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ABSTRACT

G
raph Contrastive Learning (GCL) has emerged as a powerful tool for unsupervised
graph representation learning, attracting significant attention across various appli-
cations. Its success depends on obtaining high-quality contrasting samples through

graph augmentations. However, current augmentation strategies face several limitations,
such as introducing noise that degrades downstream model performance, lacking flexi-
bility for different datasets with various characteristics, and being unable to process non-
embedding node features like text. These limitations hinder the full potential of GCL in
practical applications. Moreover, implementing GCL in diverse application scenarios, par-
ticularly recommendation systems, is crucial for realizing its practical value. Recommen-
dation System (RS) domains are especially suitable for GCL to perform because it can gen-
erate contrasting samples that provide self-supervised training signals, addressing the lack
of related information in real-world applications caused by various factors like privacy con-
cerns . Despite its potential, the use of GCL in recommendation systems remains underex-
plored, and there is a need to explore its full potential in this domain. To address the prob-
lems above, this research proposes advanced graph augmentation strategies, incorporating
counterfactual mechanisms and the capabilities of Large Language Model (LLM), to over-
come the limitations of existing methods. By integrating counterfactual mechanisms, the
proposed strategies aim to mitigate the noise introduced during graph augmentations and
achieve flexibility when facing different graph data, thereby improving the performance
on downstream graph learning tasks. Additionally, the utilization of LLM capabilities en-
ables the processing of non-embedding node features like text, enhancing the flexibility
of the augmentation strategies for graph data with multimodality like text features. Fur-
thermore, this study introduces the concept of hyper meta-path to construct contrasting
samples (i.e., hyper meta-graphs) for GCL for multi-behavior recommendations, provid-
ing insights into creating effective contrasting samples in this specific context, which is
a pioneering research work in the domain of GCL in RS and inspires the future works in
the literature. This study also investigates specific training paradigms, finding that GCL
pre-training and prompt-tuning can better utilize GCL’s capabilities in recommendations.
By exploring these training paradigms, the research aims to provide practical guidance on
how to effectively leverage GCL in recommendation systems. In summary, the findings of
this study contribute to the advancement of graph augmentation strategies for GCL and
demonstrate the applicability of GCL in enhancing RS.
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INTRODUCTION

This section presents the introduction to the thesis, which includes three parts: background,

research scopes, and contributions. Specifically:

• Sec. 1.1 introduces the research background of this research by demonstrating the

intuitions of Contrastive Learning (CL)

• Sec. 1.2 presents CL in graph learning domain and introduces the research scopes re-

garding Graph Contrastive Learning (GCL), including graph augmentation strategies

in GCL and GCL’s applications in Recommendation System (RS).

• Sec. 1.4 briefly summarizes the research works conducted and the related contribu-

tions to show how this research advances the related research areas.

This introductory chapter lays the foundation for the thesis by providing a compre-

hensive overview of the research background, scope, and contributions. The subsequent

sections will delve into the detailed contents.
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CHAPTER 1. INTRODUCTION

1.1 Research Background

Many Machine Learning (ML) methods [23] depend heavily on a large amount of man-

ual labels or rewards as the primary learning signals during the training process. Although

these ML methods have achieved significant success over the past decade, their over-reliance

on supervised signals presents several limitations:

• First, the data itself contains rich information that can provide more semantics than

the limited information available from manual labels [31]. Relying solely on super-

vised learning necessitates an enormous number of labels, which can be both time-

consuming and resource-intensive to obtain. This over-reliance may also result in

knowledge-specific solutions, thereby limiting the models’ generalization ability [81].

In other words, models trained exclusively on labeled data may perform well on spe-

cific tasks but struggle to generalize to new, unseen scenarios.

• Second, in some scenarios, such as reinforcement learning [110], the cost of acquir-

ing rewards or labels is prohibitively high [80, 145]. For instance, in real-world appli-

cations like autonomous driving or robotic control, obtaining accurate and reliable

labels or rewards can be extremely challenging and expensive. This makes it imprac-

tical to rely solely on supervision signals for solving all problems. The high cost and

difficulty of obtaining these signals can hinder the development and deployment of

effective ML models in such domains.

Given these limitations, there is a growing interest in exploring alternative learning

paradigms that do not rely as heavily on supervised signals. Techniques such as unsu-

pervised learning, semi-supervised learning, and self-supervised learning [31] are gaining

traction as they can leverage the inherent structure and information within the data itself.

These approaches aim to reduce the dependency on manual labels and rewards, thereby

addressing some of the key challenges faced by traditional ML methods.

While conventional ML methods have achieved remarkable success, their dependence

on large amounts of supervised signals presents significant limitations. By exploring and

adopting alternative learning paradigms, researchers can develop more robust and gen-

eralizable models that are better suited to a wide range of real-world applications. This

shift in focus has the potential to drive significant advancements in the field of machine

learning. As an alternative solution, Self-Supervised Learning (SSL) [31] has been proposed

and has garnered significant attention from researchers due to its impressive performance

on various representation tasks. SSL leverages the structural information inherent in the

2



1.1. RESEARCH BACKGROUND

data to formulate training procedures without the need for manual labels. It is important

to note that self-supervised learning (SSL) encompasses two main approaches: contrastive

learning and generative learning. Among the different approaches within SSL, Contrastive

Learning (CL) has recently gained considerable interest because of its simplicity, effective-

ness, robustness, and generalizability. To gain a deeper understanding of contrastive learn-

ing, it is essential to distinguish it from generative learning.

Generative learning methods, such as Generative Adversarial Networks (GANs) [29] and

Variational Autoencoders (VAEs) [52], generate new data instances from input data, ensur-

ing that the generated instances are similar to the input instances in high-level semantics.

In contrast, contrastive learning methods focus on identifying common features within

data of the same class and distinguishing differences between data of different categories.

Unlike generative learning, which operates at the instance level, contrastive learning distin-

guishes data in an abstract latent space, leading to more superficial structures and stronger

generalization abilities. The primary objective of CL is to train to encode data from the

same class similarly while maximizing the differences among data from different classes.

(a) Drawing of a dollar bill from memory. (b) Drawing made with a dollar bill present.

Figure 1.1: An illustration to help understand contrastive learning borrowed from [2].

An empirical experiment from [2] illustrates the intuitions behind contrastive learning

(CL). In this experiment, two subjects are asked to draw a dollar bill: one recalling from

memory and the other with a dollar bill present. Predictably, the drawing made with the

dollar bill present is much more detailed than the one made from memory, which are

shown in Figure 1.1. Despite having seen a dollar bill countless times, people do not retain

a full representation of it, they only remember enough features to distinguish it from other

objects. Similarly, can researchers develop representation learning algorithms that focus

not on pixel-level details but on high-level features sufficient to differentiate between ob-

jects? The answer is yes, and this is the core idea of CL. By contrasting samples, CL captures

the high-level features necessary to distinguish the target from other objects.

3



CHAPTER 1. INTRODUCTION

1.2 Research Aims

The concept of CL can be applied to a variety of scenarios, including Natural Language

Processing (NLP) and Computer Vision (CV), as well as to graph learning domains. Graph-

structured data is a crucial form of real-world data that effectively represents complex rela-

tionships among entities. This type of data is essential for numerous applications, such as

social network analysis and graph-based recommendation systems, where understanding

the intricate connections between entities is paramount. Graph learning techniques, par-

ticularly Graph Neural Network (GNN), have shown significant promise in handling graph-

structured data. These techniques can be further enhanced by incorporating CL to leverage

its advantages. CL can help improve the performance of graph learning tasks by enabling

models to learn more robust and discriminative representations of the data. This synergy

between CL and graph learning opens up new possibilities for advancing the field.

Given the potential benefits, this research focuses on the application of CL in graph

learning, a domain referred to as GCL. The aim is to advance progress in both CL and graph

learning fields by exploring how these two areas can complement each other. By integrating

CL into graph learning, we can develop more effective models that better capture the com-

plexities of graph-structured data. In conclusion, the integration of CL with graph learning

techniques such as GNNs holds great promise for enhancing the performance of various

graph-related tasks. This research aims to contribute to the advancement of both fields by

investigating the potential of GCL. Through this exploration, this research hopes to unlock

new insights and capabilities that can be applied to a wide range of real-world applications.

1.3 Research Motivations

There are multiple aspects from which to study GCL. One of the most critical compo-

nents of GCL is the graph augmentation strategy, which is essential for generating con-

trasting pairs and ensuring the success of GCL. The GCL process embeds critical semantic

information from the input graph into the latent space by performing graph encoding and

contrastive learning between appropriate contrasting samples. Current literature identi-

fies three major types of graph augmentation strategies, including random augmentation,

rule-based augmentation, and adaptive augmentation. However, these existing strategies

have various limitations that prevent GCL from achieving optimal performance. Therefore,

a specific focus of this research is to design advanced graph augmentation strategies to

address these limitations and improve the performance of GCL.
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Another perspective for advancing the development of GCL is to explore its potential

in addressing real-world problems. CL has already demonstrated its practical value in NLP

[116, 36] and CV [18] by solving a series of real-world issues. Similarly, GCL has been ap-

plied to various real-world scenarios, such as recommendation systems and social network

analysis. GCL can introduce auxiliary self-supervised training signals, which is particularly

beneficial for applications like recommendation systems where user profiles may be pro-

tected for privacy reasons and lack sufficient supervised training signals. However, at the

beginning of this research, GCL in recommendation systems was underexplored, and ex-

isting methods did not adequately address the limitations of the training paradigm in these

scenarios. Therefore, another specific focus of this research is to investigate the application

of GCL in recommendation systems and to improve the current training paradigms.

In summary, this research is motivated by advancing the field of GCL via enhancing

graph augmentation strategies and exploring its potential in recommendation systems. By

proposing more advanced graph augmentation strategies to address the limitations in cur-

rent literature, this study seeks to improve the performance and flexibility of GCL methods.

Additionally, by investigating the application of GCL in recommendation systems, this re-

search aims to introduce a pioneering work of applying GCL to graph-based recommenda-

tion tasks and investigate effective training paradigms that can improve current methods.

Ultimately, this research aspires to contribute significantly to both the advancements in

GCL methodology and its applications in recommendation systems.

1.4 Contributions

This thesis makes several key contributions to improving GCL and its applications in rec-

ommendation systems. It introduces innovative strategies to enhance graph data process-

ing, making it more adaptable and effective. By using advanced techniques, the research

reduces noise and increases flexibility in handling diverse data types, including text. It also

pioneers new methods for creating contrasting samples, offering fresh insights for multi-

behavior recommendations. Additionally, the study explores training methods that opti-

mize the use of GCL, providing practical guidance for its application in recommendation

systems. Overall, the research advances the field and inspires future work.

Focusing on the two research scopes outlined in the previous section, this research

presents four studies, the detailed contributions of each work are listed as follows.

Chap. 3 introduces a novel method that generates high-quality contrasting samples for

GCL using a counterfactual mechanism. This learning-based GCL method, known as CGC,
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can adaptively process different datasets with various characteristics, addressing limita-

tions in the current literature and proposing a flexible GCL approach. Chap. 4 addresses the

limitation that current GCL methods cannot directly augment non-embedding features like

text. It presents a novel GCL framework called LATEX-GCL, which leverages Large Language

Model (LLM) to augment text features on the graph, producing high-quality contrasting

samples. Three novel and tailored prompts for text feature augmentation are introduced

and examined through extensive experiments.

To demonstrate the practical value of GCL methods, it is essential to apply them to real-

world scenarios. One of the most suitable application areas for GCL methods, as previously

discussed, is recommendation systems. Therefore, the remaining two sections focus on the

applications of GCL in recommendation systems. Chap. 5 conducts pioneering work by

applying GCL to recommendation tasks, introducing the concept of hyper meta-paths to

construct hyper meta-graphs for contrastive learning. The proposed HMG-CR method out-

lines the implementation pipeline of GCL in RS, inspiring future research in this domain.

Chap. 6 examines GCL in RS at a higher level, investigating the training paradigm of GCL for

recommendation. An empirical study demonstrates the disadvantages of the current end-

to-end training paradigm. Consequently, a novel framework for GCL in RS, called CPTPP, is

proposed. This framework utilizes prompt learning to introduce an effective ’pre-training

and prompt-tuning’ paradigm.

In short, this research proposes advanced graph augmentation strategies, incorporat-

ing counterfactual mechanisms and the capabilities of LLM, to overcome the limitations

of existing GCL methods. Moreover, a pioneering research work is proposed and a novel

training paradigm of GCL for recommendations is examined, inspiring the future works in

the domain of GCL in RS.

1.5 Chapter Summary

In summary, this chapter serves as the introduction to this thesis, providing an overview of

the research background, scope, and contributions.

Specifically, Section 1.1 highlights the limitations of SSL and contrasts it with generative

learning methods, thereby introducing the background and intuitions of contrastive learn-

ing (CL). Section 1.2 outlines the primary research scope, focusing on GCL. It identifies two

specific sub-scopes: graph augmentation strategies in GCL and the application of GCL in

RS. Finally, Section 1.4 summarizes the contributions of this research by introducing the

four research works in Chapter 7, which focus on the two sub-scopes.
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1.5. CHAPTER SUMMARY

The subsequent content of this thesis is organized as follows:

• Chap. 2: Literature review on augmentation techniques and GCL’s applications in RS.

• Chap. 3: Generating Counterfactual Hard Negative Samples for GCL (RQ1.1).

• Chap. 4: LLM-Based Data Augmentation for Text-Attributed GCL (RQ1.2).

• Chap. 5: Hyper Meta-Graph Construction for GCL in RS (RQ2.1).

• Chap. 6: A ‘Pre-training and Prompt-tuning’ Paradigm for GCL in RS (RQ2.2).

• Chap. 7: Thesis conclusion and future work discussion.

7





C
H

A
P

T
E

R

2
LITERATURE REVIEW

This chapter provides a comprehensive literature review on GCL methods and their appli-

cations in RS, focusing on four main aspects, specifically:

• Sec. 2.1 illustrates the overview of GCL procedures by introducing graph augmenta-

tion, graph element encoding, training objective, and downstream tasks.

• Sec. 2.2 introduces current literature about graph augmentation strategies by giving

a taxonomy. Subsequently, a thorough limitation analysis regarding these graph aug-

mentation strategies is provided.

• Sec. 2.3 briefly introduces GCL’s applications in the research domain of RS. It mainly

analyzes the limitations in current training paradigm used to utilized GCL in RS.

• Sec. 2.4 summarizes the limitations of graph augmentation strategies and GCL’s ap-

plications in RS. thereby proposing four research questions.

• Sec. 2.5 introduces some supplementary content about some other related works,

including LLMs for graph learning, multi-behaviour recommendation, and prompt-

tuning, which can help understand the research works within this thesis.

This chapter presents a thorough literature review regarding GCL, thereby introducing

the research questions of this thesis.
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2.1 Overview of Graph Contrastive Learning Procedures

To implement GCL, four crucial steps are required:

• Graph Augmentation: Augmenting the graph data to produce contrasting samples.

• Graph Element Encoding: Encoding the contrasting samples to obtain graph embed-

dings for loss calculation and training.

• Training Objective Definition: Define the training objective according to the experi-

mental settings, graph embedding, and the mechanism of the contrastive learning.

• Addressing Downstream Tasks: Taking the graph embeddings produced by the previ-

ous steps as the input to the downstream models to conduct the specific task.

2.1.1 Graph Augmentation

The success of GCL hinges on the effective generation of contrasting samples [132, 149,

131]. By conducting CL between appropriately generated contrasting samples and the in-

put target, GCL embeds critical semantic information of the input graph into the latent

space. This embedding process is essential for capturing the underlying structure and rela-

tionships within the graph data. Graph augmentation is a key step in this process, aiming to

generate diverse and meaningful variations of the original data without altering the seman-

tic labels. The goal of graph augmentation is to create new data instances that maintain the

essential characteristics of the input data while introducing variations that can be used for

contrastive learning. These augmented instances are crucial for the GCL process, as they

provide the necessary contrasting samples for learning robust representations. The aug-

mented data instances are then paired together to form positive pairs in the GCL process.

Positive pairs consist of the original graph and its augmented version, which are expected

to be similar in the latent space. By maximizing the similarity between these positive pairs,

GCL ensures that the learned representations capture the important semantic information

of the input graph. This process helps the model to distinguish between different graph

structures and to generalize better to new, unseen data.

The generation of contrasting samples through graph augmentation is fundamental to

the success of GCL. By creating diverse and meaningful variations of the original data, GCL

can effectively embed critical semantic information into the latent space. This process not

only enhances the model’s ability to capture the underlying structure of the graph data

but also improves its generalization capabilities. Numerous studies [78, 104, 132, 149] have
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demonstrated that graph augmentations are crucial in GCL. With appropriate graph aug-

mentations, GCL methods outperform many sophisticated GNN models on various unsu-

pervised learning tasks. This highlights the importance of selecting and applying effective

augmentation techniques to enhance the performance of GCL models.

In the practice of GCL, several key insights have been reported in the literature. One sig-

nificant observation is that combining different graph augmentations tends to yield better

results [132]. This is because each graph augmentation method incorporates its unique

underlying priors, which can introduce diverse latent semantics into the model. By lever-

aging multiple augmentation techniques, the model can capture a richer and more com-

prehensive set of features from the graph data. The effectiveness of combining different

augmentations aligns with intuitive expectations. In real-world scenarios, data often con-

tains multiple layers of information and relationships. By applying diverse augmentation

techniques, GCL models can better mimic the complexity of real-world data, leading to

improved performance on downstream tasks.

2.1.2 Graph Element Encoding

The graph encoder is an essential component of the entire GCL process. It is responsible

for processing both the original and augmented graph elements to generate graph embed-

dings for CL. The effectiveness of the graph encoder determines whether the models can

learn representative graph embeddings from contrasting samples.

GNN models are among the most widely used types of graph encoders. Examples in-

clude GCN [53] and GAT [103]. Technically, any GNN model can be employed in GCL, as

GCL is not particularly sensitive to the choice of GNN models [78]. This flexibility allows

users to select from a variety of GNN architectures based on specific needs and preferences.

Interestingly, the success of GCL does not necessarily depend on using highly sophis-

ticated GNN models. Since properly constructed contrasting pairs carry rich semantic in-

formation, such as geometric and topological structures, even simple models like GCN can

achieve satisfactory performance. This highlights the importance of the contrasting pairs

themselves in capturing the essential features of the graph data. In practical applications of

GCL, geometric or topology-based GNNs, such as GIN [118] and TAGCN [22], are often used

as graph encoders. These models are favored for their simplicity and effectiveness. They

can leverage structural information from proposed hyper meta-paths and the advantages

of structure-level contrastive learning [78], making them well-suited for GCL scenarios.
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2.1.3 Training Objective

As introduced in the previous background section, the core idea of GCL is to make posi-

tive pairs as similar as possible while pushing negative pairs far apart. For any data point

x, GCL methods aim to train graph encoders that ensure the data point x is similar to its

positive contrasting sample and distinct from its negative contrasting sample, which can

be formulated as follows:

(2.1) scor e
(

f (x), f (x+)
)>> scor e

(
f (x), f (x−)

)
,

where x+ represents the positive sample, and x− denotes the negative sample. The score

function is used to calculate the similarity between the samples, which will be determined

according to the specific scenarios.

In this context, the data point x can be considered an anchor point, e.g., the input graph

in GCL. To achieve the training objective, it is needed to build a classifier that accurately

distinguishes between positive and negative samples. This requires the similarity function

to assign high values to positive pairs and low values to negative pairs. The InfoNCE loss

function [102] is widely used to accomplish this goal:

(2.2) LIn f oNC E =− log
exp

(
f (x, x+)

)∑
xi∈X exp

(
f (x, xi )

) ,

where X = {x1, x2, · · · , xN } contains all the contrasting samples. It can be observed that the

formula above is similar to cross-entropy for N-way softmax classification tasks.

It is worth noting that InfoNCE has a strong connection to mutual information:

(2.3)

EX

[
− log

exp( f (x+, x))∑
xi∈X f (xi , x)

]
=−E(x+,x) f (x+, x)+E(x+,x)

[
log

∑
xi∈X

f (xi , x)

]

=−E(x+,x) f (x+, x)+E(x+,x)

[
log

(
exp

(
f (x+, x)

)+ ∑
xi∈Xneg

exp
(

f (xi , x)
))]

≥−E(x+,x) f (x+, x)+EX

[
log

∑
xi∈Xneg

exp
(

f (xi , x)
)]

=−E(x+,x) f (x+, x)+E

[
log

1

N −1

∑
xi∈Xneg

exp
(

f (xi , x)
)+ log

1

N −1

]
,

which is equivalent to MINE [4] estimator. Therefore, maximizing a lower bound on this

estimator while minimizing InfoNCE ensures the maximization of mutual information be-

tween the anchor data and the positive sample.
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2.1.4 Downstream Tasks

In the final step of GCL procedures, the trained graph embeddings are utilized to conduct a

sort of graph learning tasks. These downstream tasks can be roughly broken down into two

categories, which are listed below:

• Node-level tasks: This kind of tasks focus on the properties of nodes and relations

among nodes, such as node classification [53], node clustering [101], and link pre-

diction [138] in pure graph learning context. Such tasks can be converted to real-

world tasks in different scenarios. For example, node classification can be converted

to anomaly detection in financial transactions [3], node clustering can be converted

to community detection in social network analysis [44], and link prediction can be

converted to recommendation tasks in graph-based recommendation systems [40].

• Graph-level tasks: This kind of tasks focus on analyzing the properties and structures

of a whole graph, such as graph classification [132, 149] and graph generation [148].

In real-world application scenarios, graph classification can be converted to molec-

ular property prediction in bioinformatics [14, 9] and graph generation can be used

to conduct drug discovery in pharmaceutical industry [7].

The pre-trained graph embeddings can be not only directly used to conduct down-

stream tasks in an unsupervised manner but also incorporated with downstream models

and supervised labels to enhance downstream performance in a semi-supervised manner.

The specific usage manner depends on users’ needs and preferences.

2.2 Graph Augmentations in Graph Contrastive Learning

This section provides a concise review of the research progress on GCL with a focus on

graph augmentation strategies. The first part introduces various types of graph augmenta-

tion strategies, while the second part offers a detailed analysis of their limitations.

2.2.1 Three Types of Graph Augmentation Strategies

There are various taxonomies to categorize current GCL methods, and one of the most im-

portant one is designed according to the graph augmentation strategies [50]. This thesis

roughly break down GCL methods into three categories, which are shown in Figure 2.1,

including random augmentation, rule-based augmentation, and adaptive augmentation.
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Graph Contrastive 
Learning

Rule-based
Augmentation

Random
Augmentation

Adaptive
Augmentation

Figure 2.1: A taxonomy of GCL methods with regard to graph augmentation strategy.

2.2.1.1 Random Augmentation

Random augmentation perturb the original graph by adopting structure perturbation, fea-

ture masking, and subgraph sampling [132] to produce contrasting samples.

