
Reduced latent belief spaces for active

perception in robotics

by

Jennifer Wakulicz

A thesis submitted in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

at the

School of Mechanical and Mechatronic Engineering

Faculty of Engineering and Information Technology

University of Technology, Sydney

April 2024

jennifer.wakulicz@student.uts.edu.au
https://www.uts.edu.au/research/robotics-institute
http://www.eng.uts.edu.au
http://www.uts.edu.au




Certificate of Original Authorship

I, Jennifer Wakulicz, declare that this thesis is submitted in fulfilment of the requirements

for the award of Doctor of Philosophy in the Faculty of Engineering and Information

Technology at the University of Technology Sydney. This thesis is wholly my own work

unless otherwise referenced or acknowledged. In addition, I certify that all information

sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signed:

Date:

iii





Reduced latent belief spaces for active perception in

robotics

by

Jennifer Wakulicz

Abstract

As robot perception advances, so does robot autonomy. The development of human-like

perception capabilities in robots, where robots actively select sensing actions to improve

understanding, is the concern of active perception research. A common approach in active

perception is to develop sensing policies that minimise the uncertainty in a robot’s belief

about the state of the environment or an object, where a belief is a probability distribution

over the state. Planning in the space of possible beliefs rather than physical space is then

a prudent approach to active perception, as it places uncertainty minimisation at the heart

of planning strategies. However, due to the size of belief space, it is generally infeasible to

find optimal belief space plans in the real-time requirements of robotics. As such, research

in recent decades has focused on finding high quality yet suboptimal solutions to belief

space planning in feasible time frames.

Motivated by this research, this thesis proposes a new approach to belief space planning for

active perception coined reduced latent belief space planning. Here, a partially observable

latent variable is introduced that satisfies two properties: first, that the state of the

system under estimation can be inferred from it, and second, that its belief space is of

reduced complexity compared to the original belief space. Then, plans designed to improve

estimation of the latent variable can be found in a simpler belief space, in turn providing

efficient estimation of the original state of interest.

Under this new framework we present a suite of reduced latent belief space planning

algorithms that address various active perception problems. For each problem setting we

propose a latent variable whose selection is grounded in theoretical understanding of the

problem structure. The choice of latent variables is careful, and aims not only to reduce

the computational complexity of planning but also to maintain or even improve active

perception of the original state.

jennifer.wakulicz@student.uts.edu.au


vi Abstract

For general active estimation problems where the system under estimation follows linear

Gaussian dynamics with some unknown inputs, we introduce the state belief space as a

reduced latent belief space for solving joint active estimation of state and unknown input.

We extend the Reduced Value Iteration algorithm to this new belief space and derive

suboptimality bounds for recovering full system estimation given planning is performed in

the state belief space only. We evaluate our theoretical findings in a simulated example

of active target tracking, where the target is performing unknown, evasive manoeuvres.

Our evaluation demonstrates that impressively, non-myopic planning is achievable via our

approach, even in the presence of unknown dynamics.

To further explore the active target tracking problem the homotopic belief space is in-

troduced. Homotopy classes are proposed as a latent variable that captures the target’s

high-level motion. Estimates of the homotopy class can then be used to infer the target’s

full, low-level trajectory. We perform this inference by developing a hierarchical Gaus-

sian mixture model. Then, planning is performed over the homotopic belief space. As

a sparse and discrete space, computation of homotopic information gain is more efficient

than full belief space alternatives. In empirical evaluation on real pedestrian data, our

approach achieves equivalent estimation accuracy as full belief space planning in only half

the number of measurements on average.

We continue to demonstrate the flexibility of the reduced latent belief space framework

by addressing active mapping using sparse Gaussian processes, introducing the inducing

point belief space. This reduced latent belief space admits computationally efficient plan-

ning heuristics and results in sensing trajectories that outperform conventional approaches.

Moreover, theoretical analysis shows that planning in the proposed belief space is a di-

rect conduit for planning to minimise estimation error – an exciting result that connects

information-theoretic planning to deterministic error minimisation.

The theoretical and empirical evaluations of each proposed belief space demonstrate that

the reduced latent belief space planning framework is a promising theoretical advancement

in planning for active perception in robotics. We hope that this approach is adopted by

others in the future to work toward fast and accurate active perception.
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Chapter 1

Introduction

Robotics researchers have been striving for decades to enable robots to exhibit the same

on-the-fly decision making skills that humans do. A crucial component for achieving this

higher level of autonomy is the ability to interrogate the environment for information that

improves decision making. Endowing robots with human-like intuition around how exactly

to interrogate the environment with their on-board sensors is therefore an open research

problem, referred to as active perception.

Active perception research is concerned with the development of theory and algorithms for

planning sensing actions that provide high quality information about systems of interest

such as other moving entities or environmental phenomena. With this information, the

robot can produce accurate state estimates for these systems and make informed, safe

decisions to complete its task. However, due to noise, the true state cannot simply be

observed via real-world sensors. The robot must instead estimate or infer the state from

noisy measurements. As such, in active perception the optimality of sensing actions is

typically characterised by their potential to reduce estimation uncertainty incurred by

noise.

Estimates can be represented as probability distributions over the state space of interest,

referred to as beliefs. The probabilistic nature of beliefs allows for the representation

of both the estimated state and the uncertainty in this estimate. Rather than planning

sensing actions in physical space, one can plan in belief space – the space of possible

1



2 Chapter 1. Introduction

beliefs. This approach, referred to as belief space planning, facilitates planning to ‘visit’

beliefs with minimal uncertainty directly, naturally lending itself to active perception.

The full potential of uncertainty reduction via belief space planning is unfortunately ham-

strung by the immense size and stochasticity of belief spaces. Belief spaces are of much

larger dimension than their corresponding state space, and measurement noise introduces

stochasticity to transitions between beliefs. Even in active perception of features with

small state spaces, finding optimal sensing actions in belief space can require more time

than a robot can afford in real-world applications. To overcome this hurdle, roboticists

commonly trade optimality for computational efficiency, developing belief space planning

algorithms that discretise belief space and determinise belief transitions.

In this thesis we propose the reduced latent belief space planning framework, an orthogonal

approach to achieving tractable belief space planning for active perception. We introduce

partially observable latent variables from which the original state under estimation can be

inferred. Moreover, these latent variables have belief spaces of reduced size and complexity

compared to the belief space of the original state. By planning sensing actions over the

reduced latent belief space, we gain improved computational efficiency while maintaining

accurate estimation of the desired state.

We present three instances of latent variables for reduced belief space planning in three

active perception scenarios. The choice of latent variables is grounded in careful theoretical

understanding of each problem setting. Not only do they provide computational efficiency,

but the resulting sensing plans are often more richly informative regarding the original state

than plans produced over the full belief space. We provide evidence of this throughout the

thesis via both empirical study and theoretical performance guarantees, emphasising the

exciting potential of this new framework.

In the remainder of this chapter we establish the scope and contributions of this thesis

towards developing the proposed framework. First we further motivate the need for our

novel approach. Then, the active perception problem and reduced latent belief space

planning approach is formalised. Next, the specific active perception problem applications

addressed in this thesis are introduced. Finally, the main contributions of this thesis are

summarised.
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1.1 Active perception for stronger autonomy

In the late 80s, Bajcsy recognised a significant gap in the field of machine perception and

disseminated a new perspective on the issue in her paper entitled ‘Active perception’ [1].

This perspective drew inspiration from human cognition, acknowledging that humans do

not simply see but rather we look. Our ability to actively adjust the way in which we

look at our surroundings is an adaptive behaviour central to our success and survival in

uncertain or adversarial environments. Why then should the robotic systems we design

continue to understand their world by analysing data which passively falls upon their

sensors? By choosing where, when and how to look, robots and humans alike can extract

advantageous information from their environment for completing their tasks.

Since the introduction of this paradigm, the field of active perception has grown exponen-

tially [2, 3]. Research aims to imbue robotic systems with the ability to actively sense their

surroundings to gain information that improves understanding. The quality of a sensing

action can be considered the amount of information it provides to our robot about the state

under estimation. Intuitively, if a measurement greatly reduces the robot’s uncertainty

in its estimate, the information gained is high. By quantifying information gain mathe-

matically via information-theoretic measures of uncertainty, our robot can autonomously

select good sensing actions in any general setting.

To illustrate, consider a view planning scenario depicted in Figure 1.1. Suppose our robot is

given the simple perception task of determining whether an object is a square or triangle

pyramid using its on-board camera. The front and side views of a square and triangle

pyramid, shown in Figure 1.1(a), are identical to one another. From this viewpoint the

category of the pyramid cannot be determined, and it is therefore minimally informative

for the classification task at hand. However, the top views alone distinguish the two objects

completely, as depicted in Figures 1.1(b) and 1.1(c). Thus, the overhead viewpoint provides

optimal information gain and the robot should select this viewpoint for sensing.

A key characteristic of information gain is it is a monotone submodular function [4]. This

means the more unique measurements one takes, the more information one has regarding

the state of interest, and revisiting sensing locations has diminishing returns. Given infinite
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(a) The front and
side views of triangu-
lar and square pyra-

mids.

(b) Top view of a tri-
angular pyramid.

(c) Top view of a
square pyramid.

Figure 1.1: Illustration of informative sensing actions in a simple view planning scenario.

resources the information-driven active perception task may then seem trivial, as one

could plan to take as many unique measurements as possible. However, our robots are

typically subject to the harsh realities of the real world: their operation is constrained by

computation, time, power, or communication limitations [5–7]. Sensing trajectories must

therefore be planned with intention. We wish to select measurement locations carefully to

maximise information within budget constraints.

Successful active perception unlocks a level of autonomy in robots that allows us to surpass

the goals of yesteryear to automate ‘dull, dirty and dangerous’ tasks with robots. Now,

with increasingly efficient active perception we work toward a more ambitious goal, where

robots are working and making informed, safe decisions with autonomy in unstructured,

dynamic environments and even alongside humans. To further motivate this sentiment,

consider the scenarios depicted in Figure 1.2.

The development of robotic systems designed to work collaboratively with humans, or

cobots, is a growing research field [8]. In collaborative settings as in Figure 1.2(a), active

perception is crucial for the robot to quickly and accurately estimate the human’s impact

on the workspace and make decisions about how to best assist in task completion. More-

over, to ensure safety, the robot cannot afford to take reactive actions after observing its

counterpart’s behaviour but should instead anticipate behaviour via its active perception

module and make pre-emptive decisions [9, 10].

Autonomous robotic systems have proven useful in planetary exploration (Figure 1.2(b)),

where interplanetary communication limitations prohibit tele-operated missions and re-

strict the amount of data that can be sent back to Earth [5]. Here, active perception
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(a) Safe human-robot collaboration
requires robots to position themselves
to best perceive their changing envi-

ronments [12].

(b) Extraterrestrial science missions
require robots to recognise valuable
sensing locations autonomously [13].

Figure 1.2: Examples of autonomous robotic systems that rely on active perception to
make decisions.

enables the exploratory robot to autonomously seek and collect only the most interest-

ing scientific data to relay to Earth. Additionally, safe navigation while executing this

task requires the robot to select landscape viewpoints that aid in building a map of the

environment and localising itself – a subproblem of active perception known as active

simultaneous localisation and mapping (SLAM) [11].

Despite extensive research and successful applications of active perception, it is far from

a solved problem. In the following section we will describe the main challenge in active

perception and how it manifests in planning informative sensing actions.

1.2 Uncertainty reduction via belief space planning

A fundamental challenge in active perception will always lie in the physical limitations of

real sensors: they provide only partial and noisy information about the observed state.

We are then left to infer a probabilistic estimate of the state, or a belief, from these

measurements. Beliefs are probability distributions over the true state, providing not

just the most likely state but also the uncertainty in this estimate. This is a valuable

construct in active perception, as information gain is directly linked to uncertainty. Then,
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an intuitive way to plan sensing actions that optimally minimise uncertainty is to plan

directly in the space of possible beliefs rather than physical space.

This approach, known as belief space planning, is no simple task. Even a small, discrete

physical state space can induce a continuous belief space of much larger dimension. For

example, a two-dimensional physical state space of positions in a 10 × 10 grid has a

100-dimensional belief space. More generally, if there are n possible physical states, the

corresponding belief space is n-dimensional.

Furthermore, noise renders measurement outcomes at future sensing locations impossible

to predict. Thus, transitions between belief states are stochastic in nature. To find high-

quality sensing actions in belief space, planning algorithms have been developed that

estimate the expected information gain at a sensing location by sampling the space of

possible measurements [14]. Sampling policies dictate the suboptimality of the resulting

solutions. In other work, algorithms are proposed to determinise belief state transitions

by, for example, considering only the maximum likelihood measurement outcome, possibly

incurring great suboptimality in the resulting sensing plans [15, 16].

Another hurdle is in evaluating the information-theoretic metrics that quantify the ex-

pected quality of sensing actions. This can be computationally expensive, particularly

over long planning horizons. If beliefs are Gaussian in nature, these metrics often have

tractable closed-form expressions. As such, confining problem formulations to those that

assume Gaussian beliefs is a popular approach to active perception. However, even here,

the information-theoretic metrics can become tricky to evaluate. For example, problems

with high-dimensional multivariate Gaussian beliefs [17] can have computationally ex-

pensive information measures, and problems where the belief is a mixture of Gaussian

distributions can have no known closed-form expressions at all [18].

The primary contribution of this thesis is the introduction of a new belief space planning

framework that addresses these challenges. Specifically, we propose a framework that facil-

itates planning over belief spaces of reduced dimensionality – the belief spaces associated

with a latent variable or feature. To ensure the original active perception problem is solved

and an accurate estimate of the desired state is acquired, the full state must be able to

be inferred through the latent variable. Then, we can plan sensing actions that optimise
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information gain regarding the latent variable and recover an accurate state estimate by

proxy.

The secondary contribution of this thesis is therefore the identification and evaluation of

specific latent variables that satisfy the aforementioned criteria for reduced belief space

planning. For a number of active perception problems, an interrogation of the problem

structure uncovers examples of these latent variables.

While existing approaches to belief space planning introduce planning algorithms that

temper the curse of dimensionality via discretisation or determinisation [14], our reduced

latent belief space planning approach is an entirely orthogonal approach. Though the belief

spaces are of reduced size and complexity, existing planning algorithms can still be used

to explore them for sensing plans. This thesis shows these existing planning algorithms

for active perception tasks are improved by utilising our reduced belief spaces.

The improvements are twofold. First, the information gain measures associated with the

latent variables are less computationally taxing than those associated with the original

state. Second, plans formulated over the reduced belief spaces often result in measure-

ments that are more richly informative regarding the true state than those planned over

the full belief space. These improvements are observed throughout the thesis both via

experimental evaluation of the proposed latent variable approach and via theoretical per-

formance guarantees.

1.3 Scope

The work in this thesis aims to improve the efficiency of active perception pipelines. Specif-

ically, this work focuses on finding manageable belief spaces over latent variables that are

afforded to us by structures present in specific problem settings. These belief spaces are of

lower dimension or complexity than the full belief spaces typically considered. As a result,

they admit planning heuristics that are easier to compute. This thesis aims to demonstrate

how utilising these reduced latent belief spaces can quantifiably improve both the planning

and estimation stages of the active perception pipeline via theoretical and experimental

results.
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1.3.1 Problem formulation

The problem central to this thesis is the active perception problem. Put simply, this is the

task of planning future sensing trajectories for a mobile sensing robot that best improve

estimation of the state of a system of interest.

More formally, suppose one has a mobile sensing robot whose state xt ∈ Rnx at time t

evolves according to the following dynamic model given control input ut ∈ U at time t

selected from the space of admissible controls U ,

xt+1 = f(xt,ut). (1.1)

Throughout this thesis, the robot dynamics f are assumed to be deterministic, that is,

the localisation problem is not considered.

The robot must measure and build an estimate of a possibly time-varying target system

whose state yt ∈ Rny evolution is also governed by a discrete dynamics model

yt+1 = g(yt,wt), (1.2)

where wt is the outcome of a random process at time t representing process noise. The

robot’s measurement zt ∈ Rnz at time t follows the sensor observation model

zt = h(xt,yt,vt), (1.3)

where vt is the outcome of a random process at time t representing measurement noise.

The measurements taken by the robot are intended to improve the accuracy of an estimate

of the state of interest. The suitability of a measurement for achieving this task can be

quantified by the uncertainty reduction – or equivalently the information gain – it provides

regarding the state. One of the most common approaches used to quantify information

gain is via concepts from information theory [11], within which there are various metrics.

With the tools introduced above we may now formulate the active perception problem

addressed in this thesis as a single optimal control problem.
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Problem 1.1. Given a planning horizon T < ∞ and an initial belief over y0, choose

a sequence of controls σ = {u0, . . . ,uT−1} for the sensing robot that results in the best

estimate of the state yT , or

max
σ∈UT

IG(yT ; z1:T ) (1.4)

s.t. xt+1 = f(xt,ut), t = 0, . . . , T − 1,

yt+1 = g(yt,wt), t = 0, . . . , T − 1,

zt = h(xt,yt,vt), t = 1, . . . , T,

where IG(·) is a measure of information gain and z1:T = {z1, . . . , zT }.

In the above formulation we pose the active perception problem as an open loop feedback

control problem rather than a closed loop control problem. The distinction between these

two approaches is an ‘action versus strategy’ one. In open loop feedback control a sequence

of actions is chosen at planning time and is executed until new information is gained at

which point replanning is performed. Meanwhile in closed loop control, optimal control

policies are found, i.e. functions of yt that return an optimal control [19]. Closed loop

control is typically superior to open loop, however, for the problems considered in this the-

sis, where observation models are linear or linearisable and noise is Gaussian distributed,

open loop feedback control is provably sufficient [20].

The tools introduced in this problem formulation are written in their most general form

and are common to all active perception formulations, though specific instances vary. For

example, the sensing robot’s dynamics f may be described by a simple unicycle model

as in Chapter 4 or may even include external dynamics such as flow field vectors, as

in Chapter 6. Physically, the state under estimation yt may represent the pose of another

entity such as a human, vehicle, animal or robot, or the state of a non-entity such as spatial

maps environmental phenomena as in Chapter 6. The state yt may be even more abstract,

such as the intent of another agent in the environment or the category of an object. There

are many observation models that correspond to physical sensors [21]. Likewise, there are

many metrics that are used to quantify information gain, most stemming from the concept

of entropy, as detailed in Chapter 3.
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1.3.2 Reduced latent belief spaces for active perception

Solving Problem 1.1 is confounded by the noise terms present in Equation (1.3). In partic-

ular, measurement noise renders the state under estimation only partially observable. Prob-

lem 1.1 is thus an instance of a partially observable Markov decision process (POMDP)

problem. The true state yt may only be inferred from measurement outcomes zt at sens-

ing locations xt via the calculation of a belief. This inferential relationship is depicted

in Figure 1.3(a).

To solve POMDP problems planning is performed in the space By of all possible beliefs

held over the state space of yt. However, solving POMDPs exactly can be intractable for

systems with just tens of states. While approximate solvers can produce good solutions for

belief spaces of significant size [14], the approach in this thesis is to further remove com-

putational burden by introducing partially observable latent variables ξt through which

state inference is performed. That is, the desired state can be inferred given knowledge

or observation of this latent variable, and the latent variable can be inferred from mea-

surements. Further, the dynamics of ξt are either learnable through partially observed

historical data, or are accessible via known analytic models. Thus, we introduce an added

layer of inference, depicted in Figure 1.3(b). Then, rather than solving Problem 1.1, we

propose a framework that instead solves the following:

Problem 1.2. Given a planning horizon T < ∞, choose a sequence of controls σ =

{u0, . . . ,uT−1} for the sensing robot maximises information gained about latent variable

ξ, or

max
σ∈UT

IG(ξT ; z1:T ), (1.5)

as a proxy for solving Problem 1.1.

The benefit of introducing this added layer of inference now becomes clear. The latent vari-

ables ξt are still partially observable. However, now belief space planning can be executed

over the belief space associated with ξt. Thus, ξt is chosen such that the corresponding

belief space Bξ is of reduced dimensionality or is sparse compared to By. Additionally,

information-gain measures are then easier to compute. While it may seem difficult to find

a ξt that fits the required criteria for reduced latent belief space planning, often problem
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(a) POMDP model. (b) The latent variable model pro-
posed in this thesis.

Figure 1.3: Graphical models for the POMDP problem and the latent belief space
planning problem. Variables that are partially observable are depicted as circles. Variables
that are considered fully observable in this thesis are depicted as squares. Arrows from
partially observable variables A to B indicate that A is made available via inference given

B. Shaded levels indicate belief space used for planning in each approach.

structure guides us to the appropriate latent variable. To build further intuition around

ξt, specific problems considered in this thesis are outlined in the following section, along

with the dynamics and nature of ξt used in each problem.

1.3.3 Active perception problem settings

This thesis addresses Problem 1.1 via the framework in Problem 1.2 in various practical

settings differentiated by the state of interest in each application. These settings are

outlined here, along with the various constraints and challenges inherent to each.

Active estimation of states with unknown inputs

Sometimes the evolution of a state of interest can be adequately modelled as a linear

system with additive Gaussian noise, i.e. g(yt,wt) = Atyt + wt, with wt ∼ N (0, Qt).

The Gaussian noise captures small disturbances in the evolution that perturb the model

away from an exactly linear one. Under these circumstances, a Kalman filter can be used

to estimate the state and to facilitate belief space planning. However, these assumptions

may be limiting when the state has more complex dynamics that are not captured by the

Gaussian noise term. If these dynamics are prohibitively difficult to model explicitly, they
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can be treated as an unknown input in the motion model and estimated via an unknown

input filter [22].

This necessitates the online estimation of two possibly uncorrelated variables: the target

state and the input itself, complicating solving Problem 1.1 as the underlying belief space

is expanded considerably with the addition of the input. Further, optimal sensing locations

for the state and the unknown input may be at odds with each other. Chapter 4 exploits

structure in the design of an established unknown input filter to return to a manageable

belief space to plan over. The proposed latent variable ξt is a subset of the full state being

estimated. Specifically, ξt is the state variable without the input. The problem structure

gives the dynamics of ξt via the unknown input filter and dictates that the initial belief

over the latent variable is Gaussian. As such, the reduced latent belief space planning

problem looks very similar to the original, however here the challenging joint estimation

problem is discarded entirely.

Active target tracking

When the state of interest yt is the position of another moving entity, we face the ac-

tive target tracking problem. In its most general form, this problem is confounded by

unknown or partially known dynamic models of the target and the robot’s environment.

However, this thesis assumes an accurate environmental model is given, focusing instead

on overcoming the challenges brought by unknown dynamics by learning a dynamic model.

Learning a dynamic model from historical data can be difficult, as moving entities do

not often follow a uni-modal distribution. Multi-modal models can be learned where

each mode can be considered one hypothesis regarding the target’s true dynamics. When

tracking a target modelled in this way, we again encounter a complicated belief space

planning problem, where sensing paths must minimise the uncertainty in both hypothesis

and position together. Furthermore, information gain measures associated with mixture

distributions are often intractable. To address this, Chapter 5 introduces the belief space

associated with a target’s high-level motion. The proposed latent variable ξt is the target’s

homotopy class, an identifier of high-level motion. The dynamic model of ξt is learned from

historical trajectory data and is closely associated with the dynamic model of the original
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state, however is much sparser in nature. The learned dynamic model allows us to explore

the reduced latent belief space associated with high-level motions. Here, the expected

information gain of a sensing action is evaluated much more efficiently than in the original

belief space.

Active mapping

In environmental monitoring or 2.5-dimensional mapping applications, the state of interest

yt in Equation (1.2) is sometimes a static, scalar spatial field. That is, yt = y is some

continuous function of position xD in the domain, y = s(xD). Note that xD is separate

from the sensing robot position xt at time t.

One might naively plan to send the robot on a sensing trajectory that covers the entire

domain of the environment – collecting all the information required for mapping this

spatial field. However, sensing robots often have constraints that limit the number of

measurements they may take. We must then plan maximally informative plans under

this constraint. The spatial field is a continuous function, and accurate estimation is

required not just near observed locations, but across the whole unseen domain. Once

again, predicting and updating a belief of this size is computationally intensive.

Chapter 6 employs a sparse Gaussian process (GP) for reconstructing static, scalar spatial

fields in environmental monitoring settings. The sparse GP produces a continuous estimate

of y via a set of interpolating inducing points, reducing the computational complexities

faced when using full GPs. We harness this structure of the sparse GP in the planning

stage, proposing to plan over the belief space of inducing points rather than the full

representation. Then, the latent variable ξt is the spatial field estimate held at the inducing

point set. The evolution of this estimate is modeled by a Kalman-like belief update, giving

a scalable, online framework to explore the reduced latent belief space.
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1.4 Outline and Contributions

The main contribution of this thesis is the introduction of reduced latent variable belief

space planning as a framework to simultaneously reduce computational complexity and

improve estimation quality in active perception problems. To this end, we contribute a

suite of reduced latent variable belief spaces and evaluate them. Below is an outline of

each chapter with their contributions.

Chapter 2 presents a review of established literature relevant to this thesis, covering

previous work on active perception, belief space planning and the specific problem settings

studied in this thesis.

