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Abstract
To solve the challenges of low recognition accuracy, slow speed, and weak gen-
eralization ability inherent in traditional methods for multi-damage recognition
of concrete bridges, this paper proposed an efficient lightweight damage recog-
nition model, constructed by improving the you only look once v4 (YOLOv4)
with MobileNetv3 and fused inverted residual blocks, named YOLOMF. First,
a novel lightweight network named MobileNetv3 with fused inverted residual
(MobileNetv3-FusedIR) is constructed as the backbone network for YOLOMF.
This is achieved by integrating the fused mobile inverted bottleneck convo-
lution (Fused-MBConv) into the shallow layers of MobileNetv3. Second, the
standard convolution in YOLOv4 is replaced with the depthwise separable con-
volution, resulting in a reduction in the number of parameters and complexity
of the model. Third, the effects of different activation functions on the damage
recognition performance of YOLOMFare thoroughly investigated. Finally, to ver-
ify the effectiveness of the proposed method in complex environments, a data
enhancement library named Imgaug is used to simulate concrete bridge dam-
age images under challenging conditions such as motion blur, fog, rain, snow,
noise, and color variations. The results indicate that the YOLOMF shows excel-
lent multi-damage recognition proficiency for concrete bridges across varying
field-of-view sizes as well as complex environmental conditions. The detection
speed of YOLOMF reaches 85f/s, facilitating effective real-time multi-damage
detection for concrete bridges under complex environments.

1 INTRODUCTION

Concrete bridges play an essential role in modern trans-
portation systems and road networks. Currently, China
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boasts a total of 1.032 million highway bridges, including
8816 long-span bridges and 159,600 large bridges (Min-
istry of Transport of the People’s Republic of China, 2022).
However, as time goes on, concrete bridges inevitably
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experience varying degrees of damage due to factors such
as temperature, humidity, loading, and degradation of con-
crete materials (Pezeshki, Adeli, et al., 2023; Rafiei et al.,
2017a, 2017b). Structural damage, such as cracks, concrete
spalling, and exposed rebar, can be considered as clear
indicators of potential degradation or structural failure
(Cha et al., 2018; Koch et al., 2015; C. Zhang et al., 2020).
Therefore, the early detection of potential damage of con-
crete bridges, combinedwith the implementation of appro-
priate protective measures, is of paramount significance.
These measures not only enhance the structural reliability
and service life of the bridges but also reduce maintenance
and replacement costs, as well as associated risks.
Damage recognition methods based on vibration infor-

mation have played a pivotal role within bridge structural
health monitoring systems (Amezquita-Sanchez & Adeli,
2019; Perez-Ramirez et al., 2016; Pezeshki, Adeli, et al.,
2023). These methods utilize vibration information such
as structural frequency, mode, and flexibility to estab-
lish damage recognition indicators, enabling qualitative
and quantitative evaluation of bridge damage (Amezquita-
Sanchez & Adeli, 2016; Altunışık et al., 2019; Ciambella
et al., 2019; Pezeshki, Pavlou, et al., 2023). To acquire
accurate structural vibration information, it is often nec-
essary to deploy a considerable number of contact sensors.
However, challenges arise due to the complex monitoring
environment andmeasurement noise, impeding the acqui-
sition of precise structural vibration data. Meanwhile,
non-destructive testing based on piezoelectric sensors
(Jiang et al., 2018), ultrasonic detection (Mutlib et al., 2016),
fiber optic sensors (Li et al., 2020), and acoustic emission
(Verstrynge et al., 2021) have been used to detect the pres-
ence of damage such as cracks and voids inside bridge
structures. Nonetheless, the deployment of these diagnos-
tic methodologies requires specialized technical expertise
and the utilization of dedicated sensors to assess the struc-
tural health of bridges. The maintenance of these sensors
often poses considerable challenges, thereby circumscrib-
ing their range of application. This limitation is especially
pronounced in the context of health surveillance for large-
scale concrete structures, including extensive span bridges
and dams, where significant impediments are frequently
encountered (S. Yu et al., 2021).
In recent years, the rapid development of artificial

intelligencemethods and photogrammetry technology has
brought new solutions to the performance evaluation and
damage detection of concrete bridge structures (Perez-
Ramirez et al., 2019; Rafiei et al., 2016; Wu et al., 2022).
Javadinasab et al. (2021) presented the prospects for the
development of integrated structural control and health
monitoring systems in future smart cities. J. Zhang et al.
(2022) used optical cameras and video recording equip-
ment to measure the displacement of long-span bridges.

Chou et al. (2022) combined a multi-layer image pyramid
with operational modal analysis to obtain the modal char-
acteristics of themodel using captured images. Image anal-
ysis has become an effective means of efficient structural
vibration information measurement and health condition
assessment. Consequently, researchers have directed their
efforts toward extracting valuable information for struc-
tural health monitoring and damage assessment from raw
image data (Duque et al., 2018; Seo et al., 2018; Spencer
et al., 2019). Computer vision technology has gained signif-
icant popularity in the crack detection of bridges, owing to
its advantages of being non-contact and low-cost (Dong &
Catbas, 2021). Payab et al. (2019) conducted a comprehen-
sive investigation into the recognition of key parameters
of cracks on the concrete bridge surface, including the
distribution, width, and length. Y. F. Liu et al. (2016)
proposed a crack projection recognition method by com-
bining two-dimensional digital image technology with
three-dimensional reconstruction technology, addressing
the challenging problem of deformation correction in
quantitative crack recognition. However, it is worth noting
that these methods often necessitate close-range imaging,
focusing primarily on small areas of damage. Furthermore,
the recognition results are susceptible to background and
lighting variations within the imaging environment.
Recently, deep learning (DL) has experienced significant

advancements, particularly in the realm of convolutional
neural networks (CNNs). These networks have found
extensive application in image recognition and classifi-
cation tasks, showing tremendous potential in the field
of damage recognition in civil engineering and infras-
tructure (Bao & Li, 2021). Cha et al. (2017) compiled a
dataset of 40,000 images depicting concrete structural
cracks and compared a CNN-based crack detection model
with traditional digital image techniques, confirming the
reliability of DL in structural damage recognition. Y. Yu,
Rashidi, et al. (2022) integrated the revised chicken swarm
optimization algorithm into CNN to optimize network
structure, thereby improving the detection efficiency of
the network. Furthermore, Y. Yu, Samali, et al. (2022)
put forth an enhanced dempster shafer (DS) algorithm
that integrated the recognition results of 15 pre-trained
CNN models to enhance the precision of surface crack
detection in concrete structures. H. Zhang et al. (2023)
classified bridge images at three levels: structure, com-
ponent, and surface damage based on the DL algorithm.
The above studies have demonstrated the superiority of DL
in automatic feature extraction and addressing non-linear
classification problems.
Object detection algorithms represent one of the hot