Structure perturbation perturbs a portion of nodes and edges in the original graph by

dropping node, deleting existed edges, and adding new edges [132]. Such a process can be

briefly formulated as follows:

(2.4) Â = P ·A,

where A is the adjacency matrix of the original graph, P is the randomly generated pertur-

bation matrix, and Â denotes the adjacency matrix of the perturbed graph.

Feature masking aims to mask or alter the values in feature embedding matrix of the

original graph, which can be briefly formulated as follows:

(2.5) X̂ = M ·X,

where X is the feature embedding matrix of the original graph, M denotes the randomly

generated masking matrix, and X̂ is the feature embedding matrix of the perturbed graph.

Both formulations regarding the structure perturbation and feature masking above are

abstract descriptions. The practical implementation could be much more complicated due

to various sophisticated mechanisms and designs involved.

Subgraph sampling differs from the previously discussed graph perturbation opera-

tions, as it does not introduce any changes to the original graph. Instead, it involves ex-

tracting subgraphs from the original graph, ensuring that these subgraphs retain a portion

of the original graph’s semantics. By contrasting these subgraphs, one can potentially cap-

ture the local properties of the original graph. The subgraph sampling process can be suc-
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cinctly described as follows:

(2.6) AS = A[S ,S ], XS = X[S , :],

where S denotes the node set of the sampled subgraph.

In summary, random augmentation represents one of the most straightforward yet ef-

fective graph augmentation strategies in the early stages of GCL research, significantly ad-

vancing progress in related domains. DGI [104] is a pioneering work in GCL that employs

corruption operations to alter graph features, thereby generating contrasting samples. GCC

[78] is among the first to leverage subgraph sampling across different datasets to obtain

contrasting samples. GraphCL [132] systematically reviews all the aforementioned random

augmentation operations and conducts extensive experiments, providing valuable insights

into their practical application.

2.2.1.2 Rule-based Augmentation

A representative solution for rule-based augmentation is graph diffusion [35, 74, 100]. This

method has gained significant attention due to its ability to enhance the structural and se-

mantic properties of graphs [54]. Graph diffusion operates by iteratively constructing con-

nections between previously unlinked nodes in the original graph. This process is crucial

as it allows the augmentation method to utilize the global semantics and high-order re-

lational information inherent in the graph. By establishing these new connections, graph

diffusion effectively captures the broader context and relationships that may not be imme-

diately apparent in the original graph structure. Moreover, graph diffusion is versatile and

can be applied to various types of graphs, making it a robust tool for graph augmentation.

Its ability to leverage global semantics and high-order relational information makes it an

invaluable technique in the field of GCL by generating high-quality contrasting samples.

The diffusion process can be formulated as follows:

(2.7) Adi f f =
∞∑

k=0
Θk Tk ∈Rn×n ,

where Adi f f denotes the adjacency matrix of the diffused graph, Θk is a coefficient deter-

mined by specific diffusion settings, T represents the transformation matrix derived from

A, and n is the number of nodes in the graph. There are multiple options for Θk and T. For

example, if Heat-Kernel diffusion [100] is adopted, then T = AD−1 and Θk = e−t t k

k ! , where D

is the diagonal degree matrix of the original graph and t represents the diffusion time.

In summary, rule-based augmentation like graph diffusion offers a well-defined aug-

mentation rules to process the graph to acquire global semantics and high-order relations
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while avoiding random noise introduced by random augmentation strategies. MVGCL [35]

is one of the most impactful research work adopting such augmentation strategy, revealing

limitations of random augmentations and investigating different diffusion rules like Heat-

Kernel [100] and PageRank [74] for graph augmentation.

2.2.1.3 Adaptive Augmentation

Adaptive augmentation [149] is a technique that initially identifies which elements within

a graph are deemed non-essential based on specific graph metrics, such as centrality [6].

Once these less important elements are identified, they are subsequently perturbed to gen-

erate augmented views of the graph.

In contrast to this element-focused strategy, there exists another category of adaptive

strategies that emphasize the augmentation process itself rather than the individual graph

elements [131]. These strategies are grounded in the concept of automatic learning, wherein

random augmentations are adaptively selected from a predefined strategy pool. This ap-

proach aims to optimize the augmentation process by dynamically choosing the most suit-

able augmentations, thereby enhancing the overall effectiveness of the graph processing.

By focusing on not only the graph elements but also the augmentation techniques, these

adaptive strategies offer a more flexible and potentially more powerful means of improving

the performance of GCL.

In summary, adaptive augmentation strategies determines the augmentation process

according to the specific context and characteristics of the input graph, which can fully

utilizing the potential of conventional graph augmentation techniques [132]. In literature,

GCA [149] is one of the first adaptive GCL method, which is built on GraphCL [132]. GCA

adaptively selects non-essential graph elements to conduct perturbation by calculating

graph metrics like centrality [6] to improve the augmentation quality. GraphCL-Auto [131]

is also developed based on GraphCL, which employs automatic learning strategy to select

proper augmentation techniques to process the input graph.

2.2.2 Limitations of Current Graph Augmentation Strategies

Based on the preceding discussion, current literature identifies three categories of graph

augmentation strategies, including random augmentation [132, 78], rule-based augmenta-

tion [35], and adaptive augmentation [149, 131, 94]. However, each of these strategies has

inherent limitations that hinder GCL from reaching optimal performance.
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2.2.2.1 Limitations of Random Augmentation

One significant limitation of random augmentation strategies [132, 78] is their tendency

to introduce noise into the original graph. This noise is generated during the process of

creating perturbed contrasting samples. While the intention behind this perturbation is

to enhance the robustness and generalizability of the model, the introduction of random

noise can have unintended consequences. The primary issue with this random noise is its

detrimental impact on the performance of downstream graph models [35]. When noise is

added indiscriminately, it can obscure the underlying structure and relationships within

the graph. This obfuscation makes it more challenging for the model to learn meaningful

patterns and features, ultimately leading to suboptimal performance.

While random augmentation strategies offer a straightforward method for generating

contrasting samples, their propensity to introduce noise poses a significant limitation. To

address these challenges, it is essential to explore alternative augmentation strategies that

minimize the introduction of random noise.

2.2.2.2 Limitations of Rule-based Augmentation

Rule-based augmentation strategies [54, 35] have been proposed to mitigate the impact

of noise introduced by random augmentation strategies. These rule-based methods aim to

provide a more structured and controlled approach to graph augmentation, thereby reduc-

ing the randomness and potential degradation in model performance. However, despite

their advantages, rule-based strategies come with their own set of limitations.

One major drawback of rule-based augmentation strategies is their rigidity caused by

no learnable parameters involved during graph augmentation [144]. These strategies are

often designed with specific rules that may not be easily adaptable to different applica-

tion scenarios. However, the diversity of graph data in real-world applications presents a

challenge for rule-based strategies. Designing specific rules for each dataset is not only

time-consuming but also impractical. For instance, a rule that works well for social net-

work graphs may not be suitable for biological network graphs. This lack of flexibility makes

it challenging to apply rule-based strategies across diverse datasets and domains.

Additionally, many rule-based strategies, such as matrix diffusion: Heat-Kernel diffu-

sion [100] and PageRank diffusion [74], require significant computational resources. Ma-

trix diffusion involves complex calculations that can be computationally intensive, making

it difficult to incorporate these strategies into an end-to-end training process. This compu-

tational burden reduces the overall efficiency of GCL methods, as the time and resources
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required for augmentation can become prohibitive.

2.2.2.3 Limitations of Adaptive Augmentation

Adaptive augmentation strategies offer a promising approach to improving graph augmen-

tation by adaptively adjusting to the characteristics of the graph to be processed. These

strategies can be broadly categorized into two types: graph element-based [149, 94] and

strategy-based [131] adaptive augmentations.

Graph element-based adaptive augmentation [149, 94] focuses on identifying and re-

moving less important elements in the graph based on certain graph metrics, such as node

centrality [6] and edge importance [57]. By dropping less significant elements, the method

aims to produce augmented views that retain the essential structure and information of

the original graph. This approach leverages the inherent properties of the graph to guide

the augmentation process, potentially leading to more meaningful and effective augmen-

tations. However, the reliance on specific graph metrics can be problematic in real-world

applications. Some graph metrics may not accurately reflect the semantics of the graph in

complex real-world scenarios [43], leading to suboptimal augmentations. This lack of flex-

ibility can limit the applicability of these strategies across diverse domains.

On the other hand, strategy-based adaptive augmentation follows the concept of au-

tomatic learning to adaptively select random augmentations from a predefined strategy

pool [131]. By dynamically choosing the most suitable strategies for processing the original

graph, it aims to enhance the overall augmentation process. This approach can be partic-

ularly useful in scenarios where the optimal augmentation strategy is not known a priori

and needs to be determined through experimentation.

Although these adaptive strategies have shown improved performance, they still face

one significant challenge that is the difficulty of incorporating both graph metric calcula-

tions and automatic augmentation selection into an end-to-end training paradigm. The

computational complexity and resource requirements of these processes can hinder their

seamless integration into the training pipeline.

2.2.2.4 A Common Limitation of Different Graph Augmentation Strategies

According to the literature review and summary regarding current GCL literature, a com-

mon limitation among existing graph augmentation strategies is their inability to process

non-embedding features, such as text [119]. These strategies are primarily designed to han-

dle graph structures and the embedding values of node features. This narrow focus restricts

their applicability to a broader range of graph data types.
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SYSTEMS

Graph data often come in various forms, including multi-modal data that incorporate

different types of information. For instance, text-attributed graphs [119] are a common type

of multi-modal graph where nodes are associated with textual information. In such cases,

the textual content can provide valuable context and additional features that are crucial for

accurate graph representation and analysis. However, current graph augmentation strate-

gies fall short in effectively integrating and processing this textual information.

Though current graph augmentation strategies have made significant strides in pro-

cessing graph structures and embedding values, their inability to handle non-embedding

features like text remains a critical limitation. By developing more versatile and compre-

hensive augmentation techniques, researchers can unlock the full potential of GCL meth-

ods and improve their performance in real-world, multi-modal graph applications.

2.3 Applications of Graph Contrastive Learning in

Recommendation Systems

To demonstrate the practical value of GCL methods, it is essential to apply them to real-

world scenarios. One of the most suitable application areas for GCL methods, as previously

discussed, is recommendation systems. This section provides a brief review of the applica-

tions of GCL in RS and highlights the limitations in the current research progress.

2.3.1 Implementations of Graph Contrastive Learning

Although there was limited research on the application of GCL in RS during the initial stages

of GCL research, it has now become a trending topic. This surge in interest is largely due to

the success of graph learning techniques in RS [40, 24].

SGL [113] proposes to utilize node-dropping and edge-dropping in random augmen-

tation strategy [132] to generate multiple contrasting views of the user-item interaction

graph. By contrasting those views, high-quality user and item embeddings can be acquired

to facilitate the recommendation tasks. However, there are research works challenges the

necessity of graph augmentation process in GCL for recommendation. SimGCL [136] pro-

poses a graph augmentation-free strategy that applies random noise to directly augment

user and item embeddings to acquire contrasting samples, which shows superior and ro-

bust performance compared to graph augmentation-based method [113, 136]. Based on

SimGCL, a extremely simple version, XSimGCL [133], is proposed, which further simplifies

SimGCL by integrating the embedding process and the augmentation process.
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There is a substantial body of literature on augmentation techniques for GCL in RS, but

a critical research perspective on GCL’s training paradigm has been largely neglected. This

oversight is evident not only in the methods previously introduced, such as SGL, SimGCL,

and xSimGCL, but also in other promising approaches like QRec [134] and KGCL [129]. To

advance research in GCL for RS, it is insufficient to focus solely on designing tailored graph

augmentation protocols; the training paradigm must also be thoroughly investigated.

2.3.2 Limitations of Current Implementations

Recommendation systems represent one of the most suitable application scenarios for GCL

methods. A successful implementation in this domain can significantly validate the prac-

tical value of GCL. The key to applying GCL to recommendation systems lies in converting

user-item interactions and other auxiliary information into a graph structure. Addition-

ally, constructing contrasting samples based on these interaction graphs is critical for the

effective application of GCL methods. However, though sufficient research works exist in

current literature [113, 136, 133, 134, 129], at the inception of this research area, studies on

the application of GCL in recommendation systems regarding contrasting sample design

were sparse. This gap underscored the necessity of pioneering research works to demon-

strate how GCL methods could be effectively applied to recommendation scenarios. Such

works would not only fill the existing research void but also provide valuable insights into

the practical implementation of GCL in real-world applications.

Another crucial aspect that needs to be addressed is the training paradigm for GCL

in recommendation scenarios. Current methods typically combine GCL objectives with

downstream recommendation tasks and conduct joint training [113, 134, 129]. However,

research works within this thesis has revealed that joint training requires meticulous hy-

perparameter tuning to balance the weights of the GCL objectives and the recommenda-

tion objectives within the overall training framework. Without careful adjustment, the per-

formance can be suboptimal. Furthermore, it is important to note that GCL itself is fun-

damentally an unsupervised training paradigm, primarily aimed at pre-training. Such a

gap between the characteristic of GCL and the joint training paradigm in current meth-

ods [113, 134, 129] suggests that there may be alternative training paradigms that could

be more effective for recommendation systems. Inspired by these findings, it is critical to

investigate and develop better training paradigms for GCL in recommendation scenarios.

This exploration could lead to more robust and efficient models, ultimately enhancing the

performance and applicability of GCL in RS.
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2.4 Research Questions

According to the previous literature review and limitation analysis, four research questions

belonging to two research scopes are summarized to guide the research within this thesis

to advance the research progress in GCL domains.

For graph augmentation strategies in GCL, two primary challenges must be addressed,

including enhancing flexibility and efficiency and expanding their applicability to handle

non-embedding features such as text. Specifically:

• RQ1.1: How to conduct flexible and efficient graph augmentations that tackle the lim-

itations in current strategies?

• RQ1.2: How to effectively augment non-embedding features, such as text, on the

node in a graph to produce contrasting samples?

For GCL’s applications in RS, two primary research questions arise, including tailored

contrasting sample design and GCL’s training paradigm for recommendations. Specifically:

• RQ2.1: How to produce contrasting samples tailored for the specific recommendation

scenario by leveraging graph augmentation strategies?

• RQ2.2: What training strategy should be adopted for GCL in recommendations? Is

current the end-to-end one with joint training good enough?

The four research questions fall into two primary areas, including graph augmentation

strategies in GCL and the application of GCL in RS. Addressing these questions will not

only enhance the methodology of GCL but also increase its practical value in real-world

applications, thereby advancing research in GCL-related domains.

2.5 Other Related Works

Since certain methods and concepts beyond the scope of GCL are introduced in the fol-

lowing research work chapter as part of the proposed method or framework, this section

briefly outlines the relevant research background and progress in the literature to facilitate

a better understanding of the subsequent content.
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2.5.1 Large Language Models for Graph Learning in LATEX-GCL

LLMs have garnered significant attention for their prowess in natural language process-

ing tasks. However, their application in graph learning is an emerging field of research that

holds great promise [17, 48]. The intersection of LLMs and graph data presents a promising

avenue for enhancing various scientific disciplines, including cheminformatics [51], mate-

rial informatics [66], bioinformatics [10], CV [83], and quantum computing [45]. By incor-

porating textual information with graph data, referred to as Text-attributed Graph (TAG),

researchers can accelerate scientific discovery and analysis. This is particularly beneficial

in domains where graphs are paired with critical text properties. For instance, in chem-

informatics, the combination of molecular graphs with textual descriptions of chemical

properties can lead to more accurate predictions and insights.

A comprehensive survey on the application of LLMs to graphs [48] categorizes the sce-

narios into three main types: pure graphs, text-rich graphs, and text-paired graphs. This

categorization highlights the diverse contexts in which LLMs can be leveraged. Pure graphs

consist solely of nodes and edges, while text-rich graphs include additional textual infor-

mation associated with nodes or edges. Text-paired graphs, on the other hand, integrate

extensive textual data with graph structures, offering a richer context for analysis. Several

techniques have been proposed to explore the mutual enhancement between LLMs and

graphs. One approach is to treat LLMs as task predictors, as demonstrated by Graphormer

[128]. Another method involves using LLMs as feature encoders for Graph Neural Networks

(GNNs), as seen in the TAPE framework [39]. Additionally, aligning LLMs with GNNs, as

proposed in GLEM [143], offers a synergistic way to leverage the strengths of both models.

Despite the promising advancements, several challenges remain in this evolving field.

Issues such as graph linearization, model optimization inefficiencies, and the need for gen-

eralizability and robustness of LLMs on graphs underscore the importance of further re-

search [48]. Addressing these challenges will be crucial for realizing the full potential of

LLMs in graph learning and their application across various scientific disciplines.

2.5.2 Multi-behavior Recommendation in HMG-CR

Multi-behavior recommendation systems leverage multiple user-item interactions to en-

hance the accuracy and relevance of recommendations for target behaviors. This approach

recognizes that users often exhibit a variety of behaviors, such as viewing, purchasing, and

rating items, which can provide richer information for recommendation algorithms. By in-

tegrating these diverse interactions, multi-behavior recommendation systems aim to offer
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more personalized and effective suggestions.

Various approaches exist to utilize users’ multi-behavior information effectively. One

common method involves the use of multi-behavior interaction graphs. In these graphs,

different types of user behaviors are represented as edges between nodes, with each edge

type corresponding to a specific behavior. Studies such as [103, 86, 19] assign weights to

these edges before performing aggregation, allowing the recommendation system to dif-

ferentiate between the significance of various behaviors. Graph-based recommendation

methods have shown strong performance in leveraging multi-behavior data. Techniques

such as GAT [103] and RGCN [86] exploit the structural advantages of GNNs to capture

complex relationships within the data. These methods have been particularly effective in

recommendation tasks, as they can model the intricate dependencies between different

user behaviors and items. In addition to graph-based methods, multi-task learning tech-

niques have also been employed to enhance multi-behavior recommendation systems. For

instance, studies like [26, 15] use multi-task learning to extract more supervision signals

from multi-behavior data. This approach assumes that one behavior is strongly related to

preceding behaviors and that embeddings of different user behaviors are adjacent in the

embedding space. By learning from multiple tasks simultaneously, these models can cap-

ture more nuanced patterns in user behavior.

However, despite the advancements in both graph-based and multi-task learning meth-

ods, challenges remain in fully capturing the complex relationships among various types

of user behaviors. The aggregation methods used in studies like [103, 86] and the assump-

tions made in [26, 15] may not be sufficient to model the intricate dependencies and inter-

actions between different behaviors. Further research is needed to develop more sophis-

ticated models that can better understand and utilize the rich information contained in

multi-behavior data. In conclusion, while multi-behavior recommendation systems hold

great promise for improving the accuracy and relevance of recommendations, there is still

much work to be done. By continuing to explore and refine the methods for integrating

and analyzing multi-behavior data, researchers can unlock new possibilities for personal-

ized and effective recommendation systems.

2.5.3 Prompt-Tuning in CPTPP

Prompt-tuning is a novel and trending paradigm for pre-trained models in natural lan-

guage processing (NLP). The core idea behind prompt-tuning is to re-formulate down-

stream tasks in a way that narrows the significant gap between these tasks and the pre-

training objective [12, 92]. This approach aims to make the transition from pre-training
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to fine-tuning more seamless and effective. There are two primary methods to achieve

prompt-tuning [28]. The first method involves manually designing or searching for appro-

priate discrete prompts, often referred to as hard prompts [27, 47, 92]. While this method

can be effective, it is also trivial and resource-intensive due to the vast search space and

the need for expert knowledge in some application scenarios [115]. The complexity and

resource demands of this approach can make it impractical for many applications.

To address the limitations of hard prompts, another line of methods focuses on gener-

ating continuous vector embeddings, known as soft prompts [30, 77]. These soft prompts

are designed to be more flexible and less resource-intensive, as they do not require exten-

sive manual effort or expert knowledge. By using continuous embeddings, soft prompts

can adapt more easily to various tasks and datasets, making them a more scalable solution.

The application of prompt-tuning in recommendation systems has also been explored.

For instance, the P5 framework [28] redefines recommendation tasks as NLP tasks and em-

ploys hard prompts to perform recommendations. This approach leverages the strengths

of prompt-tuning to enhance the performance of recommendation systems. On the other

hand, the PPR framework [115] adopts a soft-prompt and prefix strategy [61] to automati-

cally generate personalized prompts for users in recommendation systems. These methods

aim to provide more tailored and effective recommendations by utilizing soft prompts.

Despite these advancements, the integration of graph learning and its applications re-

mains outside the current scope of prompt-tuning research. Additionally, most existing

prompt learning methods require side information to produce high-quality prompts, which

limits their applicability. The reliance on side information can constrain the use of prompt-

tuning to scenarios where such information is readily available, thereby reducing its ver-

satility. In conclusion, while prompt-tuning offers a promising approach for enhancing

pre-trained models in NLP and recommendation systems, there are still challenges to be

addressed. The need for side information and the current exclusion of graph learning ap-

plications highlight areas for future research. By continuing to explore and refine prompt-

tuning methods, researchers can expand its applicability and effectiveness across a broader

range of tasks and domains.

2.6 Future Directions

Despite the promising progress in current GCL-related research, several challenges remain

that hinder the full realization of GCL methods’ potential: I) Understanding the rationale

and intuition behind graph learning methods is crucial for improving these methods and
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applying them to real-world problems. However, most research on interpretability in graph

learning focuses on supervised learning scenarios [16, 59, 19], leaving interpretability in

GCL largely underexplored. There is an urgent need to develop GCL methods with high in-

terpretability, which would enable their application in critical industries such as finance

[3] and healthcare [7]. II) While GCL’s applications in recommendation systems emerge

nowadays, there are numerous other real-world scenarios to explore, such as finance [3],

healthcare [7], and AI for science [14, 10]. The key to implementing GCL in these applica-

tions lies in designing augmentation strategies that effectively integrate domain-specific

knowledge. Each application scenario inherently possesses specific priors that are cru-

cial for models to understand the context. Relying solely on general graph augmentation

strategies [132, 123, 35, 94] may prevent GCL methods from accurately capturing domain-

specific semantics, leading to suboptimal performance. Therefore, it is essential to thor-

oughly investigate methods for integrating domain knowledge into GCL.

Both RQ1.1 and RQ1.2 focus on graph augmentation through the use of counterfactual

mechanisms and LLMs, respectively. These methods will enhance the interpretability of

GCL by providing insights into the augmentation process. This thesis, through RQ1.1 and

RQ1.2, will contribute to advancing interpretability research in GCL. Additionally, RQ2.1

and RQ2.2 will explore the design of graph augmentation strategies and training paradigms

within recommendation scenarios, offering valuable examples that can inspire research in

other application domains.

2.7 Chapter Summary

This chapter provides a comprehensive literature review on GCL. It begins by detailing the

procedures of GCL, offering an overview of common GCL methods. Next, it introduces

graph augmentation strategies in GCL and explores GCL’s applications in RS, highlighting

current research progress. Following this, a detailed analysis of the limitations within these

two research areas is presented. Finally, based on the literature review and limitation anal-

ysis, four research questions are formulated to guide the research presented in this thesis.

