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Abstract

In recent years, the rapid development of electric vehicles (EVs) has drawn increasing attention

to the field, particularly in relation to the vehicle-to-grid (V2G) function and its economic

operation challenges. This research aims to delve into the V2G function and the economic

operation and planning of EV parking lots.

A model is developed for an EV parking lot equipped with V2G, renewable energy sources, and

energy storage system. Various charging modes and uncertainties, such as electricity market

prices and solar radiation, are considered. The model classifies EVs based on parking duration

and adjusts charging prices dynamically using a linear price-demand relationship. Scenario

generation in MATLAB validates the model’s effectiveness, demonstrating superior profitability

compared to two alternative models across multiple cases.

Further analysis incorporates distributed energy resources and examines the parking lot’s par-

ticipation in spot and Frequency Control Ancillary Services (FCAS) markets. Uncertainty in

market prices, solar irradiance, and wind speed is forecasted using long short-term memory

models. EV behavior, including arrival times and state of charge, is simulated via Monte Carlo

methods. An Information Gap Decision Theory-based approach is proposed to optimize V2G

incentives under uncertain conditions, yielding the highest profit when participating in both

FCAS and spot markets.

A hybrid multi-agent bi-level optimization framework integrates a deep reinforcement learn-

ing (DRL)-based virtual power plant (VPP) with lower-level EV parking lot models, using

mixed-integer linear programming. The VPP dynamically adjusts prices in response to market

conditions, with lower-level models maximizing profits and providing feedback to the upper-

level for enhanced learning. Results highlight the sensitivity of the pricing strategy to changes

in the lower bounds, with significant impacts on system profitability.
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Chapter 1

Introduction

1.1 Background

The increasing urgency to address climate change has accelerated the global transition toward

electrification in the transportation sector, with electric vehicles (EVs) playing a pivotal role

in this shift. As a cleaner alternative to internal combustion engine vehicles, EVs offer the

potential to reduce emissions and support the broader goal of decarbonization significantly [1]

[2].

However, the rise of EVs presents new opportunities and challenges, particularly when con-

sidering their interaction with the power grid. The potential for EVs to contribute to energy

systems through vehicle-to-grid (V2G) functionality has garnered increasing attention, as EVs

have the capacity to not only consume energy but also provide services back to the grid [3].

This dual role introduces both operational complexities and economic opportunities [4] [5].

In this context, EV parking lots—especially those equipped with V2G technology—represent

a key point of interaction between EVs, energy markets, and the grid. Optimizing the opera-

tion of these parking lots to maximize their economic benefits requires addressing a range of

uncertainties and dynamic factors.
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1.1.1 The Rise of EVs

The global push towards decarbonization has intensified the focus on reducing greenhouse gas

emissions, especially in industries like transportation, which is a major contributor to environ-

mental degradation. As part of this transition, EVs have emerged as a promising alternative to

traditional internal combustion engine vehicles. Their ability to reduce emissions and reliance

on fossil fuels makes them critical components in the broader efforts to mitigate climate change

[1] [6].

The adoption of EVs has accelerated in recent years, driven by advancements in battery technol-

ogy, government incentives, and the growing availability of charging infrastructure. According

to the International Energy Agency (IEA), by the end of 2020, the global EV stock exceeded 10

million vehicles, and this figure is projected to rise dramatically to 230 million by 2030 [7]. This

exponential growth reflects the increasing recognition of EVs as a vital solution to achieving

carbon reduction targets in the transportation sector.

In Australia, the average annual distance travelled by vehicles is 12.1 thousand kilometers,

which equates to less than 35 kilometers per day [8], [9]. However, as of 2020, the median range

of EVs was approximately 416.8 kilometers, meaning that over 90% of the energy stored in EV

batteries typically remains unused during daily commutes. This surplus energy represents a

significant opportunity for EVs to contribute to power grid support through the V2G function.

Aggregating the energy stored in EV batteries at parking lots or charging stations could offer

a substantial resource for grid stabilization, peak shaving, and renewable energy integration.

Thus, the rapid rise in EV adoption, coupled with the inherent energy storage potential of their

batteries as energy storage systems (ESS), sets the stage for leveraging V2G technology. This

capability transforms EVs from mere transportation devices into key components of a flexible

and resilient power system, ready to provide ancillary services to the grid. As the number of

EVs continues to grow, the role of V2G-enabled parking lots in supporting the grid becomes

increasingly critical, creating a natural transition to the next key discussion on the potential of

the V2G function.
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1.1.2 V2G Potential

As EVs continue to grow in number, their potential to support the power grid through V2G

technology is becoming increasingly apparent. V2G allows for bidirectional energy flow between

EVs and the power grid, enabling EVs not only to charge their batteries but also to discharge

stored energy back into the grid. This transformation of EVs into mobile energy storage units

opens up new opportunities for enhancing grid flexibility, stability, and resilience, particularly

in systems with a growing share of renewable energy sources (RESs)[10][11].

The surplus energy remaining in EVs can be tapped to provide critical grid services. V2G

enables EVs to contribute to frequency regulation, voltage control, and peak load shaving,

effectively balancing energy supply and demand across the grid [12] [13]. By aggregating the

energy storage potential of EVs at parking lots or charging stations, where vehicles are often

idle for extended periods, these hubs can serve as centralized points of energy storage and

distribution. This aggregation amplifies the impact of V2G by coordinating the collective

energy capacity of multiple vehicles, enhancing the grid’s ability to manage fluctuations in

demand and supply [14].

Moreover, the financial incentives associated with V2G participation provide significant eco-

nomic benefits for EV owners. By charging their vehicles during off-peak periods when electric-

ity prices are low and discharging energy back to the grid during peak periods when prices are

higher, EV owners can optimize their electricity usage and generate additional income. This

dynamic interaction between EVs and the power grid creates a mutually beneficial relation-

ship, wherein EV owners, parking lot operators, and grid operators all stand to gain from the

implementation of V2G technology.

V2G’s potential becomes even more pronounced as renewable energy penetration increases.

The intermittent nature of renewable energy sources like solar and wind poses challenges for

grid operators, as periods of excess generation can lead to curtailment, while periods of low

generation can strain the grid. EVs, through V2G, offer a flexible solution by storing excess

renewable energy and discharging it back into the grid when needed, helping to smooth out

these fluctuations [15] [16]. This not only enhances the integration of renewables into the energy

mix but also reduces the need for fossil fuel-based peaking plants, further contributing to the

decarbonization of the power system [17].
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As the number of EVs continues to rise globally, the role of V2G in providing essential grid

services and supporting renewable energy integration will only grow. EV parking lots, equipped

with V2G-enabled chargers, are poised to become critical nodes in this evolving energy land-

scape, serving as both transportation hubs and valuable energy resources.

1.1.3 RES and ESS Integration

The global energy transition is closely tied to the increasing integration of RESs like solar and

wind power, which are crucial for reducing reliance on fossil fuels and mitigating climate change.

However, the inherent variability and intermittency of renewable energy present significant

challenges to grid stability and reliability. Solar and wind power are weather-dependent, leading

to periods of excess generation when conditions are favourable and periods of low output when

they are not. This unpredictability can cause fluctuations in power supply that need to be

managed effectively to ensure a stable grid [18].

In this context, ESSs play an essential role by providing the flexibility needed to store ex-

cess renewable energy during periods of high generation and discharge it back into the grid

during times of low generation or high demand. Traditional ESSs, such as large-scale battery

installations, have already proven effective in smoothing out the variability of renewable energy

[19]. However, the rise of EVs introduces a new form of distributed energy storage that can

complement conventional ESSs [20].

EVs, equipped with the V2G function, can act as mobile ESSs, offering a flexible and scalable

solution to support the grid. When aggregated in parking lots or charging stations, EVs can

provide significant energy storage capacity, helping to balance the intermittency of renewable

energy sources [21]. By storing surplus energy generated from solar or wind power and feeding

it back into the grid when needed, EVs can effectively reduce the need for fossil fuel-based

peaking plants, thereby contributing to the decarbonization of the electricity system [22].

Moreover, the integration of RESs into the grid can benefit from the distributed nature of EVs

and their mobility. EVs can provide localized energy support in areas with high renewable

energy penetration, reducing transmission losses and enhancing the overall efficiency of the

energy system [23]. For instance, an EV parked at a charging station equipped with solar

panels can directly charge from on-site renewable generation, reducing strain on the grid and
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maximizing the use of clean energy. In this way, EVs not only offer transportation solutions

but also become an integral part of the renewable energy ecosystem.

Energy storage is also critical for enabling the broader adoption of renewables, particularly in

markets with high levels of solar and wind energy. By smoothing out the generation profiles of

these sources, ESSs and V2G-enabled EVs can facilitate the shift towards a cleaner energy mix,

making it easier for grid operators to manage supply and demand [24]. This synergy between

EVs, V2G, and RESs will be instrumental in advancing the transition to a sustainable energy

system, where electricity is generated and consumed more efficiently and cleanly [25].

As the penetration of renewable energy increases, the role of EVs as flexible, distributed energy

storage units becomes increasingly important. The combination of V2G technology, renewable

energy integration, and ESSs presents a powerful tool for enhancing grid resilience, reducing

emissions, and optimizing the use of clean energy. EV parking lots, in particular, can act as

hubs where renewable energy, storage, and transportation meet, driving both economic and

environmental benefits.

1.1.4 EV Parking Lot Operations

While EV parking lots equipped with V2G functionality present significant opportunities for

grid support and renewable energy integration, their economic operation introduces a range of

challenges. Managing these parking lots requires navigating uncertainties related to electricity

market prices, renewable energy generation, and the behavior of EV users. Successfully optimiz-

ing the operation of EV parking lots to maximize profitability while maintaining grid support

is a complex, multi-faceted problem that requires advanced decision-making and forecasting

tools.

One of the key challenges lies in the variability of electricity prices in different energy markets.

Prices in these markets fluctuate based on real-time supply and demand dynamics, making

it difficult to predict the optimal times for EVs to charge or discharge energy. Moreover,

the unpredictable nature of RESs further complicates the decision-making process. These

fluctuations can impact both the availability of renewable energy for charging EVs and the

potential profits from discharging stored energy back to the grid [26].

In addition to market uncertainties, the operational diversity of EV users presents another
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challenge. EVs in parking lots may have different arrival and departure times, varying energy

requirements, and different states of charge upon arrival. Accounting for this diversity is critical

to ensuring efficient energy management. A dynamic pricing mechanism, which adjusts based on

real-time demand and the state of the grid, is essential to incentivize EV owners to participate in

V2G services [27]. This requires accurate forecasting of both user behavior and energy market

conditions to optimize charging and discharging schedules [28].

Another significant factor to consider is the degradation of ESSs. The frequent cycling of ESSs,

including the batteries in EVs, leads to gradual degradation over time, reducing their capacity

and efficiency. This degradation must be factored into the economic model to ensure that the

financial benefits of participating in V2G services outweigh the costs associated with reduced

battery life [29]. Understanding the trade-offs between energy usage, ESS degradation, and

profitability is crucial for optimizing the operation of V2G-enabled parking lots [30].

While the economic operation of EV parking lots with V2G capabilities presents complex

challenges, the economic opportunities for EV parking lots are substantial. By participating in

various energy markets, parking lots can generate revenue from both charging EVs and providing

grid services through V2G. During periods of high renewable energy generation, parking lots

can charge EVs at lower prices, taking advantage of cheaper, cleaner energy. As the market for

EVs and renewable energy continues to expand, the role of EV parking lots in providing both

transportation and energy services will become increasingly critical, offering new avenues for

economic growth and sustainability.

1.1.5 Virtual Power Plants (VPPs)

The concept of VPPs has emerged as a crucial mechanism to integrate and manage distributed

energy resources (DERs), such as renewable energy systems, energy storage, and EV fleets,

particularly in parking lots and charging stations. VPPs leverage advanced communication

and control technologies to aggregate multiple energy assets, including EVs, to participate in

energy markets and provide grid services such as frequency regulation, load balancing, and peak

shaving.

VPPs serve as aggregators that coordinate the operation of EVs, RESs, and ESS in parking lots

to maximize energy efficiency and profit. The study of [31] examines how EV parking lots can

6



be used as frequency containment reserve providers, highlighting the potential for additional

revenue through VPP integration. EV charging stations within VPPs can actively participate

in grid services, balancing electricity demand and supply through coordinated charging and

discharging schedules. Similarly, the research of [32] discusses the role of VPPs in integrating

smart charging stations and parking lots to provide global and local power system support.

Their study emphasizes the importance of VPPs in smoothing the uncertainties introduced by

renewable energy sources, such as solar panels, and how aggregated EVs can be dispatched as

virtual storage plants to stabilize the grid during peak demand.

In terms of economic and operational benefits, the integration of EV parking lots into VPPs

presents numerous economic benefits. The study of [33] investigates solar-powered EV charging

stations managed within a VPP structure, showing that such setups can provide clean energy

while also participating in energy trading markets. These parking lots can also serve as flexible

energy hubs that adjust charging schedules based on energy prices and market conditions,

contributing to the overall profitability of the VPP. Further, the study of [34] analyzes how EV

fleets parked in VPP-enabled charging stations interact with electricity markets. Their research

indicates that VPPs help optimize the participation of EVs in energy markets by ensuring that

vehicles can provide grid support during times of high electricity prices, thereby generating

profit for both parking lot operators and the VPP.

Moreover, the integration of EV parking lots with renewable energy resources, such as solar

and wind, introduces operational uncertainties related to intermittent generation. To address

these challenges, the research of [35] proposes a grid-interactive charging strategy that uses

VPPs to manage uncertainties while enhancing profitability. The study highlights the role

of real-time data and predictive models in dynamically adjusting the charging/discharging

schedules of EVs in response to grid conditions, thereby optimizing energy flows and minimizing

energy costs. In addition, the study of [36] explores how virtual battery models can reduce

computational complexity and improve the efficiency of charging stations in EV parking lots.

Their research shows that VPPs, coupled with advanced energy management systems (EMS),

can better predict renewable energy output and adjust EV operations to support grid stability

during periods of high uncertainty.
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1.1.6 Optimization and Decision-Making

The successful operation of EV parking lots with V2G functionality requires more than just

technical infrastructure; it demands advanced decision-making processes to handle the inherent

complexity of energy markets and the evolving nature of grid interactions. As these parking

lots act as both energy consumers and providers, operators must navigate a variety of dynamic

factors to ensure optimal performance and profitability.

To manage the uncertainties associated with electricity prices, renewable energy output, and

EV user behavior, sophisticated optimization frameworks are essential. It must be capable

of responding to real-time changes in market conditions, adapting to fluctuations in renew-

able energy availability, and ensuring efficient energy use across the system. Moreover, the

decision-making process must balance short-term operational gains with long-term sustainabil-

ity, accounting for potential impacts on ESS and EV battery life.

Optimization strategies need to be flexible enough for dynamic adjustment as conditions evolve.

Energy market prices and RESs can be highly variable, so decision-making frameworks must

incorporate reliable forecasts and data analytics to make the most of available energy. Scenario-

based and machine learning-based approaches are valuable for planning in such uncertain en-

vironments to handle fluctuations in market prices or renewable energy availability [37]. In

addition, these decision-making frameworks must integrate the evolving role of EVs in the en-

ergy ecosystem. As EVs become more widespread, parking lots will need to consider not only

the immediate charging and discharging decisions but also the broader implications for revenue

generation in various energy markets [38]. This includes optimizing when and how to participate

in ancillary services markets, setting dynamic pricing, and adjusting energy dispatch strategies

to capture the most profit from market opportunities [39]. Hence, by efficiently managing the

flow of energy between EVs, parking lots, and the grid, these frameworks help ensure that

parking lots operate profitably, leveraging V2G services, dynamic pricing, and energy market

participation to achieve the highest possible economic returns [40].

1.2 Research Questions

Having established the context and challenges associated with the economic operation of EV

parking lots, it is essential to investigate how these challenges can be addressed to maximize
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profitability. The following research questions aim to explore the potential for optimizing EV

parking lots equipped with V2G functionality while managing uncertainties and enhancing

economic performance:

• In parking lots with EV charging stations, does the V2G function have any potential for

profit? What about short-term parking EVs? Is there any strategy for them to increase

profits for the parking lot?

• How can an EV parking lot manage uncertainties such as solar irradiance, wind speed,

market prices, or EV behaviors? If we consider EV owners’ willingness to participate in

V2G, how can we set V2G incentives to increase the profitability of parking lots? Given

these factors, what is the overall profit potential for EV parking lots in the market?

• For multi-EV parking lots or charging stations, how can they achieve or enhance potential

profits under an upper-level pricing strategy, such as VPP? How does the pricing strategy

impact their profits and the profits at the upper level?

It should be noted that battery degradation of ESS needs to be considered in the above ques-

tions. On the other hand, as energy storage technology continues to evolve, the price keeps

decreasing while battery performance improves. The cost and performance problems of EV bat-

teries will likely be better resolved in the near future. Thus, EV battery degradation will not

be directly considered in the above research questions. From the EV parking lot’s perspective,

upper and lower bounds for EV charging and discharging will be set to prevent over-charging

and over-discharging of EVs. Furthermore, V2G incentives and EV owners’ willingness will be

taken into account to limit EV battery discharging during the optimization in certain scenarios

or to provide more reasonable monetary rewards to EVs.

1.3 Research Methodology

1.3.1 Aims

• To investigate methods for managing uncertainties in EV parking lots and charging sta-

tions.

• To explore the V2G profit potential across different operational and business models.
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1.3.2 Objectives

• To explore methods for managing uncertainty factors using data generation, machine

learning, and historical data analysis.

• To investigate methods for managing EV behavior uncertainties using data generation

and deep reinforcement learning (DRL), considering different parking periods.

• To explore the profit potential of the V2G function in EV parking lots and charging sta-

tions under various operational and business models, including different market conditions

such as Frequency Control Ancillary Service (FCAS) and spot markets.

• To analyze V2G incentive pricing by considering EV owners’ willingness to participate,

discussing the profitability potential under a comprehensive operational model.

• To assess the profit potential of multi-EV parking lots or charging stations with V2G

functions under an upper-level market-centralized model, analyzing the impact of pricing

strategies under multiple market conditions.

1.3.3 Research Methods

This research adopts a multi-method approach to address the economic operation of EV parking

lots with V2G functionality. The methods selected aim to explore how uncertainties can be

managed and how V2G potential can be optimized to maximize profitability.

• Scenario-Based Modelling: To address the uncertainties related to market prices, solar

irradiance, and wind speed, scenario-based modeling is employed. Scenarios are generated

using the scenred toolbox in MATLAB, providing a range of potential future conditions.

These scenarios help explore how different combinations of market and environmental

factors affect the operation of EV parking lots. By testing operations against these

scenarios, optimal solutions can be identified to maximize profits.

• Monte Carlo Simulation: To simulate the diverse behavior of EV users, including their

arrival and departure times and initial state of charge (SoC), Monte Carlo simulations

are utilized. This method helps capture the variability in user behavior, ensuring that the

optimization process reflects reliable scenarios. By incorporating a wide range of possible
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user behaviors, this approach provides a more robust solution to managing EV parking

lot operations.

• Information Gap Decision Theory (IGDT): To account for the uncertainty in V2G par-

ticipation willingness and market conditions, IGDT is used. It allows for robust decision-

making by evaluating strategies across a range of uncertain outcomes. This approach

helps parking lot operators determine the optimal V2G incentives that maximize profits

while minimizing the financial risks associated with unpredictable market conditions and

user participation willingness.

• Machine Learning and Data Analysis: Machine learning techniques, particularly Long

Short-Term Memory (LSTM) networks, are applied to predict key variables like elec-

tricity market prices and renewable energy availability. LSTM models are well-suited

for time-series forecasting, enabling accurate predictions of renewable energy output and

market price fluctuations. This predictive capability informs the charging and discharging

schedules for EVs, allowing for more informed decision-making.

• DRL: DRL is employed to optimize the upper-level pricing strategies of the VPP. The

VPP uses DRL to learn and adjust dynamic pricing strategies based on real-time market

conditions and feedback from the lower-level EV parking lot operations. By continuously

adapting, DRL helps to identify pricing strategies that achieve the best overall profit for

the entire bi-level system, rather than solely maximizing the VPP’s revenue, which could

lead to an unsustainable business model.