topics in DL (Jodas et al., 2022), with wide-ranging
applications in various fields such as autonomous driv-
ing (Carranza-García et al., 2022), underwater detection
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(Foresti et al., 2022), object tracking (Urdiales et al., 2023),
and edge detection (Xian et al., 2023). Concurrently, they
also demonstrate promising potential in real-time detec-
tion of structural surface damage. The you only look once
(YOLO; Redmon et al., 2016), integrates target classifica-
tion and positioning into a single convolutional network,
enabling it to predict multiple bounding boxes and class
probabilities simultaneously, thus achieving faster detec-
tion speeds. C. Zhang et al. (2020) proposed an enhanced
YOLOv3 (Redmon & Farhadi, 2018) by introducing a novel
transfer learning (TL; Pan & Yang, 2009) method for rec-
ognizing surface damage on concrete bridges. Yu et al.
(2021) improved YOLOv4 (Bochkovskiy et al., 2020) by
using a Focal Loss (Lin et al., 2017) and pruning algo-
rithm and proposed an efficient YOLOV4-FPM, which
was subsequently applied to the real-time crack detec-
tion of concrete bridges using unmanned aerial vehicle
(UAV). Zou et al. (2022) proposed an improved YOLOv4-D
for post-earthquake damage identification and reliability
assessment of reinforced concrete structures, which can
be used to preliminarily determine the degree of structural
damage and failure mode. Zhao et al. (2022) used the Swin
transformer as the backbone network for YOLOv5 (Jocher,
2020) and introduced coordinate attentionmodules to pro-
pose the YOLOv5s-HSC algorithm, which was applied to
damage detection in concrete dams. Recently, Gao et al.
(2023) introduced multi-task TL into the Transformer net-
work and proposed a multi-attribute structural damage
detection model, which showed superiority in multi-task
damage detection. X. Xu and Li (2024) achieved satisfac-
tory detection results by applying YOLOv7 (Wang et al.,
2022) for pipeline weld surface defect detection. Sohaib
et al., 2024) trained three different sizes of YOLOv8 (Jocher
et al., 2023) models using various datasets and employed
an ensemble strategy to establish a hybrid YOLOv8 model,
enabling efficient detection and segmentation of concrete
cracks. Nonetheless, the algorithms deployed in these
studies exhibit significant reliance on extensive computa-
tional resources. Further, the paucity of research focusing
on structural surface damage under complex environmen-
tal conditions, such as adverse weather, is conspicuous.
Consequently, their effectiveness is curtailed when tasked
with pinpointing large-scale damage in real-world scenar-
ios fraught with complexity.
To overcome these challenges, this study adopts

YOLOv4, a stable network architecture widely employed
in damage identification for concrete structures, as the
foundation to propose a novel lightweight object detec-
tion network. This network is designed specifically for
detecting multi-damages of concrete bridges in complex
environments. The main innovations of this paper can be
summarized as follows: (1) establishment of a modified
YOLOv4, namely, YOLOMF, where MobileNetv3-FusedIR

is employed as the lightweight backbone network to
enhance the inspection speed and recognition ability for
minor damage. (2) Integration of depthwise separable
convolution (DSC) in feature fusion networks, replacing
standard convolution to decrease the amount of con-
volution layer parameters and enhance model damage
detection accuracy. (3) Selection of optimal activation
function combinations through investigating their effects
on the accuracy of the damage recognition model, thus
improving network feature extraction ability and damage
recognition accuracy, and (4) verification of the validity
and practicability of the proposed method by identifying
the damage of concrete bridges in complex environments,
including various field-of-view sizes (small, medium, and
large) as well as challenges such as motion blur, fog, rain,
snow, and noise disturbance.

2 DAMAGE RECOGNITIONMODEL
FOR CONCRETE BRIDGES

2.1 Overview of YOLOv4

The YOLOv4 model, combined many techniques with
YOLOv3, aiming to optimize the recognition process to
achieve an overall improvement in recognition accuracy
and speed as demonstrated in Figure 1. The backbone net-
work of YOLOv4 employs CSPDarknet53, which builds
upon Darknet53 while incorporating the cross-stage par-
tial network (Wang et al., 2020). This integration enhances
the diversity and representation capability of image feature
extraction. The CBM block, standing for convolution +

batch normalization (Ioffe & Szegedy, 2015)+Mish (Misra,
2019), is included among them.
The neck network is utilized for feature fusion across

multiple scales in YOLOv4, incorporating both spatial
pyramid pooling (SPP;He et al., 2015) and path aggregation
network (PANet; Liu et al., 2018). Within the SPP struc-
ture, three maximum pooling layers with kernel sizes of
5 × 5, 9 × 9, and 13 × 13 are employed along with a skip
connection to significantly expand the receptive field. The
PANet structure employs upsample and concat operations
to enhance the semantic information and receptive field of
features, resulting in a division of the original image into
52 × 52, 26 × 26, and 13 × 13 grids based on the propor-
tion of feature mapping. This enables recognition of small,
medium, and large objects. Additionally, the CBL block is
a combination of convolution, batch normalization, and
Leaky rectified linear units (LeakyReLU) layers (J. Xu
et al., 2020). The head network employs an anchor-based
regression classifier to calculate the position, category, and
confidence information of each detected object, generating
object detection results.
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F IGURE 1 Structural diagram of the you only look once v4 (YOLOv4) network.

F IGURE 2 Bottleneck structure in the CBL × 3 block. CBL,
convolution, batch normalization, and LeakyReLU.

The CBL × n block in YOLOv4 is composed of multi-
ple bottleneck structures (He et al., 2016) as illustrated in
Figure 2. The initial 1× 1 convolution compresses the input
feature map (B × C × H × W) into (B × C/r × H × W),
followed by feature extraction through 3 × 3 convolution
layers. Finally, a 1 × 1 convolution reshapes the resulting
feature map to match the dimensions of the initial fea-
ture map. Incorporating a bottleneck structure into the
network architecture offers notable advantages in terms of
parameter reduction and network depth augmentation.

2.2 Novel backbone based on
MobileNetv3

The standard backbone network of the original YOLOv4
is CSPDarkNet53. Although it can achieve acceptable
accuracy in object detection, the large number of model
parameters leads to considerable processing time and hin-
ders real-time onsite inspection for actual bridges. To

enhance the detection speed and accuracy of YOLOv4
while reducing network complexity and parameter count,
the backbone network is replaced with a novel back-
bone, which is developed by combining the strengths of
MobileNetv3 (Howard et al., 2019) and Fused-MBConv
(Yang et al., 2018; Zoph & Le, 2016). Additionally, DSC
(Howard et al., 2017) is employed in place of standard
convolution to reduce computational costs and improve
network efficiency.