In the following chapter, the discussion will center on four research questions within

two primary areas: graph augmentation strategies and the application of GCL in RS. It will

present four research studies, each addressing one of these questions in detail.
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LEARNING-BASED GENERATION OF CONTRASTING SAMPLES

GCL has emerged as a powerful unsupervised graph representation learning tool. The key

to the success of GCL is to acquire high-quality positive and negative samples as contrast-

ing pairs to learn the underlying structural semantics of the input graph. Recent works usu-

ally sample negative samples from the same training batch with the positive samples or

from an external irrelevant graph. However, a significant limitation lies in such strategies:

the unavoidable problem of sampling false negative samples. In this paper, we propose

a novel method to utilize Counterfactual mechanism to generate artificial hard negative

samples for Graph Contrastive learning, namely CGC. Moreover, current graph augmen-

tations have several limitations, as introduced in the literature review chapter, which also

prevent GCL methods from achieving optimal performance. To address these issues,the

counterfactual mechanism is utilized to produce hard negative samples, ensuring that the

generated samples are similar but have labels that differ from the positive sample, which

are helpful for the CL process. The proposed method achieves satisfying results on four

datasets. It outperforms some traditional unsupervised graph learning methods and some

SOTA GCL methods. Some supplementary experiments are also conducted to illustrate the

details of the proposed method, including the performance of CGC with different hard neg-

ative samples and evaluations of different similarity measurements.

The content in this chapter focuses on RQ1.1 by proposing a novel GCL method to con-

duct flexible graph augmentation to generate high-quality contrasting samples, which is a

critical step in the whole GCL procedure.
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3.1 Brief Introduction to CGC

GCL [104, 78, 132, 149, 35, 122, 94] has emerged as a powerful learning paradigm for un-

supervised graph representation learning. Inspired by the widely adopted CL framework

in Computer Vision (CV) [116, 36] and Natural Language Processing (NLP) [18], GCL lever-

ages the advanced representation learning capabilities of Graph Neural Network (GNN)

[53, 118, 49, 24] and tries to distill high-quality representative graph embeddings of an in-

put graph via comparing the differences and similarities among augmented graphs (i.e.,

positive and negative samples) derived from the original input.

The key to a successful GCL method is to derive high-quality contrasting samples from

the original input graph. To date, various kinds of methods to generate positive samples are

proposed, for example, graph augmentations-based approaches [132, 149] and multi-view

sample generation [35, 122], which have been becoming dominant and achieved satisfy-

ing performance. Despite this progress, especially in manipulating positive pairs, far less

attention has been given to obtaining negative samples [85]. Compared to positive sam-

ples in CL, negative sampling is more challenging and non-trivial[85]. Existing methods of

negative sample acquisition mainly follow traditional sampling techniques, which may en-

counter the deficiency caused by unnoticeable false negative samples [117]. For instance,

GraphCL [132] samples other graphs as the negative samples from the same training batch

where the target graph comes from. Such an approach does not guarantee that the sampled

negative graphs are true. GCC [78] samples negative graphs from an external graph based

on the assumption that common graph structural patterns are universal and transferable

across different networks. However, this assumption neither has any theoretical guaran-

tee nor has been validated by empirical study[78]. To alleviate the impact caused by false-

negative samples, debiasing treatment has been introduced to current graph contrastive

learning methods [117, 141]. The idea of these debiased graph contrastive learning meth-

ods is to estimate the probability of whether a negative sample is false. Based on this, some

negative samples with low confidence will be discarded or treated with lower weights in the

CL phase. Nevertheless, a typical major limitation of both GCL and the debiasing-based

variants is still evident - most of these sampling strategies are stochastic and random. In

other words, current methods do not guarantee the quality of the sampled negative pairs.

To address the previously mentioned problems, the high-quality negative sample is re-

garded as hard negative sample and the corresponding formal definition is given. Accord-

ing to [85], a hard negative sample is a data instance whose label differs from that of the

target data, and its embedding is similar to that of the target data. Considering the limita-
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tions of sampling-based strategies discussed previously, we argue that a strictly constrained

generative process must be imposed to guarantee the quality of the negative samples (i.e.,

generating hard negative samples). Inspired by counterfactual reasoning [60], a fundamen-

tal reasoning pattern of human beings, which helps people to reason out what minor be-

haviour changes may result in considerable differences in the final event outcome. We intu-

itively came up with the idea that the hard negative sample generation should apply minor

changes to the target graph and finally can obtain a perturbed graph whose label is strictly

different from the original graph.

To this end, two types of hard negative samples via perturbations to the original input

graph, including proximity perturbed graphs and feature-masked graphs, are proposed. It

is worth noting that these two types of generation processes will be adaptively conducted

and constrained by sophisticating similarity-aware loss functions. However, this process

is still challenging and non-trivial. We believe there are two significant challenges. First,

in graph perturbation and feature masking, how to measure a generated sample is hard?

To solve the problem, two indication matrices are designed to demonstrate the changes

made to the graph structure and feature space. Then, different matrix norms are applied

to indication matrices to reflect how much perturbation has been made. The calculated

matrix norms will be minimized such that the perturbation applied to the original graph

to generate negative samples is as minor as possible. In this case, the generated samples

would be similar to the original graph in proximity and feature space. By adopting matrix

norms, the perturbation can be quantified, ensuring the generated samples are hard ones.

After formulating a constraint that forces the generated samples to be hard to distin-

guish from the target in proximity and feature space, the second challenge is how to make

sure the generated hard samples have different labels from the target. That is to say, how

can we ensure the generated hard samples are true negative? The target graph and the gen-

erated samples will be first fed into a graph classifier. The classifier will then output the

probability distributions of the classes to which the target graph and the generated samples

belong. Following the counterfactual mechanism, an objective measuring the differences

between the classifier’s outputs for the target graph and that for the generated samples

is applied and minimized. Specifically, the similarities between the predicted probability

distributions are minimized by monitoring the KL Divergence. With the two objectives de-

scribed above, high-quality hard negative samples with constraints can be generated.

In summary, a counterfactual-inspired generative method for GCL to obtain hard neg-

ative samples is proposed in this section. It explicitly introduces constraints to ensure the

generated negative samples are true and hard, eliminating the random factors in current
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negative sample acquiring methods in GCL methods. Furthermore, once the generation

procedure is finished, we do not need further steps (e.g., debiasing) to process the acquired

samples. The contributions of our work are summarized as follows:

• A novel adaptively graph perturbation method, CGC, to produce high-quality hard

negative samples for the GCL process is proposed in this section.

• Tthe counterfactual mechanism is introduced into the GCL domain, leveraging its

advantages to make the generated negative samples be hard and true. Due to the

successful application of the counterfactual mechanism, the potential feasibility of

conducting counterfactual reasoning to explain GCL models is high in future works.

• Eextensive experiments are conducted to demonstrate the proposed method’s effec-

tiveness and properties, which achieved state-of-the-art performances compared to

several classic graph embedding methods and some novel GCL methods.

3.2 Preliminaries about The Counterfactual Mechanism

Counterfactual reasoning is a basic way of reasoning that helps people understand their

behaviours and the world’s rules [60]. The definition of counterfactual reasoning is given

by [25] stating that counterfactual is a probabilistic answer to a ‘what would have hap-

pened if’ question. Many illustrative examples are provided in [107] to help understand the

ideas behind counterfactual. For instance, as shown in Figure 3.1. Someone wants to apply

for a loan, but the application is rejected after a risk assessment from the financial institu-

tion. Many factors are related to the final decision, such as the applicant’s age, income, and

number of credit cards. The minimum change the applicant needs to make to get the loan

is earning an extra $1,000 per month or cancelling two credit cards.

Algorithm 1: Heuristic counterfactual generation algorithm

sample a random instance as the initial x ′

optimise L(x, x ′, y ′,λ) with x ′

while | f̂ (x ′)− y ′| > ϵ do
increase λ by step-size α

optimise L(x, x ′, y ′,λ) with new x ′

end while
return x ′

Counterfactual is a kind of thinking mechanism to discover the facts that contradict

existing facts and could potentially alter the outcomes of a decision-making process. There
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Applicator's Inforamtion
! Age
! Income
! Number of credit cards

Minimum Change?
Risk Assessment:

!"#"$%

! Cancel two credit cards
! Earn an extra $1,000 a month

Application

Loan

Get loan

Figure 3.1: An illustrative example about a counterfactual explanation.

are some restrictions on counterfactuals. First, many factors could potentially affect the

final results. However, counterfactuals must apply as small as possible changes to achieve

such a goal. Second, counterfactuals must be feasible and reasonable. In Figure 3.1, the

financial institution would release the loan without hesitation if the applicator earns an

extra one million dollars per month. Nevertheless, the applicator cannot have such a high

salary quickly. So, earning an extra one million dollars per month is not a counterfactual.

A classical counterfactual method is heuristic counterfactual generation [106], which is

shown in Algorithm 1, where:

(3.1) L(x, x ′, y ′,λ) =λ

distance in predictions︷ ︸︸ ︷
( f̂ (x ′)− y ′)2 + d(x, x ′)︸ ︷︷ ︸

distance in instances

,

and x denotes the target instance, x ′ is counterfactual, y ′ represents the desired outcome,

λ is the term used to balance two distances, and ε denotes tolerance for the distance. This

equation is the objective function of the heuristic counterfactual generation algorithm. It

maximizes the distances in predictions and minimizes the distance between the original

instance x and the counterfactual x ′.
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3.3 CGC Method Design

This section will give a detailed illustration of the proposed method and the training proce-

dure. The overview of the proposed method is illustrated in Figure 3.2. The counterfactual

hard negative sample generation is first conducted to acquire a proximity-perturbed and

feature-masked sample. Then, the target and the two generated hard negative samples will

be fed into the graph contrastive learning module to learn graph embeddings.

Figure 3.2: The overview of CGC.

3.3.1 Problem Definition

Given a graph A = {V ,E ,X}, where V denotes all the nodes, E represents all the edges, and

X is the feature matrix consisting of the features of all nodes. If there are N nodes and the

dimension of the feature is h, then, X ∈ RN×h . The proposed method aims to derive some

negative graphs from the input graph based on counterfactual mechanisms. For simplic-

ity’s sake, in this paper, the scenario where two kinds of hard negative graphs are generated

is taken into consideration, the proximity perturbed graph A ′ = {V ,E ′,X} and the feature

masked graph Ã = {V ,E , X̃}, such that:

(3.2) argmax
E ′,X̃

si m(A ,A ′)+ si m(A ,Ã ),

(3.3) argmax
E ′,X̃

DK L(p(A )||p(A ′))+DK L(p(A )||p(Ã )),
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where si m(∗) denotes the metric to measure the similarity between two items (e.g., graph

adjacency matrices, feature matrices), DK L(∗) is the KL-Divergence [56] function, which

is used to measure the similarity between two probability distributions, and p(∗) denotes

predictor outputting the probabilities of classes to which the graph belongs. The intuition

behind the two formulas is to derive hard negative graphs with different labels while forcing

the derived graphs to be as similar to the original graph as possible. In other words, we want

to achieve dramatic change at the semantics level with minor perturbations at the graph’s

essential elements (e.g., edges, node features).

The problem above is formulated as an optimization problem to maximize the similar-

ities between the generated negative samples and the target in proximity and feature and

force them to have different labels.

3.3.2 Counterfactual Adaptive Perturbation

This section discusses two adaptive perturbation matrices: the proximity perturbation ma-

trix and the feature masking matrix.

3.3.2.1 Proximity Perturbation

This aims to change the graph structure to generate a contrasting sample. This can help the

model learn the critical structural information in the original graph [132, 149]. First, let us

focus on how to conduct adaptive perturbation. To achieve the goal of adaptive perturba-

tion, a trainable matrix Ma ∈RN×N is required, such that:

(3.4) Aa = Ma ×A,

where A ∈ RN×N is the adjacency matrix of A , and Aa denotes the adjacency matrix of the

proximity perturbed graph A ′. Note that we adopt matrix multiplication here instead of

taking the Hadamard product since it cannot add an edge to the adjacency matrix.

Moreover, values of the entries of Aa are in RN×N , which conflict with the definition do-

main of the adjacency matrix, {0,1}N×N . An extra step is required such that f : Aa ∈RN×N →
A

′
a ∈ {0,1}N×N . Tthe following formula is used to conduct the mapping process:

(3.5) A
′
a = I(si g moi d(Aa) ≥ω),

where I(∗) is the indicator function, and ω is a threshold determining whether to set the

entry as 1 or 0. Finally, we have the adjacency matrix for the negative sample A ′. Conse-

quently, a perturbed set E ′ of edges is obtained.
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Though in this procedure, there is no modification made to nodes, we can adaptively

discard some nodes by deleting all the edges of the nodes, which will be isolated from the

generated graph after perturbation. In summary, we can utilise the proximity perturbation

matrix and procedure mentioned above to simulate all the proximity perturbation methods

in [132], including edge dropping or adding and node dropping.

3.3.2.2 Feature Masking

This tries to mask the original feature matrix to help the contrastive learning model ob-

tain the critical information in the features [132, 149], which would determine the decisive

factors in the feature domain. The whole procedure of feature masking is similar to the

proximity perturbation, but there are some minor differences. First, same as the previous

procedure, we need to initialize a trainable matrix Mb ∈ RN×h , which serves as a mask ma-

trix here.It is required to make sure the definition domain of it is {0,1}N×h . To meet such a

requirement, the following process is needed:

(3.6) M
′
b = I(si g moi d(Mb) ≥ γ),

where γ is a threshold determining whether to mask some feature entries.

To fulfil the feature masking procedure, the Hadamard element-wise product between

M
′
b and X is needed instead of matrix multiplication in the previous perturbation:

(3.7) X̃ = M
′
b ◦X.

Once the feature masking procedure is finished, the values of the masked feature entries

will be replaced with 0.

After the proximity perturbation and the feature masking, two hard negative samples are

acquired, which are A ′ = {V ,E ′,X} and Ã = {V ,E , X̃}, respectively.

3.3.2.3 Perturbation Measurement

Once two perturbed graphs are obtained, the next step is how to ensure the generated

graphs are hard negatives. As mentioned previously, the counterfactual mechanism is uti-

lized to solve this problem because this method naturally meets the requirements of hard

negative sample generation. Both of them aim to output something different at the seman-

tic level but similar at the structural level.

First, we discuss maximising the similarity between the original and the perturbed graphs.

This objective function tries to ensure the perturbation we made is as minor as possible. We
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utilise the Frobenius norm of the difference between A and A′
a . The smaller the Frobenius

norm is, the more similar they are. The Frobenius norm of the masking matrix can measure

the similarity between features. A relatively greater norm indicates that a small portion of

feature entries are masked. Therefore, the similarity between X and X̃ would be high. The

objective is formulated as follows:

(3.8) Ls = ||A−A
′
a ||F −||M′

b ||F .

Next, it is required to ensure the generated graphs are different from the original graph

at the semantic level. Here, we consider the classification problem, where we minimize the

similarity between probability distributions of classes between the original and the per-

turbed graphs. Therefore, this part of objective can be formulated as:

(3.9) Lc =−DK L(p(A ), p(A ′))−DK L(p(A ), p(Ã )).

Finally, the overall objective for counterfactual pre-training for hard negative sample gen-

eration is the combination of the previous objectives shown as below:

(3.10) Lpr e =Ls +Lc .

3.3.3 Contrastive Learning Procedure

The counterfactual mechanism is adopted to generate hard negative samples. After that,

GCL between the original graph and the perturbed graphs will be conducted. In this work,

a simple and widely-used GCL schema is adopted to conduct it, which is dictionary look-up

method [78], shown in Figure 3.2.

Given an original input graph A , two negative graphs A ′ and Ã , and two graph en-

coders, gp (·) and gn(·), we will have a sort of graph embeddings: q = gp (A ), k+ = k0 =
gn(A ), k1 = gn(A ′), and k2 = gn(Ã ). Specifically, the target graph will be encoded by both

graph encoders, and gn(·) will only be used to encode the generated hard negative samples.

Dictionary look-up method here tries to look up a single key (denoted by k+) that q matches

in K. Let q denotes the query key and K= {k0,k1,k2} be the dictionary.

InfoNCE in [102] is adopted to formulate CL procedure. Therefore, the training objec-

tive for the GCL phase can be formulated as:

(3.11) Lcontr a =− log
exp(si m(q,k+)/τ)∑|K |−1

t=0 exp(si m(q,kt )/τ)
,

where τ is the temperature hyperparameter.
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After finishing the two training phases, including the counterfactual mechanism-based

hard negative sample generation and the GCL process, the trained embeddings of all nodes

and graphs can be obtained. The graph embeddings will be fed into a downstream predic-

tion model to conduct graph classification and evaluate the trained embeddings’ quality.

3.4 Experiments on CGC

Comparison experiments are conducted to show the superiority of the proposed method.

Supplementary experimental results are given to analyze the properties of the proposed

method. This section discloses sufficient experimental settings and datasets for readers to

reproduce the experiments.

3.4.1 Experiment Setup

Detailed experiment setup is listed in this section, including datasets, baselines, and exper-

imental settings to facilitate reproducibility.

Table 3.1: Statistics of four graph datasets for CGC experiments.

Dataset Num. of Graphs Avg. Num. of Nodes Avg. Num. of Edges Node Attr. Dim. Num. of Classes

PROTEINS_full 1,113 39.06 72.82 29 2
FRANKENSTEIN 4,337 16.90 17.88 780 2

Synthie 400 95.00 172.93 15 4
ENZYMES 600 32.63 62.14 18 6

3.4.1.1 Datasets

To fully demonstrate the performances of the proposed method compared to baselines, we

choose several public and widely-used datasets from TUDataset [70]. All the datasets are

available on the webpage1. Recall that the feature masking operation necessary for our pro-

posed method is a hard negative sample generation procedure. Hence, the graph datasets

we use must contain high-quality node features. We select four datasets, which are PRO-

TEINS_full [10, 87], FRANKENSTEIN [73], Synthie [71], and ENZYMES [10, 87]. The detailed

statistics of four datasets are shown in Table 3.1.

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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3.4.1.2 Baselines

To verify the effectiveness and superiority of the proposed framework, we compare it with

several unsupervised learning methods in three categories: graph kernels, graph embed-

ding methods, and GCL methods. For graph kernel methods, we choose four different ker-

nels, including RandomWalk Kernel [105], ShortestPath Kernel [8], Graphlet Kernel [89],

and Weisfeiler-Lehman Kernel [88]. For graph embedding methods, we select two meth-

ods, including sub2vec [1] and graph2vec [72]. Since the proposed method in this paper

belongs to GCL, it is important to compare our method to current state-of-the-art GCL

methods. Four impactful methods are selected in the literatur, including InfoGraph [94],

MVGCL [35], GraphCL [132], and GCA [149].

3.4.1.3 Settings

For reproducibility, the detailed settings of the proposed method are introduced in this

section. For PROTEINS_full, FRANKENSTEIN, and Synthie, GCN [53] with three layers is

adopted as the graph encoder. The learning rates for hard negative sample generation and

CL are 0.0001. The training epochs for the two training stages are 80 and 30, respectively.

For dataset ENZYMES, a 2-layer GIN [118] is adopted as the graph encoder. The learning

rates for hard negative sample generation and CL are 0.001. The training epochs for both

training stages are 100. The batch sizes for all the experiments are set to 256, while 128 is

also feasible if GPU memory is limited for large graphs such as Synthie. The threshold ω

and γ mentioned previously are both 0.3. As to the temperature hyperparameter for CL, it

is set to 1 for all the experiments. The proposed method is evaluated via graph classification

under the linear evaluation protocol. Specifically, we closely follow the evaluation protocol

in InfoGraph and report the mean 10-fold cross-validation F1-Micro and F1-macro scores

with standard deviation output by a linear SVM. The SVM is implemented via scikit-learn2.

3.4.2 Comparison Experiment

The comparison experiment results for all baselines and our proposed method on all four

datasets are shown in Table 3.2. Generally, the proposed method outperforms the best

baselines on all the datasets except PROTEINS_full. Though our method has a mean F1-

macro score lower than that of GraphCL, the gap between its F1-macro score and ours is in-

significant as the standard deviation exists. We note that the proposed method significantly

improves the dataset Synthie and ENZYMES. According to Table 3.1, both of these datasets

2https://scikit-learn.org/
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Table 3.2: Comparison experiment results of CGC.

PROTEINS_full FRANKENSTEIN Synthie ENZYMES
Method

Dataset
F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro F1-Micro F1-Macro

RandomWalk - - 57.97(std 2.15) 57.45(std 1.92) 18.50(std 4.06) 16.86(std 3.58) - -
ShortestPath 70.88(std 4.91) 69.88(std 4.99) 62.39(std 1.95) 59.81(std 2.02) 50.75(std 9.69) 47.32(std 9.86) 27.83(std 6.37) 27.18(std 5.93)

GL 69.89(std 3.25) 68.57(std 3.43) 61.26(std 2.85) 53.94(std 2.46) 52.50(std 10.49) 50.24(std 10.37) 31.67(std 7.03) 30.02(std 7.13)
WL 72.32(std 3.11) 71.36(std 3.41) - - - - 37.83(std 4.95) 36.42(std 5.78)

sub2vec 70.17(std 2.06) 66.26(std 0.44) 54.97(std 1.80) 46.83(std 4.00) 29.75(std 4.67) 22.07(std 3.75) 19.67(std 3.64) 13.34(std 4.33)
graph2vec 68.65(std 3.45) 64.16(std 5.00) 61.70(std 3.04) 59.68(std 0.22) 54.25(std 0.62) 35.17(std 0.26) 25.67(std 4.84) 22.41(std 5.04)

InfoGraph 71.61(std 4.67) 70.48(std 5.06) 63.57(std 2.12) 62.95(std 2.20) 54.5(std 8.05) 54.17(std 7.87) 38.33(std 7.03) 37.07(std 6.89)
MVGCL 72.06(std 3.29) 69.53(std 3.61) 61.89(std 1.40) 59.65(std 1.50) 62.00(std 9.07) 61.59(std 9.52) 40.50(std 7.85) 38.7(std 9.12)

GraphCL 73.05(std 3.29) 71.04(std 3.35) 62.62(std 2.49) 61.89(std 2.57) 57.50(std 9.08) 55.87(std 8.87) 33.67(std 4.58) 33.46(std 4.96)
GCA 71.71(std 4.40) 69.59(std 4.44) 63.20(std 1.70) 62.17(std 1.57) 52.25(std 5.18) 43.27(std 9.85) 34.00(std 5.01) 33.62(std 5.01)

CGC 73.48(std 4.90) 70.03(std 5.75) 64.93(std 1.98) 63.25(std 2.04) 63.75(std 6.91) 63.23(std 6.71) 47.50(std 6.25) 46.99(std 6.30)

have multiple classes, which are 4 and 6, respectively. It indicates that the proposed method

is superior in multiclass graph classification tasks. Recall one of the training objectives of

hard negative samples generation, Equation (3.9), which minimizes the similarity between

the probability distributions of which class the original graph and hard negative samples

are. If there were a multiclass classification task, the Equation (3.9) would minimize the

similarity between two vectors (the vector refers to the probability distribution in our con-

text) with more dimensions. Comparing two vectors with higher dimensionality could help

the model to learn more information. So, it is reasonable that the proposed method has

advantages on dataset Synthie and ENZYMES.

