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Abstract

This thesis investigates Bayesian inference methods for time series and spatial mod-

els in the frequency domain. One of the main drawbacks of Bayesian inference

in this setting is the computational burden, especially for large data. Using ideas

from Fourier analysis, the original signal (data) domain can be transformed into the

frequency domain, which portrays how the signal is decomposed across different fre-

quencies, which is known as the spectrum. A key property of the spectrum is the

asymptotic independence of the spectrum ordinates, which can be used to form an

approximate likelihood known as the Whittle likelihood, which is computationally

faster than the corresponding time domain likelihood. We explore this computation-

ally faster likelihood for three Bayesian models. First, we explore linear dynamic

regression with semi-long memory disturbance processes. Second, spectral subsam-

pling of continuous-time models for large data. Third, the estimation of stationary

random fields for latticed spatial data.
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Chapter 1

Introduction

1.1 Aims of the thesis

The overall aim of the thesis is to perform reliable Bayesian inference for time series and spatial

models for large data sets in the frequency domain. The main motivation arises due to the heavy

computational burden of conventional estimation techniques for temporal and spatial models with

thousands, hundreds of thousands or sometimes millions of observations. To this end, we use tools

from Fourier analysis, such as the Fourier transform, to investigate temporal and spatial data in

the frequency domain.

The thesis provides three main contributions to the literature stated below.

1. Propose dynamic regression models with semi-long memory disturbance processes. We

demonstrate that using models that capture semi-long memory provides a better fit to data

that has long-memory characteristics. We show that traditional time-domain estimation

methods are slow for large data and propose a new frequency domain approach to perform

Bayesian inference. Also, the forecasting capabilities of this proposed model are on par, if

not better than the existing models.

2. Spectral subsampling for continuous-time series auto-regressive moving average models for

large data. By transforming the data into the frequency domain, we can construct a so-

called spectral subsampling Markov chain Monte Carlo scheme, drastically reducing the

computational time of performing Bayesian inference, while preserving much of the statical

efficiency.

3. Frequency domain estimation of stationary random fields for spatial data on a lattice.

Fitting spatial models to data is notorious burdensome due to the requirement of solving

large systems of equations. Furthermore, frequency domain estimation for two or more

dimensions can lead to substantial bias. We developed a frequency domain methodology

1
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for Bayesian inference which significantly reduces the bias and does so in a computationally

efficient manner.

1.2 Preliminaries and notation

Let X be a real-valued continuous random variable with cumulative distribution function (cdf),

FX(x) = P (X ≤ x),

which gives the probability that X takes a value less than or equal to some outcome x. The cdf

can be defined by the integral,

FX(x) =

∫ x

−∞
f(t)dt,

where f(x) is the probability density function (pdf) of the random variable X. Furthermore, let

Y be a real-valued random variable defined over the real line R. The first moment or expected

value of Y is given by

µY = E[Y ] =

∫ ∞

∞
yf(y)dy,

where f(y) is a probability density function. The second central moment, or variance of Y is

given by

Var[Y ] = E[(Y − µ)2]. (1.1)

The variance measures how large, on average, the squared difference between the values of Y and

its average. The covariance is a measure of the degree of the linear relationship between X and

Y , defined by

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E[XY ]− µXµY . (1.2)

1.3 Stochastic processes

Denote a time series, or stochastic process as a sequence of random variables {Xt, t ∈ T} where

t is an index of time in a discrete or continuous interval T . The observations of a time series are

taken at discrete time points, which, for this thesis, we assume are equally spaced. Furthermore,

time series data can be modelled in continuous time, T ∈ R, or discrete time, when T is a discrete

set of points.

1.3.1 Stationary time series

We introduce the notion of stationarity for statistical analysis of stochastic processes. A strictly

stationary process is a stochastic process whose statistical distribution does not change when



CHAPTER 1. INTRODUCTION 3

shifted in time. Mathematically, let F (xt1+τ , . . . , xtn+τ ) denote the unconditional cumulative

distribution function of Xt with any lag such that ti + τ ∈ T . Then Xt is strictly stationary if

F (xt1 , . . . , xtn) = F (xt1+τ , . . . , xtn+τ ).

It is important to note for any τ , FX(·) remains unchanged; hence FX is not a function of time.

In practical applications, strict stationarity is too restrictive and may not be appropriate, and

therefore, our analysis in this thesis is primarily concerned with the first two moments of time

series. Therefore, we use a weaker form of stationarity, referred to as weak stationarity.

A process is weakly stationary if the mean and covariance do not vary with time, and the

second moment is finite for all times. Define the mean function as m(t) = E[Xt] and the au-

tocovariance function for any two time points s, t as γ(s, t) = Cov(Xs, Xt) = E[XsXt] −m(t)2.

Formally, a stochastic process Xt is weakly stationary if

1. m(t+ τ) = m(t), ∀τ, t ∈ T,

2. γ(s, t) = γ(τ, 0) = γ(s− t, 0), where τ = |s− t|, ∀s, t ∈ T,

3. E[|Xt|2] <∞ ∀t ∈ T.

The first point describes how the mean function m(t) is constant for all time. The second point

states the covariance function depends only on the time difference τ = |t− s|, i.e., r(τ) = r(s, t),

not on the specific choice of s, t themselves. Finally, the third point ensures the second moment

of the process is finite.

Strict stationarity encompasses the full cumulative distribution function FX(·), whereas weak
stationarity only describes the first and second moments being time-invariant. This is clearly a

less restrictive version than strict stationarity; however, stationary Gaussian processes that are

weakly stationary are also strictly stationary since their distribution is completely defined by the

first two moments. Through the rest of this thesis, stationarity will be assumed to be weakly

stationary unless stated otherwise.

Autoregressive integrated moving average models

A common time series model used in economics and climatology is the autoregressive moving

average (ARMA) model first proposed in Whittle (1951). The ARMA model comprises two

simpler models: autoregressive and moving average models. An autoregressive process of order

p, denoted as AR(p), is a stochastic linear difference equation,

Xt =

p∑
i=1

ϕiXt−1 + εt, εt ∼ N(0, σ2),
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where ϕ1 . . . , ϕp are the parameters multiplied up to the pth ‘lags’ of Xt, and εt is white noise

with variance σ2. This definition for Xt is a zero-mean process (Shumway et al., 2000). To write

compactly, the backshift operator L is defined as LkXt = Xt−k for t > k. The backshift operator

is convenient as an AR(p) process can be written as

ϕ(L)Xt = εt,

where ϕ(z) = 1 −
∑p

i=1 ϕiz
i is the autoregressive lag polynomial. To ensure the stationarity for

a general AR(p) process, the roots of ϕ(z) must lie outside the unit circle, i.e., |zi| > 1, where

z1, . . . , zp are the roots of ϕ(z) (Cryer and Chan, 2008).

The second component of an ARMA model is the moving average model. The purpose of the

moving-average model is to model the random shocks. The random component of the process,

known as the innovation error or error term, can themselves have an auto-regressive component.

Formally, an MA(q) process is written as

Xt = ψ(L)εt =

q∑
i=1

ψiεt−i + εt,

where ψ(z) = 1 + ψ1z, . . . , ψqz
q is the moving-average lag polynomial. One can show that an

AR(p) model can be formulated as an MA(∞) model. If the reverse is true, that an MA(q) model

can be written as an AR(∞) model, i.e.

εt = ψ(L)
−1Xt = Xt + ϕ1Xt−1 + ϕ2Xt−2 + . . . ,

then the MA process is invertible. Representing an AR process as an infinite MA process and visa

versa is convenient as it allows one to use useful statistical properties of both representations.

Note that any MA process with Gaussian error terms is stationary; however, invertible MA

processes are desirable as they further ensure the model is identifiable. A statistical model is

identifiable if there is a one-to-one mapping between the parameters of the statistical model

and the probability distribution generated by the data (Lehmann and Casella, 2006). In the

context of MA models, if the model is invertible, then there is only one set of parameter values

(ψ1, . . . , ψq, σ) that can generate a given autocorrelation function (Cryer and Chan, 2008). To

summarize, an AR(p) process is always invertible but not necessarily stationary, while a MA(q)

process is always stationary but not necessarily invertible. Similar to AR models, if the roots of

the ψ(z) polynomial are outside the unit circle, then the MA model is invertible (Lindgren et al.,

2013).

An ARMA(p, q) model combines the two aforementioned models into a single compact form,

ϕ(L)Xt = ψ(L)εt, (1.3)
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to directly describe the Xt regressed against lagged values of itself and the contemporaneous error

term εt as a linear combination of its past values. Let us consider a simple ARMA(1, 1) model

Xt − ϕ1Xt−1 = εt + ψ1εt−1, (1.4)

where the stationarity condition is |ϕ1| < 1 and invertibility condition is |ψ1| < 1. The autoco-

variance function is given by

γ(0) = σ2
(
1 +

(ϕ1 + ψ1)
2

1− ϕ21

)
,

γ(1) = σ2
(
(ϕ1 + ψ1) +

(ϕ1 + ψ1)
2ϕ

1− ϕ21

)
,

γ(τ) = ϕτ−1
1 γ(1), for τ ≥ 2,

which does not depend on time t. Much more can be said about ARMA models. For a comprehen-

sive treatment of ARMA models, refer to Box et al. (2015). Chapter 2 will discuss extensions of

the ARMA model, mainly to incorporate exogenous covariates and so-called ‘semi-long memory’

where the autocorrelation function decays exponentially to zero only when the distance between

observations is large.

1.3.2 Spatial data

Chapter 4 is concerned with spatial data, i.e. observations from an underlying stochastic process

usually indexed by a geographic location/coordinate. The underlying process is known as a

random field, a type of random function, i.e. stochastic process, with a multidimensional domain.

This can be seen as a multivariate generalization of a time series where the x-axis of time is

extended to a d-dimensional space. Spatial data are common in natural science areas such as

earth sciences (Christakos, 2012), geological sciences (Simons and Olhede, 2013), and forestry

Matérn (2013), among others. For example, one might be interested in modelling the spatial

dependence of the surface temperature of the sea over some region of the ocean (Gelfand et al.,

2010). In neuroscience, random fields have been used to model areas of brain activation measured

via fMRI (Worsley et al., 1992). Certain simplified random field models are also popular in areas

of machine learning, including computer vision (He et al., 2004) and classification (Cohen et al.,

1991), and natural language processing (Lafferty et al., 2001). Spatial data on a grid are usually

captured in the form of an image, where the values of the image (greyscale or RGB) represent

the phenomena being observed corresponding to a location intrinsic to where the pixels of the

image lay.

Let {Y (s), s ∈ D ⊆ Rd} be a zero-mean random field, where D ⊆ R is some continuous

domain of interest. As mentioned above, the random field Y (s) is indexed by the set s ∈ Rd, which
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usually represents spatial locations in d = 2 or d = 3. This is not to be confused with multivariate

time series, where the data are a k-dimensional vector, yt ∈ Rk for all (one-dimensional) t. The

spatial version of this case is called multivariate spatial data, where the output for a given location

is a vector Y (s) ∈ Rk.

The process Y (s) can be thought of as a collection of random variables at all locations in D
that has a well-defined joint distribution (Gelfand et al., 2010). The covariance function describes

the spatial dependence between points in the domain, defined as

cθ(u) = E [Y (s)Y (s+ u)] , (1.5)

where u ∈ Rd are known as the spatial lags. The aforementioned equation depends on a vector of

unknown parameters θ. A common assumption is to assume the covariance function is isotropic,

i.e. given two arbitrary points v and v
′
, the covariance function is only a function of |v − v′ |.

Isotropic covariance functions imply stationarity since the covariance function does not depend on

the specific point in space, only on the ‘distance’ between two points (Rasmussen and Williams,

2006). Chapter 4 is concerned with estimating parameters θ in the covariance kernel given a

realization of Y (s). A widely known covariance kernel is the Mátern kernel (Matérn, 2013), given

by,

cθ(u|ρ, σ, ν) = σ2
21−ν

Γ(ν)

(
√
2ν

||u||
ρ

)ν

Kν

(
√
2ν

||u||
ρ

)
, (1.6)

where ρ, σ, and ν are positive parameters and Kν is a modified Bessel function (Abramowitz and

Stegun, 1968). The advantage of the aforementioned covariance kernel is its flexibility, i.e. for

different values of ν, it exhibits drastically different behaviour in the realizations of Y (s). For

specific values of ν, special cases become apparent; for example, two common covariance kernels

are

c(u|ρ, σ, ν = 1/2) = σ2exp

(
−||u||

ρ

)
,

referred to as the exponential kernel and

c(u|ρ, σ, ν → ∞) = σ2exp

(
−||u||2

2ρ2

)
,

known as the squared-exponential kernel (Rasmussen and Williams, 2006). For estimation, the

covariance must be computed between all distinct points in the observed domain, which becomes

computationally expensive for large spatial data sets. The main contribution of this thesis is to

address this computational burden by analysing the data in the frequency domain, described in

the section below.
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1.4 Fourier analysis

In the early 19th century, while studying heat flow, the French mathematician Joseph Fourier

discovered that any function, possibly discontinuous, can be expressed in terms of an infinite series

of sine functions (Joseph and Freeman, 2003). Once refined and expanded, this idea became the

base of Fourier analysis, one of the most important areas of science and mathematics. At the

heart of Fourier analysis lies the Fourier transform (FT). This can be seen as decomposing a

function or signal in time into its frequencies, i.e. spectrum, which make up that function or

signal. The Fourier transform relies on basis functions in the form of complex exponentials,

eix = cos(x) + isin(x), (1.7)

which is simply a unit circle in the complex plane, from Euler’s formula.

Given a continuous function g(t), the Fourier transform is defined as,

G(ω) =

∫
R
g(t)exp(−iωt)dt, (1.8)

where the angular frequency is ω = 2πς, with the frequency ς in Hertz. Intuitively, the signal g(t)

in (1.8) is being ‘wrapped’ around the unit circle at different frequencies in the complex plane.

The crucial insight in the transformation is the integration with respect to (wrt) time t, such that

the resulting function G(ω) is now only a function of ω. For the rest of this thesis, we will refer

to angular frequencies as frequencies for simplicity. Its corresponding inverse Fourier transform

is given by,

g(t) =
1

2π

∫
R
G(ω)exp(−iωt)dω, (1.9)

where integration wrt the frequencies recovers the original g(t).

To better connect the content within this thesis, we introduce the Fourier transform through

the lens of statistical signal processing. Suppose a stationary process {Xt, t ∈ R} has a continuous

covariance function γ(τ), which is absolutely integrable, i.e.
∫∞
−∞ |γ(τ)|dτ < ∞. Bochner’s

theorem provides conditions under which the covariance function of the process corresponds to

the Fourier transform of a spectral measure on the real line (Brockwell and Davis, 2009). Formally,

γ(τ) = E[Xt+τXt] =

∫ π

−π
eiωτdF (ω), (1.10)

where F (ω) is a non-negative, non-decreasing bounded function known as the spectral measure

or spectral distribution function, and this representation of the covariance function is unique. If
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the spectral distribution function is absolutely continuous, it can be written as

F (ω) =

∫ ω

−π
f(λ)dλ,

where f(·) is the spectral density and (1.10) becomes,

γ(τ) =

∫ ∞

−∞
f(ω)eiωτdω. (1.11)

Hence, the Fourier transform of γ(τ) exists and is a Fourier pair or dual with the spectral density,

f(ω) =

∫ ∞

−∞
γ(τ)e−iωτdτ. (1.12)

A key insight to the interpretation of the spectral density is that the variance of the process

is the integral over the whole spectral density,

Var[Xt] = γ(0) =

∫ ∞

−∞
f(ω)dω. (1.13)

Hence, the power spectrum can be considered as the distribution of total variance, where the

variance (power) is decomposed over different frequencies. This is critical as the spectral density

gives us insight into which frequencies are the main contributors to the variance of the process

of interest. Significant spectral ’mass’ at the lower frequencies corresponds to persistent signals,

slowly changing over time. In contrast, higher frequency dominant signals are fast changing, usu-

ally with lower or negative correlations between neighbouring time points. Additionally, constant

spectra across the frequency range correspond to white noise processes.

For discrete models such as ARMA models described in the previous section, the process is

discrete in time for t = 0, 1, 2, . . . , and hence the covariance function is only defined for τ ∈ N.
Satisfying the condition

∑∞
τ=−∞ |γ(τ)| < ∞, the spectral density is positive, continuous and

integrable. The discrete Fourier transform (DFT) is defined as

f(ω) =

∞∑
τ=−∞

γ(τ)e−iωτ , (1.14)

for frequencies in the interval ω ∈ (−π, π]. It can be shown that the spectral density of an

ARMA(p, q) model is a rational function of the form

f(ω) =
σ2

2π

∣∣∣∣ψ(e−iω)

ϕ(e−iω)

∣∣∣∣2 .
The Fourier transforms we have discussed have been in the one-dimensional time series setting.
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For d > 1, the Fourier transform can be extended to a multi-dimensional setting, where the

spectrum is defined on a multivariate frequency domain, f(ω), ω ∈ Rd. The multivariate Fourier

transform is

γ(τ ) = E[X(s)X(s+ u)] =

∫
Rd

f(ω)exp(iω · u)dω (1.15)

where · is the dot product. The covariance function in (1.15) forms a Fourier dual with f(ω) =∫∞
−∞ γ(τ )exp(−iω · u)dτ . The spectral decomposition of the autocovariance of a stationary pro-

cess into its power spectral density is known as Wiener-Khinchin theorem (Chatfield and Xing,

2019). By applying the Fourier transform to the Mátern kernel in (1.6), its spectral density is

given by

f(ω) = σ2
2dπd/2Γ(ν + d

2)(2ν)
ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2ω2

)−(ν+ d
2 )
, (1.16)

where d is the number of dimensions (Rasmussen and Williams, 2006).

1.4.1 Fourier transform of data

So far, we have defined theoretical quantities such as the covariance function and spectral den-

sity, which dictate the second-order statistical properties of a stochastic process that generates

data. With some foundational underpinnings, we now turn to the main focus of statistical signal

processing, which is the analysis of discretely sampled signals/data to estimate their spectra,

covariances/correlations and underlying parameters in the stochastic model. Assume Xt is a zero

mean, stationary time series for t = 1, . . . , T , the discrete Fourier transform, DFT, is defined as

J(ωk) =

T−1∑
t=0

Xt exp(−iωkt), (1.17)

with ωk is in the set of natural Fourier frequencies

Ω ≡ {2πk/T, for k = −⌈T/2⌉+ 1, . . . , ⌊T/2⌋}.

For a given ωk ∈ Ω, the DFT is a sum of the data Xt multiplied by a deterministic constant

(the complex exponential). This is analogous to the central limit theorem, which loosely states

that the normalized sum of independent random variables is normally distributed, even when the

distribution of the random variables is not normal. Of course, the DFT in (1.17) is a complex

sum of a dependent sequence of random variables, but a similar central limit theorem exists for

the DFT. This central limit theorem for the DFT for stationary processes is foundational in the

statistical analysis of signals, described below.

If Xt is normal, its DFT in (1.17) is complex Gaussian. The real and imaginary parts of the

DFT are asymptotically independently identically distributed normal distributions. Formally,
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Let CN(0, σ2) denote a complex Gaussian, if Z ∼ CN(0, σ2), then,(
Re{Z}
Im{Z}

)
∼ N

[(
0

0

)
,
1

2

(
σ2 0

0 σ2

)]
,

hence the real and imaginary parts are independent, and Z has density

pZ(z) =
1

πσ2
exp

(
−|z|2

σ2

)
.

(Goodman, 1963). Hence the distribution of the DFT of Xt is

1√
T
J(ωk) ∼ CN(0, 2πf(ωk)), (1.18)

as T → ∞, except for frequencies ωk = 0 and ωk = π, then (1/
√
T )J(ωk) ∼ N(0, 2πf(ωk))

(Brillinger, 2001). If Xt is not Gaussian, under certain mild conditions, the distribution of the

normalized DFT follows (1.18) asymptotically, as T → ∞ (Peligrad and Wu, 2010). Furthermore,

J(ωk) are asymptotically independent for each frequency ωk (Shao and Wei, 2007). A similar

central limit theorem for the multidimensional DFT can be extended for random fields (Peligrad

and Zhang, 2019). In practice, the DFT is computed efficiently via the Fast Fourier Transform,

FFT, (Cooley and Tukey, 1965). The FFT exploits the structure of the DFT and reduces the

number of floating point operations from O(T 2) to O(T logT ).

The periodogram, or the observed power spectrum of Xt, is given by,

I(ωk) = T−1
∣∣∣J(ωk)

∣∣∣2, (1.19)

and is an estimate of its spectral density. The scaled periodogram is I(ωk)/f(ωk) ∼ χ2
r asymp-

totically, where χ2
r is a chi-squared random variable with r degrees of freedom where r = 2 (i.e.

standard exponential) for all k ̸= 0, T ; and r = 1 for k = 0, T . The periodogram in (1.19) is

an asymptotically unbiased estimate of f(ωk); however, it is not a consistent estimator of the

spectral density. More specifically,

I(ωk) ∼ Exp(f(ωk)), ωk ∈ Ω, (1.20)

as T → ∞ with the exponential distribution parameterized by its mean (Shao and Wei, 2007).

The periodogram ordinates in (1.20) are asymptotically independent for each frequency ωk. The

spectral density and periodogram are symmetric about the origin and are repeating for frequencies

outside the interval ωk ∈ (−π/2, π/2), hence we only need to consider the interval ωk ∈ (0, π/2).

In this thesis, we assume that the time series process has a data-generating process with a well-
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defined spectral density function. However, the spectral density of a process can be modelled

from its periodogram ordinates without explicitly specifying its data-generating process in the

time domain; see Mallick et al. (2002); Gangopadhyay et al. (1999). For more details about the

multivariate DFT and its asymptotic properties, see Chapter 4.

1.4.2 Sampling and aliasing

Time series data can be sampled at different rates depending on the application. For example,

financial time series data can be sampled at extremely high-frequency rates (milliseconds), and

temperature data in climatology can be sampled every hour, day, or year. As stated, we assume

the time series is observed at equidistant time points. Likewise, for two-dimensional spatial data

in this thesis, we assume site locations are equidistant apart or that the process can be modelled

on a lattice or grid structure. Statistical inference is possible for irregularly spaced data, see

Benedetto (1992); however, that is the topic for future work and beyond the scope of this thesis.

Consider a continuous stationary process {Yt, t ∈ R} with covariance γ(τ) and spectral density

f(ω). Define the sampling interval δ such that the observed process is {Yt, t = 0, δ, 2δ, . . . , T δ}.
The sampling rate is 1/δ, and the Nyquist frequency is π/δ. When a continuous process is

discretely sampled at regular intervals, this introduces the aliasing effect, which describes how

the spectral density becomes an infinite sequence. The aliased spectral density is

fδ(ω) =
∞∑

k=−∞
f
(
ω +

2πk

δ

)
, ω ∈ [−π/δ, π/δ]. (1.21)

The proof of this can be found in Shannon (1949). Here, contributions from the infinite sum is the

spectrum being ‘folded’ or ‘wrapped’ for frequencies outside the interval [−π/δ, π/δ]. Intuitively,
suppose one obtains samples of a sine wave at regular intervals. In that case, reconstruction of the

original signal can be at the original frequency or all integer multiples of the original frequency.

Hence, there are infinite ways to reconstruct the signal from the observed data.

The periodogram of a regularly sampled continuous-time process is only defined up to the

Nyquist frequency π/δ. If the sampling interval is too large (the sampling rate is too low),

the periodogram will not contain reliable information about significant portions of its spectrum.