2.2.1 DSC

The DSC comprises a depthwise convolution (DWC) layer
and a pointwise convolution (PWC) layer as illustrated in
Figure 3. First, DWC is conducted on the input features,
enabling the acquisition of uncorrelated feature maps for
each channel. Subsequently, the relevant feature informa-
tion from channels that share the same spatial position
within the feature maps is effectively integrated through
PWC.
Assuming the input feature map with a size of

𝐷𝑓 × 𝐷𝑓 , convolution kernel with size of 𝐷𝑘 × 𝐷𝑘, M
input channels, and N output channels. The compu-
tation quantity for a standard convolution operation
is 𝐷𝑓 × 𝐷𝑓 × 𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁, while the computation
quantity of DWC is 𝐷𝑓 × 𝐷𝑓 × 𝑀 × 𝑁, and the compu-
tation quantity of PWC is 𝐷𝑓 × 𝐷𝑓 × 𝐷𝑘 × 𝐷𝑘 × 𝑀. The
ratio between the computation quantity of DSC and stan-
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F IGURE 3 Description of the inverted residual blocks (IRBlock) architecture.

dard convolution can be calculated using the following
Equation (1):

𝐷𝑓 × 𝐷𝑓 × 𝐷𝑘 × 𝐷𝑘 ×𝑀 + 𝐷𝑓 × 𝐷𝑓 ×𝑀 × 𝑁

𝐷𝑓 × 𝐷𝑓 × 𝐷𝑘 × 𝐷𝑘 ×𝑀 × 𝑁

=
1

𝐷2
𝑘

+
1

𝑁
(1)

As shown in Equation (1), the main advantage of DSC
is the reduction in model parameter count and com-
putational complexity, leading to improved lightweight
performance of the model. While maintaining a certain
level of accuracy, it significantly reduces themodel size and
computational requirements. This characteristic renders
the DSC particularly well-suited for application scenar-
ios with limited computing resources, such as real-time
detection using mobile devices like UAV.

2.2.2 MobileNetv3

MobileNetv3 is a lightweight CNN proposed by Google,
which optimizes and improves the network structure
through network architecture search (Zoph & Le, 2016)
and NetAdapt algorithm (Yang et al., 2018), based on
MobileNetv1 (Howard et al., 2017) and MobileNetv2 (San-
dler et al., 2018). It is primarily utilized for tasks like
image classification and object detection on mobile and
embedded devices.
The MobileNetv3 architecture is composed of a

sequence of inverted residual blocks (IRBlock) featuring
a linear bottleneck as shown in Figure 3. The bottleneck
structure of the IRBlock is distinct from the traditional
bottleneck structure depicted in Figure 2. First, channel
C of the feature map is expanded to C1 using a 1 × 1
convolution, followed by DWC with kernel size k × k
(where MobileNetv3 adopts 3 × 3 and 5 × 5) to extract

feature information. Finally, the quantity of channels is
reduced from C1 to C2 using 1 × 1 convolution, where
C1 > C ≥ C2. The IRBlock has two forms, using a residual
connection when the stride of the DWC is set to 1. The
linear bottleneck is implemented by utilizing the linear
activation function in the final 1× 1 convolution layer
of IRBlock, which can avoid information loss due to
nonlinear activation functions acting on low-dimensional
features
To enhance the extraction capability of effective fea-

tures, MobileNetv3 incorporates a modified squeeze and
excitation network (SENet; Hu et al., 2018) after DWC
processing as described in Figure 3.
As a channel attention mechanism (AM), the modi-

fied SENet primarily comprises the squeeze and excitation
operations, which enable learning of importance weights
for each feature channel, followed by reweighting of the
feature channel. For the input feature layerX, the standard
convolution operator Ftr is used to derive the feature layer
U. The spatial dimension (H ×W) of each feature channel
is compressed through global average pooling, condens-
ing the information of each feature channel into a weight
vector Z.
To comprehensively capture the correlation between

feature channels, the weight vector Z executes a dimen-
sion reduction layer with parameter W1, followed by a
ReLU activation layer and a dimension increase layer with
parameter W2. Finally, an H-Sigmoid activation function
is applied to achieve the interrelated importance weight
vector S.
To update the feature layer, the weight value sc of

each feature channel in the acquired weight vector S is
multiplied by its corresponding element uc in the fea-
ture layer U. This multiplication operation ensures that
each feature channel is appropriately adjusted based on
its associated weight value, leading to the updated feature
layer 𝑋̃.
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TABLE 1 Parameter setting of the MobileNetv3-FusedIR.

Stage Type Kernel size Stride Channels AM NL Layers
0 Conv2d 3 × 3 2 16 – H-Swish 1
1 Fused-MBConv 1, 3 × 3 1 16 SE0.25 ReLU 1
2 Fused-MBConv 4, 3 3 × 3 2, 1 24 SE0.25 ReLU 2
3 Fused-MBConv 3, 3, 3 3 × 3 2, 1, 1 40 SE0.25 ReLU 3
4 IRBlock 6, 2.5, 2.3, 2.3 3 × 3 2, 1, 1, 1 80 SE0.25 H-Swish 4
5 IRBlock 6, 6 3 × 3 1, 1 112 SE0.25 H-Swish 2
6 IRBlock 6, 6, 6 5 × 5 2, 1, 1 160 SE0.25 H-Swish 3
7 Conv2d 1 × 1 1 960 – H-Swish 1
8 Pool 7 × 7 1 – – – 1
9 Conv2d, NBN 1 × 1 1 1280 – H-Swish 1
10 Conv2d, NBN 1 × 1 1 k – – 1

Note: Conv2d denotes convolution. Fused-MBConv 4, 3 means that the first 3 × 3 convolution layer of the Fused-MBConvBlock increases the number of channels
for the input feature matrix by four and three times, respectively.
Abbreviations: AM, attention mechanism; IRBlock, inverted residual blocks; MobileNetv3-FusedIR, MobileNetv3 with fused inverted residual; NBN, no batch
normalization; NL, nonlinear activation function.

F IGURE 4 Structure of the MobileNetv3-FusedIR.

2.2.3 Innovative lightweight backbone
network

Although the DSC has demonstrated exceptional perfor-
mance in lightweight CNNs, it often falls short of fully
leveraging the capabilities of modern accelerator parallel
computing, particularly in shallow network architectures
(Tan & Le et al., 2021). Therefore, while MobileNetv3
exhibits satisfactory performance in object detection, its
training speed and accuracy do not meet the desired level.
To efficiently extract features from shallow network archi-
tectures, the Fused-MBConv (Gupta & Tan, 2019) has been
proposed as a replacement for DSC in shallow networks of
lightweight CNNs.
This study used a novel backbone network named

MobileNetv3-FusedIR, which replaces the IRBlock in the
shallownetwork ofMobileNetv3with Fused-MBConv, and
by integrating the strengths of both IRBlock and Fuse-
MBConv, the feature extraction process of theMobileNetv3
backbone network is optimized. The Fused-MBConv is
obtained by replacing the 1 × 1 PWC and 3 × 3 DWC in
IRBlock with the 3 × 3 standard convolution as depicted in
Figure 4.
Table 1 presents the specific parameters of MobileNetv3-

FusedIR, where Stages 1–3 are set to Fused-MBConv and

Stages 4–6 are set to IRBlock. In addition, SE0.25 is used
in Stages 1–6, representing the count of nodes in the first
fully connected layer as 0.25 times that of the input fea-
ture matrix channels of the SENet, that is, the number of
elements in weight vector Z.