• Normalizing Flows: Normalizing flows are utilized in this research to model the complex

behaviors of EV users more effectively. By applying this machine learning technique, the

joint probability distributions of EV arrival, departure times, and SoC can be modeled in

a flexible and tractable way. Normalizing flows allow for more realistic simulations of user

behavior by capturing the inherent variability and uncertainty in EV actions. This, in

turn, helps to optimize decision-making in scenarios involving multiple EVs with varying

behaviors.
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1.4 Research Contributions

This research presents several key contributions to the optimization of EV parking lots. First,

an energy management strategy is proposed to maximize the benefits of EV parking lots across

multiple charging modes, addressing the uncertainties of RESs, ESS degradation, and varying

EV parking statuses. EVs are classified based on their parking duration to determine eligibil-

ity for V2G participation, with tailored charging and reward strategies designed accordingly.

Dynamic charging prices are introduced based on EV demand and parking status, ensuring eco-

nomic charging and rewards for EV owners while securing satisfactory profits for the parking

lot. Additionally, the project develops a comprehensive EV parking lot model that integrates

RESs and V2G functions, effectively managing the uncertainties of smart grid operations, in-

cluding market price volatility, RES variability, and unpredictable EV user behavior. A simple

yet efficient EV allocation method is proposed to optimize the use of limited charging infras-

tructure. A modified IGDT-based method is also introduced to determine V2G incentives,

accounting for EV owners’ willingness to participate in grid support services. Furthermore, a

hybrid optimization framework combines DRL and mixed integer linear programming (MILP)

framework to enhance decision-making in a bi-level system, with the VPP operating at the

upper level and EV parking lots at the lower level. Finally, normalizing flows are employed to

model complex EV behavior patterns, improving the robustness and accuracy of simulations

under market and grid uncertainties.

1.5 Thesis Organization

This thesis is organized into six chapters, each addressing different aspects of the economic

operation of EV parking lots, with a focus on the V2G function.

Chapter 1: Introduces the research background, outlining the research aims, questions, and

methodology. It also summarizes the key contributions of the thesis.

Chapter 2: Presents a literature review related to the operation of EV parking lots, examining

existing research and identifying gaps that this thesis seeks to address.

Chapter 3: Explores the economic operation of an EV parking lot equipped with V2G, RESs,

and ESS, focusing on profit maximization and addressing market and environmental uncertain-
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ties. The proposed optimization model is validated through scenario generation using MAT-

LAB.

Chapter 4: Examines EV parking lots integrated with DERs, participating in both spot and

FCAS markets. Forecasting is conducted using LSTM models, and an IGDT-based approach

is employed to optimize V2G incentives, demonstrating profitability across multiple scenarios.

Chapter 5: Presents a hybrid bi-level optimization framework that integrates DRL for dynamic

pricing in VPPs and EV parking lots. The chapter also analyzes the effect of pricing bounds

on profitability and introduces normalizing flows for modeling EV behavior.

Chapter 6: Concludes the thesis, discussing the main findings and outlining potential directions

for future research.
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Chapter 2

Literature Review

The economic operation of EV parking lots, particularly those utilizing V2G functions, is

a rapidly evolving research area. This chapter reviews the existing literature to establish a

foundation for this thesis. Key topics covered include the integration of RES and ESS, the

development of EMS, and the operation of EV parking lots in electricity markets. The chapter

also examines the role of VPPs, uncertainties in market conditions, and the challenges associated

with optimizing economic performance. Reviewing these critical areas, this chapter identifies

the research gaps and sets the stage for the subsequent analysis.

2.1 Electric Vehicle

With the rising need for sustainable energy solutions, EVs have gained significant penetration as

a promising response to environmental challenges such as carbon emissions and reliance on fossil

fuels. Beyond their role as eco-friendly transportation options, EVs offer additional benefits in

energy management and grid support, especially when integrated with RESs and ESS. This

literature review explores the multifaceted contributions of EVs, focusing on their integration

with RES, energy management strategies, and participation in market trading, positioning EVs

as a crucial component in modern power systems.

The rapid development of EVs, coupled with the increased adoption of RESs, has shown con-

siderable feasibility for power grid support and EV charging applications. Renewable energy,

particularly solar power, is increasingly integrated into EV charging infrastructures, such as
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parking garages equipped with photovoltaic (PV) panels, which can provide a sustainable source

of energy for EVs [41]. In addition, V2G technology enables bidirectional energy flow, allowing

EV batteries to not only consume but also supply energy back to the grid, optimizing power

generation scheduling and improving grid stability [42]. A key focus of recent research has

been on combining ESS with EV batteries to mitigate the intermittency and instability of PV

systems. Several studies propose controllable optimized charging and discharging strategies

to stabilize PV systems using limited EV battery capacity [43]–[46]. This approach enhances

the efficiency of renewable energy utilization, reduces the stress on the grid, and contributes

to overall system stability. For example, one study demonstrated that using EV batteries as

responsive demand could improve renewable energy utilization by 7.9% [46]. Moreover, the

integration of EVs into EMS further emphasizes their role as distributed energy storage units

in parking lots and charging stations. By treating EVs as virtual power plants or distributed

storage systems, these facilities can actively participate in local and global power system sup-

port [32]. Intelligent scheduling models ensure that EV batteries are charged and discharged

optimally, contributing to grid stability while taking into account battery conditions and V2G

operations [47], [48]. This dual role of EVs as both energy loads and sources enhances utility

company operations and enables effective demand-supply balancing.

Beyond their role in energy management, EVs in parking lots and charging stations are increas-

ingly recognized as valuable participants in energy markets. Studies have proposed optimization

models that allow EVs to engage in market trading, such as day-ahead energy markets [49],

and manage charging demand in a cost-effective manner [50]. These models integrate EVs with

renewable energy resources like solar and wind, further positioning them as key assets in the

transition to a more decentralized and sustainable energy system. However, several challenges

remain, particularly in ensuring the reliability and availability of EV charging infrastructure.

Issues such as random charging patterns, distribution losses, and power quality degradation

must be addressed, and coupling ESS with EV charging stations has been proposed as an effec-

tive solution [51]. Despite these challenges, the potential of EVs to support both the grid and

renewable energy integration through intelligent management strategies, market participation,

and technological innovations continues to grow.
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2.2 Energy Storage System

The growing adoption of RESs EVs is reshaping modern power systems, driving the need for

efficient energy management and storage solutions. ESS plays an essential role in addressing

the challenges posed by the intermittent nature of RESs while enabling the integration of EVs

into the grid. In particular, ESS enhances the reliability and stability of both renewable energy

generation and EV charging infrastructure, providing a critical bridge between sustainable

energy use and grid stability.

RESs such as PV systems are increasingly used to reduce grid power demand and greenhouse

gas emissions. However, due to the intermittent and unstable nature of RESs, ESS has become

a vital component for ensuring power quality and maintaining the reliability and stability of

renewable power supplies [52]. ESS plays a crucial role by storing excess energy generated

during peak production periods and supplying power during times of insufficient renewable

generation. This dynamic allows ESS to support grid operations, especially in applications

such as smart homes and charging stations. In the context of EV parking lots and charging

stations, ESS serves as an essential energy reserve, helping balance supply and demand. Several

studies have explored the integration of ESS with EVs and RESs to create sustainable charging

environments. For example, parking lots can function as virtual storage plants, leveraging both

EV batteries and ESS to provide power system support during peak demand [32]. Furthermore,

integrating regenerative braking energy and ESS with RES in EV parking lots contributes to

a more sustainable and efficient energy ecosystem [53].

In addition, energy management strategies for EV charging stations integrated with ESS and

RES play a vital role in optimizing energy use and enhancing profitability. Various approaches,

such as real-time scheduling and intelligent energy management systems, are designed to syn-

chronize EV charging with peak renewable energy generation, effectively utilizing ESS to buffer

intermittent power supply [54]. Stochastic and multi-objective optimization models further

refine the charging and discharging schedules for both EVs and ESS, ensuring cost-effective op-

eration while maintaining reliable service [55], [56]. For instance, time-of-use pricing strategies

can maximize profitability by managing energy flow between the grid, ESS, and RES during

periods of fluctuating electricity prices [57]. Similarly, VPP models integrating EV parking lots,

ESS, and RES demonstrate how these systems can improve overall energy efficiency, minimize

grid dependency, and enhance sustainable energy management [58].
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Beyond energy management, ESS integrated with EV parking lots and charging stations can

participate in energy markets through V2G programs and demand response services. Studies

have shown that ESS in EV parking lots can offer valuable services such as frequency regulation

and demand response, thereby improving grid reliability and enhancing profitability for parking

lot operators [59]. The resource allocation frameworks that integrate ESS into residential park-

ing lots further underscore the potential for optimizing market participation. The integration

of RES, particularly solar PV, with ESS in EV parking lots is also a growing area of research.

Studies have explored how ESS can buffer the intermittency of renewable generation, ensur-

ing a stable and reliable energy supply for EV charging stations. By optimizing the charging

schedules of EVs based on solar energy availability, ESS helps to reduce grid dependency and

enhance renewable energy utilization [56], [60].

2.3 Energy Management System

EMS is critical to the efficient operation of EV parking lots and charging stations, particularly

in managing the integration of RES, scheduling charging, and interacting with the power grid.

With the rise of V2G services, EMS plays a crucial role in balancing energy flow while ad-

dressing challenges such as battery degradation and ensuring cost-effective, sustainable energy

management.

One key challenge for EMS in EV charging stations is managing the integration of renewable

energy, especially PV systems, with real-time charging schedules. For example, the study of

[54] proposes a real-time EMS for PV-assisted EV charging stations, ensuring EVs are charged

when solar energy is available. The inclusion of ESS helps buffer excess energy and reduces

stress on EV batteries, extending their lifespan. While battery degradation remains a significant

concern for V2G operations, efficient EMS can mitigate this issue by coordinating charging and

discharging events, reducing unnecessary battery cycling. Studies such as [61] and [62] propose

optimization strategies to minimize degradation while still supporting grid services.

Another essential function of EMS is ensuring fairness and cost-effective management of EV

charging in parking lots. For instance, in [63] presents an EMS that distributes charging power

equitably among multiple EVs based on fairness indices, while also managing operational costs.

This approach ensures EVs are charged efficiently without disproportionately draining resources,

17



promoting a balanced energy management system. The integration of transactive energy models

into EMS enables EVs in parking lots to actively participate in energy markets. For example, the

research of [64] introduces an EMS that allows EVs to contribute energy back to the grid during

high-demand periods. This transactive model not only improves the utilization of available

energy but also provides economic incentives for parking lot operators and EV owners through

market participation. Given the inherent uncertainties in renewable energy generation and

fluctuating EV demand, predictive and stochastic EMS models have been developed to address

these complexities. For instance, a real-time EMS that integrates renewable energy forecasts

with predictive models is proposed in [65] for EV demand. This system allows for optimal

EV charging scheduling, reducing peak loads and minimizing grid reliance while ensuring that

EVs are charged during periods of high renewable energy availability. Hybrid renewable energy

systems, such as those combining solar PV and biogas, are also gaining attention in the context

of EV charging stations. The study of [66] develops an EMS that maximizes the use of hybrid

renewable energy resources while minimizing grid dependency. By managing EV charging

schedules to capitalize on available renewable energy, the system ensures both sustainability

and efficiency. EMS can also incorporate demand-side management strategies to optimize

energy use based on time-of-use pricing and energy availability. An EMS that dynamically

adjusts EV charging schedules according to energy prices and grid demand is proposed in [67],

which reduces operational costs for EV parking lots while ensuring that vehicles are adequately

charged when needed.

2.4 EV Parking Lots and Charging Stations

EV charging stations and parking lots offer a promising opportunity to act as centralized

ESS and participate in energy markets. The study of [68] examines bidding strategies in

energy and reserve markets for aggregators managing multiple EV fast charging stations with

battery storage. This study emphasizes the importance of using ESS in charging stations to

buffer energy supply and demand, facilitating effective market participation and enhancing

grid stability. An energy management approach is proposed in [58] for VPP that includes

commercial loads and EV parking lots integrated with solar PV units and ESS. Their strategy

focuses on market participation of PV and EVs, demonstrating how EV charging infrastructure

can support grid services and energy storage needs.
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In [69], an optimal operation model is presented for aggregated EV charging stations coupled

with ESS, considering market participation and ESS degradation costs. The study emphasizes

the economic benefits of coordinated energy management between EV parking lots and smart

grid systems. Additionally, a probabilistic capacity planning methodology is provided in [70]

for EV charging lots with on-site ESS. The objective is to optimize energy storage and market

participation while managing uncertainties in energy demand and supply. In [71], an EV

parking lot EMS is designed to integrate hydrogen storage and demand-side management. The

strategy aims to optimize energy usage and market participation, demonstrating the potential

for new energy storage technologies in EV charging infrastructure.

The comprehensive energy management strategies have been discussed in [72]–[74]. The study

of [72] develops a real-time energy management strategy for EV charging stations integrated

with local renewable generations and ESS. Their approach incentivizes EV owners to partici-

pate in V2G operations, enhancing the flexibility and reliability of the energy grid. A hybrid

optimization framework is presented in [73] for deploying ESS in PV-integrated EV charging

stations. This study focuses on time-of-use (TOU) based energy management to encourage con-

sumer participation and optimize energy storage utilization. The study of [74] reviews various

mechanisms for energy storage and charging stations, highlighting the impact of EVs as mobile

ESS on the power system. Their work underscores the potential of EV charging infrastructure

in providing ancillary services and participating in energy markets.

These studies demonstrate the potential of EV charging stations and parking lots to serve

as ESSs, contributing to grid stability and market participation. By integrating renewable

energy sources and employing advanced energy management strategies, EV infrastructure can

significantly enhance the efficiency and sustainability of the power grid.

To offer optimal energy management for EV parking lots and charging stations, handling uncer-

tainties is a significant challenge. These uncertainties primarily focus on RESs and EV behavior.

Many studies, such as [75], [76], [77], [78], and [79], focus on handling uncertainties in EV be-

haviors, including stochastic EV charging behaviors, EV load variability, and unpredictable EV

arrival times. Additionally, the studies of [80], [81], [82], [83], and [84] address uncertainties

in renewable energy sources, such as variability in wind and solar power generation, and the

impact of these uncertainties on the energy management of EV charging infrastructure. The

study of [55] focuses on integrated energy management strategies that consider uncertainties
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in both RESs and EV behaviors, aiming to optimize the performance and reliability of EV

charging stations with renewable energy and storage systems.

In terms of methods to deal with uncertainty, stochastic modeling and scenario-based ap-

proaches have been used in [75], [80], [81]. A unified planning model that incorporates stochas-

tic processes is proposed in [75] to handle uncertainties in renewable energy and load demand.

Their objective is to accurately predict PV output and manage stochastic EV charging behav-

iors in parking lots. The study of [80] utilizes scenario-based analysis to address the variability

in renewable resources and load demands. The objective is to generate multiple scenarios to

better predict the behavior of RESs and EV charging demands. Stochastic models are in-

tegrated in [81] for EV charging stations with wind energy, aiming to effectively model the

probabilistic nature of renewable energy generation and EV charging needs.

The studies of [76], [82] discuss robust optimization. Robust optimization in [76] aims at placing

and sizing EV charging stations, considering uncertainties in EV load and renewable power

sources. Their objective is to optimize the placement and capacity of EV charging infrastructure

under uncertainty. A hybrid robust-stochastic optimization framework is developed in [82] for

managing energy in EV parking lots, taking into account uncertainties in wind and solar power

generation and EV behaviors. The objective is to enhance energy management strategies.

Probabilistic methods are used in [77], [83]. The study of [83] focuses on probabilistic modeling

of RESs and demand response for designing EV fast charging stations. The objective is to

predict the variability in renewable energy output and optimize charging station performance

under uncertainty. A Markov chain model is proposed in [77] to handle the uncertainty in

EV charging loads, guiding EV users to optimize their charging schedules. The objective is to

minimize the impact of unpredictable EV arrival times on the charging infrastructure.

Besides, game-theoretic approaches in [79] explore energy pricing strategies using game-theoretic

models under vehicle uncertainty. The objective is to optimize energy pricing and utilization

in EV parking lots equipped with charging stations and photovoltaic systems. An integrated

energy management strategy is proposed in [55] for large EV charging stations incorporating

RESs and ESSs to handle uncertainties and reduce prediction errors. Their objective is to

improve the overall efficiency and reliability of the charging infrastructure.
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2.5 Virtual Power Plants

One thing that must be mentioned here is VPP, which integrates various DERs, including

RESs, ESSs, and EVs to enhance grid stability and efficiency. The studies of [32], [85]–[87]

discuss integrating EVs and ESSs for power support. The study of [32] investigates the role of

VPP in parking lots of EVs, providing both local and global power system support. The study

emphasizes the use of EVs as mobile storage units to mitigate power system intermittency

and volatility. The research of [85] proposes an energy trading model for technical VPPs,

considering various RESs, ESSs, and EVs. The expanded VPP model addresses the operational

challenges of DERs in distribution systems. In [86], the authors develop a genetic algorithm for

managing residential VPPs with EVs, focusing on providing ancillary services. The coordinated

management system optimizes energy generation and storage to support grid operations. The

study of [87] reviews control techniques for VPPs that integrate RESs, ESSs, and smart loads,

highlighting the role of EVs in enhancing grid stability and demand response.

In terms of scheduling and optimization in VPPs, the study of [88] introduces scheduling

strategies for VPPs containing EVs based on DRL. The model optimizes the charging and

discharging schedules of EVs to enhance VPP performance. In [89], the authors present a case

study on DERs and ESSs within a VPP, focusing on the economic aspects. The study explores

the integration of EVs and ESSs to improve the profitability of VPPs. The research of [90]

discusses VPP control concepts with EVs, emphasizing the aggregation of EV battery storage

to provide grid support and enhance the flexibility of power systems.

Furthermore, economic and technical dimensions of VPPs are explored in several studies [49],

[91], [92]. The study of [91] provides a comprehensive review of VPPs integrating EVs, covering

V2G concepts, interface topologies, and market prospects. The economic and technical benefits

of using EVs as part of VPPs are highlighted. A self-scheduling optimization model for a

hybrid solar-wind VPP that aggregates EV charging and discharging power for participation in

electricity markets is proposed by [49]. In [93], a bi-level optimal planning model for ESSs in

VPPs is developed, addressing the challenges of trading characteristics and optimal location and

capacity planning for ESSs. A comprehensive review on EVs integrated in VPPs is conducted

by [92], discussing the coordinated control methods and intelligent management systems that

enable efficient integration of EVs and ESSs.
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The studies of [94], [95] discuss VPPs and demand response. The optimal integration of demand

response programs and EVs in the coordinated energy management of industrial VPPs is in-

vestigated by [94], with a focus on enhancing operational efficiency and economic benefits. The

study of [95] explores the optimal operation of VPPs considering demand response and EVs,

proposing strategies to integrate flexible loads and storage systems to operate as independent

power units.

2.6 Uncertainties

In order to offer optimal energy management for EV parking lots and charging stations, handling

uncertainties is a significant challenge. These uncertainties primarily focus on RESs and EV

behavior. Many studies, such as [75]–[79], focus on handling uncertainties in EV behaviors,

such as stochastic EV charging behaviors, EV load variability, and unpredictable EV arrival

times. Additionally, the studies of [80]–[84], address uncertainties in renewable energy sources,

such as variability in wind and solar power generation, and the impact of these uncertainties on

the energy management of EV charging infrastructure. The study of [55] focuses on integrated

energy management strategies that consider uncertainties in both RESs and EV behaviors,

aiming to optimize the performance and reliability of EV charging stations with renewable

energy and storage systems.

In terms of methods to deal with uncertainty, stochastic modeling and scenario-based ap-

proaches have been used in [75], [80], [81]. A unified planning model that incorporates stochas-

tic processes is proposed in [75] to handle uncertainties in renewable energy and load demand.

Their objective is to accurately predict PV output and manage stochastic EV charging behav-

iors in parking lots. The study of [80] utilizes scenario-based analysis to address the variability

in renewable resources and load demands. The objective is to generate multiple scenarios to

better predict the behavior of RESs and EV charging demands. Stochastic models are in-

tegrated in [81] for EV charging stations with wind energy, aiming to effectively model the

probabilistic nature of renewable energy generation and EV charging needs.

The studies of [76], [82] discuss robust optimization. Robust optimization in [76] aims at placing

and sizing EV charging stations, considering uncertainties in EV load and renewable power

sources. Their objective is to optimize the placement and capacity of EV charging infrastructure
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under uncertainty. A hybrid robust-stochastic optimization framework is developed in [82] for

managing energy in EV parking lots, taking into account uncertainties in wind and solar power

generation and EV behaviors. The objective is to enhance energy management strategies.