Ideally, we wish to sample the process finely enough to capture all non-negligible mass in the

spectrum. Furthermore, if aliasing is not appropriately addressed, this can result in bias of

the parameter estimates (Sykulski et al., 2019; Guillaumin et al., 2022). For a more detailed

discussion, see Chapter 3, and for the extension to multidimensional data, see Chapter 4.
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1.4.3 The Whittle likelihood

The main parameter estimation method this thesis is concerned with is the Whittle likelihood

(Whittle, 1951). Throughout this thesis, we refer to the Whittle likelihood as the log-likelihood

version unless stated otherwise. The Whittle likelihood is a frequency domain estimation method

for stationary processes that is valid for large samples. The asymptotic independence of the

DFT at each frequency makes it possible to derive the iid density for the periodogram using its

distribution in (1.20). For discrete-time models, the Whittle likelihood is given as

ℓ(θ) = −
⌊(T−1)/2⌋∑

k=1

(
logfθ(ωk) +

I(ωk)

fθ(ωk)

)
, (1.22)

where the dependence on the unknown parameters θ is explicit. For continuous models, the

spectral density in (1.22) is replaced by the aliased spectral density fδ(ω). For stationary Gaussian

data, the Whittle likelihood is asymptotically equivalent to the exact Gaussian likelihood (Guyon,

1982). Moreover, the Whittle likelihood is robust as it can handle stationary non-Gaussian data

(under mild conditions), leveraging the previously mentioned central limit theorem for the DFT.

To compute the Whittle likelihood in (1.22), one must first compute the periodogram, which

has a one-time cost of O(T logT ). Then, after storing the result, the evaluation of (1.22) has

a subsequent cost of O(T ), which involves computing the spectral density and the summation

over the frequencies. This is a huge advantage of the Whittle likelihood compared to the exact

Gaussian likelihood, which has, at best, a cost of O(T log2 T ), due to expensive matrix inversion

(Ammar and Gragg, 1988). The Whittle likelihood will be discussed in depth throughout the

remainder of this thesis; with the presence of long memory and exogenous inputs in Chapter 2,

for continuous-time time series in Chapter 3, and for spatial models in Chapter 4.

1.5 The Bayesian paradigm

The Bayesian approach to statistical inference is to treat an unknown quantity θ as a random

variable. For example, θ could be a hypothesis, a statistical model, a parameter in a statistical

model or a future prediction for a given statistical model. In this thesis, we consider the case

when θ is a vector of unknown parameters that govern a statistical model. Since θ is unknown,

it is treated as random but typically incorporates prior knowledge of θ before conducting an

experiment, known as the prior distribution p(θ). The prior distribution is a subjective belief,

which can reflect previous experiments or experiences based on the problem at hand. The scientist

conducts the experiment and collects/observes the data y, which is then used to obtain the

likelihood function p(y|θ) which contains information of θ given the observed day. The subjective

belief of θ is objectively updated by combining likelihood and prior via Bayes’ theorem to obtain



CHAPTER 1. INTRODUCTION 13

the main object of inference, the posterior distribution π(θ) = p(θ|y),

π(θ) =
p(y|θ)p(θ)

p(y)
, where p(y) =

∫
p(y|θ)p(θ)dθ. (1.23)

This fundamentally differs from frequentist inference in two ways: 1) the posterior distribution

is a valid probability distribution of the unknown quantity θ, and 2) the posterior is conditional

on the actual observed data. The latter is a primary difference compared to frequentist analysis,

as any uncertainty of point estimates is over all possible data, observed or not. Hence, one of

the main advantages of the Bayesian paradigm is the intrinsic uncertainty about the quantity θ,

ingrained in the notion of probability, conditioned on the data y we observed. This aforementioned

uncertainty makes Bayesian inference attractive to real-world problems.

One of the main criticisms of Bayesian analysis is the subjectivity inherited with the prior

distribution p(θ). Ideally, the prior distribution is constructed from past information such as

previous experiments or expert knowledge; when no relevant information is present, uninformative

priors may be employed to portray our assumption of lack of information (Chaloner, 1996).

Furthermore, when more information (data) becomes available, the influence of the likelihood

dominates that of the prior distribution. In reality, the choice of the statistical model is a

subjective decision. Hence, one must ensure the model is consistent with the data to carry

out appropriate statistical analysis. The same logic should be applied to choosing the prior

distribution. For more criticism and discussion thereof, and the inherent link between Bayesian

inference and decision theory, see Berger (2013).

Computation

An important problem in Bayesian inference is the computation of expectations with respect to

the posterior

Eπ[ψ(θ)] =

∫
Θ
ψ(θ)π(θ)dθ, (1.24)

over the parameter space θ ∈ Θ. In practice, closed-form solutions to the above equation seldom

exist. Only in certain cases does a closed-form posterior distribution exist—for a few choices of

the likelihood p(y|θ) and prior p(θ), known as conjugate priors. Here, the posterior takes the

same closed-form distribution as the prior, giving a particular form for the likelihood. Simulation

techniques such as Monte Carlo integration can be used to estimate (1.24). Here, samples from

the posterior π(θ) must first be obtained for Monte Carlo integration. However, sampling the

posterior in (1.23) is generally a complex problem and discussed further in Section 1.5.3.



CHAPTER 1. INTRODUCTION 14

1.5.1 Prediction

A quantity of interest in Bayesian inference, particularly for time series analysis, is the posterior

predictive distribution, defined as

p(ỹ|y) =
∫
Θ
p(ỹ,θ|y)dθ. (1.25)

The main goal of (1.25) is to make inferences for the future by simulating new data while taking

into account the uncertainty around the parameters θ. The integrand of the above equation is

the joint distribution of new data ỹ and the parameters θ conditional on the observed y. The

analytic form of the posterior predictive distribution is seldom known in practice but can be

sampled via simulation. At first glance, the integrand may look unwieldy; however, the joint

density can be decomposed as

p(ỹ,θ|y) = p(ỹ|θ,y)π(θ).

This decomposition makes it clear that one can sample from p(ỹ|θ,y) by generating new data

from the model, conditional on samples from the posterior and the observed data. Once again,

samples from the posterior π(θ) must be obtained to sample from p(ỹ,θ|y). Thus, the posterior

predictive can be rewritten as

p(ỹ|y) =
∫
Θ
p(ỹ|θ,y)π(θ)dθ. (1.26)

The posterior predictive is not to be confused with a posterior expectation in (1.24), which usually

estimates an intractable integral. Instead, we want to obtain samples from the distribution p(ỹ|y),
which is all possible future values (conditioned on the observed data). This can be achieved by

sampling from the p(ỹ,θ|y) as mentioned above and simply discarding samples from π(θ).

An important objective of time series analysis is the forecasting ability of the model in

question. This gives us an understanding of how well the model fits the data. A common

strategy is to divide the observed data into a training set y1:T = (y1, . . . , yT ) and testing set

yT+1:T+k = (yT+1, . . . , yT+k). We fit the model and compute the Bayesian predictive posterior

for each model we’ve fit. Then, we can compare the forecasted values to the testing set using a

forecasting metric.

Suppose we want the h set-ahead forecast, ŷT+h, conditional on all previous values up to time

T . Then, to obtain point forecasts, define the conditional expectation as

ŷT+h = E[ỹT+h|y1:T ] =
∫
ỹT+hp(ỹT+h|y1:T )dỹT+h,

where p(ỹT+h|y1:T ) is the posterior predictive distribution for time series data. Here, the posterior
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predictive is computed over the length of the testing set ỹT+i, i = 1, . . . , k. To evaluate the

performance of the point forecasts, the root mean square error (RMSE) is computed as

RMSEh =

√√√√ 1

k − h+ 1

k−h∑
i=0

(yT+h+i − ŷT+h+i)
2.

for each forecast horizon h. The RMSE is the root of the average squared distance between

the testing set and forecasted values, and hence, the lower the value, the better. Distributional

forecasts, i.e. the full posterior predictive distribution, can also be assessed, which is discussed

in more detail in Chapter 2. For a wide selection of forecasting metrics to assess forecasting

performance, see Hyndman and Athanasopoulos (2018).

Another common measure of forecasting performance is the h-step-ahead log posterior pre-

dictive distribution given as

log p(yT+1:T+h|y1:T ) = log

∫
Θ
p(yT+1:T+h|θ, y1:T )π(θ)dθ,

≈ log

(
1

M

M∑
m=1

p(yT+1:T+h|θ(m), y1:T )

)
,

where the last line is a Monte Carlo approximation thereof, with θ(m) ∼ π(θ). Once the LPDS

has been computed, the training and testing sets are updated (expanded) by t + 1. The model

is re-estimated from the new training set, and the LPDS is computed for the updated testing

set. This process is repeated until observations of the testing set yT+1:T+k have been used in

the computation of the LPDS. This method takes the time series structure into account and is

known as time series cross-validation, described in detail in Bürkner et al. (2020). Note, that this

technique is also used to compute the RMSEh for the whole testing set as described above.

1.5.2 Model selection

An important consideration for any practitioner is selecting an appropriate model for the observed

data. Consider observations from an ARMA(p, q) model. Choosing the number of AR terms p and

moving-average terms q is not obvious. There are heuristics to determine the p, q from looking

at the empirical autocorrelations and partial autocorrelations of the data. Still, in practice,

determining the appropriate model is not always straightforward due to complicated observed

autocorrelation structures. A well-known phenomenon is that the maximum likelihood value

increases as more parameters are added to the model, which can result in over-fitting. Hence,

we seek to find a model that fits the data well but penalises the model with a large number of

parameters, e.g. for large p or q.

For a given statistic model M, the marginal likelihood or model evidence can be written
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explicitly as

p(y|M) =

∫
p(y|θ,M)p(θ|M)dθ, (1.27)

where p(y|θ,M) is the likelihood and p(θ|M) is the prior for θ under model M. In practice, this

integral is intractable, and one must resort to approximations of the above integral. There are

many techniques to approximate or estimate the marginal likelihood, such as importance sam-

pling, thermodynamic integration (Lartillot and Philippe, 2006), and bridge sampling (Gronau

et al., 2017). For an overview, see Chapter 7 of Gamerman and Lopes (2006), and for a compar-

ative study, see DiCiccio et al. (1997).

One such way is Laplace’s method evaluates the integral above to obtain an approximate

solution. This is achieved by performing a second-order Taylor expansion on the log-likelihood

about the maximum likelihood estimate (MLE) denoted as θ̂, and integrating out θ while ignoring

O(1) terms. The result is known as the Bayesian information criterion (BIC), given as

BIC ≡ −2 log p(y|M) ≈ −2 log L̂− k log n, (1.28)

where k is the number of parameters in the model, L̂ is the likelihood function evaluated at the

MLE, and n is the number of observations. Bayesian information criterion was first introduced

in 1978 Schwarz (1978) as a Bayesian adaptation of the frequentist AIC (Akaike information

criterion) (Akaike, 1998). Furthermore, BIC combats overfitting by incurring a penalty for the

number of parameters in the model. Another main advantage of BIC for model selection is the

simplicity of use, which requires only the value of the maximized log-likelihood, the number of

parameters, and the total number of observations. Since the BIC in (1.28) is an approximation

of the −2 log p(y|M) and hence models with lower BIC values are usually preferred.

Another well-known method for model selection is the deviance information criterion (DIC)

(Spiegelhalter et al., 2002). Deviance is defined as

D(θ) = −2 log p(y|θ,M) + 2 log h(y),

where h(y) is a fully specified standardizing term which is a function of only the data, which we

set to be h(y) = 1 for all models. The DIC is comprised on two components,

DIC = D(θ) + pD,

where the first term is the posterior expectation of the deviance,

D(θ) = Eθ|y [D(θ)] = Eθ|y [−2 log p(y|θ,M)] .

This first term assesses how well the model fits the data, with smaller values being a ‘better’ fit.
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The second component, pD, is the effective number of parameters of the model, which penalises

the complexity of the model,

pD = D(θ)−D(θ∗) = Eθ|y [−2 log p(y|θ,M)] + 2 log p(y|θ∗,M),

where θ∗ is the posterior model from the observed data. Thus, the DIC is a trade-off between

the complexity and adequacy of a model Chan and Grant (2016). The DIC can be re-written for

model M as

DIC ≡ −4Eθ|y [log p(y|θ,M)] + 2 log p(y|θ∗,M),

where θ∗ is the posterior model. The DIC generalizes AIC, since AIC = D(θ̂) + 2p where θ̂ is

the maximum likelihood estimate (Berg et al., 2004). Furthermore, the DIC is straightforward

to estimate, since we only require draws from the posterior as well as log-likelihood evaluated at

the posterior mean. For more on predictive information criterion, see Gelman et al. (2014).

1.5.3 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are an important class of algorithms in Bayesian

computation. The MCMC algorithm samples from an unknown probability distribution, e.g. the

posterior, via random simulation of a Markov chain with its equilibrium distribution as the pos-

terior (Gelman et al., 1995). These methods are attractive due to their asymptotic properties.

Let M be the number of iterations, then as M → ∞, the MCMC algorithm samples the pos-

terior distribution without approximation. MCMC algorithms output a set of posterior samples

{θ(j)}Mj=1. As mentioned previously, posterior samples are crucial in computing quantities such as

the posterior predictive distribution, the BIC for model selection, and high-dimensional integrals

in the form of (1.24). Given iid posterior samples, the law of large numbers states that

1

M

M∑
j=1

ψ(θ(j))
a.s.−−→ Eπ[ψ(θ)], (1.29)

where a.s. denotes almost sure convergence. In reality, drawing iid samples from a posterior in

moderate to high dimensions is not possible, and hence, one must resort to MCMC methods. The

algorithm generates a correlated sequence of samples {θ(j)}Mj≥J , which is distributed according to

the target π(θ) for large J . Despite the samples no longer being iid, MCMC algorithms can be

employed to sample high-dimensional posteriors. Furthermore, the presence of auto-correlation

of the samples, (1.29) still holds; however, the statistical efficiency is reduced because of this



CHAPTER 1. INTRODUCTION 18

dependence (Geyer, 2011). It can be shown, as M → ∞,

Var[
√
M θ] → σ2(1 + 2

∞∑
k=1

ρk),

where σ2 = Var[θ(j)] and ρk is the auto-correlation at lag k of the sequence. Estimating the

statistical efficiency of the M correlated samples from an MCMC output is often useful. This

motivates the effective sample size (ESS), defined as

ESS ≡ M

1 + 2
∑∞

k=1 ρk
. (1.30)

For independent samples, the Monte Carlo estimate has Var[θ] = σ2/M , which implies that the

ESS is M . Thus, ESS is the equivalent number of iid samples from the posterior that our M

correlated samples have produced. The quantity in the denominator of (1.30) is known as the

inefficiency factor. The higher the inefficiency factor, the less effective the sampling algorithm

and the more samples one has to draw to have the same estimation power for M iid samples from

the posterior. In practice, ESS is non-trivial to estimate due to the possibly infinite number of

auto-correlation terms in (1.30). See Gong and Flegal (2016); Flegal and Jones (2010) for a more

thorough treatment. For a modern review of MCMC, see Brooks et al. (2011) and Gelman et al.

(1995).

Metropolis-Hastings algorithm

The Metropolis algorithm, first proposed by Metropolis et al. (1953), then later developed into

the Metropolis-Hastings (MH) algorithm in Hastings (1970), is an important MCMC algorithm.

The MH algorithm is a randomized algorithm that constructs a Markov Chain to sample from

the invariant distribution π(θ).

We consider a common variant known as Random Walk Metropolis-Hasting (RW-MH), which

uses a proposal distribution q(θ|θc) which generates a new state θp which depends only on the

state at the previous iteration θc. The RW-MH constructs a Markov chain in the following way:

1. Initialize the chain θc = θ
(0)

2. Generate new state θp from the proposal distribution q(θ|θc).

3. Compute the Metropolis-Hastings ratio,

α = min

(
1,
π(θp)q(θc|θp)
π(θc)q(θc|θp)

)
. (1.31)
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4. Accept

θ(j) =

 θp with probability α,

θc with probability 1− α.
(1.32)

5. Set θc = θ
(j).

6. Repeat steps 2-5, M times.

The algorithm obtains a sequence of posterior draws {θ(j)}Nj=1. One benefit of the MH algorithm

is the avoidance of computing the possibly intractable normalizing constant in (1.23) due to

the cancellation from the MH ratio in Step 3. The choice of the proposal distribution q is

crucial to the algorithm’s efficiency. Intuitively, the proposal distribution should generate new

states in areas of high posterior. One common proposal distribution is the multivariate normal

q(θ) = N(0, I(θ∗)−1) where θ∗ is the maximum a posteriori probability (MAP) estimate and

I(θ∗) is the inverse covariance matrix given by

I(θ) = −∇θ log p(y|θ)p(θ),

where ∇θ is the gradient wrt the parameters. This is useful because the proposal q(θ) mimics the

curvature of the log posterior. Furthermore, much work has been done for assessing the optimal

scalings of the proposal distributions, see Gelman et al. (1996), Roberts and Rosenthal (2001),

Sherlock and Roberts (2009), and for MCMC convergence diagnostics see (Cowles and Carlin,

1996).

1.5.4 Pseudo-marginal MCMC

The Metropolis-Hastings algorithm requires the posterior distribution, up to a normalising con-

stant, to be evaluated in the acceptance ratio (1.31) at each iteration. However, for many models,

the posterior is expensive or intractable to evaluate. The pseudo-marginal MCMC algorithm pro-

posed by Andrieu and Roberts (2009) enables one to estimate π(θ) to alleviate this burden. It

does so by augmenting the parameter space with auxiliary, latent variables u, which generate an

unbiased estimate of the likelihood p̂(y|u,θ). Similar to the marginal MH algorithm, the pseudo-

marginal MCMC approach constructs a Markov chain, but on the augmented space (θ,u). This

gives the desirable property that the true posterior π(θ) is the stationary distribution of the

PMMH algorithm once marginalized over u. Given an unbiased likelihood estimator p̂(y|θ,u)
with the property

p(y|θ) = Eu

[
p̂(y|θ,u)

]
=

∫
p̂(y|θ,u)p(u)du, (1.33)
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where u ∼ p(u) are the auxiliary, latent variables u which are responsible for generating the

estimated likelihood. From Bayes’ theorem, the joint posterior of (θ,u) is given by

π̂(θ,u) =
p̂(y|θ,u)p(u)p(θ)

p(y)
, where p(y) =

∫
Θ

∫
u
p̂(y|θ,u)p(u)dudθ.

The unbiasedness condition in (1.33) is important since integrating w.r.t. u gives∫
π̂(θ,u)du =

(
∫
p̂(y|θ,u)p(u)du)p(θ)∫

Θ

∫
u p̂(y|θ,u)p(u)dup(θ)dθ

,

=
p(y|θ)p(θ)∫
Θ p(y|θ)p(θ)

,

= π(θ),

which is the exact posterior. Hence, running MCMC on the artificially augmented parameter

space produces samples {θ(j),u(j)}Mj=1 and disregarding the samples pertaining to u corresponds

to integrating out u. Thus, as M → ∞, samples are generated from the exact posterior π(θ)

and exact Bayesian inference for θ is performed. The PMMH algorithm is attractive since the

implementation is straightforward, provided the user has an unbiased estimator of the likelihood.

The steps to draw from π(θ,u) are described below:

1. Propose up ∼ p(u) and θp ∼ q(θ|θc)

2. Compute the Pseudo-marginal Metropolis-Hastings ratio,

α = min

(
1,
p̂(y|θp,up)p(θp)q(θc|θp)
p̂(y|θc,uc)p(θc)q(θc|θp)

)
. (1.34)

3. Accept

(θ(j),u(j)) =

 (θp,up) with probability α,

(θc,uc) with probability 1− α.
(1.35)

4. Set (θc,uc) = (θ(j),u(j)).

In a Bayesian setting, unbiased estimators of the likelihood are constructed via importance

sampling (Beaumont, 2003), particle filters for state space models (Andrieu et al., 2010), and

for subsampling (Quiroz et al., 2021). Despite the benefits of using an estimated likelihood to

avoid computation of an intractable likelihood, PMMH is very sensitive to the Var
[
log p̂(y|θ,u)

]
.

Notice that for extreme overestimates of p(y|θ), the acceptance probability in (1.34) can become

1 for the current iteration, then close to 0 for the subsequent iterations. This results in the chain

getting stuck for any number of iterations. Increasing the number of particles, i.e. decreasing
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the variance of the likelihood estimator, will increase the efficiency of the Markov chain, but

at the cost of computation time and likewise for visa-versa. This computation time-variance

trade-off has been studied in Pitt et al. (2012) and Doucet et al. (2015) with the latter finding

Var
[
p̂(y|θ,u)

]
≈ 1 the optimal trade-off. The pseudo-marginal approach is a foundational part

of large data subsampling in Quiroz et al. (2019), which we employ in Chapter 3 for large time

series data in the frequency domain.
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Chapter 2

Improving forecasting in dynamic linear regression

models by a semi-long memory model for the error

process

Thomas Goodwin, Matias Quiroz and Robert Kohn 1

Abstract

Dynamic linear regression models forecast the values of one time series based on a linear

combination of a set of exogenous time series while incorporating a time series process for

the error term. This error process is often assumed to follow an autoregressive integrated

moving average (ARIMA) model, or seasonal variants thereof, which are unable to capture

a long-range dependency structure of the error process. We propose a novel dynamic lin-

ear regression model that incorporates the long-range dependency feature of the errors and

shows that it improves the model’s forecasting ability. We develop a Markov chain Monte

Carlo method to fit general dynamic linear regression models based on a frequency domain

approach that enables fast, asymptotically exact Bayesian inference for large datasets. We

demonstrate that our approximate algorithm is faster than the traditional time-domain ap-

proaches, such as the Kalman filter and the multivariate Gaussian likelihood, while retaining

a high accuracy when approximating the posterior distribution. We illustrate the method in

simulated examples and two energy forecasting applications.

Keywords: Dynamic linear regression, forecasting, Bayesian inference.
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2.1 Introduction

Forecasting time series data plays an important role in various fields, such as engineering, eco-

nomics, and climate sciences. Forecasting a single output time series may be more accurate

by using a linear combination of one or more exogenous time series that explains some of its

historical variation (Hyndman and Athanasopoulos, 2018). However, the linear combination of

the exogenous time series often does not capture all the serial correlation present in the output

time series, resulting in errors that are autocorrelated, i.e. serially correlated. Dynamic linear

regression models (Pankratz, 2012) provide a framework that relates the output time series to a

linear combination of the exogenous time series and, moreover, models the resulting error term as

a time series process to account for serially correlated errors. Dynamic linear regression models

are a particular case of the more general class transfer function models (Box et al., 2015).

The standard approach assumes that the error process, i.e. the time series process for the er-

ror terms, follows an autoregressive integrated moving average process (ARIMA). This approach

allows the error process to have an autoregressive component and a moving average component

for the white noise error. While this error process accommodates a wide range of stationary

processes, it may require a large number of autoregressive components in order to accommodate

error processes that show significant autocorrelation. To model the autocorrelation of the error

process parsimoniously, we use the autoregressive tempered fractionally integrated moving aver-

age (ARTFIMA) (Meerschaert et al., 2014; Sabzikar et al., 2019). The ARTFIMA class nests

the well-known autoregressive fractionally integrated moving average (ARFIMA) (Granger and

Joyeux, 1980) model, which is useful for modelling time series with so-called long memory. The

ARTFIMA model has the following three advantages compared to the ARFIMA model, where

the latter two are of particular importance for the frequency domain estimation approach for
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dynamic linear regression models proposed in this paper. First, the autocovariance function of

the ARFIMA model decays at such a slow rate that it is not absolutely summable, making it

hard to analyse (Sabzikar et al., 2019). The autocorrelation function of the ARFIMA process

exhibits a power-law decay as the lags increase, which decays much slower than exponential decay.

Such a process is referred to as having long memory. In contrast, the ARTFIMA model has a

summable autocovariance function, which exhibits long-range dependence for a number of lags

but eventually decays exponentially fast. Such a process is referred to as having semi-long mem-

ory. Second, the spectral density of the ARFIMA process diverges as the frequency approaches

zero. In practice, however, the empirical power spectrum (the estimate of the spectral density)

is bounded for small frequencies. This is empirically illustrated in Meerschaert et al. (2014);

Sabzikar et al. (2019), who show that the ARTFIMA process fits the power spectrum better than

the ARFIMA process for low frequencies; see also Figure 2.7 in our paper. This stylised fact

is important for our purpose as we develop an estimation method based on a parametric Whit-

tle likelihood (Whittle, 1953), which is a frequency domain approximation of the time domain

likelihood. Third, the Whittle approximation fails to hold for long memory processes, especially

for small frequencies (Robinson, 1995; Rousseau et al., 2012), which we demonstrate this with a

simulation study in Section 2.4.2. Thus, we show that resorting to the time domain likelihood

for estimating a dynamic linear regression with ARFIMA errors is computationally much more

costly than our approach of a frequency domain likelihood with ARTFIMA errors. Moreover, in

terms of prediction accuracy, our model is on par with, if not better for longer prediction horizons

for the empirical data sets analysed. Our model’s distributional forecasts are also on par with

the existing models.

