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ABSTRACT

Evolving Video Analysis: From Object Perception to Holistic

Understanding

by

Mingfei Han

The domain of video content analysis has experienced rapid advancements due to

the proliferation of digital video content and the evolving capabilities of computer

vision technologies. Despite these advancements, significant challenges remain in

both video object perception and holistic video understanding, which are crucial for

applications ranging from autonomous driving to interactive media. This thesis aims

to address these challenges by developing innovative methodologies that enhance the

accuracy and e�ciency of video analysis systems.

In the area of video object perception, this research tackles the problem of accu-

rately detecting, categorizing and referring objects within video frames under vari-

ous conditions. Key contributions include the Hierarchical Video Relation Network

(HVR-Net), which utilizes inter-video proposal relations to enhance object detection

accuracy, and Progressive Frame-Proposal Mining (PFPM), which leverages sparse

annotations to improve detection in a weakly supervised context. Additionally, the

Hybrid Temporal-scale Multimodal Learning (HTML) framework is introduced to

refine the segmentation of objects based on textual descriptions, e↵ectively bridging

the gap between visual content and language inputs.

For holistic video understanding, this thesis introduces methodologies and datasets

that significantly improve the interpretation of complex video scenes and dynamics.

The Dual-AI framework employs dual paths to innovatively combine spatial and

temporal data, enhancing the analysis of individual actions and group dynamics for

more accurate recognition of complex group activities. Additionally, we have de-



veloped specialized methodologies for Portrait Mode Video recognition, optimizing

video analysis techniques for the vertical video format commonly found on social

media, thereby addressing its unique challenges. Furthermore, the Shot2Story20K

dataset establishes a new benchmark for multi-shot video understanding, facilitat-

ing detailed narrative synthesis across sequential shots to enrich the storytelling

potential of video content analysis.

In conclusion, this thesis contributes a suite of methodologies and datasets that

enhance both the foundational aspects of video object perception and the broader

capabilities of video understanding. These innovations not only address the current

limitations of video analysis technologies but also lay the groundwork for future ad-

vancements, suggesting a path forward for the integration of even more sophisticated

machine learning models into video content analysis systems. Through these e↵orts,

the thesis demonstrates significant progress in making video analysis more robust,

adaptable, and context-aware, aligning more closely with human-level perception

and interpretation.

Dissertation directed by Professor Xiaojun Chang,

Australian Artificial Intelligence Institute, University of Technology Sydney
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Chapter 1

Introduction

In the realm of computer vision, video content analysis stands as a cornerstone,

bridging raw visual data with actionable insights and interpretations. This discipline

is pivotal not only in advancing academic research but also in powering a multitude of

industrial applications ranging from autonomous driving and surveillance to content

recommendation and interactive media. As digital video content proliferates at an

unprecedented rate, driven by social media platforms and the increasing capabilities

of consumer electronics, the demand for sophisticated video analysis technologies

has surged. These technologies are tasked with providing precise and context-aware

interpretations that can inform decision-making and automate complex processes.

Within the domain of video content analysis, this thesis primarily investigates

two critical perspectives: object perception and holistic understanding. Object per-

ception, which includes tasks like object detection and segmentation, focuses on

identifying and delineating individual elements within video frames. This forms

the basis for more complex operations, as it allows systems to recognize and track

objects across sequences, crucial for applications such as tra�c monitoring and ac-

tivity recognition. On the other hand, holistic understanding encompasses a broader

spectrum, aiming to interpret entire scenes and actions within videos, engaging ar-

eas such as video recognition, captioning, and summarization. This branch delves

into the narrative and dynamic context of videos, striving to emulate human-like

comprehension and responsiveness to audio-visual streams, thereby enabling deeper

interactions between humans and machines.
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In the domain of video object perception, my research begins by examining how

to establish e↵ective relationships among all candidate object proposals to mitigate

categorical confusion. This e↵ort stems from the understanding that while candi-

date proposals e↵ectively cover the objects within a video, accurately categorizing

these proposals remains a significant challenge. Recognizing the impracticality of

densely annotating every frame in general video object detection due to the exten-

sive labor and time required, I explore the less resource-intensive approach of weakly

supervised video object detection. Here, I introduce a progressive frame-proposal

mining method that constructs holistic proposal relations across frames, enhancing

detection accuracy with minimal annotations.

Building upon the necessity for temporal dynamics in understanding video con-

tent, I propose a hybrid temporal relation modeling technique within the context of

referring video object segmentation. This approach is designed to align textual in-

structions of varying lengths with the dynamics of video frames sampled at di↵erent

rates, ensuring precise object segmentation in response to user queries.

In the domain of video holistic understanding, my research initially focuses on

the enhancement of holistic comprehension through the meticulous construction and

refinement of individual relationships within group activities. By analyzing and rein-

forcing individual actions and interactions, this study highlights the essential synergy

between detailed individual relation construction and the broader understanding of

group dynamics, facilitating deeper insights into collective behaviors.

Further exploring current trends in video content, my research shifts to the

emerging prevalence of portrait mode videos on social media platforms, which present

unique challenges due to their distinct data distribution. To address this, I introduce

a study on portrait mode videos, focusing on video recognition tasks, supported by

a newly developed dataset tailored specifically for this format. This initiative aims
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to adapt video analysis techniques to better handle the aspect ratio and content

focus unique to portrait mode videos.

Lastly, I address the complex problem of holistic understanding from the per-

spective of textual captioning and summarization in multi-shot videos. Recognizing

the distinct narrative structures and interconnected events typical of multi-shot con-

tent, I propose a new benchmark and develop an innovative method for generating

detailed textual summaries. This method leverages the capabilities of large language

models to enhance narrative coherence and contextual relevance across various shots,

thereby improving the interpretability and utility of video summaries.

The contributions of the thesis are listed below.

• I investigate the modeling of inter-proposal relations across di↵erent frames

to capture temporal dynamics and categorical clues essential for video ob-

ject perception. This research develops e↵ective methodologies tailored to

various tasks, including video object detection, weakly supervised video ob-

ject detection, and referring video object segmentation. Extensive experiments

demonstrate that these methods successfully capture the inter-frame and inter-

proposal dynamics and categorical consistency across diverse perception tasks.

• I delve into recognizing and describing videos through holistic understanding.

To facilitate this, I explore the dynamics between individuals to enhance group

activity comprehension. Additionally, I concentrate on two specific video for-

mats: portrait mode and multi-shot videos. For these, I propose new bench-

marks and develop methodologies that address challenges in video recognition

and textual summarization e↵ectively.

The following introduces the background and developed methodologies for video

object perception and holistic understanding.
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1.1 Video Object Perception

In Chapter 3, I tackle video object detection challenges by exploiting inter-video

proposal relations to mitigate categorical confusion. Traditional methods focus on

intra-video dynamics, but my approach, the Hierarchical Video Relation Network

(HVR-Net), integrates relations both within and across videos. This strategy en-

hances object distinction and accuracy by leveraging spatio-temporal contexts from

multiple sources, providing a richer understanding of similar-looking objects across

di↵erent categories. HVR-Net’s e↵ectiveness is validated on the ImageNet VID

benchmark, where it significantly improves classification accuracy and sets new per-

formance standards by utilizing comprehensive inter-video insights to reinforce cat-

egorical consistency and detection precision.

In Chapter 4, I explore the realm of weakly supervised video object detection,

which presents the challenge of detecting objects with minimal manual annotation.

Traditional methods rely heavily on densely annotated frames, which are time-

consuming and often impractical for large-scale applications. To address this, I

introduce a novel approach known as Progressive Frame-Proposal Mining (PFPM),

which e�ciently utilizes sparse labels to improve detection accuracy across video

frames. PFPM innovatively constructs holistic proposal relations by progressively

mining data from coarser to finer details, adapting the detection model to e↵ec-

tively utilize available annotations. This method not only reduces the dependency

on extensive manual labeling but also enhances the model’s ability to generalize

from limited data. Validated on the ImageNet VID benchmark, PFPM demon-

strates substantial improvements over existing weakly supervised methods, proving

its e�cacy in leveraging minimal supervision to achieve robust detection results.

In Chapter 5, I address the complex challenge of referring video object segmenta-

tion, where the objective is to segment objects from video frames based on a textual
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description. Existing methods often struggle with variations in temporal dynamics

and the multimodal nature of instructions. To overcome these limitations, I intro-

duce the Hybrid Temporal-scale Multimodal Learning (HTML) Framework, which

enhances segmentation accuracy by aligning dynamic visual content with varying

lengths of textual descriptions. The HTML framework uniquely combines intra-scale

and inter-scale multimodal learning, allowing for e↵ective integration of textual and

visual data across di↵erent temporal scales. This approach ensures that the model

captures both the immediate and extended context of the object in question, improv-

ing the precision and relevance of segmentation in response to descriptive queries.

Extensive testing on benchmarks like Ref-YouTube-VOS and Ref-DAVIS17 shows

that HTML sets a new standard for accuracy in referring video object segmenta-

tion, outperforming existing state-of-the-art methods by e↵ectively bridging the gap

between language and vision.

1.2 Video Holistic Understanding

In Chapter 6, I address the sophisticated challenge of group activity recognition,

which requires understanding both individual actions and their collective dynamics

within a group. Traditional methods often struggle with capturing the complex in-

terplay of spatial and temporal factors influencing group activities. To enhance the

analysis, I introduce Dual-AI, a Dual-path Actor Interaction Learning framework

that innovatively integrates spatial and temporal data to improve recognition accu-

racy. Dual-AI employs two complementary paths: the Spatial-Temporal (ST) path

and the Temporal-Spatial (TS) path. Each path processes actor interactions di↵er-

ently, allowing the framework to adaptively capture diverse group dynamics. The

ST path analyzes spatial relationships first, followed by temporal dynamics, while

the TS path reverses this order, catering to di↵erent activity patterns. This dual-

path strategy ensures a comprehensive understanding of both individual behaviors



6

and group interactions, significantly boosting the accuracy of activity recognition.

Tested on challenging benchmarks like Volleyball and Collective Activity datasets,

Dual-AI demonstrates its superiority by not only achieving state-of-the-art perfor-

mance but also showcasing robust adaptability across various group activities.

In Chapter 7, I explore the unique challenges of video recognition in portrait

mode, a format increasingly prevalent on social media platforms. Traditional video

recognition algorithms are primarily optimized for landscape mode, which does not

align well with the aspect ratio and content characteristics of portrait mode videos.

These videos often focus more on subjects with limited background context and

include distinctive spatial distributions. To address these specific challenges, I in-

troduce the PortraitMode-400 dataset, specifically designed to support the devel-

opment and evaluation of recognition algorithms tailored for portrait mode videos.

This dataset features a diverse range of categories reflective of typical portrait video

content, ensuring relevance and applicability to real-world scenarios. Building on

this dataset, I develop and test various methodological enhancements that optimize

recognition techniques for the vertical video format. These adaptations include spe-

cialized data augmentation strategies, tailored cropping approaches, and modified

network training protocols that better accommodate the unique properties of por-

trait mode videos. The methodologies demonstrated in this chapter not only enhance

the accuracy of video recognition in portrait mode but also provide a framework for

future research in adapting video analysis tools to other non-standard video formats.

In Chaper 8, I address the complex challenge of understanding and summarizing

multi-shot videos, which encompass multiple scenes and events within a single video

stream. Traditional video captioning approaches often struggle to adequately repre-

sent the narrative complexity and temporal transitions inherent in multi-shot con-

tent. To enhance the capability of video analysis systems in capturing the detailed

progression and interrelationships between shots, I introduce the Shot2Story20K
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dataset. Shot2Story20K is specifically designed for the audio-visual understanding

of multi-shot videos, featuring detailed annotations that describe both visual content

and corresponding audio narratives across various shots. This dataset encourages

the development of models that can integrate and contextualize the rich informa-

tion presented in both visual and auditory domains. Utilizing Shot2Story20K, I

propose a novel framework that leverages state-of-the-art large language models to

generate comprehensive video summaries. This method innovatively combines shot-

specific descriptions with overarching narrative synthesis, providing a cohesive and

detailed summary of complex video content. Extensive experiments demonstrate

that this approach not only outperforms existing captioning methods but also of-

fers new insights into the e↵ective integration of multimodal information for video

understanding.

1.3 Thesis Organization

This thesis is structured as follows:

In Chapter 2, a survey of video object perception and holistic understanding is

presented.

Chapters 3 to 5 sequentially explore the video object perception via inter-frame

relation construction across di↵erent tasks. More specifically, Chapter 3 introduces

the Hierarchical Video Relation Network (HVR-Net), which enhances object detec-

tion by leveraging inter-video proposal relations. Chapter 4 details a novel method

for improving detection with minimal annotations. It addresses the challenges of

weakly supervised learning in video object detection. Chapter 5 proposes a frame-

work that aligns textual descriptions with video content across di↵ering temporal

scales, improving segmentation precision.