Probabilistic methods are used in [77], [83]. The study of [83] focuses on probabilistic modeling

of RESs and demand response for designing EV fast charging stations. The objective is to

predict the variability in renewable energy output and optimize charging station performance

under uncertainty. A Markov chain model is proposed in [77] to handle the uncertainty in

EV charging loads, guiding EV users to optimize their charging schedules. The objective is to

minimize the impact of unpredictable EV arrival times on the charging infrastructure.

Additionally, game-theoretic approaches in [79] explore energy pricing strategies using game-

theoretic models under vehicle uncertainty. The objective is to optimize energy pricing and

utilization in EV parking lots equipped with charging stations and photovoltaic systems. An

integrated energy management strategy is proposed in [55] for large EV charging stations incor-

porating RESs and ESSs to handle uncertainties and reduce prediction errors. Their objective

is to improve the overall efficiency and reliability of the charging infrastructure.

In addition to the above methods, Machine learning offers powerful tools to handle the com-

plexities of EV behavior. Data-driven tools and machine learning algorithms play a pivotal role

in forecasting EV charging behaviors. By cleaning data and addressing outliers, these methods

offer predictive insights into charging patterns [96]. Advances in systematic reviews and meta-

analyses further validate the efficacy of deep learning and ensemble learning techniques in this

domain [97]. Moreover, the application of Grey Wolf Optimizer-based algorithms exemplifies

the capability to predict charging durations amidst noisy data [98].

Strategic frameworks that integrate EVs as mobile battery ESSs within smart grids benefit

significantly from machine learning. These models manage both charging and discharging

behaviors, thereby enhancing grid stability and reducing operational costs [99]. Furthermore,

model-free real-time scheduling methods, developed using DRL, optimize electricity costs and

bolster grid reliability [100]. This optimization also extends to continuous charging control,

adapting seamlessly to dynamic user behaviors [101].

In the realm of transportation systems, deep learning methods model EV travel behaviors to

improve system integration [102]. These methods support the development of control strate-
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gies for plug-in hybrid EVs and optimize energy usage at charging stations, thus facilitating

effective demand-side management [103], [104]. Additionally, machine learning algorithms aid

in tuning parameters of EV charging behaviors to mitigate congestion and reduce investment

costs at charging stations [105]. Reinforcement learning further enhances the management of

EV charging systems by effectively handling the dynamic and uncertain nature of EV behav-

iors [106]. Moreover, machine learning-based intrusion detection systems ensure the safety and

reliability of IoT-enabled EV charging stations [107].

Additionally, generative adversarial networks (GANs) have been proposed as a data-driven ap-

proach to generate EV charging scenarios [108]. This method enables the generation of realistic

and diverse EV charging data, which is crucial for understanding and optimizing charging in-

frastructure. GANs have also been utilized to generate synthetic PMU data [109], creating

synthetic data for power management units and demonstrating the versatility of GANs in gen-

erating various types of synthetic data, including EV data. Additionally, a conditional tabular

GAN-based method has been developed for two-stage data generation [110]. This approach is

applied to generate electric load data, which can be used to train forecasting models, showcas-

ing the potential of GANs in enhancing predictive analytics for EV data. In another study,

adversarial networks were developed to learn distributions of EV charging sessions and gener-

ate synthetic data, known as EVGen, highlighting the effectiveness of GANs in modeling and

simulating EV charging behavior [111].

On the other hand, variational autoencoders (VAEs) combined with GANs have been employed

to generate synthetic datasets for smart home energy management, including EV load and PV

power generation [112]. This hybrid approach benefits from the strengths of both VAEs and

GANs, producing more accurate and realistic data. Furthermore, a novel GAN-based synthetic

data training model has been proposed to generate synthetic data for various applications,

including EV data [113]. This model demonstrates the continuous evolution and application of

GANs in generating high-quality synthetic data.

2.7 Electricity Markets

As mentioned, a group of EVs can be treated as a large ESS, with both participating in the

electricity market to generate profit. In addition to contributing to grid stability and optimizing
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energy management, they can also provide ancillary services. Many researchers have widely

discussed these benefits.

In terms of day-ahead markets, the study of [114] explores the participation of EVs and ESS in

the day-ahead frequency regulation market. They propose a risk-averse optimal bidding strat-

egy for an aggregator managing a fleet of EVs and ESS, focusing on unidirectional participation

to optimize bidding strategies. Also, the study of [115] assesses the impact of grid-scale elec-

tricity storage and EVs on renewable energy penetration in Italy, discussing how participation

in day-ahead and reserve markets influences renewable energy integration. A self-scheduling

optimization model is proposed in [49] for a solar-wind VPP, considering the participation of

EVs in day-ahead energy and reserve markets. Sustainable energy system planning is presented

in [116] for industrial zones by integrating EVs as energy storage, highlighting their role in

day-ahead market scheduling and aggregator implementation.

Furthermore, frequency regulation and reserve markets have been widely discussed in [49], [114],

[115], [117]–[119]. Specifically, the study of [114] explores the participation of EVs and ESS

in the day-ahead frequency regulation market. They propose a risk-averse optimal bidding

strategy for an aggregator managing a fleet of EVs and ESS. The study of [117] discusses the

integration of ESS in energy markets and balancing services, emphasizing the participation of

EVs in ancillary services markets such as fast reserve and frequency services. In [118], the

authors review the integration of renewable energy sources, ESS, and EVs with smart power

distribution networks, highlighting their participation in frequency regulation markets. In ad-

dition, the study of [119] develops a stochastic bidding strategy for EVs and ESS in uncertain

reserve markets, focusing on optimizing market participation by leveraging the cooperation

between EVs and ESS. The research of [115] assesses the impact of grid-scale electricity stor-

age and EVs on renewable energy penetration in Italy, discussing how participation in reserve

markets influences renewable energy integration. In [49], the authors propose a self-scheduling

optimization model for a solar-wind VPP, considering the participation of EVs in day-ahead

energy and reserve markets.

The studies of [117], [120]–[122] discuss the ancillary services markets. To be more specific, the

integration of ESS is discussed in [117] in energy markets and balancing services, emphasizing

the participation of EVs in ancillary services markets such as fast reserve and frequency services.

The study of [120] evaluates the eco-environmental management of electricity markets among
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micro-grids with high penetration of smart homes, plug-in EVs, and ESS, discussing their

impact on market flexibility and reliability. In [121], the authors discuss the potential of EVs

as ESS, emphasizing their participation in ancillary services markets based on V2G concepts.

The research of [122] proposes an optimal energy storage allocation strategy by coordinating

EVs participating in auxiliary service markets. This study focuses on the aggregated response

capacity and market strategies for EVs and ESS.

Additionally, Ref. [123] investigates the coordination of wind power producers with ESS for

optimal participation in wholesale electricity markets, discussing the role of EVs in meeting

energy requirements and reducing costs.

Intraday markets are explored in [124], where the participation of an EV aggregator in the

intraday and balancing markets are modelled as a multistage stochastic programming problem.

The study focuses on utilising the demand-side flexibility of EVs to reduce charging costs and

optimize participation in these markets.

In terms of demand response markets, the study of [125] investigates the market potential for

residential ESS from repurposed EV batteries, developing a service-centered business model that

facilitates participation in energy consumption and demand response markets. The research of

[126] analyzes the participation of an energy storage aggregator in electricity markets, including

the aggregation of EV fleets for demand response.

These mentioned studies demonstrate the significant potential of EVs and ESS in actively

participating in various electricity markets.

2.8 Research Gaps

As previously discussed, V2G technology allows EVs to discharge stored energy back to the grid

during periods of high demand, offering financial incentives for both EV owners and parking

lot operators. While much research has documented the revenue potential of long-term parked

EVs participating in V2G, the opportunities and strategies for short-term parked EVs remain

underexplored.

In this context, integrating V2G into parking lots holds significant potential for generating new

revenue streams. For instance, Ref. [127] demonstrates that EV parking lots equipped with
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V2G can provide ancillary services, such as frequency regulation and peak shaving, by offering

flexible storage that can be dispatched on demand. Their study estimates that EV parking lots

participating in these markets can earn substantial revenue, particularly when large numbers of

EVs are aggregated and managed via a central EMS. However, the challenge lies in the timing

of EV availability and parking patterns. Most V2G strategies assume that EVs remain parked

for extended periods, allowing time for both charging and discharging, a scenario more typical

of workplace or residential parking than short-term parking.

The introduction of short-term parking, such as in shopping centers, airports, or urban garages,

complicates the effective use of V2G. EVs parked for short durations may not have sufficient

time to participate meaningfully in V2G services, as these operations require time to transfer

energy and turn a profit. Ref. [128] emphasizes that limited EV availability in short-term

parking reduces the profitability of V2G. Moreover, the battery cycling required for V2G may

not align with the parking habits of short-term users. Despite these obstacles, some strategies,

such as dynamic pricing models that reward drivers for leaving their vehicles plugged in during

peak demand periods, have been proposed to extract value from short-term parked EVs [129].

These approaches incentivize participation even in short stays by capitalizing on strategically

timed intervals.

While V2G offers considerable potential for profit generation in EV parking lots, integrating

short-term parked EVs into these systems remains a challenge. Strategies like dynamic charging

fees and incentives [130], aggregation of short-term EVs [131], battery-friendly V2G cycles

[61], and peak-time targeting for short stays [129] have been proposed to increase profitability.

However, comprehensive discussions that fully consider short-term EVs within the broader

context of entire parking lot operations are still lacking. Additionally, short-term EV users

may prioritize charging over participating in V2G, further complicating potential profitability.

The integration of V2G technologies alongside RES in EV parking lots presents another layer

of opportunity. Studies have shown that parking lots can manage uncertainties related to solar

irradiance, wind speed, market prices, and EV behavior using stochastic and scenario-based

optimization models [132], [133]. These EMS can enhance profitability by incentivizing long-

term parked EVs to engage in V2G operations [82]. Furthermore, hybrid renewable energy

sources, such as solar PV and ESS, enable more efficient energy use and market participation,

thereby improving economic returns [54], [134]. Financial incentives also play a crucial role in
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encouraging EV owners to participate in V2G programs, with flexible contracts and battery-

friendly strategies designed to address concerns about battery degradation [61], [82]. However,

uncertainties related to renewable energy variability and user behavior must be effectively

managed to maximize profits.

Despite these advancements, gaps remain in our understanding of long-term user engagement

with V2G programs, especially as user preferences evolve, battery technologies advance, and

market conditions change [133]. There is also a lack of empirical studies on the profit potential

of short-term parked EVs in V2G operations, which is particularly relevant given the increasing

prevalence of short-term parking in urban settings [54]. Further research is needed to explore

how parking lots can optimize participation in various energy markets, such as demand response

and frequency regulation [82], [132]. Additionally, integrating advanced machine learning mod-

els into EMS could significantly enhance energy flow predictability and optimization, but this

area remains underexplored.

Multi-EV parking lots and charging stations integrated with VPPs offer another promising op-

portunity for profit maximization, particularly through advanced pricing strategies like time-of-

use tariffs, demand response participation, and dynamic pricing models. These pricing strate-

gies allow parking lots to manage their energy flows more effectively by charging or discharging

EVs during peak demand periods when energy prices are highest. Studies indicate that ag-

gregating multiple EVs under a VPP improves load balancing, enhances market participation,

and boosts revenues for both parking lots and the VPP [135]–[137]. Moreover, VPP pricing

strategies can be tailored to accommodate both long-term and short-term parked EVs, enabling

short-term parkers to contribute to energy markets during high-demand periods [133], [134].

The use of dynamic pricing, combined with efficient communication between EVs, parking lots,

and the VPP, ensures that energy is dispatched at optimal times, further enhancing profitability.

However, despite the clear potential, several gaps remain in the literature. While long-term

parked EVs’ role in V2G operations is well-covered, optimizing the profit potential of short-term

parked EVs is less understood. Additionally, while VPP aggregation and time-of-use pricing

strategies have demonstrated the potential to increase revenues, in-depth studies exploring how

these strategies impact individual parking lot operators and the overall VPP are still lacking.

Managing the uncertainty associated with EV parking lots and charging stations continues to be
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a significant challenge. Several factors, such as the unpredictability of RES, the available energy

for V2G, and the random behavior of EVs, influence how these facilities can be configured to

maximize profit. As previously discussed, machine learning-based methods like GANs and VAEs

are commonly used to generate EV data from historical patterns. GANs utilize a generator

and discriminator network that compete to produce realistic data samples, while VAEs use

a probabilistic approach to encode data into a latent space and decode it back, producing

smoother and more structured outputs. However, VAEs can produce blurry results due to

approximate inference, and both methods face challenges with loss balancing and training

stability.

While GANs are powerful, they often encounter challenges such as unstable training and mode

collapse, making them less reliable for EV data modeling [138]. VAEs, despite their strengths,

can suffer from blurry outputs and constraints related to latent space complexity and loss term

balancing [139]. To address these limitations, a more robust approach, such as Normalizing

Flows (NFs), should be considered. NFs offer stable training dynamics and exact likelihood esti-

mation, avoiding common issues seen in GANs and VAEs. Additionally, NFs generate sharper,

more accurate samples and outperform classical statistical methods by capturing complex, non-

linear dependencies in the data. Although NFs come with computational and design challenges,

their ability to model high-dimensional datasets makes them an ideal choice for the next stage

of EV data modeling [140].

2.9 Summary

This chapter has reviewed the literature on the economic operation of EV parking lots, with a

particular focus on V2G functionality. The integration of RES, ESS, and EMS was discussed

as a critical aspect of optimizing the energy flows within EV parking lots. Moreover, EVs’

participation in various energy markets, such as day-ahead, intraday, and ancillary services

markets, was discussed, emphasizing their potential for grid support and profitability. The

review also highlighted the emerging role of VPPs and the challenges posed by uncertainties

in renewable energy generation and EV behavior. Lastly, key research gaps were identified,

including the underexplored potential of short-term parked EVs in V2G operations and the

need for advanced optimization techniques to handle the inherent uncertainties of these systems.

The insights gained from this chapter provide a foundation for the methodology and analysis

in the subsequent chapters.
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Chapter 3

Economic Operation Strategy of an EV

Parking Lot with Vehicle-to-Grid and

Renewable Energy Integration

3.1 Introduction

EV parking lots and charging stations offer significant potential to support power grids through

V2G technology, which allows bidirectional energy flow. This enables EVs not only to charge

but also to return power to the grid, contributing to grid stability and integrating RESs. By

utilizing the collective energy stored in EV batteries, parking lots can serve as valuable DERs,

providing both economic and technical benefits.

Smart charging or parking lot profits have been explored in many studies [141]–[144]. However,

the above studies only consider grid-to-vehicle (G2V) interaction. Studies in [145]–[147] take

V2G into account while considering EV charging. A management strategy considering the

behaviour of EV owners is proposed in [145], focusing on the impact of their behaviour, including

arrival and departure time, initial SoC, and energy demand, on the profits of the parking lots.

In [146], an EV charging strategy for workplace charging stations is proposed by maximising

the energy usage of RESs to reduce EV charging costs. However, the above studies focus mainly

on EV charge and discharge or operating cost reduction, and they need a holistic consideration

of the EV parking lot or charging station. The study in [147] proposes an energy management
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system that includes EV parking lots and PV. Four charging modes with different priorities are

proposed, aiming to improve the efficiency of microgrids. However, it is more appropriate to

treat all EVs equally rather than prioritising charging by charging mode. Ref. [148] presents a

hybrid stochastic information gap decision theory method to handle uncertainties and propose

a two-stage scheduling framework for the EV parking lot. The results prove the importance

of the optimal sizing of the EV parking lot and the ability of EVs to improve the economy of

energy communities. Ref. [149] discusses the optimal sizing and location of the EV parking

lot, considering EVs’ charging and discharging behaviour, and applies the analytical model to

estimate the number of EVs in the EV parking lot at different times.

The study in [150] proposes an energy management algorithm for a large-scale EV parking lot

with 100 charging points. By using the decentralized optimization framework and the scheme

of moving sliding-window method to minimize the random aspects of user charging habits, the

optimization problem complexity of large EV parking lots is simplified. However, the operation

and management strategies in EV parking lots have been explored less or neglected in those

studies.

As mentioned in the study [151], different charging modes have different advantages. Under the

same RES size, EVs can be charged for free, but they must participate in V2G services to receive

free charging. Compared with the paid charging mode, it still has considerable development

potential. Based on the study in [151], this chapter will further improve the charging mode of

EV parking lots. Specifically, instead of free charging, EVs participating in V2G services need

to pay a minimum charging fee due to their longer connection. However, they will receive V2G

incentives to offset this fee. Considering many EVs entering parking lots may not be able to get

fully charged or participate in V2G services due to insufficient charging time, the following study

will divide EVs into two categories: EVs with sufficient charging time for V2G participation

and insufficient charging time for non-V2G participation. Different charging models will be

adopted and assessed for these two categories. It should be noted that this chapter mainly

explores the profit of the charging station set up in the parking lot, so the parking fee is not

considered at this stage.

In general, the main features and contributions of this chapter are as follows:

1. An energy management strategy is proposed to maximise the benefit of the parking lot

31



under multiple charging modes by considering the uncertainty of RESs, ESS degradation,

and different parking status of EVs;

2. EVs connected to chargers are classified by different parking times to indicate whether

they can participate in V2G services. Different charging or reward strategies are deter-

mined accordingly;

3. Dynamic charging price is proposed based on the charging demand and parking status

of EVs, which ensures that EVs will get economic charging/parking/reward while the

parking lot can have satisfactory profit as well.

3.2 Problem Formulation

The case of a parking lot with EV charging stations, including PV, wind turbine (WT), and

ESS, is considered. EV parking lots will determine whether EVs can participate in V2G services

based on the information collected by the EMS: arrival/departure time, initial SoC, etc. This

data collection will happen once they are connected to the bi-directional charger. Additionally,

EVs will be divided into two categories: participation in V2G and non-participation in V2G,

depending on the parking time. Based on realistic considerations, it is assumed that all EVs

with insufficient charging time want to charge to the maximum possible SoC. If the charging fee

is too high, many EVs will choose not to charge. Therefore, to make the idea more realistic and

attract more EVs to be charged and bring profits to the parking lots, the charging demand of

such EVs will generate different charging prices, which are between the maximum and minimum

market prices, while more requests will get cheaper charging fees. Therefore, for a vehicle with

insufficient charging time and cannot participate in V2G services, its charging demand will

determine the charging price. For a vehicle with a sufficiently long charging time, it is assumed

that it has agreed to participate in the V2G service when choosing the parking lot. Due to the

long connecting time, their charging price will always be the minimum. On this basis, the V2G

service is carried out to ensure no overcharge and discharge, and the energy participating in

the V2G service will further lead to reducing the charging cost. Based on these two modes, the

parking lot can profit by providing grid support, storing energy from the grid during off-peak

hours, and delivering power to the grid during peak hours. The detailed model is shown as

follows.
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3.2.1 RESs Modelling

In this chapter, electricity market price, solar radiation and wind speed are considered as

uncertain factors because of their randomness and uncertainty. The scenred toolbox of Matlab

is used to generate uncertainty factors [152]. This toolbox is based on scenario generation and

reduction method. This is also thoroughly discussed in [153]–[155].

The WT output is mainly determined by wind speed. The power output of WT can be calcu-

lated as follows:

PW
t,s =



0 vt,s ≤ Vci

Pr(A+B ∗ vt,s + C ∗ v2t,s) Vci < vt,s ≤ Vr

Pr Vr < vt,s ≤ Vco

0 vt,s ≥ Vco

(3.1)

where PW
t,s is the power generated by the wind turbine at time t in scenario s; vt,s is the wind

speed; Pr indicates the rated power output; A, B, C are constant coefficients of the wind turbine

[156]; Vci,Vr,Vco represent the cut-in, rated and cut-out wind speed, respectively.

The power output of PV can be calculated by (3.2).

P PV
t,s = rt,s ∗ spv ∗ epv (3.2)

where P PV
t,s is the power generated by the PV panel; rt,s is the solar radiation; spv is the surface

area of PV panels; epv is the PV panel efficiency.