2.3 Activation function in CNN

Activation functions play a crucial role in neural networks
by introducing nonlinearity to the linear transformation
within each layer. They are implemented as point-wise
functions, operating on individual elements, to enable
the network to capture complex relationships and nonlin-
ear patterns in the data. In early literature, Sigmoid and
TanH were extensively used; however, they subsequently
proved ineffective in deep neural networks. Compared to
Sigmoid and TanH, ReLU offers advantages such as sim-
ple computation, nonlinear and gradient stability, better
generalization ability, and faster convergence. However,
it also comes with disadvantages, including the presence
of dead neurons, non-zero-centered output, and non-
differentiability. Over the years, many activation functions
have been proposed to address the drawbacks of ReLU.
They include ReLU6 (Sandler et al., 2018), LeakyReLU (J.
Xu et al., 2020), sigmoid linear unit (SiLU) (Ramachandran
et al., 2017), and H-Swish (Howard et al., 2019) as shown in
Figure 5, and these activation functions can be defined as
Equations (2) to (6), respectively.

ReLU (𝑥) =

{
𝑥, if 𝑥 > 0

0, if 𝑥 ≤ 0
(2)

ReLU6 (𝑥) =

⎧⎪⎨⎪⎩
6, if 𝑥 ≥ 6

𝑥, if 0 < 𝑥 < 6

0, if 𝑥 ≤ 0

(3)
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F IGURE 5 Different activation functions and their grad.

LeakyReLU (𝑥) =

{
𝑥, if 𝑥 > 0

𝑎𝑥, if 𝑥 ≤ 0
(4)

H− Swish(𝑥) = 𝑥
R𝑒𝐿𝑈6(𝑥 + 3)

6
(5)

SiLU(𝑥) = 𝑥 ⋅ Sigmoid(𝑥) = 𝑥

1 + 𝑒−𝑥
(6)

The H-Swish solves the problems of gradient vanish-
ing, sparsity, and discontinuity that are present in the
ReLU. By improving model performance and efficiency,
the expression and generalization capabilities of neural
networks are enhanced. Moreover, it is especially well-
suited for lightweight CNNs, which can effectively reduce
the computational cost of mobile device detection.
This study discussed the influence of different activation

functions on YOLOMF. The settings of the activation func-
tions are shown in Table 2, where CB-NL × 3/CB-NL ×5
represents the bottleneck structure, and CB-NL represents

TABLE 2 Activation functions setting in you only look once v4
(YOLOv4) with MobileNetv3 and fused inverted residual blocks
(YOLOMF).

Models CB-NL × 3/CB-NL × 5 CB-NL
YOLOMF1 ReLU6 ReLU6
YOLOMF2 Hard-Swish LeakyReLU
YOLOMF3 Hard-Swish SiLU

Abbreviation: CB-NL, standard convolution block.

the standard convolution block. This article replaces the
3 × 3 standard convolution in Figure 1 with DSC, which
contributes to a more lightweight model.

2.4 YOLOMF for concrete bridge
damage recognition

This study aims to provide a comprehensive comparative
analysis of three distinct backbone networks: DarkNet53,
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JIANG et al. 3653

F IGURE 6 Structural diagram of the YOLOMF network.

MobileNetv3, and MobileNetv3-FusedIR. These backbone
networks are closely associated with their respective
main networks, namely, YOLOv4, YOLOM, andYOLOMF.
Through a thorough examination and comparison of these
network combinations, the study seeks to contribute valu-
able insights to the field of computer vision and object
detection.
The main process of damage recognition for concrete

bridges using YOLOMF is shown in Figure 6. In terms
of YOLOv4, the YOLOMF surpasses it in three aspects.
First, it employs a new backbone network, MobileNetv3-
FusedIR, replacing CSPDarknet53 as the backbone of
YOLOMF. In MobileNetv3-FusedIR, Fused-MBConv is
introduced as a feature extraction block for the back-
bone shallow network due to the poor performance of
DSC in this context. Second, to further minimize the
model parameters, the 3 × 3 standard convolution was
replaced with DSC. Third, by studying the effect of dif-
ferent activation functions on network performance, the
optimal combination of activation functions is selected
to enhance both the efficiency and precision of damage
detection.

3 DATASETS OF CONCRETE BRIDGE
DAMAGE

3.1 Data sources

It is well known that the generalization capacity of
CNNs principally relies on a sufficient volume of training
data, particularly labeled samples. In circumstances where

the training data are insufficient, the risk of overfitting
becomes pronounced. The task of constructing a dataset
for concrete bridge damage is a challenging endeavor,
demanding substantial time and human resources. Cur-
rent research predominantly focuses on main damage
types such as crack, rebar exposure, and spalling. However,
in practical engineering scenarios, the forms of damage
to concrete bridge structures are manifold and diverse.
Relying on a single type of damage detection cannot accu-
rately reflect the true state of concrete bridge deterioration.
Consequently, researchers are required to further explore
a broader spectrum of damage types and collect more
comprehensive and diversified data, to enhance the preci-
sion and reliability of damage detection in concrete bridge
structures.
In this study, the dataset used for concrete bridge dam-

age recognition adopts the format of the PASCAL VOC
dataset. During the process of collecting image data, the
project team members used a UAV cloud control plat-
form and smartphones to conduct on-site data collection
in Changsha, Hunan. The images obtained through the
UAV and smartphones have resolutions of 5472 × 3078 and
4096× 3072, respectively. During the fieldwork, more than
90% of the images with damaged surfaces were collected,
while a minority were sourced through Internet searches.
A concrete bridge damage dataset containing 2235 orig-
inal images was established. The dataset includes seven
common types of damage, such as crack, spalling, rebar
exposure, separation, corrosion, voids pits, and hole. Dur-
ing model training, the damage dataset is partitioned into
a training set, validation set, and test set. The propor-
tion between the training set and the validation set is 9:1,
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F IGURE 7 Damage dataset in complex environments.

while the proportion between the combined training and
validation set and the test set is also 9:1.
The impact of model performance is widely acknowl-

edged to depend on the amount of valid information in
the training database. Nevertheless, in practical scenar-
ios, training models with deeper network architectures
using abundant image samples encompassing multiple
damage types becomes unrealistic. To mitigate the poten-
tial risk ofmodel overfitting and enhance its generalization
capability, the Python image augment library Imgaug is
used to augment the established database, simulating
complex environments under the disturbances of severe
weather, noise, and lighting conditions. The creation pro-
cess of the damage dataset of concrete bridges in complex
environments is shown in Figure 7.
The complex environment augments method is an

offline data augmentation technique that involves the
following steps: first, randomly selecting two to three
transformations from a set of five, including motion blur,
fog, rain, snow, and noise. Then, a single transformation is
randomly selected from three options: halving or doubling
contrast, increasing brightness, and enhancing color sat-
uration, to create the enhancement sequence. Finally, the
original dataset is enhanced for a set number of cycles. In
this experiment, 8940 images of concrete bridge damage in
complex environments were obtained by three augments
to the original dataset.