Graph kernel methods also achieve better performance than novel neural network meth-

ods. Nevertheless, some of them spend time on computing. Compared to our proposed

method, they cannot be accelerated by GPUs, which is unaffordable under some real-world

scenarios. Sub2Vec and Graph2Vec are two impactful graph embedding methods, which

both leverage the idea of Word2Vec [68]. According to the experiment results, all of them

cannot compete with the GCL methods, which is a novel and effective unsupervised graph

learning paradigm with significant superiority. Note that four GCL methods are selected

as baselines. All of them are impactful methods in the GCL domain. InfoGraph is one of

the first methods to introduce the idea of contrastive learning into the graph representa-

tion learning area. It achieved promising performances on several graph learning tasks. As

shown in Table 3.2, it has satisfying results on dataset PROTEINS_full and FRANKENSTEIN.

However, it may not be compatible with multiclass graph classification tasks, as the pro-

posed CGC significantly outperforms it. Conversely, MVGCL performs better on Synthie

and ENZYMES than on the other two datasets with only two classes. GCA is an updated

version of GraphCL, and they share the same framework, but the improvement achieved

by GCA is not significant. It has minor improvement on the dataset FRANKENSTEIN and

ENZYMES. On dataset Synthie, it even has much worse performances. GraphCL and GCA
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try to conduct proper perturbations on the target to have positive or negative samples to

form contrasting pairs. Specifically, GraphCL follows a random setting to perturb the graph,

which cannot ensure the quality of the generated samples. GCA tries to adaptively locate

the essential elements in the graph and perturb such identified elements according to their

centrality. However, elements with high centrality are not always the critical factor deter-

mining the labels or semantics of the graph. Compared to our counterfactual hard negative

samples generation method, these two methods have limitations in contrasting pairs gen-

eration. It is worth noting that GraphCL and GCA are incompatible with multiclass graph

classification tasks. This is because the implementations of GraphCL and GCA both take

InfoGraph as the backbone. It is reasonable for them to have such a phenomenon.
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Figure 3.3: Graph classification results of CGC with different hard negative samples.
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3.4.3 Ablation Study

The impact on the GCL with different types of generated hard negative samples. Recall

that two different types of hard negative samples are proposed. This section aims to find

out how much improvement can be brought by different hard negative samples. Several

experiments are conducted on the proposed method. We proceed with the GCL procedure

under three scenarios, which are 1) only to use the proximity perturbed graphs as a nega-

tive sample, 2) only to use the feature-masked graphs as negative samples, and 3) utilizing

both types of graphs as negative samples. The results of the experiments are illustrated in

Figure 3.3. Utilizing both types of negative samples can achieve the best performances on

all the datasets except FRANKENSTEIN. To achieve better results, utilizing two hard nega-

tive samples can help the model capture the key semantics in proximity and feature space

simultaneously. Moreover, we can form more contrasting pairs with more negative sam-

ples. Hence, the model can receive sufficient self-supervised signals to update parameters

and consequently perform better.

On dataset FRANKENSTEIN, the experiment results are not as expected. The model

trained only with the feature-masked graphs achieved the best performance. There is a sig-

nificant gap between the performance of the model trained only with the proximity per-

turbed graphs and the model trained only with the feature-masked graphs. Such a gap

makes the collaboration of two types of negative samples unsatisfying, resulting in the

worse performance of the model trained with both types of generated negative samples.

Though the gap between the mean F1 scores of the model trained only with the proximity

perturbed graphs and the model trained only with the feature-masked graphs on dataset

ENZYMES is also significant, we note there is a larger standard deviation in the experimen-

tal results on the dataset ENZYMES. In this case, such a phenomenon indicates that the dif-

ferences between the performances of the model trained only with the proximity perturbed

graphs and the model trained only with the feature-masked graphs on dataset ENZYMES

are not as significant as that on dataset FRANKENSTEIN. According to Table 3.1, graphs in

dataset FRANKENSTEIN have much fewer nodes and edges than the other three datasets,

but they have significantly larger node feature dimensionality. Masking features can bring

more advantages to the model on dataset FRANKENSTEIN since the feature matrices are

more complicated than the adjacency matrices. Such imbalance results in a considerable

gap between the performances of the model trained only with the proximity perturbed

graphs and the model trained only with the feature-masked graphs on dataset FRANKEN-

STEIN. We claim that perturbation to the aspects containing more informative semantics

would bring more advantages to GCL. Similar phenomena appears in the rest datasets. For
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example, graphs in dataset PROTEINS_full and Synthie have complicated adjacency with

simple features. On these two datasets, the model trained only with the feature-masked

graphs outperforms the model trained only with the proximity perturbed graphs.

Table 3.3: Analysis of five types of matrix norms in CGC.

Matrix Norm Definition Complexity

1-norm ||M ||1 = max1≤ j≤n
∑m

i=1 |mi j | O (mn)

2-norm ||M ||2 =
√

λmax(M∗M) O (m3)

inf norm ||M ||∞ = max1≤i≤m
∑n

j=1 |mi j | O (mn)

nuclear norm ||M ||∗ = tr (
p

M T M ) O (mn2)

F-norm ||M ||F =
√∑m

i=1

∑n
j=1 |mi j |2 O (mn)
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Figure 3.4: The performances of CGC with different matrix norms.

How to measure the similarity in hard negative samples generation procedure? Ensur-
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ing the generated negative samples have similar forms to the original input in proximity

and feature space is the key to making the negative samples be hard. A proper similarity

measurement is important to achieve such a goal. In the methodology section, we intro-

duced that we measure the similarity between the original input and the generated nega-

tive samples via calculating the norms of difference matrices ||A − A′
a || and M ′

b . However,

there are many different matrix norms. In this section, we examine the performances of the

model trained with the negative samples in which different matrix norms were applied. We

consider five different matrix norms shown in Table 3.3, and the experimental results are

illustrated in Figure 3.4.

3.5 Summary of CGC

In this chapter, a novel GCL method, named CGC, is proposed to generate hard negative

samples to improve GCL performance, which aims to address RQ1.1. Compared to current

GCL methods and some classical graph kernel and graph embedding methods, it achieved

the SOTA performances in most cases. The effectiveness of the model trained with different

types of generated hard negative samples is also extensively studied. It is worth noting that

perturbation made on the more complicated part of the graph data (e.g., node features or

proximity) would bring more advantages to the following CL procedure. Furthermore, this

section explores how to choose similarity measurement for hard negative sample genera-

tion from a perspective of matrix norm. There will be more methods to conduct such a task,

and it would be interesting future work to improve the proposed CGC method.

The next chapter goes beyond merely improving the current methodology for construct-

ing contrasting samples. It addresses a common limitation among existing methods: the

inability to directly augment non-embedding features in graphs, as summarized in RQ1.2.

To expand the potential application scenarios of GCL techniques, it is essential to enable

GCL to process non-embedding features for constructing contrasting samples.
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LARGE LANGUAGE MODELS-BASED DATA AUGMENTATION

GCL is a potent paradigm for self-supervised graph learning that has attracted attention

across various application scenarios. However, GCL for learning on Text-attributed Graph

(TAG) has yet to be explored. Because conventional augmentation techniques like feature

embedding masking cannot directly process textual attributes on TAGs. A naive strategy for

applying GCL to TAGs is to encode the textual attributes into feature embeddings via a lan-

guage model and then feed the embeddings into the following GCL module for processing.

Such a strategy faces three key challenges: I) failure to avoid information loss, II) semantic

loss during the text encoding phase, and III) implicit augmentation constraints that lead to

uncontrollable and incomprehensible results. In this paper, we propose a novel GCL frame-

work named LATEX-GCL to utilize LLMs to produce textual augmentations and LLMs’ pow-

erful NLP abilities to address the three limitations aforementioned to pave the way for ap-

plying GCL to TAG tasks. Extensive experiments on four high-quality TAG datasets illustrate

the superiority of the proposed LATEX-GCL method.

This chapter presents an LLM-based GCL framework to address RQ1.2. The proposed

novel framework can not only conduct flexible graph augmentations with tailored but also

enable GCL methods to process non-embedding features like text in TAGs.

4.1 Brief Introduction to LATEX-GCL

In numerous real-world scenarios, graph data is often enriched with textual attributes,

for instance, user-item interaction graphs in recommendation systems that include tex-
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tual user profiles and product descriptions [38, 67]. This type of graph data is referred to

as TAGs [17]. More than recommendation systems, the application scenarios of TAGs also

include bioinformatics [9], CV [84], and quantum computing [45]. The development of ef-

fective methodologies for processing and analyzing TAGs is crucial for advancing appli-

cations that rely on such data. With the advent of graph learning techniques, a variety of

paradigms have been introduced. Notably, GCL [104, 35, 122] has gained prominence as a

powerful self-supervised technique for graph representation learning, capitalizing on the

benefits of self-supervision in cases of lacking sufficient labels. Current GCL approaches

typically employ perturbations to manipulate graph structures and feature embeddings,

thereby generating contrasting samples for GCL [132, 131, 149, 123]. Despite the diversity

of these strategies, they fall short in directly augmenting the textual attributes inherent in

TAGs. Consequently, there is a pressing need to devise a framework that synergizes GCL

with TAGs, potentially enhancing the performance of graph learning tasks within TAG ap-

plication scenarios by harnessing the strengths of GCL techniques.

Despite the advancements in GCL, the literature reveals a gap in the development of

GCL methodologies specifically tailored for TAG settings [17, 48, 119]. An initial attempt

to address this, referred to as Topological Contrastive Learning (TCL) for TAGs, is outlined

in [119]. This approach begins by encoding textual attributes into feature embeddings for

each node. Subsequently, it employs conventional GCL augmentations such as feature mask-

ing and proximity perturbation [132] to process the graph, followed by the execution of the

remaining GCL steps in sequence. While this rudimentary approach enables the adapta-

tion of GCL to TAG settings, it is not without significant drawbacks that could potentially

compromise its effectiveness. There are three limitations lie ahead: I) Information Loss.

Existing research [35] has identified information loss as a significant issue during the aug-

mentation phase of conventional GCL methods, attributable to randomness and noise in-

herent in these processes. Adhering to the aforementioned rudimentary pipeline and em-

ploying standard random-based augmentation techniques, such as feature masking, in-

evitably leads to this loss of information. To enhance the performance of graph models

within the GCL framework, it is imperative to implement strategies that mitigate such in-

formation loss. II) Incapable Language Models. The encoding of textual attributes in TAGs

presents challenges when using both shallow text embedding methods, such as bag-of-

words [34] and skip-gram [69], and advanced deep language models like BERT [20], De-

BERTa [37], and GPT-2 [79]. Shallow embedding methods are constrained by their limited

capacity to capture nuanced semantic features, whereas deep language models, despite

their sophistication, fall short in complex reasoning tasks [17]. The reliance on these in-
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adequate language models for the text encoding phase leads to an inevitable semantic

degradation contained in the original textual attributes. III) Implicit Constraint on Aug-

mentations. Conventional GCL methods [104, 132], as well as those having sophisticated

adaptive augmentation strategies [149, 123] employed, share a fundamental challenge: the

absence of explicit constraints on the augmentation process. This deficiency hinders users

from monitoring and comprehending the effects of augmentation techniques, leading to

augmented outcomes that are both uncontrollable and incomprehensible.

To overcome the aforementioned limitations, we introduce a novel approach named

LATEX-GCL that employs an LLM to generate auxiliary texts, which act as augmented tex-

tual attributes for GCL applied to TAGs. This method circumvents the information loss as-

sociated with conventional feature augmentation techniques (e.g., random feature mask-

ing). Thanks to the general knowledge contained in the LLMs [75], our strategy effectively

enriches the semantics of the original text via the LLM-based augmentation, compensating

for potential semantic deficits incurred during the text encoding phase. Furthermore, the

utilization of LLMs involves natural language inputs, carefully crafted prompts to steer the

augmentation process, and outputs that are inherently understandable for human beings.

This process ensures that the augmentation constraints and results are explicit and com-

prehensible, enhancing the transparency and control over the augmentation. Neverthe-

less, employing LLMs for textual attribute augmentation in GCL is challenging, as there is

a dearth of precedents in the literature to guide such an application. In this section, a suite

of prompts for textual attribute augmentation using LLMs are proposed by drawing inspi-

ration from the foundational principles of conventional graph augmentations as cataloged

in GraphCL [132], including shorten, rewriting, and expansion, to facilitate the LLM-based

textual attribute augmentation process.

In short, to address the limitations in current methods and better adapt GCL tech-

niques to TAG settings, I) a novel GCL framework that can leverage the advantages of LLMs

to conduct textual attribute augmentation is proposed, II) three types of LLM-based tex-

tual attribute augmentations are seminally summarized and the related prompt designs

are listed, and III) comprehensive experiments are conducted to illustrate the performance

and verify the effectiveness of the proposed LATEX-GCL method.

4.2 Preliminaries and Notations about LATEX-GCL

Before giving detailed descriptions of the proposed method, some necessary notations and

formulations related to TAGs, LLMs, the text encoder, and the graph encoder are listed here.
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Text-Attributed Graphs. Technically, a TAG can be defined as G = {V ,E , {tn}n∈V }, where

V is the set of all nodes, E is the set of all existing links between the nodes in V , and tn is a

sequence of text attributes associated with the n-th node. To facilitate the presentation of

a graph, an adjacency matrix A ∈ {0,1}N×N , where N is the number of nodes, is adopted to

demonstrate nodes and links.

Large Language Model as Augmentor. In the proposed method, an LLM is applied as an

augmentor to augment the original text attributes in the given TAG guided by the properly

designed prompt. In this section, the LLM(·) is used to denote this augmentor. Given the

original text attribute tn and the prompt p, we can have the prompted text attribute t̂n . The

augmentor LLM(·) finally takes the prompted text attribute t̂n to output on .

Text Attribute Encoder. To facilitate the utilization of the original and the augmented text

attributes, a text encoder, such as BERT [20] and DeBERTa [37], is required to obtain feature

embeddings. Specifically, LM(·) is used to denote the text encoder, which takes the original

text attribute tn or the augmented text attribute on as the input to produce feature embed-

ding hn . Then, the feature embeddings of all the nodes are concatenated to construct the

overall feature matrix H.

Graph Encoder. A GNN model, such as GCN [53], is implemented to serve as the graph

encoder to capture the graph structure information. The graph encoder takes the adjacency

matrix and the feature matrix as the inputs to update the feature matrix iteratively, where

g (·, ·) denotes the graph encoder. A K -layer graph encoder g (·, ·) will output H(K ) at the last

layer as the final feature embedding matrix.

4.3 LATEX-GCL Framework

This section illustrates the details of the LATEX-GCL method, starting with the prelimi-

naries, followed by the descriptions for each module, including I) LLM-based text feature

augmentation, II) text attribute encoding, III) graph encoding, and IV)GCL module, which

is demonstrated in Figure 4.1 below.

4.3.1 Large Language Model-Based Text Feature Augmentation

An LLM is adopted in our proposed method LATEX-GCL as an augmentor to conduct aug-

mentations on the original textual attributes in the input TAG. Adopting the LLM aims to

effectively address the three limitations in the aforementioned rudimentary TCL strategy

[119] in the introduction section, including information loss, incapable language models,
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Figure 4.1: The overview of LATEX-GCL.

and implicit constraints on the augmentation process. However, the adoption of the LLM

is non-trivial. A dearth of precedents in the current literature guides how to prompt the

LLM to acquire proper augmented texts for the following GCL procedures. In this section,

we innovatively propose and summarize a suite of prompts in order to employ the LLM to

conduct textual attribute augmentations tailored for GCL on TAGs.

Table 4.1: Augmentation strategies in LATEX-GCL.

Augmentation Prompt Design Underlying Prior

Shorten
Request: The following content is the description of {XXX}. Please simplify
and summarize the provided content in one short sentence.
Content: {......}

The shorten augmentation can help
filter out the redundant contents and
maintain the key information.

Rewriting

Request: The following content is the description of {XXX}. Please rewrite
the provided content to improve the spelling, grammar, clarity, concision,
logical coherence, and overall readability.
Content: {......}

The rewriting augmentation can help
identify the invariant semantics contained
in the original texts.

Expansion
Request: The following content is the description of {XXX}. Please expand
the provided content to give more related and necessary information.
Content: {......}

The expansion augmentation can help
introduce auxiliary information to enrich
the original text features.

The paradigm of the LLM is known as ‘pre-train, prompt, and output’ [17], which is

different from the existing language models. An LLM is normally trained on large-scale text

corpora and possesses massive general knowledge [17, 75]. A properly designed prompt

is required to help the LLM output the desired content from the massive knowledge. The

prompt has various forms, such as several words or a sentence, and can include additional

information to guide and constrain the output of the LLM [39].

Formally, let tn be the original text attributes of a node and p denote the prompt to be

placed in front of tn , the prompted textual attributes after tokenization can be formalized

as t̂n = (p1, p2, · · · , pa , tn,1, tn,2, · · · , tn,b). The LLM-based augmentor LLM(·) is trained to as-
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sign a probability to each possible output on = (on,1,on,2, · · · ,on,c ) that consists of c tokens,

where the most satisfactory output is expected to have the largest probability value. The

probability of the output o given tn can be formalized as:

(4.1) p(on |t̂n) =
b∏

i=1
p(on,i |on,<i , t̂n).

To guide the LLM-based augmentor LLM(·) to adapt to the scenario of text-attributed

GCL, three general text augmentations are proposed, which are listed in Table 4.1. The re-

lated discussions about the intuitive priors behind these augmentations are shown below:

Shorten. Given an original text attribute tn , the shorten augmentation applies a prompt

p s to produce t̂ s
n to guide LLM(·) output os

n . Such an augmentation aims to simplify the

original text attribute. The underlying prior enforced by it is that simplified content can

help filter out redundant information and maintain the key points in the original text.

Rewriting. Given an original text attribute tn , the rewriting augmentation applies a prompt

pr to produce t̂ r
n to guide LLM(·) output or

n . Such an augmentation aims to rewrite the orig-

inal text attribute so that the invariant semantics contained in the original text attribute can

be identified. Moreover, the readability of the text attributes can also be improved to help

produce high-quality feature embeddings.

Expansion. Given an original text attribute tn , the expansion augmentation applies a

prompt pe to produce t̂ e
n to guide LLM(·) output oe

n . Such an augmentation aims to expand

the original text attribute to introduce more related and necessary information to leverage

the advantages of the knowledge base, which is trained on a large volume of the corpus.

Without loss of generality, the shorten augmentation is adopted as the example, de-

noted by superscript s, to describe the workflow of the proposed method LATEX-GCL in

the methodology section and omit the two other augmentations. Formally, we prompt the

original text attribute tn of the n-th node in the TAG G to obtain the prompted input t̂ s
n for

the augmentor LLM(·) to have:

(4.2) os
n = LLM(t̂ s

n).

The operations above repeat on each node in the original TAG G to have augmented text

attributes {os
n |n ∈ V }. Finally, we can have the augmented TAG G s = (V ,E , {os

n}n∈V ).

4.3.2 Text Attribute Encoding

The proposed method LATEX-GCL applies an LLM to directly augment the original text

attributes to produce augmented text attributes instead of adopting the feature masking
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augmentation, which is one of the conventional graph augmentations [132]. Though, as

introduced in the introduction section, the adopted strategy can reduce information loss

and leverage the advantages of the LLM’s superior semantic comprehension capability, the

augmented text attributes are in the form of natural language that cannot be processed

by the following graph encoding module (i.e., the GNN model). Therefore, we adopt a text

encoder in the proposed method to encode the original and the augmented text attributes

to acquire feature embeddings to facilitate the following procedures.

A relatively small language model, such as BERT [20] and DeBERTa [37], is adopted to

serve as the text encoder because they are more powerful than those conventional text

embedding methods [34, 69] and more efficient than the LLMs. Following the LLM-based

augmentation phase, the text encoder LM(·) takes the original and the augmented text at-

tributes to produce the original and augmented feature embeddings, shown as follows:

(4.3) hn = LM(tn) ∈Rd×1, hs
n = LM(os

n) ∈Rd×1,

where d is the size of feature embeddings. Then, the feature matrix of the original TAG G

and the augmented TAG G s can be acquired as follows:

(4.4) H = [h1;h2; · · · ;hN ]T ∈RN×d , Hs = [hs
1;hs

2; · · · ;hs
N ] ∈RN×d .

The feature matrices obtained above can cooperate with the adjacency matrix A of the in-

put TAG to facilitate the following graph encoding procedures.

To enhance performance, it is a common practice to train the text encoder in conjunc-

tion with subsequent modules, yet this approach demands substantial computational re-

sources. In practical applications, an adaptor module, typically a straightforward neural

network component such as a linear layer, is employed to refine the text encoder’s out-

put, thereby boosting performance without incurring the costs associated with fine-tuning.

Nevertheless, optimizing the adaptor module often necessitates ample supervised training

data from specific downstream tasks. The efficacy of the adaptor module within the con-

text of GCL in this section remains an open question. This issue will be investigated in the

following experiment section, where the impact of the adaptor module on the performance

of LATEX-GCL is examined.

4.3.3 Graph Encoding

TAGs contain a rich repository of information. In addition to the previously mentioned tex-

tual attribute information, graph structure is also essential for the graph learning tasks on
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TAGs. Encoding only the text features is insufficient for acquiring comprehensive graph

representation, necessitating the adoption of GNN models (e.g., GCN [53]) to learn the

structural information in the graph.

Given the feature matrices H and Hs obtained in the previous text encoding module, the

adjacency matrix A, and a K -layer graph encoder g (·, ·), we can have the updated feature

matrices that possess graph structure information as follows:

(4.5) H(K ) = g (A,H) ∈RN×d , Hs (K ) = g (A,Hs) ∈RN×d .

Each layer of the graph encoder functions as a message passing and aggregation process,

collecting neighbor information and updating the node feature iteratively.

4.3.4 Graph Contrastive Learning

Typically, TAGs possess extensive text attributes to describe the nodes. However, in real-

world scenarios, label sparsity is a common and unavoidable issue, making it infeasible

to manually label each node in the TAG due to the prohibitive costs involved. To broaden

the applications of TAGs, it is vital to investigate how to employ self-supervised learning

paradigms to obtain high-quality graph embeddings from TAGs without label information.

GCL has demonstrated the powerful capability to conduct self-supervised graph learning,

to this end, being a viable option for the self-supervised learning paradigm on TAGs. This

section utilizes a GCL module to process the LLM-augmented graphs, finalizing the work-

flow of the proposed LATEX-GCL method.