Chapter 3 gives a brief introduction to information theory and Bayesian filtering, tools

that are central to the work presenting in following chapters. Established belief space

planning algorithms used in this thesis are also introduced.

Chapter 4 addresses active perception of systems with arbitrary, unknown inputs in their

dynamic model. To avoid complications associated with jointly estimating both the system

state and the unknown input, this chapter proposes planning over the state belief space

only. The structure of the unknown input filter used to maintain beliefs allows the state

to be treated as the latent variable via which inference of the full system description is

performed. The contributions of this chapter are as follows:

• Reduced latent belief space planning where ξt is the state variable, a subset of the

full system description.

• An extension of the Reduced Value Iteration algorithm to the proposed reduced

latent belief space for active estimation of linear Gaussian systems with unknown

inputs.

• Derivation of suboptimality bounds for full system estimation acquired through plan-

ning over the proposed reduced latent belief space with the RVI extension.

• Evaluation of the proposed approach on an adversarial target tracking example.
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Chapter 5 further explores active target tracking, where target dynamics are modelled

via a multi-modal distribution learned from historical trajectory data. Homotopy classes

are introduced as the latent variable used to facilitate reduced belief space planning. This

chapter’s contributions are:

• Reduced latent belief space planning where ξt is the homotopy class of the target’s

trajectory, a discrete random variable with sparse belief space.

• Development of a topological multi-modal trajectory prediction model based on

Gaussian mixture models and homotopy classes to facilitate homotopic belief up-

dates based on low-level measurements.

• Evaluation of the proposed belief space planning methodology on real pedestrian

data, demonstrating that planning over the homotopic belief space results in impres-

sive estimates of target state with substantially fewer measurements.

Chapter 6 addresses active mapping using sparse Gaussian processes. Sparse GPs are

used as an efficient representation for the spatial field under estimation due to scalability

challenges associated with full GPs. We additionally leverage the inducing point-based

sparse GP for improved planning. Specifically, the contributions of this chapter are:

• Reduced latent belief space planning where ξt is the pseudo-measurements held at

inducing point locations.

• A theoretical connection between belief space planning and deterministic worst-case

estimation error minimisation for active mapping with sparse GPs via derivation of

information-theoretic bounds on worst-case estimation error.

• Demonstration of the proposed methodology on a mapping problem for an under-

water robot in a flow field.

Chapter 7 summarises and concludes the thesis, providing discussion regarding implica-

tions of this and future work.
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Chapter 2

Related Work

This chapter gives a review of existing literature relevant to this thesis. First, we review

progress in solving the active perception problem. Then, we outline existing solutions to

belief space planning and review work adjacent to our latent variable approach. Finally,

we cover literature pertaining to the active perception tasks addressed in this thesis.

2.1 Active perception

The active perception problem statement, to actively select sensing actions that improve

understanding of the environment, is a broad statement that can be addressed in many

ways. As such, within the research there are various degrees to which perception is ‘active’.

In this section we review progress toward increasingly sophisticated sensing policies.

2.1.1 Exploration-based methods

Active perception for mapping, inspection, object search, classification or recognition can

be framed as a exploration maximisation problem. This is an intuitive approach – to

maximise the understanding of the environment or an object, visit all unseen locations.

Frontier-based exploration was introduced for active mapping in [23], where goal locations

for sensing are those on the edge of known and unexplored space, or frontiers. Then, the

17
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sensing policy is to navigate directly to the nearest frontier and observe new space. Frontier

exploration was a pioneering approach in active mapping, but the myopic, distance-based

frontier selection in [23] suffers from local minima and is thus not optimal for maximising

coverage in minimal time.

Since its introduction, frontier-based exploration has been expanded to introduce various

utility functions for improved frontier selection. For mapping and inspection tasks as

in [24–27], frontier selection is based on the utility of the viewpoint, where utility is

captured by how many unseen grid cells are revealed at the frontier. Additionally, the cost

of navigation is considered in the frontier selection, promoting more efficient exploratory

behaviour. Evaluation of different frontier-based methods in [28] for mapping illustrates

that these cost-utility based methods exhibit more rapid initial coverage of the environment

than the original distance-based selection policy in [23].

Utility functions can be designed to suit the the perception task at hand, making frontier-

based methods more broadly applicable to perception tasks other than mapping. For

example, for active search tasks, utility functions can include the probability of successful

communication between collaborating robots [29, 30] or the likelihood of detecting a target

object [31]. However, in frontier-based research, there is no unified approach to active

perception as a whole, as the utility function design is ad-hoc.

Other exploration-based methods treat exploration as a coverage problem, where by the

end of a sensing trajectory, the accumulated sensed area must cover the entire domain.

These approaches optimise sensing networks or sensing trajectories over a discretisation of

the domain such that theoretical coverage guarantees are met [32–34]. More recently, the

coverage problem has been addressed for continuous domains, increasing the complexity of

the optimisation problem as the search space over continuous paths becomes infinite. Here,

ergodic search methods are developed, where continuous trajectories are designed whose

time-averaged spatial distribution approximate the spatial distribution of information in

the domain [35]. This approach has been shown to be optimal for exploration under certain

conditions [36] and is not limited by a discretisation of the environment, and thus is an

increasingly popular method [37, 38].
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2.1.2 Information-based methods

Information-based methods select sensing actions with planning heuristics grounded in

information theory. Information theory provides a single, unified approach to any active

perception task: to drive down entropy or uncertainty in estimated variables by maximising

information gain. This approach has been shown to give more accurate estimation results

than frontier-based alternatives [28, 39, 40].

Information gain is a monotone submodular function, meaning measurements always pro-

vide positive information about a variable, however as more measurements are taken, less

information is gained [4]. This property renders greedy approaches to maximising infor-

mation gain highly attractive. Not only are they efficient, but they have been proven

to give at worst a constant-factor approximation to the optimal maximum information

gain [41]. Despite this, non-myopic planning for information maximisation can still out

perform greedy policies. This is especially the case for active perception tasks complicated

by sensing or dynamic constraints, where the constant-factor guarantee may break. Vari-

ous non-myopic algorithms with performance guarantees have been developed to this end

in [20, 42, 43]

Information-driven active perception can additionally encourage behaviour beyond pure

exploration. In some cases, the goal of reducing uncertainty manifests as exploitative

behaviour as well. For example, in active SLAM map uncertainty is minimised not only

by exploration, but also by re-visiting sensing locations, referred to as loop closure. By

visiting a known location, mapping uncertainty and errors due to sensor drift can be

corrected. In active SLAM works such as [25, 44, 45] the trade-off between coverage and

loop closing – or exploration and exploitation – is inherently balanced via information gain

maximisation.

Information-based methods are closely tied to belief space planning in that they both

explicitly handle uncertainty during planning. In fact, much information-based active

perception research adopts belief space planning as a planning method.
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2.2 Belief space planning algorithms

Active perception is a task complicated by various sources of uncertainty. In realistic

circumstances there is stochasticity in a robot’s motion model, sensing model and envi-

ronment, and the true optimal control sequence for maximising information gain can only

be estimated. This problem can be formulated as an instance of a partially-observable

Markov decision process (POMDP) problem [46].

A POMDP consists of environmental or robot states st at time t, a set of actions A(st)

for each state, a transition model P (st+1 | st, at) describing the probability of moving to

state st+1 by taking action at ∈ A(st) at state st (capturing motion or environmental

uncertainty) and a set Ω(st+1) of possible measurements yt+1 of new state st+1, each with

a probability P (yt+1 | st+1, at) of occurrence (capturing sensing uncertainty). Due to

this sensing uncertainty, the robot must maintain a belief b(st) over the state. Then, as

the robot takes an action at and observes yt+1 it can calculate an updated belief b(st+1)

via Bayesian inference. Each action has associated reward R(at, b(st+1)) which quantifies

the quality of the belief that follows from taking it. Since the measurement outcome

yt+1 ∈ Ω(st+1) is not known prior to taking an action, the reward for taking an action

must be evaluated by taking the expected value over all possible measurement outcomes.

A solution to the POMDP problem is thus a mapping from belief space to action space,

or a policy for selecting actions that maximises the expected reward.

The POMDP framework and belief space planning is a ubiquitous approach in information-

driven active perception, as it allows roboticists to place estimation and uncertainty min-

imisation at the heart of planning strategies. It has been used with great success as

an approach to active perception problems such as active SLAM [47–53], active recogni-

tion [54–58], active intention inference for human-robot collaboration [59–61] and environ-

mental monitoring [62–65]. However, this broad usage of belief space planning in active

perception is only possible thanks to major developments in POMDP solvers.

Finding optimal solutions to POMDP problems is generally intractable due to the high
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dimensionality of the belief space and long planning horizons [14]. In fact, it is a PSPACE-

hard problem [66]. The first approaches to demonstrate the viability of POMDP formu-

lations in robotics were sampling based, solving the problem over a sampled set of beliefs

rather than the full space. The general approach is to expand a belief tree by sampling

action space and observation space. For each action, a set of observations are sampled and

belief nodes corresponding to each action-observation pair are added to the tree. Sampling

beliefs is therefore equivalent to choosing a node to expand with an action-observation pair.

The value or quality of sampled beliefs are estimated via back-propagation of the value of

their descendants in a value iteration process.

The Point-based Value Iteration (PBVI) [67] algorithm produced successful solutions to

POMDP problems an order of magnitude larger than any solver preceding it by sampling

only the belief space reachable by the robot and performing value iteration to estimate

rewards associated with actions. Perseus [68] improved upon PBVI by performing back-

propagation of value estimates over a subset of the sampled beliefs to reduce computation

time further. The breakthrough algorithm SARSOP [69] produced better solutions to the

same problems as its predecessors in only seconds rather than hours by sampling only

from an approximated region of belief space reachable from the optimal policy. Advance-

ments continue to be discovered by improving the way sampling and value iteration is

performed [70–73].

Other sampling-based methods apply to problem settings where beliefs are assumed to

be Gaussian and dynamics to be linear. In these cases the separation principle applies,

allowing the problem to be reduced to a deterministic control problem where sampling to

calculate expectations over measurement outcomes no longer needs to be considered [74].

The belief spaces here are Gaussian in nature, and beliefs expected from a sensing action

can be computed via the Kalman filter. Then a search tree in belief space can be expanded

deterministically to find a solution, as in [15, 16, 20, 75, 76]. These assumptions have also

been used to extend traditional algorithms such as Rapidly-exploring Random Trees and

the Probabilistic Roadmap to explore the belief space for belief space planning [77, 78].
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2.2.1 Latent belief space planning

At the core of each aforementioned approach is an attempt to reduce the belief space

associated with the target state to a more manageable representation for planning. The

work in this thesis presents an alternative route: to focus on a feature related to the state

that has a naturally smaller belief space for more efficient planning. These latent features

with reduced belief spaces must still be informative for the perception task at hand. Our

approach is related, but not equivalent, to the following established work.

In [79] the authors identify that some systems exhibit what they refer to as mixed observ-

ability. In systems with mixed observability, some elements of the state are either fully

observable or can be sensed with enough accuracy to be considered so. The remaining

states are partially observable as in typical POMDP formulations. Then the state can

be partitioned into fully observable and partially observable components via a factored

model. The belief space is then similarly partitioned into two corresponding disjoint sub-

spaces. Belief space planning can be performed over just the partially observable belief

space, which is of much lower dimension than the full belief space. The mixed-observability

Markov decision process (MOMDP) framework improved performance of SARSOP on a

number of benchmark POMDP problems. This approach is similar to the one presented in

this thesis. In fact, the MOMDP model can be illustrated in a similar way to Figure 1.3(b),

however, our proposed model has no fully observable component and the desired state must

be inferred from the latent variable.

An extension of the MOMDP formulation to include partially observable latent features

that are not direct subsets of the target state was presented in [61]. Here, the partially

observable variable describes a pedestrian’s intent, while the position and velocity of the

entity are assumed to be fully observable. Then, intention-aware motion planning is ex-

ecuted according to the current intent belief by solving the MOMDP problem. Similar

motion planning work over latent belief spaces is studied in [80, 81]. While related to

this thesis as they introduce planning over belief spaces of latent variables, this work is in

motion-planning rather than active perception, and still assumes mixed observability.

Latent belief space planning for active perception is not yet well established in the liter-

ature beyond work presented in this thesis. However, the power of estimating a related
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latent variable for improving estimation of a target state has been demonstrated numerous

times before. For example, in trajectory prediction and estimation, estimation of social

interactions between entities has improved accuracy demonstrably [82–84], as has estima-

tion of the entity’s goal or intention [85–87]. In these papers, planning for perception is

performed over the full belief space associated with the state or via other methods all

together. Perception of the latent variable is passive. On the other hand, in this thesis

planning is performed over the smaller latent belief space and active perception of the

latent variable is used to inform estimation of the full state.

2.3 Applications

As described in Chapter 1, active perception is a general problem with many specific

applications. In the remainder of this chapter, we review related work surrounding the

applications studied in this thesis.

2.3.1 Active estimation of states with unknown inputs

Often in robotics there are systems whose evolution involve some arbitrary, unknown dis-

turbances that are difficult or even impossible to statistically interpret or model. These

unknown disturbances are of great importance for understanding the system, and thus

must be estimated. For example, understanding the behaviour of faults or attackers on

cyber-physical systems is crucial for safeguarding against them [88–90]. When tracking and

localising moving objects or entities, we must be able to estimate any abrupt manoeuvres

they perform or are subject to [91–95]. Complex interactions in advanced vehicle applica-

tions [96–99], and grasping and manipulation [100, 101] are also important to estimate in

many robotics applications, though they may not be easy to model.

Active estimation of these unknown inputs is thus an attractive approach to improv-

ing our understanding of these systems. However, since they are difficult to statistically

interpret or model, belief space planning for improving estimation is near impossible.

Thankfully, unknown input filtering or Simultaneous Input and State Estimation (SISE)

frameworks [22, 102–105] have been designed that can facilitate this. Specifically, [22]
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decouples the unknown input from the system dynamic model, maintaining an estimate

and associated error covariance for the two components separately. Then, as in Chapter 4,

active estimation via belief space planning is possible. However, it is a joint estimation

problem, where both the state and the unknown input must be estimated together.

Joint active estimation is not straightforward. Often the sensing actions that maximise

information gain regarding one component of the joint state is at odds with optimal sens-

ing actions for the other. A famous instance of this is in active SLAM, where exploratory

behaviour to maximise mapping information is at odds with loop closing to maximise

localisation information [106]. Balancing these two goals is important for good active per-

ception, but bloats the size of the already large belief space. In Chapter 4 we demonstrate

that for joint active estimation of states with unknown inputs, one can focus on perception

of a single variable and rely on the structure of the unknown input filter to recover good

joint estimation.

2.3.2 Active target tracking

Tracking the dynamics and behaviour of other agents is important for autonomous robots

to operate harmoniously in environments with moving entities such as pedestrians, vehicles,

animals or human collaborators [9, 82, 86, 107–112]. It is also central to target localisation

and tracking problems that can benefit from mobile sensing robots such as surveillance

and search and rescue [93, 113–115].

Understanding a target’s motion model is necessary for active target tracking, as predic-

tive models of motion facilitate the prediction and update of beliefs required for belief

space planning. For targets whose motion models can be sufficiently described by linear

dynamics with additive Gaussian noise, a Kalman filter is optimal for this task as long as

measurement noise is also Gaussian distributed [20, 75, 92, 116–120]. Extensions are easily

made to non-linear target and sensing dynamics via linearisation with an extended Kalman

filter in [121–123]. For active target tracking in cases where noise is also non-Gaussian,

beliefs can be approximated via sampling using particle filters [113, 124–126].
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Sometimes target dynamics are complex enough to warrant learning a model for them.

These learned models must again support belief space planning. Previously, recurring

neural networks and long-short term memory networks have been implemented for learning

motion models with success [127–130]. Other approaches have introduced mixture models

such as Gaussian mixture models (GMMs) and the kernel trajectory map [131] to capture

the multi-modal nature of an agent’s possible future paths, showing greater prediction

accuracy over single-mode approaches [107, 132–134].

Multi-modal or multi-hypothesis models can be overwhelming in belief space planning

scenarios. With each measurement and belief update, the number of possible hypotheses

grow. For beliefs represented by GMMs, there has been plentiful work in best address-

ing this combinatorial expansion via, for example, pruning non-dominant or redundant

components [135–139]. In Chapter 5, we propose to fix the number of possible motion

hypotheses to the number of possible high-level motions or homotopy classes. Then a

simplified, component-wise belief update can be performed via Gaussian conditioning as

in [132].

2.3.3 Active mapping

The online mapping of scalar spatial fields from measurement data is often required in

environmental monitoring applications in oceanography [140, 141], agriculture [142] and

even navigation [65, 143]. Here, the state under estimation is a representation of space and

can be prohibitively large to estimate. Much work has been directed toward addressing

this, designing efficient representations [144–146] and filtering algorithms [147–149]. A

particular representation of interest in this thesis is provided by Gaussian proccesses (GPs).

GP regression [150] is a powerful machine learning technique for modelling spatially cor-

related phenomena. GPs have been widely used in the robotics community to estimate a

variety of spatial fields as in [65, 140, 142, 143, 151, 152]. However, few robotics papers

have studied GP regression beyond its use as a tool. A full understanding of its theoretical

power in robotics is yet to be achieved. In [153–155] the connection between GP regres-

sion and kernel interpolation theory is studied, providing error bounds given noise-free

observations. However, this is a noise assumption rarely applicable to active perception
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applications. In Chapter 6 we extend these results to cases where observation noise is

bounded, a more realistic assumption in robotics.

Another property of GPs pertinent to robotics applications is that the computational

complexity of GP regression scales cubically with the size of the input data. This can

be problematic in real-time active perception scenarios. Sparse GP approaches mitigate

this computational challenge by adopting simplifying approximations [147, 156–158]. One

such approximation is the inducing point formulation [147, 156, 159], where the target

function is assumed to be conditionally independent given the function values at a fixed

set of inducing points. A recent advance in inducing point-based sparse GP regression is

that incoming measurements can be ‘fused’ via recursive Bayesian estimation of a latent

Gaussian state of fixed dimensionality, reminiscent of Kalman filtering [142, 148, 151, 160–

162].

Path planning for optimal reconstruction of a GP is typically posed as an information

gain or marginal entropy maximisation problem [17, 65, 163, 164]. However, this involves

planning heuristics whose computational cost grows as the size of the measurement set

grows. In Chapter 6 we instead propose to treat the sparse GP estimate held at the

inducing points as the latent variables via which the full estimate is inferred. Then,

planning over this belief space is simplified as the computational cost is fixed throughout

the planning horizon.



Chapter 3

Background

This chapter presents the mathematical formulation for several of the tools and concepts

foundational to this thesis. First, information theory is introduced along with measures

of information gain. Then, Bayesian filtering is introduced in the context of maintaining

beliefs based on measurements. Finally, established belief space planning algorithms used

throughout this thesis are detailed.

3.1 Information theory

Information theory is the mathematical framework through which the quantification and

transmission of information is studied. Thus, information theory provides the tools re-

quired for quantifying the expected information gain that a robot’s measurements will

provide. In Chapter 1 the state y1 is introduced as a random variable due to noise pro-

cesses. The information content of a state y – an outcome of the discrete random variable

Y – can be intuited as a value which increases as the probability of the state outcome

decreases. That is, low probability states have high information content I,

I(y) = log

(
1

p(y)

)
, (3.1)

1For ease of notation, we drop time-dependence and boldfacing for yt, zt introduced in Chapter 1, as
concepts in this section are applicable to states of any dimension and can be extended to the time-varying
case by considering random processes rather than random variables.

27
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where p(y) is the probability of outcome y given by the probability mass function p.

The information content of the random variable itself is then the expected value of I over

the space of possible states Y,

H(Y ) = EY [I(Y )] = −
∑
y∈Y

p(y) log p(y). (3.2)

H is referred to as the Shannon entropy, or simply the entropy, of Y . The higher the

entropy of a random variable, the higher its information content or uncertainty.

Measurements z are outcomes of random variable Z that inform us about Y . To quan-

tify how much information a measurement provides, we calculate the entropy of Y when

conditioned on outcome z,

H(Y | Z = z) = −
∑
y∈Y

p(Y = y | Z = z) log p(Y = y | Z = z), (3.3)

where the conditional probability p(y | Z = z) =
p(y, z)

p(z)
is understood as the probability

that random variable Y takes value y given we know outcome z occurred.

Then, just as before, we can calculate the expected information that Z contains about Y ,

known as the conditional entropy,

H(Y | Z) = −
∑
z∈Z

∑
y∈Y

p(Y = y | Z = z) log p(Y = y | Z = z). (3.4)

So far we have assumed Y is a discrete random variable. This means the notion of the

probability of an event p(y) is well defined, allowing us to understand the intuition of

entropy by considering the information content of discrete events. However, in the context

of robotics, Y and Z are typically continuous random variables described by continuous

probability density functions (PDFs), distinguished notationally from probability mass

functions via capitalisation. While p(y) refers to the absolute probability of outcome y,

P (y) refers to the PDF over outcome y. Here, probabilities are evaluated by integrating

PDFs over intervals. Henceforth, all random variables in this thesis will be continuous

unless stated otherwise.
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We thus require a continuous analogue for entropy, known as differential entropy, defined

by replacing the sum in Equation (3.3) with an integral over the now continuous space of

outcomes Y,

H(Y ) = −
∫
Y
P (y) logP (y)dy. (3.5)

Similarly for conditional entropy,

H(Y | Z) = −
∫
Z

∫
Y
P (y | z) logP (y | z)P (z)dydz, (3.6)

where P (y | z) = P (y, z)

P (z)
with P (y, z) the joint distribution of outcomes y and z.

Intuitively, the conditional entropy is a measure of how much information remains about

Y given what is known about Z. If H(Y | Z) = 0, then the value of Y is completely

determined by Z. If Y and Z are independent, then Z contains no information about

Y and H(Y | Z) = H(Y ). Conditioning on measurements can never increase entropy,

that is, H(Y | Z) ≤ H(Y ), and entropy is always non-negative. Further, since this is

an expectation over all possible measurements, it is independent of specific measurement

outcomes. These are important remarks in the context of Problem 1.1.

With an understanding of entropy and conditional entropy, measures of information gain

can be introduced. The mutual information of Y relative to Z quantifies the information

extracted or uncertainty reduced about Y given our knowledge of Z, defined as

I(Y ;Z) = H(Y )−H(Y | Z). (3.7)

Mutual information can also be expressed in terms of a comparison between the probabil-

ity density function of Y conditioned on measurement variable Z and the unconditioned

density,

I(Y ;Z) = EZ [DKL (P (y | z), P (y))] (3.8)

=

∫
Z

∫
Y
P (y | z) log

(
P (y | z)
P (y)

)
dydz, (3.9)

where DKL is the Kullback-Leibler (KL) divergence, often referred to as the relative en-

tropy, a non-negative function of PDFs which takes value 0 when the two PDFs are exactly
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identical. However, it is not a true metric as it does not satisfy symmetry or the triangle

inequality.

For some distributions the above measures of uncertainty and information gain do not have

closed analytic form and are difficult to compute. However, for k-dimensional multivariate

normal distributions, i.e. y ∼ N (µ,Σ), the PDF has analytic form

P (y) =
1√

(2π)k detΣ
exp

(
−1

2
(y − µ)TΣ−1 (y − µ)

)
. (3.10)

Then, the measures have closed analytic form for k-dimensional normally distributed ran-

dom variables Y and Z,

H(Y | Z) = k

2
ln 2πe+ ln detΣY |Z , (3.11)

DKL(P (y), P (z)) =
1

2

[
µ̃TΣ−1

Z µ̃+Tr(Σ−1
Z ΣY )− ln

detΣY

detΣZ
− k
]
, (3.12)

where µ̃ = (µZ − µY ) and ΣY |Z = ΣY − ΣY ZΣ
−1
Z ΣZY is the covariance of Gaussian

conditional distribution P (y|z).

3.2 Bayesian filtering

The core of the work in this thesis relies on calculating and updating a robot’s belief over

a state of interest with measurement data. Bayesian estimation facilitates precisely this.

In this section we formalise the notion of a belief and review Bayesian estimation and

filtering, tools used throughout the following chapters for this purpose.

A belief is a probabilistic estimate of a state conditioned on measurements2,

bt|t = P (yt | z1:t) 3. (3.13)

This probability density function is referred to as the posterior estimate, posterior belief or

simply the posterior. The notation bt|t indicates that it is an estimate of the state at time

2In this thesis we consider conditioning only on z1:t and do not include the control history u1:t as the
robot’s dynamics are assumed to be deterministic throughout.

3Again states and measurements are notated as scalar, though they can be easily replaced with vectors.
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t made with data up to time t. In Bayesian estimation we are concerned with calculating

this belief via Bayes’ theorem.

Theorem 3.1. (Bayes’ theorem) The conditional distributions of two continuous random

variables Y and Z with probability density functions P (y) and P (z) are related as follows:

P (y | z) = P (z | y)P (y)
P (z)

. (3.14)

In the context of Problem 1.1, calculating bt|t = P (yt | z1:t) is a straightforward application

of Theorem 3.1. Here, the observation model in Equation (1.3) provides the ‘inverse’

conditional distribution P (z1:t | yt), which describes in some sense how measurements

are generated by yt. P (yt) is the prior distribution reflecting the initial belief before any

measurements are taken. P (z1:t) is known as the evidence, marginal likelihood or simply

the normalisation factor.

