfactual explanations. Through systematic evaluation, researchers can gain

a deeper understanding of the strengths and limitations of existing approaches,

thereby guiding the development of more reliable and trustworthy explainability

tools for GNNs.

4. Application in Real-World Scenarios: Beyond theoretical advancements, the

practical application of GNNs and their explanations holds significant promise for

addressing real-world challenges. Future research efforts could focus on deploying

GNN-based systems in various domains, such as healthcare, finance, and social

sciences, where complex relational data is prevalent. By integrating explainability

mechanisms into these applications, stakeholders can gain actionable insights into

the decision-making processes of GNN models, fostering trust and transparency.

By embarking on these future research endeavours, we can further propel the field

of GNN explainability towards the dual goals of transparency and fairness, ultimately

fostering greater trust and acceptance of GNN models in real-world applications.
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