A rough GCL setting is revealed in the fourth part of Figure 4.1. During the training, the

node embeddings are usually processed in a mini-batch manner. We use Vb to denote the

set of nodes in a training batch. Formally, suppose that the i -th node i ∈ Vb is the target.

The original feature embedding of the target and the augmented feature embedding can

be obtained as follows:

(4.6) h(K )
i = H(K )

i ,:

T ∈Rd×1, hs
i

(K ) = Hs
i ,:

(K )T ∈Rd×1

The two feature embeddings mentioned above originate from the same target node, thus

they are expected to exhibit a high degree of similarity. Therefore, we treat such a pair of

embeddings as positive contrasting samples. Then, a subset VM ⊆ Vb \ i of nodes, where

|Vb | = M , is randomly sampled from the mini-batch to collaborate with the original fea-

ture embedding of the target, generating 2M negative contrasting samples. The negative

contrasting sample’s original feature embedding and its LLM-augmented embedding are
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denoted by {h(K )
j | j ∈ VM } and {hs

j
(K )| j ∈ VM } . A similarity function si m(·, ·) is adopted to

measure the distance between two feature embeddings. Then, InfoNCE [102] is adopted as

the loss function for the GCL training:

(4.7) L =− log
e si m(h(K )

i ,hs
i

(K ))/τ

e si m(h(K )
i ,hs

i
(K ))/τ+∑M

j∈VM
(e

si m(h(K )
i ,h(K )

j ) +e
si m(h(K )

i ,hs
j

(K ))
)

,

where τ denotes the temperature hyperparameter. After the GCL training, the feature ma-

trix H(K ) is updated, and we can obtain the final feature matrix H f i nal for inference and

evaluation of the downstream graph classification task.

4.4 Experiments on LATEX-GCL

To demonstrate the effectiveness and the performance of the proposed LATEX-GCL method,

extensive experiments are conducted and the results with insightful analysis are shown in

this section. The related experimental settings are also provided in this section.

Table 4.2: Statistics of Amazon Datasets in LATEX-GCL Experiments

Dataset #Node #Edge #Class Raw Text Content
Books-Children 76,875 1,554,578 24 Book Introduction
Books-History 41,551 358,574 12 Book Introduction
Ele-Computers 87,229 721,081 10 Consumer Review

Ele-Photo 48,362 500,928 12 Consumer Review

4.4.1 Experimental Settings

4.4.1.1 Datasets

Considering the research scope of this section, experiments on the graph datasets with

promising text attributes are required. Multiple text-attributed graphs are collected by [119]

from which four datasets, including Books-Children, Books-History, Ele-Computers, and

Ele-Photo, are selected as the experiment datasets. These datasets are extracted from the

Amazon dataset [38, 67], which have raw text descriptions for each node and are large-scale

compared to previous text-attributed graph datasets [119]. The statistics and the content of

the raw text of each dataset are listed in Table 4.2.
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4.4.1.2 Baselines

Besides the datasets, five impactful GCL methods are selected as baselines for the compar-

ison study. These baselines can be roughly broken down into three categories: I) GraphCL

[132] is the most classical GCL method that involves several conventional random-based

augmentations, II) GCA [149] and GraphCL-Auto [131] are both the adaptive augmentation-

based GCL methods, where GCA conducts automatic selection from the conventional aug-

mentation techniques and GRACE performs trainable augmentations based on the input

graph data, and III) both BGRL [99] and GBT [5] method follow a novel GCL paradigm that

utilizes different training objectives instead of InfoNCE [102] based on DGI [104] to elimi-

nate the requirement of negative contrasting samples to achieve storage efficient.

4.4.1.3 Implementation Details

The LLM used for dataset augmentations in our settings is GPT-3.5-turbo, and the specific

version is default and decided by OpenAI update schedule1. The prompts for guiding the

LLM to generate augmented text are listed in Table 4.1 in the methodology section. More-

over, we adopt a pre-trained BERT [20] model, whose version is bert-base-uncased, to em-

bed the original and augmented text attributes. The pre-trained model are used according

to the guidance of Pytorch-Transformers2. The pre-trained model and other related com-

ponents can be publicly accessed on Hugging Face via this link3. Some important hyperpa-

rameter settings are listed here. The embedding size of the text encoder is set to 768, and

the output size of the graph encoder is set to 256. The learning rate for the whole framework

training is 2e−5. The training batch size and the epoch number are set to 512 and 10.

4.4.1.4 Evaluation Protocol

The proposed method is evaluated based on the node classification task, which is subject

to the linear evaluation protocol. The linear evaluation is to train and test a support vec-

tor machine (SVM) on node feature embeddings trained by the method to be evaluated to

verify the quality of the outputs of the proposed LATEX-GCL method, where the SVM is

implemented by a third-party toolkit named scikit-learn4. Specifically, to ensure the reli-

ability of the experiment results, we repeat the experiment five times. For each time, 20%

of the nodes are selected as the training set, and 10% of the rest of the nodes are the test

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https:pytorch.orghub/huggingface_pytorch-transformers
3https://huggingface.co/google-bert/bert-base-uncased
4https://scikit-learn.org/
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Table 4.3: The comparison study between the baselines and LATEX-GCL.

Dataset Books-Children Books-History

Methods
Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

GraphCL 33.87 (std 0.87) 11.63 (std 0.96) 6.92 (std 0.28) 5.94 (std 0.34) 72.42 (std 0.52) 22.83 (std 0.49) 20.64 (std 0.70) 20.86 (std 0.64)
GraphCL-Auto 37.23 (std 0.91) 20.15 (std 1.07) 9.93 (std 0.24) 10.87 (std 0.29) 72.87 (std 0.63) 27.58 (std 0.61) 22.07 (std 0.75) 22.94 (std 0.69)

GCA OOM OOM OOM OOM 7.53 (std 0.58) 4.34 (std 2.32) 4.85 (std 0.83) 6.01 (std 0.72)
BGRL 7.99 (std 0.81) 28.16 (std 2.03) 12.73 (std 0.22) 13.08 (std 0.30) 75.36 (std 0.49) 30.02 (std 2.24) 23.73 (std 0.92) 23.97 (std 0.83)
GBT 36.98 (std 0.83) 8.77 (std 1.59) 3.09 (std 0.18) 4.01 (std 0.27) 74.97 (std 0.42) 31.17 (std 3.42) 23.35 (std 0.87) 25.13 (std 0.79)

LATEX-GCL (S) 38.71 (std 0.65) 27.86 (std 2.62) 11.89 (std 0.27) 12.40 (std 0.43) 78.65 (std 0.69) 32.58 (std 4.47) 25.91 (std 0.77) 25.55 (std 0.56)
LATEX-GCL (R) 39.30 (std 0.56) 28.07 (std 1.14) 12.70 (std 0.10) 13.38 (std 0.21) 79.08 (std 0.65) 35.55 (std 7.17) 26.98 (std 0.81) 27.02 (std 0.73)
LATEX-GCL (E) 41.72 (std 0.45) 31.27 (std 2.52) 15.50 (std 0.21) 16.81 (std 0.11) 79.22 (std 0.61) 37.28 (std 5.17) 27.31 (std 0.89) 27.51 (std 0.84)

Dataset Ele-Computers Ele-Photo

Methods
Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

GraphCL 33.48 (std 0.23) 35.77 (std 5.37) 15.44 (std 2.65) 13.79 (std 0.36) 42.24 (std 0.45) 36.78 (std 8.00) 8.97 (std 0.18) 6.21 (std 0.32)
GraphCL-Auto 40.79 (std 0.63) 47.23 (std 4.23) 21.99 (std 1.96) 24.67 (std 0.58) 45.74 (std 0.27) 40.39 (std 7.59) 15.61 (std 0.21) 14.95 (std 0.19)

GCA OOM OOM OOM OOM 5.65 (std 0.37) 9.37 (std 1.87) 9.56 (std 0.73) 3.97 (std 1.17)
BGRL 44.36 (std 0.61) 9.78 (std 1.39) 28.43 (std 2.11) 2.27 (std 0.54) 53.77 (std 0.40) 68.73 (std 2.39) 28.88 (std 0.69) 32.74 (std 0.95)
GBT 5.31 (std 0.59) 49.12 (std 2.03) 9.59 (std 1.05) 31.97 (std 0.48) 54.68 (std 0.49) 67.56 (std 1.59) 29.02 (std 0.84) 32.93 (std 1.07)

LATEX-GCL (S) 48.87 (std 0.56) 52.60 (std 1.62) 29.48 (std 0.38) 31.50 (std 0.41) 56.54 (std 0.40) 71.48 (std 1.64) 29.14 (std 0.92) 35.10 (std 1.31)
LATEX-GCL (R) 50.80 (std 0.51) 52.49 (std 1.16) 31.55 (std 0.41) 33.89 (std 0.50) 57.73 (std 0.16) 69.64 (std 0.70) 30.77 (std 0.68) 37.14 (std 0.96)
LATEX-GCL (E) 47.24 (std 0.55) 53.26 (std 1.81) 27.58 (std 0.33) 28.99 (std 0.30) 56.39 (std 0.30) 70.88 (std 1.11) 28.35 (std 0.52) 33.86 (std 0.72)

set. Sufficient metrics, including Accuracy, Precision, Recall, and F1 scores with standard

deviations, are used to demonstrate the results of the linear evaluation.

4.4.2 Experiment Results & Analysis

This section lists the experiment results, including the comparison study, the ablation study,

and the adaptor module experiment, which are accompanied by detailed analysis.

4.4.2.1 Comparison Experiment

The results of the comparison study are listed in Table 4.3, demonstrating the performance

of the proposed LATEX-GCL method and the selected baselines regarding the node classifi-

cation task on the graph. The figures underlined denote the best performance achieved by

baselines, the figures in boldface represent the best result among all methods, and ‘OOM’

indicates that the method is out of the memory when performing on the specific dataset.

The suffixes of LATEX-GCL, including (S), (R), and (E), denote different augmentation prompts

used for the experiment, which are shorten, rewriting, and expansion, respectively. Accord-

ing to the results, we have the following three findings:

• Generally, the proposed LATEX-GCL method achieves the best performance in the

comparison study among all datasets compared to the selected baselines. Such an

observation verifies the effectiveness and the superiority of our proposed LATEX-

GCL method. For different augmentation settings, the results reflect a clear pattern.

Specifically, LATEX-GCL equipped with expansion augmentation performs better on
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the two Amazon-Books datasets, and LATEX-GCL equipped with rewriting augmen-

tation performs better on the two Amazon-Electronics datasets.

• The differences among the performance of different augmentation settings of LATEX-

GCL are largely due to the difference in the raw text content of the two types of

datasets. As listed in Table 4.2, the raw text content in the book datasets is the book

introduction, and that of the electronic datasets is the consumer review. The book

introduction usually contains the correct title of the book, which can help the LLM

prompted by the expansion augmentation to produce informative content that is

highly related to the specific book as the augmented textual attributes, which can sig-

nificantly benefit the following GCL. However, the consumer reviews of the electronic

datasets are normally short and neglect to list the full name of the product reviewed.

Such textual attributes prevent the LLM prompted by expansion augmentation from

producing informative content. Even worse, it may lead the LLM to introduce more

noise (i.e., unrelated content). Therefore, utilizing the LLM to extract key information

in the consumer review would be more suitable instead of producing auxiliary in-

formation. The experiment results confirm our analysis. On dataset Books-Children

and Books-History, LATEX-GCL equipped with shorten augmentation and rewiriting

augmentation, which are both helpful for key information extraction from the origi-

nal textual attributes as discussed previously, outperform LATEX-GCL equipped with

expansion augmentation. Moreover, in the scenarios of lacking sufficient computa-

tional resources, the shorten augmentation would be a promising alternative for the

rewriting expansion as the gap between the performance of these two augmentations

is insignificant on both electronic datasets.

• GraphCL has the lowest scores across all metrics and datasets. This is because GraphCL

uses classical augmentation techniques to conduct GCL, outperformed by those adap-

tive augmentation strategies. GraphCL-Auto adopts an automatic selection strategy

to pick conventional augmentations used in GraphCL, slightly improving the perfor-

mance. GRACE proposes an adaptive strategy to augment the graph according to the

specific input data. However, such a strategy significantly increases the complexity.

Consequently, GRACE is out of memory when performing on the two large datasets,

including Books-Children and Ele-Computers. The significant improvement brought

by the adaptive augmentation strategy is reflected by GCA’s performance on Books-

History and Ele-Photo. Specifically, GRACE achieved the best results among all the

baselines on these two datasets. Both BGRL and GBT methods follow the same idea
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of utilizing different training objectives instead of InfoNCE to eliminate the require-

ment of negative contrasting samples and achieve better performance. We can ob-

serve that both methods can perform well on large datasets. However, on the rela-

tively small datasets where GraphCL-Auto can function, BGRL and GBT are outper-

formed by GraphCL-Auto due to both methods taking the same conventional aug-

mentation techniques as adopted by GraphCL, which is less advanced compared to

the adaptive augmentation strategy.
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Figure 4.2: The LATEX-GCL’s performance with different text encoders and graph encoders.

4.4.2.2 Ablation Study of Text Encoder and Graph Encoder

There are two critical components in LATEX-GCL: text encoder and graph encoder. In this

ablation study, we examined different models for the two components. The text encoder

adopts BERT [20], and the graph coder is GCN [53] in the default settings. Two supplemen-

tary experiments are conducted with BERT [20] being replaced by GPT-2 [79] and GCN [53]

being replaced by GraphSAGE [32]. The experiment results are illustrated in Figure 4.2.

Both BERT and GPT-2 are representative language models in NLP areas. However, there

are significant differences between the two models. BERT is a bidirectional model that
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utilizes tasks like Masked Language Modeling to train word representations, focusing on

context-based text understanding. But GPT-2 is a single-direction model trained by self-

regression paradigms to predict the next word based on the previous content, which is de-

signed for generative tasks. We can observe that LATEX-GCL equipped with GPT-2 is signif-

icantly outperformed by LATEX-GCL equipped with BERT. It indicates that the generative

language model is unsuitable for acquiring text feature embeddings. This phenomenon is

reasonable as the generative language models are designed for content generation, lacking

powerful embedding abilities to obtain informative text representations.

The graph encoder module in LATEX-GCL incorporates the embedded text features and

graph structural information to obtain the final representation embedding of the node in

the TAG. In practice, the graph encoder selected for LATEX-GCL should be simple and ef-

ficient for processing large-scale graphs like GCN and GraphSAGE. Though LATEX-GCL

equipped with GraphSAGE is functional, it is outperformed by LATEX-GCL equipped with

GCN. GraphSAGE is designed for very large graphs and randomly drops some nodes and

edges to facilitate the training, which causes information loss.

In short, to ensure the normal functionality and satisfying performance of LATEX-GCL,

the text encoder should not adopt generative language models such as GPT-2, and the

graph encoder should be simple and efficient enough like GCN and GraphSAGE to incor-

porate the language model to train on large TAGs.

4.4.2.3 Adaptor Module Experiment

As mentioned previously, adopting an adaptor module is a common practice for employ-

ing pre-trained language models for various downstream applications while avoiding fine-

tuning. However, the adaptor module is usually combined with the downstream models

to be trained together by supervised signals. But, in our settings, the training phase is mo-

tivated by graph contrastive learning, a self-supervised learning paradigm, instead of the

supervised one. This section investigates if the adaptor module can apply to LATEX-GCL.

Without losing generality, we employ a single linear layer to decorate the outputs of

the text encoder. The adaptor-processed outputs’ size is a hyperparameter selected from

{256,512,768}. Moreover, the default setting in this experiment denotes the vanilla LATEX-

GCL equipped with shorten augmentation. The experiment results are shown in Table 4.4.

According to the results, the adaptor module is effective in improving the performance

of LATEX-GCL in most scenarios. Specifically, the improvement occurs when the output

size of the adaptor is relatively small (i.e., smaller than the output size of the text encoder).
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Table 4.4: The performance of LATEX-GCL with different adaptor settings.

Dataset Books-Children Books-History

Settings
Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

Default 38.71 (std 0.65) 27.86 (std 2.62) 11.89 (std 0.27) 12.40 (std 0.43) 78.65 (std 0.69) 32.58 (std 4.47) 25.91 (std 0.77) 25.55 (std 0.56)
256 40.96 (std 0.51) 31.19 (std 2.83) 14.47 (std 0.25) 15.44 (std 2.75) 78.86 (std 0.33) 32.95 (std 3.29) 26.16 (std 0.67) 25.75 (std 0.49)
512 39.55 (std 0.67) 28.88 (std 1.85) 12.73 (std 0.23) 13.45 (std 0.21) 79.17 (std 0.43) 36.33 (std 4.91) 26.40 (std 0.35) 25.95 (std 0.22)
768 35.28 (std 0.96) 13.20 (std 2.38) 8.26 (std 0.33) 7.37 (std 0.44) 78.48 (std 0.66) 29.50 (std 4.16) 25.62 (std 0.93) 24.98 (std 0.78)

Dataset Ele-Computers Ele-Photo

Settings
Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

Default 48.87 (std 0.56) 52.60 (std 1.62) 29.48 (std 0.38) 31.50 (std 0.41) 56.54 (std 0.40) 71.48 (std 1.64) 29.14 (std 0.92) 35.10 (std 1.31)
256 50.63 (std 0.66) 53.15 (std 1.34) 31.22 (std 0.58) 33.61 (std 0.79) 57.06 (std 0.51) 70.94 (std 1.13) 29.00 (std 0.89) 34.94 (std 1.14)
512 53.44 (std 1.17) 53.06 (std 1.45) 34.26 (std 0.95) 37.01 (std 1.16) 49.23 (std 0.56) 49.31 (std 6.85) 16.58 (std 0.64) 18.67 (std 0.96)
768 48.62 (std 0.30) 53.59 (std 1.37) 28.82 (std 0.29) 30.61 (std 0.40) 53.86 (std 0.33) 64.91 (std 5.10) 24.07 (std 0.70) 28.96 (std 0.98)

It can be speculated that the role of the adaptor is to condense the text feature embeddings

produced by the text encoder to facilitate the following GCL training process.

4.5 Summary of LATEX-GCL

This section proposes a novel GCL framework, namely LATEX-GCL, which successfully

incorporates LLMs to conduct augmentations to construct contrasting samples and ad-

dresses RQ1.2. The purpose of the proposed augmentation strategy is to leverage the ad-

vantages of LLMs to tackle the limitations of information loss, incapable language models,

and implicit constraints of current GCL methods for TAGs, including alleviating informa-

tion loss during the augmentation, enhancing insufficient NLP abilities of conventional

language models, and imposing explicit constraints on the augmentation process. Compre-

hensive experiments verify the effectiveness and superiority of the proposed LATEX-GCL

method. This research is expected to be a pioneering work that encourages the exploration

of LLMs for GCL. The future directions are two-fold, including investigating more compre-

hensive augmentation prompting strategies for different scenarios and how to improve the

computation efficiency of employing LLMs in real-world applications.

Both Chap. 3 and this chapter focus on the perspective of methodology of augmenta-

tion techniques in GCL. However, to demonstrate the practical value of GCL methods, it is

essential to apply them to real-world scenarios. One of the most suitable application areas

for GCL methods, as previously discussed, is recommendation systems. Next two chapters

present novel implementations of GCL in recommendations to achieve the practical value

of GCL methods in real-world applications.
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CONSTRUCTION OF CONTRASTING SAMPLES FOR

RECOMMENDATIONS

User purchasing prediction with multi-behavior information remains a challenging prob-

lem for current RS. Various methods have been proposed to address it via leveraging the

advantages of GNNs or multi-task learning. However, most existing works do not take the

complex dependencies among different behaviors of users into consideration. They uti-

lize simple and fixed schemes, like neighborhood information aggregation or mathemat-

ical calculation of vectors, to fuse the embeddings of different user behaviors to obtain

a unified embedding to represent a user’s behavioral patterns which will be used in down-

stream recommendation tasks. To tackle the challenge, in this section, the concept of hyper

meta-path is first proposed, which can be used to construct hyper meta-graphs to explic-

itly illustrate the dependencies among different behaviors of a user. How to obtain a unified

embedding for a user from hyper meta-paths and avoid the previously mentioned limita-

tions simultaneously is critical. Thanks to the recent success of GCL, it can be leveraged to

learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme

to understand the dependencies among different behaviors. A new GCL-based framework

is proposed by coupling with hyper meta-path, namely HMG-CR, which consistently and

significantly outperforms all baselines in extensive comparison experiments.

This chapter presents a pioneering research, which is one of the first work in the litera-

ture to demonstrate how to implement GCL in RS and is the answer to RQ2.1. Inspired by

the previous research and the understanding of different augmentation techniques, a novel
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concept of hyper meta-path and the tailored contrasting sample construction method are

proposed, and they would inspire the future works in this research domain.

5.1 Brief Introduction to HMG-CR

Online shopping is becoming more and more essential nowadays, and it generates a large

volume of user behavioral data depicting users’ purchasing motivations, interests, behav-

ioral patterns, etc. However, many traditional recommendation systems [41, 32] pay signif-

icant attention to purchasing alone, leaving other associated behavioral data unexploited.

Though recent works [142, 86, 26, 15, 130] reveal the gap and try to leverage multi-behavior

information to improve recommendation quality, there are still limitations. For instance,

some path-based works [142, 16] leverage meta-paths [98, 11] to extract recommendation

context to better characterize users’ multiple behaviors. However, there exist many meta-

path schemes observed in heterogeneous graphs, resulting in the difficulty of finding out

the best one from multiple meta-path schemes via exhaustive search or learning a specific

rule or scheme from the heterogeneous graphs to construct meta-paths [16]. Selecting an

effective and meaningful meta-path scheme, in this case, is time-consuming, and the rea-

sons for the selection are usually unknown.

(a) Multiple Meta-paths of a user

Behavior Sequence in 
Chronological Order

(b) A hyper meta-path of the user

Figure 5.1: Differences between meta-path and hyper meta-path in HMG-CR.

To overcome the above limitation of existing path-based approaches, we propose a new

concept of hyper meta-path that consolidates multiple paths in a well-organized and holis-

tic way. Similar to hyperedge in hypergraph [96, 97, 62, 65] where an edge can connect more

than two nodes, a hyper meta-path is a composition of multiple meta-paths between spec-

ified two end nodes in a heterogeneous network. As shown in Figure 5.1, let us assume

that before purchasing a phone, the user had viewed the item twice. If meta-path-based

approaches are adopted to model the different shopping-related behaviors, three indepen-
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dent meta-path instances (Figure. 5.1. (a)) can be discovered to characterize this purchas-

ing context. From these three meta-paths, it can learn that the user has viewed and pur-

chased the item, but it does not explicitly reflect the exact behavioral pattern of the user.

That is, it is unclear whether the user purchased the item directly or viewed the item care-

fully and for multiple times before purchasing.