In Chapters 6 to 8, the investigation shifts towards video holistic understand-
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ing from both video recognition and textual summarization. Chapter 6 explores

dual-path learning to analyze individual actions and group dynamics simultane-

ously, enhancing the recognition of complex group activities. Chapter 7 focuses on

adapting video recognition techniques to the portrait video format, highlighting the

development of a new dataset and methodologies tailored for social media content.

Chapter 8 presents a new benchmark and summarization method designed to address

the complexities of multi-shot video content, integrating multimodal information for

narrative synthesis.

Finally, Chapter 9 provides a brief summary of the thesis and discusses potential

directions for future exploration.
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Chapter 2

Literature Review

This chapter introduces a survey of related work in video analysis, mainly encom-

passing video object perception and video holistic understanding.

2.1 Video Object Perception

2.1.1 Video Object Detection

Object Detection in Still Images. The field of object detection in still images

[33, 57, 58, 71, 116, 139, 141] has made considerable progress due to advancements

in deep neural networks [69, 89, 154, 161, 202] and the availability of large-scale,

well-annotated datasets [113, 145]. Existing methods generally fall into two cate-

gories: two-stage detectors like RCNN [58], Fast-RCNN [57], and Faster-RCNN [141]

which prioritize accuracy, and one-stage detectors such as YOLO [139], SSD [116],

and RetinaNet [112] which are optimized for computational e�ciency. Additionally,

recent advancements in anchor-free detection [44, 95, 230, 231] have demonstrated

impressive performance. Nonetheless, adapting these image-based detection meth-

ods to video poses challenges, particularly due to motion blur and object occlusion

inherent in video sequences.

Object Detection in Videos. Enhancing still image detection techniques for

video applications often involves leveraging temporal information to manage the

continuity and dynamics of objects across frames [51, 65, 77]. Methods like box-

level association help form object trajectories, while feature aggregation techniques

use adjacent frames to enrich the current frame’s features [12, 35, 153, 200, 235].
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These strategies have shown that understanding proposal relationships across dif-

ferent frames can alleviate detection challenges in videos [35, 153] through modeling

long-term dependencies [174, 190]. Despite these advances, there’s a tendency to

overlook inter-video relationships, which can be critical when objects have simi-

lar appearances across di↵erent videos. To address this, we propose HVR-Net, a

novel approach that integrates both intra-video and inter-video proposal relations

to enhance detection accuracy.

2.1.2 Weakly Supervised Object Detection

In the domain of still images, weakly-supervised detectors have been investigated

without bounding box annotations. Most approaches formulate this problem as

multiple instance learning [14, 79, 176, 194, 224], i.e., each image is considered as a

bag of candidate instances, and at least one instance belongs to the object class. In

recent years, convolution network based MIL frameworks have been actively studied

[14, 164, 165] to boost performance. Specifically, most weakly supervised object

detection in the following two-stage manner.

The first stage is proposal generation. Since there are no bounding box anno-

tations available, Selective Search [171] and/or EdgeBox [237] are widely used to

generate o↵-the-shelf object proposals. Few recent works introduce additional pro-

posal generation modules to obtain more qualified proposals. For example, [166]

uses a small network [165] to further refine the coarse edge boxes. [38] uses the pre-

dicted map of CAM [227] as semantic guidance of proposal selection. [194] proposes

an objectness score evaluation method for selection, based on the cascaded structure

of [38].

The second stage is proposal mining and network training to obtain detection re-

sults. One of the most well-known approaches is two-stream weakly supervised deep

detection network (WSDDN) [14], which simultaneously performs region selection
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and classification towards end-to-end learning. Subsequently, a number of non-trivial

extensions have been developed by refining instances. For example, [165, 164, 211]

uses top-scoring proposals from the MIL network as supervision to train instance

refinement classifiers. [164] further uses object clusters to assign pseudo labels for

object proposals. [224] proposes to generalize detector by progressively increasing

learning di�culty from easy to hard examples. [86] introduces a context classifica-

tion loss to find a region covering the whole object to refine the classification. [109]

designs a spatial and appearance graph within image to mine high quality proposals

for classification refinement. Additionally, several approaches propose to optimize

the overall network. For example, [177] regularizes detector with object proposal

cliques to alleviate localization randomness during learning instances. [148] intro-

duces generative adversarial learning to train a fast detector. [9] employs a discrete

generative network to model annotation aware conditional distribution for proposal

labeling. [176] optimizes a series of smoothed loss functions to alleviate the non-

convexity problem of deep-MIL methods.

Due to the weakly supervised characteristics in video object detection, we follow

the above two-stage manner to develop the detection framework. However, di↵erent

from image-based detection, we work on video-based detection with complex object

and/or camera motions, object disappearance among frames, etc.

2.1.3 Relevant Weakly Supervised Video Tasks

There exist several video tasks in the weakly-supervised settings, such as ac-

tion detection [8, 155, 183], action-driven object detection [214, 222], video object

segmentation [225, 223], object localization [75, 223] and video object grounding

[149, 213]. However, these existing weakly-supervised tasks are either based on

extra prior knowledge of specific tasks or with guidance of extra modality. For

example, weakly supervised action detection [8, 155] and action-driven object de-
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tection [214] need extra person box annotations, which are used to pre-train person

detector for generating person proposals as prerequisites of detection. Moreover,

action-driven object detection [214, 222] requires extra action phrase annotations,

besides of object tags. Similarly, weakly-supervised video object segmentation [225]

needs fully-annotated object detection benchmarks to provide object location infor-

mation. Video object localization [75, 223] applies strong data scenario prior, where

objects belong to a single category and appear in each frame of video and additional

fully annotated data [29] is needed to pre-train the network[223]. Lastly, weakly

supervised video object grounding [149, 213] uses extra natural language descrip-

tion to detect objects. Di↵erent from all these high-level video understanding tasks,

this thesis considers a more fundamental and challenging task that has not been

explored, i.e., detecting objects only with their tags in the video. Addressing such

task can beneficial for both research and industry, due to its wide applications in

practice.

2.1.4 Referring Video Object Segmentation

Vision-only Video Segmentation. Tasks such as video instance segmenta-

tion (VIS) [212] and video object segmentation (VOS) [135, 134] demand precise

segmentation of objects within predefined semantic queries, often requiring sophis-

ticated models to track each instance consistently across frames. Earlier approaches

rely on heavy supervision and complex algorithms to manage instance associations

across frames, whereas recent developments leverage transformer models [174, 19]

for more integrated, end-to-end segmentation solutions.

Referring Video Object Segmentation. Referring Video Object Segmenta-

tion (RVOS) [147] involves segmenting objects based on detailed, open-world textual

descriptions, posing unique challenges in the integration of visual and textual data.

Most early methods in RVOS proposed to refer the object by applying image-level
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methods on video frames separately and associate them with heuristic rules. How-

ever, they usually fail to utilize the temporal dynamic. [147] casts the task as a joint

problem of referring segmentation in frame and mask propagation across frames by

a memory attention module. [108] proposed a top-down pipeline by constructing

exhaustive set of object tracklets and then selecting the target by matching the

language features with the all the candidate tracklets. [226] proposed to model

the temporal dynamic with an additional optical flow modality. [196] argued the

importance of the structural information of video content and proposed to utilize

the frame, object and video features simultaneously to obtain better representation.

MTTR [17] introduced the DETR structure to RVOS area and [198] proposed to

use language-conditional queries to simplify the referring pipeline and improve the

performance, which serves as our baseline. Di↵erent from the previous works, this

thesis raises the mismatch issue that the various descriptions of di↵erent objects are

corresponding to di↵erent temporal scales of the video. Moreover, a concise HTML

framework is proposed via multimodal interaction across di↵erent temporal scales

to capture the core object semantics in the video.

2.2 Video Holistic Understanding

2.2.1 Group Activity Recognition

The increasing complexity of video content and its applications has driven re-

search in Group Activity Recognition, which has transitioned from relying on basic

hand-crafted features to more advanced deep learning models that better handle

the spatial and temporal dynamics of group interactions [11, 74]. Early approaches

are based on hand-crafted features and typically use probabilistic graphical models

[1, 3, 2, 93, 94, 193] and AND-OR grammar methods [4, 151]. Recently, methods

incorporating convolutional neural networks [11, 74] and recurrent neural networks

[186, 207, 137, 11, 36, 152, 104, 74, 73] have achieve remarkable performance, due

to the learning of temporal context and high-level information.
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More recent group activity recognition methods [199, 54, 70, 209, 45, 136, 103,

220] often require the explicit representation of spatiotemporal relations, dedicated

to apply attention-based methods to model the individual relations for inferring

group activity. [199, 220] build relational graphs of the actors and explore the

spatial and temporal actor interactions in the same time with graph convolution

networks. These methods simulate spatiotemporal interaction of actors in a joint

manner. Di↵erently, [209] builds separate spatial and temporal relation graphs sub-

sequently to model the actor relations. [54] encodes temporal information with I3D

[22] and constructs spatial relation of the actors with a vanilla transformer. [103]

introduces a cluster attention mechanism for better group informative features with

transformers. Di↵erent from previous approaches, we propose to learn the actor

interactions in complementary Spatial-Temporal and Temporal-Spatial views and

further promote actor interaction learning with a designed self-supervised loss for

e↵ective representation learning.

2.2.2 Video Recognition Datasets

Video recognition research is heavily reliant on the quality and diversity of avail-

able datasets. Historically, datasets were often created in controlled environments,

like KTH [146] and Weizmann [15], which allowed for focused study on specific

actions under ideal conditions. More recently, the shift has moved towards using

datasets compiled from internet sources such as YouTube, which present a more

realistic and challenging set of conditions due to their variability and complexity,

examples of which include UCF101 [158] and HMDB51 [90]. These datasets have

spurred the development of sophisticated models capable of handling complex video

data, facilitating significant advancements in video recognition technologies.

2.2.3 Video Description Datasets

The ability to describe video content accurately is fundamental to numerous

applications, necessitating comprehensive video description datasets. Traditional
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datasets like MSRVTT [204] and ActivityNet Captions [88] have provided platforms

for benchmarking captioning and description algorithms. Compared to existing

video description datasets, our contributed dataset is more challenging due to the

explicit modeling of the multi-shot nature of web videos. Our textual description

includes both shot-level captions and video-level summaries, combining visual and

audio understanding, which provides a unique test bed for multi-modal video un-

derstanding. Most existing video captioning benchmarks, such as MSRVTT [204],

YouCook2 [229] and ActivityNet Caps [88], also use multi-shot videos as annotation

source, but they either annotate a holistic caption for the video (MSRVTT) or ask

annotators to decide the boundary of di↵erent events. In our study, we observe that

video shots naturally create a sequence of related events, motivating us to annotate

distinct captions for each shot. Ego4D [59] only annotates dense visual captions but

not audio captions for relatively long egocentric videos. Video Storytelling [98] is a

small-scale dataset with annotations of multiple events in a videos and provides a

summary of the video by concatenating all captions.

A recent work VAST [27] feeds generated video and audio captions into an LLM

to generate video summary. However, it processes multi-shot video as a whole and

lacks the granularity of the events in di↵erent shots. Moreover, VAST directly uses

predicted captions without any human verification, leading to potentially noisy and

biased summaries towards the captioning models. Our dataset stands out from

VAST with its accurately annotated visual and narration shot captions. Although

our video summary is also generated using an LLM, it is further verified by an-

notators to make sure there is no hallucinated details from the LLM. Our dataset

has an average length of 218.3 words for the video summary, which is much longer

than existing benchmarks, and is longer than the combined length of captions in

one video in ActivityNet and YouCook2.
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Chapter 3

Mining Inter-Video Proposal Relations
for Video Object Detection

Expanding on the core concepts introduced in Chapter 2, this chapter delves into the

specialized field of categorical object recognition within video content. It focuses on

identifying and locating objects in video sequences, addressing the unique challenges

they present. By employing the strategies of object proposal relation learning, this

chapter aims to overcome these challenges and develop robust solutions for e↵ective

object detection in dynamic video environments.

3.1 Introduction

Video object detection presents unique challenges in computer vision [12, 35,

145, 153, 200, 235]. Traditional image-based object detectors [68, 116, 139, 140]

often struggle with this task, primarily due to issues like motion blur, sudden oc-

clusions, and unusual poses that are prevalent in video sequences. Recent research

[35, 153] has demonstrated that modeling object proposal relations across di↵erent

frames can e↵ectively integrate spatio-temporal context and enhance representation

for detection. However, these methods typically focus only on relations within the

same video, facing di�culties in distinguishing objects with similar appearances or

movements across di↵erent videos.