The model parameters in dynamic linear regression models consist of the regression coeffi-

cients that form the linear combination of the exogenous time series and the parameters of the

error process. For the standard dynamic linear regression models with ARIMA errors that are

normally distributed, efficient likelihood-based inference can be carried out by finding the finite-

dimensional state space representation of the model and using the Kalman filter to integrate out

the unobserved time-varying error terms. This may still be computationally costly with many

time observations, especially in Bayesian inference, which typically requires many posterior sam-

ples for reliable inference. For each such sample, the Kalman filter needs to cycle through all

observations, which can be prohibitively expensive, especially for large time series. The Whittle

log-likelihood can be derived using large sample properties of the so-called periodogram data,

which are formed via the discrete Fourier transform of the time domain data. The Whittle log-

likelihood is directly a function of the regression coefficients and the error process parameters

without needing to integrate out unobserved error terms. However, in dynamic linear regression

models, the periodogram data becomes a function of the regression coefficients, which requires

recomputing the discrete Fourier transform in every iteration. We show how this can be cir-



CHAPTER 2. DYNAMIC LINEAR REGRESSION 30

cumvented, and thus, our algorithm requires computing the discrete Fourier transform only once

before inference, thereby obtaining significant computational gains compared to the time domain

log-likelihood based on the Kalman filter. Our frequency domain approach is also applicable to

a dynamic linear regression model with ARTFIMA errors, where a finite-dimensional state space

representation is not readily available.

To summarise, our article has two contributions. First, we propose a frequency domain

estimation approach for dynamic linear models that significantly outperforms estimation ap-

proaches based on the time domain likelihood in terms of computing time, especially when a

finite-dimensional state space representation of the model is not available. Second, we utilise a

semi-long memory process for the error process and show that it provides more accurate forecasts

compared to both the standard dynamic linear model and that of using a long memory process

for the error term.

The rest of the article is organised as follows. Section 2.2 reviews existing dynamic linear

models and presents our extension. Section 2.3 introduces the necessary frequency domain tools,

outlines our estimation method and validates its performance relative to the time domain like-

lihood. Section 2.5 presents applications for two real-world electricity demand data sets and

improved forecasts via dynamic linear regression models with ARTFIMA errors.

2.2 Dynamic linear regression models

2.2.1 Standard dynamic linear regression models

Let Xt = (X1t, . . . , Xmt) ∈ Rm be a set of m exogenous stationary time series observed at time

t. A dynamic linear regression model models the single output time series Yt ∈ R as a linear

combination of the exogenous Xt, i.e.

Yt =X
⊤
t β + ηt, (2.1)

where β ∈ Rm is a vector of regression coefficients and ηt ∈ R is a zero-mean error process. The

error process contains all unobserved factors that affect Yt, and we assume that E(ηt|Xt) = 0,

i.e. it is uncorrelated with each of the elements in Xt and hence Xt is exogenous.

When the error process ηt does not show any temporal dependence, (2.1) is a standard linear

regression (given it has a constant variance) and can easily be estimated using standard linear

regression approaches (or modified versions thereof if heteroscedasticity is present). However, in

many applications, the unobserved factors are time-varying, resulting in serially correlated errors

ηt. The standard dynamic linear regression model assumes that ηt is an autoregressive integrated
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moving average process, denoted ARIMA(p, d, q) and defined as

ϕp(B)∆dηt = ψq(B)εt, (2.2)

where ϕp(B) = 1 −
∑p

i=1 ϕiB
i and ψq(B) = 1 +

∑q
i=1 ψiB

i are the autoregressive and moving

average lag polynomials respectively with the lag operator B such that Biηt = ηt−i. The differ-

encing operator ∆d, for d = 0, 1, 2, . . . , is defined as ∆dηt = (1− B)dηt. When the error process

exhibits seasonality with seasonal period s, this can be modelled by a seasonal ARIMA process,

denoted ARIMA(p, d, q)(P,D,Q)s and defined as

ϕp(B)ϕ⋆P (B
s)∆d∆D

s ηt = ψq(B)ψ⋆
Q(B

s)εt, (2.3)

where ϕ⋆P (B
s) = 1 −

∑P
i=1 ϕ

⋆
iB

is and ψ⋆
Q(B

s) = 1 +
∑Q

i=1 ψ
⋆
iB

is are the seasonal autoregressive

and seasonal moving average lag polynomials, and ∆D
s = (1 − Bs)D, for D = 0, 1, 2, . . . , is the

seasonal differencing operator (Box et al., 2015).

To carry out inference in (2.1), one typically assumes that ηt follows a normal distribution. The

resulting log-likelihood is then a multivariate Gaussian distribution with a Toeplitz covariance

matrix given that ηt is stationary (Doornik and Ooms, 2003). Inversion of such a matrix is

usually performed via the Levinson-Durbin algorithm (Levinson, 1946; Durbin, 1960) in O(T 2)

operations. However, recent approaches, known as superfast Toeplitz algorithms, can solve the

matrix system in O(T log2 T ) operations, which becomes more efficient than the Levinson-Durbin

algorithm when T > 256 (Ammar and Gragg, 1988). A more computationally efficient approach

is to find the finite-dimensional state space representation of the model in (2.1) with the errors

following either (2.2) or (2.3), in which the resulting likelihood can be evaluated in O(T ) using

the Kalman filter.

2.2.2 Long memory dynamic linear regression models

In many applications, a pair of observations separated by a long time interval exhibit a non-

negligible correlation. The standard dynamic linear regression model with the errors in (2.2)

has an autocovariance function whose absolute value decays exponentially fast and can thus not

capture this feature. A common approach to model time series with long memory is to consider

so-called fractional differencing.

In a dynamic linear regression setting, Doornik and Ooms (2004) propose to model the error

process ηt in (2.1) with an autoregressive fractionally integrated moving average process (Granger

and Joyeux, 1980; Hosking, 1981), denoted ARFIMA(p, d, q). This model is, for d /∈ Z,

ϕp(B)∆dηt = ψq(B)εt, (2.4)
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where ϕp(B) and ψq(B) are defined as in (2.2). For d /∈ Z the fractional differencing operator is

defined via the fractional binomial theorem

∆dηt = (1−B)dηt

=
∞∑
j=0

(
d

j

)
(−B)jηt

=
∞∑
j=0

(−1)j
Γ(1 + d)

Γ(1 + d− j)j!
ηt−j ,

where Γ(s) =
∫
exp(−t)ts−1dt and we have used that s! = Γ(1 + s). Provided that the roots

of the polynomial ϕp(z) are outside the unit circle in the complex plane, the ARFIMA process

is stationary if −0.5 < d < 0.5 and has long memory when 0 < d < 0.5 (Granger and Joyeux,

1980). Doornik and Ooms (2004) also propose a seasonal extension by modelling ηt as a seasonal

ARFIMA(p, d, q)(P,D,Q)s with d /∈ Z and integer D. A possible extension of this model is to

allow for non-integer D as in Bisognin and Lopes (2009).

Doornik and Ooms (2003) show that maximum likelihood estimation for ARFIMA models can

be carried out in O(T 2) time, and this also applies for the model in (2.1) with the errors following

(2.4). As mentioned previously, more recent algorithms can estimate these models in O(T log2 T )

time (Ammar and Gragg, 1988). Chan and Palma (1998) show that there is no finite-dimensional

state space representation of an ARFIMA process. They propose an infinite-dimensional state

space representation for which the Kalman filter can be computed in a finite number of steps

equal to T ; however, the resulting computation is O(T 3).

2.2.3 Semi long memory dynamic linear regression models

The autoregressive tempered fractional integrated moving-average (ARTFIMA) (Meerschaert

et al., 2014; Sabzikar et al., 2019) is an extension of the ARFIMA model that incorporates a

tempering parameter λ. The model for the error process is then

ϕp(B)∆d,ληt = ψq(B)εt, (2.5)
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where ϕp(B) and ψq(B) are defined as in (2.2) and for d /∈ Z and λ > 0 the tempered fractional

differencing operator is

∆d,ληt = (1− exp(−λ)B)dηt

=
∞∑
j=0

(
d

j

)
(−B)jηt

=
∞∑
j=0

(−1)j
Γ(1 + d)

Γ(1 + d− j)j!
exp(−λj)ηt−j . (2.6)

Note that when λ = 0, the ARTFIMA model becomes a stationary ARFIMA model if −0.5 <

d < 0.5, provided the roots of the polynomial ϕp(z) are outside the unit circle in the complex

plane. When λ = 0 and d is integer-valued, the ARTFIMA model becomes an ARIMA model.

The ARTFIMA model is stationary for all d /∈ Z and λ > 0 provided that the root condition

of the polynomial ϕp(z) is satisfied (Sabzikar et al., 2019). The ARTFIMA process has several

advantages over the ARFIMA process, which are listed in Section 2.1.

Similar to the ARFIMA model, a finite-dimensional state space representation that allows

efficient Kalman filter computations is not readily available. Instead, the log-likelihood can be

computed using a multivariate Gaussian distribution with a Toeplitz covariance matrix formed

via the autocovariance function in Sabzikar et al. (2019, Theorem 2.5 (b)). However, a more

computationally efficient approach is forming a frequency domain log-likelihood for the so-called

periodogram data described in Section 2.3. Let ω denote the angular frequency. The approach

uses the process’s spectral density f(ω), which is the Fourier transform of the covariance function.

The spectral density shows how the variation of the time series is distributed in the frequency

spectrum. The spectral density when ηt follows the ARTFIMA process in (2.5) is (Sabzikar et al.,

2019, Theorem 2.5 (a))

f(ω;ϑ) =
σ2ε
2π

∣∣∣1− e−(λ+iω)
∣∣∣−2d

∣∣∣∣ψq(e
−iω)

ϕp(e−iω)

∣∣∣∣2 , (2.7)

with parameter vector ϑ = (ϕ1, . . . , ϕp, ψ1, . . . , ψq, d, λ, σ
2
ε), where σ2ε = Var(εt) and i is the

imaginary number. The spectral density for the seasonal ARTFIMA(p, d, q)(P,D,Q)s with d /∈ Z
and integer D, i.e.

ϕp(B)ϕ⋆P (B
s)∆d,λ∆D

s ηt = ψq(B)ψ⋆
Q(B

s)εt, (2.8)
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where all quantities have been previously defined, is

f(ω;ϑ) =
σ2ε
2π

∣∣∣1− e−(λ+iω)
∣∣∣−2d

∣∣∣∣∣ψq(e
−iω)ψ⋆

Q(e
−isω)

ϕp(e−iω)ϕ⋆P (e
−isω)

∣∣∣∣∣
2

. (2.9)

Figure 2.1 shows the spectral density, also known as the power, for both the ARFIMA and

ARTFIMA process for different values of the fractional differencing parameter d. An important

difference is the limiting behaviour as ω → 0, where the spectral density of the ARFIMA process

diverges when d > 0, whereas that of the ARTFIMA process does not. When estimating the

power for real data, it is often observed to be bounded. Hence the ARTFIMA model will provide

a better fit; see Figure 2.7.

Figure 2.1: Spectral densities of different ARFIMA and ARTFIMA models with p = 1 and q = 0.
For both processes, the parameter ϕ = 0.5 and ARTFIMA λ = 0.045.

2.3 Methodology

2.3.1 Frequency domain likelihood

The frequency domain approach to inference relies on the asymptotic properties of the frequency

representation of the time series process in (2.1). Engle (1974) shows how to rewrite (2.1) in

terms of the periodograms of Yt and Xt and derive the ordinary least squares estimator of

the transformed regression, which is also shown to be the best linear unbiased estimator. Our

Bayesian approach requires a log-likelihood function, which can be derived using asymptotic

properties of the periodogram data, which we now outline in detail.
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Let Yt and Xt be zero-mean processes. Suppose that β is known and define the pseudo data

Zt = Yt −X⊤
t β, t = 1, . . . , T.

The general case assumes that ηt in (2.1) is a seasonal ARTFIMA process and hence the spectral

density of Zt is given by (2.9). The spectral density of the ARTFIMA process in (2.7) is obtained

using Q = P = 0 in (2.9). The spectral density of the seasonal ARMA process is obtained by

setting λ = 0 and d = 0 in (2.9), and for ARMA, in addition, Q = P = 0.

Let ω ∈ [−π, π] be the angular frequency and denote the natural Fourier frequencies as

ωk = 2πk
T for k ∈ K, where

K =

−T
2 ,−

T
2 + 1, . . . , T2 − 1, if T is even,

− (T−1)
2 ,− (T−1)

2 + 1, . . . , (T−1)
2 , if T is odd.

The frequency representation of the time series process Zt is obtained via its discrete Fourier

transform (DFT), which is the complex-valued transform

JZ(ωk) =

T∑
t=1

Zt exp(−iωkt), (2.10)

which can be computed for all T frequencies ωk, k ∈ K, using O(T log(T )) operations via the fast

Fourier transform (Cooley and Tukey, 1965). Since the pseudo data depends on β, the DFT in

(2.10) needs to be recomputed for each new sample in the Markov chain Monte Carlo algorithm.

However, following Matsuda and Yajima (2009),

JZ(ωk) =

T∑
t=1

(Yt −X⊤
t β) exp(−iωkt)

=

T∑
t=1

Yt exp(−iωkt)−

(
T∑
t=1

Xt exp(−iωkt)

)⊤

β

= JY (ωk)− JX(ωk)
⊤β,

where JY is the DFT of Yt, and JX(ωk) is the m-dimensional row-vector with the jth element

being the DFT of the (univariate) time series Xjt. Thus, since JY (ωk) and JX(ωk) only depend

on the data Yt andXt, and can be pre-computed before the Markov chain Monte Carlo algorithm,

JZ(ωk) can be evaluated in O(T ) for all frequencies when β changes.

The DFT of JZ(ωk) is a weighted complex valued sum of the pseudo data. Peligrad and Wu
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(2010, Theorem 2.1) show that under quite regular conditions,

1√
T
(ℜ(JZ(ωk)),ℑ(JZ(ωk))), T → ∞, (2.11)

where, respectively, ℜ(z) and ℑ(z) denote the real and imaginary parts of z, converge in distri-

bution to a bivariate normal distribution with (asymptotically) independent components having

expected value 0 and variance πf(ωk), with f being the spectral density of Zt. Moreover, they

show that 1√
T
JZ(ωk) are asymptotically independent for all k ∈ K.

Define the periodogram

IZ(ωk) =
1

2π

∣∣∣∣ 1√
T
JZ(ωk)

∣∣∣∣2 . (2.12)

Then, for k ∈ K \ 0, by (2.11),

IZ(ωk)

f(ωk)
=

1

2

∣∣∣∣∣ 1√
πf(ωk)

1√
T
JZ(ωk)

∣∣∣∣∣
2

∼ χ2(2)

2
, (2.13)

as T → ∞, where χ2(ν) denotes the chi-squared distribution with ν degrees of freedom. Since
χ2(2)

2 is a standard exponential random variable, it follows that

IZ(ωk) ∼ Exp(f(ωk)), k ∈ K \ 0, (2.14)

where Exp denotes an exponential random variable parameterised by its mean. Emphasising the

dependence on the parameters, the log-density of (2.14) is

log p(IZ(ωk;β)|θ) = − log(f(ωk;ϑ))−
IZ(ωk;β)

f(ωk;ϑ)
, k ∈ K \ 0, (2.15)

where θ = (ϑ,β) contains all unknown parameters. That ν = 2 follows from |·|2 in (2.13) being

a sum of two squared (asymptotically) independent standard normal random variables when

k ∈ K \ 0. When k = 0, JZ(0) = 0 since JY (0) =
∑T

t=1 Yt = 0 and JX(0) =
∑T

t=1Xt = 0 for

demeaned data.

The asymptotic distributions of the periodogram data underlie the idea of the so-called Whit-

tle log-likelihood (Whittle, 1953): Form the log-likelihood via the distributions of the frequency

domain data, i.e. the periodogram ordinates IZ(ωk;β). For a real-valued process Zt, both the

periodogram and spectral density are symmetric around the origin; hence, only non-negative

frequencies are considered. The Whittle log-likelihood is obtained by adding (due to the asymp-

totic independence) the log-densities in (2.15) for all the positive frequencies (zeroth frequency
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excluded with demeaned data). The Whittle log-likelihood is, for odd T ,

ℓW (θ) = −
(T−1)/2∑

k=1

(
log(f(ωk;ϑ)) +

IZ(ωk;β)

f(ωk;ϑ)

)
, (2.16)

and the summation runs to T/2− 1 instead if T is even.

The Whittle log-likelihood is an approximation of the Gaussian time domain likelihood.

Guyon (1982) and Kent and Mardia (1996) investigate the rates of asymptotic equivalence for

the aforementioned log-likelihoods,

|Ltrue(θ)− LW (θ)| = Op(1), (2.17)

as T → ∞. The result in (2.17) also holds for the first and second-order derivatives of the

likelihoods. Further, it can be shown that the bias incurred from the Whittle likelihood is smaller

than the standard error.

Finally, we note that a frequency domain approach for dynamic linear regression models with

the Whittle log-likelihood is not appropriate when using the ARFIMA model because the Whittle

approximation fails to hold for long memory processes, in particular for the small frequencies

(Robinson, 1995; Rousseau et al., 2012). This is further investigated in a simulation study in

Section 2.4.2. Thus, to carry out inference in dynamic linear regression models with ARFIMA

errors, one has to resort to the time domain likelihood, which is considerably slower to compute

than a frequency domain approach that uses the ARTFIMA process.

2.3.2 Bayesian inference via Markov chain Monte Carlo

An important objective in time series is to learn θ = (ϑ,β) given realisations of the time series

processes Yt and Xt. Let p(Z|θ) denote the likelihood function of θ given the pseudo data

Z = (Z1, . . . , ZT ), which depends on the subset β of the parameter vector θ, but we suppress

this dependence for simplicity. When the likelihood is obtained via the Whittle log-likelihood

in (2.16), p(Z|θ) = exp (ℓW (θ)). The likelihood function in this case is given the periodogram

ordinates I(ω0), . . . , I(ω(T−1)/2), but since they are functions of Z we keep using the notation

p(Z|θ).
The cornerstone of Bayesian inference is the posterior distribution obtained via Bayes’ theo-

rem,

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
, p(Z) =

∫
p(Z|θ)p(θ)dθ, (2.18)

where p(θ) is the prior distribution. Markov chain Monte Carlo is a class of iterative procedures



CHAPTER 2. DYNAMIC LINEAR REGRESSION 38

to sample from (2.18), with the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970) arguably being the most used. The Metropolis-Hastings algorithm constructs a Markov

chain
{
θ(j)

}
by starting at some initial value θ(0) and then, recursively, proposes a candidate

draw θ′ from a proposal density q(θ|θ(j−1)) and sets θ(j) = θ′ with acceptance probability

αMH = min

(
1,

p(Z|θ′)p(θ′)/q(θ′|θ(j−1))

p(Z|θ(j−1))p(θ(j−1))/q(θ(j−1)|θ′)

)
. (2.19)

If a proposed draw is rejected, θ(j) = θ(j−1). The acceptance probability in (2.19) is set so that,

informally speaking, the Markov chain consists of samples from the posterior in (2.18) after a

warm-up period referred to as the burn-in. Let
{
θ(j)

}
j=1,...,N

be the samples after discarding the

burn-in.

If the algorithm rejects too often, the Markov chain becomes “sticky”, which causes inefficient

estimates of posterior expectations. To explain how this inefficiency is measured, suppose θ is

scalar-valued and consider estimating the expectation of a function h, i.e.

E(h(θ)) =

∫
h(θ)p(θ|Z)dθ. (2.20)

By the law of large numbers,

ÎN =
1

N

N∑
i=1

h(θ(j))
p→ E(h(θ)). (2.21)

If the samples were independent, then the asymptotic variance of
√
NÎN is σ2h, where σ2h =

V(h(θ)). However, Markov chain Monte Carlo results in correlated samples and then the asymp-

totic variance of
√
NÎN is σ2h(1+

∑∞
i=1 ρi), with ρi is the autocorrelation at the ith lag the Markov

chain. The term (1+
∑∞

i=1 ρi) is called the inefficiency factor. It measures how much the asymp-

totic variance of the estimate of a posterior expectation is inflated compared to an ideal sampler

that produces independent draws. The effective sample size (ESS) of the resulting Markov chain

is defined as ESS = N/(1+
∑∞

i=1 ρi). Thus, the effective sample size is an estimate of the number

of independent samples that has the same precision as our N autocorrelated sample.

The proposal density is often taken to be a random walk, e.g.

q(θ|θ(j−1)) = N (θ|θ(j−1), cΣprop),

whereN (x|µ,Σ) denotes the multivariate normal density of x with mean µ and covariance matrix

σ. Moreover, Σprop is an approximation of the posterior covariance matrix and c = 2.38/
√

dim(θ)

for optimality (Gelman et al., 1997).



CHAPTER 2. DYNAMIC LINEAR REGRESSION 39

Despite selecting a proposal distribution, as previously mentioned, sampling high-dimensional

or difficult geometries/ correlation structures in the posterior can still yield low acceptance prob-

abilities. One possibility to overcome this issue is to adaptively tune the proposal covariance

matrix (Haario et al., 2001). This technique uses the full information accumulated thus far using

the previous draws from the algorithm to continually update the covariance proposal matrix. The

adaptive approach can lead to more accurate simulated approximations of the target posterior

and less auto-correlation in the resulting chain.

To target a specified overall acceptance rate of the sampler, we follow the approach from

Garthwaite et al. (2016). This approach utilizes the Robbins-Munro search process to quickly

identify the scaling constant c for the proposal covariance matrix. For Gaussian target posteriors,

Gelman et al. (1997) show that the optimal acceptance rate is 0.234. Garthwaite et al. (2016)

propose a simple estimator for c which targets the optimal acceptance rate of 0.234 and shows

that the optimal step length for the search process is robust for a wide range of distributions.

We combine this method with the adaptive covariance technique described above for a sampler

for DLR models with ARMA or ARTFIMA disturbance processes. We demonstrate this MCMC

algorithm on a simulated data set in Section 2.4.1 and for the real data examples in Section 2.5.

2.4 Simulation study

For all examples and applications, stationarity is enforced through the prior. The auto-regressive

parameters ϕi for i = 1, . . . , p are reparameterized according to Barndorff-Nielsen and Schou

(1973) in terms of partial auto-correlations ϕ̂p = (ϕ̂1, . . . , ϕ̂p) and enforcing |ϕ̂i| < 1 for i = 1, . . . , p

ensures stationary. The same reparameterization is used for the moving average parameters to

ensure invertibility.

The regression parameters β have uninformative priors, β ∼ N(0, 100 · I) where I is the

identity matrix. Each of the lag polynomial parameters have independent uniform priors, e.g.

ϕ̂p ∼ Unif(−1, 1)p. Furthermore, a log-transformation was used for σ2ε with prior log(σ2) ∼
N(0, 100).

2.4.1 Simulated data

As an illustrative example, we compare three different posteriors based on different likelihoods:

the Whittle likelihood, the exact Gaussian likelihood and the Kalman filter likelihood, all of

which are under the same non-informative prior for dynamic regression models on simulated data.

By the exact Gaussian likelihood, we mean evaluating a multivariate normal density where the

covariance matrix is computed from the autocovariance function. The Kalman filter likelihood,

on the other hand, performs the Kalman filter recursions to compute the likelihood. Unlike the
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Gaussian likelihood approach, the Kalman filter avoids inverting a large covariance matrix. Note

that both these methods are exact.