3.2.2 EV Modelling

It is assumed that the parking lot knows the arrival and departure time of all the EVs in

advance. The available energy of the EV at charging point i for the parking lot to use is shown

in (3.3). Before EV’s arrival and after EV’s departure, the available energy to the charging

point the EV is connected to is zero. When the EV arrives, the available energy to the charging

point i is the initial energy of the EV, Eini
i . In the following time, between the time of EV’s

arrival and departure, the EV energy variation depends on the energy at the previous time

step and the charging or discharging energy at the current time step. Then the EV will be

charged to the allowed maximum energy at the departure time, which is normally not 100%

of the EV battery capacity, to prevent the adverse effects of overcharging, as shown in (3.4).
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A binary variable µi,t,s is defined in (3.5) and (3.6) to indicate that EVs cannot charge and

discharge simultaneously. The minimum and maximum energy in the charging and discharging

process are also essential factors in determining the degradation of EV batteries [157]. Eq.

(3.7) presents the lower and upper bounds of the EV energy, represented by EEV
i,min and EEV

i,max,

respectively. If EVs are not in the charging station, charging and discharging will not occur,

which is reflected in (3.8).

EEV
i,t,s =



0, t < ta,i

Eini
i , t = ta,i

EEV
i,t−1,s +

(
ηch ∗ PEV+

i,t,s − 1

ηdis
∗ PEV−

i,t,s

)
△t, ta,i < t ≤ td,i

EEV
i,max, t = td,i

0 t > td,i

(3.3)

EEV
i,max = Eini

i +

td,i∑
t=ta,i+1

(
ηEV
ch ∗ PEV+

i,t,s − 1

ηEV
dis

∗ PEV−
i,t,s

)
△t (3.4)

For ta,i < t ≤ td,i,

0 ≤ PEV+
i,t,s ≤ µi,t,s ∗ PEV+

i,max (3.5)

0 ≤ PEV−
i,t,s ≤ (1− µi,t,s) ∗ PEV−

i,max (3.6)

EEV
i,min ≤ EEV

i,t,s ≤ EEV
i,max (3.7)

For t otherwise

PEV+
i,t,s = PEV−

i,t,s = 0 (3.8)

where EEV
i,t,s is the available energy of the EV at charging station i for the parking lot to use at

time t in scenario s. ta,i and td,i are the EV’s arrival and departure time; PEV+
i,t,s and PEV−

i,t,s are the
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EV charging and discharging power; ηEV
ch and ηEV

dis represent the EV charging and discharging

efficiency; △t is the time interval. PEV+
i,max and PEV−

i,max indicate the maximum EV charging and

discharging power.

For some EVs, although staying at the charging station, their charging time is not long enough

to use V2G and get fully charged when leaving; so a binary variable φi is defined to indicate the

V2G participating status of the EV at the charging station i, as shown in (3.9). Therefore, If EVs

satisfying the condition (td,i− ta,i) ≤
EEV

i,max−Eini
i

ηEV
ch ∗PEV +

i,max

, φi = 0, indicating non-V2G participation as

the short parking period cannot make these EVs get fully charged; otherwise, φi = 1, indicating

that the charging time is long enough to participate in V2G.

Under the non-V2G participation scenarios (φi = 0), it is assumed that all EVs will charge at

the maximum charging power because of the lack of charging time, as shown in (3.10). Based

on this assumption, the charging price is then determined by the energy required by the EVs,

as shown in (3.12) [141]. It can also encourage EV owners to charge at the maximum demand.

In contrast, under the V2G participation scenarios (φi = 1), as mentioned above, this will

give the participating EVs the lowest charging price. Besides, it is assumed that all such EVs

participate in V2G services, so in addition to paying for charging, they will also be rewarded

for participating in V2G. In summary, the charging cost under these two charging schemes can

be expressed as (3.14).

φi =


1 , (td,i − ta,i) >

EEV
i,max−Eini

i

ηEV
ch ∗PEV +

i,max

0 , (td,i − ta,i) ≤
EEV

i,max−Eini
i

ηEV
ch ∗PEV +

i,max

(3.9)

Ede
i =

(
ηEV
ch ∗ PEV+

i,max

)
∗ (td,i − ta,i) (3.10)

EEV
i,td,i

= Eini
i + Ede

i (3.11)

Ede
i =

Ede,max
i

λc,max − λc,min
(λc,max − λc

i) (3.12)
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λc,min ≤ λc
i ≤ λc,max (3.13)

zs =

 N∑
i=1

t=td,i∑
t=ta,i

(1− φi)(P
EV+
i,t,s ∗ λc

i)△t


+

N∑
i=1

φi

[(
EEV

i,max − Eini
i

)
∗ λc,min −

T∑
t=1

(PEV−
i,t,s ∗ λinc)△t

] (3.14)

where T is the simulation time. N is the total number of EVs. Ede
i indicates the demand energy

under V2G participation. Ede,max
i represents the maximum required energy for charging the

EV to the maximum SoC, λc
i , λc,max and λc,min indicate the charging price for the i-th EV, the

price upper and lower bound, respectively. λinc is the V2G incentive rate provided to EVs. Eq.

(3.11) means that the energy when the i-th EV leaves the charging station is composed of its

initial and charged power, that is, the demand power. Eq. (3.13) shows the upper and lower

bound of the charging price.

3.2.3 ESS Modelling

Similar to the EV part, Eq. (3.15) shows the energy dynamic of ESS. The constraint (3.16)

is to ensure that at the end of the day, the ESS has the same energy as the initial energy to

ensure that it can be put into use quickly the next day. Eq. (3.17) presents the lower and

upper bounds of the ESS energy. A binary variable at,s is also defined in (3.18) and (3.19) to

make sure ESS cannot charge and discharge simultaneously.

EESS
t,s = EESS

t−1,s +

(
ηESS
ch ∗ PESS+

t,s − 1

ηESS
dis

∗ PESS−
t,s

)
△t (3.15)

EESS
T,s = EESS

0,s (3.16)

EESS
min ≤ EESS

t,s ≤ EESS
max (3.17)
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0 ≤ PESS+
t,s ≤ at,s ∗ PESS+

max (3.18)

0 ≤ PESS−
t,s ≤ (1− at,s) ∗ PESS−

max (3.19)

where EESS
t,s indicates the energy for the ESS at time t in scenario s; PESS+

t,s and PESS−
t,s

represent ESS charging and discharging power, respectively; EESS
0,s and EESS

T,s represent ESS’s

initial energy and the energy in the end of the simulation time T . EESS
min and EESS

max indicate

the lower and upper bounds of the ESS energy, respectively. PESS+
max and PESS−

max indicate the

upper and lower bound of ESS charging power, respectively; ηESS
ch and ηESS

dis are the charging

and discharging efficiency, respectively.

3.2.4 Battery Degradation Cost

The battery degradation cost of the ESS in the parking lot is also a factor to be considered, as

it is charged and discharged in daily operations. To minimize the degradation cost of ESS, the

method considered in this study is to control the discharging power flow in ESS. It is assumed

that the battery pack will need to be replaced once its total throughput reaches its lifetime

throughput. Based on this point of view, the unit battery degradation cost B is defined as

(3.20), where R is the battery purchase cost, L indicates the battery lifetime throughput, and

eESS is the square root of the roundtrip efficiency of the battery [158]. According to the total

discharged energy in ESS and degradation cost per kWh, the ESS degradation cost can be

obtained, which is expressed in (3.21), where EESS−
t,s represents the discharged energy of ESS.

B =
R

L ∗ eESS
(3.20)

Cde
s =

T∑
t=1

EESS−
t,s ∗B (3.21)

As for EV battery degradation, some studies do not consider it when discussing EV parking

lot profits [148], [159]. As this chapter stands from the perspective of the EV parking lots and

charging stations, EV battery degradation is not directly modelled, but indirectly considered
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by the compensation to EVs through V2G reward; see (3.14). It is worth mentioning that the

proposed strategy tries to reduce EV battery degradation during V2G as much as possible. As

mentioned in the modelling part, the upper and lower bound of charging and discharging are

set in (3.7) to avoid battery degradation caused by excessive charging and discharge of EVs.

Also, incentive rewards are paid to V2G participants based on the discharging energy, which

also limits the V2G discharge of EVs in subsequent optimization calculations to avoid excessive

discharge. A similar technique can be found in [157] by limiting the depth of battery charging

and discharging to reduce the degradation of EV batteries.

3.2.5 Constraints for the Grid

Like the ESS and EV parts, the parking lot cannot simultaneously buy electricity from the grid

and feed it into the grid. The binary variable bt,s in (3.22) and (3.23) is used to ensure this.

0 ≤ P Feed−in
t,s ≤ bt,s ∗ P Feed−in

max (3.22)

0 ≤ PGrid
t,s ≤ (1− bt,s) ∗ PGrid

max (3.23)

where P Feed−in
t,s and PGrid

t,s are the feed-in power to and purchasing power from the grid, respec-

tively; P Feed−in
max and PGrid

max are the maximum feed-in and purchased power, respectively.

3.2.6 Balance Equation

Eq. (3.24) represents the power balance. The EV charging,
∑N

i=1 P
EV+
i,t,s , ESS charging, PESS+

t,s ,

and the grid feed-in power, P Feed−in
t,s are satisfied by the power from PV, P PV

t,s , wind turbine,

PW
t,s , grid, PGrid

t,s , ESS discharging, PESS−
t,s and EV discharging,

∑N
i=1 P

EV−
i,t,s .

∑N
i=1 P

EV+
i,t,s + PESS+

t,s + P Feed−in
t,s

= P PV
t,s + PW

t,s+PGrid
t,s + PESS−

t,s +
∑N

i=1 P
EV−
i,t,s

(3.24)

3.2.7 Objective Function

The objective function in the following is to maximize the profit of the parking lot by buying

electricity in low-price periods and selling electricity in high-price periods through managing
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the charge and discharge of EVs and ESS. It consists of the following parts: feed-in income, EV

charging income, V2G payment, grid electricity purchase cost, PV and wind turbine operating

cost, and ESS degradation cost.

Maximize Z =
Ns∑
s=1

ρs

[
T∑
t=1

(P Feed−in
t,s ∗ λ1,t,s)△t−

T∑
t=1

(PGrid
t,s ∗ λ2,t,s)△t+ zs

−
T∑
t=1

(P PV
t,s ∗ λpv + PW

t,s ∗ λw)△t − Cde
s

] (3.25)

where Ns is the total scenarios in the simulation; ρs is the possibility of scenario s; λ1,t,s and

λ2,t,s indicate the power purchase and feed-in price, respectively; λpv and λw represent the

operating cost coefficient of PV panels and WT, respectively.

Compared with other methods, the scenarios generation method generates many scenarios

based on different assumptions of market price uncertainty, which can be used to estimate the

deficit and profit of different pricing or investment strategies. The objective of this chapter

is to identify the range of possible market prices and then apply the management strategy to

obtain more profit. Therefore, the scenario generation method is appropriate to use here. It

also has the advantages such as fast computation time (with scenario reduction), less modelling

complexity, available toolbox, etc.

3.3 Case Study

3.3.1 Parameter and Case Settings

This section will compare the proposed model with the other two models under three cases. To

comprehensively discuss the economic operation strategy, the selection of cases will also need

to cover as many EV parking states as possible. Therefore, mixed, long-term and short-term

parking periods will be selected as three cases. These models and cases are defined as follows:

• Case 1: EVs consist of long-term and short-term parking EVs. The arrival and departure

times of EVs and the initial energy are shown in Figs. 3.1 and 3.2.

• Case 2: All the EVs park for a long time and have less initial energy. The data are shown

in Figs. 3.3 and 3.4.
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• Case 3: Contrary to the previous case, all the EVs park for a short period in this case, as

shown in Figs. 3.5 and 3.6.

The energy information shown in Figs. 3.2, 3.4 and 3.6 are directly tied to the EV arrival and

departure times, as all data points come from the same practical dataset provided in [160]. Each

record in the dataset includes an EV’s arrival time, departure time, and corresponding energy

data. For each case, the EVs were selected based on their arrival and departure times, and

their corresponding energy data was inherently included without modification or additional

assumptions. This approach ensures that the analysis remains consistent and grounded in

real-world data, as no artificial data was created or adjusted during the process.

Figure 3.1: EV’s departure/arrival time (Case

1).

Figure 3.2: EV’s initial energy (Case 1).

The models under assessment are as follows:

• Proposed model: This is the proposed model. EVs will use the parking lot and its charging

stations with corresponding charging costs. For long-term parking EVs, they will offer

V2G service in return for getting a charging price discount or may even get monetary

reward payback. The charging price of short-term parking EVs is dynamic and determined

by their charging demand.

• Comparison model 1: The pricing strategy of this model is based on [151], [161]. Both

long-term and short-term parking EVs will pay the same fixed rate for their charging.

Also, V2G is considered as feed-in power to provide profit for the parking lot, and the

participating EVs will receive incentive payments from the parking lot. It is assumed that
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Figure 3.3: EV’s departure/arrival time (Case

2).

Figure 3.4: EV’s initial energy (Case 2).

all short-term parked EVs will charge as much as they can.

• Comparison model 2: This model does not consider V2G services. The pricing strategy is

based on [141], where the charging price of EVs is determined by their required charging

energy.

All the EVs will be charged to the maximum allowable energy when departing from the charging

station. The maximum and minimum charging price are 0.35 $/kWh and 0.2 $/kWh [162],

respectively. The efficiency of the PV panel is set as 0.16, and the total surface area is 40 m2.

The wind turbine cut-in, rated, and cut-out wind speeds are set as 3.5 m/s, 9 m/s, and 22 m/s,

respectively. Note that in this case study, PV and wind turbine operating costs are neglected,

and thus λpv and λw are set to zero [163]–[165]. The capacity of EV and ESS is 30 kWh and 31.5

kWh, respectively. The simulation time T is set as 24 h. The uncertainties of the electricity

price, solar irradiation, and wind speed are considered in this chapter. Historical weather data

are imported from [166]. Ten scenarios have been implemented based on the scenario generation

and reduction method by using the scenred toolbox of Matlab [167]. The electricity prices are

shown in Fig. 3.7. The feed-in price λ1,t,s is considered lower than the electricity purchase price

λ2,t,s, which is set as λ1,t,s = 0.9λ2,t,s [163]. According to the V2G projects around the world

[168], the V2G reward coefficient λinc and maximum EV charging/discharging power will be

considered as 0.1 $/kWh and 10 kW, respectively.

The simulation is done in MATLAB R2021a using a laptop with Intel(R) Core(TM) i7-11850H
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Figure 3.5: EV’s departure/arrival time (Case

3).

Figure 3.6: EV’s initial energy (Case 3).

processor and 32.0 GB RAM. The computation times of the proposed model are 24.97 s, 18.53

s, and 18.19 s in cases 1–3, respectively. In comparison model 1, these times are 31.82 s, 34.96

s and 29.72 s, respectively. The computation times of comparison model 2 are 38.75 s, 29.22 s,

and 29.64 s in cases 1–3, respectively.

Figure 3.7: Electricity market price in 10 scenarios.

3.3.2 Results and Comparison

It should be noticed that, in the figures below, the charging and import energy are positive,

and the discharging and export energy are negative.
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In Case 1, a mixture of long-term and short-term parking EVs are considered. According to

Fig. 3.8, although the lowest electricity price is in the period between 00:00–05:00, there are

no EVs connected to the charger, and this makes all three models’ EV charging time mainly

distributed in the middle of the day when the electricity price is low. In the proposed model and

comparison model 1, V2G occurs when the electricity price increases to obtain more significant

benefits, i.e., around 04:00–06:00. The highest feed-in price is between 18:00–20:00. However,

almost all the EVs depart from the parking lot, so there is no V2G participation during this

period. At 21:00, the electricity price drops sharply. All three models do their final charging

at that point for the departing EVs.

Fig. 3.9 shows the feed-in energy to and purchased energy from the grid, which follows the

same pattern as in Fig. 3.8. They all buy electricity when the electricity price is low and make

profits by selling the surplus RES energy, the ESS discharging energy, and the V2G energy

when the electricity price is high. The charging and discharging strategy for ESS and EVs

is optimized according to the electricity market price and EV parking status so that the ESS

can sell the energy that is charged during the lower-price periods, or charge the EVs when the

electricity price is higher.

Figure 3.8: EVs charging/discharging energy

(Case 1).

Figure 3.9: Export/import energy (Case 1).

The profits of different models under different cases are shown in Table 3.1. It can be seen that

comparison model 2, in which V2G is not provided, has an operating deficit of $1.48 in Case

1. On the other hand, the proposed model and comparison model 1, both of which have V2G

services, have more significant profits. Because of the dynamic charging price for short-term
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parking EVs in the proposed model, the overall profit is $27.08, which is the most prominent

of the three models.

For Case 2, the charging/discharging energy of the EVs and export/import energy of the parking

lot are shown in Figs. 3.10 and 3.11, which have a similar trend to those in Case 1. Because

of the long parking time of all the EVs, the adopted pricing strategy of the proposed model

and comparison model 1 is to charge the EVs at the minimum charging price and provide V2G

services when necessary. Hence, they have the same profit of $21.06, as shown in Table 3.1.

Since V2G cannot be used to offset operating costs in comparison model 2, it needs to pay

more for the higher energy demand, incurring a larger operation deficit of $12.55.

Figure 3.10: EVs charging/discharging energy

(Case 2).

Figure 3.11: Export/import energy (Case 2).

Table 3.1: Profit in each case.

Proposed model Comparison model 1 Comparison model 2

Case 1 $27.08 $21.11 $-1.48

Case 2 $21.06 $21.06 $-12.55

Case 3 $36.90 $17.60 $22.06

Contrary to the previous case, in Case 3, where all EVs are short-term charging, the impact of

V2G on the profits is not as significant as that in the first two cases, as shown in Fig. 3.12. Due

to short-term charging, the remaining energy of the ESS and the surplus energy of the RES

can be used more for grid feed-in to obtain the maximum profit. In this case, the demand for
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grid power is also the smallest among all cases; see Fig. 3.13. As seen in Table 3.1, the profit

obtained by the proposed model is still the highest at $36.90 because of a small amount of V2G

feed-in energy. Compared with the previous cases, the proposed model has the highest profit

in Case 3. With only a small amount of V2G energy, more dynamic charging fees are paid by

the higher numbers of short-term charged EVs, which is the key factor making the model more

profitable. Comparison model 2 has a better profit of $22.06 than comparison model 1 as the

dynamic charging price mechanism gives it an advantage over comparison model 1 with a fixed

charging price for the short-term parking EVs. Even with the V2G service, the profit of model

1 is still the smallest at $17.60.

It can be seen from the comparison that dynamic charging prices for EVs without V2G and with

short-term parking can bring more significant profits to the parking lot. With EVs parking for

a relatively long time and participating in V2G, the profit of the parking lot is greater than that

of the traditional charging-only model, even if the parking lot needs to pay the V2G rewards to

EVs. Although a high fixed charging price would make the fixed charging fee model gain more

profits, it is impractical because the high charging price will result in fewer EV charging users.

Figure 3.12: EVs charging/discharging energy

(Case 3).

Figure 3.13: Export/import energy (Case 3).

3.4 Summary

In this chapter, the economic operation strategy of the EV parking lot was modelled. The

underlying parking lot is equipped with EV charging stations, PV, WT, and ESS. Electricity
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market price, solar radiation and wind speed are considered as uncertainty factors, and scenarios

are generated by MATLAB scenred toolbox. All EVs connected in the parking lot are classified

into V2G and non-V2G groups depending on the length of parking. Dynamic charging price

is provided for EVs that do not participate in V2G according to their charging demands. EVs

participating in V2G will receive the lowest charging price and incentive reward based on the

discharged energy through V2G. The profit of the parking lot considered in this chapter comes

from the charging fees for the EVs and the feed-in energy into the grid.

The proposed model was compared with the other two models. Comparison model 1 has V2G

services and fixed charging rates for EVs; comparison model 2 has no V2G services but applies

dynamic charging prices for all EVs. All models were tested under three cases: EVs with mixed

parking conditions, long-term parking, and short-term parking. The proposed model can obtain

the most significant profit in all three cases. After comparing the earnings of the three models,

it is found that dynamic charging prices can bring greater profits for the parking lot with EVs

that park for a short time and do not participate in V2G services. In the case of EVs with long

parking times and participating in V2G, even if the V2G incentive needs to be paid, the profit

is still greater than that obtained by charging without V2G.
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Chapter 4

Optimizing EV Parking Lot Profitability

through IGDT-based V2G Incentive

Decision-Making in Multiple Energy

Markets

4.1 Introduction

The penetration of EVs globally is increasing rapidly, driven by the need for mitigating climate

change and reducing greenhouse gas emissions. With this trend, EV parking lots and charging

stations are seen as potential assets to the power grid by providing V2G capabilities, utilizing

the energy stored in EV batteries.