In contrast, the proposed hyper meta-path is capable of achieving such a goal. As shown

in part (b) of Figure. 5.1, a hyper meta-path between the user and the phone consolidates all

three behaviors in a sequential order, which explicitly shows that the user carefully viewed

the phone twice before the final purchasing action. Note that the way of consolidating re-

lated meta-paths into a hyper meta-path can be flexible and generalized to any reason-

able rule depending on a particular application scenario. Besides, the concept of hyper

meta-path is also useful for differentiating different behavior patterns between different

users or when facing various categories of items presented to a user. For instance, normally,

technical people may research different substitutable electronic products and take a longer

time to compare them, while non-technical people are not keen on investigating them and

would probably directly buy one based on someone’s recommendation. Even for the same

user, no matter their age and gender, they usually exhibit quite diverged buying patterns

when facing different categories of products. For example, a user may have totally differ-

ent buying patterns when purchasing large items (e.g., white goods like fridges or TVs) and

small fast-moving consumer goods (e.g., periodically buying tissues from an online market

without viewing them again and again).

Nevertheless, it is not straightforward to incorporate the modeling of hyper meta-path

into existing learning frameworks. Currently, graph-based unsupervised learning approaches

are mainly used for path-based recommendation. For example, GNNs-based approaches

[86] are a popular means for multi-behavior recommendation via aggregating informa-

tion passed from different types of edges or nodes in heterogeneous information networks

[120]. Despite its popularity, these methods usually fuse the learned features of different

behaviors independently, which is too naive to reflect hyper meta-path context for recom-

mendation. Moreover, multi-task learning-based models [26, 15] are also possible ways that

introduce additional supervision signals from the observed multiple behavior data to im-

prove recommendation quality. However, extra efforts on well-elaborated tasks are tricky,

and researchers have to carefully work out the effective dependencies among related tasks.

For example, taking purchasing prediction as a primary task while modeling the add-to-

cart behavior prediction as an auxiliary task might not always be right as some users may

buy some items directly without putting them into the cart.
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Thus, to further reveal and capture the differences between buying patterns, together

with hyper meta-paths, the GCL [78, 132] paradigm is innovatively leveraged for the multi-

behavior recommendation problem. The main idea of graph contrastive learning is to dis-

tinguish the differences among graphs to obtain the useful structure information of each

graph, raising a recent surge of interest [78, 132]. The rationale for incorporating contrastive

learning with our proposed hyper meta-paths is that a user may have multiple hyper meta-

paths explicitly illustrating his/her behavioral patterns when facing different products. Since

hyper meta-path explicitly describes users’ behaviors towards purchasing different items,

GCL becomes the best fit for comparing and extracting the key structures in the hyper

meta-graph consisting of hyper meta-paths.

More specifically, we combine multiple hyper meta-paths of a user to construct sev-

eral hyper meta-graphs. Each hyper meta-graph contains a different number of types of

behaviors. For example, the first hyper meta-graph contains buy, and the second hyper

meta-graph contains buy and page view. In this case, different hyper meta-graphs reflect

different behavioral patterns of the user regarding different products. Then, we conduct

graph contrastive learning among the constructed hyper meta-graphs to adaptively obtain

the complex dependencies among different behaviors and the embeddings representing

different behavioral patterns. For instance, in HMG-CR, we first build the target contrastive

graph that only contains buy interactions between users and items as it is the target behav-

ior for recommendation systems, and the other contrastive hyper meta-graphs are added

for comparison by incrementally introducing auxiliary behaviors to the precedent hyper

meta-graph. After that, we conduct graph contrastive learning between the constructed

contrastive hyper meta-graphs to successively obtain progressive and comprehensive rep-

resentations for each type of behavior. Finally, the recommendation will be performed

based on those discovered behavior patterns and features.

The contributions of this section can be summarized into three aspects:

• Tthe concept of hyper meta-path is proposed to explicitly illustrate the logical rela-

tions among a collection of meta-paths, which tackles the limitation of meta-path

that is insufficient to model the interactions among meta-paths. Hyper meta-path

can be regarded as an approach to enrich graph structures.

• GCL is innovatively utilized to capture the complex behavior patterns of users adap-

tively, alleviating existing methods’ limitations.

• A novel recommendation framework is proposed by coupling GCL with hyper meta-

path, achieving superior performances in the comparison experiments.
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5.2 Preliminaries about Hyper Meta-Path

This section introduces some necessary preliminaries and definitions about the meta-path

and the proposed concept of hyper meta-path.

5.2.1 Meta-Path

Heterogeneous networks have been intensively studied by a lot of researchers due to their

ability to utilize multi-model, multi-typed graph data. To illustrate the power of heteroge-

neous networks, Sun et al. [98] proposed the concept of meta-path, which is widely used

by many existing works [21, 11] in the research area of heterogeneous networks modeling.

Each meta-path captures the features among the nodes on the meta-path from a particular

semantic perspective. Due to the diversity of meta-paths in a heterogeneous graph, mul-

tiple meta-paths exist for the target (e.g., a node or an edge). Thus, the informative meta-

paths give heterogeneous network models the chance to obtain the multi-model multi-

typed features of nodes and their relations. This kind of data structure indeed shows the

advantage in many real-world graph data mining applications [46, 91]. However, there are

limitations existing in meta-paths mentioned in previous section, failing to capture the in-

teraction information among multiple meta-paths.

5.2.2 Hyper Meta-Path

Though people can build extra meta-paths based on the interactions among existing meta-

paths, we cannot take an exhaustive method to compute every meta-path since the compu-

tation complexity is unaffordable. Inspired by the concepts of hyperedge and hypergraph,

we find a way to integrate interaction information among meta-paths into the target. Ac-

cording to the limitations of the conventional meta-path mentioned above and the advan-

tages of hyperedge and hypergraph, we propose the concept of hyper meta-path to capture

meta-path features and interaction information among them simultaneously.

Definition 1. Hyper meta-path. A hyper meta-path is a logical composition of multiple

meta-path schemas connecting two end nodes in a heterogeneous information network. Hy-

per meta-path has the following properties:

• It describes the logical relations (e.g., chronological order, spatial order, and topological

order) among a sort of meta-paths with the same end nodes.

• Multiple hyper meta-paths, having the same start node, compose a hyper meta-graph.
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5.3 Methodology

In this section, the details of the proposed HMG-CR method are introduced. The overview

are shown in Figure 5.2.

Users Items Categories

Graph
Encoders

User Behavior 
Embeddings

Contrastive Learning

Contrastive Learning

Contrastive Learning

Graph Contrastive Learning Part

Maximize Dissmilarity

Maximize Dissmilarity

Maximize Dissmilarity

Fusion Layer

Unified User 
Behavior Embedding

Recommendation
Model

User's Behavior Embeddings Fusion Part

Hyper Meta-
Graphs

User Behavior 
Embeddings

Figure 5.2: The overview of HMG-CR.

5.3.1 Hyper Meta-Graph Generation

GNN-based recommendation methods [40] have recently achieved tremendous success

due to the power of GNNs. Data is critical to neural network models’ performances. One

way to leverage GNN-based recommendation models is to construct proper graphs for

them. The most common way to construct graphs in recommendation systems is by build-

ing bipartite graphs via user-item interaction history. Since user-item interaction graphs

are bipartite graphs, they lack semantic information because of their simple structure. To

tackle this limitation, researchers have taken measures to further enrich semantic infor-

mation carried by graphs, for example, by adding auxiliary information into the graph [76],

utilizing meta-paths existing in the graph [16], and constructing more sophisticated graph

structures like hypergraphs [108, 13].

To improve recommendation results, in this work, the proposed concept of hyper meta-

path is utilized to construct hyper meta-graphs carrying rich semantic information. Next,

details on how to construct hyper meta-graphs.

Given a set of interaction records in a recommendation system, {(u j ,rk , iq )|u j ∈U , iq ∈
I ,rk ∈ R}, where U = {u0,u1, · · · ,un} denotes the set of all users, I = {i0, i1, · · · , im} de-
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notes the set of all items, and R = {r0,r1, · · · ,rl } denotes the set of all different kinds of

user behaviors. According to the number of types of different user behaviors, we construct

|R| = l + 1 hyper meta-graphs for each user. For the t-th hyper meta-graph of user u j , it

is defined as H G
j
t = {(u j , (ra ,rb , · · · ,rc ), iq )|iq ∈ I ,∀r ∈ {r0,r1, · · · ,rt−2,rl }}, where behav-

ior sequence (ra ,rb , · · · ,rc ) is sorted in chronological order, and each behavior r in the se-

quence solely bridges user u j and item iq . Hence, we will have a set of hyper meta-graphs

H G j = {H G
j
0,H G

j
1, · · · ,H G

j
l } to illustrate user-item interactions of user u j in the rec-

ommendation system. Note that the order among different behaviors in R is based on the

distance between behaviors and behavior buy in the semantic space. For example, there

are four types of common user behaviors: page view, favorite, add to cart, buy. Behavior

page view is farthest from behavior buy, a sorted set of behaviors can be defined here,

{rpv ,r f av ,rcar t ,rbuy }. So, the first hyper meta-graph of a user solely contains the behavior

of buy, the second one contains page view and buy, the third one contains all the behaviors

except add to cart, and the last hyper meta-graph contains all of four types of behaviors.

5.3.2 Graph Encoders

Graph encoder is the essential part of the whole framework since it determines whether

the framework can learn representative embeddings for users’ behavior patterns from hy-

per meta-graphs. GNN models are widely used graph encoders, e.g., GCN [53] and GAT

[103]. Technically, any GNN models can be used in our framework with sufficient informa-

tion (e.g., edge types and node features). Note that exquisite GNN models are not required

since hyper meta-graphs that carry rich semantic information (e.g., geometric information,

topological structures) have been built. In the practice of HMG-CR, geometric or topoloy-

based GNNs, like GIN [118] and TAGCN [22], could be applied as the graph encoder be-

cause of their simplicity and effectiveness. GNN-based encoders can effectively leverage

the structure information from the proposed hyper meta-path.

As mentioned in the previous section, each user in the recommendation system have

|R| hyper meta-graphs. We assign |R| independent graph encoders to process these hyper

meta-graphs accordingly. Note that these graph encoders are shared among different users.

Given the t-th hyper meta-graph of user u j and a graph encoder g t (·), where · denotes a

hyper meta-graph, we will have the embedding of the t-th hyper meta-graph of user u j :

(5.1) h j
t = g t (H G

j
t ),

where h j
t ∈ Rh and h denotes the hidden dimension of the user behavior pattern embed-

dings and item embeddings, respectively.
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5.3.3 Hyper Meta-Graph Contrastive Learning

For each user, we build several hyper meta-graphs. The graphs carry the user’s interac-

tion records. We can capture this information via graph encoders learning on the hyper

meta-graphs separately. However, the behavior patterns of a user would be complicated.

According to the example mentioned in the previous section, we have four different hyper

meta-graphs for each user. The complexity of the hyper meta-graph is increasing following

the number of behavior types it contains. For example, the first hyper meta-graph solely in-

cludes buy, and the second hyper meta-graph includes page view and buy. The second hy-

per meta-graph contains at least two purchasing patterns: buying the item directly, which

is also contained in the first hyper meta-graph, and buying the item after viewing. Suppose

we adopt graph encoders to learn on each hyper meta-graph separately. In that case, differ-

ent behavior patterns in the same hyper meta-graph will be fused. This result may neglect

the performances when using the learned behavior patterns for the recommendation. It is

critical to extract different behavior patterns from a sequence of hyper meta-graphs whose

complexities are cascadingly increasing. A potential solution is to contrast the hyper meta-

graph with its previous one to obtain the differences (e.g., different behavior patterns) be-

tween these two adjacent hyper meta-graphs.

Thanks to the recent success of GCL, hyper meta-graphs discrimination is proposed

as the solution to obtain different behavior patterns by contrasting different hyper meta-

graphs and InfoNCE [102] as the contrastive learning objective.

An example is given here. For the user u j , it can give out two adjacent hyper meta-

graphs of u j , which are H G
j
t−1 and H G

j
t . g t−1(·) and g t (·) are assigned as their graph en-

coders, respectively. Hence, the embeddings of two hyper meta-graphs can be obtained:

(5.2) h j
t−1 = g t−1(H G

j
t−1),

(5.3) h j
t = g t (H G

j
t ).

In this example, h j
t−1 and h j

t compose the negative pair. To satisfy the setting of InfoNCE,

the positive pair must be constructed to fulfill the contrastive learning process. Following

the GCL settings in GCC [78], g t−1(·) is used to encode H G
j
t to obtain ĥ j

t :

(5.4) ĥ j
t = g t−1(H G

j
t ),

which is together with h j
t to compose the positive pair. InfoNCE is adopted such that:

(5.5) L
j

t−1,t =− log
exp(d(h j

t , ĥ j
t ))

exp(d(h j
t , ĥ j

t ))+exp(d(h j
t ,h j

t−1))
,
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where d(·, ·) denotes the metrics measuring the distance between two vectors. For the rec-

ommendation system having n +1 users and l +1 different types of user behaviors, we will

have a overall contrastive learning objective:

(5.6) Lcontr a = 1

n +1

n∑
j=0

l∑
t=1

L
j

t−1,t .

The intuitions of adopting such a strategy are twofold:

• Avoid generating the negative pair via graph augmentation. Some works [132] uti-

lize graph augmentation to generate negative pairs. However, in the recommenda-

tion scenario, graph augmentation would disturb the users’ interaction records and

affect behavior pattern generation, which may cause misleading results in the down-

stream recommendation tasks. Such a strategy is an alternative solution for us to gen-

erate the negative pair without disturbing the original semantics.

• Bridge two contrasting hyper meta-graphs. It is hard for us to link the embeddings

generated from different graph encoders with different graphs in semantic space.

However, with such a strategy, we can build an implicit connection between con-

trasting hyper meta-graphs in the contrastive learning process.

Finally, |R|user behavior embeddings for a user can be acquired after the contrastive learn-

ing process, which will be fed into fusion layer and downstream recommendation tasks.

5.3.4 Users’ Multi-behavior Pattern Fusion

After obtaining |R|different embeddings which denote different behavior patterns of a user,

we have to fuse them and obtain a unified embedding to conduct recommendations. There

is a sort of widely used linear fusion methods, like sum and mean. And there is another type

of fusion method, which is neural network-based methods (e.g., Multi-Layer Perceptron

(MLP) and Personalized Non-Linear Fusion (PNLF) [90]). Given a fusion function f (∗), we

can have a unified behavior pattern embedding for the user:

(5.7) h j
uni = f (h j

0,h j
1, · · · ,h j

l ) ∈Rh .

5.3.5 Recommendation Task

There are plenty of collaborative filtering-based recommendation frameworks that lever-

age the explicit or implicit feedback of users [41]. To fully demonstrate the ability of the
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proposed model and evaluate the quality of the user embeddings generated by HMG-CR,

a simple vector product is used to make predictions instead of those complex and SOTA

models to avoid the improvement brought by sophisticated recommendation models.

Let hk denote the embedding of item ik . With the unified behavior pattern embedding

of user u j , we can obtain the predicted score between the item and the user via:

(5.8) p̂u j ,ik = h j
uni

T ·W ·hk ,

where the trainable weight matrix W ∈Rh . The matrix W is used to map the unified behav-

ior pattern to the space where item embeddings are in for score prediction.

To train the model, the negative logarithm of the likelihood function [41] is adopted:

(5.9)
Lr ec =− ∑

(u j ,ik )∈Y ∪Y −
pu j ,ik log p̂u j ,ik

+ (1−pu j ,ik ) log(1− p̂u j ,ik ).

To normalize the loss value of loss function on recommendation tasks, the following for-

mula is adopted as the objective,:

(5.10) Lave_r ec = Lr ec

|{(u j , ik )|(u j , ik ) ∈Y ∪Y −}| ,

where Y and Y − denote postive interaction records and sampled negative interaction

records, pu j ,ik ∈ {0,1} represents if there is an interaction between user u j and item ik .

Finally, to train the model in an end-to-end manner, the contrastive objective and the

recommendation objective are coupled as the overall training objective:

(5.11) L = (1−β) ·Lcontr a +β ·Lave_r ec ,

where β is a hyperparameter controlling the significance of two objectives.

5.4 Experiments on HMG-CR

This section evaluates HMG-CR on recommendation tasks with two real-world datasets.

The comparison experiment results of HMG-CR and baselines are first reported. Then, how

GCL works in HMG-CR is analyzed. Lastly, ablation studies are conducted on the graph

encoder and fusion layer in the model.

5.4.1 Experiment Setup

Detailed experiment setup is listed in this section, including datasets, baselines, and exper-

imental settings to facilitate reproducibility.

68



5.4. EXPERIMENTS ON HMG-CR

Table 5.1: Statistics of datasets for HMG-CR experiments.

Dataset Taobao Tmall

#users 48946 9368
#items 1500839 302722

#pv (percentage) 7723217 (85.17%) 1510303 (92.14%)
#fav (percentage) 436715 (4.82%) 102419 (6.25%)
#cart (percentage) 527221 (5.81%) 24557 (1.50%)
#buy (percentage) 380877 (4.20%) 104360 (6.37%)

#total 9068030 1639220

#ave_pv 157.79 161.22
#ave_fav 8.92 10.93
#ave_cart 10.77 2.62
#ave_buy 7.78 11.14
#ave_total 185.27 174.98

5.4.1.1 Datasets

The proposed framework is evaluated on two real-world datasets, which are of high quality

and widely used, including Taobao1 and Tmall2. To ensure the quality of the datasets, the

customary practice [95] is followed to discard users and items with less than five interac-

tions of buy. The users with too many interactions of page view in Tmall are filtered out to

discard noise. The statistics of the filtered datasets are shown in Table 5.1.

5.4.1.2 Baselines

To verify the effectiveness of the proposed framework, we compare it with three categories

of baselines. The first category is conventional GNNs, including GCN [53] and GraphSAGE

[32], which cannot distinguish different types of edges in the graph. They treat different

user behaviors in the same way. The second category is edge types-aware GNNs, including

GAT [103] and RGCN [86], which can process various types of edges in the graph explicitly

or implicitly to capture the features of different user behaviors. The last category is novel

multi-behavior recommendation frameworks, NMTR [26] and EHCF [15], which achieve

state-of-the-art performances on multi-behavior recommendation tasks.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=47
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5.4.2 Settings

For reproducibility, the details of the hyperparameter settings of the proposed framework

are introduced in this part. HMG-CR is trained on dataset Taobao with learning rate l r =
0.0001, weight decay wd = 0.000001, hidden dimension h = 16 advised by [139], and 3-

layer TAGCN [22] as the graph encoder. As to dataset Tmall, HMG-CR is tuned with the

same learning rate, weight decay and hidden dimension. A 3-layer GIN is adopted as the

graph encoder for HMG-CR on dataset Tmall. To ensure fairness in the comparison stud-

ies, the widely used leave-one-out strategy [41] is followed to conduct comparison studies.

The metrics adopted are Recall@K and NDCG@K, which show the quality of the recom-

mendations of top-K items.

5.4.3 Comparison Experiment Results

Table 5.2: Comparison experiment results of HMG-CR.

Dataset Taobao Tmall

Methods
Metrics

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

GCN 0.2577 0.3589 0.1842 0.2167 0.2544 0.3775 0.1763 0.2163
GraphSAGE 0.2751 0.3826 0.1965 0.2312 0.2588 0.3695 .1813 0.2170

GAT 0.2782 0.3921 .1972 0.2339 0.2561 0.3735 0.1777 0.2158
RGCN 0.2714 0.3767 0.1946 0.2285 0.2725 0.4144 0.1749 0.2215
NMTR 0.2215 0.3781 0.1513 0.2012 .2780 .4230 0.1798 .2265
EHCF .2882 .4166 0.1945 .2359 0.2451 0.4115 0.1581 0.2113

HMG-CR(SG) 0.3050 0.4417 0.2162 0.2608 0.2943 0.4329 0.1863 0.2321
HMG-CR(GCN) 0.3039 0.4441 0.2154 0.2613 0.2954 0.4332 0.1869 0.2324

HMG-CR(GAT) 0.3460 0.4390 0.2443 0.2746 0.3163 0.4320 0.2224 0.2604

HMG-CR(GIN) 0.3141 0.3627 0.2029 0.2191 0.3547 0.4313 0.2642 0.2891
HMG-CR(TAGCN) 0.3588 0.4464 0.2639 0.2926 0.2964 0.4350 0.1902 0.2359

Improvement 24.50% 7.15% 33.82% 24.04% 27.59% 2.84% 45.73% 27.64%

Table 5.2 lists the comparison experiment results for all methods on two datasets. Over-

all, the proposed framework HMG-CR with different graph encoders consistently and sig-

nificantly outperforms all baselines in terms of all metrics. Particularly, our proposed frame-

work has more significant improvement on the metric NDCG, which shows that our pro-

posed framework pays more attention to sorting recommended items. Note that HMG-CR

on dataset Taobao slightly outperforms that on dataset Tmall. According to the statistics

of the two datasets, as shown in Table 5.1, we note that the average numbers of total in-

teractions for each user are close in the two datasets, but there are differences among the

distribution of numbers of different user behaviors. The ratio of add to cart in dataset Tmall
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is much less than that in dataset Taobao. Each user in both datasets has four hyper meta-

graphs since there are four different types of user behaviors. Due to the lack of add to cart in

dataset Tmall, the third hyper meta-graph for a user, including page view, add to cart, and

buy, is similar to the second hyper meta-graph for the user, including page view and buy.

Under such a scenario, it is hard for graph contrastive learning to maximize the dissimi-

larities between the second hyper meta-graph and the third hyper meta-graph. Hence, the

user behavior pattern embedding generated in this part would be misleading for unified

user behavior pattern embedding generation.

Graph neural network-based methods performed unsatisfyingly in the comparison ex-

periment. The interaction graphs for each user in the recommendation systems have sim-

ple structures (e.g., bipartite graphs). Conventional GNN models, like GCN and Graph-

SAGE, may be insufficient to capture user behavior pattern embeddings on such simple

graph structures. Edge types-aware GNN models, like GAT and RGCN, slightly outperform

GCN and GraphSAGE since they integrate fruitful side information regarding different types

of user behaviors. Overall, two categories of GNN models have no significant gaps because

page view takes the most place in the datasets. Message passing and aggregation are not

capable of capturing sophisticated relations among different types of user behaviors since

the semantics of page view would conceal other information.

NMTR and EHCF are state-of-the-art multi-behavior recommendation frameworks. They

leverage the well-designed recommendation models and multi-task learning strategy to

utilize the supervision signals from all types of user behaviors. However, there is a limi-

tation for both frameworks. Both of them have an assumption that each type of user be-

havior has strong connections with precedent types of user behaviors. This assumption is

not solid because users’ behavioral patterns are complex. The proposed HMG-CR adopts a

more flexible manner to utilize GCL to capture the dependencies among different types of

user behaviors instead of assuming there are strong connections between a behavior and

the precedent one. Because of this, even without multi-task supervision signals and well-

designed recommendation models, the proposed HMG-CR still outperforms NMTR and

EHCF by leveraging the advantages of hyper meta-graphs and GCL.