3.2 Data annotation

The LabelImg software was utilized to annotate images of
concrete bridge damage. In accordance with various dam-
age categories and the annotation format of the PASCAL
VOC dataset, a total of 32,488 damage targets have been

TABLE 3 Statistical of concrete bridge damage datasets.

Damage type Labeling number Proportion (%)
Crack 3845 11.83
Spalling 4187 12.89
Rebar exposure 6193 19.06
Separation 2529 7.87
Corrosion 1188 3.66
Voids pits 787 2.42
Hole 13,759 42.35
Total 32,488 –

annotated in the original dataset. Specific statistics regard-
ing the damage information are presented in Table 3. In the
dataset, the quantities of labels for crack, spalling, rebar
exposure, and separation are relatively balanced, while
corrosion and voids pits have fewer labels. The label quan-
tity for holes is the highest due to their concentrated and
abundant presence in the damaged images. To address
the issue of imbalanced distribution among different dam-
age samples, this study adopts Focal Loss to enhance the
recognition and classification ability of the model toward
samples with fewer instances of damage.

4 EXPERIMENTS ON
MULTI-DAMAGE RECOGNITION OF
CONCRETE BRIDGES

To evaluate the damage recognition capability and appli-
cation prospect of YOLOMF, the model was trained using
data obtained from a complex environment data augmen-
tation program. Its damage identification accuracy was
subsequently assessed on the test data. The experiment
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comprises two primary stages: training the model and
testing the model. First, the YOLOMF model undergoes
training using the designated training set. Simultaneously,
the validation set is utilized to assess the convergence of the
network throughout the training procedure. Second, three
distinctive test experiments are established to holistically
assess the efficacy of YOLOMF in multi-damage recog-
nition for concrete bridges, including (1) comparing the
damage recognition capabilities of YOLOv4, YOLOM, and
YOLOMF; (2) comparing the damage recognition capabil-
ities of YOLOMFwith other excellent CNNmodels and (3)
analyzing the effect of complex environment on damage
recognition accuracy of YOLOMF.

4.1 Experimental environment

In this experiment, the damage recognition algorithm is
trained and tested on a personal computer running the
Ubuntu 20.04.5 LTS operating system. The computer is
equipped with a central processing unit (CPU) of Intel
i9-13900KF with 24-core 32-threaded, and two graph-
ics processing units (GPUs) of NVIDIA RTX4090 with
24GB graphics memory. For streamlined computation,
CUDA 11.3 and cuDNN 8.2.0 are used. The programming
framework is supported by Python 3.7 and PyTorch 1.11.

4.2 Model performance assessment
metrics

To evaluate the efficiency and precision of the damage rec-
ognized based on the object detection algorithm, a set of
metrics has been chosen as evaluation indicators. These
metrics include average precision (AP), mean AP (mAP,
the intersection over union threshold is set to 0.5.), F1
score, frames per second (FPS), parameter count, and
computation workload (floating-point operations, FLOPs).
The calculation equations for each of these metrics are
provided below:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(7)

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8)

𝑓1 =
2𝑃 ⋅ 𝑅

𝑃 + 𝑅
(9)

𝐹1 =

∑
𝑓1

𝑛
(10)

𝐴𝑃 = ∫
1

0

𝑃(𝑅)𝑑𝑅 (11)

𝑚𝐴𝑃 =

∑
𝐴𝑃

𝑛
(12)

𝐹𝑃𝑆 =
𝑁𝑖𝑚𝑎𝑔𝑒

𝑇𝑡𝑜𝑡𝑜𝑙
(13)

where P represents the precision rate, which is defined
as the proportion of correctly predicted positives out of
all predicted positives. R represents recall rate, which is
defined as the proportion of correctly predicted positives
out of all actual positives. The PR curve plots a curve by
calculating precision and recall at different classification
thresholds, with the horizontal axis representing recall and
the vertical axis representing precision. AP represents the
area under the PR curve and is used to measure the overall
performance of the model. The count of accurately identi-
fied targets is referred to as true positive (TP), while false
positive (FP) pertains to the count of mistakenly identified
non-targets as targets, and false negative (FN) reflects the
count of undetected targets. n represents the count of dam-
age classes, Ttotal represents the overall duration for image
identification, and Nimage corresponds to the total count of
images successfully detected.

4.3 Model training

In the area of bridge damage recognition, it is a challenge
for researchers to collect satisfactory training data. In this
context, the TL approach stands out as a potent tool, which
not only minimizes the reliance on training data quantity
but also maximizes the exploitation of existing resources.
The TL partitions the dataset into a source domain and a
target domain. The fundamental concept is to apply the
knowledge acquired from the source domain to the tar-
get domain, thereby improving the learning efficiency and
performance of the target task. In situations where two
datasets are associated, certain basic features can be shared
within the CNNmodels, whereas advanced features can be
fine-tuned through TL techniques.
In this study, both YOLOM and YOLOMF execute TL

on the PASCAL VOC dataset to enhance the general-
ization capability and recognition accuracy of models.
During the TL process for YOLOM, the model weights of
YOLOv4 are used as pre-training weights, thereby endow-
ing YOLOMwith prior knowledge from the PASCAL VOC
dataset. Similarly, YOLOMF is pre-trained using model
weights of YOLOM on the PASCAL VOC dataset, fol-
lowed by fine-tuning using the dataset of concrete bridge
damage, ultimately achieving a model capable of multi-
damage recognition of concrete bridges. Through the
above across backbone network TL strategy, the prior
knowledge learned by YOLOv4 and YOLOM from the
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F IGURE 8 Transfer learning method.

PASCAL VOC dataset can be smoothly transferred into
the YOLOMF model, thereby significantly reducing train-
ing time and improving the generalization capabilities of
YOLOMF. The TL process of the model is depicted in
Figure 8.
In the process of TL, the hyperparameter settings for

fine-tuning YOLOMF using PASCAL VOC dataset and
bridge damage dataset are as follows: The momentum
parameter is set to 0.937 using the Adam optimizer. The
initial learning rate is 0.001, and a cosine annealing strat-
egy is used to gradually reduce the learning rate, reaching
its minimum of 0.00001. This experiment used a freeze
training strategy for 300 epochs. In the freezing phase, the
model backbone network is frozen, the network is only
fine-tuned without changing the weights of the feature
extraction network. This strategy can prevent potential
damage to backbone weights, thereby improving training
efficiency. This phase involves 50 epochs of training with
a batch size of 16. Subsequently, unfreezing training is per-
formed to unfreeze the backbone of themodel, resulting in
a change in the feature extraction network, thus updating
all network parameters. During this stage, training spans
250 epochs with a batch size of 8.
The loss curve and mAP curve of YOLOMF is depicted

in Figure 9. During the freeze training stage in the ini-
tial 50 epochs, the loss of the model rapidly decreases,
with the rate of decrease gradually slowing as the num-
ber of training iterations increases. After the 50th epoch,
the backbone network is unfrozen, and the entire network
model engages in the training. A slight increase in the loss
of the model can be observed during the training at the
51st epoch as evidenced by the figure. After 210 epochs,
the loss of YOLOMF gradually stabilizes, indicating that
the model is gradually converging. The final training loss

F IGURE 9 The curves of the YOLOMF model training.

and validation loss values are 0.094 and 0.099, respectively.
The mAP curve for YOLOMF shows a clear upward trend
after the 70th epoch following the unfreezing of the back-
bone network and after the 220th epoch when the model
converges, implying the robust generalization ability of the
YOLOMF model. Ultimately, it reaches a peak of 78.34%
after the 260th epoch.