In active perception tasks, measurements are taken online and the above calculation is

performed recursively with each new zt to keep the state estimate up to date and enable

intelligent online planning. Recursive Bayesian filtering is a framework for predicting a

prior belief bt|t−1 from bt−1|t−1 and updating it with each new measurement zt to recover

bt|t. Each recursion is facilitated by Bayes’ theorem.

The prior belief is the estimate at time t before incorporation of information from most

recent measurement zt,

bt|t−1 = P (yt | z1:t−1) , (3.15)

sometimes also referred to as the prediction. The notation bt|t−1 indicates that this distri-

bution is an estimate of the state at time t made with data up to time t− 1.

Updating prior bt|t−1 with measurement zt is a simple application of Bayes’ theorem,

bt|t = P (yt | z1:t) =
P (zt | yt)P (yt | z1:t−1)

P (zt | z1:t−1)
. (3.16)

The denominator P (zt | z1:t−1) =
∫
P (zt | yt)P (yt | z1:t−1)dyt is often an unwieldy integral

to compute. Thankfully, it is a constant with respect to the state yt and can thus be
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treated as a normalisation factor in practice. After the numerator is evaluated it can be

normalised, giving a valid probability distribution.

Prediction of the state at t given data up to t− 1 is calculated via

bt|t−1 = P (yt|z1:t−1) =

∫
P (yt | yt−1)P (yt−1 | z1:t−1)dyt−1, (3.17)

where P (yt | yt−1) is the dynamic model in Equation (1.2)). Note we assume dynamics

are Markov in nature, such that P (yt | y1:t−1) = P (yt | yt−1).

Of course, for recursion to be fully enabled an initial belief b0 = b0|0 is required. The

choice of distribution for this initial belief impacts the design of the filter, as does the

measurement model and dynamic model. As seen above, all three of these factors in-

fluence the resulting posterior distribution greatly. These factors additionally influence

the computational efficiency of the filter, determining whether posteriors are analytically

tractable, or whether they must be approximated. Clearly, Bayesian filtering is a general

framework implementable in many different ways. To conclude this section and consolidate

understanding a particular implementation relevant to this thesis is given.

The Kalman filter

The Kalman filter is perhaps the most well known of all Bayes filters. It applies the

Bayesian filtering framework to systems with linear Gaussian dynamics and observation

models. That is to say, state dynamics (recall Equation (1.2)) take the form4

yt+1 = At+1yt + wt, (3.18)

with additive Gaussian noise variable wt ∼ N (0, Qt). Similarly, the sensor observation

model in Equation (1.3) follows

zt = Ct(xt)yt + vt(xt), (3.19)

4Sometimes the system can be modelled with an additional input vector ut. As long as dynamics are
linear in this additional argument, the Kalman filter holds.
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with vt(xt) ∼ N (0, Rt(xt)). Along with these linear Gaussian assumptions, a Gaussian

initial belief b0 ∼ N (µ0,Σ0) is assumed. The dependence of Ct and vt on the robot state

xt will henceforth be dropped for brevity, however it is important to remember sensing

location influences measurement outcomes.

The Kalman filter recursively updates the mean and covariance of the belief, beginning

from µ0 and Σ0. Linear Gaussian assumptions mean random variables Yt and Zt follow

Gaussian distributions for all t. The Kalman filter is therefore an instance of a Gaussian

filter, which reappear frequently in this thesis. Since normal distributions are described

completely by their mean and covariance, a Gaussian filter needs only to maintain these

two statistics. Moreover, their update has closed form and is generally tractable.

Substituting the relevant distribution functions into Equations (3.16) and (3.17) give the

resulting mean and covariances for the prior and posterior beliefs, stated below.

Predict: Following Equation (3.17) the prior belief is given by

bt|t−1 =

∫
P (yt | yt−1)︸ ︷︷ ︸
∼N (At+1yt,Qt)

P (yt−1 | z1:t−1)︸ ︷︷ ︸
∼N (µt|t,Σt|t)

,

where bt|t−1 ∼ N (µt|t−1,Σt|t−1) with

µt|t−1 = Atµt−1|t−1, (3.20)

Σt|t−1 = AtΣt−1|t−1A
T
t +Qt. (3.21)

Update: Following Equation (3.16) and disregarding the normalisation factor we have

bt|t ∝ P (zt | yt)︸ ︷︷ ︸
∼N (Ctyt,Rt)

bt|t−1,

where bt|t ∼ N (µt|t,Σt|t) with

µt|t = µt|t−1 +Kt(zt − Ctµt|t−1), (3.22)

Σt|t = (I−KtCt)Σt|t−1. (3.23)
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Here, Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t + Rt)

−1 is known as the optimal Kalman gain. It is

guaranteed to minimise the mean square error of the estimate.

Note that update and prediction of the covariance of the belief is independent of any future

measurements. This means a recursive update of the covariance is possible based only on

future sensing positions xt+1 reached via control ut with the Riccati mapping

Σt+1 = ρut(Σt) = Āt+1(AtΣtA
T
t +Qt)Ā

T
t+1 + Ft+1Rt+1F

T
t+1, (3.24)

where the shorthand Σt|t = Σt is used for brevity, Āt+1 = (I −Kt+1Ct+1)(AtΣtA
T
t +Qt)

and Ft+1 = Kt+1(AtΣtA
T
t + Qt). As covariance is strongly linked to uncertainty and

information gain, this is an important result.

3.3 Tree search planning algorithms

There is no dearth of planning algorithms available for use in belief space planning, but

those used in this thesis fall under the general category of tree search planners. In the

context of this thesis – with deterministic robot transition models – tree search algorithms

generally represent the robot’s state space as a discrete space enabled by a set of discrete

controls. Nodes represent states and edges represent actions taken to transition between

states. The expansion and search of such a tree can be performed via the Forward Value

Iteration (FVI) algorithm as follows. Starting from a root node one calculates the set of

possible next states from the discrete action space, adding new nodes to the next level

of the tree. This continues for each node in each new level of the tree until the planning

horizon is reached. After the tree is fully expanded, the total cost or reward of any path

through the tree can be calculated from root to leaf, and an exhaustive search of all possible

paths guarantees the optimal path is recovered.

FVI requires a search over a tree of size O(|U|T ) where U is the action space and T the

planning horizon. For large action spaces or long planning horizons this search is impossible

complete within the real-time requirements of robotics applications. Consequently, various

non-exhaustive search algorithms have been developed to recover sub-optimal solutions in

feasible time frames. Two such algorithms are outlined below.
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3.3.1 Reduced Value Iteration

The Reduced Value Iteration (RVI) algorithm was introduced in [117] for the purpose of

sensor scheduling and studied further in [20] for sensor trajectory planning with linear

Gaussian systems. In both cases RVI is introduced in the context of active perception,

where a solution represents a policy for sensor scheduling or planning that suboptimally

minimises a cost function J(ΣT ) of the state estimation covariance at the end of the

planning horizon.

RVI expands a tree T over possible robot states and corresponding beliefs, that is, each

node nt at level t encodes data (xt,Σt). Expansion of the tree thus requires both a de-

terministic dynamic model for the sensing robot and a method for propagating belief

covariances based only on future sensing states, such as a Riccati mapping. Then, expan-

sion is as per FVI, but with pruning of ‘non-informative’ nodes, reducing the size of the

final tree. The extent of pruning is dictated by user-defined tuning parameters which trade

computational complexity for optimality of the resulting solution. Moreover, the manner

in which pruning is performed allows for derivation of analytical suboptimality bounds,

giving an understanding of solution quality – a desirable feature in a planning algorithm.

Pruning is based on the identification of informationally redundant nodes. These nodes

have covariance matrices which are dominated by other covariance matrices on the same

level of the tree. Under certain assumptions regarding the map used for propagating

belief covariances in time, dominated nodes are ensured to remain so for all future times,

rendering their future trajectories effectively useless. These assumptions are given below.

Assumption 3.1. For any Σ1,Σ2 ∈ P+, the Riccati mapping ρ is:

1. Monotone: if Σ1 ⪯ Σ2 then ρ(Σ1) ⪯ ρ(Σ2)

2. Concave: ∀α ∈ [0, 1], ρ(αΣ1 + (1− α)Σ2) ⪰ αρ(Σ1) + (1− α)ρ(Σ2).

From the monotone property one can intuit that if a belief has larger covariance than

another at the same time step, it will continue to have larger covariance for all future

times. From concavity, if a covariance can be written as the linear combination of two

other covariance matrices Σ1, Σ2, its update will be larger than the linear combination of
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the updates of Σ1 and Σ2. These properties thus motivate the pruning policy RVI is based

on. If at the same sensing location a node has a larger covariance than another or can be

written as a linear combination of others, it is considered non-informative or algebraically

redundant and will remain so for all time. Such nodes are therefore pruned.

Definition 3.1. (Algebraic redundancy [117]) Let {Σi}Ki=1 be a finite set with Σi ∈ P+

∀i. Then a matrix Σ ∈ P+ is algebraically redundant with respect to {Σi}Ki=1 if there

exists a set of non-negative constants {αi}Ki=1 such that

∑K
i=1 αi = 1, Σ ⪰

∑K
i=1 αiΣ

i. (3.25)

Pruning algebraically redundant nodes that cross each other (i.e., share a xt) after each

level is expanded can reduce the size of the final tree substantially. Moreover, if the Kalman

filter Riccati mapping in Equation (3.24) is used and the cost function J is monotone and

concave, the final tree is guaranteed to still have the optimal solution within it [20, 117].

However, further computational savings can be made by introducing flexibility in the

definition of algebraic redundancy.

Definition 3.2. (ϵ-Algebraic redundancy [117]) Let ϵ ≥ 0 and {Σi}Ki=1 be a finite set with

Σi ∈ P+ ∀i. Then a matrix Σ ∈ P+ is ϵ-algebraically redundant with respect to {Σi}Ki=1

if there exists a set of non-negative constants {αi}Ki=1 such that

∑K
i=1 αi = 1, Σ+ ϵI ⪰

∑K
i=1 αiΣ

i. (3.26)

Introducing tuning parameter ϵ no longer guarantees optimality of solutions. However, an

upper bound on the resulting suboptimality is known [20, 117]. These bounds depend on

ϵ, where optimality is recovered when ϵ = 0.

When planning trajectories in continuous space it may be that no robot states land on

precisely the same xt. Then no nodes will be considered for ϵ-algebraic redundancy and

one is faced again with the computational complexity of FVI. In [20] this is managed by

introducing further flexibility in the definition of trajectory crossings, broadening the set

of nodes checked for ϵ-algebraic redundancy to those that come within δ distance of one

another.
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Algorithm 1 Reduced Value Iteration

Inputs: L0 = (x0,Σ0), ϵ ≥ 0, δ ≥ 0, planning horizon T , cost function J .

1: Lt = ∅ ∀t = 1, . . . , T
2: for t = 1 : T do
3: for (x,Σ) ∈ Lt−1 do
4: for u ∈ U do
5: Lt = (f(x, u), ρu(Σ)) ∪ Lt ▷ Expand new level according to dynamics
6: end for
7: end for
8: (x∗,Σ∗) = argminLt J(Σt) ▷ Find the lowest cost node
9: L′t = {(x∗,Σ∗)} ▷ Initialise set of nodes to keep in tree

10: for (x,Σ) ∈ Lt \ (x∗t ,Σ∗
t ) do

11: for (x′,Σ′) ∈ L′t do
12: Q = {Σ | dX (x, x′) ≤ δ} ▷ Collect nodes in L′t that δ-cross x
13: end for
14: if Q = ∅ or not isRedundant(Σ, Q, ϵ) then
15: L′t = (x,Σ) ∪ L′t ▷ If no δ-crossings or not redundant, keep the node
16: end if
17: end for
18: Lt = L′t
19: end for
20: return minLT

J(ΣT )

Definition 3.3. (δ-Crossing trajectories [20]) Two sensor trajectories δ-cross at time

t ∈ {1, . . . , T} if for some δ ≥ 0 and metric dX ,

dX (x
1
t , x

2
t ) ≤ δ. (3.27)

For statements of suboptimality to be made under this less stringent pruning policy, con-

tinuity assumptions regarding the robot dynamics and sensor observation model are in-

troduced.

Assumption 3.2. [20] The sensor motion model f is Lipschitz continuous in x with

Lipschitz constant Lf ≥ 0 for every fixed control u ∈ U , i.e.

dX (f(x1, u), f(x2, u)) ≤ LfdX (x1, x2).

In other words, sensing trajectories that come close to one another remain close to one an-

other if the same control is applied. Applying this recursively implies that under identical
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control sequences, such sensing trajectories remain close for all time.

Assumption 3.3. [20] For any two nodes (x1t−1,Σ
1
t−1), (x2t−1,Σ

2
t−1), let Σ1

t , Σ2
t be the

updated state estimation covariances after applying control u ∈ U to each node. Then

Σ1
t ⪰ γΣ2

t + (1− γ)Qt−1,

Σ2
t ⪰ γΣ1

t + (1− γ)Qt−1,

∀t ∈ {1, . . . , T}, where γ = (1 + LmdX (x
1
t , x

2
t ))

−1 < 1 for some Lm > 0. Note for any

δ > 0, if dX (x
1
t−1, x

2
t−1) < δ then γ = (1 + LmLfδ)

−1 < 1.

That is, sensing from similar locations gives similar covariance belief updates. Together

these assumptions formalise the intuition that two trajectories that come close to one

another will remain close in both physical distance and informativeness. Based on this

intuition the goal is then to reduce search complexity by pruning nodes that are likely to

produce similar trajectories in the future.

Pseudocode for the full Reduced Value Iteration algorithm with ϵ, δ redundancy pruning

is given in Algorithm 1. New levels Lt for t = 1, . . . , T are expanded by applying each

control u in the admissible set U to each parent node in level Lt−1 (lines 3 to 7). After

expansion, a set L′t is created to store all nodes that will be kept in the tree, initialised

with the lowest cost node (lines 8 to 9). Then, δ-crossing nodes are collected and checked

for ϵ-algebraic redundancies. Any non-redundant nodes are added to L′t (lines 11 to 14).

The remaining are pruned.

Discarding trajectories in this manner reduces the complexity of the search algorithm

vastly while incurring a minimal loss in optimality. Once again, the size of this loss is

characterised by an upper bound derived for the Kalman filter Riccati mapping in [20].

In Chapter 4 suboptimality bounds are derived for another Riccati mapping suited for

motion models that are not purely linear Gaussian, but rather have an unidentified input

in their dynamics.
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3.3.2 Monte Carlo tree search

Some tree search methods opt to de-prioritise the expansion of certain nodes rather than

pruning them all together. In Monte Carlo tree search (MCTS) the prioritisation of nodes

for expansion is most commonly based on a balance of exploring new nodes and exploiting

existing nodes with promising expected return [165]. MCTS has been utilised for planning

in a number of robotics applications such as solving mixed integer problems, the travelling

salesman problem and belief space planning [166]. Here the algorithm is outlined in the

context of active perception.

The core concept of MCTS is to build a search tree iteratively until some user-defined

termination condition such as a time or iteration budget is met. Nodes again represent a

robot and belief state and edges represent actions taken to transition between nodes. With

each iteration of the algorithm, a new node is added to the tree whose value is estimated

via a simulation of a possible future sensing trajectory, or a rollout. This estimated value

is then used in future iterations to guide future expansion. In the context of this thesis, the

expected amount of information gathered throughout the simulation is used to estimate

the expected value or reward of the node.

Expansion of the tree is facilitated by the upper confidence bound for trees (UCT) policy

for selection of nodes. A child node v′ of parent v is selected if it maximises the UCT,

UCT =
R(v′)

N(v′)︸ ︷︷ ︸
exploitation

+c

√
2 lnN(v)

N(v′)︸ ︷︷ ︸
exploration

, (3.28)

where R(v′) is the cumulative reward collected over N(v′) rollouts from v′, and N(v) is the

number of times the parent node has been visited. c > 0 is a constant that dictates how

much exploration is allowed. Sampling is then guided by a balance of selecting children

with high expected reward and children that have not been visited often or at all (a child

with N(v′) = 0 has infinite UCT). Re-sampling incorporates more rollout evaluations into

the expected value of a node, improving accuracy.

In more detail, the four key steps of the algorithm pseudocode in Algorithm 2 are:
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Algorithm 2 Monte Carlo Tree Search

Inputs: Root node v0, c > 0, reward function r.

1: while termination condition not met do
2: vl = selection(v0)
3: v∗ = expansion(vl)
4: ∆r = rollout(v∗)
5: backpropagation(∆r)
6: end while
7: return argmaxL1 R(v1)/N(v1)

1. Selection. Starting from the root, traverse the existing tree according to UCT until

a leaf node vl is found.

2. Expansion. Expand the children of vl, adding new leaves to the tree by applying

actions u ∈ U to vl. Select from these children a node v∗ to rollout at random.

3. Rollout. Simulate a future sensing trajectory by randomly sampling actions from

U until a terminal node is reached. Evaluate the reward ∆r associated with this

simulation according to reward function r. For active perception tasks, this is a

measure of information gained or uncertainty reduced along the trajectory.

4. Backpropagation. Update the cumulative reward R(v) of all tree nodes v traversed

in the selection step by adding rollout reward ∆r. Similarly, increment the number

of visits N(v) to these selected nodes by 1.

Generally, when the termination condition is met, the path through the expanded tree with

highest reward is returned. However, in active perception settings replanning is required

with each new belief update. Then, the child of the root node with highest expected

reward is returned and executed.



Chapter 4

The state belief space for active

estimation of unknown inputs

To begin exploring reduced latent belief spaces for active perception we study active es-

timation of linear Gaussian systems with unknown inputs. Such systems are common in

robotics where there are spurious state dynamics which cannot be captured by the inclu-

sion of Gaussian noise in the dynamic model. These unknown inputs can be present in, for

example, cyber-physical systems undergoing faults or attacks, targets performing abrupt

manoeuvres, or any system with spurious signals due to environmental disturbances. In

these cases, a full description of the system under estimation can be written yS
t = [yt,dt]

T

where yt is the state vector and dt is the unknown input. Rather than estimating these

two components passively, we wish to actively plan sensing actions to obtain the best

estimates possible.

This is a joint estimation problem that brings with it a joint belief space of larger di-

mensionality and complexity than single component estimation. One may imagine that

optimal sensing locations for unknown input estimation may diverge from the optimal

sensing locations for state estimation and vice versa. In this chapter we address this chal-

lenge by focusing on the reduced belief space associated with only the state yt, avoiding

planning over the joint belief space entirely. That is, Problem 1.1 where information must

41
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be collected regarding yS
T is reduced to Problem 1.2, where ξT = yT , a sub-component of

the full system description yS
T . We show this approach is made feasible via the structure

of the unknown input filter introduced in [22] which allows dt to be inferred from yt, in

turn facilitating inference of the full system description yS
t as in Figure 1.3(b).

First, linear Gaussian systems with unknown inputs and the unknown input filter are

introduced. Then, our extension of the Reduced Value Iteration algorithm for planning

in the reduced state belief space is presented. Suboptimality bounds for state estimation

resulting from the proposed planning framework are derived. To study the efficacy of the

state-optimised plan as a solution for estimation of the full system description yS
T , we

also derive suboptimality bounds for the resulting unknown input estimate. Finally, the

approach is evaluated in a simulated active target tracking application. The work in this

chapter was first presented in [167].

4.1 Preliminaries and problem formulation

4.1.1 Preliminaries of filtering under unknown inputs

To begin, we introduce linear Gaussian systems with unknown inputs and the filtering

framework established in [22]. In such systems, the motion model in Equation (1.2) takes

form

yt+1 = Atyt +Gtdt +wt, (4.1)

where yt ∈ Rny is the state vector and the process noise wt ∼ N (0, Qt) is normally

distributed with zero-mean and covariance Qt ∈ P+. At, Gt are known matrices. Most

importantly, dt ∈ Rnd represents arbitrary, unknown inputs whose models or statistical

properties are not assumed to be known.

While in operation, the sensing robot has motion model according to Equation (1.1) and

observation model:

zt = Ct(xt)yt + vt(xt), (4.2)
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where zt ∈ Rnz is the measurement, Ct(xt) ∈ Rnz×ny is a known measurement matrix,

and the measurement noise vt(xt) ∼ N (0, Rt(xt)) with Rt(xt) ∈ P+. Throughout this

chapter it is assumed that (Ct, At) is observable and rank(CtGt−1) = rank(Gt−1) = nd

holds true for all t. Observability of the state is required for existence of the estimator,

while the rank constraint ensures the esimator is unbiased in the presence of the unknown

input. For brevity we drop dependence of Ct, Rt, vt on the sensing robot state xt in the

remainder of this chapter, however it is important to introduce here in order to emphasise

the impact of sensing locations on measurements.

In Chapter 3 the Kalman filter was described as a tool for facilitating belief space planning

for linear Gaussian systems. Here, it is unsuitable due to the presence of the unknown input

dt. Fortunately, extensions of the Kalman filter have been proposed to handle unknown

inputs [22, 88, 104]. In this chapter, we adopt the unknown input filter in [22]. This filter

deconstructs the full system description into two decoupled components: the state and

the unknown input. Then, a belief is maintained over each component separately via the

following steps:

1. Time update:

ŷt|t−1 = Atŷt−1|t−1, (4.3)

2. Unknown input estimation:

d̂t−1 =Mt(zt − Ctŷt|t−1), Mt ∈ Rnd×nz , (4.4)

3. Measurement update:

ŷ⋆
t|t = ŷt|t−1 +Gt−1d̂t−1

ŷt|t = ŷ⋆
t|t +Kt(zt − Ctŷ

⋆
t|t), Kt ∈ Rny×nz .

(4.5)

Define

d̃t−1 = dt−1 − d̂t−1, Σd
t−1 = E[d̃t−1d̃

T
t−1],

ỹt|t = yt − ŷt|t, Σt = E[ỹt|tỹ
T
t|t],

(4.6)

as the unknown input estimation error, the state estimation error, and their respective

covariances.
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As shown in [22], d̂t−1 in Equation (4.4) is an unbiased estimate if and only if the state

estimate in Equation (4.5) is unbiased, and the unknown input gain Mt satisfies

MtCtGt−1 = Ind
. (4.7)

However, this condition alone is not enough to ensure the input estimate is a minimum

variance unbiased (MVU) estimate, in the sense that it does not ensure minimisation of

the trace of the input error covariance introduced in Equation (4.6). For minimum variance

to be achieved, the input gain must take the form

M∗
t (Σt−1) = (FT

t R̃
−1
t (Σt−1)Ft)

−1FT
t R̃

−1
t (Σt−1), (4.8)

where Ft = CtGt−1, R̃t(Σt−1) = Ct(At−1Σt−1A
T
t−1 + Qt−1)C

T
t + Rt ∈ P+ and Σt−1 =

Σt−1|t−1 is the filtered state error covariance at time step t− 1. Given Equation (4.8), one

may transform the state estimation problem into a standard Kalman filtering problem and

find a resulting MVU state gain matrix K∗
t . The resulting optimal gain K∗

t is in general

non-unique [22]. For simplicity, in this chapter we take the choice

K∗
t (Σt−1) = (At−1Σt−1A

T
t−1 +Qt−1)C

T
t R̃

−1
t . (4.9)

The optimal filter gains in Equations (4.8) and (4.9) admit the following state and unknown

input error covariance update maps respectively:

Σt = ρ(Σt−1,M
∗
t ,K

∗
t ) = ÃtΣt−1Ã

T
t + F̃tQt−1F̃

T
t + W̃tRtW̃

T
t , (4.10)

Σd
t−1 = ρd(Σt−1) = (FT

t R̃
−1
t (Σt−1)Ft)

−1, (4.11)

where

Ãt = (I −K∗
t Ct)(I −Gt−1M

∗
t Ct)At−1,

F̃t = −(I −K∗
t Ct)(I −Gt−1M

∗
t Ct),

W̃t = Gt−1M
∗
t −KtCtGt−1M

∗
t +K∗

t .

Note that ρ, ρd are functions of xt via Ct and Rt and thus of the control input ut−1. We

therefore denote ρut(Σt−1), ρ
d
ut
(Σt−1) to refer to updates applied under the control ut ∈ U .
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4.1.2 Problem formulation

We wish to solve Problem 1.1 to best track the evolution of the full system description,

yS
t = [yt,dt]

T. Owing to the decoupling of yt and dt in during unknown input filtering,

we can plan over the belief space of each component separately rather than considering

the joint belief space. Then, the problem can be written as a minimisation of the total

uncertainty,

Problem 4.1. Given an initial belief of the target state y0, find a sequence of admissi-

ble controls σ = {u0, · · · ,uT−1} that minimises the total uncertainty in target state and

unknown input. That is,

min
σ∈UT

log det(ΣT ) + log det(Σd
T−1) (4.12)

s.t. xt+1 = f(xt,ut), t = 0, . . . , T − 1,

Σt+1 = ρut(Σt), t = 0, . . . , T − 1,

Σd
t = ρdut

(Σt), t = 1, . . . , T − 1,

where ρut(Σt), ρ
d
ut
(Σt) are the state and unknown input error covariance update maps

defined in Equations (4.10) and (4.11), with the first measurement taken at t = 1.