5.4.4 Analysis of GCL in HMG-CR

In this part, the detailed mechanism of GCL in HMG-CR is introduced.

First, as shown in Figure 5.3, the training loss of the proposed framework on two datasets

during the training process is demonstrated. The training loss is twofold, contrastive loss

and recommendation loss. A clear tendency can be observed that contrastive loss drops
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Figure 5.3: The contrastive loss and recommendation loss of HMG-CR on both datasets.

first and remains stabilized, and then the recommendation loss starts to decrease. This

phenomenon reflects that the proposed framework first maximizes the dissimilarity among

hyper meta-graphs to obtain user behavior pattern embeddings and update parameters on

the recommendation task. The contrasting loss among hyper meta-graphs is maintained

throughout the remaining training process.

(a) (b)

Figure 5.4: Performance of HMG-CR with different β.

To further illustrate the impact of GCL on HMG-CR, hyperparameter studies are con-

ducted on β, which controls the relative significance of GCL tasks and recommendation

tasks. The experimental results of hyperparameter studies are shown in Figure 5.4. Over-

all, HMG-CR is not that sensitive to β as long as β is not too small. However, it is worth
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noting that HMG-CR has worse results when β takes the boundary values (e.g., β = 0.1).

When β is too low, the model pays less attention to the recommendation tasks. The model

cannot acquire sufficient supervision signals from training data to update the parameters.

Under this scenario, it is difficult for our model to converge quickly and precisely on recom-

mendation tasks. With β increasing, the performances of the proposed framework increase

accordingly. When β is larger than some specific values, e.g., β = 0.4 for dataset Taobao

and β = 0.2 for dataset Tmall, the performances start to decrease slightly. Large β values

will neglect GCL tasks, which would undermine the ability of the model to acquire user

behavior pattern embeddings from sophisticated hyper meta-graphs. This phenomenon

also verifies that GCL is helpful to HMG-CR. In summary, GCL task and recommendation

task should have a relatively balanced significance, and β should not be too large in our

proposed framework to avoid decreasing model performances and cannot be too small, in

which case the framework may not work.

5.4.5 Ablation Studies

Table 5.3: Ablation study of HMG-CR regarding the graph encoder.

Dataset Taobao Tmall

Methods
Metrics

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

GIN 0.2682 0.3779 0.1892 0.2246 0.2817 0.4236 0.1878 0.2340
TAG 0.2784 0.3863 0.1994 0.2342 0.2845 0.4235 0.1869 0.2323

HMG-CR(GIN) 0.3141 0.3627 0.2029 0.2191 0.3547 0.4313 0.2642 0.2891
HMG-CR(TAG) 0.3588 0.4464 0.2639 0.2926 0.2964 0.4350 0.1902 0.2359

Table 5.4: Ablation study of HMG-CR regarding the fusion layer.

Dataset Taobao Tmall

Fusion
Metrics

Recall@5 Recall@10 NDCG@5 NDCG@10 Recall@5 Recall@10 NDCG@5 NDCG@10

MEAN 0.3460 0.4390 0.2443 0.2746 0.3163 0.4320 0.2224 0.2604
SUM 0.3012 0.4427 0.2118 0.2580 0.2939 0.4345 0.1879 0.2343

MLP 0.3024 0.4344 0.2150 0.2579 0.2946 0.4349 0.1873 0.2336
PNLF 0.3046 0.4363 0.2157 0.2586 0.2944 0.4344 0.1865 0.2327

Graph Encoder. Choosing a proper graph encoder for the framework determines whether

it can achieve good performance. Three common categories of GNNs are selected: conven-

tional message passing-based GNNs including SG [112] and GCN, attention mechanism-

based GNNs including GAT [103], and graph topological or geometric structure-aware GNNs
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including TAGCN [22] and GIN [118]. The experiment results are shown in the Table 5.3.

According to the results, the proposed HMG-CR with any graph encoders outperforms all

baselines. Specifically, HMG-CR with SG or GCN slightly outperforms baselines since con-

ventional message-passing-based GNNs are insufficient to capture complex user behav-

ior features from the constructed hypermeta-graphs. Despite the user-item interactions in

the hyper meta-graphs, there are also chronological dependencies among different user

behaviors. With such sophisticated relations in the hyper meta-graphs, GAT leverages the

attention mechanism to learn user behavior embeddings via adaptively distinguishing dif-

ferent relations (i.e., edges) in the hyper-meta graphs. However, we replaced different types

of edges, which represent user behaviors, with different types of nodes in the hyper meta-

graphs. We explicitly add the information of interactions among users and items into the

hyper meta-graph. This means that the improvement brought by the attention mechanism,

which distinguishes different edges, is limited. Note that the hyper meta-graphs have a

structure that is similar to tree topology. Hence, the hyper meta-graphs have not only fruit-

ful semantic information but also excellent structure. HMG-CR with graph structure-aware

graph encoders leverages the advantages of the hyper meta-graphs and achieves the best

results in our experiments. To verify the improvement brought by our proposed framework

instead of TAG or GIN solely, supplementary experiments of HMG-CR with TAG and GIN

are conducted, which are also shown in Table 5.3.

Fusion Layer. The fusion layer is the output layer of the proposed framework. Ttwo cat-

egories of fusion layers are examined, linear fusion layer, mean and sum, and non-linear

fusion layer, MLP and PNLF [90]. The experimental results are shown in the Table 5.4. Ac-

cording to the results, HMG-CR taking mean as the fusion layer achieves the best result.

Overall, HMG-CR with a linear fusion layer performed better in our experiments. It is worth

noting that there are mapping layers in MLP and PNLF. In this component, the mapping

mechanism may disturb the user behavior pattern obtained in the space in which GCL was

conducted. Hence, a linear fusion layer should be adopted to output the unified user be-

havior pattern embeddings for HMG-CR to avoid disturbing caused by conducting fusion

in another embedding space.

5.5 Summary of HMG-CR

In this chapter, a novel concept of hyper meta-path and a novel framework are proposed,

HMG-CR, which first utilizes GCL techniques in RS. It is a pioneering research work in the
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related research domain and addresses RQ2.1, inspiring future works. Leveraging the ad-

vantages of hyper meta-path, HMG-CR achieves SOTA performances on the task of pur-

chasing prediction on both datasets in the scenario of multi-behavior recommendation.

An extensive analysis of HMG-CR is conducted, which fully demonstrates the details and

properties of HMG-CR. The concept of hyper meta-path and the HMG-CR framework are

flexible and can be applied to other heterogeneous graph mining tasks, improving the re-

search progress in GCL, recommendations, and other related research domains.

The method presented in this chapter combines GCL objectives with downstream rec-

ommendation tasks and conduct joint training like many current methods [113, 134, 129].

However, during the experiments, it is revealed that joint training requires meticulous hy-

perparameter tuning to balance the weights of the GCL objectives and the recommenda-

tion objectives within the overall training framework. Without careful adjustment, the per-

formance can be suboptimal.

Furthermore, it is important to note that GCL itself is fundamentally an unsupervised

training paradigm, primarily aimed at pre-training. Such a gap between the characteristic

of GCL and the joint training paradigm in current methods [113, 134, 129] suggests that

there may be alternative training paradigms that could be more effective for recommen-

dation systems. Inspired by these findings, next chapter tries to investigate and develop

better training paradigms for GCL in recommendation scenarios to address RQ2.2. Such

an exploration could lead to more robust and efficient models, ultimately enhancing the

performance and applicability of GCL in RS.
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6
TRAINING PARADIGM OF GRAPH CONTRASTIVE LEARNING IN

RECOMMENDATION SYSTEMS

GCL has emerged as an effective technology for various graph learning tasks. It has been

successfully applied in real-world recommendation systems, where the contrastive loss

and downstream recommendation objectives are combined to form the overall objective

function. However, this approach deviates from the original GCL paradigm, which pre-

trains graph embeddings without involving downstream training objectives. In this paper,

we propose a novel framework called CPTPP, which enhances GCL-based recommendation

systems by leveraging prompt tuning. This framework allows us to fully exploit the advan-

tages of the original GCL protocol. Specifically, we first summarize user profiles in graph

recommendation systems to automatically generate personalized user prompts. These soft

prompts are then combined with pre-trained user embeddings for prompt tuning in down-

stream tasks. This helps bridge the gap between pre-training and downstream tasks. Our

extensive experiments on three benchmark datasets confirm the effectiveness of CPTPP

compared to state-of-the-art baselines. Additionally, a visualization experiment illustrates

that user embeddings generated by CPTPP have a more uniform distribution, indicating

improved modeling capability for user preferences.

This chapter examines GCL in RS at a higher level and presents an empirical study fo-

cusing on the training paradigm of GCL for recommendation. The empirical study indi-

cates that the end-to-end training, i.e., GCL objective and recommendation objective are

combined together and trained in an end-to-end manner, may not be the optimal one.
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Consequently, a novel paradigm, namely CPTPP, for GCL in RS is proposed with a GCL pre-

training phase and a soft-prompting phase involved, addressing RQ2.2.

6.1 Brief Introduction to CPTPP

GCL has gained significant attention in the literature as a prominent self-supervised learn-

ing paradigm. Several recent studies have showcased the effectiveness of GCL in various

general graph representation tasks [104, 78, 122, 149, 132], including node classification

and link prediction. Moreover, GCL has also demonstrated its applicability in real-world

domains[126], such as RS [121, 136, 64]. By introducing additional self-supervision signals,

GCL provides recommendation systems with a means to address the challenge of lacking

sufficient supervision signals.

Most recommendation methods based on GCL typically combine contrastive loss with

recommendation objectives to optimize the model in an end-to-end manner. However, this

training protocol does not align with the purpose of GCL, which is primarily designed for

pre-training graph representations without involving downstream task objectives [104, 78].

In this approach, GCL first pre-trains embeddings, then they are fine-tuned to specific

tasks using downstream models. Incorporating both GCL and recommendation objectives

into the overall training objective can disrupt the embedding pre-training process and re-

quire careful control of the weight placed on contrastive loss. Additionally, previous studies

on GCL-based recommendation methods [121, 64] have shown that the weights of con-

trastive loss in the overall objective are significantly smaller compared to the weight on the

recommendation objective. This is done to ensure desired performance on recommenda-

tion tasks. Therefore, based on these observations, simply combining contrastive loss with

downstream recommendation objectives may not be effective for recommendation tasks.

The disparity between the pre-training objective and downstream tasks hinders the ef-

fective extraction of useful information from pre-trained embeddings by downstream mod-

els [61, 115]. Consequently, researchers often opt to combine GCL with recommendation

objectives. However, it is important to note that GCL pre-training targets primarily assess

the agreement of mutual information among graph elements, such as nodes, edges, and

sub-graphs. This differs from conventional graph learning tasks like node classification

and link prediction. Consequently, the pre-training targets of GCL also significantly diverge

from downstream recommendation objectives that involve interaction (link) prediction be-

tween users and items. Consequently, the reduction of such dissimilarities is essential to

enhance the performance of GCL-based recommendation approaches.
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In this section, the CPTPP framework is presented as an extension of recent advance-

ments in prompt tuning for enhancing recommendation performance [111, 137] utiliz-

ing user embeddings pre-trained by GCL. The technique of prompt tuning has emerged

as a prominent method for fine-tuning pre-trained models. By constructing appropriate

prompts for downstream learning modules, this approach effectively reformulates down-

stream tasks, thereby reducing disparities [115, 61, 77, 92]. By incorporating prompt-tuning,

existing GCL-based recommendation methods can be modified to align with the origi-

nal GCL protocol involving pre-training and prompt-tuning. Previous endeavors have also

explored the integration of prompt learning into conventional recommendation models

[115, 28]. Despite their advantages, applying the prompt mechanism directly to GCL-based

recommendation methods is still difficult and not straightforward, i.e., how to generate per-

sonalized user prompts using only the user-item interaction graph without side information

(e.g., age and occupation)? To address this issue, three methods are summarized to produce

different user profiles, including historical interaction records, adjacency matrix factoriza-

tion, and high-order user relations, based on the user-item interaction graph for the person-

alized user prompt generation, which is applicable in situations devoid of side information.

Comprehensive experiments conducted on three publicly available datasets illustrate the

effectiveness of the proposed method with different types of prompts.

In short, the contributions of this work are three-fold: (1) A reformulation of existing

GCL-based recommendation methods is proposed by incorporating the prompt tuning

mechanism. This allows us to fully leverage the advantages of GCL during the pre-training

phase, rather than relying on the combination of contrastive loss with downstream objec-

tives. (2) Three user profiles derived from the user-item interaction graph as inputs for the

prompt generator are summarized. By using these profiles, CPTPP is able to generate per-

sonalized prompts that enhance the quality of user embeddings in graph-based recom-

mendation systems. (3) Extensive experiments are conducted on three publicly available

benchmark datasets to validate the effectiveness of our model. Through these experiments,

the important components and hyper-parameters of CPTPP are analyzed and the impact

of different personalized prompts generated by our method is also investigated.

6.2 Methodology

In this part, graph Contrastive Pre-Training with PromPt-tuning for recommendation (CPTPP),

is introduced to reveal the intuitions and the technical details.
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Figure 6.1: The overview of the proposed CPTPP framework.

6.2.1 Framework Overview

There are three modules in the proposed CPTPP method, as shown in Figure 6.1: (1) GCL

pre-training module, leveraging the advantages of GCL to the pre-train user and item em-

beddings, (2) personalized prompts generation module, applying prompt mechanism to

generate personalized prompts for users, and (3) recommendation module, fusing the gen-

erated personalized prompts and pre-trained user embeddings to conduct prompt-tuning

for the downstream recommendation task.

6.2.2 Graph Contrastive Learning Module

In order to achieve optimal performance in downstream tasks, the selection of a suitable

pre-training strategy is crucial for generating high-quality inputs for downstream modules.

GCL has been demonstrated as a powerful technique for graph pre-training [104, 78, 132,

149] and has emerged as an effective tool for leveraging self-supervised signals to enhance

graph-based recommendation models [121, 64, 113, 136]. In the case of graph-based rec-

ommender systems, GCL represents a viable option for pre-training embeddings. Further-

more, our work specifically focuses on reforming and improving existing GCL-based rec-

ommendation methods. Therefore, it is imperative that we formulate a GCL module within
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our proposed method. Current GCL-based recommendation methods [64, 113, 121, 136]

have explored various graph augmentation techniques on user-item interaction graphs in

order to generate augmented graphs for GCL, enabling the extraction of informative se-

mantics from the graph structures. Alternatively, some studies [135, 64] have designed con-

text embeddings tailored for GCL in recommended settings. Although different approaches

for constructing contrasting samples exist, they have the same GCL training backbone.

Here, a formal description of the GCL training protocol is given. Let ui denote the target

graph element (e.g., user node), u+
i represent the positive sample generated from ui (e.g.,

the neighbor node of the target node), and U − = {u−
i ,0,u−

i ,1, · · · ,u−
i ,t } be the set containing t

contrasting samples of ui (e.g., non-neighbour nodes of the target node). Considering the

settings of the recommendation task, we use G to represent the overall user-item graph,

and all the target, positive sample, and contrasting samples are within graph G . To acquire

embeddings of these graph elements, we adopt f (∗) as the graph encoder to process them,

and the target embedding is denoted by ui = f (ui ;G), u+ = f (u+
i ;G) is the embedding of the

positive sample, and {u−
i ,0,u−

i ,1, · · · ,u−
i ,t } are the list of embeddings of the negative contrast-

ing samples. Following the settings of InfoNCE [102], the self-supervised learning objective

can be formulated as follows:

(6.1) Lcontr a =− log
exp(si m(ui ,u+

i )/τ)∑|U−|
t=0 exp(si m(ui ,u−

i ,t )/τ)
,

where τ is the temperature hyper-parameter and sim(·, ·) is the similarity metric. In ex-

isting research works [113, 121, 136, 135, 64], researchers usually combine the aforemen-

tioned contrastive learning loss function with the recommendation objectives to formulate

an overall objective function to train the model in an end-to-end manner:

(6.2) Lover al l =Lr ec +λ ·Lcontr a ,

where λ is a hyper-parameter that controls the weight of the contrastive learning objec-

tive. However, as mentioned in the brief introduction, the proposed CPTPP adopts a pre-

training and prompt-tuning manner to train the model and treats GCL as a pre-training

task instead of combining the contrastive loss with recommendation objectives. To lever-

age recent research progress in GCL, various GCL learning methods tailored for the recom-

mendation task can be adopted here, like NCL [64], SGL [113], and SimGCL [136], to obtain

high-quality user and item embeddings. Then, the pre-trained user and item embeddings

will be processed using the prompt mechanism.
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6.2.3 Prompts Generation Module

Following the pre-training phase, our method, named CPTPP, incorporates a personalized

prompts generation module to utilize the pre-trained user and item embeddings effec-

tively. The primary objective of this module is to address the limitations present in existing

prompt and recommendation research. Prior studies [92, 77, 115] have highlighted the triv-

iality and resource-intensive nature of hard prompt design, making it impractical for real-

world scenarios. Additionally, it is worth noting that most current approaches rely on side

information (e.g., user descriptions) to generate prompts and lack a specific paradigm for

prompting in graph-based recommendation scenarios. To overcome these limitations, the

integration of a prompt generator [115] is proposed, which generates personalized prompts

tailored specifically for graph-based recommendation contexts.

6.2.3.1 Personalized Prompt Generator

The main scope of the generated prompts lies in narrowing the gap between the pre-training

targets and the downstream objectives to utilize the pre-trained models or embeddings

better. Some research works designed hard prompts tailored for recommendation tasks,

converting recommendation tasks into NLP tasks [28], which unifies multiple recommen-

dation tasks in a single framework. For example, a convention recommendation task can

be converted to a sentence, ‘User 123 will purchase item [id_token]’. Then, NLP techniques

will be applied to predict the token. However, PPR [115] argued that such an NLP-style hard

prompt designing method has two major limitations: (i) It is difficult to apply NLP tech-

niques to predict the designated tokens since these tokens could be a user ID, item ID, or

ratings, which lack meaningful semantics. (ii) The designed hard prompts are universal and

cannot be customized for various users or items.

To address the challenges, a method to construct personalized prompts from user pro-

files in a soft prompt automatic generation manner [61, 77, 115] is adopted. Let xu
i ∈ Rd×1

denote the profile of user i . Then, all the users’ profiles can be concatenated to form the

user profile matrix Xu = [xu
1 ,xu

2 , · · · ,xu
n] ∈ Rd×n , where n is the number of users. This ma-

trix will be fed into a two-layer MLP f (·) to acquire personalized prompts for each user

Pu = [pu
1 ,pu

2 , · · · ,pu
n] ∈Rp×n as follows:

(6.3) Pu = f (Xu) = W2 ·α(W1 ·Xu +b1)+b2 ∈Rp×n ,

where p is the prompt size, W1 ∈ Rh×d and W2 ∈ Rp×h are trainable weights, b1 ∈ Rh×n and

b2 ∈ Rd×n are biases, and α(·) is the activation function, d and h represent the dimensions
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of the pre-trained embeddings and hidden dimensions, and p denotes the dimension of

the generated prompts, respectively.

The generated prompts will be concatenated with the pre-trained user embeddings in

a pre-fixed manner [61] and tuned by the downstream objectives in the recommendation

module to fulfill the process of prompt-tuning. Specifically, let Upr e_tr ai n ∈ Rd×n denote

pre-trained user embeddings. Then, the inputs from the user side for the recommendation

module can be obtained:

(6.4) Uconcat =
[

Pu

Upr e_tr ai n

]T

∈Rn×(p+d).

6.2.3.2 Personalized Inputs for Prompt Generation

The quality of the generated prompts depends on the personalized inputs for the genera-

tor. Current research on prompt learning for recommendation mainly focuses on utilizing

existing user features (e.g., age and occupation) and historical interaction records as the in-

puts to generate personalized prompts [115, 59, 114]. However, these methods are designed

for conventional and sequential recommendations, which are not entirely aligned with

graph recommendations. It is necessary to summarize and explore how to generate person-

alized prompts from the perspective of the graph recommendation system. In this section,

three inputs for the generator to generate personalized prompts are summarized: historical

interaction records, adjacency matrix factorization, and high-order user relations.

Historical Interaction Records. It is a common and widely-used method to illustrate

users’ features or preferences via aggregating his/her historical interaction records, which

is feasible in various scenarios in recommendation systems. Let I u
k = {ik,1, ik,2, · · · , ik,m}

denote the item set which are purchased by user k. We use ik, j ∈ Rd to represent the em-

bedding of the j -th item in user k’s purchase history. Then, the profile of user k can be

acquired by aggregating embeddings of those items purchased by the user k:

(6.5) xu
k = Ag g r eg ati on(ik,1, ik,2, · · · , ik,m),

where Ag g r eg ati on(∗) is the aggregation function that reads out the user’s profile.

The concatenation of all the user profiles can form the matrix Xu to be processed by the

personalized prompt generator. Let A ∈ Rn×q denote the adjacency matrix for the recom-

mendation system, which contains n users and q items. If the pre-trained item embeddings

Ipr e_tr ai n = [i1, i1, · · · , iq ] ∈Rd×q was obtained, then, user profile matrix can be acquired via:

(6.6) Xu = (A · IT
pr e_tr ai n)T .
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Adjacency Matrix Factorization. The adjacency matrix is an effective tool for demon-

strating user-item relations in the recommendation system. However, the adjacency ma-

trix usually suffers from sparsity problems and thus cannot be smoothly applied in many

real-world recommendation scenarios. To address this problem, researchers proposed sev-

eral Matrix Factorization (MF) methods [93, 42] to decompose the adjacency matrix to ob-

tain two matrices, U and V, denoting the latent embeddings for users and items, which are

much denser than the adjacency matrix A itself. The process of MF can be formulated as:

(6.7) argmin
U,V

n∑
i=1

q∑
j=1

(Ai , j − Âi , j ),

where Âi , j = ∑
k Ui ,k · VT

k, j = Ui VT
j . After the MF process, the latent matrix of users, U ∈

Rn×d , can be obtained, serving as the user profile matrix Xu after transposed Xu = UT and

can be fed into a personalized prompt generator to produce personalized prompts Pu for

each user. Specifically, the size of latent embeddings is set to d , which is the same as the

dimension of pre-trained embeddings.

High-Order User Relations. Learning informative embeddings from a 1-hop user-item

interaction graph is challenging when there is no side information. To address this limita-

tion, we propose to leverage high-order user relations to enrich the learned embeddings

via constructing 2-ego graphs for each user node to find the links between the other users

and itself [109]. Then, we fuse the target user’s purchase history and high-order neighbor

embeddings to represent the target user profile.

The high-order connectivity matrix must be first constructed to achieve the goal. Let

A∗ = Ā · Ā ∈ R(n+q)×(n+q) denote the high-order connectivity matrix, where Ā =
[

0 A

AT 0

]
∈

R(n+q)×(n+q), recording all the users and items to which a user or item node is connected.