Emerging markets that leverage EVs to support the power grid, especially in services maintain-

ing grid frequency stability, demonstrate considerable potential. The study in [169] examines

these support services, classifying them and highlighting the critical role of EV charging sta-

tions. They point out the capabilities of advanced chargers that can schedule and adjust

charging, which are vital for providing these grid services. Their research provides a clear

picture of how EV charging infrastructure can be used by grid operators. The study in [170]

proposes a new method for managing the charging and discharging of EVs that considers the

preferences of EV owners, allowing for energy sharing between EVs and enabling EVs to support
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the grid. This method not only aims to reduce charging costs for EV owners but also helps

with efficient operation of the power grid. The focus on the EV owner’s needs and the practical

application of the method are significant, as they show how EVs can realistically be part of the

energy market. These studies extend previous research in [171] and [172], which looked into

optimizing home energy resources, like solar panels and batteries, and the strategic sharing of

battery storage in energy and grid support markets. The first study uses a method to ensure

that the energy resources meet the grid’s rules, while the second presents a sharing strategy

that aims to increase profits for battery companies and reduce costs for customers. Further-

more, the research in [173] suggests a strategy for a power plant that combines solar energy

and battery storage, including a way to split profits that takes into account the lifespan of the

batteries. This strategy is designed to increase profits while also keeping the storage systems

in good condition for as long as possible. However, while these studies collectively underscore

the transformative potential of EVs and battery storage in FCAS markets, they do not provide

a comprehensive model that encompasses the full scope of V2G interactions, particularly the

incentives for EV owners and their willingness to participate in V2G or discharging activities.

The integration of EVs into the grid through V2G services is a critical area of research, with

studies exploring various dimensions of this integration. While V2G technology holds significant

potential in FCAS markets, it has yet to be widely implemented thus far. One reason is the

lack of knowledge about V2G technology [174], but an even more critical barrier is the concern

that V2G may accelerate the degradation of EV batteries. Hence, it is necessary to study EV

owners’ willingness to participate in V2G. The research in [157] delves into the optimization

of energy resources for prosumers, including EVs, highlighting the economic benefits of market

participation, yet without a specific focus on the V2G participation willingness of EV owners.

The study in [175] proposes cost-minimizing V2G models that consider EV driving patterns

and real-time pricing, indirectly touching upon user behavior but not explicitly addressing the

willingness to participate in V2G services. The study [176] quantifies the impact of V2G on

battery degradation, providing valuable insights into the technical feasibility of V2G services,

while Ref. [177] discusses optimized bidirectional V2G operation strategies, suggesting potential

cost reductions for EV ownership through grid service participation. The research in [178]

also presents a strategy for optimal EV charging/discharging within a DC Microgrid, focusing

on technical efficiency and battery preservation in V2G services. Collectively, these studies

contribute to the body of knowledge on V2G integration but also highlight a significant research
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gap: the absence of a detailed examination of EV owners’ willingness to participate in V2G

and discharging activities, a factor critical to the practical implementation of V2G services.

In this chapter, we will investigate the willingness of EV owners to participate in V2G services.

We will approach this issue from the perspective of EV parking lots, where V2G incentives

are employed to encourage discharging, as discussed in our previous study [179]. Balancing

incentives is critical; while lower incentives may reduce costs for EV parking lots, they could

also discourage V2G participation. On the other hand, higher incentives may encourage more

EVs to engage in V2G, but at the expense of the parking lot’s profit. Assuming that V2G

willingness can be represented by the energy that EV owners are willing to discharge, zero

incentives would result in no desire. The challenge lies in finding the optimal V2G incentives

that not only benefit EV owners by offsetting their charging fees or generating profit but

also motivate V2G participation and ensure parking lot profitability. Existing studies, such

as [180], explore the impact of fluctuating charging costs and discharging incentives on EVs

participating in V2G, while the study in [181] introduces an EV economic dispatch optimization

model designed to reduce regional V2G system operating costs. Although both studies propose

strategies for optimizing charging and discharging processes and scheduling approaches, neither

specifically addresses the challenge of determining the optimal V2G incentive.

To bridge this gap, we propose an IGDT-based method, which has been extensively discussed in

[182]–[186]. The study in [182] has been instrumental in this progress, offering a sophisticated

energy procurement model that allows large consumers to navigate the volatile landscape of

energy prices with greater confidence. Their model leverages IGDT to provide a robust frame-

work that accounts for the unpredictable nature of energy markets, enabling consumers to

make informed decisions despite price uncertainties. Building on the concept of robust energy

management, an innovative two-stage model that harnesses the potential of EVs as a collective

energy storage mechanism within intelligent parking lots is introduced in [183]. This model

not only optimizes the operational efficiency of energy communities but also underscores the

strategic role that EVs play in balancing supply and demand in energy systems. The research

in [184] expands the scope of robust scheduling to encompass renewable energy hubs, address-

ing the challenge of integrating diverse energy demands and storage options. Their model is

particularly noteworthy for its comprehensive approach to managing uncertainties in both en-

ergy demands and market prices, thereby ensuring the resilience of energy hubs in a fluctuating
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market environment. In the context of virtual power plants, a bilevel decision-making frame-

work that is designed to optimize participation in both day-ahead and balancing markets is

proposed in [185]. This framework is distinguished by its incorporation of demand response

programs and financial transmission rights, with IGDT applied to manage the uncertainties

associated with renewable energy production. Additionally, the study in [186] contributes to

the literature with an optimal energy management strategy for multi-energy microgrids. Their

strategy is particularly relevant for microgrids integrated with hydrogen refuelling stations and

EV parking lots, employing an IGDT-based approach to manage the uncertainties in the wind

and PV power generation effectively.

Despite these significant contributions, the literature reveals a gap in the simultaneous appli-

cation of robust and opportunistic decision-making within these models. We propose a refined

IGDT-based method, one that not only provides robustness in the face of uncertainties but also

harnesses the potential opportunities presented by the dynamic energy markets. This method

will be explored in depth in Section 4.2.5, while additional uncertainties such as solar irradiance,

wind speed, and EV user behaviors will be examined in Sections 4.2.5 and 4.2.1.

In general, the main features and contributions of this chapter are as follows:

• We develop a sophisticated EV parking lot model that synergistically incorporates RESs

and V2G functionalities. This model is adept at managing the uncertainties associated

with smart grid operations, such as the volatility of FCAS and spot market prices, vari-

ability in solar irradiance and wind speed, and the unpredictable patterns of EV user

behavior.

• In response to the limited availability of charging infrastructure, a straightforward EV

allocation method is proposed. This method effectively assigns EVs to available charging

stations, ensuring a simplified yet efficient use of the parking lot’s charging capabilities.

• A modified IGDT-based method is introduced to determine V2G incentives optimally.

This novel method considers the willingness of EV owners to participate in V2G services,

thereby enhancing decision-making robustness under uncertain conditions and increasing

the appeal for EV owners to contribute to grid support activities.
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4.2 Problem Formulation

The parking lot equipped with bi-directional chargers, PV panels, WTs, and an ESS is consid-

ered. It is assumed that all EVs in the parking lot intend to charge, and all EVs connected to

the chargers want to charge to the maximum possible SoC. An allocation method is considered

to allocate multiple EVs into the limited available V2G chargers. As our previous study [179]

proposed, depending on each EV’s parking period and initial SoC, the management system in

the charging station will divide them into V2G and non-V2G groups, with different charging

modes and pricing schemes applied. It is worth noting that a significant challenge for the broad

application of V2G services is EV battery degradation. Therefore, considering the V2G par-

ticipation willingness with incentive price sensitivity, an IGDT-based optimal decision-making

method will determine the V2G incentives, motivating EV owners to discharge more power

through V2G willingly. Regarding the charging price, the EVs not joining V2G will have a dy-

namic price depending on their charging demand, and the V2G-participating EVs could incur

the minimum charging price and receive the monetary reward. The focus of this chapter does

not include parking fees for EVs. Consequently, EV parking costs have not been taken into

account. The subsequent sections provide a detailed description of the model.

4.2.1 System Modelling

The system model used in this study aligns with the one we previously proposed, as outlined

in [179]. Thus, we’ll briefly summarize its main components and mechanisms here. Please refer

to our previous study for all related definitions.

RESs modelling

This study also takes into account WTs and PV systems, as indicated in (4.1) and (4.2),

respectively.

PW
t =



0 vt ≤ Vci

Pr(A+B ∗ vt + C ∗ v2t ) Vci < vt ≤ Vr

Pr Vr < vt ≤ Vco

0 vt ≥ Vco

(4.1)
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P PV
t = rt ∗ spv ∗ epv (4.2)

EV modelling

In this study, we have enhanced our model to handle increasingly complex scenarios. Consid-

ering the behavior of EVs, their arrival and departure times and initial SoC will be randomly

generated by the widely used Monte Carlo method [187][188]. Based on practical cases, EV

parking lots with parking spaces and limited charging spaces are considered here. Assume that

all EVs entering the parking lot already have the willingness to park within their parking period

(from arrival to departure time). When an EV arrives at the parking lot, it will start to find

an available charger and get connected. If all the chargers are occupied, this EV will park in

a parking space to wait in the parking lot until any chargers become available or it is time

to depart. The logic flow chart is shown in Fig. 4.1. Based on the practical situation in the

parking lot, the EV queuing problem is unrealistic in our case and is not considered here.

EV arrival

Find available chargers

Check if there are available chargers

Connect to charger

Charge/discharge in progress

Check if it’s time for departure

Disconnect to charger

EV departure

Check if it’s time for departure

Waiting in the parking lot

YES

YES NO

NO

NO

YES

Figure 4.1: EV allocating.

After the EV allocation process, the EV charging and discharging models are defined as follows.
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Eqs. (4.3)-(4.4) illustrate the variation in EV energy and ensure that EVs will have their

required energy upon departure. Before arrival and after departure, the energy available from

the EV is zero, reflecting its absence from the parking lot. Upon arrival, the EV’s energy is

initialized to its current state. During the parking period, the battery energy evolves based on

the previous time step and the charging or discharging operations performed. To ensure the EV

departs with the required energy level, it is charged to a maximum allowed level when departure,

typically below full capacity to preserve battery health and avoid overcharging. Constraints

(4.5)-(4.6) are introduced to ensure that charging and discharging do not occur simultaneously.

Throughout the charging process, the energy state of each EV is kept within a reasonable range

to protect the batteries from overcharging or over-discharging, hence reducing potential battery

degradation, as shown in (4.7). Eq. (4.8) stipulates that both charging and discharging power

will be zero when EVs disconnect.

EEV
i,t =



0, t < ta,i

E ini
i , t = ta,i

EEV
i,t−1 +

(
ηch ∗ PEV+

i,t − 1

ηdis
∗ PEV−

i,t

)
△t, ta,i < t ≤ td,i

EEV
i,max, t = td,i

0 t > td,i

(4.3)

EEV
i,max = Eini

i +

td,i∑
t=ta,i+1

(
ηEV
ch ∗ PEV+

i,t − 1

ηEV
dis

∗ PEV−
i,t

)
△t (4.4)

For ta,i < t ≤ td,i,

0 ≤ PEV+
i,t ≤ µi,t ∗ PEV+

i,max (4.5)

0 ≤ PEV−
i,t ≤ (1− µi,t) ∗ PEV−

i,max (4.6)

EEV
i,min ≤ EEV

i,t ≤ EEV
i,max (4.7)
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For t otherwise

PEV+
i,t = PEV−

i,t = 0 (4.8)

zEV =

 N∑
i=1

td,i∑
t=ta,i

(1− φi)(P
EV+
i,t ∗ λc

i)△t


+

N∑
i=1

φi

[(
EEV

i,max − Eini
i

)
∗ λc,min −

T∑
t=1

(PEV−
i,t ∗ λinc)△t

] (4.9)

The modeling of the conditions that determine whether an EV can participate in V2G services

follows the same approach as outlined in Chapter 3, as seen in Eqs. (3.9)-(3.13). Eq. (4.9)

represents the total profit from these two groups. The profit for non-V2G EVs is determined by

their charging energy and the dynamic charging price. On the other hand, for V2G participant

EVs, the profit includes the minimum charging price required to charge them to their maximum

allowed energy, while the cost of the V2G incentive is also accounted for. λinc in (4.9) is the

optimal V2G incentive provided to EVs, and the method to determine it will be explored in

Section 4.2.5.

ESS modelling

Eqs. (4.10)-(4.14) describe the ESS model in the EV parking lot system. Eq. (4.10) illustrates

the energy dynamics of the ESS. Similar to the EV modelling, the ESS energy evolves based

on the energy level from the previous time step and the charging or discharging operations

performed. The study also accounts for battery degradation costs, which calculated based on

the total discharged energy and the degradation cost per kWh, as shown in (4.15), where the

unit battery degradation cost B is defined in (3.20).

EESS
t = EESS

t−1 +

(
ηESS
ch ∗ PESS+

t − 1

ηESS
dis

∗ PESS−
t

)
△t (4.10)

EESS
T = EESS

0 (4.11)
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EESS
min ≤ EESS

t ≤ EESS
max (4.12)

0 ≤ PESS+
t ≤ at ∗ PESS+

max (4.13)

0 ≤ PESS−
t ≤ (1− at) ∗ PESS−

max (4.14)

CESS,de =
T∑
t=1

PESS−
t △t ∗B (4.15)

4.2.2 Market Constraints

The FCAS market comprises two regulation markets and six contingency markets. At this

stage, aside from the spot market, given the extremely low likelihood of contingency events

occurring, our focus is limited to the six contingency markets and their reserve participation

situation. According to their response time, these markets can be categorized as 6-second raise

and lower, 60-second raise and lower, and 5-minute raise and lower markets [171]. Eq. (4.16)

represents the profit obtained from the FCAS market. It comprises earnings from both the raise

and lower markets. CFCAS
t denotes the transactional cost for FCAS market participation, which

is paid to EV owners for reserving the capacity of their EVs. Distinctly separating from EV

incentives and the degradation of ESS, it underscores the financial implications of continuous

market engagement. P r
t,j and P l

t,j represent the power from different raise and lower markets,

respectively. Nr and Nl are the number of raise and lower markets, which are both equal to 3

in this study. The binary variable τ r
t,j and τ l

t,j are randomly generated to represent the bidding

success of each contingency market. The bidding strategy is not considered.

Similar to the parts of the ESS and EVs, the parking lot cannot simultaneously import and

export power. Additionally, energy trading cannot occur simultaneously in both the FCAS raise

and lower markets. Therefore, the binary variable bt and ct is utilized in (4.17)-(4.20). Eqs.

(4.21)-(4.24) define auxiliary variables used for the upper bound of the raise and lower markets.

The constraints (4.25) - (4.26) define the upper bounds for reserve power in the FCAS market.

To convert (4.21)-(4.24) to equivalent mixed integer linear constraints, the big-M method is
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employed, as illustrated in (4.27)-(4.42)[189]. The binary variables devr,i, devl,i, desr and desl are

employed within this method. It should be noted that only V2G-participating EVs can join

the FCAS markets. As detailed in the EV modeling section, the primary focus for short-term

parking EVs is to charge as much as possible.

z FCAS =
T∑
t=1

[
Nr∑
j=1

(
P r
t,j ∗ τ r

t,j ∗ λ r
t,j

)
+

Nl∑
k=1

(
P l
t,j ∗ τ l

t,j ∗ λ l
t,j

)
− CFCAS

t

]
(4.16)

0 ≤ P Feed−in
t ≤ bt ∗ P −

max (4.17)

0 ≤ PGrid
t ≤ (1− bt) ∗ P +

max (4.18)

0 ≤
Nr∑
j=1

P r
t,j ∗ τ r

t,j ≤ ct ∗ P R
max (4.19)

0 ≤
Nl∑
k=1

P l
t,k ∗ τ l

t,k ≤ (1− ct) ∗ P L
max (4.20)

P r,ev
i,t = min

((
EEV

i,t − EEV
i,min

)
· φi

△t
, PEV−

i,max · φi

)
(4.21)

P l,ev
i,t = min

((
EEV

i,max − EEV
i,t

)
· φi

△t
, PEV+

i,max · φi

)
(4.22)

P r,ess
t = min

(
EESS

t − EESS
min

△t
, PESS−

max

)
(4.23)

P l,ess
t = min

(
EESS

max − EESS
t

△t
, PESS+

max

)
(4.24)

Nr∑
j=1

P r,res
t,j ≤

N∑
i=1

P r,ev
i,t + P r,ess

t (4.25)
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Nl∑
k=1

P l,res
t,k ≤

N∑
i=1

P l,ev
i,t + P l,ess

t (4.26)

P r,ev
i,t ≤

(
EEV

i,t − EEV
i,min

)
· φi

△t
(4.27)

P r,ev
i,t ≤ PEV−

i,max · φi (4.28)

(
EEV

i,t − EEV
i,min

)
· φi

△t
−M · devr,i ≤ P r,ev

i,t (4.29)

PEV−
i,max · φi −M · (1− devr,i) ≤ P r,ev

i,t (4.30)

P r,ess
t ≤ EESS

t − EESS
min

△t
(4.31)

P r,ess
t ≤ PESS−

max (4.32)

EESS
t − EESS

min

△t
−M · desr ≤ P r,ess

t (4.33)

PESS−
max −M · (1− desr) ≤ P r,ess

t (4.34)

P l,ev
i,t ≤

(
EEV

i,max − EEV
i,t

)
· φi

△t
(4.35)

P l,ev
i,t ≤ PEV+

i,max · φi (4.36)

(
EEV

i,max − EEV
i,t

)
· φi

△t
−M · devl,i ≤ P l,ev

i,t (4.37)
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PEV+
i,max · φi −M · (1− devl,i) ≤ P l,ev

i,t (4.38)

P l,ess
t ≤ EESS

max − EESS
t

△t
(4.39)

P l,ess
t ≤ PESS+

max (4.40)

EESS
max − EESS

t

△t
−M · desl ≤ P l,ess

t (4.41)

PESS+
max −M · (1− desl) ≤ P l,ess

t (4.42)

where P +
max and P −

max are the maximum import and export power, respectively. P r
t,j and P l

t,j

represent different FCAS raise and lower markets, respectively, while P r,res
t,j and P l,res

t,k signify

the power reserved for these markets. P r,ev
i,t and P l,ev

i,t indicate the reserve power of EVs for the

raise and lower market at time step t, respectively. In a similar vein, P r,ess
t and P l,ess

t stand for

the ESS reserve power for the raise and lower market at time step t, respectively.

4.2.3 Balance Equation

The system power balance is presented in (4.43). The power drawn from the PV system, P PV
t ,

the WT, PW
t , the grid, PGrid

t , the ESS discharging, PESS−
t , and the EV discharging

∑N
i=1 P

EV−
i,t ,

is distributed to the EV charging,
∑N

i=1 P
EV+
i,t , the ESS charging, PESS+

t , and the grid feed-in

power P Feed−in
t .

N∑
i=1

PEV+
i,t + PESS+

t + P Feed−in
t

= P PV
t + PW

t + PGrid
t + PESS−

t +
N∑
i=1

PEV−
i,t

(4.43)
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4.2.4 Objective Function

The objective function delineated below seeks to maximize the parking lot’s profit by strategi-

cally managing the charging and discharging of EVs and ESS to purchase electricity in low-price

periods and sell it during high-price periods. It comprises several components: feed-in revenue,

EV charging revenue, FCAS market revenue, V2G payment, cost of grid electricity purchase,

PV and WT operating cost, and the cost associated with ESS degradation.

Maximize Z =
T∑
t=1

(P Feed−in
t ∗ λ1,t)△t−

T∑
t=1

(PGrid
t ∗ λ2,t)△t+ zEV + zFCAS

−
T∑
t=1

(
P PV
t ∗ λpv + PW

t ∗ λw

)
△t− CESS,de

(4.44)

4.2.5 Uncertainty

In this section, we delve deeper into the uncertainty factors associated with the proposed model,

specifically focusing on market price prediction and the determination of V2G incentives. These

elements are forecasted using LSTM and addressed using the IGDT-based method, respectively.

It’s worth noting that, although EV behavior also constitutes an uncertainty factor, it has been

thoroughly discussed in the preceding section on the EV model.