Although the unknown inputs are not assumed to follow any specific probability distribu-

tion, we ideally wish to solve the above in a Gaussian belief space belief transitions are

determinised. To this end, one could give some statistical interpretation of the optimisa-

tion problem similar to existing work for the case without unknown inputs [20, 116]. This

can be done by following concepts in [168] to firstly pose the unknown input as a Gaussian

noise process with variance D to recover Gaussian belief space planning. The lack of prior

information regarding the unknown input can then be expressed by taking D to infinity.

Finding the optimal solution to Problem 4.1 amounts to exploring each Gaussian belief

space separately and finding an optimal sensing path. Although the belief spaces are

decoupled, finding an optimal sensing path is still challenging, as one must decide how to

balance each component in the information-theoretic cost function in Equation (4.12) at

each time step.
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However, there is a close relationship between the state and unknown input estimates

in Equations (4.4) and (4.5). Namely, the unknown input estimate in Equation (4.4) lags

behind the state estimate by one time step. Further, the unknown input error covariance

update map Equation (4.11) is not a true Riccati mapping, as it is not a recursive function.

Instead, it is a function of the state covariance matrix Equation (4.6) at the previous time

step. These connections imply that the unknown input belief and thus the full system

belief at t− 1 can be inferred from measurements up to time t and the prior belief ŷt|t−1.

Thus, we may plan over the state belief space only while still maintaining good unknown

input estimation.

The remaining sections of this chapter therefore address the following belief space plan-

ning problem, an instance of the general reduced latent belief space planning problem

introduced in Chapter 1.

Problem 4.2. Given an initial belief of the target state y0, find a sequence of admissible

controls σ = {u0, · · · ,uT−1} that minimises the uncertainty about the state only. That is,

min
σ∈UT

log det(ΣT ) (4.13)

s.t. xt+1 = f(xt,ut), t = 0, . . . , T − 1,

Σt+1 = ρut(Σt), t = 0, . . . , T − 1,

Further, suboptimality bounds for both state and unknown input tracking that result from

this simplified approach are derived.

4.1.3 Planning framework

To search the reduced belief space for an optimal sensing trajectory we extend the RVI

algorithm introduced in [20, 117] and detailed in Chapter 3 to our proposed belief space.

The implementation is as in Algorithm 1, with the unknown input filter’s state covariance

update map in Equation (4.10) used to expand the belief tree in lines 3 to 7 rather than

the Kalman filter’s Riccati map. Additionally, the cost function J in this implementation

is log det(ΣT ).
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We make use of RVI for its reduced computational complexity and intelligent pruning

strategy that facilitates the derivation of suboptimality bounds. These derivations are

strongly tied to the form of the Kalman filter Riccati mapping in Equation (3.24) and

rely on its concavity and monotonicity (recall Assumption 3.1). As such, the existing

suboptimality bounds in [20, 117] derived for exploring linear Gaussian belief spaces no

longer hold for exploring our proposed belief space. In the following sections we prove

concavity and monotonicity of Equations (4.10) and (4.11) and derive new suboptimality

bounds for state and unknown input estimation associated with solutions to Problem 4.2

found via our extension of RVI to this new belief space.

4.2 Suboptimality bounds for active state estimation

The suboptimality of state estimation incurred by pruning algebraically redundant nodes

according to Equation (3.26) can be upper bounded via a worst-case analysis as in [20].

This worst-case analysis assumes the optimal node is pruned from the search tree early

and thus the optimal path is not expanded any further. Thus the suboptimality bounds

quantify how this error propagates as each new level of the search tree is expanded. This

analysis is outlined below, with all proofs of results available in Appendix A.

The following properties of the state estimation covariance update map in Equation (4.10)

are key in deriving suboptimality bounds.

Lemma 4.1. The unknown input filter state estimation error covariance update map is:

1. Monotone: if Σ1 ⪯ Σ2 then ρ(Σ1) ⪯ ρ(Σ2)

2. Concave: ∀α ∈ [0, 1], ρ(αΣ1 + (1− α)Σ2) ⪰ αρ(Σ1) + (1− α)ρ(Σ2).

It is important in our worst-case analysis to consider recursive update of the error covari-

ance over a long horizon. We therefore introduce the ‘t-horizon’ mapping ϕt : Σ0 7→ Σt,

which maps the state error covariance matrix at time 0 to time t according to the first t

elements of the control sequence σ:

ϕσt (Σ0) = ρut−1(. . . ρu1(ρu0(Σ0))) = Σt. (4.14)
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Monotonicity and concavity of the t-horizon mapping naturally follow from Lemma 4.1 and

the definition in Equation (4.14). As a direct result of concavity, the t-horizon mapping

ϕt is bounded by its first order Taylor approximation, i.e.

ϕσt (Σ + ϵX) ⪯ ϕσt (Σ) + ϵgσt (Σ, X), (4.15)

where

gσt (Σ, X) =
dϕσt (Σ + ϵX)

dϵ

∣∣∣∣
ϵ=0

is the directional derivative of the t-horizon mapping ϕt at Σ ∈ P+ along an arbitrary

direction X ∈ P+. Intuitively, the directional derivative gσt (Σ, X) can be interpreted

as the impact an early perturbative error will have on the covariance at a later time

t. This interpretation is pertinent for our worst-case analysis if one frames the ϵI term

in Equation (3.26) as a perturbative error causing pruning of the optimal node. This

motivates the study of the directional derivative.

Lemma 4.2. The directional derivative of the state estimation covariance update map at

Σ ∈ P+ along the arbitrary direction X ∈ P+ is given by

dρu(Σ + ϵX)

dϵ

∣∣∣∣
ϵ=0

= Ã(Σ)XÃ(Σ)T,

where Ã(Σ) is defined as in Equation (4.10). Further, the directional derivative of the

t-horizon mapping ϕt at Σ ∈ P+ along an arbitrary direction X ∈ P+ is given by

gσt (Σ, X) =

t−1∏
k=0

(Ãt−k)X

t−1∏
k=0

(Ãk)
T,

∀t ∈ {1, . . . , T}, with gσ0 (Σ, X) = X.

The trace of the directional derivative of the t-horizon mapping can quantify the impact

of such a perturbation at a later time step.

Lemma 4.3. Suppose ∃β <∞ such that Σt ⪯ βI ∀t ∈ {0, . . . , T}, then we have

Tr{gσt (Σ, X)} ≤ βηkTr{Σ−1X},
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where η = β
β+λQ

< 1 and λQ is the minimum eigenvalue of F̃tQt−1F̃
T
t ∀t ∈ {0, . . . , T}.

As in [20, 117], the above bound implies that provided the state error covariance is bounded

for all time, the effect of a perturbation at an early time step decays exponentially as time

evolves. The culmination of utilising the above results in the worst-case performance

analysis is an upper bound on the suboptimality of the state error covariance Σϵ,δ
T found

by RVI.

Theorem 4.1. Let β∗ < ∞ be the peak state estimation error of the optimal trajectory,

i.e. Σ∗
t ⪯ β∗I ∀t ∈ {1, . . . , T}. Then we have

0 ≤ J(Σϵ,δ
T )− J(Σ∗

T ) ≤ (ζT − 1)
(
J(Σ∗

T )− J(λQI)
)
+ ϵ(

ny
λQ

+∆T ), (4.16)

where ζt :=
∏t−1

τ=1

(
1 +

∑τ
s=1 L

s
fLmδ

)
≥ 1, ∆T :=

ny

λ2
Q
β∗
∑T−1

τ=1
ζT
ζτ
ηT−τ
∗ , η∗ =

β∗

β∗+λQ
< 1.

This bound is similar to the state estimation bound in [20], but derived for the unknown

input filter Riccati map in Equation (4.10) and time-varying Qt. Similar to [20, 117],

the performance bound in Theorem 4.1 grows with δ and ϵ, the tunable parameters that

dictate pruning. For ϵ, δ = 0 we recover the optimal solution.

4.3 Suboptimality bounds for active unknown input estima-

tion

Now we exploit the connection between the state and unknown input to derive con-

crete suboptimality bounds for unknown input estimation resulting from taking a state-

optimised sensing plan found via our RVI extension. Thus, we complete the characteri-

sation of the full system description estimate that results from solving the reduced latent

belief space planning problem in Problem 4.2. Proofs are again provided in Appendix A.

Once again we introduce a ‘t-horizon’ update map for unknown input estimation error,

ϕdt : Σ0 7→ Σd
t−1

ϕdσt (Σ0) = ρd(ϕσt−1(Σ0)) = (FT
t R̃

−1
t (Σt−1)Ft)

−1, (4.17)
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where ϕσt−1 is as in Equation (4.14). From this definition the connection between the un-

known input and state belief spaces is further highlighted. We see the control sequence

σ∗ ∈ UT which solves the reduced problem should give Σ∗
T−1 which minimises Equa-

tion (4.17). However, as FT (xT ) = CT (xT )GT−1, the unknown input error covariance

in Equation (4.17) has two arguments ΣT−1 and xT . The sensor state x∗
T found by solv-

ing Problem 4.2 with the proposed RVI extension may not coincide with the sensor state

xd∗
T required to optimise unknown input estimation at the final time step of the planning

horizon. This is an important observation that has direct impact on the performance

of unknown input tracking under a control sequence tailored for state evolution tracking

optimization.

Monotonicity and concavity of the unknown input error covariance update map are again

crucial properties for describing the evolution of nodes.

Lemma 4.4. The unknown input error covariance update map ρd(·) is monotone and

concave.

These properties extend to the t-horizon input estimation error update map in Equa-

tion (4.17). Thus, ϕdσt is bounded from above by its first order Taylor approximation. We

can again characterize the directional derivative gdσt−1(Σ, X).

Lemma 4.5. The directional derivative of ϕdσt at Σ ∈ P+ in the direction X ∈ P+ is

given by

gdσt−1(Σ, X) =
d

dϵ
ϕdt−1(Σ + ϵX)

∣∣∣∣
ϵ=0

=M∗
t CtAt−1g

σ
t−1(Σ, X)AT

t−1C
T
t M

∗T
t ,

where gσt−1(Σ, X) is the directional derivative of the state t-horizon update map.

As in Lemma 4.3, we find the effect of a perturbation in the state error covariance on the

unknown input error covariance dampens with time provided Σd
t and Σt are bounded for

all t.
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Lemma 4.6. Suppose ∃βd <∞ such that Σd
t ⪯ βdI ∀t ∈ {1, . . . , T}. Then

Tr{gdσt−1(Σ, I)} ≤ (nd)
2(βd)2λ

G̃
Tr{gσt−1(Σ, I)},

where λ
G̃

is the maximum eigenvalue of GT
t−1HtAt−1A

T
t−1HtGt−1 ∈ Rnd×nd.

The propagated error incurred on the unknown input covariance by a perturbation in

the state covariance is therefore a multiple of that found for the state. Hence, given

the state result in Lemma 4.3, the unknown input analogue can also be found. We now

provide an upper bound on the final unknown input error covariance found by solving the

reduced Problem 4.2 via RVI.

Theorem 4.2. Let β∗ <∞, βd∗ <∞ be the peak state and input estimation errors of the

optimal trajectory respectively. That is, Σ∗
t ⪯ β∗I and Σd∗

t−1 ⪯ βd∗I ∀t ∈ {1, . . . , T}. Then

0 ≤ J(Σd,(ϵ,δ)
T−1 )− J(Σd∗

T−1) ≤ (ζT − 1)
(
J(Σd∗

T−1) + J(γd∗I)− J(λ−1
H I)

)
+ ϵ(∆d

T ),

where ∆d
T := (γd∗)−1(nd)

2λHλG̃(β
d∗)2λQ∆T , γ

d∗ = (1 + Lmd(x
∗
T ,x

d∗
T ))−1 and λH is the

maximum eigenvalue of GT
T−1HTGT−1.

We observe the same behaviours of the unknown input bounds with respect to δ, ϵ as the

state bounds found in Theorem 4.1. Here ∆d
T is a factor of ∆T from the state bounds,

again highlighting the close relationship between the two bounds. Most notably, we see

the bound grows with (γd∗)−1. This result is expected – if the distance d(x∗
T ,x

d∗
T ) between

optimal sensor positions for state estimation and unknown input estimation is large, the

performance of unknown input estimation under a policy optimised for state estimation

via RVI worsens.

4.4 Experiment results

To evaluate the capability of the proposed reduced belief space for the joint active es-

timation problem we validate our theoretical findings via simulation. We simulate a
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two-dimensional active target tracking problem where the target is performing unmod-

elled evasive manoeuvres. To limit test our proposed approach, we inject an additional

non-myopic element to the tracking problem. Our theoretical findings indicate that by

optimising for state estimation only we can recover accurate estimates of the full system

description. However, if in reality the resulting unknown input estimation is poor, then

active target tracking performance can suffer in non-myopic conditions. For example, the

target may perform an evasive manoeuvre in a low-visibility or occluded area. If the

robot’s sensing plan does not anticipate this, the target may be lost. On the other hand,

if the proposed latent variable ξt = yt and corresponding problem reduction is indeed a

suitable proxy for Problem 4.1, the RVI robot should be able to accurately infer dt via its

state-optimised sensing plan and track the target even in non-myopic conditions.

Suppose a sensing robot with state xt defined by its position-velocity vector has the fol-

lowing constant-velocity dynamic model:

xt+1 = f(xt,ut) :=


x1t

x2t

0

0

+


u1t cos(u

2
t )τ

u1t sin(u
2
t )τ

u1t cos(u
2
t )

u1t sin(u
2
t )

 , (4.18)

with control input ut ∈ U , where U = {(u1t , u2t ) | u1t ∈ {0, 1, 2}, u2t ∈ {0,±π/2, π} and τ is

a small time translation. The goal of the robot is to track and estimate the position and

velocity of a constant-velocity vehicle driven by Gaussian noise and an unknown input dt

in the form of abrupt accelerations:

yt+1 =

I2 τI2

0 I2

yt +

τ2/2I2
τI2

dt +wt,

wt ∼ N

0, q

τ3/3I2 τ2/2I2

τ2/2I2 τI2

 ,

(4.19)

where yt = [y1t , y
2
t , ẏ

1
t , ẏ

2
t ]

T is the position-velocity vector of the target state at time t

and q is a diffusion strength scalar. The tracking takes place over 51 time steps. At

t ∈ {4, 9, 19, 24, 34, 39}, dt is a maneuver that takes form of a sharp acceleration in a

random direction.
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(a) Example trajectory. (b) Average position estimation error.

(c) Average total cost. (d) Average velocity estimation error.

Figure 4.1: Results for the active target tracking problem solved via latent belief space
planning. Results are averaged over 150 Monte Carlo simulations. The left panel shows
an example trajectory (initial robot positions marked by triangles) and the median cost
with interquartile range of each policy’s calculated trajectory. The right panel shows
the median RMSE and interquartile range of each policy’s target position and velocity

estimates.

The sensor takes noisy position measurements of the target and uses them to obtain the

target’s velocity by differentiation. For simplicity, the sensor observation model in Equa-

tion (4.2) is given by Ct = I4 with the measurement noise increasing linearly with the

distance between robot and target. To introduce non-myopia, certain areas of the envi-

ronment are ‘cloudy’, depicted as grey areas in Figure 4.1(a), and increase the robot’s

measurement noise. Upon entering a cloud, the robot should slow down drastically to

maintain safety under poor visibility. Beyond a maximum range of 20 metres the mea-

surement noise is effectively infinite.
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For 150 Monte-Carlo simulations, Algorithm 1 with implementation detailed as in Sec-

tion 4.1.3 is used to track the target with τ = 1, T = 5, q = 0.1, ϵ = 0.1 and δ = 1. The

performance of our proposed algorithm is compared to a greedy approach in Figure 4.1(a).

The RVI algorithm’s long planning horizon successfully predicts the target will enter and

remain in a cloudy area in future time steps and thus prioritises taking measurements from

outside this area at an increased distance rather than staying close to the target. On the

contrary, the greedy algorithm prioritises minimising the cost function at each time step

and therefore lacks the foresight to avoid this cloudy area, following the target in. This

behaviour often leads the greedy robot to ‘lose’ the target, unable to re-locate it as it exits

a cloud or makes an unknown maneuver, as is evident by the large interquartile range seen

for the greedy policy in Figures 4.1(c) to 4.1(d).

The joint estimation cost in Equation (4.12) for the original problem is shown in Fig-

ure 4.1(c), elucidating the impact of RVI’s non-myopic planning on the performance of the

found solution. We see RVI incurs lower total cost with much lower standard deviation

than the greedy policy, indicating that planning over the state belief space via our RVI

extension is indeed an appropriate reduction of the original problem.

Additionally, comparison of the average root mean square error (RMSE) of each policies’

full state estimate (Figures 4.1(b) and 4.1(d)) shows for all time steps, our algorithm

tracks target evolution in the presence of unknown inputs more successfully. These results

demonstrate that though the planned sensing actions do not directly consider the unknown

inputs, our proposed approach is still able to plan non-myopically in their presence, a

promising confirmation of the implication of our theoretical results.

4.5 Summary

In this chapter we proposed reduced latent belief space planning for active estimation of

linear Gaussian systems subject to arbitrary, unknown disturbances. For such systems,

a proper estimate of the full description requires solving a joint estimation problem to

recover both the state and the unknown input. However, we reduced this joint estimation

problem to one that considers state estimation only. By doing so we facilitated belief
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space planning over a smaller, deterministic belief space, easing the computation required

to solve the active estimation problem. Further, we demonstrated theoretically that this

reduction has minimal impact on recovering the original full system description through

a complete characterisation of suboptimality bounds associated with the final estimates

acquired. The theoretical results were supported by simulation results, where a sensing

robot was tasked with tracking a target performing unknown evasive manoeuvres in non-

myopic conditions.

Here, the latent variable ξt = yt used to infer the full state yS
t = [yt,dt]

T was an element of

the full state itself. The following chapters will extend the application of latent belief space

planning to active perception problems where ξt is instead a variable explicitly introduced

to enable reduced belief space planning.





Chapter 5

The homotopic belief space for

active target tracking

In this chapter we present the homotopic belief space for active target tracking, building

upon the experimental application studied in the previous chapter. Here, however, the

target’s dynamics are learned from historical data, avoiding the difficulties of modelling

altogether. With a learned dynamic model one loses access to the neat properties of the

Kalman or unknown input filter covariance update maps that facilitate deterministic belief

space planning. We present a solution to the challenges this introduces in two parts: first,

a hierarchical learning architecture for learning predictive dynamic models from historical

data and second, the homotopic belief space and corresponding planning algorithm to plan

sensing trajectories.

When solving the trajectory prediction problem in cluttered environments, there are an

infinite number of possible trajectories to consider. To simplify the space of trajectories

under consideration, we utilise homotopy classes to partition the space into countably

many equivalent classes. All members within a class demonstrate identical high-level

motion with respect to the environment, i.e., travelling above or below an obstacle. This

allows high-level prediction of a trajectory via the prediction of a label identifying its

homotopy class, referred to as a h-signature. Then, by training a low-level predictive

57
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model for each homotopy class the full trajectory can be inferred from the predicted h-

signature.

The h-signature or homotopy class of a trajectory is thus the latent variable ξ used to solve

reduced Problem 1.2 for active target tracking. The homotopy class prediction module

provides a full probability mass function (PMF) over possible future high-level motions

given the observed partial trajectory. We refer to these PMFs as homotopic beliefs and

utilise them to perform belief space planning over homotopy classes. Since the homotopy

class of a target is determined by how it manoeuvres around obstacles, information in this

belief space is as sparsely distributed as obstacles. Moreover, h-signatures are discrete

random variables, meaning the proposed belief space is discrete rather than continuous.

These are significant advantages over the full belief space associated with the target’s

position. Planning over this sparse, discrete latent belief space together with a hierarchical

predictive model allows for more efficient active target tracking that is still reliable, opening

avenues to overcome resource constraints in multi-target problems in future work.

This chapter builds upon our previous work [169] where we introduced the topological

predictive model for trajectory prediction. We present our extension to this publication,

closing the perception loop and introducing homotopic belief space planning for active

target tracking. At the time of thesis submission, this extension was yet to be published.

5.1 Homotopy theory in robotics

First we introduce the concept of homotopy classes for summarising the high-level motions

of a moving entity. Two paths τ1, τ2 in a topological space D with common start and ending

points are homotopic if there exists a continuous transformation or deformation from one

to the other [170]. Sets of paths homotopic to one another are named homotopy classes.

Non-trivial homotopy classes arise as a result of obstacles in the space, as deforming some

paths into others would require moving through an obstacle and breaking the continuity

requirement. This notion is depicted in Figure 5.1(a). Paths τ1 and τ2 are homotopic as

they can be continuously deformed into each other, indicated by the dotted paths between
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(a) Paths of equal (τ1, τ2)
and differing (τ3) homo-

topy classes.

(b) Construction of h(γ) = (1, 2,−2) by following γ as
it crosses rays emanating from obstacles.

Figure 5.1: Illustrations of homotopy classes and h-signature calculation.

them. These paths are however not homotopic to τ3, as any deformation into τ3 would

require moving through the obstacle O.

In the context of robotics, obstacles in the environment split the space of an agent’s

possible trajectories between points from a single homotopy class into a countable number

of homotopy classes. The obstacles therefore dictate the number of unique ways an agent

may travel through the space from one point to another. For example, in Figure 5.1(a)

the obstacle O splits the space of trajectories into three broad categories: those that move

‘above’ the obstacle, those that move ‘below’, and those that wind around the obstacle

any number of times before moving to the end point. Such abstraction of the high-level

motions available to an agent is a powerful tool for navigation, prediction and tracking

tasks often encountered in robotics [171–175].

5.1.1 The h-signature as a homotopy invariant

Attempting to categorise trajectories in a dataset according to homotopy class can become

cumbersome if one considers the formal definition of existence of a continuous transforma-

tion between paths. A pairwise comparison of all paths in the dataset would be required.

Thankfully, unique identifiers for homotopy classes that avoid this have been proposed.

These identifiers are referred to as homotopy invariants because their value does not change

for any path within a single homotopy class.
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The homotopy invariant used in this work is the h-signature [170, 176]. The h-signature is

a unique identifier h(τ) of a trajectory’s homotopy class such that h(τ1) = h(τ2) if and only

if τ1 and τ2 are homotopic. To compute the h-signature of a path, obstacles are enumerated

from 1 to N , with N being the number of obstacles in the environment. Non-intersecting

rays are drawn from within each obstacle to the boundary of the environment. Then a

‘word’ is constructed by following the path and appending letter ‘n’ if the path crosses the

ray corresponding to the n-th obstacle from left to right, and ‘−n’ if it crosses from right

to left. The construction of h(γ) is given in Figure 5.1(b) to illustrate. The path γ crosses

obstacle ray 1 and 2 from left to right, then returns to cross obstacle ray 2 again from

right to left. h(γ) is therefore (1, 2,−2). The final h-signature may then be reduced by

cancelling all consecutive appearances of n and −n. Then, h(γ) in Figure 5.1(b) reduces

from (1, 2,−2) to (1).

5.2 Homotopy-informed trajectory prediction

In this section we develop our hierarchical predictive model for target motion. This model

facilitates inference of the full target trajectory via the h-signature latent variable ξ = h,

and is thus a key ingredient for latent belief space planning.

5.2.1 Problem formulation

Consider an agent traversing through a planar environment D containing N obstacles

O = {O1, . . . ,ON}. The agent’s trajectory is denoted Y = {y1, . . . ,yT }. We assume the

agent begins at a start location on the boundary δD of the environment and travels to

an end location on δD. We are given a dataset of K historical, fully observed trajectories

Y = {Y 1
obs, . . . , Y

K
obs} and full knowledge of obstacles. It is assumed that the historical

data is representative of future or unseen trajectories. That is, the training and test data

are drawn from the same distribution. Further, in the online setting, we have a sequence

of partial noisy measurements of a test trajectory z1:t = {z1, . . . , zt} up to time t, with a

known observation model P (zt | yt).
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We are then interested in predicting the agent’s high-level motion through the environment.

There is no well-established methodology for abstracting an agent’s high-level motion from

its trajectory. We propose the best abstraction is given by a trajectory’s homotopy class

and thus prediction of a trajectory’s h-signature is the most appropriate approach to

predicting high-level motion. Formally, the problem is:

Problem 5.1. (High-level prediction) Given the partial, noisy measurements of the tra-

jectory z1:t, predict the h-signature h of the robot’s future full trajectory.

While the solution to Problem 5.1 can be used as a tool in many robotics problems, here

we are interested in how the h-signature may be used to produce a topology-informed

low-level prediction for a trajectory:

Problem 5.2. (Low-level prediction) Given the predicted h-signature h associated with an

agent’s partially observed measurements z1:t, predict the full trajectory Y .

Problems 5.1 and 5.2 are challenging to solve directly without modification. In a pedan-

tic Bayesian formulation one would first predict the underlying trajectory for the entire

duration and subsequently extract a prediction of the corresponding h-signature. This is

because the measurements are conditionally independent of the h-signature given the tra-

jectory and the only given relationship between the low-level trajectory and the h-signature

is the computation process outlined in Section 5.1.1. In other words, in this view, low-level

trajectory prediction precedes high-level prediction, limiting its effectiveness.