As depicted in Fig. 3.1(a), the detector incorrectly identifies Cat as Dog in

the target frame t, despite leveraging spatio-temporal contexts from other support

frames t� s and t+ e to improve the current frame’s proposal representation. The
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Figure 3.1 : Illustration of Motivation. Subplot (a): The intra-video proposal re-

lationships capture the appearance and movement of Cat within a single video,

providing limited information on variations across di↵erent videos. Consequently,

the detector incorrectly identifies Cat as Dog in the target frame t, despite uti-

lizing spatio-temporal contexts from supporting frames t � s and t + e. Subplot

(b): To address this issue, we develop a novel inter-video proposal relation mod-

ule. This module is capable of adaptively identifying challenging object proposals

(i.e., proposal triplet) from videos with high confusion (i.e., video triplet), enhancing

the learning and correction of their relations to minimize confusion across videos.

Support videos/frames provide contextual information for identifying the object of

interest, while target videos/frames are the primary sequences where the detection

tasks are performed.

primary issue is that intra-video relations provide limited insights on how this Cat

compares to similar objects across various videos. For example, as shown in Fig.

3.1(b), the Cat in the target video resembles a Dog in the support video, but di↵ers
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from a Cat in another support video. This leads to confusion in distinguishing Cat

from Dog when the analysis is restricted to individual videos without considering

inter-video object relationships.

To overcome this challenge, we introduce a novel Inter-Video Proposal Rela-

tion method that e↵ectively harnesses inter-video proposal relationships to develop

discriminative representations for video object detection. Initially, we implement

a multi-level triplet selection scheme to identify di�cult training proposals from

videos that frequently cause confusion. These selected proposal triplets are cru-

cial for reducing confusion and are utilized to enhance object feature construction.

Furthermore, we propose the advanced Hierarchical Video Relation Network (HVR-

Net), which systematically integrates intra-video and inter-video proposal relation

modules within a unified framework. This structure allows for the progressive uti-

lization of both intra-video and inter-video contextual dependencies, significantly

improving video object detection performance. Extensive experimental evaluations

on the large-scale video object detection benchmark, ImageNet VID, demonstrate

the superior performance of our HVR-Net, achieving 83.8 mAP with ResNet101

and 85.4 mAP with ResNeXt101 32x4d.

3.2 The Proposed Approach

Overview. In this section, we introduce our Hierarchical Video Relation Net-

work (HVR-Net) designed to improve video object detection by utilizing both intra-

video and inter-video contexts through a multi-level triplet selection scheme. The

complete framework is illustrated in Fig. 3.2. First, we develop a video-level triplet

selection module. For each target video, it flexibly selects two confused videos from

a set of support videos—specifically, the most dissimilar video within the same cat-

egory and the most similar video from di↵erent categories—based on their CNN

features. This process results in a triplet of confused videos per training batch,
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Figure 3.2 : Our HVR-Net Framework. This framework significantly enhances video

object detection by progressively integrating intra-video and inter-video proposal

relations within a multi-level triplet selection scheme. Further details are provided

in Section 3.2.

guiding our HVR-Net to model object confusion across videos. Second, we in-

troduce an intra-video proposal relation module. For each video in the triplet, we

process its sampled frames (e.g., t�s, t, and t+e) through the RPN and ROI layers

of Faster RCNN, generating feature vectors for object proposals in each frame. We



20

then aggregate proposals from support frames to enhance those in the target frame

t, integrating long-term dependencies to address intra-video issues like motion blur

and occlusion. Third, we create a proposal-level triplet selection module. While

the intra-video-enhanced proposals contain object semantics for individual videos,

they do not account for variations across videos. To model these variations, we

select challenging proposal triplets from the video triplet based on the intra-video-

enhanced features. Finally, we develop an inter-video proposal relation module.

For each proposal triplet, this module aggregates proposals from support videos to

enhance those in the target video, leveraging inter-video dependencies to mitigate

object confusion.

3.2.1 Video-Level Triplet Selection

To e↵ectively reduce inter-video confusions, we begin by identifying a triplet of

challenging videos for training. Specifically, we randomly sampleK object categories

from the training set and then sample N videos per category, resulting in K ⇥ N

videos in a batch. One video is randomly chosen as the target video, while the

remaining (K ⇥ N � 1) videos form the set of support videos. For each video, we

randomly sample one frame as the target frame t, and the other T � 1 frames as

support frames, such as frame t� s and frame t+ e in Fig. 3.2.

Each video’s T frames are fed individually into the CNN backbone of Faster

RCNN for feature extraction, producing a feature tensor of size H ⇥ W ⇥ C ⇥ T ,

where H ⇥W is the spatial size and C is the number of feature channels. We then

perform global average pooling along the spatial and temporal dimensions, yielding

a C-dimensional video representation. Based on cosine similarity between video

representations, we identify the video triplet

V
triplet = {V

target
,V

+
,V

�
}, (3.1)

where V
+ is the most dissimilar support video within the same class as V target, and
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V
� is the most similar support video from di↵erent classes.

3.2.2 Intra-Video Proposal Relation

After identifying V
triplet, we generate object proposals for each video in the

triplet. We process the sampled T frames of each video through the RPN and

ROI layers of Faster RCNN, producing M proposal features per frame.

Research has demonstrated that spatio-temporal proposal aggregation across

di↵erent frames [35, 153] can enhance video object detection. Hence, we introduce

an intra-video proposal relation module to build dependencies between target frame

proposals and support frame proposals within each video. Specifically, we adapt a

non-local-style relation module for Vv in the video triplet (v 2 {target,+,�}),

↵v

t,m
= xv

t,m
+
X

i2⌦

X

j

g(xv

t,m
,xv

i,j
)⇥ xv

i,j
, (3.2)

where xv

t,m
is the m-th proposal feature in the target frame t, xv

i,j
is the j-th proposal

feature in the support frame i, and i belongs to the set of support frames ⌦ (e.g.,

⌦ = {t � s, t + e}). The similarity between xv

t,m
and xv

i,j
is measured using a

kernel function g(·, ·), such as Embedded Gaussian [190]. We then aggregate xv

t,m

by weighted sum over all the support frame proposal features, resulting in ↵v

t,m
, an

enhanced version of xv

t,m
, which incorporates video-level object semantics to address

challenges like motion blur and occlusion.

3.2.3 Proposal-Level Triplet Selection

The intra-video relation module integrates spatio-temporal object contexts within

each video, but it does not account for inter-video object variations. To capture

these variations, we further select challenging proposal triplets from the intra-video-

enhanced proposals in the video triplet V
triplet. We compare the cosine similarity

between these proposals based on their features from Eq. (3.2). For a proposal
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P
target

t,m in the target video, we identify its corresponding proposal triplet,

P
triplet = {P

target

t,m ,P
+
,P

�
}, (3.3)

where P
+ is the most dissimilar proposal within the same category, and P

� is the

most similar proposal from di↵erent categories.

3.2.4 Inter-Video Proposal Relation

After identifying all proposal triplets, we model the relationships among them

to capture object variations across videos. We employ a non-local-style relation

module for each proposal triplet,

�target

t,m = ↵target

t,m + f(↵target

t,m ,↵+)⇥↵+ + f(↵target

t,m ,↵�)⇥↵�
, (3.4)

where f(·, ·) is a kernel function (e.g., Embedded Gaussian) for similarity compari-

son, ↵+ is the intra-video-enhanced feature of the positive proposal P+, and ↵� is

the intra-video-enhanced feature of the negative proposal P�. This approach further

aggregates the proposal P target

t,m in the target video with inter-video object relation-

ships. To minimize object confusions during detection, we introduce the following

loss for the target video,

L = Ldetection + �Lrelation, (3.5)

where Ldetection = Lregression + Lclassification is the traditional detection loss (i.e.,

bounding box regression and object classification) applied to the final proposal fea-

tures �target

t,m in the target frame. The coe�cient � is a weighting factor, and Lrelation

is a triplet-style metric loss to regularize Eq. (3.4),

Lrelation = max(d(↵target

t,m ,↵�)� d(↵target

t,m ,↵+) + �, 0). (3.6)

This loss imposes a discriminative constraint on the relation computed in Eq. (3.4),

emphasizing that the similarity between the target proposal ↵target

t,m and the positive
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Figure 3.3 : HVR-Net Architecture. We flexibly adapt the widely-used Faster RCNN

architecture as our HVR-Net. More implementation details can be found in Section

3.3.1.

proposal ↵+ should be greater than its similarity to the negative proposal ↵� by

a margin �, where d is the Euclidean distance. By enforcing this condition, �target

t,m

becomes more discriminative, e↵ectively reducing inter-video object confusion by

enhancing relationships with similar objects and diminishing those with dissimilar

ones.

3.3 Experiments

We mainly evaluate our HVR-Net on the large-scale ImageNet VID dataset [89].

It consists of 3862 training videos (1,122,397 frames) and 555 validation videos

(176,126 frames), with bbox annotations across 30 object categories. Moreover, we

train our model on intersection of ImageNet VID and DET dataset [35, 153], and

report mean Average Precision (mAP) on validation set of VID.
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3.3.1 Implementation Details

Architecture. We flexibly adapt Faster RCNN to our HVR-Net with the follow-

ing details. The architecture is shown in Fig. 3.3. We use ResNet-101 [69] as back-

bone for ablation studies, and also report the results on ResNeXt-101-32x4d [202]

for SOTA comparison. We extract the feature of each sampled frame after the conv4

stage, in order to select video triplet in a training batch. Region Proposal Network

(RPN) is used to generate proposals from each frame of the selected video triplet, by

using the feature maps after the conv4 stage. We introduce three intra modules in

Fig. 3.3. Before each of them, we add 1024-dim fully-connected (FC) layer. Addi-

tionally, we use a skip connection between intra(1) and intra(3), to increase learning

flexibility. In this case, the intra(3) module can use both initial and transformed

proposals of support frames to enhance proposals in the target frame.

We introduce one inter module which is added upon a 1024-dim FC layer. Ad-

ditionally, for both intra and inter modules, the kernel function is set as Embedded

Gaussian in [190], where each embedding transformation in this kernel is a 1024-dim

FC layer.

Training Details. We implement our HVR-Net on Pytorch, by 8 GPUs of

1080Ti. In each training batch, we randomly sample K = 3 object categories from

training set, and randomly sample N = 3 videos per category. Hence, there are 9

videos in a batch. Then, we randomly select one video as target video, and use other

8 videos as the support video set. For each video, we randomly sample 3 frames,

where the middle frame is used as target frame. � is empirically set to 1.0 without

generability.

3.3.2 Ablation Studies

E↵ectiveness of HVR-Net. We first compare our HVR-Net with the baseline

architecture, i.e., Faster RCNN. As shown in Table 3.1, our HVR-Net significantly
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Table 3.1 : E↵ectiveness of our HVR-Net.

Methods Intra-Video Inter-Video mAP(%)

Baseline: Faster-RCNN - - 73.2

Our HVR-Net X - 80.6"7.4

Our HVR-Net X X 83.2"10.0

Table 3.2 : Multi-Level Triplet Selection of Our HVR-Net.

Multi-Level Triplet Selection mAP(%)

Simple 81.0

Our 83.2

outperforms Faster RCNN, indicating its superiority in video object detection. More

importantly, HVR-Net with both intra-video and inter-video is better than that with

intra-video only (83.2 vs. 80.6). It demonstrates that, learning proposal interac-

tions inside each single video is not su�cient to describe category di↵erences among

videos. When adding inter-video proposal relation module, our HVR-Net can flex-

ibly select hard proposals from confused videos, and e↵ectively build up relations

among these proposals to distinguish object confusions.

Multi-Level Triplet Selection. Our HVR-Net is built upon a multi-level

triplet selection scheme, including video-level and proposal-level proposal selection.

To demonstrate the e↵ectiveness, we replace these two selection modules with a

simple approach, i.e., selecting random videos and using all proposals in each video.

In Table 3.2, when using the straightforward selection, the performance of HVR-Net

is getting worse. The main reason is that, blindly selected videos and proposals do

not guide our HVR-Net to focus on object confusion in videos. Alternatively, when
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Table 3.3 : Supervision in Our HVR-Net.

Detection Loss Relation Regularization mAP(%)

X - 80.0

X X 83.2

Table 3.4 : Number of Intra and Inter Modules in Our HVR-Net.

No. of Intra No. of Inter mAP(%)

2 1 81.8

3 1 83.2

3 2 82.1

Table 3.5 : Number of Testing Frames in Our HVR-Net.

Testing Frames 5 11 17 21 31

mAP(%) 80.5 81.6 82.0 82.9 83.2

we add our video and proposal triplet selection, HVR-Net can e↵ectively leverage

hard proposals of confused videos to learn and correct inter-video object relations,

in order to boost video object detection.

Table 3.6 : Comparison with the state-of-the-art methods on ImageNet VID (mAP).

FRCNN stands for Faster-RCNN.