Let yt = β1xt + ηt where ηt is a ARMA(3,1) model with n = 5001. The true values of the pa-

rameter vector are set to β = 3.0, with the reparameterized vector θ = (0.5, −0.248, 0.1, 0.2, 2)

where the first two elements are the AR parameters ϕ, the next two elements are the MA param-

eters θMA and the last element is the variance of the white noise of the process σ2ϵ . The exogenous

predictor xt is known and follows an ARMA(1,1) process. The MCMC algorithm described in

Section 2.3.2 was used to sample the three posteriors for 10000 iterations with a burn-in of 3000

samples and the chain was thinned, keeping every other iteration. Table 2.1 reports the MSE of

the posterior mean for 1000 replicates of the data for each parameter. As can be seen, the MSE

of both the Whittle likelihood and the Gaussian likelihood are small. The differences between

the MSE for each method are likely due to Monte Carlo error.

MSE β1 ϕ1 ϕ2 ϕ3 θ1 σ2

Gaussian 0.013 0.076 0.007 0.003 0.072 0.002

Whittle 0.014 0.065 0.006 0.002 0.063 0.002

Table 2.1: The mean square error (MSE) for posterior means with the Gaussian likelihood and
Whittle likelihood under the same prior for 1000 data simulation replicates.

Figure 2.2 plots kernel density estimates of the marginal posteriors for each parameter from

one simulation. As seen in the aforementioned figure, the three posteriors are almost identical.

Hence, the n = 2500 periodogram ordinates were enough to get a very close approximation of the

Whittle likelihood to the true time domain likelihood.

Figure 2.2: Kernel density estimates of the marginal Whittle, Kalman filter and Gaussian poste-
riors for a DLR model with ηt ∼ ARMA(3,1).
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To measure the sampling efficiency of the resulting Markov chain from MCMC, we report the

effective sample sizes for each parameter in Figure 2.3. It is shown that the Gaussian likelihood

has a 25% increase in the ESS for the β1 parameter compared to the Whittle and Kalman filter.

The Whittle posterior has a lower ESS for log σ2 compared to its time-domain counterparts. The

AR and MA parameters are comparable for all three posteriors, with the Whittle posterior having

slightly higher ESS for ϕ1, ϕ3 and ψ1.

Figure 2.3: Effective sample sizes for 10,000 MCMC iterations for the three posteriors for each
parameter.

The run times (in seconds) of each method are presented in Table 2.2. Our proposed Whittle

approach is roughly 8 times faster than the Gaussian likelihood and 94 times faster than the

Kalman filter. Here, a Python implementation is used for the Kalman filter. In contrast, the

Gaussian likelihood uses the SuperGauss package in R (Ling and Lysy, 2017), which scales as

O(T log2 T ) from the superfast Toeplitz algorithm proposed in Ammar and Gragg (1988). Despite

Kalman filtering being performed in O(T ) operations, one must sweep through all observations at

each iteration, whereas the Whittle likelihood in (2.16) is a sum, only requiring the computation of

IZ(ω) in (2.12) and the relevant spectral density, which takes much less operations than filtering.

Run time Whittle Gaussian Kalman filter

total (s) 10.0 80.54 942.58

Table 2.2: Computation time of each likelihood method for 10000 MCMC iterations.
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2.4.2 Periodogram simulations

In this section, we empirically verify that the ARTFIMA likelihood assumptions hold for small

frequencies, which are violated for ARFIMA. The latter has been shown theoretically in Robinson

(1995); Rousseau et al. (2012) and empirically in Meerschaert et al. (2014); Sabzikar et al. (2019).

Both models are tested without the dynamic regression component. Restating Equation (2.14),

the ratio of the periodogram and its spectrum has distribution,

IZ(ωk)

f(ωk)
∼ χ2(2)

2
, (2.22)

for ωk ∈ Ω as T → ∞. We verify this asymptotic result via a simulation study. We consider two

models

(M1) ARTFIMA(2, d, λ, 0) with θ = (ϕ1, ϕ2, d, λ, σ
2) = (0.742, 0.227, 2.139, 0.616, 1).

(M2) ARFIMA(2, d, 0) with θ = (ϕ1, ϕ2, d, σ
2) = (1.466,−0.525, 0.493, 1).

These parameter values for both models were chosen using the real data presented in Section

2.5.2.

We simulate 10000 realizations of both models for T = 1001, 10001, 20001. The three smallest

positive Fourier frequencies ωk (excluding zero) are chosen. Figure 2.4 displays the QQ plots of

the simulated quantiles vs theoretical quantiles (2.22) for all three cases of T .

The first and second column of Figure 2.4 displays the QQ plots for the ARTFIMA and

ARFIMA models, respectively. The first row corresponds to T = 1001, the second row is

T = 10001, and the third is T = 20001. The first column shows that the ARTFIMA mod-

els’ periodogram ratio is almost identical to the theoretical density for all T . The second column

shows that regardless of T , the periodogram ratio of the ARFIMA model has greater dispersion

than the theoretical density for all three frequencies. Thus, this is consistent with the previously

mentioned findings in Rousseau et al. (2012); Robinson (1995).

The violation of (2.22) is partly attributed to the fact that the spectrum of the ARFIMA

model behaves as a power law at the frequencies and diverges at the zeroth frequency. Sabzikar

et al. (2019) and Meerschaert et al. (2014) show for applications such as hydrology, finance and

climatology, the ARFIMA spectral density provides a poor fit of the periodogram at the low

frequencies. This suggests the use of a low-frequency cutoff in the estimation of ARFIMA models

in the frequency domain. However, by removing the low-frequencies of the periodogram, there

would be a substantial loss of information pertaining to the long-memory parameter d. Moreover,

we argue that this procedure is not automatic and would heavily depend on the parameter values

of the model and the number of data points. Furthermore, the Kalman filter is not efficiently

applicable for long-memory processes, as mentioned in Section 2.1. For these reasons, we use
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the exact Gaussian likelihood for estimation and Bayesian inference for ARFIMA models, which

incur an additional computational cost for large data we consider in Section 2.5.

2.5 Applications

This section analyses electricity demand with relevant covariates for two real-world datasets.

Below we discuss how to choose and evaluate each model.

We consider three types of error processes: ARTFIMA, ARFIMA and ARMA. To control for

the effect of the exogenous variables on yt, all exogenous variables xt are assumed to be known

when forecasting. To choose the order of p and q, a search over the model space was considered

up to a maximum of p = 2, q = 1. For various orders of p and q, we select the model with the

smallest deviance information criterion (DIC) value (Spiegelhalter et al., 2002). Once the best

model is chosen, we compare all three error processes with the same number of autoregressive

and moving-average lags. We do this only for ARMA and ARTFIMA error processes; this is

not done for ARFIMA since performing MCMC for each model under the Gaussian likelihood is

intractable.

To evaluate forecasting performance, we perform time series leave-future-out-cross-validation.

We use a sliding window approach with a fixed training size of T with k = 100 out-of-sample

observations for testing. To compare models, use three different metrics: log-predictive density

score (LPDS), root mean square error (RMSE) and continuous rank probability score (CRPS).

We compute each metric for different forecast horizons, h = 1, . . . , 15. Each time the window is

rolled forward, we re-estimate the model and forecast h-steps-ahead. However, for ARFIMA, the

model is only estimated once on the initial training set; this is because re-estimating the model

is very costly due to the evaluation of the Gaussian likelihood. Approximate leave-future-out

cross-validation techniques have been employed in Bürkner et al. (2020); however, this is only

for the computation of the LPDS and cannot be used to sample the posterior, which will needed

for the other metrics described below. Furthermore, due to the large amount of data, the sliding

window approach only impacts the posterior negligably.

The h-step-ahead log-predictive density is given as

log p(yT+h|y1:T ) = log

∫
Θ
p(yT+h|θ, y1:T )p(θ|y1:T )dθ,

≈ log

(
1

M

M∑
m=1

p(yT+h|θ(m), y1:T )

)
,

where the last line is a Monte Carlo approximation thereof, with θ(m) ∼ p(θ|y1:T ). The LPDS

gives a measure of would well the model fits the out-of-sample data (Gelman et al., 2014). For the

sliding window approach, the LPDS is re-computed from posterior samples based on the training
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Figure 2.4: QQ plots of the ratio IZ(ωk)/f(ωk) for simulated ARTFIMA vs ARFIMA models for
three lowest positive frequencies. The top row is T = 1001, the second row is T = 10001, and the
third is T = 20001.
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data that is rolled forward for all T + 1, . . . , T + k.

To assess point forecasts from a given model, define the conditional expectation as

ŷT+h = E[ỹT+h|y1:T ] =
∫
ỹT+hp(ỹT+h|y1:T )dỹT+h,

where p(ỹT+h|y1:T ) is the posterior predictive distribution. Here, the posterior predictive is

computed over the length of the testing set ỹT+i, i = 1, . . . , k. To evaluate the performance of

the point forecasts, the root mean square error (RMSE) is computed as

RMSE(h) =

√√√√ 1

k − h+ 1

k−h∑
i=0

(yT+h+i − ŷT+h+i)
2.

for each forecast horizon h. The RMSE is the root of the average squared distance between the

testing set and forecasted values, and hence, the lower the value, the better.

To assess distributional forecasts, we obtain the h-step-ahead predictive posterior density The

distributional forecasts are assessed via the continuous rank probability score (CRPS), which is

defined as

CRPS
(h)
i (F, yT+h+i) =

∫
R

(
F (ỹT+h+i)− 1{yT+h+i ≤ ỹT+h+i}

)2
dỹT+h+i,

where 1 is the indicator function, taking value one if yT+h+i ≤ ỹT+h+i or zero elsewhere (Matheson

and Winkler, 1976). When the distributional forecasts F and the data distribution are equal,

the CRPS achieves its minimum. We use samples from the posterior predictive distribution to

estimate the empirical cumulative distribution function F̂ (ŷT+h+i) for all, i = 1, . . . , k − h. The

mean of each CRPS
(h)
i is taken over all observations in the testing set, i.e. for i = 1, . . . , k − h,

to obtain CRPS(h),

CRPS(h) =
1

k − h+ 1

k−h∑
i=0

CRPS
(h)
i (F, yT+h+i).

To compute the RMSE and CRPS, we used 900 samples from the posterior predictive and 900

samples from the posterior to obtain the LPDS.

It is known that the log-likelihood function for the AR and MA parameters of the ARMA

process can exhibit multimodality. To alleviate this, each model was fit with global optimization

via Basin-hopping (Li and Scheraga, 1987). The same optimization procedure is used for the

ARTFIMA and ARFIMA models.

We also look at the fitted spectrum to validate our model choice, as done in Sabzikar et al.

(2019).
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2.5.1 New England electricity demand

New England’s electricity demand data consists of hourly electricity demand and temperature

data for the states of Maine and Vermont from 2003 to 2017, with T = 124200 observations. The

response, Maine electricity demand, yt, is modelled as a linear combination of lagged covariates,

Maine temperature x1,t−1 and Vermont electricity demand x2,t−1. Strong multi-seasonal and

trend components exist within each variable. The mstl function in the R package Forecast

(Hyndman and Khandakar, 2008) was used to remove these effects. Figure 2.5 depicts each

variable after removing the multi-seasonal and trend components. As seen from the figure, each

variable exhibits long memory, which makes it a suitable candidate for ARFIMA or ARTFIMA-

type error terms.

Figure 2.5: Maine and Vermont electricity demand (in megawatt) and temperature (degrees
Celsius) time series data after removing multi-seasonal and trend components alongside their
corresponding autocorrelation plots.

The lowest DIC for ARMA and ARTFIMA error processes was p = 2 and q = 1.Table 2.3

reports the DIC values for the three models as well as the average time for one evaluation of

the log-likelihood function. As seen, ARTFIMA has the lowest DIC value, followed by ARFIMA,

with ARMA being the worst. However, ARFIMA is the most computationally demanding model,

which is roughly 40 times slower than the other two models since the Whittle likelihood cannot
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be used. ARTFIMA and ARMA have comparable computational time per iteration of the log-

likelihood of 11.5ms and 10.5ms, respectively. Note that the DIC values are positive in this

example since the value of T is large.

ARTFIMA ARFIMA ARMA

p = 2, q = 1 71987.56 72155.15 73030.91

Time (ms) 11.3 403.0 10.5

Table 2.3: DIC values and the average time for one log-likelihood evaluation for each dynamic
regression model for New England electricity demand.

Figure 2.6 plots the negative LPDS, RMSE and CRPS for each model over the forecast horizon

h. The negative LPDS favours models with lower scores, and thus, ARFIMA performs the best

here after h = 4. Although hard to see by the plot, the negative LPDS for ARMA and ARTFIMA

are very similar. The RMSE for all models are similar for small h; however, h > 6 shows a lower

RMSE score for the ARMA and ARTFIMA models compared to ARFIMA. The CRPS is similar

for all models, with no model out-performing the others for all forecast horizons.

Figure 2.6: New England electricity data: negative log-predictive density score (LPDS), root
mean square error (RMSE) and the continuous rank probability score (CRPS) for all models
based on h-step ahead forecasts for p = 2, q = 1.

The fitted spectral densities of the dynamic regression models with ARTFIMA and ARFIMA

errors are plotted alongside their corresponding periodograms in Figure 2.7, using a log-log scale.

Due to the dependence on β, the two periodograms are different for every frequency ω, but are

almost identical at the lower frequencies. Consistent with the results of Sabzikar et al. (2019),

the ARTFIMA spectrum follows a power law at moderate frequencies. Still, it flattens off at the

lower frequencies, providing a better overall fit to its periodogram. The ARFIMA spectrum fits

poorly at the lower frequencies due to its divergence as ω → 0. The 95% credible interval for

each spectral density estimate is plotted. Since the periodogram depends on the values of β, it

is fixed at the posterior mean. The credible intervals are barely visible due to a large amount of
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data, and thus, parameter uncertainty is small.

Figure 2.7: Spectral densities at the MAP and their respective periodograms. The spectrum
of DLR with ARTFIMA(2, d, λ, 1) errors (black line) with its periodogram (grey circles) and
the DLR with ARFIMA(2, d, 1) errors (orange line) with its corresponding periodogram (orange
dots).

2.5.2 Victorian electricity demand

The second application we consider is the half-hourly electricity demand for Victoria, Australia.

The data consists of T = 52608 observations of operation electricity demand (in megawatts) and

Melbourne’s temperature (degrees Celsius) between 1st January 2012 - 31st December 2014. The

response yt, Victorian electricity demand, is modelled as a linear combination of lagged covariates,

Melbourne temperature xt−1. Strong multi-seasonal and trend components exist within each

variable and were removed via the mstl function. Figure 2.8 depicts each variable after removing

the multi-seasonal and trend components.

Despite removing seasonality, as seen from Figure 2.8, all seasonality cannot be removed and

still exists at multiples of the 48th lag. This is also present in the periodogram, see Figure 2.9,

which peaks at the corresponding frequencies. We select the error processes in the same way as

the previous example. We also include a seasonal ARMA (SARMA) and seasonal ARTFIMA

(SARTFIMA) to account for the unexplained seasonality in yt. One seasonal MA term of lag 48

for both seasonal models was included after an appropriate p, q was found.

The lowest DIC for the error processes was as follows: ARTFIMA(2, d, λ, 0) and ARMA(2, 1).

Table 2.4 displays the DIC values and the average time for one log-likelihood evaluation for all

models. Looking at the p = 2, q = 0 case, the lowest DIC (in bold) is the SARTFIMA model,
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Figure 2.8: Victoria, Australia electricity demand (in megawatt) and temperature (degrees Cel-
sius) time series data after removing multi-seasonal and trend components alongside their corre-
sponding autocorrelation plots.

SARTFIMA ARTFIMA ARFIMA SARMA ARMA

p = 2, q = 0 −341016.47 −328624.02 −328612.70 −338582.68 −327041.24
p = 2, q = 1 −276966.52 −328514.60 −328587.06 −338646.40 −328085.01

Time (ms) 35.1ms 3.96ms 203.0ms 35.1ms 3.79ms

Table 2.4: DIC values and the average time for one log-likelihood evaluation for each dynamic
regression model for Victorian electricity demand.

and the worst (highest) was ARMA. Here ARTFIMA and ARFIMA have similar values for DIC.

For the p = 2, q = 1 case, SARMA obtained the lowest DIC (in bold), with perhaps surprisingly,

SARTFIMA being the highest DIC value. Again, ARTFIMA and ARFIMA produced similar

DIC values.

Looking at the computation time of Table 2.4, significant computational speedups are gained

for ARTFIMA and ARMA models, which had the shortest run time (ms) out of all models due

to estimation via the Whittle likelihood. This is followed by the seasonal models, which are

roughly 10 times slower than their non-seasonal counterparts. However, the run time for the

ARFIMA model via the exact Gaussian log-likelihood was approximately 50 times slower than

the non-seasonal ARMA and ARTFIMA models.

The ARTFIMA error process with a seasonal term gives the overall lowest DIC, followed

by SARMA. This is echoed in Figure 2.9, which displays the log-log plot of the periodogram

and spectral density at the MAP for the SARTFIMA model. It is apparent that the seasonal

ARTFIMA model fits the lower frequencies, log(ω) < −4, and also models the seasonal compo-
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Figure 2.9: Outer plot: Log frequency vs log power (log-log) plot of the periodogram and the
spectral density function at the MAP for DLR with SARTFIMA(2, d, λ, 1)(0, 0, 1)48 errors. Inner
plot: Same image but displaying moderate frequencies on a linear scale. The 95% credible interval
of the spectral density estimated is the shaded blue region.

nents, shown in the zoomed-in section of the plot, as it captures the peaks and troughs of the

periodogram appropriately.

Figure 2.10 reports the forecast negative LPDS, RMSE and CRPS of the five models for

the p = 2, q = 0 case for all horizons h = 1, . . . , 15. The seasonal models are better across all

three metrics compared to the non-seasonal models. The seasonal ARTFIMA model has the

best forecasting ability for all three metrics, followed closely by SARMA. In contrast, the ARMA

model has the highest for all three metrics. The ARTFIMA and ARFIMA models were virtually

identical, having lower negative LPDS, RMSE and CRPS scores compared to ARMA.

For the p = 2, q = 1 case, Figure 2.10 reports the forecast negative LPDS, RMSE and CRPS

of the five models for all horizons h = 1, . . . , 15. Surprisingly, the SARMA model has the highest

(worst) negative LPDS out of all models for all h. The SARTFIMA is by far the best compared

to all models for each metric. Similar to the p = 2, q = 0 case, the ARTFIMA and ARFIMA

models are similar for each metric.

2.6 Conclusion and future research

This paper proposes dynamic regression models with ARTFIMA errors. Here, a response yt is a

linear combination of known exogenous predictors, which are stationary processes, plus a serially

correlated error term with semi-long memory. We also propose a frequency domain estimation
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Figure 2.10: Victorian electricity data: negative log-predictive density score (LPDS), root mean
square error (RMSE) and the continuous rank probability score (CRPS) for all models based on
h-step ahead forecasts for p = 2, q = 0.

Figure 2.11: Victorian electricity data: negative log-predictive density score (LPDS), root mean
square error (RMSE) and the continuous rank probability score (CRPS) for all models based on
h-step ahead forecasts for p = 2, q = 1.

method that is asymptotically exact and utilizes the computationally efficient FFT. Furthermore,

DLR with ARTFIMA errors can be shown to have improved forecasts compared to DLR with

ARFIMA errors.

For computationally efficient estimation, as explained in Section 2.3, the linearity of the DFT

is exploited to precompute the FFT of the response yt and exogenous variables xt. This results in

a procedure with O(T log T ) operations (for the FFT) once, before MCMC, then a subsequent cost

of O(T ) after that by computing the Whittle sum to evaluate the log-likelihood. The simulation

study in Section 2.4.2 demonstrates that the Whittle approximation for ARFIMA models for low

frequencies is not valid; thus, the exact Gaussian likelihood is used but at an additional cost of

O(T log2 T ) at each iteration.

Section 2.4 demonstrates our method on simulated data. Here, the error process is an
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ARMA(3, 1) process with one exogenous predictor, given as an ARMA(1, 1) process. Figure

2.2 shows the Whittle, the Gaussian and the Kalman filter likelihoods are almost identical for

this model with T = 10001. Also, the effective sample sizes are similar between the three likeli-

hoods for all six parameters. Additionally, we demonstrate that the proposed Whittle approach

requires less computation time than the Gaussian and Kalman filter likelihoods.

Finally, we illustrate our method on real-world data sets. The first is New England electricity

demand data, and the second is Victorian electricity demand. In both cases, modelling the serially

correlated error term as an ARTFIMA process gives on-par, if not better, root mean square error

forecasts and continuous rank probability score probabilistic forecasts than existing ARMA and

ARFIMA error models. Furthermore, we find substantial speed-ups for Whittle estimation of

ARTFIMA models compared to ARFIMA models via the Gaussian likelihood.

Future research will extend frequency domain estimation methods of dynamic regression mod-

els to higher dimensions. Multi-dimensionality can be considered for any (or all) of the following:

the response variable, the explanatory predictors, and the error process. For small to moderate

data sets, exploring recent advances such as the debiased Whittle likelihood (Sykulski et al., 2019)

for dynamic linear regression models can potentially provide less bias than the standard Whittle

approach while still exploiting the computational efficiency of the FFT. Moreover, our estimation

algorithm is amenable to data subsampling for ultra-long time series, in contrast to the time

domain approach via the Kalman filter, which can provide further computational gains. Another

interesting extension is the case when the regression coefficients are time-varying. In this case, an

MCMC scheme would estimate the time-varying regression coefficients βt, for t = 1, . . . , T as well

as the parameters of the disturbance term ηt. Lastly, an exciting extension of this work would

be frequency domain estimation techniques for more general transfer function models (Box et al.,

2015).
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Chapter 3

Bayesian inference via spectral

subsampling MCMC for

continuous-time ARMA processes
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Abstract

Despite its rapid development in recent years, Bayesian inference via Markov chain Monte

Carlo (MCMC) methods has traditionally been slow for ultra-large time series data. This is

because the log-likelihood for time series data requires iterative methods such as Kalman fil-

tering or particle filters for more complicated models. In this paper, we consider ultra-long,

regularly sampled Lévy-driven continuous-time auto-regressive moving-average (CARMA)

models. For stationary time series, the Whittle likelihood is an approximate frequency do-

main method based on the Fast Fourier Transform (FFT). It is appealing due to its computa-

tional efficiency of O(N logN) where N is the number of data points. We first show that the

bias incurred by the frequency domain approximation compared to the true log-likelihood

is negligible for ultra-long, non-Gaussian CARMA models due to the central limit theorem

for the DFT for stationary processes (Peligrad and Wu, 2010). Then, we consider Bayesian

inference methodology for spectral subsampling for these aforementioned CARMA models.

This method takes advantage of the approximate independence of the transformed process,

which is amenable to subsampling MCMC based on Quiroz et al. (2019). We demonstrate

that spectral subsampling produces speed-ups of up to two orders of magnitude compared to

MCMC on the full dataset while also inducing negligible bias. We demonstrate our method

for Bitcoin returns.

1Goodwin: School of Mathematical and Physical Sciences, University of Technology Sydney. Quiroz: Department
of Statistics, Stockholm University. Kohn: School of Economics, University of New South Wales.
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3.1 Introduction

This chapter extends Bayesian inference methodology for spectral subsampling for regularly sam-

pled Lévy-driven continuous-time auto-regressive moving-average (CARMA) models.

Time series analysis is an integral part of statistics and broader fields of science. Due to re-

cent technological advancements in remote sensors, it is not uncommon to have time series data

that contains hundreds of thousands or millions of observations. This introduces computational

challenges for estimation techniques for time series, e.g. Kalman filtering, particle filtering, and

the Gaussian likelihood. Filtering techniques require a full sweep of the observations sequentially

for each log-likelihood evaluation. On the other hand, the Gaussian likelihood computes large

systems for each evaluation, which is expensive for large data. This computation challenge is fur-

ther exaggerated in Bayesian inference, as MCMC algorithms require a large number of iterations

and, thus, many likelihood evaluations.