We circumvent low-level prediction by introducing the notion of the partial h-signature.

Unlike the usual h-signature, partial h-signatures can be obtained from an incomplete

trajectory, as we detail in Section 5.2.2. Given the partial h-signature we predict the

full h-signature. This is achieved with a variable order Markov process (VOMP) model

trained on the collection of h-signatures observed in the historical dataset (Section 5.2.3).

The full h-signature can then be used to predict the low-level trajectory with a model

trained on the historical dataset. As we readily have access to trajectories and their

associated h-signature, this can be as simple as learning a mixture of experts for low-level

trajectory prediction within each homotopy class. To this end, we demonstrate the use of

a hierarchical Gaussian mixture model in Section 5.2.4.
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5.2.2 Partial h-signatures

As described in Section 5.1, homotopy classes exist only for paths between two fixed start

and end points. In the context of this work trajectories are assumed to start and end

on boundary points of the environment. Similar to [175], we ensure our description of

homotopy classes is valid by applying a quotient map, mapping all boundary points to

a single quotient point while preserving the topology of the space1. Then, the set of all

homotopy classes here is over paths between the quotient point and itself.

With this in mind, the notion of a partial h-signature is ill-defined in a topological sense.

Much like a full h-signature, it is calculated by constructing a ‘word’ according to a path’s

ray crossings. However, it is extracted from an incomplete trajectory, i.e. one that has

not yet returned to the quotient point. It is thus crucial to note the partial h-signature is

not introduced as an identifier of a homotopy class but rather as a predictor.

To predict full h-signatures from partial ones, a notion of compatibility between the two

is needed. For a given partial h-signature p, compatible full h-signatures are those whose

prefix is p. In other words, the set of all h-signatures compatible with p is H(p) = {h |

∃p′, h = pp′}.

5.2.3 High-level prediction with variable order Markov processes

As h-signatures in an environment with N obstacles are simply ‘words’ constructed from

an alphabet A = {1, .., N,−1, ...,−N}, prediction of a full h-signature given partial h-

signature can be viewed as a sequence completion problem. The sparse nature of the

h-signature as a representation of high-level motion allows for relatively simple techniques

to be used for sequence generation. We propose a VOMP [177] for this purpose. VOMPs

are compact probabilistic automata reminiscent of Weighted Finite Automata (WFA), ca-

pable of producing a probabilistic predictions for sequence completion. However, VOMPs

are designed to learn varying length dependencies in data – an advantage over WFA in sit-

uations where sequence context can improve prediction. Compared to LSTMs that share

1In this process we consider all boundary points of the domain to be equivalent. Then, applying the
quotient map can be imagined as ‘gluing’ the boundary points to one another, deforming the planar domain
into the surface of a sphere in the process.
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this capability, VOMPs are capable of efficiently producing probability distributions over

possible outcomes. This is crucial for our approach, as a probability distribution over full

h-signatures is required to produce probabilistic low-level predictions.

We represent a VOMP with a probabilistic suffix automaton (PSA) as in [177]. Here, a

PSA state is a partial h-signature p of up to some maximum length L > 0 constructed

from alphabet A as p = (a1, . . . , al), 0 ≤ l ≤ L. Transitions between two states p and p′

are allowed only if there exists some a ∈ A such that p′ is a suffix of ap. Allowed tran-

sitions have associated with them a probability that the transition will occur. Transition

probabilities learned offline can be used to produce probability distributions over future

states online. An example PSA is drawn in Figure 5.2(b).

We follow [177] closely to train a VOMP over h-signatures offline, and adapt their online

prediction process to better suit the prediction of h-signatures. Our algorithms for online

prediction and offline learning are detailed below.

Online Prediction

The trained VOMP outputs probabilities for arbitrarily long h-signatures. To find the

probability of any h-signature P (h) occurring, one simply takes a walk through the PSA,

multiplying transition probabilities from state to state. However, we are interested in

finding the conditional probabilities P (h | p) for all possible h-signatures given the partial

h-signature p. That is, we are interested in calculating the homotopic belief. Letting H(p)

be the set of all full h-signatures compatible with p, the conditional probability P (h | p)

of any outcome h ∈ H(p) can be calculated by normalising the VOMP output P (h) with

the sum of all other possible h-signature outcomes h′ ∈ H(p),

P (h | p) = P (h)∑
h′∈H(p) P (h

′)
. (5.1)

However, the set H(p) of compatible h-signatures is of infinite size. Just as agents may

walk paths of varying lengths through an environment, the lengths of compatible full h-

signatures varies. For example, if an agent is observed passing from left to right above

the first obstacle in an environment their partial h-signature is (1). Later, the agent may
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Algorithm 3 PSA offline learning

Inputs: ϵ, L, A, h-signature data
Output: Trained PSA

1: initialise tree T
2: P ← {a | a ∈ A, P (a) ≥ ϵ}
3: while P not empty do:
4: p← P.pop()
5: if E(p, suffix(p)) ≥ ϵ then:
6: add path to p to T
7: end if
8: if |p| ≤ L then:
9: P ← P ∪ {ap | a ∈ A, P (ap) ≥ ϵ}

10: end if
11: end while
12: for all leaves r in T do:
13: if longest prefix(r) not in T then:
14: add path to r to T
15: end if
16: end for
17: PSA ← leaves of T

or may not pass above any other obstacle. Their full h-signature may be (1) or (1, . . .)

depending on this.

To handle these nuances, we assume the longest possible h-signature an agent will take

through the environment is the maximum length h-signature present in training data, h∗.

Then, for any h ∈ H(p), P (h) = 0 if |h| > |h∗|. We then weigh h-signature probabilities

in Equation (5.1) by the probability of observing any h-signature of that length in data.

Thus, the VOMP is queried to make the adjusted calculation

P (h | p) = P (h) · P (|h|)∑
h′∈H(p) P (h

′) · P (|h′|)
. (5.2)

Offline Learning

To facilitate online belief calculation given partial h-signatures, a prediction suffix tree

(PST) (Figure 5.2(a)) is built over the alphabet A. The PST is then converted to a PSA

(Figure 5.2(b)) as per [177]. A high-level overview of this process is provided in Algo-

rithm 3.
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To construct the PST, it is first initialised with root node corresponding to the ‘empty’

h-signature labelled (). Paths to suffixes are then successively added to the tree if the suffix

has sufficiently strong predictive power. Specifically, a child node labelled with partial h-

signature ap is added to parent node p if some measure of statistical difference E between

the PMFs P (h | p) and P (h | ap) is above a user-defined threshold ϵ. The metric used is

the KL divergence scaled by the probability of observing ap,

E(ap, p) = P (ap)DKL(P (h | ap), P (h | p)). (5.3)

The scaling factor P (ap) serves to avoid the addition of suffixes with low probability of

occurrence, yet high KL divergence. Suffixes up to length L are tested for their predictive

power and added.

To calculate P (a | p) and P (p) from training data, Laplace’s rule of succession is used.

Denoting F(p) as the frequency with which partial h-signature p appears in data, F(pC)

is then used to denote the frequency of the complement event; the frequency of observing

any other partial h-signature of length |p|. Then,

P (p) ≈ F(p) + 1

F(pC) + |A|
. (5.4)

Similarly, denoting the frequency with which letter a follows p in observations by F(a | p)

and the frequency of observing any other letter after p by F(aC | p),

P (a | p) ≈ F(a | p) + 1

F(aC | p) + |A|
. (5.5)

After construction, taking the leaves of the PST gives the states of the corresponding PSA.

However, this simple action may not always admit a valid transition between all states. In

this case, leaves must be added to the PST to ensure a complete PSA. Nodes are added

to the PST until, for every leaf in the PST, the longest prefix of the leaf exists in the

PST. When this condition is true, the leaves of the PST are guaranteed to give a complete

PSA [177]. Transition probabilities between states of the PSA correspond directly to the
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(b) Probabilistic suffix automaton.

Figure 5.2: Equivalent methods of representing a VOMP. Values along edges between
states are transition probabilities.

transition probabilities of the PST found via Equation (5.5) and are used to calculate

probabilities online.

Illustration of homotopic belief updates

To illustrate the topological VOMP’s online belief update we depict the process on a toy

example. A simplistic environment and dataset was created, shown in Figure 5.3(a). Tra-

jectory data was created by running Dijkstra’s algorithm on a graph over the environment

to find shortest-distance paths from randomly selected points on the left boundary to ran-

dom points on all other boundaries. Thus, in this simple dataset all trajectories move from

left to right, and the set of possible homotopy classes includes h-signatures {(), (1), (1, 2)}.

Prediction of h-signatures over time is shown in Figures 5.3(b) to 5.3(d). At time t = 8,

the partial h-signature is p = (), and the VOMP predicts that all h-signature trajectories

are possible in the future, with probabilities P (h = () | p) = 0.28, P (h = (1) | p) = 0.37,

P (h = (1, 2) | p) = 0.35. At t = 17 the () class is predicted with probability 0 now

the partial h-signature is p = (1), and P (h = (1) | p) = 0.52, P (h = (1, 2) | p) = 0.48.

In the final time step the VOMP correctly assesses that the trajectory will have full

h-signature (1, 2) with probability 1 as the trajectory has passed the second obstacle.

Coloured regions correspond to regions in which one may expect the agent to be in the
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(a) Data (b) t = 8 (c) t = 17 (d) t = 44

Figure 5.3: VOMP h-signature prediction for a test trajectory over time. Black tra-
jectory is the observed test trajectory. Coloured regions correspond to straight-line path
completions that lie within predicted homotopy classes. Colour coding of homotopy classes
is as in the training set. Alpha of the regions reflects the VOMP output probability for

that class.

future, with probabilities indicated by opacity. These regions demonstrate the predictive

power of the VOMP output.

5.2.4 Low-level prediction with hierarchical Gaussian mixture models

We present a hierarchical GMM as an example implementation of the low-level prediction

algorithm for retrieving a probability distribution P (Y | h) over the full trajectory Y =

{y1, . . . ,yT } given the h-signature h. To this end, we simply cluster the trajectories from

the training dataset into their homotopy classes (i.e. those that have the same h-signature

h), and fit a GMM with NC components for each class,

P (Y | h) =
∑
c

w(c,h)N (µ(c,h),Σ(c,h)). (5.6)

Here, for a given homotopy class h, w(c,h), µ(c,h) ∈ R2T and Σ(c,h) ∈ R2T×2T are the

weight, mean vector and covariance respectively of component c ∈ {1, . . . , NC}. Each

component is a multivariate normal distribution over Y . While a single Gaussian per

homotopy class can be used, it may not always be sufficient. Within high-level motions

there may exist multi-modal behaviour. For example, one can take a sharp or a wide left

turn at an intersection. In this case, choosing NC = 2 can capture both these low-level

motions within the same homotopy class.
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With this representation, the low-level patterns in the trajectories can be captured by

computing the full covariance matrix Σ, which captures correlations between positions

at particular times. Further, this weighted sum of multivariate normal distributions is

tractable and we can derive a fully probabilistic prediction of the trajectory given the

measurements z1:t and corresponding partial h-signature pt.

To derive this prediction, we treat the the partial h-signature as a random variable that

is observable and conditionally independent of Y given the full h-signature h. Then, we

can easily condition Equation (5.6) on the partial h-signature as a weighted sum

P (Y | pt) =
∑
h

P (Y | h)P (h | pt). (5.7)

Thus, this independence assumption facilitates incorporation of topological information in

low-level prediction by simply scaling the weights of the GMM by the homotopic belief

P (h | pt) maintained by the VOMP. Subsequently, we can further condition on the actual

low-level measurements z1:t via

P (Y | pt, z1:t) =
∑
c,h

ŵ
(c,h)
t N (µ̂

(c,h)
t , Σ̂

(c,h)
t ), (5.8)

where hats (̂·) signify the posterior statistics of the GMM after conditioning on measure-

ments. Statistics without hats indicate the prior statistics. The conditional mean and

covariance µ̂
(c,h)
t , Σ̂

(c,h)
t are calculated in the same manner as standard conditional Gaus-

sian distribution [178, Section 8.1.3] given measurements. The conditional weights are

calculated as

ŵ
(c,h)
t ∝ w(c,h)

t P (h | pt)N (µ(c,h),Σ(c,h) + σ2ZI), (5.9)

followed by normalisation. The last term is the marginal likelihood of observing z1:t within

each mixture component, where σZ is the measurement noise covariance.
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Figure 5.4: The ATC shopping mall environment and a subset of the training data.

5.2.5 Evaluation of predictive model

Experiment setup

In this section the efficacy of full trajectory inference via homotopy class as a latent variable

is validated experimentally by comparison against a standard GMM without topological

knowledge. We evaluate each method on the ATC shopping mall dataset [179] shown

in Figure 5.4. From the dataset we retrieved 17558 pedestrian trajectories. From this,

9230 trajectories that satisfied the border crossing assumption were selected. Among these

trajectories, we randomly selected 5538 trajectories to create a training dataset and 1000

trajectories for testing. All trajectories are interpolated over 100 timesteps. Thus, the

predictive means µ̂
(c,h)
t of the GMMs are 100× 2 arrays flattened to 200× 1 vectors with

corresponding total covariance Σ̂
(c,h)
t ∈ R200×200. For fairness, we use the same number

of mixtures for the naive GMM as in the topology-informed GMM. All GMMs used are

trained using the implementation in the scipy library, using the default arguments.

Three metrics are used for comparison. Most immediately, we consider the standard

average displacement error (ADE), defined as the displacement of the highest weighted

mean from the ground truth, averaged over all T = 100 time steps,

ADE =
1

T

T∑
k

||yk − µ̂
(c∗,h∗)
t,k ||, (5.10)
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(a) Average displace-
ment error.

(b) Average Maha-
lanobis distance.

(c) Kullback-Liebler
divergence.

Figure 5.5: Results and improvement in median of our proposed topological GMM over
a naive GMM in each metric. Green: Our approach. Red: Naive GMM. Markers show

the median. Error bars show 25% and 75% quantiles.

where µ̂
(c∗,h∗)
t,k is the posterior mean of the highest weighted component at the k-th time

step.

Since the framework is fully probabilistic, we also need to account for the uncertainty

estimates produced. We then consider the average Mahalanobis distance (AMD), which

accounts for the weights and covariances in the GMM:

AMD =
∑
c,h

ŵ
(c,h)
obs

T

T∑
k

Θ
(c,h)T

k (Σ̂
(c,h)
t,k )−1Θ

(c,h)
k , (5.11)

where Θ
(c,h)
k = (yk − µ̂

(c,h)
t,k ) and Σ̂

(c,h)
t,k is the k-th block diagonal of Σ̂

(c,h)
t .

Lastly, we would like to characterise the performance of the high-level prediction made.

To do so, we compare the KL divergence (KLD) between the weights of two posterior

GMMs, one conditioned on the full trajectory acting as a ground truth distribution and

the other conditioned on z1:t. That is,

KLD =
∑
c,h

ŵ
(c,h)
T (log ŵ

(c,h)
T − log ŵ

(c,h)
t ). (5.12)
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(a) Ours
t = 1

(b) Ours
t = 12

(c) Ours
t = 34

(d) Ours
t = 56

(e) Ours
t = 78

(f) Naive
t = 1

(g) Naive
t = 12

(h) Naive
t = 34

(i) Naive
t = 56

(j) Naive
t = 78

Figure 5.6: Snapshots of predictions output by a GMM with h-signature context given
by the VOMP (a) - (e) and without (f) - (j). Black solid path is the elapsed ground truth
test trajectory at the given time. Dotted path indicates future ground truth trajectory
remaining. Shaded regions show the variance of around the mean trajectory in solid
colour. Transparency is proportional to weight. Colours in (a) - (e) indicate h-signatures,

while colours in (f) - (j) indicate mixture components.

Results

Figure 5.5 shows the results of comparisons between the naive GMM (red) and our

topology-informed approach (green) in terms of ADE (left), AMD (middle), and KLD

(right). In terms of ADE, our approach outperforms the naive approach after some time,

namely showing a 50% improvement in the median just after the halfway point of the tra-

jectory (t = 60), and up to 69.4% over all time. This increase in performance is because

the topology-informed approach gains more information as the target crosses obstacles,

and this topological information improves the predictive power of the VOMP.

Since the naive GMM was given the same number of components as the topology-informed

GMM – calculated based on the number of homotopy classes – it is unsurprising that the

naive GMM performs relatively well. In practice, a major challenge in deploying GMMs

is selecting the right number of mixture components. In fact, initialising the naive GMM

with a number of components directly informed by the number of homotopy classes present

in the data provides a small topological cue to the baseline method.
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Nonetheless, the AMD metric shows our approach performs significantly better than the

naive approach. Specifically, we see a 72.3% improvement over the naive halfway through

the trajectory, with a maximum of 80.3% improvement over time. This implies the un-

certainty predictions from the topology-informed approach are more consistent with the

actual error compared to the naive approach. This is because our approach pre-clusters

trajectories that are ‘similar’, improving the fitness of the GMM model within each cluster.

Further, our approach consistently outperforms in terms of KLD by a great margin, with

100% improvement achieved by t = 20. The naive GMM weights do not converge to the

ground truth weights until t = 80. This means the early posterior GMM weights of our

approach better represented the final GMM weights. Viewing GMM components as an

alternative description of high-level motion to h-signatures, this implies h-signatures are

indeed better descriptors.

Figure 5.6 shows the behaviour of our approach and the baseline GMM. Early on, we see

both methods give highest weight to components that reasonably predict the general mo-

tion of the trajectory. However, the naive approach begins to produce poor predictions in

an area of the environment where many training paths diverge. This ‘crossroads’ is visible

in the sample data plotted in Figure 5.4. Additionally, we see the naive GMM re-weighs

the highest probability component often, in-line with its performance in the KLD metric.

In comparison, our approach continues to correctly predict the same h-signature across

time, even when reaching the aforementioned crossroads. This demonstrates the power of

topological information in imbuing low-level predictions with robustness to deviations in

trajectories.

5.3 Homotopic belief space planning

Evaluation of the hierarchical predictive model in the previous section confirms the h-

signature is a suitable latent variable for solving Problem 1.2. We therefore continue on

to close the active target tracking loop, re-introducing the sensing robot whose task is

to collect measurements online and improve its estimate of the target’s full trajectory

Y = {y1, . . . ,yT }.
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5.3.1 Belief updates in the online setting

The homotopic and low-level belief updates presented in Equations (5.2) and (5.8) respec-

tively were introduced for a scenario without a sensing robot actively searching for the

target. Now, in closing the perception loop and introducing a sensing robot, there is an

added uncertainty beyond measurement noise: whether or not the target will be detected

at xt and a measurement will be received.

To adjust to this online scenario we adjust the low-level belief update in Equation (5.8)

in a similar vein to the GM-PHD filter proposed in [135]. However, we have the following

simplifying assumptions. Firstly, data association is not a concern. We have knowledge

that the source of each measurement is the target itself. Secondly, we do not assume

targets spawn or despawn during the tracking scenario. The main implications of these

assumptions are that we do not need to consider clutter, and we can run many motion

hypotheses in parallel for our target, updating the beliefs of each Gaussian component in

the GMM independently.

In our online belief updates, we need only consider the probability of successful detection

P (D = True | (c, h),xt) given sensing location xt for each hypothesis indexed by (c, h).

To this end, we introduce a Bernoulli random field, where at each x ∈ D, probability

of detection is modelled by Bernoulli random variable D ∼ Bern(γ(c,h)(x)) with success

parameter γ(c,h)(x) = P (D = True | (c, h),x). The belief update is scaled by the two

detection outcomes, success or failure. That is, Equation (5.8) becomes

P (Y | pt, z1:t,xt) =
∑
c,h

γ(c,h)(xt)ŵ
(c,h)
t N (µ̂

(c,h)
t , Σ̂

(c,h)
t ) (5.13)

if a target is detected. Otherwise,

P (Y | pt, z1:t,xt) =
∑
c,h

(1− γ(c,h)(xt))ŵ
(c,h)
t−1 N (µ̂

(c,h)
t−1 , Σ̂

(c,h)
t−1 ). (5.14)

Since P (Y | pt, z1:t,xt) is a distribution over the full trajectory, these belief updates provide

future trajectory predictions based on the observations z1:t.
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To model γ(c,h)(xt) we introduce a probabilistic detection model that decays exponentially

as the distance between the robot and the target increases

P (D = True | xt,yt) = A exp

(
−∥xt − yt∥2

2r2

)
, (5.15)

where r is the sensing radius of the robot and A controls the peak of the model. However,

since the target’s state yt is unknown, marginalisation using the target motion model

provided by the GMM is necessary to obtain a tractable result,

γ(c,h)(xt) = β exp

(
−1

2
(xt − µ̂

(c,h)
t )T(r2I + Σ̂t

(c,h)
)−1(xt − µ̂

(c,h)
t )

)
, (5.16)

where β = A√
det(Σ̂t

(c,h)
r−2+I)

is a normalisation factor.

5.3.2 Homotopic information gain

In a conventional approach, the expected information gain at sensing locations can be cal-

culated via information-theoretic measures such as entropy and mutual information over

the expected measurement GMM. However, there is no analytical form for the entropy of

a GMM [18] and so approximations must be made. There are many proposed approxima-

tions [180, 181]. In [181] for example, bounds for mixture entropy are given via calculation

of pairwise distances between components. For large GMMs with many components a

pairwise calculation can become computationally expensive.

By planning over the belief space associated with the latent variable h we avoid all such

computational issues. Then we solve Problem 1.2 where ξ = h as a proxy for producing an

accurate estimate of Y . Here, information gain can be posed as a discrete sum over sparse

elements of the homotopic belief. Furthermore, planning in this reduced latent belief space

has the added benefit of encoding real-world intuition into sensing plans. Intuitively, to

track a target through a cluttered environment one might wait at a decision point where

the target must choose which high-level motion to take. For example, one might wait at

an obstacle to observe whether a target continues left or right. This corresponds to sensing

in locations where the partial h-signature, and thus the homotopic belief, is most likely to

change.
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We propose a heuristic over the homotopic belief space that captures this intuition by

comparing the differences between the robot’s current and future homotopic beliefs. To

predict a future homotopic belief at some time t given the robot’s current belief, we

calculate the likelihood that the target crosses a ray at time t, causing a transition from

the current observed partial h-signature to the next, pt−1 → pt. This is performed by

evaluating the cumulative distribution function of each component in the GMM at t and

t + 1 over the domain beyond the ray. Thus, we have the probability of a ray crossing

given a component, P (pt | (c, h)).

With likelihoods of future partial h-signatures, the expected homotopic information gain at

t can be evaluated. Recall from Equation (3.8) that the information gained by observing

pt can be captured via the Kullback-Liebler divergence between the observed and next

homotopic belief. The expected homotopic information gain taken over all possible partial

h-signature outcomes Ωt at t is then given by

Ept∼Ωt [DKL(bt−1, bt)] =
∑
pt

∑
c,h

P ((c, h))P (pt | (c, h))DKL

(
P (h | pt−1), P (h | pt)

)
, (5.17)

where P ((c, h)) is the weight of the GMM component.

The sensing robot does not take measurements of the target’s partial h-signature pt di-

rectly, but rather of the target’s position yt. Although one may consider sensor and filter

designs to enable such minimalist sensing and corresponding expected information gain

directly (see for example [21, 182]), we wish to maintain measurements of position to help

inform our overall estimate of Y . We merely plan over h as a computationally sparse proxy

for sensing Y . Then, we must consider the sensing model in the calculation of expected

homotopic information gain. To this end, we introduce again the probability of target de-

tection given a sensing location, P (D | xt) to relate information gain to sensing positions

xt,

IG(h;xt) = P (D | xt) · Ept∼Ω[DKL(bt−1, bt)]. (5.18)

Here, P (D | xt) =
∑

c,h P ((c, h))P (D | (c, h),xt) is given by marginalising Equation (5.16)

over components. Furthermore, just as in Equation (5.3), this term prevents high KL

events with low probability of detection being considered as informative.
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(a) Homotopic information gain over space
and time.

(b) Homotopic information gain thresh-
olded at 0.7.

Figure 5.7: Heatcubes showing homotopic information gain at sensing locations and
times. Yellow is higher information gain, blue is lower. Red line shows the test trajectory.

z-axis is time.

The homotopic information gain at a sensing location can thus be calculated without

knowledge of any measurement outcomes by simply evaluating the discrete sum in Equa-

tion (5.17) and the tractable probability in Equation (5.16). This is computationally

advantageous compared to conventional approaches taken over the low-level belief space

that involve intractable information-theoretic terms [180, 181].

5.3.3 Planning framework

To plan sensing trajectories given the homotopic information gain developed in the previ-

ous section, we calculate the information gain at all sensing locations for all future times,

creating a heatcube depicted in Figure 5.7(a). Note that here the domain is discretised

into a set of finite sensing locations, as we do not consider the continuous case. The in-

formation gain is sparsely distributed in space and time – it is highest around the first

obstacle during the time window that the target is likely to move past this obstacle. The

sensing robot thus does not need to consider all sensing locations in planning. Instead, we

can threshold the heatcube to only the highest values. For example, in Figure 5.7(b) the

heatcube is thresholded at 0.7 leaving only three sensing locations that persist along the

time axis.
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The remaining features in the thresholded heatcube and the time windows within which

they exist are used to define an orienteering problem with time windows (OPTW) [183].