4.4 Damage recognition results and
analysis

4.4.1 Comparison of damage recognition
results with YOLOv4

To validate the damage identification ability of the mod-
ified approach used in this study, the performance of
YOLOv4, YOLOv4-D (Yu et al., 2021), YOLOv4-FPM (Zou
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JIANG et al. 3657

TABLE 4 Comparison of performance evaluation indicators between YOLOv4 and other models.

Network Params (MB)
Floating-point
operations (FLOPs; GB) Precision (%) Recall (%) F1 (%)

Mean average
precision (mAP; %)

YOLOv4 63.97 142.00 89.21 49.53 63.36 70.76
YOLOv4-D 42.51 108.55 89.79 49.03 63.00 65.37
YOLOv4-FPM 11.64 20.21 89.54 49.48 63.25 70.47
YOLOM 11.43 16.98 89.80 47.37 61.46 68.67
YOLOMF1 11.53 18.75 90.37 52.95 66.50 72.84
YOLOMF2 11.53 18.75 90.56 59.25 71.19 76.97
YOLOMF3 11.53 18.75 90.66 60.32 71.95 77.32

et al., 2022), YOLOM, and YOLOMF in multi-damage
recognition for concrete bridges is compared.
Compared with YOLOv4, YOLOV4-D uses DSC to

replace the 3 × 3 standard convolution in the feature
pyramid structure and adopts theH-Swish activation func-
tion to enhance the feature extraction capabilities of the
model. This approach somewhat reduces the parame-
ters and complexity of the model. However, its detection
accuracy is 5.39% lower than that of YOLOv4. YOLOv4-
FPM, on the other hand, uses a pruning algorithm to
eliminate redundant feature channels in the YOLOv4,
resulting in a reduction of the parameters and complexity
of the model by 81.80% and 85.77%, respectively. The mAP
declines by only 0.29%, compared to YOLOv4, indicating
that the pruning algorithm is an efficient means of model
lightening. YOLOM and YOLOMF use lightweight back-
bone networks, MobileNetv3 and MobileNetv3-FusedIR,
contributing to the reductions of numbers of network
parameters by 82.13% and 81.97%, respectively, as well as
the decrease in FLOPs by 88.04% and 86.80%, respectively,
as shown in Table 4. This significantly alleviates the com-
putational burden of real-timemulti-damage inspection of
concrete bridges usingmobile terminals. It is worth noting
that although YOLOMhas a lightweight network architec-
ture, its precision is only 0.59% higher than YOLOv4, while
the recall, F1, andmAP have decreased by 2.16%, 1.09%, and
2.09%, respectively. This decrease is attributed to the low
efficiency of DSC in shallow networks and the inability to
extract rich damage features.
By contrast, the YOLOMF has demonstrated signifi-

cant improvements in precision, recall, F1, andmAP, while
incurring minimal increases in computation. As can be
seen, the MobileNetv3-FusedIR backbone has effectively
improved the deficiencies of MobileNetv3. The analysis
shows that using the combined activation function of
Hard-Swish and SiLU has better damage recognition per-
formance. In comparison with YOLOv4, YOLOMF3 boasts
improvements in precision, recall, F1 score, and mAP by
1.45%, 10.79%, 8.59%, and 6.56%, respectively. On the other
hand, the damage recognition performance of YOLOMF2

with the combination activation function of Hard-Swish
and Leaky ReLU was reduced. The YOLOMF1, which
adopts the ReLU6 activation function, exhibits the worst
performance. The main reason contributing to this phe-
nomenon is that ReLU6 introduces information loss in
high-dimensional inputs. It sets all negative values to zero
and clips positive values greater than 6, causing important
information loss. Consequently, YOLOMF3was selected as
the model for multi-damage detection of concrete bridges.
The AP and F1 scores of YOLOv4 and YOLOMF for

multi-damage recognition of concrete bridges are shown
in Figure 10. The results demonstrate that YOLOMF out-
performs YOLOv4 in recognition accuracy. Notably, the
YOLOMF displays substantial improvements in identify-
ingmulti-damage of concrete bridges, including corrosion,
crack, rebar exposure, and voids pits. Among these, the
most significant enhancement has been observed in the
recognition of voids pits, with an increase of 12.19% in
the AP value and a remarkable 20% increase in the F1
score. Both models exhibit good recognition capabilities
for spalling, mainly because of their prominent features,
especially in terms of shape and color. The YOLOMF has
a relatively small improvement in hole and rebar exposure
recognition accuracy. The main reason is that the hole is
a small target, and the rebar exposure is a specific target
with an extreme aspect ratio. In addition, these two types
of damage often occur in concentrated patterns, posing
challenges for feature extraction and making multi-target
recognition demanding.

4.4.2 Comparison of damage recognition
results with classical object detection models

This section compares YOLOMF with classic object detec-
tion models such as Faster R-CNN (Ren et al., 2015), single
shot detection (SSD) (Liu et al., 2016), YOLOv4, YOLOv5-
s, YOLOv7-tiny, and YOLOv8-s using the same dataset
and computer. Table 5 shows the number of parameters,
FLOPs, damage recognition precision (mAP), performance
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F IGURE 10 Comparison of damage recognition performance between YOLOv4 and YOLOMF.

TABLE 5 Comparison of performance evaluation indicators between YOLOMF and other models.

Network Params (MB) FLOPs (GB) mAP 0.5(%) F1(%) FPS (f/s)
Faster R-CNN 136.81 401.84 38.03 39.39 50
SSD 26.29 62.75 27.04 16.64 120
YOLOv4 63.97 142.00 70.76 63.36 66
YOLOv5-s 7.08 16.53 72.56 68.88 150
YOLOv7-tiny 6.03 13.23 62.19 57.19 225
YOLOv8-s 11.14 28.66 73.69 69.97 151
YOLOMF 11.53 18.75 77.32 71.95 85

Abbreviation: FPS, frames per second.
The optimal value is shown in bold.