Observed data is a discretization of the actual data due to approximations from measuring

instruments. Despite data being observed at discrete time intervals as discrete numeric values,

many real-world phenomena have underlying continuous-time-generating processes. CARMA

processes have been employed in many fields such as econometrics (Bergstrom, 1988; Brockwell

et al., 2011), control theory (Gillberg and Ljung, 2009) and engineering (Mossberg and Larsson,

2004). An underlying continuous-time data-generating process modelled by a discrete-time model

is an approximation, as discrete-time models tend to be more tractable. Despite this, continuous-

time models are attractive when observing high-frequency sampled data such as a stock price

or a biological system since they are a more faithful representation of the underlying process.
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Despite modelling physical phenomena as a continuous-time process, the data is sampled at

discrete times. This has two benefits. The first is that irregularly spaced data can be tedious

for discrete-time models as these models assume regularly spaced intervals, and missing data

can be, in some cases, non-trivial. The second benefit is that high-frequency sampled data are

incorporated naturally into continuous-time models and variability above the Nyquist frequency

can be handled appropriately via the aliased spectral density, whereas discrete-time models ignore

the contribution of higher frequency components due to aliasing (Tómasson, 2015).

Another important aspect of continuous-time stochastic processes is the inclusion of non-

Gaussian noise processes such as variance gamma and jump processes. Lévy-driven CARMA

processes are generalizations of Gaussian CARMA processes with Lévy process noise terms intro-

duced in Brockwell (2001). The inclusion of heavy-tailed or jump process extends the usefulness

of CARMA processes to more complicated real-world phenomena.

Frequency domain estimation of CARMA processes has been studied in several recent papers.

Authors Fasen and Fuchs (2013b) propose a consistent estimator of the spectral density for high-

frequency, regularly sampled Lévy-driven CARMA processes based on the smoothed, normalized

periodogram. Assuming an equidistant sampled CARMA processes with a symmetric α-stable

Lévy driving process, Fasen and Fuchs (2013a) show the asymptotic distribution of the normalized

periodogram at different frequencies converges to a function of a multivariate stable random

vector. However, this is unsuitable for Whittle estimation, which relies on asymptotic normality

of the Discrete Fourier Transform (DFT) (Peligrad and Wu, 2010). Fasen-Hartmann and Mayer

(2022) consider Whittle estimation for multivariate Lévy-driven CARMA process with finite

second moments sampled at low frequencies with the variance of the driving process fixed (not

estimated). Gillberg and Ljung (2009) perform estimation of CARMA models via the Whittle

likelihood for regularly sampled data. For irregularly spaced data, Fechner and Stelzer (2018)

study the limit behaviour of a modified truncated Fourier transform for Lévy-driven CARMA

processes.

Several popular time-domain quasi-likelihood estimators have been proposed in Schlemm and

Stelzer (2012) and Brockwell et al. (2011); however, it is unclear how to perform Bayesian inference

in the former. To our knowledge, only two papers have described in detail a Bayesian approach for

CARMA processes. First, Kelly et al. (2014) explore MLE and MCMC methodology for regularly

spaced Gaussian CARMA processes via Kalman recursions. Second, Sharifi et al. (2024) consider

Bayes estimators for Whittle estimation of irregularly spaced Lévy-driven CARMA processes

using theoretical results from Fechner and Stelzer (2018).

The contributions of this chapter are two-fold. First, we extend the methodology developed

in Gillberg and Ljung (2009) to perform Bayesian inference for regularly spaced Lévy-driven

CARMA models in the frequency domain via the Whittle likelihood for large data, and second,

we demonstrate how to speed up MCMC via efficient spectral subsampling MCMC.
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3.2 Lévy processes

Before formally describing the CARMA process, we present some basic facts about the Lévy

process, which are the driving noise process behind Lévy-driven CARMA processes.

Definition 1: A stochastic process {Lt, t ≥ 0} with L0 = 0 is said to be a Lévy process if it

satisfies the following three properties:

• For any collection of time-points 0 ≤ t1 < t2 < · · · < tn, the random variables

(Lt2 − Lt1), (Lt3 − Lt2), . . . , (Ltn − Ltn−1) are all independent.

• The distribution of Lt − Ls has the same distribution as Lt−s for any 0 ≤ s < t <∞.

• For any t ≥ 0 and ϵ > 0, limu→0 P (|Lt+u − Lt| > ϵ) = 0.

The first two points are the required independent and stationary increments, which intuitively

describe how the change of the process Lt only depends on the length of the time integral con-

sidered. The third property is the continuity of probability, which bounds the probability of the

absolute difference between observations Lt as the intervals shrink to 0, a probabilistic analogue

to regular continuity. The celebrated Lévy-Khintchine theorem (Applebaum, 2009) states that

the characteristic function of a Lévy process Lt is given by

E
[
e−iuLt

]
= etχ(u), (3.1)

where

χ(u) =

(
iuk − 1

2
σ2u2 +

∫
R\{0}

(
eiux − 1− ixu

1 + x2

)
ν(dx)

)
(3.2)

for k ∈ R and σ ≥ 0 and ν is a Borel measure on R, and we refer to Equation (3.2) as the Lévy

exponential. The measure ν is known as the Lévy measure of the process Lt if it satisfies the

following two conditions,

ν({0}) = 0, and

∫
R
min(1, x2)ν(dx) <∞. (3.3)

The Lévy-Khintchine theorem states that the process Lt can be decomposed into three indepen-

dent components: a deterministic drift term, a Brownian motion and a Lévy jump process. For

the case ν(R) = 0, the characteristic function simplifies to iuk − 1
2σ

2u2 which is recognizable as

a Brownian motion with E[Lt] = kt and Var[Lt] = u2t. Further analysis of the last term of the

Lévy exponential in (3.2), pertaining to the Lévy jump component of Lt, can be split into two
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parts, ∫
R\{0}

(
eiux − 1− ixu

1 + x2

)
ν(dx) =

∫
|x|≥1

(eiux − 1)ν(dx)

+

∫
|x|<1

(eiux − 1− iux)ν(dx).

This implies that the Lévy process Lt can be further decomposed into four parts, Lt = L
(1)
t +

L
(2)
t + L

(3)
t + L

(4)
t . The first two terms are the deterministic and Brownian motion components,

respectively. The third term, L
(3)
t , is a compound Poisson process. The fourth term, L

(4)
t , is a

so-called compensated compound Poisson process; if Nt is a Poisson process with intensity λ, then

compensated Poisson process is Ñt = Nt−λt with E[Ñt] = 0. This decomposition is known as the

Lévy-Itô decomposition, and for more information about Lévy processes, the reader is referred to

Papapantoleon (2008) and Applebaum (2009). Following Brockwell and Marquardt (2005), we

consider Lévy processes with the following properties for t ≥ 0,

E[L1] <∞, E[Lt] = µt and Var[Lt] = σ2t.

Lévy processes can take the form of many known distribution functions by choosing an appropriate

ν; examples include the Gamma process and the generalized inverse Gaussian (Barndorff-Nielsen

and Shephard, 2001).

3.3 Model description

A Lévy-driven CARMA(p, q) model with p > q, is defined by a p-th order linear differential

equation

α(D)Yt = β(D)DLt, t ≥ 0, (3.4)

where D is the differential operator with respect to t and {Lt} is a Lévy process as described

above with polynomials,

α(z) = zp + α1z
p−1 + · · ·+ αp,

β(z) = 1 + β1z + · · ·+ βqz
q,

where α(z) and β(z) are the auto-regressive and moving average lag polynomials respectively.

The definition from (3.4) cannot be analyzed directly since the derivatives DLt exist nowhere

due to the non-deterministic paths of the Lévy process. However, the CARMA process can be
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defined via its state-space representation,

Yt = β
⊤Xt, (3.5)

dXt = AXtdt+RdLt, (3.6)

with quantities,

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−αp −αp−1 −αp−2 · · · −α1


, R =



0

0
...

0

1


, β =



β0 = 1

β1
...

βq

0


, (3.7)

where 0 is a vector of (p− q− 1) zeroes. Equations (3.5) and (3.6) are the observations and state

equations, respectively. The state equation is a multivariate linear stochastic differential equation

with the solution,

Xt = eA(t−s)Xs +

∫ t

s
eA(t−u)RdLu, for t > s ≥ 0. (3.8)

The solution in (3.8) is not generally stationary, Brockwell (2001) gives necessary and sufficient

conditions for stationarity. Given Lt has independent increments, and the initial condition X0 is

independent of {Lt, t ≥ 0}, thenXt has a weakly stationary solution if and only if the eigenvalues

λ1, . . . , λp of matrix A all have negative real parts, i.e.,

Re(λi) < 0, i = 1, . . . , p. (3.9)

The stationary solution in (3.8) can be written as

Xt =

∫ t

−∞
eA(t−u)RdLu

d
=

∫ +∞

0
eA(t−u)RdLu, (3.10)

where
d
= is equality in distribution. The mean and covariance of (3.10) are given as

E[Xt] =
µ

αa
R

Cov[Xt+δ,Xt] = σ2eAδ

∫ t

s
eAuRR⊤eA

⊤udu, δ ≥ 0,

where µ = E[L1] = 0 and σ2 = Var[L1] are the first and second moments of the driving process

at time 1. The aforementioned covariance function of the transition equation is an important



CHAPTER 3. CARMA PROCESSES 62

quantity when computing the Kalman recursions when Lt is Brownian motion, as discussed later.

Furthermore, the representation of Brockwell (2004), the CARMA process from Equation (3.5)

can also be written as

Yt =

∫ t

−∞
β⊤eA(t−u)RdLu =

∫ ∞

∞
g(t− u)dLu, −∞ < t <∞,

where g(t− u) is known as the kernel of the CARMA process defined as

g(u) =
1

2π

∫ ∞

∞
eiuλ

β(iλ)

α(iλ)
dλ. (3.11)

The auto-covariance function of Yt

γ(τ) = Cov(Yt+τ , Yt) = σ2
∫ ∞

−∞
g(τ − u)g(u)du, (3.12)

where g(x) = g(−x). If the roots λ1, . . . , λp satisfy Equation (3.9) and are distinct, the covariance

can be expressed as

γ(τ) = σ2
p∑

j=1

β(λj)β(−λj)
α(λj)α(−λj)

eλj |τ |. (3.13)

The spectral density of Yt is a byproduct of Equation (3.12) via the convolution theorem, i.e.

f(ω) =

∫ ∞

−∞
γ(τ)eiτωdτ =

σ2

2π

∣∣∣∣β(iω)α(iω)

∣∣∣∣2 , (3.14)

which is a rational function. The spectral density of the continuous-time processes is the Fourier

transform of the continuous autocovariance function. However, the spectral density from (3.14)

will be altered accordingly due to observing the continuous-time process at regularly sampled

discrete times. This phenomenon, known as aliasing, will be discussed in detail in Section 3.5.1.

3.4 Aspects of CARMA models

Consider a Gaussian CAR(1) process,

dYt + αYtdt = dWt, (3.15)

where α ∈ R and Wt is standard Brownian motion. Equation (3.15) is a stochastic differential

equation (SDE), well-known as the Ornstein-Uhlenbeck (OU) process. The OU process has a
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unique solution in terms of a stochastic integral (Oksendal, 2013),

Yt = eαtY0 + eαt
∫ t

0
e−audWu. (3.16)

As mentioned briefly in the previous section, the paths of dWt are nowhere differentiable, but

the stochastic integral in (3.16) is well-defined as the limit of Riemann-Stieltjes sums (Karatzas

and Shreve, 1988). Notice that differentiation of Yt via the auto-regressive polynomial actually

integrates the continuous process on the right-hand side of Equation (3.16) and, therefore, off-

sets the differential operator on the moving average side. Hence, to ensure the existence of a

CARMA(p, q) process, the necessary condition p > q must be satisfied (Stelzer, 2011).

Throughout this chapter, we only consider observed CARMA(p, q) process yt at regularly

sampled time points,

t, t+ δ, t+ 2δ, . . . , t+ (N − 1)δ, (3.17)

where δ > 0, N is the total number of observations, and T = δN is the number of periods/cycles.

Unlike its discrete-time counterpart, sampling and, ultimately, estimation of continuous-time

processes have two aspects: how many total cycles to observe the process T and how closely

spaced the observations are δ, since both are functions of N . Kutoyants (2004) shows that if

the whole path was observed (continuously sampled) of a CAR(1) process, the asymptotic MLE

distribution of α is
1√
T
(α̂− α) ∼ N(0, 2a),

which makes it clear that the variance is a function of T . Hence, when δ → 0, the variability of

α̂ is explained by the number of cycles T . Furthermore, a simulation study in Tómasson (2015)

shows that increasing the number of cycles increases the precision of the MLE estimates. In

contrast, δ → 0 has only a marginal impact on the parameter estimates. This can be interpreted

in a Bayesian setting as the posterior precision of the parameters depends heavily on the time

length T , as opposed to the effect of δ → 0, which is minor. This is discussed further in Section

3.5.1.

3.5 Estimation

Numerous methods have been proposed in the literature to estimate the parameters of CARMA

models; see Brockwell (2014) for a review. For Gaussian CARMA models, the Gaussian likelihood

is the exact likelihood given in the log-scale as

Ltrue(θ) = −N
2
log(2π)− 1

2
log det{Σ(θ)} − 1

2
Y ⊤
t Σ−1(θ)Yt, (3.18)
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where Σ(θ) is the N × N , where N = T/δ, covariance matrix corresponding to the covariance

function γ(τ) and det{Σ(θ)} is the determinant of the covariance matrix (Kelly et al., 2014).

Computing the last term in (3.18) requires solving the linear system requires O(N3) operations

for irregularly spaced data and O(N log2N) for regularly spaced data (Ammar and Gragg, 1988).

The exact likelihood can also be computed via the Kalman filter, which scales as O(N) and is more

tractable for the data considered in this paper. However, the dependency between neighbouring

observations implies the Kalman recursions must be computed in a sequential manner to evaluate

the log-likelihood, and hence, in general, not suitable for the subsampling MCMC approach in

Quiroz et al. (2019). Furthermore, for Lévy-driven CARMA processes, more elaborate techniques

such as particle filters can be used but are more costly than the Kalman filter because the

distributions of interest need to be computed using simulation, e.g. sequential Monte Carlo.

3.5.1 Frequency domain estimation

Suppose we have N regularly sampled demeaned observations from a Lévy-driven CARMA(p, q)

process yδt with spacing δ > 0. Frequency domain estimation analyzes the DFT of the data via

the Fast Fourier transform (FFT), and its resulting periodogram is defined as

Jδ(ωk) =

√
δ

N

N−1∑
n=0

yδt exp(−iωkt), (3.19)

Iδ(ωk) =
∣∣∣Jδ(ωk)

∣∣∣2, (3.20)

respectively, with ωk in the set of natural Fourier frequencies

Ω ≡ {2πk/(δN), for k = 1, . . . , ⌊N/2⌋}. (3.21)

For discrete-time models, such as ARMA models, the spacing between observations is assumed to

be δ = 1. In constant, for high frequency-sampled data, the Fourier frequencies in (3.21) usually

extend further than the length of 2π since δ < 1. The periodogram, or modification thereof, is

sometimes called the empirical spectrum. Recall from (3.14) that the theoretical spectral density

of the process is

f(ω;θ) =
σ2

2π

∣∣∣∣β(iω)α(iω)

∣∣∣∣2 , (3.22)

where θ is the unknown parameters of interest, θ = (α1, . . . , αp, β1, . . . , βq, σ).

Regularly spaced sampling of a continuous-time process is defined up to the Nyquist frequency

π/δ. Hence, there is no information about its underlying spectrum above the Nyquist frequency

in the empirical spectrum. Furthermore, regular sampling gives rise to the aliasing phenomenon.

Aliasing is when the spectral density is ‘folded’ into the density f(ω;θ), for frequencies outside
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±π/δ. Each frequency has infinitely many aliases of itself at 2πk/δ, k ∈ Z. The aliased spectral

density is defined as,

fδ(ω;θ) =
∞∑

k=−∞
f
(
ω +

2πk

δ
;θ
)
, ω ∈ [−π/δ, π/δ]. (3.23)

In general, the operation of ‘folding’ in (3.23) is not automatic and depends on the spectrum and

its governing parameters. In practice, truncation of the aforementioned summation is performed

to approximate the aliased spectrum, which generally does not have a closed-form solution (Sykul-

ski et al., 2019). Ideally, the spectral density has negligible mass above the Nyquist frequency

π/δ so that the information in the empirical spectrum captures a substantial amount of the total

power of the process. This is why decreasing δ → 0 past a particular point yields a negligible

impact on the precision of estimates (or variance of the posterior) since the very high-frequency

components of the spectral density have insignificant mass past a particular frequency. Hence,

for a fixed, small enough δ, we want the asymptotic condition T → ∞.

The periodogram Iδ(ω) is an asymptotically unbiased estimate of the aliased spectral density

fδ(ω) (Gelfand et al., 2010), namely,

Iδ(ωk) ∼ Exp(fδ (ωk)) , ωk ∈ Ω, (3.24)

where Exp(·) is the exponential distribution parameterized by its mean. A key property of

the periodogram is the asymptotic independence between periodogram ordinates at different

frequencies. This gives rise to the Whittle likelihood (Whittle, 1953) for parameter estimation

and Bayesian inference,

LW(θ) = −
(N−1)/2∑

k=1

(
log fδ(ωk;θ) +

Iδ(ωk)

fδ(ωk;θ)

)
. (3.25)

The Whittle likelihood is an asymptotic approximation to the exact log-likelihood in (3.18).

Whittle’s approximation via its maximum likelihood estimates has been studied in the frequen-

tist setting in Contreras-Cristán et al. (2006). However, for Bayesian inference, the quality of

approximation of the Whittle log-likelihood compared to the exact log-likelihood is of primary

importance. Authors Guyon (1982) and Kent and Mardia (1996) give rates of asymptotic equiv-

alence of the aforementioned log-likelihoods,

|Ltrue(θ)− LW (θ)| = Op(1),

as T → ∞ for a fixed δ. The Whittle likelihood is robust in large samples due to the fact

the data-generating process does not have to be Gaussian; instead, only the real and imaginary
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parts Jδ in (3.19) are asymptotically normal. This results from the central limit theorem for the

discrete Fourier transform of stationary processes studied in Brillinger (2001) and Peligrad and

Wu (2010). The assumption of asymptotic normality of the DFT is tested in a simulation study

for Lévy-driven CARMA(p, q) processes in Section 3.8

3.6 Spectral subsampling MCMC

Subsampling MCMC is based on the pseudo-marginal MCMC framework of Andrieu and Roberts

(2009). Here, an estimator of the likelihood is used in place of the exact likelihood within a

Metropolis-Hasting algorithm. To perform subsampling MCMC, we use the methodology devel-

oped from Quiroz et al. (2019).

Let π(θ) ∝ Ln(θ)p(θ) denote the posterior distribution of the model parameters θ with a

likelihood function Ln(θ) based on n samples, and prior distribution p(θ). The Metropolis-

Hastings algorithm samples iteratively from π(θ) by proposing a parameter vector θ(j) at the jth

iteration from some proposal distribution g(·|·) and the probability of acceptance is

min

{
1,

Ln(θ
(j))p(θ(j))

Ln(θ
(j−1))p(θ(j−1))

· g(θ
(j−1)|θ(j))

g(θ(j)|θ(j−1))

}
. (3.26)

Evaluation of the likelihood Ln(θ) can be costly for large n at each iteration. Quiroz et al. (2019)

propose replacing Ln(θ) with an estimator L̂(θ,u) based on a small random subsample of m≪ n

observations, where u = (u1, . . . , um) are the indices of the selected data.

The pseudo-marginal approach samples from θ and u jointly from an augmented target dis-

tribution π̃(θ,u). Andrieu and Roberts (2009) prove for an unbiased estimator, i.e. EuL̂(θ,u) =

Ln(θ), the pseudo-marginal MCMC algorithm samples from the true posterior π(θ). An unbiased

estimator of the log-likelihood ℓ̂(θ,u) and subsequently debiased exp(ℓ̂(θ,u)) is used to estimate

the full data likelihood. The debiasing approach does not eliminate all bias, and the pseudo-

marginal sampler targets a slightly perturbed posterior, which is shown to be within O(n−1m−2)

distance in total variation norm to the true posterior. In applications, Quiroz et al. (2019), Dang

et al. (2019), Salomone et al. (2020) and Villani et al. (2022) show negligible bias. The so-called

difference estimator

ℓ̂diff(θ) =
n∑

k=1

qk(θ) +
n

m

m∑
i=1

(ℓui(θ)− qui(θ)) , (3.27)

with control variates qk(θ) and indices u1, . . . , um ∼ Uni({1, . . . ,m}) is an unbiased estimate

the log-likelihood based on a random subsample of m observations. Pseudo-marginal MCMC,

and by extension, subsampling MCMC, requires a small variance of the likelihood estimator;

otherwise, the resulting Markov chain can get stuck. The variance of (3.27) is reduced when
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qk(θ) approximates ℓk(θ) well. An approach of Bardenet et al. (2017) constructs a second order

Taylor expansion of ℓk(θ) around some central value θ∗, defining the control variates as

qk(θ) = ℓk(θ
∗) +∇θℓk(θ

∗)⊤(θ − θ∗) + 1

2
(θ − θ∗)⊤∇2

θℓk(θ
∗)(θ − θ∗). (3.28)

For complex models and large parameter spaces, the quadratic assumption of the control

variates in (3.28) may give a poor approximation of the individual log-density ℓk(θ) terms. To

alleviate this, Salomone et al. (2020) propose a grouped quadratic control variate where the

observations are divided into groups and the log-likelihood contribution for each group is ap-

proximated by a quadratic Taylor expansion. Tamaki (2008) proves the Bernstein-von Mises

theorem (asymptotic normality of the posterior) via the Whittle likelihood, which suggests the

Whittle log-likelihood is approximately quadratic for groups with large enough observation num-

bers. Spectral subsampling MCMC via the Whittle likelihood has been employed in Salomone

et al. (2020) for discrete-time auto-regressive tempered fractionally integrated moving average

(ARTFIMA) models and in Villani et al. (2022) for vector ARTFIMA models.

3.6.1 Kalman filter

We review the topic of time domain parameter estimation of Gaussian CARMA(p, q) models via

the Kalman filter from Iacus and Mercuri (2015) and Tómasson (2015). The regularly spaced

observations yδt have the state space representation:

yδt = β⊤xδ
t and Xδ

t = eA∆xδ
t−1 +M δ

t , (3.29)

where M δ is a sequence of iid random vectors from

M δ
t =

∫ tδ

(t−1)δ
eA(tδ−u)RdWu, t ∈ N+,

which has zero mean and covariance matrix

Q =

∫ δ

0
eAuRR⊤eA

⊤udu, (3.30)

which can be computed using techniques from linear algebra. First, we define the unconditional

covariance matrix Q∞ of (3.10) which satisfies the continuous-time Lypunov or Riccati equations

AQ∞ +Q∞A = −σ2RR⊤, (3.31)
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then Q is obtained via

Q = Q∞ − eAuQ∞e
A⊤u. (3.32)

Tsai and Chan (2000) give an efficient method to compute Equation (3.31); however, Q∞ is a

p× p matrix and needs to be computed for each distinct sampling interval, i.e. once for regularly

spaced data. Furthermore, eA is understood to be the matrix exponential

eA =

∞∑
k=0

1

k!
Ak, (3.33)

which is a power series with A0 = I. See Moler and Van Loan (1978) for a comprehensive guide

for the computation of matrix exponential.

Kalman filtering for parameter estimation consists of three steps: prediction, updating, and

evaluation (Iacus and Mercuri, 2015). Filtering gives estimates of innovation residuals and their

corresponding variances, which are used to evaluate the Gaussian log-likelihood. For ease of

notation, we define preliminaries,

xδ
t|t−1 = E[xδ

t |Ft−1] (3.34)

Σδ
t|t−1 = Var[M δ

t |Ft−1], (3.35)

where Ft−1 is the σ-algebra generated from the observations yt and the estimates of the state

space variables up to time N . Intuitively, xδ
t|t−1 and Σδ

t|t−1 are the estimates of X and the

variance of the state innovation process M δ
t , respectively, given observation and estimates up to

time N .