Long short-term memory prediction

LSTM networks, a type of recurrent neural network (RNN), excel at predicting variables char-

acterized by high degrees of randomness and uncertainty [190]. One of their main advantages is

their capacity to capture long-range dependencies and complex patterns in sequential data due

to their unique memory cell architecture [191], [192]. This architecture effectively stores and

manages information from past observations, enabling the model to learn intricate temporal

relationships and enhance forecasting accuracy. LSTM has proven effectiveness in time series

forecasting. Using LSTM-based methods for renewable energy and market price prediction has

yielded promising results in numerous studies [191], [193]–[195]. Given the inherent randomness

and uncertainty, LSTM is employed in this chapter to predict the uncertainty factors of solar

irradiance, wind speed, and market prices. In this chapter, explicit consideration of weather

conditions was not included in the predictive modelling approach. However, the LSTM model

was trained on a dataset spanning an extensive time period, inherently encompassing variations
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in weather conditions. These variations are embedded within the historical data, captured by

the trained model, and subsequently reflected in the prediction results. While this approach

leverages the inherent variability in the training data, incorporating specific weather data as

additional input features could further enhance the accuracy of the model’s predictions. Al-

though the method may not fully account for certain sudden market shifts, these patterns align

well with the historical data and are consistent with their trends, as illustrated in Fig. 4.2.

While there are observable differences between the predicted and practical market prices in

the spot and raise 5-minute markets, these discrepancies fall within an acceptable range. All

market data are expressed in energy and power units of MWh and MW. When scaled down to

operational levels (kWh and kW), the prediction gaps become negligible, making them suitable

for practical calculations. Furthermore, the predicted trends align closely with practical market

data, which is crucial as optimization models rely on trends rather than absolute values to

guide decision-making effectively. The optimization framework is also designed to be resilient,

consistently identifying profitable opportunities for V2G participation despite variability in

market price predictions. Thus, these differences do not undermine the validity of the V2G

optimization model, as the alignment of trends ensures reliable and profitable operation under

real-world conditions.

Information gap decision theory

One of the major challenges for the widespread adoption of V2G technology is the concern

among EV owners that it could accelerate their EV battery degradation. To address this issue,

incentives can be offered to EV owners who participate in V2G, along with upper and lower

bounds to prevent overcharging or over-discharging of EVs at parking lots and charging stations.

An optimal V2G incentive can indirectly limit the discharge of the EV during the optimization

process, reducing EV battery degradation in some cases. However, excessive incentives can

negatively impact the parking lot’s profit. To determine the optimal value of the incentive,

IGDT [196] is considered here. Before applying IGDT, we first need to explore the willingness

that is triggered by the price [197]. It is assumed that no one will participate in V2G without

any rewards. The relationship between incentives (in dollars) and V2G willingness (in kWh)

is shown in (4.45), where ωv2g
γ is the willingness corresponding to the current incentive γ, ζ

indicates the price sensitivity of EV owners, and CEV represents the capacity of the EVs.
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(a) Wind speed. (b) Solar irradiance. (c) Spot market.

(d) Raise 6-second market. (e) Raise 60-second market. (f) Raise 5-minute market.

(g) Lower 6-second market. (h) Lower 60-second market. (i) Lower 5-minute market.

Figure 4.2: LSTM forecast result.
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The IGDT method has two modes - the robustness mode (4.46) and the opportunity mode

(4.47). The robustness mode represents the highest uncertainty level to ensure that the profit

is greater than the critical profit fr. In contrast, the opportunity mode represents the lowest

uncertainty level to gain a windfall profit as large as fo, which should be greater than the critical

profit in any case. Eq. (4.48) shows the envelope bound [185][186], representing the uncertainty

values of V2G incentives γ within their expected value γ̂, where α is the uncertainty radius of

V2G incentives.

The decision-making policy is shown as (4.49). A baseline model F base serves as a reference

point against the current model’s performance F perf
γ . F base is calculated as the minimum profit

without any uncertainty and is usually less than or equal to fr. F perf
γ is calculated by (4.50),

where ewγ is the weighting factor for the current γ in balancing the robustness and opportunity

decision-making. As shown in (4.51) and (4.52), the weighting factor will be increased by vp

when the gap Gγ between α̂γ(Z, fr) and β̂γ(Z, fo) is greater than d, and decrease by vp when

the gap is less than or equal to d. vp and d are constants. The γ of the best performance which

optimizes (4.49) will be the optimal incentive λinc used in (4.9).

ωv2g
γ = CEV (1− exp (−ζ ∗ γ)) (4.45)

α̂γ(Z, fr) = max
Z,γ

{
α : min

γ∈U
F (Z, γ) ≥ fr

}
(4.46)

β̂γ(Z, fo) = min
Z,γ

{
α : max

γ∈U
F (Z, γ) ≥ fo

}
(4.47)

U(α, γ̂) =

{
γ :

∣∣∣∣γ − γ̂

γ̂

∣∣∣∣ ≤ α

}
(4.48)

Max C(γ, ωv2g
γ ) =

F perf
γ − F base

F base
(4.49)

F perf
γ =

(
1− ewγ

)
∗ α̂γ(Z, fr) + ewγ ∗ β̂γ(Z, fo) (4.50)
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Gγ =
(
1− ewγ

)
∗ α̂γ(Z, fr)− ewγ ∗ β̂γ(Z, fo) (4.51)

ewγ =


ewγ + vp , Gγ > d

ewγ − vp , Gγ ≤ d

(4.52)

4.3 Case Study

4.3.1 Parameter and Case Settings

This section will compare two cases with scenarios of 10 EVs, 15 EVs, and 20 EVs, respectively,

to explore the parking lot profit variation. The cases are defined as follows:

• Case 1: EV parking lot participates in both the spot market and 6 FCAS contingency

market;

• Case 2: EV parking lot only joins the spot market.

These two cases have the same parameter setting and are controlled by the same EMS. The

simulation time step is set to 48 with △t = 0.5h, and the total number of chargers equipped

is 10. Additional settings for the EV parking lot can be found in [179]. Solar irradiance and

wind speed data are imported from [198], and market data are imported from [199]. The LSTM

is based on the MATLAB deep learning toolbox [200]. It should be noted that the randomly

generated τ r
t,j and τ l

t,j are the same in all scenarios. Because the bidding strategy is not within

the scope of this chapter, the results of the FCAS market bidding are randomly generated. It is

assumed that energy bidding commitments will always be fulfilled. The bidding strategy may

be further explored in our future research.

In order to further verify the selection of V2G incentives, the range of V2G incentives is set

from 0 to 0.1, with an interval of 0.01. Based on the comparison of the above cases, in addition

to the optimal incentives cases, the comparison will also be made with the V2G incentives at

a minimum value of 0 and maximum value of 0.1, respectively.
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4.3.2 Results and Analysis

In this section, we will examine the two mentioned cases under varying numbers of EVs. As

mentioned before, lower incentives may reduce costs for EV parking lots but could also deter

V2G participation. Conversely, higher incentives might encourage more EVs to participate in

V2G, but this may negatively impact the parking lot’s profit. Finding the optimal balance

between these two factors is significant. In the following analysis, the IGDT method will

be employed to determine the optimal incentives within the range of potential incentives for

both cases. The minimum and maximum incentive values will be established and compared

to the optimal V2G incentives to evaluate the impact on profit. This comparison will provide

valuable insights into the variations in profit under different incentive conditions. Consequently,

we present the following results.

Optimal V2G incentives

Figs. 4.3 - 4.11 depicts the behavior under optimal incentives. In case 2, EVs mainly discharge

between time steps 15 and 30 due to a rising market price, charging at lower spot market

price points to maximize profit. In contrast, case 1 exhibits an opposite trend during the same

time steps. Anticipating a rise in FCAS contingency market prices, the parking lot initiates

EV charging to reserve capacity for the FCAS market and delays discharging to a later period

when spot market prices are higher. This strategy increases participation and profitability in

case 1. Although the charging and discharging activities exhibit similar trends in both cases

as the number of EVs increases, the ESS in case 1 shows more frequent energy fluctuations.

This ESS also participates in the FCAS market through periodic charging and discharging to

secure additional profits. On the other hand, in case 2, which only engages in the spot market,

frequent charging and discharging fail to offset the associated costs, thereby diminishing profits.

The optimal V2G incentives derived from the proposed IGDT method are detailed in TABLE

4.1. Notably, monetary rewards for V2G-participating EVs in case 1 are higher compared to

those in case 2. This discrepancy stems from the parking lot’s participation in the FCAS market,

which allows for more substantial incentives to be offered to EV owners, thereby boosting its

own profits as well. Because of the revenue from the raise markets and the additional income

from reserved capacity in lower markets, the entire parking lot system engages in more frequent

energy exchanges in case 1, thereby justifying higher V2G incentives to encourage participation.
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Profits for each case, featuring varying numbers of EVs, are summarized in TABLE 4.2. While

the profits in case 1 significantly exceed those in case 2, the growth rate tends to plateau as the

number of EVs increases. This flattening growth is attributed to the limited charging space,

which restricts the number of EVs participating in V2G activities. As the primary goal of the

EV parking lot is to fully charge all EVs to their maximum SoC before departure, the amount

of releasable energy does not proportionally increase with more EVs connecting to the system.

Table 4.1: The optimal incentives in each case.

Scenario of 10 EVs Scenario of 15 EVs Scenario of 20 EVs

Case 1 $0.06 $0.05 $0.05

Case 2 $0.04 $0.03 $0.02

Figure 4.3: EVs charging/discharging energy with optimal incentives (10 EVs).
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Figure 4.4: Export/import energy with optimal incentives(10 EVs).

Figure 4.5: ESS charging/discharging energy with optimal incentives (10 EVs).
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Figure 4.6: EVs charging/discharging energy with optimal incentives (15 EVs).

Figure 4.7: Export/import energy with optimal incentives (15 EVs).
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Figure 4.8: ESS charging/discharging energy with optimal incentives (15 EVs).

Figure 4.9: EVs charging/discharging energy with optimal incentives (20 EVs).
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Figure 4.10: Export/import energy with optimal incentives (20 EVs).

Figure 4.11: ESS charging/discharging energy with optimal incentives (20 EVs).
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Without V2G incentives

When the V2G incentives are set to 0, as illustrated in Figs. 4.12 - 4.20, the willingness to

participate in V2G drops to 0 for all cases, attributed to concerns about battery degradation

resulting from EV discharge. In case 1, the trend remains similar to that of the optimal incentive

scenario. To maximize profits, the ESS energy fluctuates frequently, adjusting its capacity to

reserve for the FCAS contingency markets. Conversely, in case 2, charging still occurs at low

spot market prices. The ESS is charged when prices are low and discharged at high electricity

prices to minimize charging costs or generate profits.

Table 4.2 reveals that, even without EV participation in V2G, profits in case 1 are still substan-

tially higher than in case 2. However, when compared to the scenario with optimal incentives,

the difference in profits slightly decreases as the number of EVs increases.

Figure 4.12: EVs charging/discharging energy without incentives (10 EVs).
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Figure 4.13: Export/import energy without incentives (10 EVs).

Figure 4.14: ESS charging/discharging energy without incentives (10 EVs).
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Figure 4.15: EVs charging/discharging energy without incentives (15 EVs).

Figure 4.16: Export/import energy without incentives (15 EVs).
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Figure 4.17: ESS charging/discharging energy without incentives (15 EVs).

Figure 4.18: EVs charging/discharging energy without incentives (20 EVs).
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Figure 4.19: Export/import energy without incentives (20 EVs).

Figure 4.20: ESS charging/discharging energy without incentives (20 EVs).
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With the maximal V2G incentives

When the V2G incentive is set to $0.1, as illustrated in Figs. 4.21 - 4.29, the elevated incentive

causes the EMS to entirely suspend V2G operations in case 2 as a cost-saving measure, despite

the increased willingness from EVs to engage in V2G. The charging and discharging patterns

of the ESS are consistent with the zero-incentive scenario. In contrast, in case 1, the frequency

of energy import and export activities increases, resembling the trends observed in the optimal

incentive scenario. Even with these higher incentives, V2G in case 1 continues to operate,

capitalizing on the higher returns from multiple markets to maximize profits. Profits in case

2 remain consistent with those in previous incentive scenarios, but the difference in profits is

slightly higher compared to the zero-incentive scenarios.

Figure 4.21: EVs charging/discharging energy with maximal incentives (10 EVs).
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Figure 4.22: Export/import energy with maximal incentives (10 EVs).

Figure 4.23: ESS charging/discharging energy with maximal incentives (10 EVs).
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Figure 4.24: EVs charging/discharging energy with maximal incentives (15 EVs).

Figure 4.25: Export/import energy with maximal incentives (15 EVs).
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Figure 4.26: ESS charging/discharging energy with maximal incentives (15 EVs).

Figure 4.27: EVs charging/discharging energy with maximal incentives (20 EVs).
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Figure 4.28: Export/import energy with maximal incentives (20 EVs).

Figure 4.29: ESS charging/discharging energy with maximal incentives (20 EVs).
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In general, irrespective of the V2G incentive setting, the profit in case 1 consistently exceeds

that in case 2 under randomly generated bidding results. However, excessively high monetary

rewards can reduce or even stop V2G operations in the parking lot to minimize costs. On the

flip side, insufficient incentives may deter EV owners from participating in V2G, or even not

participating altogether. These challenges are mitigated by identifying an optimal incentive

value through the proposed IGDT-based method.

Table 4.2: Profit in each case.

Optimal V2G incentives

Scenario of 10 EVs Scenario of 15 EVs Scenario of 20 EVs

Case 1 $ 65.56 $ 88.77 $ 102.33

Case 2 $ 29.08 $ 45.19 $ 53.39

Difference 125.45% 96.44% 91.67%

$0 V2G incentives

Scenario of 10 EVs Scenario of 15 EVs Scenario of 20 EVs

Case 1 $ 61.31 $ 84.90 $ 97.14

Case 2 $ 28.95 $ 44.61 $ 52.44

Difference 111.78% 90.32% 85.24%

$0.1 V2G incentives

Scenario of 10 EVs Scenario of 15 EVs Scenario of 20 EVs

Case 1 $ 62.33 $ 85.90 $ 98.23

Case 2 $ 28.95 $ 44.61 $ 52.44

Difference 115.3% 92.56% 87.32%

4.4 Summary

An EV parking lot model, including RES, was proposed in this chapter. By considering the

uncertainties, the FCAS and spot market prices, solar irradiance, and wind speed were fore-

casted using LSTM based on the MATLAB deep learning toolbox. In addition, the Monte

Carlo method was used to generate EV behaviors, including arrival/departure times and initial

SoC. EVs are allocated to a limited number of bi-directional chargers in the EV parking lot

using the proposed allocation method. It is considered that the parking lot can participate in
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both the FCAS and spot markets through the V2G function. In order to increase the profit

for the parking lot and reduce the cost of EV owners, an IGDT-based method was proposed to

decide on V2G incentives.

Two cases were compared with different EV numbers, under $0, $0.1, and IGDT-decided optimal

value of incentives. Case 1 considers both the FCAS and spot markets, while Case 2 only

engages in the spot market. Both cases achieved the highest profit under the optimal V2G

incentives. It was found that incentives of $0 and $0.1 would cause V2G to cease in Case 2.

In Case 1, even with high incentives paid to EVs, the V2G still operates and can gain profit in

the FCAS market. Case 1 has the highest profit in all situations.
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Chapter 5

Analyzing Pricing Strategy in Virtual

Power Plants and Electric Vehicle Parking

Lots: A Bi-Level Hybrid DRL-MILP

Framework

5.1 Introduction

As the integration of EVs into the power grid continues to expand, VPPs have become increas-

ingly crucial. VPPs aggregate DERs along with controllable loads, such as EVs, to enhance

grid stability and efficiency. VPPs integrate DERs like solar panels, WTs, and EV batteries to

function as a single power plant. EVs and EV parking lots (EVPLs) act as energy storage units,

absorbing excess energy during low demand and supplying it during peak times. This not only

enhances grid stability and renewable energy integration but also optimizes energy use, reduces

operational costs, and facilitates higher penetration of renewable energy, thereby contributing

to environmental sustainability [201]–[206]. The adoption of VPPs is driven by the need for

efficient, reliable, and environmentally friendly energy solutions, supported by advancements

in smart grid technologies [207]–[209].

Various strategies and models have been proposed in recent studies to optimize the operation

of VPPs. The study in [210] proposes a DRL-based Stackelberg game model to optimize the

82



scheduling of EVs in VPP. They employ a soft actor-critic (SAC) algorithm for the VPP agent

and a twin delayed deep deterministic policy gradient algorithm for the EV charging station

agent. This method effectively handles stochastic and non-convex challenges, thereby improv-

ing operational efficiency. However, market-induced price adjustments could affect the learning

stability of the agents. In [211], a Stackelberg game model is also presented to manage the

orderly charging of EVs by setting a reasonable power sales price. They transform the game

model into a robust MILP problem to handle uncertainties in wind power output, allowing

the VPP operator’s bidding scheme to adjust flexibly, enhancing economic reliability and ro-

bustness. A two-level optimization model is proposed in [212], employing a master-slave game

to optimize energy transactions between distribution network operators and VPPs. They use

dynamic pricing to encourage energy sharing, which improves both operator income and VPP

operational efficiency. In [213], a self-scheduling model is presented that integrates EV storage

capacity and wind power production, using a roulette wheel mechanism to generate scenarios

that capture uncertainties in market prices, wind production, and EV behaviors. The study

in [214] introduces a four-level robust MILP model to optimize VPP participation in multiple

markets. It addresses multi-stage uncertainties by integrating robust optimization approaches

to hedge against the worst-case scenarios. A DRL-based model for economic dispatch in VPPs

is presented in [215], optimizing the dispatch of DERs in real-time to improve efficiency and

cost-effectiveness. This model adapts to dynamic changes but requires real-time data. The

study in [216] introduces a reinforcement learning (RL) approach to optimize VPP operations,

focusing on maximizing the economic benefits of VPPs by learning optimal strategies for energy

dispatch and trading. The model is able to learn and adapt to market conditions over time,

thereby increasing profitability. In [217], a bi-level optimization model is proposed to design

tariff schemes that balance the economic benefits of utility companies and the satisfaction of

EV users. The upper level maximizes the utility company’s revenue, while the lower level max-

imizes consumer satisfaction by minimizing charging costs, creating a balanced tariff scheme

that benefits both parties.

However, despite extensive research in multi-layer optimizing in VPPs, none of the mentioned

studies combines machine learning with mathematical models like MILP for bi-level or multi-

level optimization in VPP and EVs. Machine learning methods like DRL can handle large,

dynamic, and uncertain environments efficiently. DRL is particularly useful for making high-

level decisions or policies, such as pricing strategies. However, when analyzing pricing strategies,
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it is crucial to consider that the lower-level models are independent and equipped with com-

prehensive management and control mechanisms to optimize profits. While DRL can identify

optimal or near-optimal policies over time, it may not always find the precise optimal solution

due to approximation errors or computational limits. Therefore, a framework like MILP, which

can handle complex constraints and provide optimal solutions within them, is better suited

for the lower-level models. In addition, integrating MILP as the lower-level model can offer

more accurate feedback to the upper level, enhancing overall system performance and training

progress. This hybrid approach leverages the strengths of both methods, potentially offering a

more balanced and efficient solution for managing bi-level VPP and EV systems.

Moreover, the behavior of EV owners is a critical focus in EV-related research and is exten-

sively explored in many studies, such as [218]–[224]. In [218], Cumulative Prospect Theory is

leveraged to understand the charging decisions of EV drivers, using data to simulate various

scenarios and focusing on factors like the SoC at the beginning of charging, timing, location

choices, and charging power demand. This method effectively captures risk attitudes, pro-

viding insights into how risk-seeking behavior influences charging decisions and grid demand.

Moreover, in [219], machine learning models are utilized to predict EV behavior by integrating

features such as traffic data, charging currents, and connection-disconnection events into the

adaptive charging network dataset, achieving higher accuracy in predicting session duration

and energy consumption. A discrete choice model is employed in [220] to analyze EV owners’

decision-making at charging stations, using a stated preference survey with 18 hypothetical

scenarios to capture socio-demographic influences on charging behavior. In [221], a cumulative

prospect theory-based model is adopted using a real traffic travel dataset to simulate EV driving

and charging decisions, accounting for psychological factors and limited rationality to provide

a realistic portrayal of behavior through comprehensive data analysis. An ensemble machine

learning approach is proposed in [222] to predict EV user behavior, reducing prediction errors

for stay duration and energy consumption compared to single algorithms and improving pre-

diction accuracy by adapting to different data scenarios. A probabilistic, data-driven approach

is presented in [223] to model EV charging behavior by clustering charging data, providing

insights into driver patterns and their impact on the power grid. This model’s scalability and

modularity enable efficient simulation of large-scale charging scenarios, beneficial for infras-

tructure planning. Unsupervised clustering is used in [224] to identify driving patterns from

battery management system data, helping to understand individual and fleet driving behaviors
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and aiding in product improvement for automakers.