A solution to the OPTW selects locations to visit, and an order to visit them in, such

that the time-constraints are satisfied and the expected reward is maximised. To find a

solution, we construct a search tree over possible paths. The sensing robot is assumed

to be an airborne robot which travels with constant velocity through the environment,

unimpeded by obstacles. Then, if the robot can travel from node a to b before b’s time

window closes given its maximum velocity, b is added to the tree as a child of a. The

robot’s initial position is the root node of the tree.

To explore the search tree and estimate the information gained along paths through the

tree we implement MCTS (Chapter 3, Algorithm 2). This allows for non-myopic planning

over the most informative sensing locations and times. The best immediate next action

found via MCTS is taken and a measurement is acquired. With this measurement, the

belief can be updated via Equations (5.13) and (5.14) and replanning over new nodes of

interest can be performed.

5.4 Evaluation of homotopic belief space planning

5.4.1 Experiment setup

To evaluate the impact of planning over the proposed belief space via Equation (5.18), we

compare to a conventional approach that maximises conditional entropy. This approach

corresponds to planning over the full belief space and solving the original Problem 1.1.

To avoid the overhead associated with the aforementioned pairwise distance estimates of

entropy [181], we implement a naive measure of low-level information gain. We implement

the weighted sum of conditional entropies of each Gaussian in the measurement GMM

scaled by the probability of detection at xt. That is,

IG(yt;xt) = P (D | xt) ·
∑
c,h

ŵ
(c,h)
t

(
log det(Σ̂

(c,h)
t +R(c,h)(xt)) + log(2πe)

)
, (5.19)
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whereR(c,h)(xt) is the measurement noise covariance, modelled as a function of the distance

between xt and the mean of component (c, h).

For both belief space approaches, heatcube features as in Figure 5.7(b) are calculated

and the planning framework detailed in Section 5.3.3 is implemented. We compare each

method across 250 random test trajectories in the shopping mall dataset.

Again, three metrics are used for comparison. The first is the ADE in Equation (5.10)

to measure the success of each proposed solution to Problem 1.1. The remaining two are

measures of the low- and high-level information gained per measurement. To measure

information gain we introduce a ‘ground truth’ GMM distribution, calculated for each

test by conditioning on the full trajectory data. Thus, the ground truth distribution

represents the result if full information was able to be gained regarding the target. We

compare the mutual information between the ground truth GMM and the posterior GMM

conditioned on the measurement set after each new measurement is added. Then, the

reduction in mutual information between measurements quantifies the information gained

per measurement.

To measure low-level information gain we compute the KL divergence between the ground

truth GMM and the posterior GMMs. The KL divergence is a measure of low-level mu-

tual information between the distributions, however, as it is not analytically tractable for

GMMs we utilise the variational approximation presented in [184]:

Dvar(P (Y | h, z1:T ), P (Y | pt, z1:t)) =
∑
c,h

ŵ
(c,h)
T log

∑
c′,h′ ŵ

(c′,h′)
T expDKL(N (c,h)

T ,N (c′,h′)
T )∑

c̃,h̃ ŵ
(c̃,h̃)
t expDKL(N (c,h)

T ,N (c̃,h̃)
t )

.

(5.20)

Here N (c,h)
T and N (c,h)

t indicate the (c, h)-th component of the ground truth and posterior

GMM at time t respectively. To measure the high-level information gain we again compute

the KL divergence between the weights of the ground truth GMM and the posterior GMMs,

as in Equation (5.12).
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5.4.2 Results

Investigation of the number of measurements taken by each method for each test trajectory

reveals the homotopic belief space planner took a median of 6 measurements per test

trajectory, while the conventional belief space planner took 11. The full distributions over

measurement number are shown in Figure 5.8(a). Due to the sparse spatial distribution of

homotopic information gain, the proposed approach takes on average fewer measurements.

With more measurements taken by the conventional approach, one would expect a lower

ADE, as more low-level information should improve the low-level estimate. Yet, compari-

son of the ADE in Figure 5.8(b) shows the mean for the proposed method is still within

the interquartile range of the conventional. To investigate whether experiments with high

numbers of measurements in the tail of the distribution for the proposed approach in Fig-

ure 5.8(a) is responsible for biasing the mean ADE downwards, we study the set of the

most ‘typical’ runs for each method in Figure 5.9. That is, we compare all test trajectories

where the median number of measurements for each method were taken.

For the proposed approach, the results shown in Figure 5.9 are averaged over the 47 test

trajectories where the sensing robot took 6 measurements. The conventional approach

results are averaged over the 58 test trajectories where 11 measurements were taken. This

direct comparison of the most typical results for each method reveals a much more com-

petitive ADE result between the two, shown in Figure 5.9(a). With only 6 measurements,

the proposed approach gives statistically similar ADE to the conventional approach. This

suggests homotopic belief-space planning provides more information per measurement at

a low-level, despite being designed to maximise high-level motion information.

To interrogate this claim, we quantify high- and low-level information gain per measure-

ment and compare the two methods. Boxplots of average mutual information reduction

over typical runs for each approach are shown in Figure 5.9. We note that extracting

meaning from comparisons of information gain per measurement is only possible because

each test represented in the boxplots has an identical number of measurements. If boxplots

in Figure 5.9 were presented for full results, each boxplot would have a varying number of

data points.
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(a) Histogram of number of measurements
taken by the sensing robot per test trajec-

tory.

(b) Average displacement error for each
planner. Shaded regions are the interquar-

tile range. Solid lines are the mean.

Figure 5.8: Results averaged over 250 test trajectories from the ATC shopping mall
dataset. Blue is the proposed approach. Orange is the conventional approach.

Nevertheless, evidenced by the median dataset, the proposed homotopic belief space plan-

ner indeed gathers more richly informative measurements for low-level estimation than

the conventional belief space planner. As seen in Figure 5.9(b), the proposed approach

achieves similar median mutual information to the conventional approach after only 6

measurements. Further, the interquartile range is tighter than the conventional approach,

indicating greater consistency in measurement quality across these test trajectories.

Comparing the high-level information gain in Figure 5.9(c) confirms the homotopic belief

space is superior for discerning high-level motions. The weights of the posterior GMM

converge to the ground truth weights rapidly, reaching 0 KL divergence by the second

measurement. Meanwhile the conventional approach lags behind in this regard, even

diverging from the true weights in measurements 2 − 5.

These results indicate that with less measurements, the homotopic belief space planning

approach is indeed able to perform competitively in active target tracking scenarios com-

pared to a conventional approach. Further investigation and work towards improving the

proposed approach is underway to reduce variance over the full test dataset (Figure 5.8).
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(a) Average displacement error (ADE) for each planner. Shaded regions are the in-
terquartile range. Solid lines are the mean.

(b) Mutual information between pos-
terior GMMs and ground truth GMM.

(c) Kullback-Liebler divergence be-
tween weights of posterior GMMs and

ground truth GMM.

Figure 5.9: Results for the most typical runs for each planner. Blue is the proposed
approach. Orange is the conventional approach.

5.5 Summary

In this chapter we introduced the h-signature as a latent variable to improve planning for

active target tracking. The formulation of homotopic beliefs facilitated planning over a

discrete belief space, where information gain was sparsely distributed throughout space.

This circumvented the main challenge of planning over the full belief space associated with

the target’s low-level trajectory – there are no closed-form analytic expressions for entropy

or mutual information for GMMs. Our tractable information gain metric associated with

the homotopic belief space is a discrete sum over sparse PMFs, a clearly computationally

efficient metric. However, in future work we still aim to fully characterise this efficiency.
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Beyond computational simplicity, the homotopic belief space proved to be promising for

planning sensing paths to estimate the full trajectory. Evaluation on real pedestrian data

revealed promising low-level estimation results, even though the belief space is designed to

capture high-level information. Comparison to a naive implementation of low-level infor-

mation gain to represent a full belief space planning approach demonstrates competitive

results despite taking almost half the number of measurements. Future work will aim to

further improve the consistency of these results and utilise the sparsity of the measurement

set to handle more resource-constrained tracking problems such as multi-target tracking.

In the next chapter we move away from active target tracking and propose a new latent

variable and corresponding reduced belief space to improve solutions to another active

perception problem: active mapping.



Chapter 6

The inducing point belief space for

active mapping

In this chapter we present a reduced latent belief space planning framework for active

mapping with a sensing robot. In the active mapping setting considered, the robot must

plan sensing trajectories under dynamic constraints to estimate a static, scalar spatial

field of interest. An inducing point-based sparse Gaussian process is used to build a

representation of the field recursively as each noisy measurement is taken.

Conventionally this task is posed as a conditional entropy maximisation problem [17]

requiring planning over the full, high-dimensional belief space associated with the spatial

field estimate held at all possible sensing locations. Evaluation of the conditional entropy

of the GP at a sensing location requires study of the GP covariance, which grows in

dimension with each new measurement added. Thus, as more measurements are taken,

planning over this belief space becomes increasingly cumbersome.

We circumvent this by leveraging the inducing points of the sparse GP framework to our

advantage. We propose to plan in the much smaller latent belief space over the estimates

held at the sparse GP’s inducing points, referred to as the pseudo-measurements. That

is, the latent variable ξ introduced for reduced belief space planning is the set of pseudo-

measurements at inducing points. Planning in this reduced belief space involves minimising

the conditional entropy at inducing points via study of a covariance matrix of constant

83
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dimensionality. Furthermore, we prove that planning over this reduced belief space is in

fact equivalent to taking a worst-case estimation error minimisation approach to the active

mapping problem. This exciting theoretical development reveals a direct relationship

between typical information gathering practices in robotics to deterministic estimation

error minimisation for sparse GP regression.

First, we present our theoretical result: that the conditional entropy of pseudo-measurements

given sensing measurements upper bounds the worst-case estimation error of a sparse GP

regressor. We then corroborate the error bound in an abstract 1D example. Then, we

evaluate our proposed reduced belief space approach on a simulated example of active

mapping with an underwater robot operating in a flow field [185, 186]. For comparison,

we demonstrate the behaviour of a typical measurement entropy maximisation approach

equivalent to planning over the full belief space. This chapter builds upon our work pub-

lished in [187].

6.1 Preliminaries and problem formulation

In the active mapping instance considered in this chapter, the state under estimation is a

static, scalar spatial field in some domain D ⊂ R2,

y = s(x), (6.1)

where x ∈ D.

The mobile sensing robot with dynamic model as in Equation (1.1) takes online scalar

measurements zt ∈ R of the spatial field at sensing location xt ∈ D with additive noise ϵt

according to the following measurement model,

zt = s(xt) + ϵt. (6.2)

The measurement noise ϵt is assumed to be bounded for all t. Given these noisy measure-

ments we generate an estimate ŝ of the spatial phenomenon s across the entire domain

x ∈ D using GP regression with sparse approximation.
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6.1.1 Sparse Gaussian process regression

A GP is a generalisation of multivariate Gaussian random variables (RVs) to random

functions. It is an infinite collection of random variables such that any finite subset taken

is jointly Gaussian distributed. A GP is characterised by a mean function µ(x) and

a covariance function k(x,x′) which specifies the covariance between function values at

different points x and x′:

E[s(x)] = µ(x), Cov[s(x), s(x′)] = k(x,x′). (6.3)

We impose a zero-mean GP prior on the scalar field of interest, that is, our initial belief

of s is ŝ(x) ∼ GP(0, k(x,x′)), with k(x,x′) specified by the user. Let Z be the vectorised

representation of the complete set of noisy measurements z1:T = {z1, . . . , zT } up to T .

That is, Z is a vector with elements [Z]t = zt, ∀t ∈ {1, . . . , T}. Similarly, let X be a

vector of the corresponding sensing locations [X]t = xt, ∀t ∈ {1, . . . , T}. Then, with the

zero-mean prior, the estimate given the measurements ŝ(x | Z) is represented by another

GP:

ŝ(x | Z) ∼ GP(µ(x | Z), σ2(x,x′ | Z)),

µ(x | Z) = kT
X(x)K−1

X Z,

σ2(x,x′ | Z) = k(x,x′)− kT
X(x)K−1

X kX(x′),

(6.4)

with vector [kX(x)]t = k(x,xt), and Gram matrix [KX]t1,t2 = k(xt1 ,xt2).

Inversion of the Gram matrix KX in Equation (6.4) is computationally taxing at O(T 3).

We use the inducing point-based approximation of the regression above, introduced in [147,

156] for its reduced computational complexity. Intuitively, this formulation introduces a

small set of inducing points M = {mi}|M|
i=1, mi ∈ D where |M| ≪ T . Then, one can

assert that the measurements are conditionally independent (CI) given the function value

estimates at the inducing points, or the vector of pseudo-measurements [yM]i = ŝ(mi). A

graphical depiction of this notion is given in Figure 6.1. In a full GP, all measurements are

modelled with statistical dependence to capture spatial correlations and predict function

values at unseen locations s(x). In an inducing point-based sparse GP, the only statistical

dependencies are between the pseudo-measurements and the measurement set. Thus,
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...

(a) Full GP regression.

...

(b) Inducing point-based sparse GP
regression.

Figure 6.1: Graphical models for GP regression.

the pseudo-measurements yM ‘summarise’ the spatial correlations between measurements

collected by the robot and predictions at unseen locations are inferred via the set of latent

variables yM.

Mathematically, the CI property holds if and only if:

k(x,x′) = kT
M(x)K−1

M kM(x′) ∀x ̸= x′, (6.5)

where [kM(x)]i = k(x,mi) and [KM]i,j = k(mi,mj). This follows from asserting that

the conditional cross-covariance vanishes given pseudo-measurements yM, i.e. σ2(x,x′ |

yM) = 0. In other words, the correlation between any two measurements is indirect and

is limited by their correlation to the pseudo-measurements.

We consider two popular inducing point-based approximations that satisfy CI: the subset

of regressors (SoR) and fully independent conditional (FIC) approximations. As noted

in [156], the SoR and FIC approximations are equivalent to replacing the kernel k(x,x′)

in Equation (6.3) with approximate ones as follows:

k̂SoR(x,x
′) = kT

M(x)K−1
M kM(x′),

k̂FIC(x,x
′) = k̂SoR(x,x

′) + δ(x,x′)(k(x,x′)− k̂SoR(x,x′)),
(6.6)

where δ(·) is the Kronecker delta function. Then, complexity reduces to O(|M|2T ) where

|M| ≪ T , a significant reduction compared to the full GP regression in Equation (6.4).
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Notably, complexity is now linear in the number of measurements, making online regression

feasible even for large and complex spatial fields. While this complexity reduction makes

inducing point sparse GPs popular for use in mapping to represent spatial field estimates,

we are most interested in leveraging the approximations in Equation (6.6) in the planning

stage of active mapping. In the following section we treat the pseudo-measurements as

the latent variable ξ in Problem 1.2 whose belief space we plan over. Thus we exploit the

inducing point approximation not just to obtain a sparse representation of s but also for

efficient planning of high-quality sensing trajectories.

6.1.2 Problem formulation

Given a prior zero-mean GP representing the initial belief of s, the robot’s task is to

solve Problem 1.1. That is, to plan a sensing trajectory that minimises the uncertainty of

the spatial field estimate ŝ across the whole domain D. For a Gaussian process s, uncer-

tainty is captured by a generalisation of entropy known as the entropy rate. The entropy

rate captures the infinite nature of the collection of random variables in the Gaussian

process, defined as H̄(s) = limn→∞
1
nH(X1, . . . , Xn). With this in mind, the full belief

space planning problem is written

Problem 6.1. Given an initial belief of s and a planning horizon T <∞ find a sequence

of admissible controls σ = {u0, . . . ,uT−1} that minimises uncertainty in s at all locations,

or the entropy rate

min
σ∈UT

H̄(s(x) | Z). (6.7)

A sensing policy to this end is the selection of future sensing locations where the GP

uncertainty is high given the current measurement set, or conditional entropy maximisa-

tion [17]. By sensing in these locations, the robot drives down the total entropy in Equa-

tion (6.7). As GPs are extensions of multivariate Gaussian RVs, the conditional entropy

at a single location x given the vector of measurements z1:t up to time t < T 1 takes the

closed form for a finite Gaussian distribution given in Equation (3.11) where k = t and

ΣY |Z = σ2(x,x | z1:t). Then, choosing a future sensing location with maximal conditional

1Note we distinguish the vector of online measurements z1:t taken up to time t < T from the complete
vector of measurements Z up to time T notationally.
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entropy amounts to maximising log det σ2(x,x | z1:t+1). Inspection of Equation (6.4)

shows this is equivalent to maximising log detKx1:t+1 , where x1:t+1 is the vector of sensing

locations up to time t+ 1.

As we can see, the heuristic associated with this policy involves the Gram matrix Kx1:t+1

that grows in dimension with each measurement added until reaching its maximum size

at the final sensing time T . Then for large T this approach can become computationally

taxing. To avoid this growing dimensionality we propose to instead plan over the reduced

belief space associated with the pseudo-measurements. This also allows us to minimise

entropy rather than entropy rates, as the inducing point locations are a finite subset of the

infinite, continuous domain.

Problem 6.2. Given an initial belief of s and a planning horizon T <∞ find a sequence

of admissible controls σ = {u0, . . . ,uT−1} that minimises uncertainty in s at inducing

point locations

min
σ∈UT

H(yM | Z). (6.8)

Here we need only to compute and minimise the conditional entropy of a fixed number of

latent variables yM – the pseudo-measurements. In Section 6.3 we further exploit this ben-

efit by using an efficient recursive sparse GP algorithm presented in [148] that maintains

a Gaussian belief over yM. We therefore once again present an instance of reduced latent

belief space planning, here for application in active mapping problems. In the following

sections we prove that the above problem reduction is equivalent to worst-case estima-

tion error minimisation, connecting information-theoretic active perception approaches to

deterministic error reduction for the first time.

6.2 Information gain and worst-case error minimisation

The deterministic error between the true spatial phenomenon s and the sparse GP esti-

mate ŝ is the total absolute point-wise difference, defined as

∫
D

∣∣s(x)− E[ŝ(x | Z)]
∣∣dx. (6.9)
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To minimise this estimation error, one would require access to the ground truth field

s. As s is unavailable in realistic robotics applications, deterministic error minimisa-

tion is not generally considered as a heuristic for planning active mapping trajectories

and information-theoretic heuristics are used instead. By studying sparse GP regression

through a kernel-based interpolation theoretic lens, we show that the latent variable be-

lief space planning problem proposed in Problem 6.2 is in fact a proxy for minimising

deterministic error.

A connection between GPs and kernel-based interpolation on reproducing kernel Hilbert

spaces (RKHSs) follows from recognising that the covariance function in Equation (6.3) is

a positive definite kernel. A kernel k is positive definite if, for any choice of X, the Gram

matrix KX is positive definite. Any positive definite kernel k uniquely defines an RKHS,

Hk. An RKHS is a space of real-valued functions equipped with an inner product ⟨·, ·⟩Hk

such that the positive definite kernel satisfies:

1. k(·,x) ∈ Hk ∀x ∈ D,

2. ⟨f, k(·,x)⟩Hk
= f(x) ∀x ∈ D, f ∈ Hk.

Intuitively, this means that the kernel function k(·,x) is itself an element of Hk, and that

it ‘reproduces’ all other functions in Hk at x. Further, the inner product induces a norm

||f ||Hk
=
√
⟨f, f⟩Hk

.

With the RKHS framework at hand, one may draw connections between kernel-based

interpolation and GP regression to bound deterministic error of a full GP regressor. Just

as in GP regression, kernel-based interpolation is concerned with estimating function values

at unseen locations given observations at locations {x1, . . . ,xT }. Specifically, the aim is

to find the minimum-norm interpolant f ∈ Hk of a function s by solving the optimisation

problem,

f := arg min
g∈Hk

||g||Hk

s.t. g(xi) = s(xi), ∀xi ∈ {x1, . . . ,xT }.
(6.10)
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For noise-free observations the unique solution to this optimisation problem can be written

as a sum of the kernel functions at measurement locations,

f(x) =

T∑
i=1

αik(x,xi). (6.11)

where αi = [K−1
X ]ij [Z]j using Einstein notation. This form of αi is familiar. In fact,

we can see that the above minimum-norm interpolant is equivalent to the posterior GP

mean given in Equation (6.4). This equivalence allows one to directly apply error analysis

developed for the minimum-norm interpolant in kernel-based interpolation literature to

GP regression with noise-free observations as in [153, 155].

Inspired by this work, we derive the following worst-case error bound for both full and

sparse GP regression with measurements containing bounded noise, which is representative

of robotics applications. All proofs of results are available in Appendix B.

Theorem 6.1. Suppose s ∈ Hk with arbitrary positive definite kernel k. For bounded

measurement noise ϵ2 < σ2ϵ <∞, we have for any measurement set Z,

∣∣s(x)− E[ŝ(x | Z)]
∣∣ ≤ ||s||Hk

PX(x) +
√
σ2ϵTΛ

2
k(x), (6.12)

where E[ŝ(x | Z)] is the mean of the posterior GP, PX(x) =
√

detKX∪{x}
detKX

is called the

power function of X and Λk(x) = ||K−1
X kX(x)||.

Error bounds for GP regression have been studied in the past. In [188], probabilistic error

bounds assuming bounded noise are derived based on a multi-arm bandit analysis. In

contrast, our bounds are deterministic. In [189] bounds are derived for Gaussian measure-

ment noise, a more general case than the one considered in this thesis. However, these

bounds require that the unknown function and the GP kernel function are Lipschitz con-

tinuous, a requirement that we do not enforce. Most interestingly, our bounds link GP

regression error to information theoretic active perception regimes. From Theorem 6.1

we see that Equation (6.9) can be minimised by choosing measurement locations X that

minimise PX(x) for all possible x. In fact, via PX(x) =
√

detKX∪{x}
detKX

we find a close re-

lationship between the bound in Equation (6.12) and the information theoretic approach
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in Problem 6.1 – both aim to choose sensing locations where the conditional entropy or

uncertainty, characterised by detKX, is maximal.

We can further prove equivalence between the proposed latent belief space planning ap-

proach in Problem 6.2 by exploiting the CI property of the sparse approximations pre-

sented in Equation (6.5). Because CI kernels can be viewed as interpolants to the true

kernel [159], the interpolation of s(x) given Z can be decomposed into two stages: 1) the

interpolation of pseudo-measurements yM given Z, and 2) the interpolation of s(x) given

yM. Then, it is natural to ask if the deterministic error in Equation (6.12) or the power

function admits a similar decomposition. The following theorem confirms that there is

such a decomposition.

Theorem 6.2. Suppose a kernel k satisfies the CI assumption (Equation (6.5)). Then,

the power function PX(x) satisfies:

PM(x) ≤ PX(x) ≤ PM(x) expH(yM | Z), (6.13)

where PM(x) =
√

detKM∪{x}
detKM

.

Moreover, assuming s ∈ Hk, the deterministic error can be further bounded:

∣∣s(x)− E[ŝ(x | Z)]
∣∣ ≤ ||s||Hk

PM(x) expH(yM | Z) +
√
σ2ϵTΛ

2
k(x). (6.14)

When considering only the control-dependent term H(yM | Z) in the upper bound in Equa-

tion (6.14), Theorem 6.2 draws direct equivalence between deterministic error minimisa-

tion and the latent belief space active perception problem proposed in Problem 6.2. Fur-

ther, through comparison of Equations (6.12) and (6.14) we note that the solving the

reduced Problem 6.2 serves as a closer proxy for minimising deterministic error than the

conventional Problem 6.1 since H(yM | Z)→ 0 as more measurements are added, or with

better solution quality. This is owing to the ‘tightness’ of the inequality in Equation (6.13)

in that PX(x)→ PM(x) as H(yM | Z)→ 0.
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6.3 Planning framework

Beyond its equivalence to error minimisation, a further benefit of latent belief space plan-

ning problem as posed in Problem 6.2 is that we can recursively maintain a Gaussian

belief over the pseudo-measurements via a Kalman filtering-like process. This Gaussian

representation allows utilisation of the RVI algorithm detailed in Chapter 3 for solving the

reduced active mapping problem.

6.3.1 Recursive sparse GP regression

Given measurement vector z1:t up to time t, the recursive sparse GP regression algo-

rithm [148] permits equivalent calculations as in Equation (6.4), while only storing the

posterior mean and covariance of the pseudo-measurements yM:

µt = E[yM | z1:t], Σt = Cov[yM | z1:t]. (6.15)

Importantly, the posterior entropy Equation (6.8) can be calculated as a function of Σt:

H(yM | z1:t) =
|M|
2

log det 2πeΣt. (6.16)

The recursive update procedure is analogous to a Kalman filter. Initially, the belief is set

to µ0 = 0 and Σ0 = KM. Given measurement zt at xt, we generate the predictive mean,

variance and cross-covariance at future time step:

ẑt+1 = µ(xt+1 | zt),

Σzz
t+1 = σ2∗(xt,xt) + σ2ϵ ,

ΣzM
t+1 = kT

M(xt)K
−1
M Σt,

(6.17)

where ∗ is a placeholder for the CI kernels SoR or FIC and σϵ <∞ is an upper bound on
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the peak measurement noise. Using the predictions in Equation (6.17), and new measure-

ment zt+1 at xt+1 we can perform a belief update:

µt+1 = µt +ΣzM
t+1(Σ

zz
t+1)

−1(zt+1 − ẑt+1),

Σt+1 = Σt − ΣzM
t+1(Σ

zz
t+1)

−1(ΣzM
t+1)

T.
(6.18)

Finally, we can recover the full estimate given any location x ∈ D (i.e., perform regression)

given the pseudo-measurement belief µt and Σt:

µ(x | z1:t) = kT
M(x)K−1

M µt,

σ2SoR(x,x
′ | z1:t) = kT

M(x)K−1
M ΣtK

−1
M kT

M(x′),

σ2FIC(x,x
′ | z1:t) = σ2SoR(x,x

′ | z1:t) + δ(x,x′)(k(x,x′)− k̂SoR(x,x′)).