Methods Backbone Post-processing Base detector mAP(%)

D&T[51] ResNet101 - R-FCN 75.8

MANet[188] ResNet101 - R-FCN 78.1

Continued on next page
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Table 3.6 continued from previous page

Methods Backbone Post-processing Base detector mAP(%)

LWDN[76] ResNet101 - R-FCN 76.3

RDN[35] ResNet101 - FRCNN 81.8

LongRange[153] ResNet101 - FPN 81.0

Deng [34] ResNet101 - R-FCN 79.3

PSLA [60] ResNet101+DCN - R-FCN 80.0

THP [233] ResNet101+DCN - R-FCN 78.6

STSN[12] ResNet101+DCN - R-FCN 78.9

Ours ResNet101 - FRCNN 83.2

TCNN [78] DeepID+Craft Tublet Linking RCNN 73.8

STMN [200] ResNet101 Seq-NMS R-FCN 80.5

FGFA[235] Align. Inc-ResNet Seq-NMS R-FCN 80.1

D&T(⌧ = 10)[51] ResNet101 Viterbi R-FCN 78.6

D&T(⌧ = 1)[51] ResNet101 Viterbi R-FCN 79.8

MANet[188] ResNet101 Seq-NMS R-FCN 80.3

ST-Lattice[24] ResNet101 Tublet-Rescore R-FCN 79.6

SELSA[197] ResNet101 Seq-NMS FRCNN 82.5

Deng [34] ResNet101 Seq-NMS R-FCN 80.8

PSLA [60] ResNet101+DCN Seq-NMS R-FCN 81.4

STSN+[12] ResNet101+DCN Seq-NMS R-FCN 80.4

Ours ResNet101 Seq-NMS FRCNN 83.8

D&T[51] ResNeXt101 Viterbi FRCNN 81.6

D&T[51] Inception-v4 Viterbi R-FCN 82.1

LongRange[153] ResNeXt101-32⇥8d - FPN 83.1

RDN[35] ResNeXt101-64⇥4d - FRCNN 83.2

Continued on next page
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Table 3.6 continued from previous page

Methods Backbone Post-processing Base detector mAP(%)

RDN[35] ResNeXt101-64⇥4d Seq-NMS FRCNN 84.5

SELSA[197] ResNeXt101-32⇥4d - FRCNN 84.3

SELSA[197] ResNeXt101-32⇥4d Seq-NMS FRCNN 83.7

Ours ResNeXt101-32⇥4d - FRCNN 84.8

Ours ResNeXt101-32⇥4d Seq-NMS FRCNN 85.5

Supervision in HVR-Net. As mentioned in Section 3.2.4, we introduce a

relation regularization in Eq. (3.6), in order to emphasize the correct relation con-

straint on inter-video relation module in Eq. (3.4). We investigate it in Table 3.3.

As expected, this regularization can boost HVR-Net by a large margin, by enhancing

similarity between proposals in the same category, and reducing similarity between

proposals in the di↵erent categories.

Number of Intra and Inter Relation Modules. We investigate the perfor-

mance of our HVR-Net, with di↵erent number of intra-video and inter-video proposal

modules. When changing the number of intra modules (or inter modules), we fix

the number of inter modules (or intra modules). The results are shown in Table

3.4. As expected, when increasing the number of both modules, the performance of

HVR-Net is getting better and tends to become flat. Hence, in our experiment, we

set the number of intra modules as three, and set the number of inter module as

one.

Number of Testing Frames. We investigate the performance of HVR-Net,

w.r.t., the number of sampled frames in a testing video. As expected, when increas-

ing the number of testing frames, the performance of HVR-Net is getting better and

tends to become stable. Hence, we choose the number of testing frames as 31 in our
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Table 3.7 : Comparison with state-of-the-art methods in mAP.

Methods Fast (mAP) Medium (mAP) Slow (mAP)

FGFA [235] 57.6 75.8 83.5

MANet [188] 56.7 76.8 86.9

Deng[34] 61.1 78.7 86.2

LongRange[153] 64.2 79.5 86.7

Ours 66.6 82.3 88.7

experiment. Besides, we test HVR-Net by unloading inter-video proposal relation

module in the testing phase, which achieves the comparable mAP.

3.3.3 SOTA Comparison

We compare our HVR-Net with a number of recent state-of-the-art approaches

on ImageNet VID validation set. As shown in Table 3.6 and Table 3.7, HVR-Net

achieves the best performance among various settings and object categories.

In Table 3.6, we first make comparison without any video-level post-processing

techniques. Under the same backbone, We significantly outperform the well-known

approaches such as FGFA [235] and MANet [188], which uses expensive optical flow

as guidance of feature aggregation. More importantly, our HVR-Net outperform the

recent approaches [35, 153] that mainly leverage proposal relations among di↵erent

frames for spatio-temporal context aggregation. This further confirms the e↵ective-

ness of learning inter-video proposal relation. Second, we equip HVR-Net with the

widely-used post-processing approach Seq-NMS. Once again, we outperform other

state-of-the-art approaches under the same backbone. It shows that, our HVR-Net

is compatible and complementary with post-processing of video object detection,



30

which can further boost performance.

Additionally, we follow FGFA [235] to evaluate detection performance on the

categories of slow, medium, and fast objects, where these three categories are di-

vided by their average IoU scores between objects across nearby frames, i.e., Slow

(score>0.9), Medium (score2[0.7,0.9]), Fast (Others). As shown in Table 3.7, our

HVR-Net boost the detection performance on all these three categories, showing the

importance of inter-video proposal relation for confusion reduction.

3.3.4 Visualization

Detection Visualization. We show the detection result of HVR-Net in Fig.

3.4. Specifically, we compare two settings, i.e., baseline with only intra-video pro-

posal relation module, and HVR-Net with both intra-video and inter-video proposal

relation modules. As expected, when only using intra-video relation aggregation,

baseline fails to recognize the object in the video, e.g., a female lion in Subplot (a) is

mistakenly recognized as a horse with confidence larger than 0.9. The main reason

is that, intra-video relation mainly focuses on what the object looks like and how

it moves in this video. For the video in Subplot (a), the appearance and motion

of this lion are quite similar to a horse, leading to high confusion. Alternatively,

when we introducing inter-video proposal relation module, HVR-Net successfully

distinguish such object confusion in videos. Hence, it is necessary and important to

learn inter-video proposal relations for video object detection.

Video and Proposal Feature Visualization in HVR-Net. We visualize

the proposal features of target frames in video triplets with t-SNE in Fig. 3.5. As

expected, with inter-video proposal relation integrated, the proposal features of

confusing objects can be clarified, while baseline, with intra-video proposal relations

only, mistakenly clusters the proposals not belong to same category, e.g., in Fig. 3.5

(b), proposals of domestic cat mistakenly stay with proposals of fox together as a
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Figure 3.4 : Detection Visualization. For each video, the first row shows the base-

line with only intra-video proposal relation module. The second row shows HVR-

Net with both intra-video and inter-video proposal relation modules. Clearly, our

inter-video can e↵ectively guide HVR-Net to tackle object confusion in videos. For

example, a female lion in Subplot (a) looks quite similar to a horse, due to its color

and its motion in this video. As a result, the baseline mistakenly recognizes it as a

horse, when only using intra-video relation aggregation.
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Figure 3.5 : Proposal Feature Visualization of Video triplet by t-SNE. With intra-

video relation only, proposals of confusing objects mistakenly stay together as a

cluster (i.e. domestic cats and foxes in (b), cars and motobikes in (a)). Our HVR-

Net can learn the discriminative cues and clarify those proposals of confusing objects.

For each video triplet, three target frames and their proposals are shown.

cluster, while our HVR-Net can learn a compact cluster (e.g., proposals of fox) and

assign proposals of domestic cat correctly. The reason is that the object confusion is

clarified with inter-video proposal relation integrated, leading to enlarged di↵erence

of confused proposals in feature embedding.

Performance Analysis on Object Categories. We show the accuracy (mAP)

comparison of 10 categories with our HVR-Net and baseline with intra-video pro-

posal relation only. Top-5 improved most categories and top-5 declined most cat-

egories are shown in Fig. 3.6. The proposed inter-video proposal relation module
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Figure 3.6 : Comparison of mAP per Category. Top-5 improved most categories

and top-5 declined most categories are shown in subplot (a) and (b) separately. For

each category, mAP is shown for baseline with only intra-video proposal relation

module and our HVR-Net.

boosts performance a large margin in cattle, rabbit, lion and other mammal cate-

gories. The reason is that objects in those categories usually share similar motion

and appearance characteristics. With the inter-video proposal relation integrated,

the object confusion is clarified, as illustrated in Fig. 3.4.

3.4 Conclusion

In this chapter, we propose to learn inter-video object relations for video object

detection. Based on a flexible multi-level triplet selection scheme, we develop a

Hierachical Video Relation Network (HVR-Net), which can e↵ectively leverage intra-

video and inter-video relation in a unified manner, in order to progressively tackle

object confusions in videos. We perform extensive experiments on the large-scale

video object detection benchmark, i.e., ImageNet VID. The results show that our

HVR-Net is e↵ective and important for video object detection.
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Chapter 4

Progressive Frame-Proposal Mining for Weakly
Supervised Video Object Detection

This chapter progresses into the realm of weakly supervised video object detection.

Here, we address the challenge of detecting objects with minimal supervision by

leveraging sparse annotations more e↵ectively. By developing a progressive min-

ing technique that refines detection capabilities across frames, this chapter explores

innovative strategies to maximize the utilization of available data, significantly re-

ducing the reliance on extensive manual annotations while enhancing the model’s

performance in real-world scenarios.

4.1 Introduction

Recent years witnessed that deep learning methods have achieved great success

in video object detection [12, 35, 153, 197, 235, 28, 64]. However, such remark-

able performance heavily depends on large-scale video benchmarks with full object

annotations [89], i.e., bounding boxes are densely annotated for all video frames

which objects appear in. This is labor-intensive for real-world applications in prac-

tice. Alternatively, one can easily obtain a large number of weakly-annotated videos

from internet. This fact inspires us to explore video object detection in a weakly

supervised setting, i.e., learning detector with only object tags in the video.

In fact, weakly supervised approaches have been explored in image-based ob-

ject detection, by mining informative proposals in the pipeline of multiple instance

learning [9, 14, 118, 87, 164, 165, 91, 194, 211, 92]. In particular, [14] introduces
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Figure 4.1 : Weakly Supervised Video Object Detection. It is often labor-intensive

to annotate bounding boxes on tons of video frames in practice. Hence, we consider

a novel and challenging weakly supervised video object detection problem, where

each video is only tagged by object labels, without frame-level box annotations.

a popular two-stream weakly supervised deep detection network (WSDDN), which

simultaneously performs region selection and classification in an end-to-end fashion.

To further boost detection performance, several extensions have been introduced by

e↵ective proposal generation [166, 38, 194], instance refinement [164, 211, 86, 109],

network optimization [177, 148, 9], etc. However, these approaches mainly focus

on the domain of still images. Directly applying them on every single video frame

would lead to unsatisfactory detection performance. First, di↵erent from still im-

ages, video frames may be blurred by object/camera motions, and some of them are

redundant without any objects of interest. Using these noisy, even useless frames

would increase learning di�culty of object detectors. Second, due to the lack of

ground-truth bounding boxes, weak detectors are often equipped with a huge num-

ber of object proposals (e.g., from selective search). Applying all these proposals on

all video frames would introduce expensive computation cost. Third, these image-
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based weak detectors treat video frames as individual images. This ignores impor-

tance of di↵erent proposals among frames, which further harms the e↵ectiveness to

detect objects in videos.

Additionally, there exists some weakly-supervised approaches for high-level video

understanding tasks, such as action detection [8, 155] and action-driven object detec-

tion [214], or video object grounding [149, 213]. However, these tasks often require

extra careful annotations besides of video tags, due to their specific topics. For ex-

ample, action tasks [8, 155, 214] need to pre-train a person detector with bounding

box annotations of human, in order to discover human activities and relevant ob-

jects in the video. Object grounding tasks [149, 213] should be equipped with extra

natural language descriptions. Alternatively, we target at a fundamental and novel

task of video object detection. Since only object tags are given in each training

video, such task brings new challenges and opportunities in object detection in both

aspects of research and industry.

For these reasons mentioned above, we introduce the weakly-supervised video ob-

ject detection problem, and design a Progressive Frame-Proposal Mining (PFPM)

framework to tackle it. As shown in Fig. 4.2, PFPM can e↵ectively leverage video

tags as supervision, and progressively mine object proposals in a coarse-to-fine man-

ner, i.e., from videos to frames, from frames to instances. Specifically, we first intro-

duce a concise Multi-Level Selection (MLS) scheme. By taking advantage of both

low-level and high-level visual clues, it can discover object-relevant frames from an

input video, and subsequently exploit representative proposals on these frames. Via

MLS, we can significantly reduce frame redundancy as well as improve proposal

e↵ectiveness. Second, we design a novel Holistic-View Refinement (HVR) scheme.