Nevertheless, due to the high uncertainty of EV users, the distribution of behavioral data

is significantly influenced by various factors, resulting in considerable fluctuations, making it

challenging to effectively simulate the randomness of EV data through prediction or simple

generation methods.

To address this complexity, normalizing flows provide a powerful solution [225]. Normalizing

flows are generative models that transform simple probability distributions into complex ones

through a series of invertible mappings. This allows for capturing intricate patterns and de-

pendencies in EV behavior more accurately. By modeling the data distribution precisely, It

generates realistic synthetic data, enhancing the robustness and reliability of simulation.

As mentioned, for an effective pricing strategy analysis, a comprehensive approach involving

lower-level models with complex management to optimize profit is necessary. Therefore, the

EV system in this study will be modeled as multiple EVPLs or EV charging station models

acting as lower-level models. For clarity, the rest of the chapter will use EVPLs to represent

these models.

In general, the main features and contributions of this chapter are as follows:

• A hybrid optimization framework is introduced to combine the DRL algorithm SAC with

MILP for bi-level and multi-agent systems, with VPP as the upper level and EVPLs

as the lower level. This combination leverages the adaptive decision-making capabili-

ties of machine learning and the precise optimization of MILP, enhancing overall system

performance.

• A detailed pricing strategy analysis is conducted for the bi-level system, focusing on lower-

level models equipped with a comprehensive management system designed to optimize

their own profits. This analysis examines how changes in offer prices influence overall

profitability within the system, providing key insights into the financial dynamics of VPP

operations.

• Innovative use of normalizing flows for EV behavior modeling is proposed. This approach

transforms simple probability distributions into complex ones, capturing intricate patterns

and generating realistic synthetic data, thereby improving the robustness and reliability
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of simulations.

5.2 Problem Formulation

In this section, a hybrid multi-agent bi-level system is proposed, as shown in Fig. 5.1. In this

system, the VPP, as the upper-level model, sets prices based on the SAC algorithm. Upon

receiving these price signals, the lower-level models, which are EVPLs equipped with their own

PV panels, ESS, and comprehensive EMS, optimize their operations to maximize profit. The

EVPL models also take short-term charging EVs into consideration. In practical situations,

these EVs only charge and do not provide reserve power, as they could lose their energy instead

of charging if the dispatch is enabled. The uncertainty of EV behaviour is also considered and

handled by normalizing flows, as mentioned previously.

During the operation of the bi-level system, the VPP will provide four distinct prices through its

pricing strategy to the lower level: λfvp
t , λvf

t , λ vpp,r
t , and λ vpp,l

t , which correspond to the offered

energy purchase price, offered energy feed-in price, the offered power reserve price for the raise

market, and the offered power reserve price for the lower market, respectively. In response,

the EVPLs will optimize their profit based on these price signals. If the energy purchase price

from the VPP becomes unacceptably high at any given time step, the EVPLs may choose to

purchase energy from another source using the real-time electricity price, denoted as λgrid
q,t , to

avoid operational cost increases. Furthermore, in addition to the dynamic charging price λc
q,i,

the EVPLs offer a V2G incentive λinc to EVs that participate in discharging through V2G.

Detailed descriptions are provided in this section.

5.2.1 Lower-level System Modelling

EVPLs act as lower-level agents in our bi-level system. In the lower-level modelling, each agent

operates within the same framework but with its own operational controls and parameters,

including the behaviour of EVs at each EVPL and strategies to maximize profit. Details of

the model and the specific behaviours of EVs will be presented in Sections 5.2.1 and 5.2.3,

respectively.
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F e e d b a c k s fr o m E V P L s

Off eri n g Pri c e s

E V P L _ 1 E V P L _ 2 E V P L _ N

U p p er l e v el

L o w er l e v el

Pri ci n g str at e g y

V P P

Fi g ur e 5. 1: S yst e m l a y o ut.

E V P L  m o d elli n g

E V P Ls pl a y a si g ni fi c a nt r ol e i n o ur pr o p os e d bi-l e v el s yst e m b y a cti n g as fl e xi bl e e n er g y st or a g e

u nits.  T h e y pr o vi d e e x h a usti v e o pti mi z e d  E M Ss t h at r es p o n d t o pri ci n g si g n als fr o m t h e u p p er-

l e v el  m o d el d uri n g pri ci n g str at e g y a n al ysis.  A d diti o n all y,  E V P Ls o ff er pr e cis e f e e d b a c k d uri n g

t h e  D R L tr ai ni n g pr o c ess, e n h a n ci n g t h e e ff e cti v e n ess of t h e p oli c y.  T h e  m o d eli n g d et ails  will

b e pr es e nt e d as f oll o ws. Q a n d q r e pr es e nt t h e t ot al n u m b er of  E V P Ls a n d t h e i n d e x of e a c h

i n di vi d u al  E V P L, r es p e cti v el y.  E a c h  E V P L  m o d el is d es cri b e d b y ( 5. 1) - ( 5. 3 4).  E q. ( 5. 1)

d es cri b es t h e e n er g y d y n a mi cs of  E Vs  wit hi n t h e  E V P L d uri n g t h eir p eri o d of st a y, fr o m arri v al

t o d e p art ur e. It is ass u m e d t h at t h e pri orit y f or all  E Vs u p o n c o n n e cti o n t o t h e c h ar g er at t h e

E V P Ls is c h ar gi n g t o e ns ur e t h at e a c h  E V c a n r e a c h its  m a xi m u m all o w e d e n er g y l e v el.  H e n c e,

E q. ( 5. 2) is i ntr o d u c e d t o a d dr ess t his.  E qs. ( 5. 3) - ( 5. 6) d e fi n e t h e c h ar gi n g a n d dis c h ar gi n g

l o gi c t o e ns ur e pr o p er o p er ati o n of t h e  E V P L a n d a n e n er g y b o n d t o pr e v e nt o v er c h ar gi n g or

o v er dis c h ar gi n g of t h e  E Vs.  M or e o v er, n ot e v er y  E V c a n p arti ci p at e i n t h e  V 2 G s er vi c e d u e t o

t h e li mit e d c o n n e cti o n ti m e.  F oll o wi n g t h e d et er mi n ati o n of eli gi bl e  E Vs f or  V 2 G usi n g ( 3. 9),

t h os e n ot p arti ci p ati n g i n  V 2 G ar e s u bj e ct e d t o a d y n a mi c c h ar gi n g pri c e t h at v ari es  wit hi n a

d e fi n e d r a n g e d e p e n di n g o n t h e a m o u nt of e n er g y c h ar g e d, as o utli n e d i n ( 5. 7) - ( 5. 1 0).  O n t h e

ot h er h a n d,  E Vs t h at p arti ci p at e i n  V 2 G ar e c h ar g e d t h e  mi ni m u m pri c e a n d r e c ei v e i n c e nti v es
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for the energy they discharge. The profits from the EVs’ charging fees are represented by (5.11).

Additionally, Eq. (5.12) represents the PV output, while Eqs. (5.13)-(5.19) describe the ESS

model within the EVPL. Eq. (5.13) describes the energy dynamics of the ESS. Eq. (5.14)

ensures that the energy level at the end of the day is equal to the initial level. The constraints

for charging, discharging, and energy bounds are specified in (5.15)-(5.17). Furthermore, the

cost associated with battery degradation is considered in (5.18) and (5.19).

In addition to participating in the general spot market, the VPP also sets reserve power prices

for both the raise and lower FCAS markets. These details are further explored in Section 5.2.2.

It is important to note that the EVPLs choose to reserve power exclusively for these markets.

The associated trading constraints are presented from (5.20) - (5.31). Eqs. (5.20)-(5.21) rep-

resent the relationship between reserve power and dispatch power for the upper level’s raise

and lower markets, which depend on the probability of dispatch occurring. The constraints for

power export and import are listed as (5.22)-(5.23), followed by the reserved power constraints

(5.24)-(5.25). Eqs. (5.26)-(5.29) describe the reserve power capabilities of the ESS and EVs

within the EVPL. It should be noted that these constraints employ the big M method for lin-

earization, as discussed in [189]. Furthermore, constraints specific to the reserve power for the

raise and lower markets are presented in (5.30) and (5.31), respectively. Eq. (5.32) quantifies

the profits derived from the reserved power.

Power balance is detailed in (5.33), followed by the objective function presented in (5.34). In

this context, PGrid
q,t represents the power obtained from the grid, which is associated with a

retail purchase price. This ensures that the EVPL can obtain power from an alternative source

if the VPP’s offered price is excessively high. The objective function (5.34) aims to maximize

the profit of the q-th EVPL. It incorporates multiple revenue and cost components to ensure

a comprehensive optimization framework. In addition to the profit gained from energy feed-in,

it includes the cost of energy purchased from the VPP or grid. The equation also accounts for

the previously mentioned profit from reserve power, calculated using (5.32), and the income

from EV charging services, determined by (5.11). Furthermore, it considers the cost of battery

degradation, as derived from (5.19). By integrating these elements, the objective function

provides a comprehensive optimization framework for the lower-level EVPLs.
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EEV
q,i,t =



0, t < ta,q,i

Eini
q,i , t = ta,q,i

EEV
q,i,t−1 +

(
ηch ∗ PEV+

q,i,t − 1

ηdis
∗ PEV−

q,i,t

)
△t, ta,q,i < t ≤ td,q,i

EEV
q,i,max, t = td,q,i

0 t > td,q,i

(5.1)

EEV
q,i,max = Eini

q,i +

td,q,i∑
t=ta,q,i+1

(
ηEV
ch ∗ PEV+

q,i,t − 1

ηEV
dis

∗ PEV−
q,i,t

)
△t (5.2)

For ta,q,i < t ≤ td,q,i,

0 ≤ PEV+
q,i,t ≤ µq,i,t ∗ PEV+

q,i,max (5.3)

0 ≤ PEV−
q,i,t ≤ (1− µq,i,t) ∗ PEV−

q,i,max (5.4)

EEV
q,i,min ≤ EEV

q,i,t ≤ EEV
q,i,max (5.5)

For t otherwise

PEV+
q,i,t = PEV−

q,i,t = 0 (5.6)

Ede
q,i =

(
ηEV
ch ∗ PEV+

q,i,max

)
∗ (td,q,i − ta,q,i) (5.7)

EEV
q,i,td,q,i

= Eini
q,i + Ede

q,i (5.8)

Ede
q,i =

Ede,max
q,i

λc,max − λc,min
(λc,max − λc

q,i) (5.9)
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λc,min ≤ λc
q,i ≤ λc,max (5.10)

zEV
q =

 N∑
i=1

td,q,i∑
t=ta,q,i

(1− φq,i)(P
EV+
q,i,t ∗ λc

q,i)△t


+

N∑
i=1

φq,i

[(
EEV

q,i,max − Eini
q,i

)
∗ λc,min −

T∑
t=1

(PEV−
q,i,t ∗ λinc)△t

] (5.11)

P PV
q,t = rq,t ∗ spvq ∗ epvq (5.12)

EESS
q,t = EESS

q,t−1 +

(
ηESS
ch ∗ PESS+

q,t − 1

ηESS
dis

∗ PESS−
q,t

)
△t (5.13)

EESS
q,T = EESS

q,0 (5.14)

EESS
q,min ≤ EESS

q,t ≤ EESS
q,max (5.15)

0 ≤ PESS+
q,t ≤ aq,t ∗ PESS+

q,max (5.16)

0 ≤ PESS−
q,t ≤ (1− aq,t) ∗ PESS−

q,max (5.17)

Bq =
Rq

Lq ∗ eESS
q

(5.18)

CESS,de
q =

T∑
t=1

PESS−
q,t △t ∗Bq (5.19)

P r,disp
q,t = τ r

q,t · P
r,res
q,t (5.20)
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P l,disp
q,t = τ l

q,t · P
l,res
q,t (5.21)

0 ≤ P Feed−in
q,t + P r,disp

q,t ≤ bq,t ∗ P −
q,max (5.22)

0 ≤ PGrid
q,t + P fvp

q,t + P l,disp
q,t ≤ (1− bq,t) ∗ P +

q,max (5.23)

0 ≤ P r,res
q,t ≤ cq,t ∗ P r

q,max (5.24)

0 ≤ P l,res
q,t ≤ (1− cq,t) ∗ P l

q,max (5.25)

P r,ev
q,i,t = min

((
EEV

q,i,t − EEV
q,i,min

)
· φq,i

△t
, PEV−

q,i,max · φq,i

)
(5.26)

P l,ev
q,i,t = min

((
EEV

q,i,max − EEV
q,i,t

)
· φq,i

△t
, PEV+

q,i,max · φq,i

)
(5.27)

P r,ess
q,t = min

(
EESS

q,t − EESS
q,min

△t
, PESS−

q,max

)
(5.28)

P l,ess
q,t = min

(
EESS

q,max − EESS
q,t

△t
, PESS+

q,max

)
(5.29)

P r,res
q,t ≤

N∑
i=1

P r,ev
q,i,t + P r,ess

q,t (5.30)

P l,res
q,t ≤

N∑
i=1

P l,ev
q,i,t + P l,ess

q,t (5.31)

z res
q =

T∑
t=1

[(
P r,res
q,t · λ vpp,r

t

)
+
(
P l,res
q,t · λ vpp,l

t

)]
(5.32)
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N∑
i=1

PEV+
q,i,t + PESS+

q,t + P Feed−in
q,t + P r,disp

q,t

= P PV
q,t + PGrid

q,t + P fvp
q,t + PESS−

q,t +
N∑
i=1

PEV−
q,i,t + P l,disp

q,t

(5.33)

Maximize Z evpl
q =

T∑
t=1

(P Feed−in
q,t ∗ λvf

t )△t−
T∑
t=1

(PGrid
q,t ∗ λgrid

t )△t−
T∑
t=1

(P fvp
q,t ∗ λfvp

t )△t

+ zEV
q + zresq − CESS,de

q

(5.34)

5.2.2 Upper-level Modeling

The VPP functions as the upper-level model, using a DRL-based pricing strategy to send

price signals to the lower-level EVPLs. Upon receiving feedback from the optimized lower-level

models, the VPP maximizes its profit based on the feedback and market prices. The interaction

between the VPP and EVPLs, along with the training of the DRL-based pricing strategy, will

be detailed in the following sections.

FCAS markets

Before presenting the VPP modeling, the FCAS market should be briefly introduced here.

The FCAS market is segmented into two regulation markets and six contingency markets.

These markets are organized based on their response times: 6-second, 60-second, and 5-minute

services, each available in both raise and lower capacities. Additionally, the very fast con-

tingency FCAS, capable of responding within 1 second, was introduced recently. Despite its

rapid response capability, we do not currently focus on this 1-second market due to its dispro-

portionately high enabled prices compared to other services [226]. Therefore, our analysis is

concentrated on the original six contingency markets and two regulation markets at this stage.

For the raise regulation and contingency markets, Nr and j are used to represent their total

number and index. Similarly, for the lower regulation and contingency markets Nl and k are

used for their total number and their index. Eqs. (5.35)-(5.36) show the constraint of the

powers which join the FCAS markets.
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Nr∑
j=1

P vpp,r
t,j =

Q∑
q=1

P r,res
q,t (5.35)

Nl∑
k=1

P vpp,l
t,k =

Q∑
q=1

P l,res
q,t (5.36)

Upper-level profit optimization

The objective function of VPP is shown as (5.37), which consists of the price difference between

FCAS markets enabled price and offered price, the difference between wholesale market and

offered buying price for EVPLs, and the price difference between offered feed-in price and market

feed-in price. The offered prices will be determined by the proposed DRL pricing strategy and

will be further explored in Section 5.2.2.

Maximize Z vpp =
T∑
t=1

[ Nr∑
j=1

P vpp,r
t,j (λ r

t,j − λ vpp,r
t ) +

Nl∑
k=1

P vpp,l
t,k (λ l

t,k − λ vpp,l
t )

+

Q∑
q=1

P fvp
q,t (λwhole

t − λfvp
t )△t+

Q∑
q=1

P Feed−in
q,t (λvf

t − λFeed−in
t )△t

]
(5.37)

Deep reinforcement learning

In this study, the VPP operates as the upper-level model in our bi-level system layout, offering

four distinct prices to the lower-level EVPLs. These prices include the energy buying price, the

feed-in price, and power reserve prices for both the raise and lower markets, allowing the VPP

to participate in the FCAS market as well. To set these prices, we utilize the SAC algorithm, a

model-free, off-policy actor-critic method based on DRL. This approach employs a maximum

entropy framework to navigate complex action spaces effectively [227]. The objective function

of SAC is given as (5.38).

J(π) = E(st,at)∼ρπ

[∑
t

γt(r(st, at) + αH(π(·|st)))

]
(5.38)

where ρπ is the state-action marginal of the trajectory distribution induced by policy π, γ is

the discount factor, r is the reward function, α is the temperature parameter that determines
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the relative importance of the entropy term H against the reward, and π(·|st) is the policy.

The algorithm optimizes both a policy network (actor) and a value network (critic), with the

actor policy being adjusted to maximize the expected return and entropy, thereby promoting

exploration. The SAC model is configured with a multi-layer perceptron for both the actor and

critic networks, adapted to our continuous action space. In this setup, four prices are defined

as actions, and SAC dynamically adjusts the pricing strategy. The upper and lower bounds

for these actions are detailed in (5.39) - (5.42). Upon receiving these price signals, EVPLs

optimize their profits and provide feedback to the VPP, including total energy demand, total

feed-in energy, and total reserved power for both the raise and lower markets. Those are also

set as the state space of the environment. Moreover, feedback from the lower-level models is

integral to the learning process, enabling the continuous refinement of the pricing strategy. To

ensure that the feedback signal functions correctly and does not excessively reduce agent profits,

it is incorporated into the reward function, as shown in (5.43). This integration allows the SAC

to optimize long-term profitability through precise and adaptive pricing decisions, which are

crucial in the volatile energy markets. The baseline reserve prices for both the raise market, λ rs
t ,

and the lower market, λ ls
t , are determined by taking the minimum value across all considered

FCAS markets at each time step t. These prices serve as the baseline for the proposed DRL-

based pricing strategy to decide the reserve power prices. Additionally, we deploy the SAC

using Stable Baselines 3, a framework for training and implementing reinforcement learning

models [228]. The training process is illustrated in Fig. 5.1.

λfvp,min
t ≤ λfvp

t ≤ λfvp,max
t (5.39)

λvf,min
t ≤ λvf

t ≤ λvf,max
t (5.40)

λ r,min
t ≤ λ vpp,r

t ≤ λr,max
t (5.41)

λ l,min
t ≤ λ vpp,l

t ≤ λl,max
t (5.42)
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Reward =

Q∑
q=1

T∑
t=1

[
P Feed−in
q,t (λvf

t − λFeed−in
t )△t+ P fvp

q,t (λwhole
t − λfvp

t )△t

+ P r,res
q,t (λ rs

t − λvpp,r
t ) + P l,res

q,t (λ ls
t − λvpp,l

t )

]
· ω1 +

Q∑
q=1

Zevpl
q · ω2

(5.43)

5.2.3 Implementation of Normalizing Flows

Normalizing flows is a powerful class of statistical models that allows for complex transforma-

tions of simple distributions into more intricate ones while maintaining differentiability and

invertibility [225]. This characteristic makes normalizing flows particularly suitable for model-

ing intricate phenomena, such as EV behaviors in our study, including initial SoC and arrival

and departure times.