(F1), and speed (FPS) for each model. It can be observed
that the two-stage detection algorithm Faster R-CNN has
a high number of parameters and complexity, while the
structures of SSD and YOLOv4 are relatively cumbersome.
In contrast, YOLOv5-s and YOLOv7-tiny possess relatively
fewer computational parameters. The number of param-
eters YOLOv8-s is slightly lower than that of YOLOF.
However, YOLOv8-s exhibits a higher FLOPs value and a
more complex model structure.
Contrastingly, Faster R-CNN, despite itswealth ofmodel

parameters, exhibits subpar performance in handling com-
plex concrete damage. Models such as YOLOv4, YOLOv5-
s, and others, although they demonstrate commendable
recognition accuracy, fall short in their feature extrac-
tion capabilities for identifying multi-damage in concrete
bridges, particularly when compared to YOLOMF, which
achieves an mAP of 77.32%. SSD has some advantages in
inspection speed, but it has the poorest damage identi-
fication accuracy. The YOLOv7-tiny, with its lightweight

network, has the fastest recognition speed, reaching 225f/s.
YOLOv5-s and YOLOv8-s also exhibit relatively fast recog-
nition speeds. YOLOMF, despite some compromise in
identification speed, attains a rate of 85f/s, marking a
28.79% enhancement in damage identification speed over
YOLO4. This competence can satisfy the demands of
real-time damage detection in concrete bridges.
The recognition results of multi-damage in concrete

bridges about each model are presented in Tables 6 and 7.
The YOLOMF exhibits an absolute advantage in the
recognition accuracy for corrosion, hole, rebar exposure,
separation, and spalling. However, its accuracy in identify-
ing crack and voids pits is not as high as that of YOLOv8-s.
Overall, when considering the multi-damage recogni-
tion performance, YOLOMF is on par with YOLOv8-s,
while surpassing it in terms of multi-damage recognition
accuracy.
The multi-damage identification results of YOLO series

networks in small, medium, and large field of view of
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TABLE 6 Comparison of damage recognition results between YOLOMF and other models.

Corrosion Crack Hole Rebar exposure
Network AP (%) F1 (%) AP (%) F1 (%) AP (%) F1 (%) AP (%) F1 (%)
Faster R-CNN 43.30 45.27 37.60 38.95 2.70 8.55 36.37 40.30
SSD 21.22 9.15 21.24 12.33 17.52 7.60 25.35 11.78
YOLOv4 72.56 65.03 63.82 58.26 55.17 49.25 73.59 66.81
YOLOv5-s 77.00 72.99 66.22 63.91 54.56 52.35 67.88 63.13
YOLOv7-tiny 65.55 64.80 51.32 49.32 49.51 37.20 62.44 57.29
YOLOv8-s 81.99 79.46 74.54 71.43 34.16 25.76 69.44 66.82
YOLOMF 83.15 76.66 72.33 68.02 55.50 49.34 74.95 70.01

TABLE 7 Comparison of damage recognition results between YOLOMF and other models.

Separation Spalling Voids pits
Network AP (%) F1 (%) AP (%) F1 (%) AP (%) F1 (%)
Faster R-CNN 41.07 41.32 59.68 55.68 45.51 44.66
SSD 29.21 21.26 50.44 46.05 24.05 8.28
YOLOv4 68.14 60.43 83.87 76.83 78.15 66.93
YOLOv5-s 75.03 73.58 85.23 80.83 82.01 74.39
YOLOv7-tiny 58.81 57.85 81.08 76.30 66.62 57.85
YOLOv8-s 77.12 75.44 86.28 84.29 91.59 86.24
YOLOMF 77.70 71.58 87.27 81.22 90.34 86.93

TABLE 8 Statistics of damage recognition results between YOLOMF and other models in different field of view.

The number of damage detected by object detection models in different field of view
YOLOv4 YOLOv5-s YOLOv7-tiny YOLOv8-s YOLOMF

Damage
type S M L S M L S M L S M L S M L
Corrosion 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/1 0/0 0/0 0/1 0/0
Crack 2/0 0/0 0/0 2/1 0/0 0/0 2/3 0/0 0/0 2/2 0/0 0/0 2/2 0/0 0/0
Hole 36/28 0/0 0/0 36/31 0/0 0/0 36/27 0/0 0/0 36/21 0/0 0/0 36/28 0/0 0/0
Rebar
exposure

0/0 23/9 11/1 0/0 23/13 11/4 0/0 23/11 11/2 0/0 23/8 11/0 0/0 23/9 11/3

Separation 0/0 6/2 13/7 0/0 6/5 13/7 0/0 6/4 13/7 0/0 6/4 13/6 0/0 6/4 13/4
Spalling 0/0 22/17 10/8 0/0 22/20 10/6 0/1 22/19 10/6 0/0 22/19 10/7 0/0 22/17 10/7
Voids pits 0/0 2/0 0/0 0/0 2/0 0/0 0/0 2/0 0/0 0/0 2/1 0/0 0/0 2/1 0/0

Note: x/y form of data representation: the actual damage number in the image to be detected/the damage number detected by model. S, M, and L represent small,
medium, and large field of view, respectively. The linear underlining indicates that there are false positives in the damage recognition.

concrete bridges are shown in Figure 11. At the same
time, Table 8 shows the statistics of the multi-damage
identification results of YOLOMF and other models in
different fields of view. In the small field of view, although
the holes are small in shape and seem difficult to iden-
tify, they are densely distributed and numerous in the
damage images, accounting for 42.35% of the damage
dataset labels. Therefore, all models can identify most
of the holes. Among them, YOLOv8-s detects the least
number of holes, identifying 21 out of 36 holes, with an

identification rate of 58.3%. The YOLOMF and YOLOv8-s
show commendable identification ability for both holes
and cracks, although occasional missed detections still
occur. YOLOv4 and YOLOv5-s are not sensitive enough
to crack, YOLOv7-tiny has a good identification effect on
crack, but there are false positive problems.
Within the medium field of view, all models demon-

strated good recognition capabilities for separation,
spalling, and rebar exposure, but there were false detec-
tions and missed detections in recognition of corrosion
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F IGURE 11 Damage recognition results using YOLOMF and other models in different field of view.

and voids pits. For example, YOLOv4, YOLOv5-s, and
YOLOv7-tiny failed to recognize voids pits, while YOLOv5-
s, YOLOv8-s, and YOLOMF misidentified water stains as
corrosion. This may be because these two types of damage
were less frequent in the damage dataset, and the models
could not effectively extract damage features. It can be
seen from Table 8 that YOLOv5-s had a slight advantage in

the number of damage identifications. However, in terms
of overall damage recognition performance, YOLOv8-s
and YOLOMF performed better.
In the large field of view, the detection of damaged

objects was hindered by the challenges posed by the
small size of the damaged area, compared to the entire
image. The results showed that the damage recognition
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TABLE 9 Statistics of damage recognition results between YOLOMF and other models in complex environments.

The number of damage recognition by models in complex environments
Motion blur Fog Rain

Damage Number v4 v5-s v8-s MF v4 v5-s v8-s MF v4 v5-s v8-s MF
Corrosion 1 1 1 1 0 0 0 1 0 0 0 1 0
Crack 0 0 0 0 0 0 0 0 0 0 0 1 0
Hole 0 0 0 0 0 0 0 0 0 0 0 0 0
Rebar exposure 30 11 10 2 14 7 5 2 11 10 11 3 13
Separation 0 0 0 0 0 0 0 0 0 0 0 0 0
Spalling 9 1 2 7 6 1 4 6 7 2 2 3 5
Voids pits 2 0 1 2 2 1 2 2 2 0 2 2 2

performance of each model was not satisfactory. They
could only partially identify separation and spalling, and
the recognition effect of rebar exposure was the worst.
Rebar exposure was a smaller form of damage, and
YOLOv8-s could not even recognize it.