By globally weighting proposals over video frames, it can correctly assign the im-

portance score for each MLS-based proposals, and generate discriminative pseudo

bounding boxes to boost video detection via self-training. Finally, we investigate
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Figure 4.2 : Our Progressive Frame-Proposal Mining (PFPM) Framework. With the

only supervision of object tags, our PFPM provides a novel coarse-to-fine mining

pipeline to exploit discriminative proposals for object detection in videos. Specifi-

cally, it consists of two distinct mining phases, e.g., Multi-Level Selection (MLS) and

Holistic-View Refinement (HVR). First, MLS can discover object-relevant frames by

video object classification, and then integrate multi-level semantic clues to exploit

discriminative proposals from these frames. Second, HVR can weight MLS-based

proposals among video frames, and further refine them to generate pseudo object

boxes for self-training. More explanation can be found in Section 4.2.

extensive experiments on the large-scale video object detection benchmark, i.e.,

ImageNet VID, without using bounding boxes annotations. Our PFPM shows its

superiority, compared with the recent state-of-the-art weakly-supervised detectors.

We summarize the contributions of this chapter as follows:

1. New Problem Statement: To the best of our knowledge, we are the first to

propose the problem of weakly supervised video object detection, i.e., object

detection by only video tags, without frame-level bounding box annotations

and/or extra prior knowledge of objects.
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2. Distinct Framework : We introduce an e↵ective and e�cient Progressive Frame-

Proposal Mining (PFPM) framework to address weakly supervised video ob-

ject detection. It consists of two distinct phases, i.e., Multi-Level Selection

(MLS) and Holistic-View Refinement (HVR), which formulate a whole detec-

tion pipeline that can utilize video tags to discover object proposals and refine

them in a novel progressive manner. By elaborating mining, our PFPM can

largely boost video detection performance while alleviating computation cost

with discriminative proposals.

3. The State-of-the-Art Result : We benchmark the state-of-art methods under

the weakly supervised setup, e.g., we outperform WSDDN [14] with 21.7 mAP

improvement on ImageNet VID. It shows the e↵ectiveness and superiority of

our PFPM for weakly supervised video object detection.

The rest of this chapter is organized as follows. We introduce our PFPM in

Section 4.2, with detailed explanation of Multi-Level Selection (MLS) and Holistic-

View Refinement (HVR). Finally, we perform extensive experiments in Section 4.3,

and make conclusions in Section 4.5.

4.2 Progressive Frame-Proposal Mining

Overview. To tackle weakly supervised video object detection without bound-

ing box annotations, we introduce a novel Progressive Frame-Proposal Mining (PFPM)

framework in this section. Based only on the supervision of object tags in videos,

PFPM can e↵ectively generate pseudo bounding boxes by exploiting frames and

instances in a coarse-to-fine manner. The whole framework is shown in Fig.4.2,

which consists of two mining stages, i.e., Multi-Level Selection (MLS) and Holistic-

View Refinement (HVR). First, we design a concise MLS scheme to reduce frame

redundancy and improve proposal e↵ectiveness, with guidance of both low-level and
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Figure 4.3 : Multi-Level Selection (MLS). Given a training video with object tags, we

first train a video classifier to select top K object-relevant frames whose probability

scores on object labels are high. For each selected frame, we then generate MLS-

based proposals by integrating visual clues from both low-level Selective Search and

high-level CAM. More details can be found in Section 4.2.1.

high-level clues. Second, we develop a robust HVR scheme to further refine MLS-

based proposals by globally weighting proposal importance among video frames, and

subsequently generate pseudo object boxes for robust self-training.

4.2.1 Multi-Level Selection (MLS)

As mentioned before, most previous approaches [165, 164] perform Selective

Search [171] to generate object proposals of each image in an unsupervised manner.

However, it is unsuitable to use such simplistic strategy in our weakly supervised

video object detection problem, since each video contains a large number of frames.

On the one hand, direct usage of Selective Search on every single frame will result
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in unacceptable computation burden. On the other hand, many frames are useless

and even noisy for detection, due to object absence, motion blur and out-of-focus

disturbance.

Motivated by these observations, we design a Multi-Level Selection (MLS) scheme

for proposal generation and selection, which is guided by both low-level texture in-

formation and high-level semantic information, as shown in Fig. 4.2-4.3. First,

we design an object-relevant frame selection method in Section 4.2.1. according to

high-level semantic information encoded in the video classifier. This would reduce

redundant frames and thus alleviate computation burden and training di�culty for

detection. Second, we propose to generate proposals from the selected frames in

Section 4.2.1. To promote e↵ectiveness, we propose to integrate both low-level and

high-level object information to exploit discriminative proposals.

Discovering Object-Relevant Frames

As discussed before, a video may contain frames of reduced provided information

either because of blur frames with fast object motion or background frames without

any objects etc. We do not know which they are, since no frame-level annotations

are given in the weakly-supervised setting. In this case, we first need to discover

object-relevant frames from an input video. To achieve this goal, we propose to train

a video classifier by using video frames as input and video object tags as supervision.

With such classifier, we can find the high-score frames which often contain objects.

Specifically, we instantiate our video classifier as Temporal Segment Network

(TSN) [185], due to its simplicity and practicality. Formally, given a training video

V , we divide it into T segments and randomly sample one frame from each segment

to cover the entire video. TSN integrates these T sparsely-sampled frames {T1, T2,
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. . . , TT} together, and make video-level prediction s 2 RC via

st = F(Tt), (4.1)

s = H(G(s1, s2, ..., sT )), (4.2)

where st 2 RC is the score vector of C object classes for frame Tt. The feature en-

coding function F is Convolutional Neural Network (CNN). The segment consensus

function G combines the outputs from multiple frames to obtain a consensus of class

hypothesis among them, and then the prediction function H generates the score vec-

tor s for this training video V . In the experiment, we use ResNet101 for F , average

pooling for G and softmax function for H. Then, we compute the cross-entropy loss

between video prediction s and video object tag y 2 RC for training TSN.

After end-to-end learning, we use this trained classifier as an object score predic-

tor to select object-relevant frames for each training video. Specifically, to prevent

from selecting neighbor frames, we sample N frames of a video with the fixed tem-

poral interval. For frame Tn, we can use Eq.(4.1) to produce its object score vector

sn 2 RC where n = 1, ..., N . It is worth mentioning that, the N frames for object-

relevant selection are di↵erent from the T frames for training TSN, i.e., the N frames

are densely sampled and fixed to cover the entire video for selection, while the T

frames are sparse sampled for e�cient training and they vary in each training epoch.

Further details can be found in the implementation details of Section 4.3.1.

Finally, we use the score vector as guidance to select object-relevant frames from

T1:N . Suppose that, the object category of this training video is c. We check all N

sampled frames in the video, according to their probability scores on this category,

i.e., s1(c), ..., sN(c). Subsequently, we select K frames {Tk} that are highly relevant

to object category c, based on top K scores on this category.
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Generating MLS-Based Proposals

After discovering object-relevant frames {Tk} from each training video, we next

generate proposals on these frames for training weakly-supervised detectors after-

wards. Traditionally, Selective Search (SS) [171] is often applied for this task to

generate proposals {Pss

k
(v)} for frame Tk,

{P
ss

k
(v)}  SS(Tk), (4.3)

where V is the number of SS-based proposals and v = 1, ..., V . However, SS is

mainly based on low-level visual clues (such as color, texture, etc) in an unsupervised

manner. This leads to two drawbacks. On the one hand, the number of proposals

V is often large to preserve the high recall. But this would introduce expensive

computation cost in both training and inference. On the other hand, the proposals

lack guidance of object categories. Hence, many of them are irrelevant to objects

with low precision. Based on these observations, we propose to further filter SS-

based proposals, with guidance of high-level object semantics encoding in the video

classifier (i.e., the trained TSN).

First, as shown in Fig.4.3, for each object-relevant frame Tk, we use the CNN

backbone of video classifier in Eq. 4.1 to generate its Class Action Maps (CAM)

[227],

Mk = CAM(F(Tk)), (4.4)

where each of C channels in Mk 2 RH⇥W⇥C refers to a probability map of an object

category, where each pixel value of the image indicates the possibility of object

occurrence.

Second, since the frame Tk refers to object category c, we use the c-th channel

of CAM, Mc

k
, to produce semantics-relevant proposals for this frame. Specifically,

we set a probability threshold ✓cam to transform Mc

k
into a binary map, Apparently,
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the connected regions (probability > ✓cam) in this binary map indicate the highly-

confident locations where object appears. Hence, we treat the minimum bounding

boxes of the connected regions, i.e., the minimum-area bounding box that covers

the connected regions, as semantics-relevant proposals,

{P
cam

k
(u)}  Threshold(Mc

k
, ✓cam), (4.5)

where U is the number of semantics-relevant proposals generated from CAM and

u = 1, ..., U . The minimum bounding box captures the most informative areas while

minimizing the inclusion of irrelevant ones.

Third, we use CAM-based proposals as high-level guidance to further select SS-

based proposals. Specifically, given a CAM-based proposal Pcam

k
(u) in Eq. (4.5),

we compute its Intersection over Union (IoU) and Intersection over Foreground

(IoF), with regards to all the SS-based proposals {Pss

k
(v)}. IoU metric select low-

level proposals overlapping with substantial portions of the high-level proposal. IoF

metric is adept at identifying low-level proposals within the bounds of a high-level

proposal. Foreground refers specifically to the region of interest, rather than the

general semantic concept of foreground in an image. Subsequently, we preserve

those SS-based proposals, which overlap with CAM-based proposals (IoU > ✓iou) or

located inside CAM-based proposals (IoF > ✓iof ),

{P
mls

k
(r)}  IoU(Pss

k
,P

cam

k
) [ IoF(Pss

k
,P

cam

k
). (4.6)

We call them Multi-Level-Selection (MLS) proposals {P
mls

k
(r)}. From one hand,

these proposals are discriminative to capture objects, since they integrate both

low-level and high-level object clues from SS and CAM. From the other hand, the

number of proposals is largely reduced via multi-level selection, leading to com-

putation e�ciency. Next, we apply these MLS-based proposals for self-training

weakly-supervised detector.
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Figure 4.4 : Holistic-View Refinement (HVR). Given object-relevant frames (e.g.,

frame 0 and frame 1) with their MLS-based proposals (e.g., proposal r), we first

weight all the proposals in a holistic video view. Then, we refine proposals for

several times to generate pseudo boxes for training detection heads.

4.2.2 Holistic-View Refinement (HVR)

Given a training video, we have obtained object-relevant frames {Tk} and their

MLS-based proposals {P
mls

k
(r)} so far, in order to reduce frame redundancy and

improve proposal e↵ectiveness. Next, we apply these MLS-based proposals to pro-

duce pseudo bounding boxes on object-relevant frames, and subsequently use pseudo

ground truth for training detection heads. To achieve this goal, we design a Holistic-

View Refinement (HVR) scheme in Fig.4.4, based on multiple instance learning [14].

But di↵erent from these image-based works [14, 164, 165, 176], our HVR leverages

object context among video frames in a holistic view.
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Holistic-View Proposal Weighting

Note that, we only have video-level object tags without any instance-level super-

vision. Hence, we need to integrate prediction of all the proposals as video predic-

tion for weakly-supervised learning. However, simply averaging all the score vectors

is inappropriate, since the importance of di↵erent proposals varies. Traditionally,

image-based approaches [14, 164, 165, 176] estimate the weight of proposals for each

individual frame. Apparently, this would ignore object context among frames. To

tackle such problem, we weight proposals in a holistic video view.

Object Prediction of MLS-Based Proposals. For each training video, we first feed

its object-relevant frames into a CNN backbone (e.g., VGG16). For each MLS-based

proposal, we can perform ROI pooling and FC layers to generate its score vector of

object classification,

zr
k
(c) =

exp[z̃r
k
(c)]

P
C

j=1 exp[z̃
r

k
(j)]

, (4.7)

where z̃r
k
2 RC is the pre-softmax score vector of proposal Pmls

k
(r) in frame Tk.

Holistic Weight of MLS-Based Proposals. We add extra FC layers after ROI

pooling, which generates a weight vector of each MLS-based proposal, e.g., w̃r

k
2 RC

is the weight vector of proposal Pmls

k
(r) in frame Tk. Each entry in this vector refer

to the importance of this proposal, w.r.t., an object class. As mentioned before,

such weight vector is often unsatisfactory, since it dose not contain object context

among frames. Hence, we further perform softmax over the weight vectors of all the

R proposals in all the K frames, and comprehensively estimate the holistic weight

of each proposal wr

k
2 RC ,

wr

k
(c) =

exp[w̃r

k
(c)]

P
K

k0=1

P
R

r0=1 exp[w̃
r0
k0(c)]

. (4.8)

Video Prediction. Subsequently, we average all the proposal predictions with
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their weights, and produce the object prediction vector of a video � 2 RC ,

�(c) =
XK

k=1

XR

r=1
wr

k
(c)zr

k
(c). (4.9)

Since we have video-level object tag y 2 RC as supervision, we apply the cross-

entropy loss for training,

Lholistic = CrossEntropy(�,y). (4.10)

Proposal Refinement

Recent studies have shown that, weakly-supervised detection can be further en-

hanced by multi-stage refinement of instance classifier [164, 165]. For this reason,

we choose a popular refinement module [164], and build it upon our holistic-view

weighting module to generate pseudo boxes.