The foundation of this approach involves transforming a simple base distribution into a distribu-

tion that captures complex patterns, like EV behaviors. Specifically, the density of the random

variable x = Fθ(z) can be computed from (5.44), where x = Fθ(z), and Fθ is a bijective map

parameterized by θ. JFθ
is the Jacobian matrix of Fθ. Then, a complex probability distribution

p(x) can be constructed from our base distribution p(z). The variable z is randomly taken from

the g-dimensional real dataset Rg. The base Gaussian distribution used in this study is shown

in (5.45), where µ ∈ Rg and Σ is a diagonal covariance matrix. To train the model, we minimize

the Kullback-Leibler divergence between the transformed complex probability distribution of

the data and the target density distribution, as described in (5.46). The settings and training

details will be presented in Section 5.3.1.

p(x) = p(z) |det(JFθ
(z))|−1 (5.44)

p(z) = N (µ,Σ) (5.45)

KLD(θ, ϕ) = Ep(x)[log p(x)]− Ep(x)[log p
∗(x)] (5.46)
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5.3 Case Study

5.3.1 Configuration

As mentioned, the normalizing flows method has been adopted for generating EV behaviour, in-

cluding arrival and departure times and initial SoC. The architecture utilizes a three-dimensional

Gaussian as the base distribution, divided into a two-dimensional distribution covering arrival

and departure times, and a one-dimensional part for the initial SOC, to enhance model accuracy

and ensure distinct treatment of the variables for optimal results. The configuration includes

a series of 32 flow layers; each layer is an affine coupling block that transforms the base dis-

tributions. These blocks are implemented using neural networks with two hidden layers, each

comprising 64 units. The model is trained using the Adam optimizer, with a learning rate of

5×10−4 and a weight decay of 1×10−5. Fig. 5.2 presents the training progress, showing a sharp

reduction in error during the early stages of training, followed by gradual adjustments in per-

formance until it stabilizes. To validate that the generated EV behaviours reflect real-world EV

behaviours, we performed a comparison between the generated data and the historical dataset

used to train the model, as illustrated in Fig. 5.3. The results show that the generated data

perfectly falls within the range of the historical data, indicating that the generated behaviours

align well with the real behaviours of EVs. This demonstrates that the generated data can

be used in the same manner as actual EV data for the purpose of analytics. Moreover, this

approach highlights the robustness of the EVPL model, as it can handle any reasonable real

EV behaviour dataset to perform optimization. The historical dataset was obtained from a

practical EV operating database [160], ensuring that the model was trained on realistic and

representative data.

In addition to the normalizing flows component, the reinforcement learning pricing strategy

implemented using the OpenAI Gym framework generates prices based on market rates and

feedback signals from the EVPLs [229]. The time step is set at 288 to accommodate the 5-

minute intervals throughout the day. It should be noted that the bounds of actions will not

exceed the market prices and maximum acceptable levels from agents, making the strategy

more relevant. The Stable Baselines3 library is utilized here, employing the SAC algorithm

with the MlpPolicy, and the training step will be detailed in the training process figures. The

agents, which are the EVPLs, optimize using the Gurobi solver, and the model’s operational

parameter settings can be referenced from our previous study [179].
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Figure 5.2: Training progress of normalizing flow.

Figure 5.3: EV behavior from normalizing flows.

97



Before conducting the pricing strategy analysis, we propose a comparison model to validate our

method, which follows the method described in [230] to employ an iterative pricing strategy

for a bi-level system. Thus, our comparison model will utilize an iterative method adapted

to our bi-level configuration using the same parameter settings. This approach allows for the

specification of particular weighting ranges. Once the optimal result is achieved within these

weighting settings, the iteration stops, and the offering prices are determined. Additionally,

the iterative method tracks the result closest to the setting ranges if the algorithm completes

its iterations without finding an optimal solution.

To explore the changes in profits within the bi-level system, we will set different upper and

lower bounds in various cases. As previously mentioned, the lower-level models employ complex

optimization strategies in response to the prices offered by the upper-level model. The original

range will be set from 0 to 0.8 [231] to ensure sufficient space for exploring changes and to make

differences more apparent. In addition to setting this range, to prevent algorithm overfitting or

the offering of excessively high constant values, the lower-level model is also assumed to have

an alternative energy purchasing source at a constant value of 0.8.

5.3.2 Establishing the Base Case

In this case, to evaluate the pricing strategy’s ability to maintain equilibrium and stability

among agents in the bi-level system, the strategy will be designed to balance the profits of both

VPPs and EVPLs. Therefore, ω1 and ω2 are set as 1 during the training, and the weighting in

the comparison model will be set within the range between 1 and 1.5.

The training process is shown in Fig. 5.4, which illustrates the rewards rapidly increase and

stabilize around 10000 steps. The y-axis represents the total reward obtained during training

steps. The reward values are dimensionless and do not have specific units, as they are de-

termined by the reward function, which aggregates various objectives relevant to the problem

being solved. Since the rewards are not normalized, the scale reflects the absolute cumula-

tive values resulting from the training process. This approach is consistent with reinforcement

learning practices, as discussed in [232], which highlights the flexibility of reward functions in

tailoring learning to domain-specific tasks. After this initial phase, the rewards maintain a

consistent level with occasional fluctuations. Although there are two significant dips around

18000 and 36000 steps, the model quickly recovers and returns to a stable reward level. During
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these phases, the SAC algorithm likely engages in exploratory actions that occasionally reach

the lower-level agents’ acceptable price bound, resulting in a temporary decrease in rewards.

However, instead of presenting the result within the set range, the iterative comparison model

provides a strategy with the closest weighting range result.

The profit for this case is shown in Table 5.1. As we can see, the profit distribution in the

proposed method is more balanced, with profits of $42.72, $37.32, and $36.02 for each EVPL,

respectively. The income variation under the same offer prices can be observed due to the

different EV statuses in each EVPL. Although the comparison method provides a strategy that

shows higher income for the VPP, $66.52 compared to $42.19 in the proposed method, the

income for all EVPLs and the total profit in the system are lower than those in the proposed

method, with the total profits being $158.25 and $152.2 for the proposed method and the

comparison method, respectively.

Figure 5.4: Base case training process.

5.3.3 Results and Analysis

Upper-bound setting exploration

a) With upper-bound of $ 0.4

For the purpose of strategy analysis, we set the upper-bound energy price at $ 0.4. Under this
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Table 5.1: Base case profit comparison.

Proposed method Comparison method [230]

EVPL1 $42.72 $30.51

EVPL2 $37.32 $27.25

EVPL3 $36.02 $27.91

VPP $42.19 $66.52

Total $158.25 $152.2

setting, stable training convergence can be observed after 10000 training steps, as shown in

Fig. 5.5. The system status variation presented in Figs. 5.6 - 5.14 demonstrates that, despite

the reduction in the offered price bound to $ 0.4, the profits in the bi-level system show no

significant changes. This stability is attributed to the lower-level EVPLs being equipped with

comprehensive management systems that continually track dynamic prices and optimize their

own profits. Therefore, they may not react to higher offered energy prices, even though they

must charge EVs to the maximum allowed energy level upon departure. As depicted in Figs.

5.9 - 5.11, the focus shifts to charging at lower offered price points and discharging when the

feed-in price increases. The timing of discharging across different EVPLs may vary due to the

duration of EV stays. Overall, as the upper-level model, altering the maximum offered prices

in the pricing strategy for the VPP does not decrease its income. This leads to a new setting:

further reducing the maximum offered price, as shown next.

Table 5.2: Profit of $ 0.4 upper-bound setting.

Original bounds Upper-bound $ 0.4

EVPL1 $42.72 $40.87

EVPL2 $37.32 $36.62

EVPL3 $36.02 $35.57

VPP $42.19 $40.82

Total $158.25 $153.89

b) With upper-bound of $ 0.1

After reducing the upper-bound of the offered energy price to $ 0.1, the training process,
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Figure 5.5: Upper-bound 0.4 training process.

Figure 5.6: Power in each FCAS market over time with the upper-bound of 0.4.
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Figure 5.7: Offered energy import/export prices with the upper-bound of 0.4.

Figure 5.8: Offered reserve prices with the upper-bound of 0.4.
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Figure 5.9: Power import/export in EVPL1 with the upper-bound of 0.4.

Figure 5.10: Power import/export in EVPL2 with the upper-bound of 0.4.
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Figure 5.11: Power import/export in EVPL3 with the upper-bound of 0.4.

Figure 5.12: Power reserve in EVPL1 with the upper-bound of 0.4.
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Figure 5.13: Power reserve in EVPL2 with the upper-bound of 0.4.

Figure 5.14: Power reserve in EVPL3 with the upper-bound of 0.4.
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as depicted in Fig. 5.15, shows a more minor overall change compared to previous sessions.

Following 13000 training steps, although the strategy continues to explore and optimize rewards,

a relatively convergent result has begun to emerge. Despite the profit of VPP dropping by half,

the total profit only shows a slight decline, as the profits of lower-level EVPLs increase, as

demonstrated in Table 5.3. Besides, Figs. 5.16 - 5.24 highlights the pattern of profitability

among EVPLs, which experience the most intense power exchange fluctuations. With the

further decrease in offered energy price, lower-level participants gain more operational flexibility.

This increased frequency of charging and discharging enhances EVPLs’ profits due to low

operational costs. However, even though the profits of EVPLs have increased, they have not

offset the significant decline in VPP’s profit.

Figure 5.15: Upper-bound 0.1 training process.

Table 5.3: Profit of $ 0.1 upper-bound setting.

Original bounds Upper-bound $ 0.1

EVPL1 $42.72 $47.07

EVPL2 $37.32 $42.45

EVPL3 $36.02 $40.88

VPP $42.19 $20.28

Total $158.25 $150.70

According to the results from various upper-bound settings, the profits of lower-level models
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Figure 5.16: Power in each FCAS market over time with the upper-bound of 0.1.

Figure 5.17: Offered energy import/export prices with the upper-bound of 0.1.
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Figure 5.18: Offered reserve prices with the upper-bound of 0.1.

Figure 5.19: Power import/export in EVPL1 with the upper-bound of 0.1.
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Figure 5.20: Power import/export in EVPL2 with the upper-bound of 0.1.

Figure 5.21: Power import/export in EVPL3 with the upper-bound of 0.1.
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Figure 5.22: Power reserve in EVPL1 with the upper-bound of 0.1.

Figure 5.23: Power reserve in EVPL2 with the upper-bound of 0.1.
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Figure 5.24: Power reserve in EVPL3 with the upper-bound of 0.1.

exhibit only minor variations and generally remain stable. This observation leads to a new

setting: rather than adjusting the upper-bound of the offered energy price, different lower-bound

settings will be used to restrict the optimization range and further investigate the consequences

of different pricing strategy settings, which will be shown next.

Lower-bound setting exploration

a) With lower-bound of $ 0.4

In this case, the lower-bound of the energy offer price is set at $ 0.4, mirroring the upper-bound

setting to halve the range. The VPP pricing strategy training process is illustrated in Fig.

5.25, demonstrating stable convergence after a brief exploratory period at approximately 5000

training steps. Unlike the upper-bound scenarios, the price response here is more obvious.

Although the overall system profit remains relatively stable, the profit for VPP is considerably

higher than in previous scenarios, as indicated in Table 5.4. Consequently, a predictable profit

decrease is observed in EVPLs. As shown in Figs. 5.26 - 5.34, fluctuations in power import

and export are smaller. Despite the limited pricing range in both cases, setting a higher lower-
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bound forces the optimization of lower-level models to select relatively higher prices, thereby

reducing charging costs and maximizing income. To build on these findings, the next step will

involve further narrowing the lower-bound to explore variations in profit.

Figure 5.25: Lower-bound 0.4 training process.

Table 5.4: Profit of $ 0.4 lower-bound setting.

Original bounds Lower-bound $ 0.4

EVPL1 $42.72 $17.09

EVPL2 $37.32 $19.56

EVPL3 $36.02 $16.02

VPP $42.19 $98.71

Total $158.25 $151.40

b) With lower-bound of $ 0.7

After applying the new setting, the pricing strategy training process converged rapidly at

around 2500 training steps and then maintained a smooth and consistent level, as shown in

Fig. 5.35. According to the previous cases, decreasing the lower-bound of the energy price

typically reduces the profits of lower-level models by narrowing their optimization range due

to the relatively higher price options. However, contrary to expectations, the profit of the
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Figure 5.26: Power in each FCAS market over time with the lower-bound of 0.4.

Figure 5.27: Offered energy import/export prices with the lower-bound of 0.4.
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Figure 5.28: Offered reserve prices with the lower-bound of 0.4.

Figure 5.29: Power import/export in EVPL1 with the lower-bound of 0.4.
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Figure 5.30: Power import/export in EVPL2 with the lower-bound of 0.4.

Figure 5.31: Power import/export in EVPL3 with the lower-bound of 0.4.
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Figure 5.32: Power reserve in EVPL1 with the lower-bound of 0.4.

Figure 5.33: Power reserve in EVPL2 with the lower-bound of 0.4.
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Figure 5.34: Power reserve in EVPL3 with the lower-bound of 0.4.

VPP did not increase. Specifically, Figs. 5.36 - 5.44 illustrates minimal fluctuations in power

import and export. Due to the high energy purchase prices offered by VPP, the profits of some

EVPLs become very small, or even negative. This is because they are required to charge the

connected EVs to the maximum allowed SoC upon departure. Additionally, reduced power

exports from the EVPLs often result in lower power demand, as they must recharge the EVs

at a significantly higher energy purchase price after feed-in. Consequently, a decrease in power

exchange is expected. Table 5.5 shows a very sharp decline in total system profit, presenting the

worst case across all settings, with a profit of just $ 44.95. This outcome contrasts sharply with

previous adjustments, which increased VPP’s income; in this setting, the profit of the VPP is

close to the base case. While some EVPLs may achieve profitability, the profits are minimal

or even negligible compared to other scenarios. In general, increasing the lower-bound of the

offering energy price will trigger more noticeable variations in profit values within the bi-level

system and is a beneficial strategy for the upper-level model to increase its profits. However,

excessive adjustment will not only fail to make the upper level more profitable but will also

significantly decrease the profits of lower-level models, leading to an unhealthy system pricing

configuration.
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In all the cases discussed above, the capabilities of the lower-level model are constrained by

the number of EVs and the ESS capacity of the EVPLs. Consequently, the power fluctuations

involved in the reserve market are relatively uniform, leading to consistent participation by the

upper-level model in the FCAS market. Notably, to maximize profits, activities in all eight

FCAS markets are concentrated primarily on the contingency raise 6-second market and both

the raise and lower regulation markets.

Figure 5.35: Lower-bound 0.7 training process.

Table 5.5: Profit of $ 0.7 lower-bound setting.

Original bounds Lower-bound $ 0.7

EVPL1 $42.72 $-3.06

EVPL2 $37.32 $6.67

EVPL3 $36.02 $0.46

VPP $42.19 $40.87

Total $158.25 $44.95

5.4 Summary

In this chapter, we introduced a hybrid multi-agent bi-level optimization system that integrates

a DRL-based upper-level VPP model and a lower-level EVPL model within the MILP frame-
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Figure 5.36: Power in each FCAS market over time with the lower-bound of 0.7.

Figure 5.37: Offered energy import/export prices with the lower-bound of 0.7.
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Figure 5.38: Offered reserve prices with the lower-bound of 0.7.

Figure 5.39: Power import/export in EVPL1 with the lower-bound of 0.7.

120



Figure 5.40: Power import/export in EVPL2 with the lower-bound of 0.7.

Figure 5.41: Power import/export in EVPL3 with the lower-bound of 0.7.

121



Figure 5.42: Power reserve in EVPL1 with the lower-bound of 0.7.

Figure 5.43: Power reserve in EVPL2 with the lower-bound of 0.7.
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Figure 5.44: Power reserve in EVPL3 with the lower-bound of 0.7.

work. The VPP employs the SAC algorithm to set prices under multiple market conditions,

including spot and the 8 FCAS markets. The comprehensive MILP frame enables the lower-

level EVPL agents to maximize their profits based on the prices provided and to offer feedback

to the upper-level VPP to enhance strategic training. EV behaviour, including SoC, arrival

time, and departure time, is modelled through the first use of normalizing flows.

Furthermore, after comparing the results between the proposed method and an iterative method

used to establish the base case, various settings were applied to analyze the pricing strategy.

With the continuous decrease in the upper-bound, the profits at the lower-level show only a

slight increase, and the total profit of the bi-level system remains stable with minor changes,

even though the profit of VPP drops by half in the 0.1 upper-bound setting. In contrast, when

the lower-bound setting is increased, the VPP records the highest profit among all cases at

the $ 0.4 setting. However, the system’s profits collapse when the setting reaches $ 0.7, with

the worst total of $ 44.95 compared to $ 158.25 in the base case. Much like the two sides of

a coin, setting the upper-bound of the offered energy price is more likely to achieve a win-win

situation. To increase the profits of the upper-level model, adjusting the lower-bound of the

price is one option. However, excessive adjustment may cause the entire system to collapse,
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leaving no party beneficial.

Moreover, throughout the cases analyzed, the performance of the lower-level models in respond-

ing to the offered reserve prices is consistently influenced by the number of EVs and the ESS

capacity within the EVPLs. This limitation leads to uniform power fluctuations in all cases,

which in turn makes the activity remain consistent with the upper-level model in the FCAS

market. To optimize profit generation, strategic focus across all eight FCAS markets is pre-

dominantly directed towards the contingency raise 6-second market, as well as the raise and

lower regulation markets.
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Chapter 6

Conclusion and Recommendation for

Future Research Work

6.1 Conclusion

This study explores the economic operation strategies and optimization of EV parking lots

integrated with RES, ESS, and V2G technology. Across three stages, we have developed and

analyzed models to maximize the profitability and efficiency of EV parking lots under varying

conditions and market scenarios.

In Chapter 3, a comprehensive economic operation strategy for an EV parking lot equipped

with EV charging stations, PV systems, WT, and ESS was developed. The model accounted

for uncertainties in electricity market prices, solar radiation, and wind speed. Scenarios were

generated using MATLAB’s scenred toolbox, classifying EVs into V2G and non-V2G groups

based on parking duration. Dynamic charging prices were implemented for non-V2G EVs,

while V2G-participating EVs benefited from lower charging rates and incentives. The model

demonstrated superior profitability compared to models with fixed charging rates or without

V2G services, particularly in scenarios with short-term parking EVs benefiting from dynamic

pricing and long-term parking EVs from V2G incentives. Future research will focus on the

impact of V2G on EV behavior and market conditions.

Chapter 4 introduced an EV parking lot model incorporating RES and participating in both
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the FCAS and spot markets. Forecasts of market prices, solar irradiance, and wind speed

were generated using LSTM within MATLAB’s deep learning toolbox. Monte Carlo methods

simulated EV behaviours, and an IGDT-based method optimized V2G incentives. Comparing

two cases, the study found that engaging in both FCAS and spot markets (Case 1) consistently

yielded higher profits, especially under optimized V2G incentives. Case 2, limited to the spot

market, showed diminished V2G activity with lower incentives, highlighting the profitability of

multi-market participation.

Chapter 5 presented a hybrid multi-agent bi-level optimization system integrating a DRL-based

VPP model and several MILP lower-level EVPL models. The VPP used the SAC algorithm

to set prices across multiple market conditions, including the spot and eight FCAS markets.

The system allowed lower-level agents to maximize profits and provide feedback for upper-level

strategic training. Results indicated that while adjusting upper and lower price bounds could

influence profitability, extreme adjustments risked destabilizing the system. Optimal profit

generation required balancing these bounds, with a significant focus on strategic markets like

the contingency raise 6-second market.

Throughout the chapters, this study highlighted the importance of integrating dynamic pricing,

multi-market participation, and advanced optimization techniques to enhance the profitability

and efficiency of EV parking lots. The proposed models consistently demonstrated that well-

designed V2G incentives and strategic market engagement could significantly boost profits.

However, balancing the system’s parameters is significant to avoid instability.

In addition, by applying advanced modelling, optimization, and market participation strategies,

this study contributes valuable insights into the sustainable and profitable operation of EV

parking lots, leading to more efficient integration of EVs and RESs into the power grid.

6.2 Recommendation for Future Research Work

Future research will delve deeper into the behavioral impact of V2G technology on EV owners

and explore the scalability of the proposed models under different market conditions and practi-

cal environments. This includes understanding the implications of V2G on revenue generation,

refining optimization techniques to adapt to real-time market fluctuations, and developing more

sophisticated models for selecting an appropriate V2G reward coefficient, which is crucial for
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the successful implementation of the developed model.

Moreover, we aim to expand the scope of research to include more diverse RESs and storage

technologies to enhance the resilience and profitability of EV parking systems. Addressing

the issue of EV battery degradation will also be a key focus, as well as exploring alternative

methods for managing uncertainties in market prices and RESs. Future studies will apply more

reliable and precise techniques to manage these fluctuations effectively in EVPLs.

Additionally, we plan to investigate the bidding strategy for the FCAS market and associated

penalties, examining their effects on revenue outcomes. This will involve developing a more

comprehensive system configuration with an optimal bidding strategy. Determining the optimal

pricing strategy range, particularly for lower-level models using comprehensive optimization

algorithms, remains a significant challenge that will be tackled in subsequent research.
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