(6.19)

Thus, we have a Gaussian belief space of fixed dimension, from which we can infer the full

spatial field estimate. The pseudo-measurement covariance prediction and update Equa-

tions (6.17) to (6.18) are measurement independent, enabling efficient belief space planning

to minimise the posterior entropy in Equation (6.16) over non-myopic horizons.

6.3.2 Receding horizon planning

Given the pseudo-measurement belief maintained by the recursive GP updates, we solve

the reduced latent belief space planning problem in Problem 6.2 using an adapted version of

the RVI algorithm detailed in Chapter 3. With each expansion of the belief tree facilitated

by Equation (6.17) we extract and execute the best sensing action found via search for

the lowest-cost leaf node, where the cost is given by Equation (6.16). Then, the belief is

updated via Equation (6.18). A new plan is generated according to the updated belief.

However, since the spatial field is static, we re-use the subtree rooted at the selected

sensing node in the previous planning stage. Because the RVI iteration adds a new layer

of leaves, the depth of the tree is always equal to horizon T .

As noted in [190], the ϵ-algebraic redundancy check in line 14 of Algorithm 1 is an instance

of a linear matrix inequality feasibility problem, and poses computational challenge as the

number of inducing points grows. This can be circumvented by setting ϵ = ∞. In this
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case, the RVI iteration only adds the lowest cost nodes that are not within δ distance of

each other. While there are no finite bounds in this case, it produces practically viable

and fast solutions. For further detail on how pruning impacts tree size in RVI see [20, 117].

6.4 Experiment results

6.4.1 Characterisation of the error bound

We first corroborate the error bound proposed in Theorem 6.2 with an example. As the

RKHS norm required for computing the error bound may be hard to compute, particularly

in higher dimensional settings, we consider a one-dimensional regression problem where

the target function is designed with simplified form s(x) =
∑n

i=1 αik(x, xi). This way we

ensure s ∈ HK , and the RKHS norm is easily reduced to the Euclidean norm. Such

simplifications are enough to illustrate the connection between our latent belief space

planning problem formulation and worst-case deterministic error minimisation.

Figure 6.2 depicts the outcome of regression with such a target function. With sparse and

noisy measurements, the GP regressor is able to reconstruct the target function well, as

evidenced in the top panel. Importantly, here we see that the bound in Equation (6.14) is

reasonably tight on the predicted mean and follows the intuitive behaviour of decreasing

near measurement locations. When compared to the 1σ-confidence interval obtained from

the posterior covariance, the proposed bounds have overall higher value. However, in

certain regions of sparse or no measurement the target function is greater than the 1σ-

confidence interval and yet remains within our error bound. This demonstrates that while

confidence intervals may be broken, the error bound may not.

In the lower panel of Figure 6.2, we show the deterministic error against the proposed

upper bound in Equation (6.14), confirming the deterministic error lies below the bound

for all x in the domain. This result corroborates our theoretical finding that the proposed

latent belief space planning approach does indeed minimise deterministic error reasonably

tightly.
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Figure 6.2: A study of estimation error for one-dimensional sparse Gaussian process
regression of a target function in the RKHS. Top: The sparse GP estimate in solid
blue compared to the ground truth function in solid green. Measurement locations are
indicated with black crosses. The proposed bound on deterministic error is shown via
the green shaded area. The area enclosed by the grey dotted lines is the standard 1σ-
confidence interval. Bottom: The deterministic estimation error of the estimate in the

top panel in blue compared to the upper bound in green.

6.4.2 Flow field case study

To demonstrate capability of the proposed algorithm and problem formulation for active

mapping, we consider a simplified underwater glider operating in a double-gyre flow field.

The dynamics are given by [140]

x1
t+1

x2
t+1

 =

x1
t

x2
t

+∆t(Vg

− sin(πx1) cos(πx2)

cos(πx1) sin(πx2)

+ V

cosut
sinut

), (6.20)

where δt is a small time translation, Vg is the velocity of the flow field, and V is the

control velocity. The robot aims to solve reduced Problem 6.2 equipped with the planning

framework described in Section 6.3 in order to reconstruct a scalar field of interest (such

as level of salinity) over the flow field. The scalar field is shown in Figure 6.3 as a heatmap

superimposed on the flow field.

To verify that the latent belief space planning algorithm simultaneously solves the de-

terministic error minimisation problem, we evaluate the average absolute error sampled

over a 30×30 grid. This amounts to querying the posterior GP at 900 test locations and
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Figure 6.3: The ground truth active mapping environment. Double-gyre flow field
vectors are shown in black. Yellow indicates a higher value for the scalar field, blue
indicates lower values. Inducing point locations used for sparse GP regression are shown

in red.

calculating error compared to ground truth at these locations. To verify the advantage

of planning over the reduced latent belief space compared to the full belief space we also

examine the behaviour of the entropy maximisation solution to Problem 6.1, which is a

well-established approach to active mapping with GPs [17]. This was implemented by

setting the cost in Algorithm 1 as − log detKX. For each approach, we vary the planning

horizon T between {1, 5, 10} time steps and examine the absolute error over time.

Figure 6.4(a) shows the performance of our proposed planner over 20 randomised initial

starting locations in the same environment (Figure 6.3). It can be seen that for all choices

of search horizon, the average absolute error decreases over time. The rate of reduction is

greater with larger search horizon. Meanwhile, Figure 6.4(b) shows that the error for the

full belief space planner does not decrease over time, and actually increases with larger

search horizons (T = 10).

To better understand this behaviour, we show example trajectories produced via the pro-

posed latent belief space planner after 100 time steps in Figure 6.5 and compare to an ex-

ample trajectory produced via full belief space planning in Figure 6.6. For plans produced

via our proposed approach with myopic greedy horizon T = 1, shown in Figures 6.5(a)

and 6.5(d), we observe poor coverage of the spatial domain. Additionally, the myopic

nature of this planner results in trajectories that often get ‘stuck’ in an attracting region
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(a) Results for the latent belief space plan-
ner, minimising Equation (6.14).

(b) Results for the full belief space planner,
minimising Equation (6.12).

Figure 6.4: Average absolute reconstruction error with varying search horizon. Shaded
areas represent 95% confidence interval over 20 trials.

(a) T = 1 (b) T = 5 (c) T = 10

(d) T = 1 (e) T = 5 (f) T = 10

Figure 6.5: Example trajectories produced by the reduced belief space planner after 100
time steps with varying search horizon. Green: executed trajectory. Heatmaps in the top
row depict the sparse GP mean after each sensing trajectory. Heatmaps in the bottom
row depict sparse GP variances after each sensing trajectory. Red: current plan. Black:

belief search tree.

of a gyre. The robot is unable to use the flow field dynamics to its advantage to explore,

and reconstruction of the spatial field is thus poor.

With longer planning horizons the robot under our proposed framework successfully ma-

noeuvres through the flow field to increase coverage of the domain, giving improved esti-

mation of the spatial field as seen in Figures 6.5(b) and 6.5(c), with best estimation and

coverage given by the longest horizon T = 10. Figure 6.5 further demonstrates the influ-

ence of planning over the reduced latent belief space. For all horizon lengths, the robot

preferentially takes measurements near inducing points over exploring regions further away,
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(a) Sparse GP mean (b) Sparse GP vari-
ance

Figure 6.6: An example trajectory after 40 time steps produced by the full belief space
planner with T = 5. Green: executed trajectory. Red: current plan. Black: belief search

tree.

such that variance is minimised at inducing points. This is exemplified in Figure 6.5 where

with increasing horizon, broader coverage of the region around inducing points and greater

minimisation of variance is achieved.

Meanwhile, a sample trajectory for moderate horizon T = 5 produced via the full belief

space planning or entropy maximisation approach is shown in Figure 6.6. Here, the robot

explores outwards, making use of the ambient flow field. This is expected because the

measurement entropy maximisation formulation demands the robot to simply move as

far away from its previous trajectory as possible. However, this exploratory behaviour

is problematic when using inducing point-based sparse GPs. As the robot gets further

from the inducing points, the measurements do not make a significant contribution to

improving estimation quality. These results corroborate our theoretical finding that the

inducing point belief space is more suitable for deterministic error minimisation than the

full belief space.

6.5 Summary

In this chapter we introduced the inducing point belief space for more efficient and accurate

active mapping with sparse GPs, a common task in active perception. The dimensionality

of the inducing point belief space is fixed throughout the active mapping task, providing a

clear computational advantage over planning over the full belief space where dimensionality

grows with each measurement taken.
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Furthermore, we derived an exciting new theoretical connection between belief space plan-

ning and deterministic error minimisation for sparse GP regression. The proposed reduced

latent belief space was proven to be a closer proxy for planning to reduce deterministic

regression error than the full belief space. To validate our theoretical results we evalu-

ated the proposed belief space plans in a one-dimensional illustrative regression example,

demonstrating that minimising entropy at inducing point locations minimises worst-case

error reasonably tightly. Evaluation in a more realistic active mapping scenario high-

lighted that our proposed method does indeed provide more accurate map reconstructions

in shorter time than a full belief space planning approach.





Chapter 7

Conclusions and future work

In this thesis we introduced reduced latent belief planning as a new theoretical framework

for active perception. The key idea is to introduce latent variables that can be inferred

from measurements, and that the original system under estimation can be inferred from.

By adding this layer of inference to the perception problem we take advantage of the latent

variable’s reduced belief space for planning sensing actions, thus easing the computational

overhead of planning in active perception pipelines.

This framework was developed as an orthogonal approach to established belief space plan-

ning research, providing alternative belief spaces to apply existing algorithms to. The

proposed belief spaces are of reduced size and admit and information-theoretic planning

heuristics that are more computationally manageable than traditional belief spaces.

To demonstrate the power of this framework, we proposed a suite reduced latent belief

spaces for different active perception problem instances. The proposed belief spaces were

evaluated both empirically and theoretically, and it was shown throughout the thesis that

our careful selection of latent variables resulted in belief space plans that improve estimates

of the original system state when compared to plans formulated over the full belief space.

In the remainder of this chapter, we summarise these findings in more detail and present

new avenues for future work unlocked by this framework. To conclude the thesis, a short

discussion on the outlook for active perception is given.

101
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7.1 Thesis summary

Here we summarise the contributions the technical chapters of the thesis, where each active

perception problem instance was addressed. In each chapter, an example of a reduced

latent belief space is proposed and its suitability for the active perception task at hand is

evaluated.

7.1.1 The state belief space for active estimation of unknown inputs

In Chapter 4 active estimation of general systems with linear Gaussian dynamics under

unknown inputs was addressed. Here, the sensing robot was required to jointly estimate

both the state and the unknown input together. This would typically require planning

over the joint belief space of these two variables.

We presented the state without unknown input as the latent variable of interest. Thus,

the latent variable was simply a subset of the full system description and the problem was

reduced from a joint estimation problem to a single variable estimation problem. This

choice of latent variable was facilitated by an understanding of the unknown input filter

used for belief updates. Recognising that the filter decouples state and unknown input

estimation allows one to infer the full system description from the latent variable alone.

Planning over the latent belief space is simpler than planning over the full, joint belief

space. Further, the state belief space is Gaussian in nature, allowing utilisation of existing

Gaussian belief space planning algorithms such as RVI. Crucially, this admits derivation

of suboptimality bounds for estimation of the full, original state description that results

from the sensing trajectory planned via RVI. We derived and presented these bounds for

the proposed extension of the RVI algorithm to this joint estimation problem. All proofs

for these results are made available in Appendix A.

Finally, the proposed approach was evaluated on an example application of active esti-

mation of linear Gaussian systems with unknown inputs: active target tracking. Here

the target was moving with known linear Gaussian dynamics, however was performing

unknown evasive manoeuvres at random time steps. We demonstrated that our proposed
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approach was able to plan non-myopically in these conditions with our extension of RVI,

giving accurate estimation of the full state.

7.1.2 The homotopic belief space for active target tracking

In Chapter 5 the active target tracking problem was further explored, and a new latent

variable was introduced. Here, the target’s dynamics were learned via a GMM, a tool

commonly used to represent various hypotheses over possible trajectories. However, for

GMMs, information gain measures describing the expected uncertainty reduction in the

belief given by a measurement have no closed-form analytic expressions. These metrics are

crucial to guide selection of sensing actions. Then, to plan over the full belief space one

must use estimates of the metrics, involving pairwise comparison of each GMM component.

For large GMMs, this can become prohibitively difficult.

We instead proposed the target trajectory’s homotopy class as a latent variable from which

the full trajectory could be inferred. This inference was enabled via the development of a

hierarchical GMM, which acted as a predictive model over the full trajectory given predic-

tions of the homotopy class. Evaluation of the proposed predictive model demonstrated

promising prediction results compared to a standard GMM, confirming that the homotopy

class is a suitable latent variable for inferring the full state.

The proposed homotopic belief space is both discrete and sparse, simplifying computation

of information gain compared to a traditional approach tremendously. Further, sensing

trajectories planned in the homotopic belief space demonstrated estimation accuracy com-

petitive with those planned in the belief space. However, the proposed method took half

the number of measurements on average to achieve this accuracy.

7.1.3 The inducing point belief space for active mapping

In Chapter 6 we addressed the active mapping problem. A sensing robot was tasked with

reconstruction of a spatial field from noisy measurements via sparse GP regression. As

more measurements are taken, the covariance matrix of the sparse GP increases in dimen-

sion. Thus, computing the information gain for long horizons and long sensing trajectories
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can become cumbersome. Additionally, a typical approach that aims to minimise the final

uncertainty of the GP estimate via selection of maximum entropy sensing locations was

shown to demonstrate exploratory behaviour not conducive to estimation via inducing

point-based sparse GPs.

As an alternative, we proposed the pseudo-measurements or the estimates held at inducing

points as latent variables. Then, the covariance matrix representing uncertainty in these

latent variables is of fixed dimension. Furthermore, information gain and belief updates can

be calculated efficiently via a recursive Kalman-like filtering procedure. Most importantly,

sensing trajectories planned in this reduced belief space only explored regions relevant

for inducing point-based sparse GP regression, producing more accurate estimates of the

spatial field in shorter time.

The proposed reduced latent belief space was also analysed theoretically. Most notably,

we proved a direct connection between the typical belief space planning approach to active

perception of uncertainty minimisation and explicit minimisation of worst-case estimation

error. This connection was made via derivation of a information-theoretic upper bound

on worst-case estimation error. We proved this connection for planning over both the full

belief space and the proposed reduced belief space. For the reduced belief space we noted

that the upper bound was tighter, and thus the reduced belief space was a closer conduit

for error minimisation. All proofs for these theoretical developments are made available

in Appendix B.

7.2 Future work

The reduced latent belief space planning framework presented in this thesis opens many

new avenues for future work. In particular, the most exciting insight provided by the

reduced latent belief space planning framework is in the introduction of topological latent

variables such as homotopy classes. Specifically, we believe that these latent variables are

prime candidates for improving active perception pipelines where metric information is

unavailable, untrustworthy or cumbersome to work with – as is often the case in robotics.
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Below, we expand on this insight by presenting specific avenues for future work in topolog-

ical latent belief space planning. However, we note that this is not a complete treatment

of future work as the applicability of this framework is broad beyond topological latent

variables.

7.2.1 Active multi-target tracking via the homotopic belief space

Tracking multiple targets with fewer robots is a highly resource-constrained problem of

interest in robotics settings such as search and rescue and surveillance. In realistic scenar-

ios, sensing robots have time, velocity and compute constraints that restrict how often and

when they may observe each target to maintain accurate estimates of their trajectories. In

fact, it has been shown that under certain resource constraints such as number of sensing

robots and maximum velocity, optimal multi-target tracking is impossible, as is tracking

at a constant factor of optimality [125]. Active multi-target tracking is thus a difficult op-

timisation problem where the total information gain must be balanced between all targets.

Previous work has explored solutions where target dynamics are constrained such that all

targets remain within bounded distance of one another [191]. Other work has considered

unconstrained target dynamics, but without sensing robot constraints [192], proposing to

always focus on sensing the target with largest estimation uncertainty.

In Chapter 5 the homotopic belief space proved to be very promising for active target

tracking. In particular, it was shown that accurate estimation could be achieved with very

few measurements, due to the sparse nature of the homotopic belief space. This behaviour

is highly desirable in the multi-target tracking setting, where resource constraints limit the

number of measurements a robot may take of a single target. In future work we therefore

wish extend homotopic belief space planning to address the active multi-target tracking

problem.

7.2.2 Topological latent variables for localisation

In this thesis the sensing robot’s state was considered fully known or observable, and robot

dynamics were deterministic. In practice, actuation errors and unmodelled external forces
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introduce stochasticity into the robot’s dynamic model. Then, roboticists must tackle the

challenge of localisation, where the robot’s position must be inferred from sensing data.

Metric information provided by odometry and global navigation satellite systems (GNSS)

cannot be trusted alone due to drift and drop-out. Thus, additional sensing data from

visual sensors or LiDAR is often leveraged to improve localisation.

Again, active localisation rather than passive is preferred. In active localisation, it has

been shown that loop closures are highly informative locations to visit [11]. These are

locations where the robot has potentially previously visited and sensed the environment.

By visiting a potential loop closure, the robot can readjust its location estimate and

resolve errors caused by accumulated odometry/GNSS drift or modelling inaccuracies.

Identifying potential loop closure locations with LiDAR and visual sensing data brings its

own challenges and avenues for future work, outlined below.

LiDAR loop closure detection

LiDAR sensors provide point cloud measurements representing three-dimensional range

data. Where LiDAR sensors are used to assist in localisation, detecting loop closures

therefore requires solving a point cloud registration problem. Measurements taken at

identical sensing locations must be consolidated by finding a transformation that aligns

the point clouds. The most common method for point cloud registration is the iterative

closest point (ICP) approach [193–195], where in each iteration, every point in a reference

point cloud is matched to a target point cloud via closest distance and a transformation

is estimated via a minimisation problem. Iterations are completed until convergence is

achieved. However, this method suffers from computational issues, as it requires a point-

to-point or point-to-plane comparison between each point cloud. To circumvent this, a

topological representation of the LiDAR scans may be considered instead. The homology

of a manifold gives a categorisation of equivalent manifolds according to their structure.

As each point cloud represents a surface or manifold, homology could therefore be used

as a latent variable to guide sensing to locations where point cloud alignment is possible

– or loop closure locations.
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Visual loop closure detection

Localisation using visual sensors often involves feature-based methods, where highly recog-

nisable features are extracted from sensing data and used to confirm loop closures [106].

However, if the environment is largely featureless – for example in Mars-like terrains,

where visual sensors capture images of largely indistinguishable rock formations – this can

be near impossible. Then, it may be prudent to study the topology of rock formations

to identify loop closures. Once again, various topological latent variables capturing the

homology of a rock formation can be explored to this end, opening avenues for planning

over new topological latent belief spaces to visit potential loop closures.

7.2.3 Improving efficiency of active perception solutions

The planning algorithms used in this thesis were sampling-based tree search algorithms

that suffer computational issues. Even with reductions made such as the pruning in RVI,

these methods can still be slow. Our proposed reduced latent belief spaces mitigate this

by providing a smaller, more informative search space to plan over, yet improvements are

still required to have fast and accurate active perception on live robots. We therefore wish

to address trajectory optimisation approaches in our future work on active perception,

avoiding discretisation and sampling all together. In similar vein to ergodic search meth-

ods [37, 38], optimising continuous trajectories to gather information may be a fruitful next

step. For example, we wish to further explore the use of homotopy classes in information

gathering. The full set homotopy classes of a space describe the complete set of ways in

which one may traverse through it, providing a natural solution to the coverage problem.

Linking homotopy classes to ergodic search, or utilising them to reduce the complexity of

the ergodic search problem is a promising future avenue for planning continuous active

perception trajectories.
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7.3 Outlook

To truly endow robots with human-like intuition regarding how to look rather than see,

we must continue developing increasingly sophisticated frameworks for active perception.

Importantly, roboticists must ensure that theoretical and algorithmic developments work

toward expedient planning without compromising accurate estimation.

Research to this end has begun moving robots out of factory floors and away from repet-

itive, structured tasks. In the current state of research, we are already on the eve of the

proliferation of cobots [8, 196], self-driving vehicles [197], and autonomous extra-terrestrial

exploration [5]. The continuation of dedicated research to active perception could see

robots exhibiting a level of autonomy previously only imagined. Fast and accurate active

perception could enable the development of real-time assistive technology to empower au-

tonomy in visually impaired people, or even enhance human perception with non-biological

sensing capabilities.

Our introduction of reduced latent belief space planning for active perception is a con-

tribution toward this goal. We have demonstrated that the intelligent selection of latent

variables provides computational efficiency, theoretical guarantees and impressive empir-

ical results. We hope that this new approach to active perception inspires the discovery

and research of more reduced latent belief spaces and further application of this ideology.



Appendix A

Proofs of results in Chapter 4

A.1 Proof of Lemma 4.1

Lemma 4.1. The unknown input filter state estimation error covariance update map is:

1. Monotone: if Σ1 ⪯ Σ2 then ρ(Σ1) ⪯ ρ(Σ2)

2. Concave: ∀α ∈ [0, 1], ρ(αΣ1 + (1− α)Σ2) ⪰ αρ(Σ1) + (1− α)ρ(Σ2).

We first prove monotonicity. M∗
t and K∗

t are the optimal gains in the sense that they

minimise Σt. Thus, ∀Mt,Kt ̸=M∗
t ,K

∗
t , we have

ρ(Σt−1,M
∗
t ,K

∗
t ) ⪯ ρ(Σt−1,Mt,Kt).

For any Σ1,Σ2 ∈ P+ with Σ1 ⪯ Σ2 and any fixed non-optimalMt,Kt, we have from Equa-

tion (4.10),

ρ(Σ2,Mt,Kt)− ρ(Σ1,Mt,Kt) = ÃtΣ2Ã
T
t − ÃtΣ1Ã

T
t ⪰ 0.

Proving that ρ is affine in its first argument. Recalling that the optimal gains are functions

of Σ, it then follows from the optimality of M∗
t and K∗

t and affinity of ρ that

ρ(Σ1,M
∗
t (Σ1),K

∗
t (Σ1)) ⪯ ρ(Σ1,M

∗
t (Σ2),K

∗
t (Σ2)) ⪯ ρ(Σ2,M

∗
t (Σ2),K

∗
t (Σ2))
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We next prove concavity. Let χ = αΣ1 + (1− α)Σ2 ∀α ∈ [0, 1] where again Σ1,Σ2 ∈ P+.

From Equation (4.10) and optimality of gains we have the result:

ρ(χ,M∗
t (χ),K

∗
t (χ)) = αρ(Σ1,M

∗
t (χ),K

∗
t (χ)) + (1− α)ρ(Σ2,M

∗
t (χ),K

∗
t (χ))

⪰ αρ(Σ1,M
∗
t (Σ1),K

∗
t (Σ1)) + (1− α)ρ(Σ2,M

∗
t (Σ2),K

∗
t (Σ2)).

A.2 Proof of Lemma 4.2

Lemma 4.2. The directional derivative of the state estimation covariance update map at

Σ ∈ P+ along the arbitrary direction X ∈ P+ is given by

dρu(Σ + ϵX)

dϵ

∣∣∣∣
ϵ=0

= Ã(Σ)XÃ(Σ)T,

where Ã(Σ) is defined as in Equation (4.10). Further, the directional derivative of the

t-horizon mapping ϕt at Σ ∈ P+ along an arbitrary direction X ∈ P+ is given by

gσt (Σ, X) =
t−1∏
k=0

(Ãt−k)X
t−1∏
k=0

(Ãk)
T,

∀t ∈ {1, . . . , T}, with gσ0 (Σ, X) = X.

We prove the result for a general gain matrix K∗
t = (Σ⋆

t (ϵ)C
T
t + S⋆

t )α
T
t (αtR̃

⋆
t (ϵ)α

T
t )

−1αt

where αt can be chosen as in [22] Theorem 7. Here,

S⋆
t = −Gt−1M̂tRt,

R̃⋆
t (Σt−1) = (I − CtGt−1Mt)R̃t(Σt−1)(I − CtGt−1Mt)

T,

Σ⋆
t (Σt−1) = (I −Gt−1MtCt)(At−1Σt−1A

T
t−1 +Qt−1)(I −Gt−1MtCt)

T +Gt−1MtRtM
T
t G

T
t−1.