First, at t = 1 initialize xδ
t−1|t−1 = 0 and Σδ

t−1|t−1 = Q∞. The prediction step is performed

carrying forward from the state solution equation without the noise term in (3.8) to predict the

unobservable process xδ
t|t−1 and its covariance matrix:

xδ
t|t−1 = eAδxδ

t−1|t−1 (3.36)

Σδ
t|t−1 = eAδΣδ

t−1|t−1e
A⊤δ +Q. (3.37)

By applying the observation Equation (3.5) to the aforementioned predicted state forecasts, the

observable process is simply:

ŷt|t−1 = β
⊤xδ

t|t−1,

which gives the error/residuals term and its corresponding distribution,

εt = yδt − ŷt|t−1, ε ∼ N(0,β⊤Σδ
t|t−1β). (3.38)
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Finally, to update the forecasted observable process with the current observation, the posterior

update step is,

xδ
t|t = xδ

t|t−1 +Kt(y
δ
t − ŷt|t−1) (3.39)

Σδ
t|t = Σδ

t|t−1 −Ktβ
⊤Σδ

t|t−1. (3.40)

where the Kalman gain matrix is defined by,

Kt = Σδ
t|t−1β(β

⊤Σδ
t|t−1β)

−1. (3.41)

Intuitively, this is the weighting between the observation and the estimate Kt, i.e., it tells us how

much to change the estimate by the observation yt. This algorithm outputs the residuals εt for

t = 1, . . . , N which is used to construct the log-likelihood from (3.38) as,

Lkf(θ) = −1

2

(
N ln(2π) +

N∑
t=1

ln
(
β⊤Σδ

t|t−1β
)
+

N∑
t=1

ε2t
β⊤Σδ

t|t−1β

)
. (3.42)

Note that Kalman filtering can also be performed with irregularly spaced data by the same

procedure; however, the covariance matrix in (3.30) must be computed for different spacing

between observations.

3.7 Enforcing stationarity

Stationarity is enforced through the prior by performing two transformations on the CAR(p) pa-

rameters. We follow the approach of Tómasson (2015) to enforce the stationarity of CARMA(p, q)

processes. For estimation and Bayesian inference, the stationarity pertaining to (3.9) must be

enforced at proposed values of αp = (α1, . . . αp). A CAR(p) process is stationary if the roots of

α(z) = zp + α1z
p−1 + · · ·+ αp (3.43)

have negative real parts. This is related to its discrete-time counterpart, the AR(p) process,

which is stationary if the roots

ϕ(z) = 1− ϕ1z − · · · − ϕpz
p (3.44)

lie outside the unit circle. Belcher et al. (1994) constructs a method based on the Cayley-

Hamilton transform, which converts stationary AR(p) parameters to stationary CAR(p) parame-

ters. Widely used in control theory to convert between continuous and discrete time models, the

Cayley-Hamilton transform converts points inside the unit circle to the left side of the complex



CHAPTER 3. CARMA PROCESSES 70

plane. Define the complex number z such that |z| < 1, then

s = −λ1− z

1 + z
,

lies on the left side of the complex half-plane. Then consider the polynomial

k(s) = k0s
p + k1s

p−1 + · · ·+ kp−1s+ kp =

p∑
i=0

ϕi(1− s/λ)i(1 + s/λ)p−i, (3.45)

with ϕ0 = 1. Then the CAR(p) polynomial is αi = ki/k0. If w1, . . . , wp are the roots of the

polynomial zpϕ(1/z), then it is guaranteed that the roots of α(z) lie in the left-half complex

plane, thus making the CAR(p) parameters stationary. Here, we set the time-scaling parameter

λ = 1.

Next, the auto-regressive parameters ϕp = (ϕ1, . . . , ϕp) are reparameterized in the space of

partial auto-correlations φp = (φ1, . . . , φp) ∈ (−1, 1) from Barndorff-Nielsen and Schou (1973).

Putting these two transformations together, denote α̃p = (α̃1, . . . , α̃p) ∈ (−1, 1)p as the reparam-

eterized CAR parameters. The composite transformation

π : (−1, 1)p → stationary region of αp, (3.46)

first maps parameters α̃p in the continuous space (−1, 1)p to the space of stationary AR param-

eters ϕp then maps to the space of stationary CAR parameters αp.

We use the prior α̃p ∼ Unif(−1, 1)p to enforce stationarity by satisfying the condition |α̃i| < 1

(Salomone et al., 2020). The same transformation π described above is applied to the mov-

ing average component b̃q to ensure invertibility of the CARMA(p, q) process with prior β̃q ∼
Unif(−1, 1)p. The variance parameter is transformed with prior log(σ2) ∼ N (0, 1).

3.8 Simulation study

The purpose of this section is to assess the normality and independence between the real and

imaginary parts of Equation (3.19), i.e.(
Re{Jδ(ω)}
Im{Jδ(ω)}

)
∼ N

[(
0

0

)
,

(
πfδ(ω;θ) 0

0 πfδ(ω;θ)

)]
,

for large T . We also assess the theoretical distribution of the periodogram in (3.24). The inde-

pendence between the DFT’s real and imaginary parts and the periodogram’s distribution are

asymptotic results as T → ∞. These assumptions underpin the Whittle log-likelihood in (3.25);

hence, it is crucial to validate this assumption for simulated data. This study follows roughly the
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simulation study conducted in Fechner and Stelzer (2018). We present three examples. The first

is a Gaussian CARMA(p, q) process. The second, the background Lévy process is a standardized

Gamma process from Graf (2009), and the third is a so-called ‘two-sided’ Poisson from Fechner

and Stelzer (2018). To avoid confusion with the variance of the CARMA process and the variance

of the underlying driving Lévy process, we assume a unit variance of the Lévy process such that

Var[Lt] = t.

For all examples, we simulate the CARMA process on an interval [0, T ] for a specified δ via

the Euler-Maryuama scheme for stochastic differential equations. For simulation, the process is

generated on a 10x finer grid to mitigate the effects of simulation error and sample well above

the Nyquist frequency. The initial values are y0 = 0, X0 = 0. For each example, 2000 indepen-

dent paths of the CARMA process are simulated and Jδ(ω) is computed for different specified

frequencies. Furthermore, the infinite sum of the aliased spectral density in (3.23) is truncated

to k = −5, . . . , 5 for all simulations. This ensures we have captured enough terms in the infinite

sum that any outside this range has a negligible contribution. We inspect four frequencies ωk ∈ Ω

for k ∈ {1, 10, 100, 1000} in all examples. Figure 3.1 displays the QQ plots for each example. The

first two columns of Figure 3.1 display the normal QQ plots, and the last column displays the

standard exponential QQ plots.

Example 3.1. Consider a Gaussian CARMA(2, 1) model with the form

yt = β
⊤Xt, dXt = AXtdt+ σ2RdWt, (3.47)

where dWt is standard Brownian motion and

A =

[
0 1

−α2 −α1

]
, R =

[
0

1

]
, β =

[
β0 = 1

β1

]
, Xt =

[
X1,t

X2,t

]
. (3.48)

The true parameters are θ = (α1, α2, β1, σ
2) = (1, 2, 1, 1) and we set T = 100 and δ = 0.01.

The top row of Figure 3.1 shows the associated QQ plots with the exact frequencies. For the

real part, on the left panel, the QQ plots shows almost no difference from normality for all four

frequencies. The imaginary part on the right panel looks normal except for minor deviation at

the tails. The periodogram appears exponentially distributed, however there is slight deviation

at the theoretical quantiles of the upper tail for ω = 0.69 and ω = 6.35.

Example 3.2. Consider a CARMA(2, 0) process with a standardised Gamma driving process Gt

with representation

yt =
[
1 0

]
Xt, dXt = AXtdt+ σ2RdGt, (3.49)

where A, Xt and R defined the same as in (3.47). We use the same standardised Gamma process



CHAPTER 3. CARMA PROCESSES 72

defined in Graf (2009). The standardised Gamma process Gt has density according to

fGt(x) =
µ1/2µt

Γ(µt)
xµt−1e−xµ1/2

, x ∈ (0,∞), (3.50)

which is the form of a Gamma density with first and second moments

E[Gt] = µ1/2t Var[Gt] = t, (3.51)

respectively. The increments are also gamma-distributed, with density

Gt −Gt−1 ∼ Gamma
(
a = µ(tn − tn−1), b = µ1/2

)
(3.52)

where a and b are the shape and inverse scale parameters, respectively. To satisfy the unit

variance, each µ = 1, and the true parameters are θ = (α1, α2, σ
2) = (1.5, 4, 1). This example

is more challenging due to the skewness of the Gamma distribution; hence, we set T = 1000

and δ = 0.1. The middle row of Figure 3.1 displays the corresponding QQ plots with the exact

frequencies. The story is similar to Example 3.1; the real part (left) looks normal and the

imaginary part (middle) looks indistinguishable from the standard normal distribution. For the

periodogram, there is some departure from the theoretical quantiles in the tails (> 4). One

possible explanation is the skewness in the gamma distribution implies a greater number of

samples for the asymptotic normality to be fully satisfied.

Example 3.3. In the final simulation, we consider a CARMA(2, 1) with an underlying two-sided

Poisson process (Fechner and Stelzer, 2018). The state space representation is defined the same

as in (3.47). Let Nt be a a Poisson process for t ≥ 0 with rate parameter λ ∈ (0,∞) satisfying

Pr(Nt = x) =
(λt)xe−λt

x!
, x ∈ N.

The two-sided Poisson process is defined as the difference of two independent Poisson processes,

Vt = N1,t −N2,t, each with rate parameter λ = δ/2. The two-sided Poisson process is equivalent

to a compound Poisson process with rate δ and jumps ±1 with equal probability. The true

parameters are θ = (α1, α2, β1, σ
2) = (1, 2, 1, 1). We set T = 100 and δ = 0.01. The bottom row

of Figure 3.1 shows the QQ plots. The real part (left) looks normal with minor deviation at the

tails, and the imaginary part looks indistinguishable from the standard normal distribution. The

periodogram plot on the right shows some departure from the theoretical quantiles in the tails

(> 2). particularly for the lowest frequency and ω = 6.35. This suggests that a greater number

of samples is needed to obtain asymptotic independence between the real and imaginary parts of

the DFT.
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(a) T = 100, δ = 0.01

(b) T = 1000, δ = 0.1

(c) T = 100, δ = 0.01

Figure 3.1: QQ plots of CARMA(2, 1) process with Brownian motion driving process (top),
standardised Gamma-driven CARMA(2, 0) process (middle) and two-sided Poisson driving
CARMA(2, 1) process (bottom).
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3.9 Applications

This section demonstrates Bayesian inference via MCMC and spectral subsampling MCMC on

simulated and real data for large T . First, we present simulated data from the same models as the

three examples in the previous section. Then, for the real data application, we consider Bitcoin

prices.

For the simulated data, we compare theWhittle likelihood to the exact Kalman filter likelihood

for the Gaussian CARMA(p, q) process. When the background Lévy process is the standardized

Gamma process and the ‘two-sided’ Poisson, we compare the Whittle likelihood to the subsampled

Whittle likelihood since the exact likelihood is difficult to compute. For MCMC, we compute

10000 iterations of a Random Walk Metropolis-Hasting for the Whittle and Kalman filter and

10000 iterations for PMMH for subsampling while discarding the first 3000 samples as burn-

in for all MCMC runs. For subsampling, we used G = 1000 groups with an equal number of

observations (periodogram ordinates). The tuning parameters T and δ are selected specifically

for each example, but true parameters, settings and generation of the paths are the same as in

the previous section.

To evaluate the computational efficiency gain in subsampling, we define a metric that incor-

porates the (saved) cost of estimating the likelihood and the inefficiency of the resulting MCMC

samples. The computational time (CT) is

CT ≡ IACT× number density evaluations,

where IACT ≡ 1 + 2
∑∞

k=1 ρk is integrated autocorrelation time of the MCMC chain, where

ρk is the autocorrelation at the kth lag. The IACT or inefficiency factor can be thought of as

the number of correlated MCMC draws needed to obtain a single iid draw of the posterior. We

estimate the IACT via the TensorFlow package from Abadi et al. (2015). The relative CT (RCT)

metric is defined as the ratio of the CT of full-data Whittle MCMC and subsampling Whittle

MCMC for each parameter. Values greater than one indicate that subsampling Whittle MCMC is

more efficient when considering the computational cost of likelihood estimates and the inefficiency

factor for MCMC. Figure 3.2 displays simulated realizations of the three models considered.

3.9.1 Simulated data

Example 3.4. Consider a Gaussian CARMA(2, 1) model as in Example 3.1. We set δ = 0.1

with T = 8000 and use and compare the Kalman filter posterior with the Whittle posterior and

subsampled Whittle posterior. To reduce the bias incurred by the truncation of the aliased spec-

tral density, it is truncated, we set k = −50, . . . , 50. The same parameter values are used as in

Example 3.1. Figure 3.3 displays the kernel density estimates of the marginal posteriors. The
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Figure 3.2: Simulated data from Examples 3.4, 3.5, and 3.6. From top to bottom, a Gaussian
CARMA(2, 1), standardised Gamma CARMA(2, 0) and a two-sided Poisson CARMA(2, 1) pro-
cess.

subsampled Whittle posterior (blue) and standard Whittle posterior (orange) are indistinguish-

able, suggesting that the bias incurred by subsampling is negligible. Furthermore, the Kalman

filter (green) marginal posteriors are almost identical to their Whittle counterparts. The RCTs

for each parameter is (109, 94, 126, 97).

Example 3.5. Suppose we have observations from a CARMA(2, 0) with an underlying standard-

ised Gamma process, as in Example 3.2. We set T = 10000, δ = 0.1 and the same parameters

values as Example 3.2, θ = (α1, α2, σ
2) = (1.5, 4, 1). Note, the Kalman filter is mis-specified in

this model as this state space model is not Gaussian, and hence we do not use it. Figure 3.4, the

variance parameter σ2 is slightly overestimated; however, the standard Whittle posterior (black)

and the subsampled Whittle posterior (red) are almost identical. The RCT for each parameter

is (86, 99, 106).

Example 3.6. We consider the same two-sided Poisson-driven CARMA(2, 1) process in Example

3.3 with T = 10000, δ = 0.1 and the same parameter values. Figure 3.5 compares the standard

Whittle posterior (black) with the subsampled Whittle posterior (red). As seen in the plot, the
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Figure 3.3: Kernel density estimates of the marginal posteriors. Gaussian CARMA(2, 1) process
from Example 3.4, with δ = 0.1 and T = 8000.

Figure 3.4: Marginal kernel density estimates of the posterior for standardised Gamma
CARMA(2, 0) process from Example 3.5. The standard Whittle posterior is in black, and the
subsampled Whittle is in red. The dashed vertical lines are the true parameter values.

marginal posteriors are almost identical with the subsampled Whittle posterior, which seems to

have slightly thinner tails for α1 and α2. The RCT for each parameter θ = (α1, α2, β1, σ
2) =

(118, 173, 186, 174).

3.9.2 Bitcoin volatilities

Here, we consider the log-squared returns of minutely Bitcoin prices from http://www.coinbase.

com. The total length of the series is N = 1000001, and we set δ = 1. Here, the choice of

δ = 1 is due to the fact that the data were sampled at one-minute intervals as opposed to

seconds/milliseconds and implies that the information contained in the empirical spectrum lies

between ±π.
For model selection, we fit all the valid models up to p = 3 and choose the one with the

http://www.coinbase.com
http://www.coinbase.com
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Figure 3.5: Example 3: Marginal kernel density estimates of the posterior for two-sided Poisson
CARMA(2, 1). The standard Whittle posterior is in black, and the subsampled Whittle is in red.
The dashed vertical lines are the true parameter values.

smallest BIC. Table 3.1 shows the BIC values for all models with p = 3, q = 2 being the smallest.

This is a challenging data problem due to the long memory present in the observations, which

manifests itself linearly in the empirical spectrum at the lower frequencies as seen in Figure 3.6.

As a result, the autoregressive parameters were close to one, hence close to the bound, making

sampling difficult. Instead, we choose the next lowest BIC value, which is p = 2, q = 1.

CARMA q = 0 q = 1 q = 2

p = 1 4392006.60 - -
p = 2 124406137.04 4274959.12 -
p = 3 402002138.0 4308032.68 4271028.10

Table 3.1: BIC values for each CARMA model for Bitcoin data.

Figure 3.7 shows the posteriors of the standard Whittle posterior (black) and the subsampled

Whittle posterior (blue), and there is virtually no difference between them. Figure 3.8 displays

the RCT for each parameter of subsampling vs Whittle MCMC with the full dataset. The

aforementioned plot indicates that Whittle subsampling is, on average, roughly 100 times more

efficient than full-data MCMC. The total time in seconds for 10000 iterations of MCMC for the

standard Whittle was 4925.673 seconds, whereas the subsampled Whittle was 61.045 seconds,

more than an 80x increase in raw computation time. Furthermore, Figure 3.6 also displays the

periodogram along with the fitted spectral density at the posterior mean. As can be seen, the

credible interval in red is small due to the large amount of data.
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Figure 3.6: The periodogram (blue) of minutely Bitcoin returns with the fitted aliased spectral
density at the posterior mean (black), and the thin shaded region (red) is the 95% credible interval
from subsampling MCMC.

3.10 Conclusion and future research

In this paper, we perform Bayesian inference for Lévy-driven CARMA processes from Gillberg

and Ljung (2009). Furthermore, we propose spectral subsampling of the Whittle likelihood for

large regularly-spaced data from Lévy-driven CARMA processes. We demonstrate an average of

100x speed up in RCT compared to the full-data Whittle MCMC for both simulated data and

the real data application of Bitcoin returns.

We first consider a simulation study in Section 3.8 to verify the asymptotic normality as-

sumption of the parameter likelihood, which includes non-Gaussian driving processes. Then, to

our knowledge, we provide a novel methodology to perform Bayesian inference for Lévy-driven

CARMA models. The main contribution of this paper is to extend efficient spectral subsampling

MCMC for Lévy-driven CARMA, as seen in Section 3.9.

Future research includes a fractionally integrated (FI) parameter which incorporates long-

memory, fractional Lévy processes, known as CARFIMAmodels Brockwell and Marquardt (2005).

Additionally, Bayesian estimation and subsampling can be explored for irregularly spaced Lévy-

driven CARMA processes from Fechner and Stelzer (2018). Finally, recent advancements in

Bayesian methodologies, such as variational inference Blei et al. (2017), provide exciting possi-

bilities for spectral subsampling MCMC.
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Figure 3.7: Marginal kernel density estimates of the posterior for minutely Bitcoin data for a
CARMA(2, 1) model. The standard Whittle posterior is in black, and the subsampled Whittle is
in black.

Figure 3.8: Relative computation time of the subsampled Whittle posterior vs full-data Whittle
MCMC posterior.
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Chapter 4

Bayesian inference for random fields on a lattice via

the debiased spatial Whittle likelihood

Thomas Goodwin, Arthur Guillaumin, Mattias Villani, Matias Quiroz and Robert Kohn 1

Abstract

Estimation of regularly spaced, latticed stationary random fields is computationally demand-

ing. Likelihood evaluations for Gaussian random fields have a cost of O(|n|2), where |n| is the
number of data points via efficient algorithms that solve large systems of equations, which

quickly becomes intractable for large data. Approximate frequency domain methods have

been proposed for parameter estimation based on the Fast Fourier Transform (FFT) with

a computational complexity of O(|n| log |n|). However, it is well known that these Fourier

methods suffer from bias. Here, we propose a methodology for Bayesian inference for the

debiased spatial Whittle likelihood, which is a frequency domain estimation procedure that

reduces bias and accounts for aliasing via the expected periodogram in one O(|n| log |n|)
procedure. This method is based on previous composite-likelihood work, which adjusts the

curvature of the likelihood based on the sampling distribution of its maximum likelihood esti-

mator (MLE). It can be shown that this adjustment provides asymptotically ‘valid’ inference

by satisfying the coverage of posterior sets without sacrificing the quasi-linear computation

time. We demonstrate our method using two real-data examples: sea surface temperature

and Venus topography data.

Keywords: Random fields, Whittle likelihood, Spatial data, Bayesian inference.

1Goodwin, Quiroz: School of Mathematical and Physical Sciences, University of Technology Sydney. Guillaumin:
School of Mathematical Sciences, Queen Mary University of London. Villani: Department of Statistics, Stockholm
University. Kohn: School of Economics, University of New South Wales.
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4.1 Introduction

The collection and analysis of spatial data is crucial in many fields such as geology (Cressie,

1989; Matheron, 1963), climatology (Berliner et al., 2000; Hrafnkelsson and Cressie, 2003), and

epidemiology (Tolbert et al., 2000; Best et al., 2001). Technological advancements make it possible

to collect and store large amounts of spatial data easily and, in turn, the importance of fitting

spatial models is paramount. Fast estimation and Bayesian inference of random fields are key

drivers in the spatial statistics literature. Maximum likelihood estimation of Gaussian processes

involves computing large systems of equations, which is computationally demanding. To avoid this

bottleneck, several approximations have been studied. Time domain methods such as Anitescu

et al. (2017); Stein et al. (2013) focus on estimating equation approaches to side-step expensive

matrix computations via optimization and stochastic approximations, respectively. Circulant

embedding techniques via data imputation reduce computation time by exploiting properties of

circulant matrices have been studied in Stroud et al. (2017); Guinness and Fuentes (2017).

Fourier-based methods are attractive as they enable fast estimation and handle large amounts

of data via the FFT. The Whittle likelihood is a well-known Fourier-based method first intro-

duced in Whittle (1954). Whittle estimation is explored further in Gelfand et al. (2010), Guinness

(2019), and also for the case of irregularly spaced data in Matsuda and Yajima (2009). However,

these methods are approximate and typically only asymptotically equivalent, and results in sub-

stantial bias for the dimension of the lattice d > 1 (Dahlhaus and Künsch, 1987). Guillaumin

et al. (2022) alleviates this issue by debiasing the Whittle likelihood but only considers point

estimators.
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For random fields, uncertainty quantification of parameters for approximate methods proves

challenging when performing Bayesian inference. Only a few of the aforementioned papers explic-

itly study the Bayesian approach for random fields (Stroud et al., 2017; Guinness and Fuentes,

2017). Performing Bayesian inference adds another layer of complexity as the quality of the

approximation of the likelihood function and the corresponding posterior distribution over the

parameter space (or subset of) is crucial. Kent and Mardia (1996); Guyon (1982) analyzes the

quality of the spectral and circulant approximation of the log-likelihoods for stationary Gaussian

random fields. They concluded that the bias incurred by this approximation is of the same order

as the standard error, and the bias is dominant for d > 3. This is discussed further in Section 4.4.

Furthermore, coverage of posterior sets, i.e. the probability α that the unknown parameter lies

within a certain region based on the posterior distribution, accounts for parameter uncertainty

and is essential for Bayesian inference, particularly for prediction. In some cases, it is unclear to

perform Bayesian inference with approximate methods (e.g. Stein et al. (2013)).

The contributions of this paper are as follows: we build on the spatial Debiased Whittle like-

lihood in Guillaumin et al. (2022) to perform ‘valid’ Bayesian inference, based on the notion of

proper likelihoods in Monahan and Boos (1992), for covariance kernel parameters. To include

proper parameter posterior uncertainty, we use ideas from Ribatet et al. (2012) to make necessary

adjustments to the posterior. To verify the validity of the adjusted posteriors, we use computa-

tional schemes from Monahan and Boos (1992) and Cook et al. (2006) in a simulation study in

Section 4.5.4. We demonstrate our approach on two real data applications and compare it with

the standard Whittle approach.

4.2 Notation and assumptions

Throughout this paper, we assume the spatial data is observed on a regularly spaced lattice, with

the possibility of missing data and irregular sampling domains/boundaries. This is described

more formally below.