4.4.3 Impact of complex environments on
damage recognition accuracy of the YOLOMF

To verify the multi-damage recognition performance of
concrete bridges using YOLOMF in complex environ-
ments, the collected damage dataset was subjected to
specific image augmentation operations, includingmotion
blur, fog, rain, snow, noise conditions, and color varia-
tions. The multi-damage recognition results of YOLOv4,
YOLOv5-s, YOLOv8-s, and YOLOMF in complex environ-
ments are depicted in Figure 12.
The results indicate that under the adverse conditions of

image augmentation simulation, YOLOv4 can only effec-
tively capture a portion of the rebar exposure and spalling.
Notably, it exhibits a substantial number of missed detec-
tions when there is noise interference and color variations.
Additionally, its ability to extract voids pits features is inad-
equate due to the resemblance of the shape and color
characteristics of voids pits to the concrete background.
In comparison to YOLOv4, both YOLOv5-s and YOLOv8-s
can recognize a broader range of damage types, partic-
ularly demonstrating superiority in identifying spalling
and voids pits. However, they fail to significantly identify
elongated types of damage, such as rebar exposure. Specif-
ically, YOLOv8-s identifies only 6.7% of the rebar exposure
in the damaged images under conditions of motion blur,
foggy weather, and color variations as shown in Tables 9
and 10. Similarly, noise strongly interferes with the dam-
age recognition of both YOLOv5-s and YOLOv8-s, with
YOLOv8-s even erroneously identifying large areas of noise
background as voids pits.

Compared to YOLOv4, YOLOv5-s, and YOLOv8-s,
YOLOMF demonstrates superior potential for dam-
age recognition under various challenging conditions.
YOLOMF exhibits satisfactory performance in damage
identification under conditions involving motion blur, fog,
and rain, accurately identifying most surface damages.
This suggests that the effective collaboration between the
MobileNetv3-FusedIR backbone network, and the opti-
mally chosen activation functions enhance the ability of
the model to recognize surface damages with challenging
feature extraction.
In situations of snow and color variations, although

YOLOMF showed false negatives in the detection of
spalling and smaller rebar exposure, and its inability to
identify voids pits, it still retains the capacity to recognize
major damage areas. This surpasses the damage recog-
nition abilities of YOLOv4, YOLOv5-s, and YOLOv8-s.
However, it is noteworthy that noise interference contin-
ues to significantly impair the performance of YOLOMF
in damage recognition, with only a portion of the dam-
age correctly identified and some noise backgrounds being
erroneously detected as voids pits. Consequently, it is
imperative to enhance the capability of YOLOMF to resist
noise interference and recognize small damage.
Furthermore, for corrosion and voids pits damage, the

models employed in the experiment showed subpar per-
formance. This could be attributed to their relatively scarce
representation in the damage dataset, accounting for only
3.66% and 2.42% of the total labels. Their shape and color
attributes are easily confused with the background of the
concrete surface generated by image enhancement, result-
ing in false detection. This issue is also manifested in
damage recognition under different fields of view. Clearly,
the diversity, balance, and authenticity of the damage
dataset are crucial for improving the ability of the model
to recognize damage. Therefore, it is necessary to enhance
and refine the damage dataset of concrete bridges in
complex environments.
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F IGURE 1 2 Damage recognition results using YOLOv4, YOLOv8-s, and YOLOMF in complex environments.

TABLE 10 Statistics of damage recognition results between YOLOMF and other models in complex environments.

The number of damage recognition by models in complex environments
Snow Noise Color variation

Damage Number v4 v5-s v8-s MF v4 v5-s v8-s MF v4 v5-s v8-s MF
Corrosion 1 0 0 0 0 0 0 0 0 0 0 0 0
Crack 0 0 0 0 0 0 0 0 0 0 0 0 0
Hole 0 0 0 0 0 0 0 0 0 0 0 0 0
Rebar exposure 30 8 6 4 11 3 3 4 5 7 6 2 9
Separation 0 0 0 0 0 0 0 0 0 0 0 0 0
Spalling 9 1 1 1 2 1 1 1 2 1 1 4 4
Voids pits 2 0 0 0 0 0 0 1 1 0 2 0 0
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5 CONCLUSION

In this paper, a novel multi-damage identification model
for concrete bridges called YOLOMF is proposed based
on YOLOv4. This model achieves high-precision multi-
damage real-time detection of concrete bridges in complex
environments. The primary findings obtained from this
research can be summarized as follows.

1. YOLOM employsMobileNetv3 as its backbone network
and manages to significantly reduce network param-
eters and model complexity through the use of DSC.
The model params to merely 11.43 MB, and the FLOPs
are 16.98GB, which, respectively, represent a reduction
of 82.13% and 88.04%, compared to YOLOv4. However,
due to the inability of DSC to fully capture effective
spatial features in shallow networks, the multi-damage
detection precision of YOLOM is only 0.59%higher than
that of YOLOv4, while the recall, F1 score, and mAP
have decreased by 2.16%, 1.09%, and 2.09%, respectively.

2. YOLOMF uses MobileNetv3-FusedIR as its backbone
network, effectively mitigating the spatial feature loss
caused by the insufficient performance of DSC by intro-
ducing the Fused-MBConv module into the shallow
network of MobileNetv3, thereby enhancing the pre-
cision of the model in multi-damage recognition. The
efficient combination of MobileNetv3-FusedIR with
Hard-Swish and SiLU activation functions has enabled
YOLOMF to achieve mAP of 77.32% and F1 score of
71.95%, which are 6.56% and 8.59% higher than the orig-
inal YOLOv4, respectively. Furthermore, the damage
recognition performance of YOLOMF surpasses that of
advanced object detection models such as YOLOv8-s.
Although the detection speed of YOLOMF has some-
what decreased, it still reaches 85 f/s, representing a
28.79% improvement over the original YOLOv4. This
makes it suitable for real-time detection of multi-
damages in concrete bridges.

3. YOLOMF shows excellent performance in multi-
damage recognition of concrete bridges in various
field-of-view scenarios of small, medium, and large.
By employing image enhancement techniques to sim-
ulate complex real-world scenarios such as motion
blur, fog, rain, or snow conditions; noise interference;
and color variations, the applicability of the YOLOMF
model for multi-damage identification under intricate
environments was validated. The damage recognition
performance of YOLOMF is better than that of exist-
ing classical networks such as Faster R-CNN, SSD,
YOLOv5-s, and YOLOv8-s. However, the damage iden-
tification accuracy of YOLOMF for small damage and
noise interference scenes needs to be further improved.

More details and code are available at https://github.
com/llyun1995/YOLOMF. In future work, the authors will
further understand the role of different activation func-
tions in the target detection network, optimize the feature
fusion strategy, and integrate super-resolution technol-
ogy and more advanced AMs into the damage feature
extraction block to improve the multi-damage recognition
accuracy and generalization ability of the model.
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