For any Σ, X ∈ P+, let R̃t (ϵ) = CtAt−1 (Σt−1 + ϵX)AT
t−1C

T
t + CtQt−1C

T
t + Rt. Then

R̃t (0) = CtAt−1Σt−1A
T
t−1C

T
t +CtQt−1C

T
t +Rt. Similarly, letKt(ϵ) = (Σ⋆

t (ϵ)C
′
t+S

⋆
t )α

′
t(αtR̃

⋆
t (ϵ)α

′
t)
−1αt

andMt(ϵ) = (FT
t R̃

−1
t (ϵ)Ft)

−1FT
t R̃

−1
t (ϵ). Then it is simple derive the following directional
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derivatives for each of the components in Equation (4.10).

dR̃−1
t (ϵ)
dϵ

∣∣∣
ϵ=0

= −R̃−1
t (0)CtAt−1XA

T
t−1C

T
t R̃

−1
t (0).

dMt(ϵ)
dϵ

∣∣∣
ϵ=0

=Mt (0)CtAt−1XA
T
t−1C

T
t M

T
t (0)FT

t R̃
−1
t (0)−Mt (0)CtAt−1XA

T
t−1C

T
t R̃

−1
t (0).

dKt(ϵ)
dϵ

∣∣∣
ϵ=0

= (I −Kt(0)Ct)At−1XA
T
t−1C

T
t R̃

−1
t (0).

dW̃t(ϵ)
dϵ

∣∣∣
ϵ=0

= (I −Kt(0)Ct)Gt−1
dMt(ϵ)

dϵ

∣∣∣
ϵ=0

+ dKt(ϵ)
dϵ

∣∣∣
ϵ=0

(I − CtGt−1Mt(0)) .

dF̃t(ϵ)
dϵ

∣∣∣
ϵ=0

= dW̃t(ϵ)
dϵ

∣∣∣
ϵ=0

Ct.

dÃt(ϵ)
dϵ

∣∣∣
ϵ=0

= − dW̃t(ϵ)
dϵ

∣∣∣
ϵ=0

CtAt−1.

Then the directional derivative of the Riccati map given in Equation (4.10) can be written

in terms of Γt =
dW̃t(ϵ)

dϵ

∣∣∣
ϵ=0

only:

dρ(ϵ)

dϵ

∣∣∣∣
ϵ=0

= ΓtR̃t(0)W̃
T
t (0) + W̃t(0)R̃t(0)Γ

T
t − ΓtCtΣt|t−1 − Σt|t−1C

T
t Γ

T
t

+ (I − W̃t(0)Ct)At−1XA
T
t−1(I − CT

t W̃
T
t (0)).

Expanding further,

dρ(ϵ)

dϵ

∣∣∣∣
ϵ=0

= Γt(CtΣ
⋆
t + S⋆T

t ) + ΓtCtGt−1Mt(0)R̃t(0)K
T
t (0)

− ΓtCtGt−1Mt(0)R̃t(0)M
T
t (0)G

T
t−1C

T
t K

T
t (0) + ΓtR̃t(0)M

T
t (0)G

T
t−1

+ (Σ⋆
tC

T
t + S⋆

t )Γ
T
t +Kt(0)R̃t(0)M

T
t (0)G

T
t−1C

T
t Γ

T
t

−Kt(0)CtGt−1Mt(0)R̃t(0)M
T
t (0)G

T
t−1C

T
t Γ

T
t +Gt−1Mt(0)R̃t(0)Γ

T
t

− ΓtCtΣt|t−1 − Σt|t−1C
T
t Γ

T
t + (I − W̃t(0)Ct)At−1XA

T
t−1(I − CT

t W̃
T
t (0)). (A.1)

Noting that

CtGt−1Mt(0)R̃t(0)M
T
t (0)G

T
t−1 = R̃t(0)M

T
t (0)G

T
t−1,

and

CtGt−1Mt(0)R̃t(0) = R̃t(0)M
T
t (0)G

T
t−1C

T
t

simplifies Equation (A.1). Specifically, these relations allow one to observe that the second

and third, fifth and sixth, fourth and ninth, and eight and tenth terms cancel one another
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out. Next, by examining (Σ⋆
t (0)C

T
t + S⋆

t ), we find

(Σ⋆
t (0)C

T
t + S⋆

t ) = Σt|t−1C
T
t (I −MT

t (0)G
T
t−1C

T
t ).

Equation (A.1) now reduces to

dψ(ϵ)

dϵ

∣∣∣∣
ϵ=0

=− ΓtCtGt−1Mt(0)CtΣt|t−1

− Σt|t−1C
T
t M

T
t (0)Gt−1CtΓ

T
t

+ (I − W̃t(0)Ct)At−1XA
T
t−1(I − CT

t W̃
T
t (0))

Recognising that due to the assumption in Equation (4.7),

CtGt−1Mt(0)CtGt−1Mt(0)Ct = CtGt−1Mt(0)Ct

makes clear that the directional derivative of ρ can be written in the form given in Lemma 4.2.

To prove the result for the t-horizon mapping, we proceed by induction. For t = 0, we

have ϕ0(Σ + ϵX) = Σ + ϵX. It therefore follows immediately that gt(Σ, Q) = X.

Assuming that the result holds for any t ≤ T − 1, then:

ϕt(Σ + ϵX) = ϕt(Σ) +

(
t−1∏
k=0

(Ãt−k)X
t−1∏
k=0

(Ãk)
T

)
ϵ+O(ϵ)

where O(ϵ)/ϵ→ 0 as ϵ→ 0.

Then for t+ 1, we have

ϕt+1(Σ + ϵX) = ρ(ϕt(Σ + ϵX))

= ρ

(
ϕt(Σ) +

(
t−1∏
k=0

(Ãt−k)X

t−1∏
k=0

(Ãk)
T

)
ϵ+O(ϵ)

)

Applying the result for the directional derivative of ρ in Lemma 4.2 completes the proof.

The result for the gain matrix chosen in Equation (4.9) follows from the above derivation,

where αt is as in Theorem 8 of [22].
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A.3 Proof of Lemma 4.3

Lemma 4.3. Suppose ∃β <∞ such that Σt ⪯ βI ∀t ∈ {0, . . . , T}, then we have

Tr{gσt (Σ, X)} ≤ βηkTr{Σ−1X},

where η = β
β+λQ

< 1 and λQ is the minimum eigenvalue of F̃tQt−1F̃
T
t ∀t ∈ {0, . . . , T}.

∀t, we have βI ⪰ Σt and λQI ⪯ F̃tQtF̃
T
t . Notice from Equation (4.10) that

Σt+1 ⪰ ÃtΣtÃ
T
t + F̃tQtF̃

T
t .

So

(β − λQ)I ⪰ ÃtΣtÃ
T
t

and

F̃tQtF̃
T
t ⪰ λQI ⪰

λQ
β − λQ

ÃtΣtÃ
T
t (A.2)

∀t. Now,

Σt+1 −
(
1−

λQ
β

)−1

ÃtΣtÃ
T
t ⪰ ÃtΣtÃ

T
t + F̃tQtF̃

T
t −

(
1−

λQ
β

)−1

ÃtΣtÃ
T
t

=

(
1− β

β − λQ

)
ÃtΣtÃ

T
t + F̃tQtF̃

T
t

= −
(

λQ
β − λQ

)
ÃtΣtÃ

T
t + F̃tQtF̃

T
t

⪰ 0,

where the last inequality comes from Equation (A.2). Then we can apply the Schur

compliment lemma for

0 ⪯
(
1−

λQ
β

)
St − ÃT

t St+1Ãt

where St = Σ−1
t . Now, using the same ζ

(l)
t and Lyapunov function as is used in [20], we

follow the same working from this point to find the result.
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A.4 Proof of Theorem 4.1

Theorem 4.1. Let β∗ < ∞ be the peak state estimation error of the optimal trajectory,

i.e. Σ∗
t ⪯ β∗I ∀t ∈ {1, . . . , T}. Then we have

0 ≤ J(Σϵ,δ
T )− J(Σ∗

T ) ≤ (ζT − 1)
(
J(Σ∗

T )− J(λQI)
)
+ ϵ(

ny
λQ

+∆T ), (4.16)

where ζt :=
∏t−1

τ=1

(
1 +

∑τ
s=1 L

s
fLmδ

)
≥ 1, ∆T :=

ny

λ2
Q
β∗
∑T−1

τ=1
ζT
ζτ
ηT−τ
∗ , η∗ =

β∗

β∗+λQ
< 1.

Lemma 7 in Appendix C of [20] holds the unknown input filter state Riccati map Equa-

tion (4.10) with small adjustment for time-varying process noise Qt. Then, the proof of

the bounds follows the steps of the proof of Theorem 4 in [20]. However, here we make use

of the proven result in Lemma 4.3 and the fact that ϕ
σ∗
τ

t−1−τ (Qτ ) ⪰ F̃τ+t−1Qτ+t−2F̃
T
τ+t−1

∀t, τ and F̃tQt−1F̃
T
t ⪰ λQI ∀t.

A.5 Proof of Lemma 4.4

Lemma 4.4. The unknown input error covariance update map ρd(·) is monotone and

concave.

To prove Lemma 4.4, we require some preparatory results:

Lemma A.1. Let α ∈ [0, 1] be a constant. Then ∀Σ ∈ P+, we have αρd(Σ) ⪯ ρd(αΣ).

Proof: Denote Rt(Σ) = CtAt−1ΣA
T
t−1C

T
t + α−1CtQt−1C

T
t + α−1Rt. We have

Rt(Σ)− R̃t(Σ) = (α−1 − 1)(CtQt−1C
′
t +Rt) ⪰ 0,

when α ∈ (0, 1] and Rt,Σ ∈ P+. Thus, Rt(Σ) ⪰ R̃t(Σ). Since X 7→ X−1 is order reversing

for any matrix X, we have R̃−1
t (Σ) ⪰ R−1

t (Σ). Additionally, note that

ρd(αΣ) = (F ′
t R̃

−1
t (αΣ)Ft)

−1

= α(FT
t R

−1
t (Σ)Ft)

−1 ⪰ α(FT
t R̃

−1
t (Σ)Ft)

−1 = αρd(Σ).
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For α = 0, we have αρd(Σ) = 0 ⪯ ρd(αΣ).

Lemma A.2. f(Σ) = FT
t R̃

−1
t (Σ)Ft is a convex function of Σ ∈ P+.

Proof: We note that R̃t(·) is monotone. Then, by Corollary V.2.6 in [198], R̃−1
t (·) is

operator convex. For Σ1,Σ2 ∈ P+ and α ∈ [0, 1], let χ = αΣ1 + (1− α)Σ2. We can prove

that

FT
t (αR̃

−1
t (Σ1) + (1− α)R̃−1

t (Σ2)− R̃−1
t (χ))Ft ⪰ 0.

So f(Σ) is also operator convex.

Proof of Lemma 4.4: We note that R̃t(·) is monotone. Then for any Σ1,Σ2 ∈ P+ with

Σ1 ⪯ Σ2, we have R̃t(Σ1) ⪯ R̃t(Σ2). As matrix multiplication is order preserving, and

matrix inversion is order reversing, it immediately follows that ρd(Σ1) ⪯ ρd(Σ2). Hence,

monotonicity is proved.

We next prove concavity. For ∀α ∈ [0, 1] and ∀Σ1,Σ2 ∈ P+, let χ = αΣ1 + (1 −

α)Σ2. Then, from Lemma A.2, and since αR̃−1
t (Σ) ⪯ R̃−1

t (αΣ) we have FT
t R̃

−1
t (χ)Ft ⪯

FT
t R̃

−1
t (αΣ1)Ft + FT

t R̃
−1
t ((1 − α)Σ2)Ft. Inverting this expression, utilising Lemma A.1,

and remembering that X 7→ X−1 is a convex operation [198] gives

ρd(χ)− αρd(Σ1)− (1− α)ρd(Σ2)

⪰ [FT
t R̃

−1
t (χ)Ft]

−1 − [FT
t R̃

−1
t (αΣ1)Ft + FT

t R̃
−1
t ((1− α)Σ2)Ft]

−1

⪰ 0,

thus proving concavity.

A.6 Proof of Lemma 4.5

Lemma 4.5. The directional derivative of ϕdσt at Σ ∈ P+ in the direction X ∈ P+ is

given by

gdσt−1(Σ, X) =
d

dϵ
ϕdt−1(Σ + ϵX)

∣∣∣∣
ϵ=0

=M∗
t CtAt−1g

σ
t−1(Σ, X)AT

t−1C
T
t M

∗T
t ,
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where gσt−1(Σ, X) is the directional derivative of the state t-horizon update map.

Denoting R̃−1
t (ϕσt−1(Σ)) = R̃−1

t , it is simple to show that

d
dϵϕ

dσ
t−1(Σ + ϵX)

∣∣
ϵ=0

= −ϕdσt−1(Σ)F
T
t

d
dϵR̃

−1
t (ϕσt−1(Σ + ϵX))

∣∣∣
ϵ=0

Ftϕ
dσ
t−1(Σ),

d
dϵR̃

−1
t (ϕσt−1(Σ + ϵX))

∣∣∣
ϵ=0

= −R̃−1
t

d
dϵR̃t(ϕ

σ
t−1(Σ + ϵX))

∣∣∣
ϵ=0

R̃−1
t .

Putting these together and simplifying gives the result.

A.7 Proof of Lemma 4.6

Lemma 4.6. Suppose ∃βd <∞ such that Σd
t ⪯ βdI ∀t ∈ {1, . . . , T}. Then

Tr{gdσt−1(Σ, I)} ≤ (nd)
2(βd)2λ

G̃
Tr{gσt−1(Σ, I)},

where λ
G̃

is the maximum eigenvalue of GT
t−1HtAt−1A

T
t−1HtGt−1 ∈ Rnd×nd.

Looking into the square of the Frobenius norm || · || =
√
Tr{·} of gdt−1(Σ, I):

Tr{gdt−1(Σ, I)} = Tr{MtCtAt−1gt−1(Σ, I)A
T
t−1C

T
t M

T
t }

By the cyclical property of trace operator, and submultiplicity of the Frobenius norm:

Tr{gdt−1(Σ, I)} = Tr{
∏t−2

k=0 Ã
T
kA

T
t−1C

T
t M

T
t MtCtAt−1

∏t−2
k=0 Ãt−2−k}

= ||MtCtAt−1
∏t−2

k=0 Ãt−2−k||2

≤ ||MtCtAt−1||2||
∏t−2

k=0 Ãt−2−k||2

= Tr{AT
t−1C

T
t M

T
t MtCtAt−1}Tr{gt−1(Σ, I)}
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Since Tr{gt−1(Σ, I)} is given in Lemma 4.3, we need only analyse Tr{AT
t−1C

T
t M

T
t MtCtAt−1}.

Tr{AT
t−1C

T
t M

T
t MtCtAt−1} = ||MtCtAt−1||2

= ||ϕdt−1(Σ)F
T
t R̃

−1
t (ϕt−1(Σ))CtAt−1||2

≤ ||ϕdt−1(Σ)||2||FT
t R̃

−1
t (ϕt−1(Σ))CtAt−1||2

≤ ||βd∗I||2||FT
t R̃

−1
t (ϕt−1(Σ))CtAt−1||2

= nd(β
d)2||FT

t R̃
−1
t (ϕt−1(Σ))CtAt−1||2,

where βd > 0 is some constant such that the unknown input estimate covariance is bounded

from above. That is, Σd
t−1 ⪯ βdI ∀t. Now, turning to ||FT

t R̃
−1
t (ϕt−1(Σ))CtAt−1||2,

||GT
t−1C

T
t R̃

−1
t (ϕt−1(Σ))CtAt−1||2 ≤ ||GT

t−1C
T
t R

−1
t CtAt−1||2

= ||GT
t−1HtAt−1||2

= Tr{GT
t−1HtAt−1A

T
t−1H

T
t G

T
t−1}

≤ ndλ̄G̃

where Ht = CT
t R

−1
t Ct and λ̄

G̃
is the maximum eigenvalue of GT

t−1HtAt−1A
T
t−1H

T
t G

T
t−1.

Putting the above together gives the result.

A.8 Proof of Theorem 4.2

We again need to prove some preparatory results.

Lemma A.3. There exists a real constant Lm ≥ 0 such that ∀x1,x2 ∈ X :

Ht(x1) ⪯ (1 + LmdX (x1,x2))Ht(x2),

Ht(x2) ⪯ (1 + LmdX (x1,x2))Ht(x1)

where Ht(x) = CT
t (x)R

−1
t (x)Ct(x).

Proof: Consider any two nodes (x1
t−1,Σt−1), (x

2
t−1,Σt−1). Then, applying control u ∈ U

to each node we have ρx1
t
(Σt−1) ⪰ γρx2

t
(Σt−1) from Assumption 3.3. Hence,

γ−1ρ−1
x2
t
(Σt−1) ⪰ ρ−1

x1
t
(Σt−1) ⪰ ρ−1

x1
t
(γ−1Σt−1), (A.3)
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where the last inequality follows from monotonicity of ρ and γ−1 > 1. Denote

Σ
−1
t+1(Σt) = A−T

t Σ−1
t A−1

t −A
−T
t Σ−1

t A−1
t (A−T

t Σ−1
t A−1

t +Q−1
t )−1A−T

t Σ−1
t A−1

t ,

then it is simple to show

γΣ
−1
t+1 ⪯ (γ−1Σt+1)

−1. (A.4)

Now, the information form covariance update map for the unknown input filter is ρ−1(·)

[102]:

Σ−1
t = Σ

−1
t +Ht − Σ

−1
t Gt−1(G

T
t−1Σ

−1
t Gt−1)

−1GT
t−1Σ

−1
t .

Using Equations (A.3) and (A.4) and denoting Ht(x
n
t ) = Hn

t for n = 1, 2, it follows that

γ−1(Σ
−1
t +H2

t − Σ
−1
t Gt−1(G

T
t−1Σ

−1
t Gt−1)

−1GT
t−1Σ

−1
t )

⪰ γ−1Σ
−1
t +H1

t − γ−1Σ
−1
t Gt−1(G

T
t−1Σ

−1
t Gt−1)

−1GT
t−1Σ

−1
t .

Reducing gives the desired result H1
t ⪯ (1+LmdX (x

1
t ,x

2
t ))H

2
t . Following identical working

for Ht(x
2
t ) completes the proof.

Lemma A.4. Suppose (x1
t−1,Σt−1,Σ

d
t−2), (x

2
t−1,Σt−1,Σ

d
t−2) are two sensing locations and

corresponding beliefs with d(x1
t−1,x

2
t−1) ≤ δ. Let Σd,1

t−1, Σ
d,2
t−1 be the input estimation error

covariances after updating both nodes under the control u ∈ U Then

Σd,1
t−1 ⪰ γΣ

d,2
t−1, Σd,2

t−1 ⪰ γΣ
d,1
t−1

∀t ∈ {1, T}.

Proof: Denote Rt(xi) = Ri
t for i = 1, 2, and consider the inverse of the update map applied

to node (x1
t−1,Σt−1,Σ

d
t−2):

(ρdx1(Σt−1))
−1 = FT

t R̃
−1
t (Σt−1)Ft = FT

t

(
CtAt−1Σt−1A

T
t−1C

T
t + CtQt−1C

T
t +R1

t

)−1
Ft.

By applying the matrix inversion lemma and Lemma A.3, we get (Σd,1
t−1)

−1 ⪯ γ−1(ρdx2(γ
−1Σt−1))

−1.

Then, taking the inverse and applying monotonicity of the update map gives the result.

Following the same reasoning for updating (x2
t−1,Σt−1,Σ

d
t−2) completes the proof.
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Proof of Theorem 4.2:

Theorem 4.2. Let β∗ <∞, βd∗ <∞ be the peak state and input estimation errors of the

optimal trajectory respectively. That is, Σ∗
t ⪯ β∗I and Σd∗

t−1 ⪯ βd∗I ∀t ∈ {1, . . . , T}. Then

0 ≤ J(Σd,(ϵ,δ)
T−1 )− J(Σd∗

T−1) ≤ (ζT − 1)
(
J(Σd∗

T−1) + J(γd∗I)− J(λ−1
H I)

)
+ ϵ(∆d

T ),

where ∆d
T := (γd∗)−1(nd)

2λHλG̃(β
d∗)2λQ∆T , γ

d∗ = (1 + Lmd(x
∗
T ,x

d∗
T ))−1 and λH is the

maximum eigenvalue of GT
T−1HTGT−1.

Applying ρdu∗
T−1

(·) to Appendix C Lemma 7 of [20], where u∗
T−1 is the state-optimized

control found by the algorithm, rather than an input-optimized control ud∗
T−1. Noting

again that ϕ
σ∗
τ

t−1−τ (Qτ ) ⪰ F̃τ+t−1Qτ+t−2F̃
T
τ+t−1 ∀t, and that

∑T−1
τ=1 Γτ (1− γτ ) = 1− ΓT−1,

by concavity of ρd,

ρdu∗
T−1

(Σ∗
N−1) + ϵg

dσ∗
T−1

1 (Σ∗
T−1,

T−2∑
τ=1

Γτg
σ∗
τ

T−1−τ (Σ
∗
τ , I) + ΓT−1I)

⪰ ΓT−1

K∑
i=1

αiρ
d
u∗
T−1

(Σi
T−1) + (1− ΓT−1)ρ

d
u∗
T−1

(λQI).

Using Lemma A.4 with γd∗ = (1+Lmd(x
∗
T ,x

d∗
T ))−1, and ρdu∗

T−1
(λQI) ⪰ (GT

T−1HTGT−1)
−1 ⪰

λ
−1
H I, we have

γd∗Σd∗
T−1 +MTCTAT−1

T−1∑
τ=1

Γτg
σ∗
τ

T−τ (Σ
∗
τ , I)A

T
T−1C

T
TM

T
T

⪰ ΓT−1

K∑
i=1

αiγ
d∗Σdi

T−1 + (1− ΓT−1)λ
−1
H I.

The proof then follows using monotonicity and concavity of J(·), and Lemma 4.6 after

applying J(·) to the above result.
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Proofs of results in Chapter 6

B.1 Proof of Theorem 6.1

Theorem 6.1. Suppose s ∈ Hk with arbitrary positive definite kernel k. For bounded

measurement noise ϵ2 < σ2ϵ <∞, we have for any measurement set Z,

∣∣s(x)− E[ŝ(x | Z)]
∣∣ ≤ ||s||Hk

PX(x) +
√
σ2ϵTΛ

2
k(x), (6.12)

where E[ŝ(x | Z)] is the mean of the posterior GP, PX(x) =
√

detKX∪{x}
detKX

is called the

power function of X and Λk(x) = ||K−1
X kX(x)||.

Letting [S]t = s(xt), t ∈ {1, . . . , T} be the vector of true function evaluations at X, and

similarly [ϵT ]t = ϵt, t ∈ {1, . . . , T} the noise outcomes, we have:

∣∣s(x)− E[ŝ(x | Z)]
∣∣ ≤ |s(x)− kT

X(x)K−1
X S|+ |kT

X(x)K−1
X S− kT

X(x)K−1
X [S+ ϵT ]|

= |⟨s, k(·,x)− kT
X(x)K−1

X kX(·)⟩Hk
|+ |kT

X(x)K−1
X ϵT |

≤ ||s||Hk
PX(x) + |kT

X(x)K−1
X ϵT |

≤ ||s||Hk
PX(x) +

√
σ2ϵT ||kT

X(x)K−1
X ||

where the final inequality follows from | · | =
√
⟨·, ·⟩, Cauchy-Schwarz inequality and the

assumption ϵ2t < σ2ϵ ∀t ∈ {1, . . . , T}.
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B.2 Proof of Theorem 6.2

Theorem 6.2. Suppose a kernel k satisfies the CI assumption (Equation (6.5)). Then,

the power function PX(x) satisfies:

PM(x) ≤ PX(x) ≤ PM(x) expH(yM | Z), (6.13)

where PM(x) =
√

detKM∪{x}
detKM

.

Moreover, assuming s ∈ Hk, the deterministic error can be further bounded:

∣∣s(x)− E[ŝ(x | Z)]
∣∣ ≤ ||s||Hk

PM(x) expH(yM | Z) +
√
σ2ϵTΛ

2
k(x). (6.14)

We exploit the fact that the power function PX(x) can be linked to conditional entropy

as:

H(s(x)|Z) = 1

2
(logPX(x) + log(2πe)).

To bound H(s(x)|Z), we expand the joint entropy H(yM,Z, s(x)) according to the chain

rule:

H(yM,Z, s(x)) = H(yM|s(x),Z) +H(s(x)|Z) +H(Z)

= H(Z|yM) +H(s(x)|yM) +H(yM),

where the second equivalence follows from the CI condition and symmetry of conditional

entropy. Rearranging yields:

H(s(x)|Z) = H(Z|yM) +H(s(x)|yM) +H(yM)−H(Z)−H(yM|Z, s(x))

= H(s(x)|yM) +H(yM|Z)−H(yM|Z, s(x))

= H(s(x)|yM) + I(yM, s(x) | Z),

where the final equivalences follow from the chain rule property H(Z|yM) − H(Z) =

H(yM|Z) − H(yM) and the definition of mutual information I respectively. From the
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above we see:

H(s(x)|yM) ≤ H(s(x)|Z)

= H(s(x)|yM) + I(yM, s(x) | Z)

≤ H(s(x)|yM) +H(yM|Z).

(B.1)

the claimed bound is recovered by taking the exponential of (B.1).
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