Let Xs ∈ R be a finite variance, zero-mean random field indexed by the spatial location for

s ∈ Rd where d ≥ 1 is a positive integer. Assume Xs is homogeneous — but not necessarily

isometric — and denote its parametric covariance function by cθ(u), u ∈ Rd, which is governed

by some unknown parameters of interest θ ∈ Θ ⊂ Rp, with p ≥ 1, the number of parameters.

According to Bochner’s theorem (Brockwell and Davis, 2009), there exists a spectral distribution

function Fθ(ω) such that,

cθ(u) = E [XsXs+u] =

∫
Rd

exp(iω · u)dFθ(ω), ∀u ∈ Rd, (4.1)

where · is the dot product and we shall assume that Fθ(ω) is absolutely continuous, such that it
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admits a density called the spectral density function, fθ(ω) =
∫
Rd cθ(u)exp(−iω · u)du.

We observe the random fieldXs on an orthogonal rectangular grid Gn with size n = (n1, . . . , nd) ∈
(N+)d. Without loss of generality, we assume that the grid has a unit step size in all d dimensions.

The total number of grid points is denoted by |n| =
∏d

i=1 ni. The aliased spectral density fθ,δ(ω)

of the sampled random field is,

fθ,δ(ω) =
∑
u∈Zd

fθ(ω + 2πu), ω ∈ Rd, (4.2)

which is a Fourier dual with cθ(u) =
∫
T d fθ,δ(ω)exp(iω · u)dω, ∀u ∈ Zd and T = [0, 2π).

4.3 The debiased Whittle likelihood

This section covers the definition of the debiased spatial Whittle likelihood, introduced in Guil-

laumin et al. (2022).

4.3.1 Frequentist estimation

The periodogram of the sampled random field is given by

In(ω) =
(2π)−d

n

∣∣∣∣∣∑
s∈Gn

Xsexp(−iω · s)

∣∣∣∣∣
2

, ω ∈ Rd. (4.3)

This quantity can be efficiently evaluated at a computation cost of O(|n|log|n|) operations via

the Fast Fourier Transform (FFT) on the multidimensional grid of Fourier frequencies associated

with the spatial grid Gn,

Gn =
d∏

j=1

{
2πkn−1

j : k = 0, . . . , nj − 1
}
.

The Whittle likelihood (Whittle, 1954) is a computationally efficient approximation to the Gaus-

sian likelihood that relies on the approximate independence of periodogram ordinates on the

Fourier grid. More recently, corrections to the standard Whittle likelihood for time series were

proposed by Sykulski et al. (2019) that alleviate some of its limitations, such as finite sampling

effects and severe bias in small sample sizes. This was extended to domains of higher dimensions

in Guillaumin et al. (2022), e.g. for the analysis of spatial or spatiotemporal random processes.

The approach taken is to estimate the parametric expectation of the periodogram rather than
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the spectral density, according to the debiased spatial Whittle likelihood,

ℓdW (θ) = −1

2

∑
ω∈Ωn

{
log In(ω;θ) +

In(ω)

In(ω;θ)

}
, (4.4)

for all θ ∈ Θ, where,

In(ω;θ) = Eθ [In(ω)] , ∀ω ∈ T d,

is the expected periodogram. The expected periodogram is a convolution

In(ω;θ) = {fθ ∗ Fn} (ω) =
∫
T d

fθ,δ(ω − ω′)Fn(ω
′)dω′, (4.5)

between the spectral density of the process and the multi-dimensional kernel

Fn(ω) =
(2π)−d∑

g2s

∣∣∣∣∣∑
s∈Gn

gsexp(−iω · s)

∣∣∣∣∣
2

, ω ∈ Rd, (4.6)

where gs, ∀s ∈ Gn is a masking grid, which takes value 0 if an observation is missing, and 1

otherwise. The kernel in (4.6) is known as the modified Féjer kernel. In the case of a fully observed

domain, this kernel becomes the multidimensional rectangular Féjer kernel, i.e. a separable

product of one-dimensional Féjer kernels.

Maximization of (4.4) over Θ defines the maximum debiased Whittle likelihood estimate

(MdWLE) of the data, given as,

θ̂dW = argmax
θ∈Θ

{ℓdW(θ)} . (4.7)

The replacement of fθ,δ(ω) with In(ω;θ) yields the parametric model

In(ω)
i.i.d.∼ Exp

{
In(ω;θ)

}
, ω ∈ Ωn, (4.8)

where Exp(λ) is an exponential distribution parameterized by its mean. Despite the inclusion as

the expected periodogram, the iid assumption in (4.8) is only asymptotic, as |n| → ∞ (Bandy-

opadhyay and Lahiri, 2009). Thus, for finite samples, the likelihood in (4.4) can be considered

misspecified and follows the framework of composite likelihoods (Varin et al., 2011) and hence

(4.7) is a maximum composite likelihood estimator. Observe that Eθ∇θℓdW(θ) = 0, where

∇θℓdW(θ) is the score function, which fits the methodology of estimating equations in Heyde

(1997). Thus, Bayesian inference, more precisely, correct uncertainty quantification of the pa-

rameters, is not straightforward, see Ribatet et al. (2012). This will be explored further in Section

4.5.
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The computation of the expected periodogram in (4.5) takes advantage of the FFT and hence

is a O(|n| log |n|) routine. This is for any d, regardless of missing data or irregular domain

patterns. The expected periodogram can directly account for finite sampling effects, mainly

aliasing and spectral leakage. The quantity In(ω;θ) is computed via the FFT of the discretely

sampled theoretical covariance function combined with, in the case of fully observed grids, a

multidimensional triangular kernel (Percival and Walden, 1993). Thus, the expected periodogram

accounts for aliasing via discrete sampling of covariance function and spectral leakage by including

the triangular kernel.

In the case of fully observed grids, the expected periodogram is related to the spectral density

in the sense that

Eθ [In(ω)] −−−→
n→∞

fθ,δ(ω), (4.9)

where n → ∞ denotes ni → ∞ for i = 1, . . . , d. Thus, as the number of observations grows

infinitely on all sides, the expected periodogram converges to the spectral density, and hence

there is an equivalence asymptotic equivalence of the Debiased Whittle and standard Whittle

likelihoods. For more details on the expected periodogram and the computation thereof, refer to

Guillaumin et al. (2022).

Approaches such as Guinness and Fuentes (2017); Stroud et al. (2017) use procedures that im-

pute missing observations via circulant embedding, which may not be appropriate when the data

violates the Gaussian assumption. Instead, the debiased Whittle handles missing observations

and irregular sampling domains via the modulation values gs.

It is important to note, as discussed in Sykulski et al. (2019); Guillaumin et al. (2022), that

the computation of fθ,δ(ω) in the standard Whittle estimation is not automatic and more com-

plicated in general. This is because the aliased spectral density fθ,δ(ω) seldom has an analytical

form and is usually approximated in practice, see Chapter 5, Gelfand et al. (2010), by truncation

of the infinite sum in (4.2) via ‘wrapping’ contributions of fθ(ω) from frequencies higher than

the Nyquist. Although this aforementioned process may be computationally less expensive on

large grids for specific cases, computation of In(ω;θ) yields a procedure for automatic and ex-

act calculation of aliasing, spectral leakage, missing data and irregular sampling domains, in a

convenient way, rather than accounting for each of these effects individually.

4.4 Likelihood comparison and issues

A primary objective of Bayesian computation is to infer the posterior π(θ|Xs) ∝ L(θ)p(θ) which
requires knowledge of the likelihood function L(θ) over a non-negligible probability area in Θ. It

is not enough to only consider the maximum likelihood estimator of the debiased spatial Whittle

likelihood. We need to assess the approximation of ℓdW(θ) to the exact likelihood over the

parameter space Θ, or at least in a locally compact region of non-negligible probability around
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θ̂dW. The exact likelihood for Gaussian random fields is

ℓtrue(θ) = −|n|
2

log(2π)− 1

2
log det{Σ(θ)} − 1

2
XT

s Σ
−1(θ)Xs, (4.10)

where Σ(θ) is the |n| × |n| covariance matrix corresponding to cθ(u) and det{Σ(θ)} is the deter-

minant of the covariance matrix. However, this is computationally challenging since det{Σ(θ)}
is O(|n|3) in general, or O(|n|5/2) in structured cases (Sowell, 1989; Akaike, 1973). Furthermore,

this likelihood is restrictive as it assumes the data-generating process is Gaussian, which may not

be appropriate when modelling real data (Guilleminot, 2020).

For a rectangular grid that increases in all directions, the periodogram In(ω) is an asymptot-

ically unbiased estimate of fθ,δ(ω) with distribution In(ω)
i.i.d.∼ Exp {fθ,δ(ω)} , for ω ∈ Ωn. This

motivates the original spatial Whittle likelihood (Whittle, 1954),

ℓW (θ) =
1

2

∑
ω∈Ωn

{
logfθ,δ(ω) +

In(ω)

fθ,δ(ω)

}
. (4.11)

Denote θ̂W as the maximum likelihood estimators of (4.11).

The exact likelihood in (4.10) and the aforementioned Whittle likelihood (4.11) have the same

purpose, to estimate the parameters that govern the second order structure of the underlying

process but do so in different ways. The exact likelihood computes the density of the original

data given a covariance model through the covariance matrix Σ(θ). In contrast, the Whittle

approach, or frequency domain methods in general, studies the periodogram to estimate the

parameters of the spectral density or the spectral density itself. Hence, an important benefit of

frequency domain estimation methods is no explicit assumption of the data-generating process is

required, only an appropriate model for the periodogram.

Guyon (1982) and Kent and Mardia (1996) studied the quality of the Whittle likelihood

approximation to the exact likelihood. Based on Proposition 1 from Guyon (1982), assume

n1 ≤ · · · ≤ nd, as n1 → ∞, then,

|ℓtrue(θ)− ℓW (θ)| = Op(|n|/n1). (4.12)

From Proposition 1, for d = 2, the bias of θ̂W is of the same order as the standard error; however,

for d > 2 the bias is of larger order than the standard error. Hence, for d ≥ 2, θ̂W is not an

efficient estimator. For tapered data, Dahlhaus and Künsch (1987) show that θ̂W is efficient for

d = 2, 3. Despite the efficiency of θ̂W for tapered data, the rate of convergence is of the same

order as the smallest side n1. This is a drawback of the regular Whittle approximation as the bias

of the MLE and its likelihood approximation is limited by the smallest side. Simulation studies

suggest that the bias of θ̂W decreases slowly with respect to the grid size, see Figures 1 and 2 of
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Guillaumin et al. (2022).

To assess the approximation of the likelihood function over Θ or around θ̂W, we are interested

in the relative order of error, i.e.∣∣∣∣ℓtrue(θ)− ℓW (θ)

ℓtrue(θ)

∣∣∣∣ = Op(1/n1). (4.13)

The above equation illustrates the convergence of the Whittle likelihood to the exact likelihood

irrespective of a normalization constant. Thus for fully observed square grids that increase

asymptotically in all directions, the relative error of the standard Whittle likelihood goes to zero.

It follows from (4.9) that the same statement can be made for the debiased Whittle likelihood.

Empirically, the rate of 1/n1 where n1 is the smallest side of the hypercube, leads to poor

approximations of the true likelihood function. For demonstration, we consider a simulated

example with an isotropic Mátern kernel,

cθ(u) = σ2
21−ν

Γ(ν)

(
√
2ν

||u||
ρ

)ν

Kν

(
√
2ν

||u||
ρ

)
, (4.14)

whereKν(x) is a Bessel function of the second kind. The three governing parameters are the range

ρ, amplitude σ and ν smoothness. Here, we set true values of ρ = 5 and σ = 1, and we fix ν = ∞,

which is not estimated. This corresponds to the squared-exponential kernel. This kernel is well

known to be impractical for most real-world applications as it exhibits overly smooth processes

(Stein, 2012). Furthermore, the spectral density of this process has negligible power for higher

frequencies, resulting in difficulty in the estimation of the range parameter, particularly for higher

values of ρ relative to the domain size. The data is simulated on a square grid of n = (64, 64),

and we consider three likelihoods: the debiased spatial Whittle likelihood, the standard Whittle

likelihood and the exact Gaussian likelihood, all with the same non-informative prior. Figure 4.1

shows marginal kernel density estimates of each of the three posteriors.

As seen in Figure 4.1, the standard Whittle likelihood underestimates both ρ and σ, whereas

the debiased spatial Whittle likelihood underestimates only σ. Both Whittle-type likelihoods are

not ‘close’ to the exact Gaussian likelihood. Furthermore, the posteriors of both Whittle-type

likelihoods, particularly in the σ parameter, are more concentrated, a common phenomenon for

composite likelihoods, see Ribatet et al. (2012). Equation (4.13) suggests that n1 to be in the

thousands for d = 2 to have a faithful approximation of the true log-likelihood function (up to a

normalizing constant), which is rarely achieved in practice.

Instead of approximating the exact likelihood function via the Whittle likelihood, we leverage

properties of the Debiased Whittle likelihood estimator to include appropriate uncertainty by

performing valid Bayesian inference discussed in the next section.
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Figure 4.1: Kernel density estimates of the marginal posterior comparison of simulated data
example with a squared-exponential kernel with grid size n = (64, 64).

4.5 Bayesian coverage

In real-world applications, it is sometimes necessary to make approximations. In the context of

Bayesian inference, approximating the likelihood or prior, and hence the posterior, is often done

for computational convenience due to some intractability. As a natural consequence of employ-

ing approximate posteriors, the coverage of the approximate credible posterior sets is changed.

Bayesian calibration procedures correct for or quantify the error induced by the approximation

(Lee et al., 2019; Frazier et al., 2023). Furthermore, approaches such as Yao et al. (2018) and

Prangle et al. (2014) provide diagnostic tools based on coverages for different posterior approx-

imation methods. Other methods use theoretical coverage properties to provide tests/checks

for correct software implementation, see Cook et al. (2006); Geweke (2004). At its core, these

aforementioned methods borrow ideas from Monahan and Boos (1992), which is briefly described

below.

We follow the approach of Monahan and Boos (1992), which defines valid posteriors based on

coverage properties of posterior sets. Assume the data are generated from the model X ∼ p(Xs|θ)
and suppose L(θ;Xs) is the likelihood of interest (highlighting the dependence on the dataset),

and we wish to perform inference via Bayes’ theorem,

p(θ|Xs) =
L(θ;Xs)p(θ)

p(Xs)
, p(Xs) =

∫
Θ
L(θ;Xs)p(θ)dθ. (4.15)

Define Kα(Xs) as a posterior coverage set function of level α if, for every Xs,

Pr{θ ∈ Kα(Xs)|Xs} = α, (Xs conditioned upon), (4.16)
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where the probability is with respect to the posterior (conditional on Xs) with likelihood L(θ;Xs)

and prior p(θ). A simple example of a posterior coverage set function when the parameter is one-

dimensional is a one-sided interval that contains α of the posterior mass, also known as a credible

interval. The posterior is said to be valid by coverage if, for every α,

Pr{θ ∈ Kα(Xs)} = α, (Xs is random), (4.17)

where the probability is now with respect to the joint distribution p(Xs,θ) = p(Xs|θ)p(θ). Note

the similarity to the classical statistical coverage, however, the sampling distribution of Xs is

averaged over the prior (instead of keeping the parameter at its true value). When the likelihood

comes from the data generating process (L(θ;Xs) = p(Xs|θ)), the posterior is valid by coverage

since (4.17) holds,

Pr{θ ∈ Kα(Xs)} =

∫
Xs

∫
θ∈Kα(Xs)

p(Xs,θ)dθdXs

=

∫
Xs

∫
θ∈Kα(Xs)

L(θ;Xs)p(θ)dθdXs

=

∫
Xs

p(Xs)

(∫
θ∈Kα(Xs)

p(θ|Xs)dθ

)
dXs

=

∫
Xs

p(Xs)αdXs

= α,

using (4.15) and the definition of a posterior coverage set function in (4.16). For the simplest

case L(θ;Xs) = p(Xs|θ), the posterior is validated by Bayes’s theorem since the likelihood is

the exact conditional density of the data Xs given θ. As in Monahan and Boos (1992), we are

interested in the case when L(θ;Xs) differs from p(Xs|θ); due to the intractability of the true

likelihood p(Xs|θ) for Gaussian random fields in (4.10), the likelihood function we consider is the

debiased spatial Whittle likelihood ℓdW(θ).

4.5.1 Posterior adjustments

Simply substituting ℓdW(θ) for L(θ;Xs) in (4.15) will not yield proper coverage posteriors, as

demonstrated in the simulation study in Section 4.5.4. Ribatet et al. (2012) propose an asymptotic

curvature adjustment for composite likelihoods. This curvature adjustment is based on the Bern-

stein Von-Mises theorem (Van der Vaart, 2000), which loosely states that the posterior converges

to the sampling distribution of the MLE. Thus, the curvature adjustment corrects the variance

of a composite posterior to equal (asymptotically) the variance of its corresponding maximum

composite likelihood estimator (MCLE). In our case, Guillaumin et al. (2022) show for finite
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grid sizes, the debiased spatial Whittle likelihood is a composite likelihood (Varin et al., 2011;

Bevilacqua and Gaetan, 2015) and fits within the framework of estimation equations (Heyde,

1997). We briefly review how to perform these adjustments for composite likelihoods.

Denote the composite likelihood as ℓc(θ) with its maximum composite likelihood estimator

as θ̂c and the true parameter as θ0. Moreover, denote

H(θ0) = −E
[
∇2

θℓc(θ)
]
, J(θ0) = Var [∇θℓc(θ)] ,

as the Fisher information matrix and the covariance of the score function, respectively. The

distribution of the maximum composite likelihood estimator (MCLE) θ̂c is√
|n| {G(θ0)}1/2 (θ̂c − θ0)

d−→ N(0, I). (4.18)

where G(θ) is often referred to as ‘sandwich’ variance matrices (Varin et al., 2011), defined as

G(θ) =H(θ)J−1(θ)H(θ). (4.19)

Maximum likelihood estimation of composite likelihoods can also be viewed as a maximum

likelihood estimation for mis-specified models (White, 1982). However, for large enough |n|, it
can be shown (Appendix A of Ribatet et al. (2012)) that the composite posterior is

πc(θ|y) ∼ N
{
θ0, |n|−1H−1(θ0)

}
. (4.20)

For proper likelihoods, H(θ) = −J(θ), and for large enough |n|, the posterior is roughly equal

to the sampling distribution of the MLE’s (Bernstein von-Mises theorem). However, from (4.18),

the variance of MCLE is the sandwich estimator, and thus, the posterior under the composite

likelihood does not converge to the sampling distribution of the MCLE. Intuitively, the composite

marginal posterior distributions of the parameters are too concentrated (small variance) compared

to that of the full posterior (see Figure 1 of Ribatet et al. (2012)), as is the case for σ in Figure 4.1.

To alleviate this, the proposed asymptotic curvature adjustment to the composite log-likelihood

ℓc(θ) given by

ℓcurv(θ|y) = ℓc(θ
∗|y), θ∗ = θ̂c +C(θ − θ̂c), (4.21)

where C is a positive semi-definite ‘adjustment’ matrix

C⊤H(θ0)C =H(θ0)J(θ0)
−1H(θ0). (4.22)

One possible choice is C = M−1MA where M⊤
AMA = G(θ0) and M⊤M = H(θ0). The

purpose of this adjustment is for ℓcurv(θ|y) at θ̂c to match the curvature of the large-sample
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density of θ̂c. As a consequence, the curvature adjustment changes the location of any local

maxima except the global maximum at θ̂c, which may not be appropriate if the full posterior is

multi-modal. The asymptotic distribution of the curvature adjusted posterior (see Appendix A

of Ribatet et al. (2012)) is

πcurv(θ|y) ∼ N
{
θ0, |n|−1G−1(θ0)

}
.

As shown in Guillaumin et al. (2022), the variance of the sampling distribution of the maxi-

mum spatial debiased Whittle likelihood estimator (MdWLE) θ̂dW is

Var
{
θ̂dW

}
≈ G−1(θ), (4.23)

which has the same sandwich structure as the covariance of the MCLE in (4.18). Note, Guillaumin

et al. (2022) gives an analytical form of the asymptotic distribution of the MdWLE for Gaussian

random fields when the observation domain n grows to infinity in all directions; however, this

form is seldom reached in practice. Simons and Olhede (2013) gives a practical large-sample case

where the asymptotic form has not been reached. In addition, empirical findings via simulations

and, in the case of missing data, prevent the use of the exact form of the asymptotic variance for

posterior adjustments.

4.5.2 Computation of curvature adjustments

This section explains the computation of the sandwich matrix in (4.23) specific to the debiased

spatial Whittle likelihood. The computation of the analytic form of (4.23) is intractable for

larger grids for the reasons explained below. Instead, we provide two methods to estimate the

adjustment matrix C via Monte Carlo simulation. It is important to note that the computation

of the adjustment matrices is performed once before MCMC.

Guillaumin et al. (2022) give an analytic approximation H to the Fisher matrix

H(θ) =
1

2

∑
ω∈Ωnk

Ink
(ω;θ)

−2∇θInk
(ω;θ)∇θInk

(ω;θ)
⊤
,

where the gradient of the expected periodogram is

∇θIn(ω;θ) =
∑
u∈Zd

∇θcn(u; θ)exp(−iω · u).

The aforementioned equation can be computed efficiently via the FFT and using the same pro-

cedure as the expected periodogram, replacing the covariance function with its gradient wrt the

parameters.
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The i, jth element in the variance of the score J(θ) matrix is given as

cov

{
∂ℓdW(θ)

∂θi
,
∂ℓdW(θ)

∂θj

}
= |n|−2

∑
ω1,ω2∈Ωn

cov
{
In(ω1), In(ω2)

}
I
2
n(ω1;θ), I

2
n(ω2;θ)

∂In(ω1;θ)

∂θi

∂In(ω2;θ)

∂θj
. (4.24)

The covariance between the periodogram at two different Fourier frequencies on the RHS of

(4.24) involves complicated convolutions of the spectral density and Dirichlet kernel (see Section

5.5 of Guillaumin et al. (2022)). Furthermore, computation of (4.24) scales as O(|n|2), which
becomes intractable for even moderate grid sizes. Guillaumin et al. (2022) propose a speedup to

compute this quantity, which still involves the computation of integrals in the form of convolutions.

Furthermore, missing data or irregular domains add another layer of complexity as (4.24) is not

known exactly.

A simple but effective solution is to use a Monte Carlo estimate of Var{∇θℓdW(θ)}, namely,

J(θ) ≈ Ĵ(θ) = 1

k − 1

k∑
i=1

(
g(i) − g

)(
g(i) − g

)⊤
, (4.25)

where g(i) = ∇θℓdW(θ̂dW|X(i)
s ). Once the MdWLE given the observed data is found, one must

simulate k random fields from the specified model conditional on θ̂dW. Then, Ĵ(θ) is ob-

tained as the empirical covariance estimator based on k Monte Carlo samples of the gradient

∇θℓdW(θ̂dW|X(i)
s ). Note that simulation of Gaussian random fields can be performed efficiently

in O(|n|log|n|) time via circulant embedding (Dietrich and Newsam, 1997). The modified adjust-

ment is

C1 =M
−1MA, (4.26)

MAM
⊤
A =H(θ0)Ĵ(θ0)

−1H(θ0), MM⊤ =H(θ0), (4.27)

where M and MA are lower triangular Cholesky decompositions.