Then, we build the matrix E = [Upr e_tr ai n ,Ipr e_tr ai n]T ∈ R(n+q)×d to store pre-trained em-

beddings. Next, we can acquire matrix Q ∈Rn×d , which are the users’ personalized profiles

about high-order user relations, via:

(6.8)

[
Q

M

]
= A∗ ·E ∈R(n+q)×d ,

where M ∈ Rq×d , denoting the high-order item relations. Then, a matrix transpose opera-

tion is required to obtain the user profile matrix Xu = QT .
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6.2.4 Recommendation Module

After the pre-training and the personalized prompts generation phase, a recommendation

module is equipped to conduct recommendation tasks so that the prompt-tuning mod-

ule can be verified if it can rectify the pre-trained embeddings by GCL and makes them be

adapted to the downstream recommendation tasks better. In this module, the inner prod-

uct of user and item embeddings is adopted as the predicted score for the recommenda-

tion. Bayesian Personalized Ranking (BPR) [82] is adopted as the training objective to tune

the pre-trained embeddings based on the predicted scores. The motivation for formulat-

ing such a simple recommendation module is to avoid the performance gain brought by

the delicate designs of those advanced recommendation models, which could affect the

observations on the proposed CPTPP method.

6.2.4.1 Prompts and Pre-Trained Embeddings Fusion

The generated personalized prompts and the pre-trained user embeddings in the previous

step need to be concatenated to have Uconcat ∈Rn×(p+d), whose dimensionality is different

from the pre-trained embeddings Ipr e_tr ai n ∈ Rn×d . Hence, the first step requires to fuse

the personalized prompts and the pre-trained user embeddings for the objective training

of recommendation. Specifically, a MLP g (·) is adopted as the mapping function that is

g : Rn×(p+d) → Rn×d . Then, dimensionality-reduced user representations can be obtained

U∗ = g (Uconcat ) ∈ Rn×d , enhanced by the personalized prompts. After that, we can apply

the inner product to predict how likely the user i would interact with the item j by ŷi , j =
u∗

i · i j , where u∗
i is the i -th row of U∗.

6.2.4.2 Training Objective for Recommendation Task

For simplicity and fair comparison, BPR [82] loss is adopted as the training objective for the

recommendation task. For each user i :

(6.9) L i
r ec =

∑
j+∈I u

i

∑
j−∈I \I u

i

− logσ(ŷi , j+ − ŷi , j−).

However, it is unaffordable to consider all the unobserved interactions of the user i .

Therefore, several negative items N u
i are sampled, where |N u

i | << |I \I u
i |, in practice.

Moreover, L2-norm is introduced into the training objective to regularize the parame-

ters in the model to address the overfitting problem and improve generalization ability.
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Algorithm 2: CPTPP algorithm

Input: User embedding table UE ; Item embedding table IE ; User-item interaction
graph adjacency matrix A; Graph contrastive learning model f (∗); User
profile Xu ; Prompt generator g (·); Multi-layer perceptron MLP (·); Pre-train
epoch i ; Prompt-tune epoch j .

Output: User and item embedding tables U∗
E and I∗E .

1 Pre-train phase:

2 Initialize UE , IE ; U
′
E , I

′
E ← UE , IE ;

3 count = 0;
4 while count < i do

// Update user and item embedding tables.
5 U

′
E , I

′
E = f (U

′
E ;I

′
E ;A);

6 count = count +1;
7 end
8 Prompt-tune phase:

9 U∗
E ← U

′
E ; I∗E ← I

′
E ;

10 count = 0;
11 while count < j do

// Personalized prompt generation.
12 Pu = g (Xu);

// Concatenate & fusion.
13 U∗

E = MLP([Pu ;U∗
E ]T ) ∈Rn×d ;

14 Optimise L =∑
i∈U L i

r ec +λ||Θ||22;
15 Update U∗

E , I∗E ;
16 count = count +1;
17 end
18 return U∗

E , I∗E

Therefore, the overall objective function can be formulated as:

(6.10) L = ∑
i∈U

L i
r ec +λ||Θ||22.

6.2.5 CPTPP Algorithm Summary

After the training process ends, the model can be used to conduct inference. For the in-

ference phase, pre-train and prompt-tune will not be performed again. What need to do

is to extract target user and item embeddings from the trained embedding tables. Then,

their embeddings’ inner product can be calculated to predict the probability if the user will

interact with the item in the future.
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The complete training procedure of CPTPP is illustrated by Algorithm 2. The user and

item embedding tables are first initialized (line 2). Then, a GCL model is applied to con-

ducting embedding pre-training (line 4 ~ 7). Next, the prompt-tuning phase assigns the

pre-trained embeddings to U∗
E and I∗E (line 9). Following, the user profiles are input into the

prompt generator to produce the personalized prompts (line 12) and combine them with

U∗
E (line 13). Finally, U∗

E and I∗E are used to calculate the loss and update them accordingly

(line 14 ~ 15). The update procedure will repeat until the termination condition is achieved

(line 11 ~ 17). The procedures above are all the workflows of CPTPP.

6.3 Experiment on CPTPP

To verify the effectiveness of the proposed method, CPTPP, extensive experiments are con-

ducted to demonstrate the results with insightful analysis in this section.

Table 6.1: Dataset statistics in CPTPP experiments.

Dataset #Users #Items #Interactions Density

Douban 2,848 39,586 894,887 0.794%

ML-1M 6,040 3,900 1,000,209 4.246%

Gowalla 29,858 40,981 1,027,370 0.084%

6.3.1 Experimental Setup

This section introduces the experimental settings, including datasets and baselines used,

performance metrics, and hyper-parameter settings for CPTPP.

6.3.1.1 Datasets

To verify the performance of CPTPP in the recommendation task, three popular datasets

are selected: Douban [140], MovieLens-1M [33], and Gowalla [63]. The detailed statistics

about the three datasets are listed in Table 6.1. For each dataset, 80% of historical user-item

interactions are randomly selected as the training set, and the rest 20% records will serve as

the testing set. Following the settings widely adopted by the research community [109, 40],

each user-item interaction record is treated as a positive instance and it will be coupled

with negative instances generated by negative sampling, which are unobserved user-item

interactions in the dataset.
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6.3.1.2 Baselines

Several baselines are selected for comparison experiments: BPR-MF [55], BUIR [58], SelfCF

[147], NCL [64], and SimGCL [136]. For CPTPP, we have three variations, which are CPTPP-

H, CPTPP-M, and CPTPP-R, respectively. -H takes historical interaction records for per-

sonalized prompt generation. -M indicates that we take adjacency matrix factorization for

personalized prompts generation. Furthermore, -R takes high-order user relations for the

personalized prompt generation.

6.3.1.3 Metrics

To evaluate the quality of top-K recommendation, three popular metrics are adopted, which

are Hit Ratio@K , Precision@K , and NDCG@K , respectively. In the settings of this work, the

value of K is set to 5 and 20. Following the evaluation protocol in [64, 136], the full ranking

strategy [146] is adopted.

6.3.1.4 Hyper-parameter Settings

To ensure reproducibility, the comprehensive hyper-parameter settings for implementing

our proposed CPTPP are disclosed. Detailed hyper-parameter settings are listed in Table

6.2 for reproducibility. The dimensionality of the representation embeddings of users and

items is set to 64, and the personalized prompt size is chosen from {8,16,32,64,128}. For

the pre-train phase, the maximum training epoch is 10, and for the prompt-tune stage, the

training epoch is set to 100. The training batch size is 512 for the relatively smaller datasets,

including Douban and ML-1M. For Gowalla, it is set to 2048. The learning rate and λ are

set to 1e−3 and 1e−4, where λ is the weight for the l2-norm term in the overall training

objective. The default number of layers of GNN used in the models is set to 2.

6.3.2 Experiment Results

Extensive experiments are conducted and related analysis is provided in this section, in-

cluding comparison experiment, hyperparameter study, and ablation study, respectively.

6.3.2.1 Overall Comparison Studies

Table 6.3 shows the comparison results among all the baselines and different versions of

the proposed methods. (i) It can first observe that the traditional method BPR-MF is out-

performed by all the other methods as they utilize contrastive learning to introduce extra
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Table 6.2: Summary of hyper-parameter settings for CPTPP.

Hyper-parameter Notation
Dataset

Douban ML-1M Gowalla

Hidden dimension size d 64 64 64
Pre-train epoch - 10 10 10

Prompt-tune epoch - 100 100 100
Batch size - 512 512 2048

Learning rate - 0.003 0.001 0.001
Regularizer weight λ 0.0001 0.0001 0.0001

Number of GNN layers - 2 2 2
Dropout rate - 0.1 0.1 0.1

Temperature parameter τ 0.2 0.2 0.2

Prompt size p
{8, 16, 32, 64,

128, 256}
{8, 16, 32, 64,

128, 256}
{8, 16, 32, 64,

128, 256}

unsupervised training signals. (ii) Among all the baselines, GCL-based recommendation

methods, including NCL and SimGCL, significantly and consistently outperform those self-

supervised recommendation methods without graph learning module equipped, BUIR and

SelfCF. It is because those GCL-based methods adopt graph neural networks, leveraging the

sophisticated structure semantics in user-item interaction graphs to enrich learned user

embeddings and item embeddings. (iii) But it worth noting that SimGCL only outperforms

NCL on dataset Gowalla, which has a much larger scale than the others, probably because

SimGCL adopts a simplified GCL method that relieves the model overfitting problem on a

large-scale dataset. It is the potential reason NCL outperforms SimGCL on smaller datasets,

as the simplified GCL method may not provide sufficient self-supervised training signals.

(iv) Though the proposed CPTPP solely adopts BPR loss, which is significantly different

from the pre-training procedure, for the recommendation task training, the prompt learn-

ing mechanism is utilized to better adapt the embeddings pre-trained by the GCL method

to the downstream task, expecting to improve the recommendation performance. Accord-

ing to the experiment results, all versions of our proposed method achieve competitive re-

sults. Such results reflect prompt-tuning’s effectiveness in narrowing the gap between the

pre-train objective and the downstream tasks.

To further evaluate the performance of the GCL-based recommendation methods, the

user embeddings produced by CPTPP and baselines are processed by t-SNE and Gaussian

Kernel Density Estimation (KDE) to conduct visualization.

According to Figure 6.2, it can observe that (i) embeddings learned by SimGCL fall into

several hot areas on dataset ML-1M, and they are centralized in a small area on datasets

Douban and Gowalla. (ii) NCL exhibits better performance as the distribution of the user
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Table 6.3: Comparison experiment results of CPTPP and baselines.

Datasets Metrics
Methods

BPR-MF BUIR SelfCF NCL SimGCL CPTPP-H CPTPP-M CPTPP-R

Douban

Hit Ratio@5 0.0134 0.0156 .0161 .0161 .0161 0.0164 0.0165* 0.0164
Hit Ratio@20 0.0446 0.0492 0.0502 .0507 0.0489 0.0521 0.0528* 0.0523
Precision@5 0.1812 0.2113 0.2185 .2187 0.2182 0.2221 0.2235* 0.2224

Precision@20 0.1512 0.1667 0.1699 .1717 0.1657 0.1766 0.1790* 0.1772
NDCG@5 0.1904 0.2209 0.2264 0.2313 .2370 0.2359 0.2378* 0.2355

NDCG@20 0.1749 0.2019 .2058 0.1958 0.2020 0.2065 0.2098* 0.2070

ML-1M

Hit Ratio@5 0.0469 0.0617 0.0624 .0655 0.0631 0.0676* 0.0674 0.0672
Hit Ratio@20 0.1454 0.1519 0.1643 .1796 0.1698 0.1851 0.1861* 0.1845
Precision@5 0.1800 0.2368 0.2396 .2513 0.2420 0.2592* 0.2585 0.2577

Precision@20 0.1395 0.1457 0.1576 .1723 0.1629 0.1776 0.1785* 0.1770
NDCG@5 0.1968 0.2722 0.2689 .2818 0.2767 0.2919* 0.2895 0.2878

NDCG@20 0.2103 0.2367 0.2508 .2683 0.2670 0.2781 0.2782* 0.2756

Gowalla

Hit Ratio@5 0.0429 0.0479 0.0497 0.0488 .0513 0.0518 0.0512 0.0519*
Hit Ratio@20 0.1039 0.0993 0.1042 0.1040 .1065 0.1115 0.1103 0.1120*
Precision@5 0.0624 0.0698 0.0723 0.0711 .0746 0.0754 0.0745 0.0755*

Precision@20 0.0378 0.0361 0.0379 0.0378 .0387 0.0406 0.0401 0.0407*
NDCG@5 0.0770 0.0911 0.0939 0.0894 .0963 0.0963 0.0953 0.0961

NDCG@20 0.0939 0.0990 0.1036 0.1005 .1126 0.1092 0.1083 0.1092

“*” indicates that CPTPP outperforms the best baseline significantly (i.e., two-sided t-test with p < 0.05).

embeddings expands to a relatively larger area than that of SimGCL. Compared to our pro-

posed method CPTPP, we can observe that CPTPP has a more uniform distribution of the

produced user embeddings, illustrated by the uniformity of the color maps, especially on

dataset ML-1M and Gowalla. As suggested in [64], the more uniform the embedding dis-

tribution is, the more capability to model the diverse preferences of users the method has,

which reflects CPTPP’s superiority. Hence, CPTPP has a more uniform distribution of the

produced user embeddings, illustrated by the uniformity of the color maps, especially on

dataset ML-1M and Gowalla. As suggested by Z. Lin et al. [64], the more uniform the em-

bedding distribution is, the more powerful the capability to model the diverse preferences

of users the produced embeddings will have, which reflects the superiority of CPTPP.

6.3.2.2 Hyperparameter Studies

To investigate the properties of CPTPP, hyperparameter studies are conducted on an im-

portant term, the dimension size of the personalized prompt. By fixing all the other hyper-

parameters, the performance of three versions of the proposed CPTPP are comprehensively

examined on all the datasets with different prompt sizes. Specifically, the size of the person-

alized prompt is selected from {8,16,32,64,128,256}. Two metrics are chosen, Precision@5
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Figure 6.2: The visualization results of the user embeddings generated by baselines.

and NDCG@5, to demonstrate CPTPP’s performance variations with regard to different

prompt sizes.

All the experiment results are shown in Figure 6.3. Two insightful findings are listed:

• The first finding is that, in most cases, CPTPP has the best performance when the

prompt size is not larger than the dimensionality of user embeddings, i.e., 64. A po-

tential reason is that the prompt is usually less informative than the pre-trained em-

beddings, so a sizeable prompt dimension would introduce too much noise to dis-

turb the structural semantics contained in the pre-trained user embeddings.

• It is worth noting that a significant performance improvement occurs when prompt

size is 256 in several cases, such as CPTPP-M on dataset ML-1M and CPTPP-R on

dataset Gowalla. Such outlier performance could be caused by random factors during

the overall training process. However, they still fail to significantly outperform the

CPTPP model, which has a much smaller prompt size.

Therefore, small prompt size for prompt-tuning is a better option in practice as they achieve
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(a) CPTPP-H - Douban
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(b) CPTPP-H - ML-1M
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(c) CPTPP-H - Gowalla
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(d) CPTPP-M - Douban
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(e) CPTPP-M - ML-1M
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(f) CPTPP-M - Gowalla
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(g) CPTPP-R - Douban
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(h) CPTPP-R - ML-1M
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(i) CPTPP-R - Gowalla

Figure 6.3: The hyperparameter study of CPTPP regarding the size of prompt.

a relatively better recommendation quality and higher efficiency.

6.3.2.3 Ablation Studies

As discussed previously, three strategies are summarized to generate personalized prompts

for users, two ablation studies are conducted in this part to illustrate the performance of

three variations of the CPTPP method.

The first ablation study is about the overall evaluation of recommendation quality re-

flected in Table 6.3, whose analysis is listed below.

It is worth noting that (i) CPTPP-M achieves the best performance on dataset Douban.

Nevertheless, the performance of CPTPP-M degrades on dataset ML-1M and is the worst
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Figure 6.4: The visualizations of user embeddings generated by CPTPP variations.
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case on dataset Gowalla. Considering the number of users reflected in Table 6.1, we find

that the performance of CPTPP-M drops as the dataset’s number of users increases. So,

CPTPP-M performs well if the number of users in the dataset is relatively small. It may be

because matrix factorization, as a naive method, cannot fully reveal user preferences in a

complex user-item interaction graph with too many user nodes. (ii) CPTPP-R utilizes high-

order relationships among users to enrich the generated personalized prompts for users. In

such settings, the item information would also be aggregated due to the message-passing

mechanism in GNNs. Therefore, it achieves the best performance on the dataset Gowalla,

having the most users and the most complex user-user relation among all the datasets.

(iii) CPTPP-H has moderate performance. CPTPP-H adopts historical interaction records,

formed by trainable item embeddings, to generate personalized prompts. Those trainable

elements endow CPTPP-H with a more robust capability to represent user preferences than

matrix factorization. It is also reasonable that CPTPP-R outperforms CPTPP-H as CPTPP-H

lacks consideration of high-order user relations.

The second one is about the embedding visualizations of different variations of CPTPP.

The impacts of different personalized prompts on CPTPP are investigated. The user em-

beddings produced by all three variations of the proposed CPTPP are visualized as shown

in Figure 6.4. It can observe that both CPTPP-H and CPTPP-R have a more uniform dis-

tribution, especially on datasets Douban and ML-1M. Such an observation indicates that

personalized prompts generated from trainable user profiles can produce user embeddings

that have more uniform distributions to demonstrate diverse user preferences better.

6.4 Summary of CPTPP

In this section, an empirical study is conducted to reveal the limitations in current GCL-

based recommendation methods. Based on the findings of the empirical study, CPTPP is

proposed to adopt a prompt-tuning technique to reform and improve current GCL-based

recommendation methods, addressing RQ2.2. To better accommodate prompt learning to

graph recommendation scenarios, several graph-oriented user profiles are summarized to

generate personalized user prompts to conduct prompt-tuning for downstream recom-

mendation tasks. Comprehensive experiments have shown the effectiveness and superi-

ority of the proposed CPTPP method. The future research directions about prompt-tuning

in GCL-based recommendation may be two-fold: how to (i) generate personalized prompts

and (ii) integrate prompt-tuning strategy into GCL protocols.
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7
CONCLUSIONS & FUTURE WORKS

This chapter draws conclusions of this thesis and discusses the potential future works of

GCL and its applications in recommendations. Specifically:

• Sec. 7.1 summarizes the conclusions and contributions of the research works within

this thesis, demonstrating that the research questions are all properly addressed.

• Sec. 7.2 discusses the potential future works of GCL and its applications in RS, focus-

ing on the theoretical aspects of the methodology like improving theoretical under-

standing and practical aspects of GCL in real-world applications like interpretability.

This chapter encapsulates the significant findings and contributions of the thesis, af-

firming that the research questions have been comprehensively addressed. It also opens av-

enues for future exploration, emphasizing both theoretical advancements of GCL method-

ology and practical implementations of GCL in recommendation systems.
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7.1 Conclusions

Focusing on the thorough literature review and the four summarized research questions,

four research works are conducted within this thesis to address each of them.

CGC introduces a novel method, which generates high-quality contrasting samples for

GCL using a counterfactual mechanism. This learning-based GCL method can adaptively

process diverse datasets with varying characteristics that tackles limitations in the current

literature and proposing a flexible GCL approach, addressing RQ1.1.

LATEX-GCL addresses the limitation that current GCL methods cannot directly aug-

ment non-embedding features such as text. It presents a novel GCL framework, which

leverages LLMs to augment text features on the graph, producing high-quality contrasting

samples. Three novel and tailored prompts for text feature augmentation are introduced

and examined through extensive experiments. This research work offers a promising solu-

tion to augment non-embedding features such as text, addressing RQ1.2.

HMG-CR presents a pioneering work by applying GCL to multi-behavior recommen-

dation tasks, constructing contrasting samples in a rule-based manner by introducing the

concept of hyper meta-paths to construct hyper meta-graphs. The proposed method out-

lines the implementation pipeline of GCL in recommendation systems and inspires future

research in this domain, addressing RQ2.1.

CPTPP examines GCL in recommendation systems at a higher level, investigating the

training paradigm of GCL for recommendations. An empirical study demonstrates the dis-

advantages of the current end-to-end training paradigm. Consequently, a novel framework

for GCL in recommendation systems is proposed, which utilizes prompt learning to intro-

duce an effective ’pre-training and prompt-tuning’ paradigm, addressing RQ2.2.

In conclusion, both CGC and LATEX-GCL significantly advance the methodology of

current GCL methods by focusing on graph augmentation strategies, thereby broadening

the scope of GCL’s applicability. Regarding GCL’s applications in recommendation systems,

HMG-CR introduces a novel concept for constructing contrasting samples in a rule-based

manner, representing pioneering work in the literature. Additionally, CPTPP examines the

training paradigm of GCL for recommendation tasks, proposing a novel ’pre-training and

prompt-tuning’ framework that further reveals GCL’s potential in RS.
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7.2 Future Works

Despite the promising progress in GCL-related research, several challenges remain that

hinder the full realization of GCL methods’ potential. The following contents outline and

discuss several future research directions for further exploration.

Interpretability. Understanding the rationale and intuition behind graph learning meth-

ods is crucial for improving these methods and applying them to real-world problems.

However, most research on interpretability in graph learning focuses on supervised learn-

ing scenarios [16, 59, 19], leaving interpretability in GCL largely underexplored. There is an

urgent need to develop GCL methods with high interpretability, which would enable their

application in critical industries such as finance [3] and healthcare [7].

Theoretical Analysis. Graph augmentation is a crucial component of GCL procedures.

However, most graph augmentation strategies are designed based on intuitive understand-

ing of specific scenarios rather than solid theoretical foundations [132, 123, 35, 94]. As a re-

sult, researchers may find it challenging to evaluate the quality of their designed augmenta-

tion strategies without empirical studies. Therefore, it is essential to explore and summarize

the common properties in graph augmentation strategy design to guide the construction

of contrasting samples in future research.

Real-world Applications. While this thesis discusses GCL’s applications in recommen-

dation systems, there are numerous other real-world scenarios to explore, such as finance

[3], healthcare [7], and AI for science [14, 10]. The key to implementing GCL in these appli-

cations lies in designing augmentation strategies that effectively integrate domain-specific

knowledge. Each application scenario inherently possesses specific priors that are cru-

cial for models to understand the context. Relying solely on general graph augmentation

strategies [132, 123, 35, 94] may prevent GCL methods from accurately capturing domain-

specific semantics, leading to suboptimal performance. Therefore, it is essential to thor-

oughly investigate methods for integrating domain knowledge into GCL.

7.3 Chapter Summary

This chapter concludes the research works within this thesis by summarizing the contri-

butions, findings, and conclusions of each one. Then, three future research directions are

discussed, including interpretability, theoretical analysis, and real-world applications, to

shed light on GCL-related research domains.
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