We use the i-th refinement stage as illustration. Specifically, we add ROI pool-

ing and extra FC layers as instance classifier in this refinement stage, which can

generate classification score vectors of all the proposals. For simplicity, we denote

G(i)
k

2 R(C+1)⇥R as score matrix of frame k at stage i, where each column of G(i)
k

refers to score vector of one MLS-based proposal in this frame. To achieve e↵ective

refinement, we follow [164] to use G(i�1)
k

at stage i � 1 as supervision of G(i)
k
, and

apply cross entropy loss to train instance classifier at stage i,

L
(i)
refine

=
XK

k=1
CrossEntropy(G(i)

k
,G(i�1)

k
). (4.11)

To take holistic view of proposals into account, we set score matrix at the initial

stage as the holistic-view score matrix obtained from Eq.(4.7) and (4.8),

G(0)
k

= [w1
k
� z1

k
, ...,wR

k
� zR

k
]. (4.12)

Note that, except how to generate the initial score matrix G(0)
k

of frame k, our

refinement follows the standard procedure in [164]. Hence, we suggest readers to
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find more refinement details from [164] if necessary. Finally, we sum the loss of all

refinement stages for training,

Lrefine =
X

i

L
(i)
refine

. (4.13)

Training Detection Heads with Pseudo Boxes

After refinement, the classification score of each proposal becomes reasonable.

Hence, we generate the pseudo box in frame k, according to score matrix G(final)
k

at

the final refinement stage. Specifically, for object category c, we pick the proposal

whose score on class c is highest among all the proposals in frame k. Then, we tag

this proposal as class c and treat its box as ground truth bounding box. After ob-

taining these pseudo boxes of each frame, we use them to train traditional detections

heads,

Ldet = Lcls + Lreg, (4.14)

where Lcls is the cross entropy loss for object classifier, while Lreg is the smooth L1

loss for bounding box regressor. Finally, we combine all the losses to train our HVR

scheme,

LHV R = Lholistic + Lrefine + Ldet. (4.15)

In the inference phase, we can simply obtain detection results from our trained

heads of object classifier and bounding box regressor in the traditional and standard

manner. In addition, as no labels are available during inference, we use the trained

video classifier to select object-relevant frames in each test video, and obtain MLS-

based proposals by Eq.(4.5) and (4.6) for detection.

4.3 Experiments

In this section, we first introduce the experimental setup including dataset, eval-

uation metric and implementation details. Then, we conduct extensive experiments
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Table 4.1 : The E↵ectiveness of Our PFPM (mAP in %). We compare our PFPM

with the image-based baseline. More explanation can be found in Section 4.3.2.

Methods MLS HVR mAP GFLOPs

Image-based Baseline - - 25.4 6293

PFPM with MLS X - 29.1"3.7 5268

PFPM with MLS and HVR X X 34.1"8.7 5268

Table 4.2 : The Influence of Multi-Level Selection (mAP in %). With frame selection

and proposal selection, the detection results get improved. More explanation can

be found in Section 4.3.2. Low-level and High-level mean SS and CAM selections

respectively.

Frame Selection
Proposal Selection

mAP
High-level Low-level

X 25.3

X X 28.1

X X X 29.1

to discuss our designs to show the e↵ectiveness of the proposed method. Next, we

compare our results with other recent works to show the superiority of our method.

We also apply our MLS proposals to other approaches, demonstrating the versatil-

ity of our method. Finally, we visualize our detection results for further qualitative

analysis.

4.3.1 Experiment Setup

We evaluate our PFPM framework on the large-scale benchmark for video object

detection, on ImageNet VID [89]. It consists of 3862 training videos (1,122,397
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Table 4.3 : The Influence of Holistic-View Refinement (HVR) (mAP in %). When

taking holistic weighting into account, the detection performance can be significantly

improved. More explanation can be found in Section 4.3.2.

Holistic Video Detection heads mAP

29.1

X 30.2

X X 34.1

Table 4.4 : The Influence of Training Batch Construction (mAP in %). Batch

construction means the content of input data. Batch iterator means the way in

which the batch data is sampled. More explanation can be found in Section 4.3.2.

Batch Construction Batch Iterator Results

Random one frame Image-Based 30.2

Random one frame Video-Based 32.9

Sampled frames Video-Based 34.1

frames) and 555 validation videos (176,126 frames) across 30 object categories.To

evaluate weakly-supervised video object detection, we only use object tags of each

training video in ImageNet VID, without taking any bounding box annotations for

training. We report mean Average Precision (mAP) at 0.5 IoU threshold on the

validation set, as suggested in [35, 153, 197].

Implementation Details

Unless stated otherwise, we implement our PFPM framework as follows: For

Multi-Level Selection (MLS) in Section 4.2.1, we use the training set of ImageNet

VID (with video-level object tags) to train ResNet101-based Temporal Segment
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Network (TSN), where the number of segment is T = 5, and all other details follow

the o�cial code of TSN with default settings [185]. Then, we use the trained TSN as

video classifier. For each training video, we uniformly sample 15 frames, and select

topK = 2 per category for object-relevant frames. This follows the common practice

in the research community of video object detection [235, 197], in order to avoid the

selection of adjacent frames. Moreover, we set thresholds as ✓cam=0.5, ✓iou=0.4,

✓iof=0.9 to select MLS-based proposals per frame. For Holistic-View Refinement

(HVR) in Section 4.2.2, we use VGG16 as detection backbone to extract proposal

features, as suggested in [164, 165]. The number of proposal refinement stages to

generate pseudo boxes is 3. In all experiments, we train HVR for 70k iterations in

total. The learning rate is 0.0005, and drops by a factor of 10 on iteration 40k. We

implement on Pytorch by 8 GPUs of 2080Ti with one training video per GPU.

4.3.2 Ablation Studies

We first conducted experiments to discuss the influence of di↵erent components

of our method in Tables 4.1-4.3, including MLS in Section 4.2.1 and HVR in Section

4.2.2. Then, we further explore the proposed method with di↵erent settings, such as

training batch construction in Table 4.4, the threshold setting of ✓cam, ✓iou and ✓iof

in Table 4.5, the number of selected frames K per category, the number of selected

proposals R and the number of refinement stages I in Table 4.6, etc. Finally, we

evaluate the inference e�ciency of our proposed method in Table 4.7.

The E↵ectiveness of Our PFPM

We first compare our PFPM with image-based baseline [164]. In this baseline,

we use selective search to generate proposals and perform proposal refinement indi-

vidually for each frame. As shown in Table 4.1, our PFPM significantly outperforms

the baseline, by using our proposed Multi-Level Selection (MLS) and Holistic-View

Refinement (HVR). Utilizing MLS in our method reduces the number of proposals
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Table 4.5 : The Influence of Di↵erent Thresholds (mAP in %). Our framework tends

to be robust to these thresholds. In each subtable, other parameters are set to their

state-of-the-art report values. More explanation can be found in Section 4.3.2.

Threshold ✓cam (fixed ✓iou = 0.4, ✓iof = 0.9)

✓cam 0.35 0.5 0.6

mAP of Our PFPM 33.7 34.1 33.8

Threshold ✓iou (fixed ✓cam = 0.5, ✓iof = 0.9)

✓iou 0.3 0.4 0.5

mAP of Our PFPM 34.0 34.1 33.8

Threshold ✓iof (fixed ✓cam = 0.5, ✓iou = 0.4)

✓iof 0.7 0.8 0.9

mAP of Our PFPM 33.9 33.9 34.1

needed during inference, resulting in lower GFLOPs consumption (6293 vs. 5268).

Furthermore, implementing the HVR module improves the refinement ability of the

detection head without increasing inference costs. This is because the fundamental

inference process, which involves deriving detection results from trained detection

heads, is consistent regardless of the HVR module’s presence. It clearly shows that,

our designs are e↵ective and e�cient to boost weakly-supervised video object detec-

tion, by mining frames and proposals in a progressive manner.

The Influence of Multi-Level Selection (MLS)

Given a training video, MLS mainly consists of discovering object-relevant frames

(Select Frame) and selecting MSL-based proposals from these frames (Select Pro-

posal). Hence, we investigate di↵erent settings of frame and proposal selection in

Table 4.2, in order to check if both steps are necessary. As expected, our PFPM



52

Table 4.6 : The Influence of Selected Frames K, Proposals R, and Refinement

Stages (mAP in %). In each subtable, other parameters are set to their state-of-

the-art report values. More explanation can be found in Section IV-B6-IV-B8.

No. of Selected Frames K (fixed R = 500, I = 3)

K 1 2 3

mAP of Our PFPM 33.1 34.1 34.4

Selecting K=2 for optimal e�ciency and accuracy trade-o↵.

No. of Selected Proposals R (fixed K = 2, I = 3)

R 200 500 1000

mAP of Our PFPM 32.9 34.1 32.7

Selecting R=500 for best performance.

No. of Refinement Stages I (fixed K = 2, R = 500)

I 1 2 3 4

mAP of Our PFPM 32.9 33.5 34.1 33.8

Selecting I=3 for best performance.

is getting better when we select the training frames. It shows that, we should se-

lect object-relevant frames for weakly supervised detection, instead of using random

frames in a blind way. Moreover, the performance can be further improved, when

we apply multi-level proposal selection. It indicates that, MLS-based proposals can

be more discriminative, by integrating visual clues from both high-level CAM (from

TSN) and low-level Selective Search. It can be also discovered from our experiments

that frame selection yielded a significantly higher performance improvement than

CAM. While integrating Selective Search (SS) with frame selection substantially fil-

tered out noisy proposals, enhancing model performance, CAM’s addition provided

a modest boost. This emphasizes the e↵ectiveness of frame reduction.
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Table 4.7 : Inference E�ciency of Our PFPM. More explanation can be found in

Section 4.3.2.

Proposal Generation Method No. of Proposals GFlops of PFPM

PFPM with Selective Search (SS) 1700 6293

Multi-Level Selection (MLS) 850 5268#1025

Table 4.8 : Di↵erent initial low-level proposal generation algorithms applied with

our PFPM framework. More explanation can be found in Section 4.3.2

Methods mAP

Baseline with EdgeBoxes [237] 23.2

Baseline with Selective Search [171] 25.4

Our PFPM with EdgeBoxes [237] 31.5

Out PFPM with Selective Search [171] 34.1

The Influence of Holistic-View Refinement (HVR)

Based on our MLS scheme, we next evaluate HVR in Table 4.3. First, when

we treat each frame as individual image and weight proposal importance per frame,

the detection performance is 29.1 in mAP (%). Then, with adding detection head

trained with pseudo ground truth, the detection performance is improved by 1.1

in mAP (%), from 29.1 to 30.2. Finally, with our holistic-view proposal weighting

applied, the result is improved by a large margin of 3.9 in mAP (%), from 30.2 to

34.1. It shows that it is crucial to take object context among frames, when weighting

the importance of proposals.
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The Influence of Training Batch Construction

We then investigate di↵erent methods of training batch construction and batch

iterator. All the settings are based on the frames selected by our MLS. (1) The first

setting is to treat all the frames as individual images. In each batch, we randomly

select frames to create a batch of 8 images. This is the traditional strategy in the

weakly supervised setting of image-based object detection. (2) However, we target

at video-based object detection. Hence, we also explore the video-based strategies.

By doing so, the second setting of training batch construction is to select frames

according to each video, i.e., we select 8 videos randomly. For each video, we

randomly pick 1 frame to construct training batch. (3) The third setting is similar

to the second one, except that we use all the MLS frames of each video. As shown in

Table 4.4, the detection result of the first setting is 30.2 in mAP (%). Then, when we

use the setting of video-based batch construction, the detection result is gradually

improved. Especially, the third setting can leverage holistic weighting of proposals

among frames. Hence, the result achieves the best with 34.1 in mAP (%). It shows

the importance of exploiting object context among frames, for weakly supervised

object detection in videos.