The second adjustment is obtained by replacing the estimated sandwich matrix in (4.27) with

a Monte Carlo estimate of Var{θ̂dW}. An estimate thereof is

Var{θ̂dW} ≈ Ĝ−1(θ) =
1

k − 1

k∑
i=1

(
θ̃
(i)

dW − θ̃dW
)(
θ̃
(i)

dW − θ̃dW
)⊤

, (4.28)

where θ̃
(i)

dW, for i = 1, . . . , k are the MdWLE from k datasets simulated at θ̂dW. Simulating data

X
(i)
s from the likelihood at θ̂dW and finding the corresponding MdWLE fork iterations gives the

simulation approximation of the MdWLE distribution. Furthermore, the observed Fisher H(θ)

of ℓdW(θ) is used in place the H(θ) for the construction of M . This is due to the fact that in
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finite samples, the observed Fisher will match the curvature of the un-adjusted log-likelihood and

hence provide a tailored curvature adjustment for the specific dataset. The adjustment is

C2 =MM−1
A , (4.29)

MAM
⊤
A = Ĝ−1(θ), MM⊤ = H−1(θ). (4.30)

We denote the curvature adjusted debiased Whittle likelihoods as

ℓ
(i)
dW(θ) = ℓdW(θ∗), θ∗ = θ̂dW + Ci(θ − θ̂dW), for i = 1, 2. (4.31)

Combining ℓ
(i)
dW(θ) with a specified prior in a Metropolis-Hastings algorithm will target the desired

posterior density π
(i)
dW(θ|Xs) for i = 1, 2. Algorithms 1 and 2 describe the computation necessary

to obtain adjustments C1 and C2, respectively.

4.5.3 Considerations

We briefly discuss some considerations and recommendations for both curvature adjustments.

The C1 matrix requires the evaluation of ∇θℓdW(θ), which requires the gradient of the co-

variance function wrt the parameters. The gradient of the Mátern kernel in (4.14) wrt ν exists

analytically but is difficult and computationally expensive (Geoga et al., 2023). For this reason,

we restricted the use of C1 for fixed ν.

Both adjustments employ Monte Carlo estimation. The variance of the Monte Carlo estimates

is an important consideration when choosing k to compute the adjustments. Thus, for cases when

the variance is higher, a larger k is required. Generally, small and moderate grid sizes require

larger k.

The C1 adjustment performs a Monte Carlo estimate of Var {∇θℓdW(θ)}, whereas the C2

adjustment estimates Var{θ̂dW}. The variance of Var{θ̂dW} is large when the domain size is

small relative to the value of ρ. In this case, we recommend using C1 since Var {∇θℓdW(θ)}, and
the variance thereof is less sensitive to ρ compared to the domain size.

However, for more difficult settings such as missing data and irregular domains, the estimate

of Var{θ̂dW} will be a better approximation of G−1(θ) compared to the C1 adjustment. Addi-

tionally, the computation of ∇θℓdW(θ) for C1 may not be known in closed form for missing data

and/or irregular domains. Note that while C2 may be more accurate, it is also computationally

more burdensome, particularly for larger grids, due to the optimization of the likelihood for each

θ̂
(i)

dW in (4.28) which can require multiple evaluations of ℓdW(θ).

Another important phenomenon is when the adjusted likelihood becomes flat. If elements of

C, particularly on the diagonal, are small, the vector C(θ− θ̂dW) in (4.31), becomes small. Thus

for a proposed θ that is far from θ̂dW, the adjusted parameter θ∗ will still be close to θ̂dW. As
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a consequence, the adjusted likelihood becomes flat around θ̂dW and the corresponding posterior

will be dominated by the prior. This phenomenon can occur when Var{θ̂dW} is large for the C2

adjustment, for cases when the value of ρ is large relative to the domain size. Hence, in this case,

we recommend the C1 adjustment.

Algorithm 1 Adjustment C1.

Require: MdWLE θ̂dW

1: for i = 1, . . . , k do

2: Simulate X
(i)
s ∼ p(Xs | θ̂dW).

3: Compute ∇θℓdW(θ̂dW|X(i)
s ).

4: end for

5: Compute Ĵ(θ̂dW) from (4.25).

6: Factor MM⊤ =H(θ̂dW),

7: MAM
⊤
A =H(θ̂dW)Ĵ(θ̂dW)−1H(θ̂dW).

8: Return C1 =M−1MA.

Algorithm 2 Adjustment C2

Require: MdWLE θ̂dW.

1: for i = 1, . . . , k do

2: Simulate X
(i)
s ∼ p(Xs | θ̂dW).

3: θ̃
(i)

= argminθ∈Θ{ℓdW(θ|X(i)
s )}.

4: end for

5: Compute Var{θ̂dW} ≈ Ĝ−1(θ) from (4.28).

6: Factor MAM
⊤
A = Ĝ−1(θ)

7: Factor MM⊤ = −
[
∇2

θℓdW(θ)
]−1

.

8: Return C2 =MM−1
A .

Table 1: Algorithms for computing the adjustments C1 (Algorithm 1) and C2 (Algorithm 2).

4.5.4 Simulation study

We consider the proposed computational approach of Monahan and Boos (1992) to validate the

coverages of the aforementioned curvature adjustments. This approach was later formalized into

a software validation algorithm in Cook et al. (2006). First, simulate j independent samples from

the prior, θ(i) ∼ p(θ), and for each θ(i), generate the random field X
(i)
s ∼ p(Xs|θ(i)) and compute

the integral

U (i) =

∫ θ(i)

−∞
p(θ|X(i)

s )dθ, for i = 1, . . . , j. (4.32)

A Monte Carlo estimate of the above integral Û (i) is performed with samples from the posterior

via the Random Walk Metropolis-Hasting algorithm. Cook et al. (2006) prove that as the number

of posterior samples used to approximate (4.32) approach infinity, then Û (i) ∼ Unif(0, 1) for each

i = 1, . . . , j.

Since the two proposed curvature adjustments are valid asymptotically, we construct a simula-

tion study to verify this for increasing grid sizes, |n| → ∞. We consider various priors, covariance

kernels and sampling schemes. The three different likelihoods considered are:

1. ℓdW(θ), the un-adjusted debiased spatial Whittle likelihood.

2. ℓ
(1)
dW(θ), the adjusted C1 debiased spatial Whittle likelihood.

3. ℓ
(2)
dW(θ), the adjusted C2 debiased spatial Whittle likelihood.
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We simulate k = 250 datasets from a two-dimensional Gaussian random field with Mátern co-

variance kernel for both simulation studies.

Simulation 4.1. Consider a two-dimensional Gaussian random field from a Mátern covariance

kernel with ν → ∞, known as the squared-exponential covariance kernel, defined as

c(u|ρ, σ) = σ2exp

(
− u

2

2ρ2

)
.

The spectral density is 2πρ exp(−2π2ρ2ω2) (Rasmussen and Williams, 2006). This produces

overly-smooth simulations due to high spectral mass at the lower frequencies, whereas negligible

mass at the higher frequencies. Estimation with this kernel is difficult since the periodogram

contains correlations between Fourier frequencies. We use independent Gamma priors for both

parameters,

ρ ∼ Gamma(α = 60, β = 10), σ ∼ Gamma(α = 60, β = 50),

with means E[ρ] = 6 and E[σ] = 1.2, respectively. We also use square grids with no missing

values and grid sizes |n| = (2562, 5122, 10242).

Figure 4.2 displays the QQ plots for each grid size and model. The un-adjusted debiased

Whittle posterior yields (top row) quantiles far from uniform for all three grid sizes. This is not

surprising as pseudo-likelihoods generally do not yield proper coverage. The S shape of the QQ

plots suggests that the posteriors rarely cover the true parameter θ0 due to the over-concentration

of the posteriors. The C1 adjustment (middle row) and the C2 adjustment (bottom row) are

similar and will be described as one. Firstly, for |n| = 2562, the tails (towards 0 and 1) are

heavier than those of a standard uniform, suggesting that parameters are often overestimated or

underestimated. Furthermore, σ performs worse than ρ. The coverages for |n| = 5122 are much

closer to standard uniform for both parameters. This is also the case for |n| = 10242, as both

parameters are indistinguishable from a standard uniform.

To conclude, the un-adjusted model violates the coverage of posterior sets for the aforemen-

tioned prior for all three grid sizes and only gets marginally better as grid sizes increase. Hence,

it is unsuitable for Bayesian inference. In contrast, adjustments C1 and C2 produce simulations

that are close to uniform for increasing grid sizes, 5122 and 10242. Thus, asymptotically (as

n → ∞), under this prior, the adjusted spatial debiased Whittle likelihoods, ℓ
(1)
dW(θ) and ℓ

(2)
dW(θ),

yield proper coverage posteriors.

Simulation 4.2. We consider an irregular domain shape for this simulation. The domain shape

is a grid of France. Here, a grid of size n = (500, 500) contains observations inside the border

of France, with missing values outside the border. This is challenging since roughly 62% of

the observed domain are missing values. We use a squared-exponential covariance kernel with

independent gamma priors, ρ ∼ Gamma(α = 120, β = 20), σ ∼ Gamma(α = 50, β = 50) with
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Figure 4.2: Standard uniform QQ plots for the coverage of posteriors for Gaussian random fields
with independent Gamma priors.
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Figure 4.3: Standard uniform QQ plots for the coverage of posteriors for Gaussian random fields
with independent Gamma priors, for an irregular domain shape of France.

means E[ρ] = 6 and E[σ] = 1.

The posterior quantiles are plotted in Figure 4.3. As expected, the un-adjusted debiased

Whittle model fails to provide proper coverages for both parameters. The C1 and C2 adjust-

ments are similar for both parameters, with C2 performing marginally better than C1. Both

adjustments are indistinguishable from a standard uniform between (0, 0.5); however, the top

half interval seems to have more concentration of mass compared to the bottom interval, with ρ

performing slightly worse than σ.

4.6 Applications

We illustrate our method on two data sets that are relevant in the literature and compare our

approach to the standard Whittle likelihood.

4.6.1 Sea surface temperature

The first application is Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI)

satellite data from the Pacific Ocean presented in Chapter 5 of Gelfand et al. (2010). Sea surface

temperature (SST) data are used for climate modelling and meteorology and are essential for

evaluating climate change. They are also helpful for comparison with oceanic climate models

as a diagnostic tool. Identifying spatial patterns of SST is a critical factor in the formation of

hurricanes in the Pacific Ocean, which strike Central America. Furthermore, the transfer of water

between the northern and southern equatorial currents is an important application of the analysis

of the spatial structure of SST. Quantifying spatial variability and making informed predictions

about SST is crucial for research on the world’s ocean and the broader climate. The data is

available at www.remss.com/tmi/tmi browse.html.
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Figure 4.4: Sea surface temperatures over the Pacific Ocean. The left plots show the processed
data after removing the trend. The right plot is the un-tapered log-periodogram of the data.

The SST data, in degrees Celsius, is from March 1998 and has roughly a 25km × 25km spatial

resolution defined by latitude and longitude. The data are on a rectangular grid of size 75 ×
75. Due to the large number of observations, maximum likelihood estimation, let alone Bayesian

inference via the Gaussian likelihood, is computationally intractable. Instead, we use frequency

domain methods for computationally efficient estimation and Bayesian inference for periodogram

data.

To satisfy the stationarity assumption, the authors suggest a second-order polynomial mean

trend be removed,

β0 + β1 ⊙ u(s) + β2 ⊙ v(s) + β3 ⊙ u(s)2 + β4 ⊙ v(s)2 + β5 ⊙ u(s)⊙ v(s)

where u(s) and v(s) are the longitude and latitude at each observation respectively and ⊙ is

element-wise multiplication. Figure 4.4 displays the stationary random field and its corresponding

log-periodogram.

The log-periodogram in Figure 4.4 suggests that Mátern covariance kernel in (4.14) is an

appropriate model. Initial optimizations were performed to obtain a sensible fixed value for the

nugget parameter σ2ε = 10−10. We perform Bayesian inference over the joint parameter space

θ = (ρ, σ, ν). This is a challenging problem as it is well known that the smoothness parameter ν

is difficult to estimate due to its lack of information (De Oliveira and Han, 2022). Nonetheless,

we compare three posteriors: the un-adjusted Debiased Whittle, the adjusted Debiased Whittle

with C2 and the standard Whittle. Note that the C1 adjustment is not valid here as this requires

the derivatives of the Mátern covariance w.r.t. the parameters, which do not always exist. We

simulate k = 500 data sets to compute the adjustment C1 matrix. A marginal Gamma prior was
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used for all three parameters, with hyper-parameters,

ρ ∼ Gamma(α = 5, β = 1.0), σ ∼ Gamma(α = 0.7, β = 1/0.7), ν ∼ Gamma(α = 1.0, β = 2).

The marginal posteriors are plotted in Figure 4.5. The figure shows that the standard Whittle

underestimates the ρ and σ compared to the debiased Whittle. The C2 adjustment in orange

inflates the variance compared to the un-adjusted debiased Whittle in blue.

Figure 4.5: Kernel density estimates of the marginal posterior comparison of sea surface temper-

ature data with grid size n = (75, 75). The blue line is the un-adjusted debiased Whittle, the

orange is the adjusted debiased Whittle with C2, and the green is the standard Whittle.

As a diagnostic check, we use the parametric model of (4.8) to define the frequency domain

residual spectrum as

In(ω) / In(ω;θ)
i.i.d.∼ Exp {1} , ω ∈ Ωn, (4.33)

for the C2 adjusted debiased Whittle likelihood where the division is performed element-wise.

Similarly, the residuals of the standard Whittle are obtained by replacing the expected peri-

odogram with the spectral density. Ideally, given the correct model, the residuals should be a

standard exponential distribution throughout the entire observable domain. Figure 4.6 plots the

debiased Whittle residuals on the left and the standard Whittle on the right using their associated

posterior means. The side lobes on both panels are visible but more pronounced on the right

panel. Furthermore, the values of the standard Whittle residual spectrum are more extreme, sug-

gesting portions of the residual spectrum are not exponentially distributed. Hence, the standard

Whittle is misspecified.
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Figure 4.6: Residual spectrum: the periodogram divided by the estimated spectral density (Equa-
tion 4.33). The left plot is C2 adjusted debiased Whittle, and the right plot is the standard
Whittle. The estimated spectra are based on the posterior mean.

4.6.2 Venus topography data

In this example, we consider an application of Venus topography data from Rappaport et al.

(1999). Measurements of the topography and gravity field of a planet play an important role

in understanding a planet’s interior density structure. These measures can provide a greater

understanding of the planet’s thermal evaluation when combined with additional information

such as surface geology (Rappaport et al., 1999). Geospatial analysis via parametric modelling of

the covariance between distinct locations of extraterrestrial planets such as Venus is important

in two ways. First, the parameters associated with the covariance function carry interpretable

meanings of the physical phenomena. For example, in the Mátern kernel, the slope parameter ν

relates to the smoothness of the terrain, the parameter σ describes the amplitude or modulation of

the terrain and the range parameter ρ is associated with the distance which two spatial locations

are uncorrelated, i.e. the oscillation of the process. The second is that a parametric covariance

model provides a natural framework for prediction, i.e. interpolation or extrapolation, for non-

observed regions.
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Figure 4.7: Venus topography data after standardization.

As data on Venus is not easily accessible, prediction may be the best/necessary option for

a better understanding of the topography on Venus. The data, in meters, is observed on a

rectangular (73, 125) grid with no missing values and is displayed after standardization in Figure

4.7. Here, we analyze the same data, patch 3, as in Guillaumin et al. (2022) except in a Bayesian

context. Four models are compared:

1. ℓW(θ), the standard Whittle likelihood.

2. ℓdW(θ), the un-adjusted debiased spatial Whittle likelihood.

3. ℓ
(2)
dW(θ), the adjusted C1 debiased spatial Whittle likelihood.

4. ℓ
(3)
dW(θ), the adjusted C2 debiased spatial Whittle likelihood.

We use the same prior throughout, ρ ∼ Gamma(α = 15, β = 1) and σ ∼ Gamma(α = 10, β = 10).

This data set is challenging due to the long-range dependence compared to the domain

size. We consider an exponential covariance kernel to relieve identifiability issues related to

the smoothness of the process. To find an appropriate value for the smoothness parameter, we

maximize the debiased Whittle likelihood and found ν̂ = 0.55 and set σϵ = 10−10. We set

k = 500 for both adjustments C1 and C2. The maximum debiased Whittle likelihood estimate

is θ̂dW = (24.6012, 1.557) for ρ and σ respectively.

Obtaining a reasonable C2 adjustment proved difficult since the variance of the Monte Carlo

estimate of Var{θ̂dW} is large. This is due to outliers in the simulated maximum likelihood

estimates. This stems from larger values of ρ compared to the domain size; to alleviate this, 10%

of the largest maximum likelihood estimates of ρ were removed.
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The kernel density estimates of the marginal posteriors are plotted in Figure 4.8. Along

with adjusting the curvature of the posterior, the C2 adjustment also adjusted the mean of

the posterior. The Var{θ̂dW} was still large enough to make the adjusted likelihood flat. As

a result, the prior has a large contribution to the adjusted posterior, as mentioned in Section

4.5.3. Likewise, for the adjusted C1 posterior, its mean also shifted to a lesser extent than the

abovementioned adjustment due to the magnitude of covariance of the score function in (4.25).

Despite this, the two curvature-adjusted posteriors exhibit a higher variance than the un-adjusted

debiased Whittle posterior, which was shown to have improper coverages in Section 4.5.4.

Figure 4.8: Kernel density estimates of the marginal posterior for Venus topography data. The

un-adjusted debiased Whittle in blue, the adjusted C1 debiased Whittle in orange, the adjusted

C2 in green and the standard Whittle in red.

4.7 Conclusion and discussion

This paper investigates Bayesian inference for covariance-stationary random fields for the debiased

spatial Whittle likelihood. The debiased Whittle likelihood for frequentist parameter estimation

has many benefits discussed in Guillaumin et al. (2022) as opposed to other estimation domain

methods (e.g. Whittle (1954), Gelfand et al. (2010)). Not the least of which is the computationally

efficiency of the debiased Whittle likelihood via the Fast Fourier Transform.

We extend the debiased Whittle likelihood to construct an asymptotically proper coverage

likelihood suitable for Bayesian inference. Initially introduced in Monahan and Boos (1992),

proper likelihoods for inference satisfy the Bayesian credible interval in (4.17) for every level

of coverage α. They propose a simulation-based algorithm, as mirrored in Cook et al. (2006) to

validate the posterior coverages by assessing the uniformity of the quantiles of the true generating

parameter, which we assess in a simulation study in Section 4.5.4.

Leveraging the fact that the debiased spatial Whittle likelihood falls within the framework
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of a pseudo-likelihood in finite samples, we use ideas from Ribatet et al. (2012) to construct

posterior curvature adjustments that asymptotically satisfy the Bernstein Von-Mises theorem for

the subsequent adjusted debiased Whittle likelihood. Unfortunately, the quantities needed to

compute the posterior adjustments are not computationally tractable for the debiased spatial

Whittle likelihood; hence, we rely on estimating the quantities mentioned above to propose two

unique adjustments C1, C2. The former adjustment works by computing the variance of the score

function, which is more robust to processes with large length scales; however, this adjustment

relies on the derivative of the covariance function, which may not be analytically available for

general Mátern class covariance functions. The latter adjustment estimates the adjustment via a

simulation approximation of the sampling distribution of the MDWLE and the observed Fisher

information, which provides a tailored adjustment useful in smaller grid sizes.

Our method can be used for non-Gaussian data with a specified model (by simulating the

non-Gaussian field) using the same adjustments. This is because frequency domain techniques are

generally more robust to non-Gaussian data-generating processes; only the real and imaginary

parts of the periodogram are assumed to be asymptotically normal (e.g. Peligrad and Zhang

(2019)).

This work can also be applied as a particular case for time series, d = 1, studied in Sykulski

et al. (2019). For series that don’t satisfy the assumptions of the parametric Whittle model, the

Bayesian debiased Whittle likelihood can be a useful computationally efficient alternative.

Estimation techniques for large spatial data are at the forefront of statistical research. For

ultra-large spatial data, spectral subsampling MCMC (Quiroz et al., 2019; Salomone et al., 2020)

is an attractive alternative if the log-likelihood function can be computed independently for each

data point. As it stands, this is not possible/inefficient for the debiased Whittle likelihood since

the expected periodogram is computed on the whole grid of Fourier frequencies via the FFT or

in the frequency domain by a convolution that requires the whole spectrum. Future research will

also focus on extending non-latticed cases when the data are irregularly spaced.
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Chapter 5

Conclusion and future research

This thesis investigates Bayesian inference via frequency domain methodologies for stationary

time series models and spatial data. We employ the Whittle likelihood (Whittle, 1953) or variants

thereof (Guillaumin et al., 2022), to approximate the likelihood function of a stationary process

with a covariance function governed by unknown parameters. Frequency domain estimation

methods are generally asymptotically equivalent to their time domain counterparts but trade

computational efficiency for bias in parameter estimation in finite samples. At its heart, frequency

domain estimation techniques rely on the central limit theorem for the Discrete Fourier transform

(DFT), studied in Peligrad and Wu (2010); Peligrad and Zhang (2019); Shao and Wei (2007).

Loosely speaking, the central limit theorem for the DFT guarantees asymptotic normality for

the real and imaginary parts of the DFT for stationary processes. Furthermore, the DFT of the

process at each frequency are asymptotically independent. For the applications considered in this

thesis, we show that the bias incurred by the frequency domain approximation is negligible or

consider methods that explicitly reduce bias (Guillaumin et al., 2022).

Chapter 2 studies dynamic regression models with semi-long memory error terms. Here, we

model the response variable as a linear combination of exogenous stationary predictors with an

ARTFIMA process for the error term to capture the leftover, unexplained semi-long memory in

the residuals. Here, the ARTFIMA model generalizes the well-known ARFIMA and ARIMA

models by introducing tempering, a way of incorporating semi-long memory into an ARMA

process while regularising the slow decay of the ARFIMA covariance function. We propose a

fast, asymptotically exact Whittle likelihood method to fit DLR models with ARTFIMA errors.

We show that this model can improve forecasts compared to the DLR with ARFIMA errors with

applications in electricity demand.

Chapter 3 considers general Lévy-driven continuous-time ARMA models. Here, Bayesian

inference is performed via spectral subsampling on the Whittle likelihood with the aliased spectral

density. This approach relies heavily on large data to satisfy the asymptotic normal of the DFT.

112



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 113

We first demonstrate asymptotic normality in a simulated study for Gaussian and two non-

Gaussian-driven CARMA models. We show that the Whittle likelihood approximates the Kalman

filter likelihood well for Gaussian CARMA models. Subsampling was performed on Gaussian and

non-Gaussian-driven CARMA processes for simulated data, and for both cases, subsampling led

to a significant decrease in relative computation time. We considered an application with minute

Bitcoin prices and showed, on average, a 100x increase in computational efficiency compared to

the standard Whittle approach.

Chapter 4 investigates the Bayesian inference of random fields via the debiased spatial Whittle

likelihood (Guillaumin et al., 2022). It is well known that frequency-domain estimation methods

can cause substantial bias, particularly for d = 2, d = 3, (Dahlhaus and Künsch, 1987). The

debiased Whittle likelihood relies on the expected periodogram, as opposed to the usual spectral

density. This approach results in favourable asymptotic properties of point estimates and is still

computationally efficient as it employs the FFT. We propose posterior curvature adjustments

based on previous work Ribatet et al. (2012) to perform Bayesian inference to obtain proper

posteriors based on coverages of posterior sets. We show in a simulation study that these ad-

justments satisfy posterior coverages with increasing grid sizes and for different domain shapes.

We apply our method to two real-world datasets, sea surface temperature and Venus topography

data.

Future research will extend the frequency domain methodology to multivariate dynamic re-

gression models, yielding multi-dimensionality in the response or explanatory predictors or error

process. Additionally, modelling the response as a non-linear transformation of the exogenous

predictors is a possible extension. For continuous-time models, a natural extension to CARMA

models considered in Chapter 3 is the fractionally integrated CARMA (CARFIMA) model pro-

posed in Brockwell and Marquardt (2005). Furthermore, Whittle estimation and spectral sub-

sampling of irregularly sampled CARMA models can be considered due to modified versions of

the Fourier Transform in Fechner and Stelzer (2018). Finally, due to its computational efficiency,

a debiased Whittle approach would be appealing for large, irregularly spaced spatial data.
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Fechner, Ż. and Stelzer, R. (2018). Limit behaviour of the truncated pathwise Fourier-



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 114
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