The Influence of Di↵erent Thresholds

As shown in Table 4.5, we investigate di↵erent threshold settings of ✓cam, ✓iou

and ✓iof in Eq. (4.5)-(4.6), in order to reflect their influence on generating object

proposals in MLS. First, when we change ✓cam from 0.35 to 0.6, the results are

comparable with best result achieved at ✓cam=0.5. Second, when ✓iou is increased

from 0.3 to 0.5, the result jitters by average 0.2 mAP (%) and achieve the best

at ✓iou=0.4. Similarly, when ✓iof varies, the performance also varies by average 0.1

mAP (%). All these results show that, our framework tends to be robust to di↵erent

✓cam, ✓iou and ✓iof . Hence, we choose the best setting of ✓cam = 0.5, ✓iou = 0.4 and
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✓iof = 0.9 in our experiments.

The Number of Selected Frames K

We evaluate K in Table 4.6. When K = 1 (i.e., only one frame per category

is selected), the detection result of our PFPM is 33.1. When K increases to 3, the

detection result is improved from 33.1 to 34.4. It demonstrates that, our PFPM can

utilize the additional temporal context e↵ectively. Incrementing K by 1 results

in hundreds more proposals during holistic view refinement, significantly increasing

temporal processing and, consequently, GPU memory usage. Therefore, we limit

our experiments to a maximum of K=3 frames. To ensure a balance between com-

putational demands and detection performance, we select K=2 as it represents the

minimal frame count necessary to maintain video information that enhances detec-

tion capability.

The Number of Selected Proposals R

As shown in Table 4.6, we perform our PFPM with di↵erent numbers of selected

proposals per frame in the video. When we increase R from 200 to 500, the perfor-

mance is improved by 1.2 mAP (%). It shows that, it is vital to sample su�cient

proposals to cover objects in the video. Then, when we increase R from 500 to 1000,

the performance degrades by 1.4 mAP (%). Increasing the number of proposals per

frame boosts memory demands, limiting our experiments to a maximum of 1000

proposals. We settled on R=500 for our experiments, avoiding excessive noise from

irrelevant proposals, and striking an optimal balance for peak performance within

our experimental scope.

The Number of Refinement Stages

As shown in Table 4.6, we perform our PFPM with di↵erent numbers of refine-

ment stages in HVR. As expected, the performance tends to get better, when the
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number of refinement stages increases. When the refinement stages increases to 4,

the performance degrades to 33.8, we argue that this due to the fact the generated

pseudo proposal tag is noisy and accumulated with the increasement of refinement

stages. Hence, we choose the best setting with three refinement stages in our exper-

iments.

The Inference E�ciency

In Table 4.7, we evaluate the inference e�ciency of our PFPM. The first line

of this table, experimenting with proposals from Selective Search (SS), corresponds

to the first line in Table 4.1. The second line of Table 4.7, which utilizes our MLS

for proposals, aligns with both the second and third lines in Table 4.1. Since the

number of MLS-based proposals is much smaller than the one of SS-based proposals

( i.e., average number of proposals in validation set, MLS vs. SS: 850 vs. 1700),

MLS can largely reduce computation cost in the inference phrase.

The low-level proposal generation:

As shown in Table 4.8, our proposed framework can be adapted to the other tra-

ditional low-level proposal generation algorithms, and di↵erent proposal generation

algorithms would a↵ect the final performance. Our PFPM can boost the baseline

using EdgeBoxes [237] by 8.3 points in mAP. This is because our Multi-Level Se-

lection (MLS) and Houlistic-View Refinement (HVR) methods are built upon the

proposals generated by low-level vision clues. Our MLS is supposed to be able to

integrate with the other traditional proposal generation algorithms and achieve a

performance boost, as long as the proposal generation algorithm adopts low-level

vision clues, such as texture information and intensity statistics.
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4.3.3 Comparison with The State-of-The-Art

We compare our PFPM with the recent state-of-the-art weakly-supervised object

detectors [14, 164, 165], where all the methods are trained by using only object tags

in the training video, without using any bound box annotations. We show the detec-

tion result of each category in the validation set. First, since the SOTA approaches

do not have frame and proposal selection, we apply our MLS for training these ap-

proaches. We can see in Table 4.9 that, all SOTA approaches get largely improved

detection performance. The fact indicates that, it is necessary to discover object-

relevant frames and select proposals for weakly-supervised video object detection.

Moreover, our PFPM achieves the best performance among all these approaches,

e.g., we significantly outperform WSDDN with 21.7 mAP improvement. It shows

the superiority of our progressive frame and proposal mining framework.

Contrastingly, Ren et al. [142] report higher performance (36.6 mAP) on ImageNet-

VID, using frame-level tags for both training and testing, which facilitates object ex-

istence identification per frame. However, our approach, while yielding lower mAP,

o↵ers greater annotation e�ciency by relying solely on video tags, emphasizing its

practicality in less annotated scenarios.

4.3.4 Visualization

We first show the detection results, by comparing our PFPM with the baseline

method. Then, we visualize the proposal generated by our Multi-Level Selection

scheme. Finally, we compare di↵erent proposal weighting mechanisms to understand

our Holistic-View Refinement scheme.

Detection Visualization

We visualize detection results in Fig.4.5, where we compare our PFPM with PCL

[164], a recent state-of-the-art weakly supervised detector that is also our baseline.
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Figure 4.5 : We show detection results of our PFPM, compared with PCL [164] that

is a recent SOTA weakly-supervisor detector. In (c), the first frame contains objects

that are inconsistent with the video-level object tags. Our PFPM clearly achieves

better detection performance with correct labels and accurate box predictions.

As expected, our PFPM achieves much better detection performance than PCL. For

example, PCL mistakenly treat the background boxes as antelope in Fig. 4.5 (a) and

fox in Fig. 4.5 (b), due to the lack of e↵ective frame-proposal mining. With massive

noisy frames and proposals, the baseline method is limited to learn appropriate

proposal weighting, and subsequently results in false alarms of the background boxes.

Moreover, PCL misclassifies the object categories of Bus, Car, Motorcycle in Subplot

(c). This is mainly because that, PCL is an image-based weakly detector. Without
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considering object context among frames, it is hard to learn the proposal-category

mapping in videos. On the contrary, our PFPM can learn to clarify proposals which

belong to di↵erent categories, by using holistic-view refinement.

MLS-based Proposal Generation

We visualize how to generate MLS-based proposals. As shown in Fig.4.6, Se-

lective Search (SS) can generate proposals which capture the regions containing

low-level texture clues. Alternatively, CAM can generate proposals which capture

the regions containing high-level semantic clues. By IoU between the CAM-based

and SS proposals, we can obtain the proposals that are rich in textures and overlap

with the semantic regions. By IoF between the CAM-based and SS proposals, we can

preserve proposals in the semantic regions. Subsequently, by merging IoU-threshold

and IoF-threshold proposals, we discover the discriminative proposals around ob-

jects as shown in subplot (e) of Fig. 4.6.

(a) Selective Search (SS) (b) CAM from TSN (c) IoU (SS, CAM) (d) IoF (SS, CAM) (e) MLS-based Proposal

Bi
rd

Ai
rp
la
ne

Figure 4.6 : MLS-based Proposal Generation. We use CAM as high-level guidance

to select low-level proposals generated from selective search (SS). Via IoU and IoF

between SS and CAM, we e↵ectively select discriminative proposals around objects.



61

Holistic-View Proposal Weighting

We compare di↵erent proposal weighting mechanisms in Fig.4.7. As expected,

individual-frame weighting often mistakenly assigns importance of proposals in dif-

ferent frames, e.g., it assigns the comparable importance on the proposals located

around the front and back parts of car, while the front parts are more discrimi-

native to recognize car. It is because this weighting ignores object context among

video frames. Our holistic-view weighting can e↵ectively tackle such problem via

exploiting proposal importance among frames.

TimeTime

(b) Bicycle(a) Car

Car 0.506
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Figure 4.7 : Holistic-View Proposal Weighting. Individual-frame weighting mistak-

enly assigns comparable importance on the proposals located around the front and

back parts of car, while the front parts are more discriminative to recognize car. Our

holistic-view weighting can e↵ectively tackle such problem via exploiting proposal

importance among frames.

4.4 Discussion

In the realm of weakly supervised video object detection, our task faces chal-

lenges such as limited annotation and the need for accurate proposal generation.

Our current progress has been marked by advancements in addressing these issues,

yet there remains significant room for improvement. The emergence of large-scale
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pretrained models like DINOv2 [129] and SAM [85], renowned for their robust de-

tection and segmentation abilities, represents a promising trend. These models

could greatly enhance proposal generation by reducing noise and refining segmen-

tation. Concurrently, the growing popularity of large multi-modal models, such

as CLIP [138] and LLaVA [114], introduces a new perspective in incorporating se-

mantic information and reasoning capabilities. The combination of these advanced

vision and multi-modal models o↵ers a unique opportunity to tackle the challenges

of our task more e↵ectively. By utilizing these models, we envision a future direc-

tion where initial proposals are significantly reduced, enabling the inclusion of more

temporal frames per batch and facilitating the integration of consistent semantic

insights across frames. This approach not only aims to enhance detection accuracy

but also aligns with the trend towards more annotation-e�cient methodologies in

weakly supervised video object detection.

4.5 Conclusion

In this chapter, we present a novel Progressive Frame-Proposal Mining (PFPM)

framework for weakly supervised video object detection. It consists of Multi-Level

Selection (MLS) and Holistic-View Refinement (HVR), First, MLS can discover

object-relevant frames and select discriminative proposals, with guidance of both

low-level and high-level visual clues. Hence, MLS can reduce frame redundancy

as well as improve proposal e↵ectiveness for training. Second, HVR weights the

MLS-based proposals in a holistic video view. This can provide correct proposal

importance to generate pseudo boxes by refinement. The comprehensive experiments

have shown that our PFPM is e↵ective for weakly supervised video object detection.
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Chapter 5

HTML: Hybrid Temporal-scale Multimodal
Learning Framework for Referring Video Object

Segmentation

This chapter introduces the Hybrid Temporal-scale Multimodal Learning (HTML)

Framework, designed to tackle the complexities of referring video object segmenta-

tion. By addressing the integration of temporal dynamics and multimodal inputs,

HTML aims to accurately segment and track objects specified by textual descrip-

tions across diverse temporal scales. This approach enhances the alignment between

visual content and language, ensuring precise and context-aware segmentation to

facilitate more intuitive and e↵ective human-machine interactions in video analysis

tasks.

5.1 Introduction

Referring Video Object Segmentation (RVOS) has witnessed the growing inter-

est, due to its wide applications in visual editing, virtual reality, human-robotic

interaction and so on. Di↵erent from the traditional vision-only VOS, RVOS aims

to segment the object instance from an input video, according to an open-world de-

scription about the referred object. In this case, the model has to learn both visual

and textual contents comprehensively, in order to discover the underlying object by

multimodal interaction.

Recent studies [39, 108, 196, 198] have shown that, cross-modal attention is an

e↵ective way to bridge the gap between vision and language in RVOS. However, these

approaches perform vision-language interactions with video frames sampled from a
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Figure 5.1 : Referring descriptions in di↵erent lengths. (a) The description is

simple containing only the category name. (b) The description is complicated with

movement and position of the object. Single-scale baseline (e.g., four frames in (a)

and two frames in (b)) fails to segment the referred object, while our hybrid-scale

HTML succeeds. More discussion can be found in introduction.

single temporal scale, which may limit their power to infer the referred object with

accurate segmentation. The main reason is that, the open-world descriptions vary

in length and contain rich semantics about the referred object, e.g., where it is,

how it moves, which objects it interact with. Apparently, such diversified texts are

corresponding to various temporal-scale snippets.

For example, the language query in Fig. 5.1 (a) is a tennis ball. Such a short
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description is corresponding to the ball located at a small region in the middle

two frames. If the single-scale baseline samples four frames as input, it will fail

to segment the referred object. This is because it overlooks the dog in the center

place among all these four frames, while lacking the detailed understanding in the

middle two frames. Alternatively, the language query in Fig. 5.1 (b) is a sheep

top second right moves down and comes out of the circle. Such a long description

is corresponding to the particular sheep in the group, which moves across frames.

If the single-scale baseline samples two frames as input, it will fail to segment the

referred object. This is because it is misled by the subtle movement of sheep group

in only two frames, without understanding how each sheep moves from the adjacent

frames.

To tackle this di�culty, we propose a concise Hybrid Temporal-scale Multimodal

Learning (HTML) Framework for RVOS, which can alleviate object confusion by

language-vision interactions across di↵erent temporal scales. Specifically, we sam-

ple video frames according to di↵erent temporal scales. For each temporal scale,

we introduce an intra-scale multimodal perception module, which can e↵ectively

exploit core visual semantics within the frames at this temporal scale, by mutual

enhancement between textual and visual embeddings. Then, we design an inter-

scale multimodal perception module, where linguistic embeddings dynamically in-

teract with visual features across temporal scales. In this case, we can hierarchically

leverage object context from all the temporal scales to boost RVOS. Finally, we

evaluate our HTML on a number of benchmarks, including Ref-Youtube-VOS [147],

Ref-DAVIS17 [83], A2D-Sentences and JHMDB-Sentences [53]. The extensive ex-

periments have shown that, our HTML achieves the state-of-the-art performance on

all of them.

Overall we make three contributions in this chapter:

• Concise and unified learning framework: our Hybrid Temporal-scale Multimodal
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Learning (HTML) framework hierarchically constructs multimodal interactions

via di↵erent strides of frame sampling, which can mutually enhance embeddings

from both modalities for accurate segmentation.

• E↵ective multimodal perception module: our Cross-scale Multimodal Perception

(CMP) module can e↵ectively reduce complex object confusions with intra-scale

and inter-scale multimodal perceptions, where linguistic and visual features in-

teract across temporal scales.

• State-of-the-art performance on the widely-used benchmarks, which shows the su-

periority of our framework. Specifically, on Ref-Youtube-VOS [147], our method

with ResNet-50 achieves 57.8 in L&F , outperforming the recent SOTA

method [198] with ResNet-101.

5.2 Method

To e↵ectively align diversified descriptions and complex videos, we propose a dis-

tinct Hybrid Temporal-scale Multimodal Learning (HTML) framework for RVOS.

In this section, we introduce our HTML in detail. First, we deliver an overview

of HTML framework. Then, we explain how to build the hybrid temporal-scale

multimodal learning paths, in the aid of vision-conditioned linguistic decoder and

language-conditioned visual decoder. Next, we introduce a Cross-scale Multimodal

Perception (CMP) module to align multimodal features across temporal scales. Fi-

nally, we describe the training objectives to optimize our HTML.

5.2.1 Framework Overview

As shown in Fig. 5.2, our HTML framework consists of three main parts. First,

we need to extract visual and linguistic features from backbones. We adopt a vi-

sual backbone to extract frame features from T frames sampled from the given

video. It can be either 2D CNN networks or 3D transformer networks. We then
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Figure 5.2 : Our Hybrid Temporal-scale Multimodal Learning framework. It aligns

linguistic and visual features by learning hierarchical multimodal interactions with

hybrid temporal scales, detailed in Sec. 5.2.2. Moreover, a Cross-scale Multimodal

Perception (CMP) module is designed to enable interaction and cooperation among

temporal scales, detailed in Sec. 5.2.3.

feed the extracted vision features into a deformable transformer encoder [234] to

construct spatiotemporal relations between di↵erent frames. Meanwhile, to make a

fair comparison with previous works in RVOS [198], we utilize the pretrained lin-

guistic embedding model, RoBERTa [117], to extract textual features se 2 RL⇥C

from language descriptions with L words. More details can be found in Sec. 5.3.2.

After extracting visual and linguistic features, we next construct multimodal

interactions between the language descriptions and the videos. Di↵erent from the

previous approaches [198, 196], we build L multimodal learning paths, where the lin-

guistic embedding hierarchically interacts with visual features in di↵erent temporal

scales. Then, we incorporate the mutually enhanced visual and linguistic features

by a novel Cross-scale Multimodal Perception (CMP) module to align multimodal

features across di↵erent scales. Finally, we design the training losses.
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5.2.2 Hybrid Temporal-scale Multimodal Learning

To capture core object semantics, we propose a novel hybrid temporal-scale mul-

timodal learning framework to learn multimodal relations. To start with, we build

hybrid temporal scales via di↵erent sampling strides. Then, we construct basic mul-

timodal relation learning units. Finally, we explain how to construct hybrid learning

paths.

Hybrid Temporal Scale Construction

Since the texts of various objects may refer to di↵erent video parts, single tem-

poral scale often fails to describe the diversified textual contents. To simulate such

diversity and flexibility, we build hybrid temporal scales by periodicly sampling

frames with di↵erent strides.

We first regard all the input frames as the first temporal scale, and then build

other L � 1 temporal scales upon it in a sequential manner. In order to ensure

the diversity of sampled temporal scale, we randomly pick one frame from every

h frames of last scale, where h denotes the predefined stride. Subsequently, we

feed the sampled frames into visual encoder Encoder(V) to extract feature maps

for each of the scales respectively. Specifically, for temporal scale l, we can obtain

M 2 RT⇥H⇥W⇥C , where T denotes the number of frames in the temporal scale.

Multimodal Relation Learning

In order to discover the core object semantics, we construct multimodal relations

via vision-conditioned linguistic decoder and language-conditioned visual decoder to

align semantics between di↵erent modalities.

Vision-Conditioned Linguistic Decoder. In order to align linguistic object se-

mantics to the vision contents, we design a vision-conditioned linguistic decoder

Decoder(L|V). Specifically, we have visual features M 2 RT⇥H⇥W⇥C , and lin-
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guistic embeddings se 2 R1⇥C . The vision-conditioned multimodal relations e =

Decoder(se|M) are constructed by

e0 = DeformAttn(se + q,M), (5.1)

ek = DeformAttn(ek�1,M), (5.2)

where k 2{1, ..., K�1}. We first add se with learnable queries q2RN⇥C to represent

candidate instances in the video. Then, we use deformable attention module [234]

to reason the vision-conditioned multimodal relations where vision features serve as

key and value to decompose linguistic features, as in Eq. (5.1). Finally, we stack the

cross-attention module for K times, as in Eq. (5.2).

Language-Conditioned Visual Decoder. In order to align visual object se-

mantics to linguistic contents, we design a language-conditioned visual decoder

Decoder(V|L) (similar to Eqs. (5.1) and (5.2)), to enhance visual representation with

the attendance of the language description. Di↵erently, vision features are enhanced

by multi-head self-attention (MHSA) modules at the first place, and then linguistic

features se serve as key and value in cross-attention modules. In this case, it can rea-

son the language-conditioned multimodal relations. Finally, we can get enhanced vi-

sual features by language-conditioned multimodal relations, as F = Decoder(M|se),

where F 2 RT⇥H⇥W⇥C .

Hierarchical Multimodal Learning As single-scale multimodal learning is insuf-

ficient to understand the relations between videos and texts, we propose to construct

the multimodal relations hierarchically for the L hybrid temporal scales with the

assistance of Decoder(L|V) and Decoder(V|L). We can obtain linguistic-attended vi-

sual features and visual-attended linguistic embeddings for di↵erent temporal scales,

capturing core object semantics conditioned on di↵erent visual and linguistic con-

texts.
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5.2.3 Cross-scale Multimodal Perception

The multimodal relations are constructed conditioned on di↵erent modalities

with hybrid temporal scales. However, the modeling process of di↵erent scales is

independent. To promote the cooperation and align the visual and linguistic seman-

tics both within the scale and across the scales, we design Cross-scale Multimodal

Perception (CMP) module.

Intra-scale Perception. Despite sharing visual and linguistic feature extraction,

the multimodal relation construction via Decoder(V|L) and Decoder(L|V) are inde-

pendent to each other. To promote the cooperation between modalities, we propose

an intra-scale perception module.

Specifically, in each temporal scale l, we have visual attended linguistic embed-

dings e 2 RN⇥T⇥D and linguistic attended visual features F 2 RT⇥H⇥W⇥C . To

achieve fine-grained semantic alignment, we measure the similarity by dot prod-

uct between e and F on pixel level. Specifically, we obtain the similarity map via

multimodal perception module, denoted as I = MP(F, e) by

⌦ = MaskHead(e), (5.3)

I = ⌦ · F, (5.4)

where MaskHead denotes three consecutive MLP layers for embedding conversion.

Each value of I represents the relevance between visual-attended linguistic embed-

dings and linguistic-attended visual features, which can be interpreted as the exis-

tence of the referred object. As such, I is regarded as the object mask prediction

with the context of current temporal scale. To this end, we achieve the multimodal

perception in the same temporal scale.

Inter-scale Perception. The multimodal relations are constructed in di↵erent

temporal scales. However, the process in each scale is independent and biased to-
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wards the contained object semantics. To alleviate it, we propose to align multi-

modal features from di↵erent temporal scales with a concise inter-scale perception

module.

Specifically, suppose that the referred object appears in frame t in temporal scales

l and l+1, the referred object can be segmented by measuring similarity between

(Fl(t), el(t)) and (Fl+1(t), el+1(t)) simultaneously. Conditioned on same frame t, the

visual-attended linguistic embedding el(t) from scale l is supposed to be relevant to

the linguistic-attended visual features Fl+1(t) from scale l + 1. Thus, similar to

Eq. (5.4), the similarity cross di↵erent temporal scales can be measured by

I
l!l+1(t) = MP(el(t),Fl+1(t)). (5.5)

Without losing generality, the inter-scale similarity can also be measured by I l+1!l(t).

More specifically, frame t can be any frame shared by the adjacent temporal scales,

which is ensured by our hybrid temporal scales sampling strategy. Each value in

I
l!l+1(t) represents the referred object prediction with the prior of linguistic object

semantic from temporal scale l. In the same way, values in I
l+1!l(t) represent the

opposite. To this end, we achieve multimodal perception across di↵erent temporal

scales.

5.2.4 Training objectives

Our network can be trained in an end-to-end manner to locate and segment the

target instance simultaneously. Specifically, the losses for intra-scale and inter-scale

multimodal perception in temporal scale l are formed as

L
l

intra =
X

Lcls(y, ŷ) + Lbox(b, b̂) + Lmask(I, Î), (5.6)

L
l

inter =
X

Lmask(I
l+1!l, Î) (5.7)

where time and instance subscripts are omitted for simplicity, y and b denote binary

classification for instance existence and bounding box prediction respectively. Here
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Lcls is the focal loss [112], Lbox is the sum of L1 loss and GIoU loss [143], and Lmask

is the combinition of DICE loss [126] and binary mask focal loss. We optimize the

network by first finding the best prediction as the positive sample, via minimizing

the matching cost Ll

intra
and L

l

inter
in each temporal scale l respectively. Then, we

average the matching losses from di↵erent temporal scales and perception modules,

and minimize it for positive samples.

5.3 Experiments

5.3.1 Datasets and Metrics

Datasets. We conduct experiments on four datasets: Ref-Youtube-VOS[147], Ref-

DAVIS17[83], A2D-Sentences and JHMDB-Sentences[53], following the common

practice[198].

Metrics. We follow the standard evaluation protocol [147, 196, 198] to adopt region

similarity L(%), contour accuracy F(%) and mean L&F for Ref-Youtube-VOS and

Ref-DAVIS17. For JHMDB-Sentences, we adopt mAP to evaluate the model. For

A2D-Sentences, we use Precision@K, Overall IoU, Mean IoU and mAP for evalua-

tion.

5.3.2 Implemented Details

We set the number of attention layers K to 4 and the hidden dimension C to

256. The number of learnable queries N is set to 5. The number of MaskHead

output channels D is set to 8. During training, we first sample video clips by sliding

windows and then generate L = 3 hybrid temporal scales with stride h = 2 for

generalized multimodal representations and relations. We use same training recipes

as in [198, 17]. All frames are downsampled by shorter side to 360 and limit the

maximumsize for the long side to 640. Our model is pretrained on image referring

segmentation datasets [217, 217].
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Table 5.1 : Comparison with the SOTA methods on Ref-YTB-VOS.

Method Backbone
Ref-Youtube-VOS

J&F J F

CMSA [215] ResNet-50 34.9 33.3 36.5

CMSA + RNN [215] ResNet-50 36.4 34.8 38.1

URVOS [147] ResNet-50 47.2 45.3 49.2

LBDT-4 [147] ResNet-50 47.2 45.3 49.2

MLRL [196] ResNet-50 49.7 48.4 51.0

ReferFormer [198] ResNet-50 55.6 54.8 56.5

Ours ResNet-50 57.8 56.5 59.0

PMINet [41] ResNeSt-101 48.2 46.7 49.6

PMINet + CFBI [41] ResNeSt-101 53.0 51.5 54.5

CITD [108] ResNet-101 56.4 54.8 58.1

ReferFormer [198] ResNet-101 57.3 56.1 58.4

Ours ResNet-101 58.5 57.3 59.8

PMINet + CFBI [41] Ensemble 54.2 53.0 55.5

CITD [108] Ensemble 61.4 60.0 62.7

ReferFormer [198] Swin-L 62.4 60.8 64.0

Ours Swin-L 63.4 61.5 65.3

MTTR [17] Video-Swin-T 55.3 54.0 56.6

ReferFormer [198] Video-Swin-T 59.4 58.0 60.9

Ours Video-Swin-T 61.2 59.5 63.0

ReferFormer [198] Video-Swin-S 60.1 58.6 61.6

Ours Video-Swin-S 61.4 59.9 62.9

ReferFormer [198] Video-Swin-B 62.9 61.3 64.6

Ours Video-Swin-B 63.4 61.5 65.2

During inference, we report results with all input frames in single temporal scale

for fair comparisons. On Ref-DAVIS17, we directly inference on models trained on

Ref-Youtube-VOS. Similarly, we reports JHMDB-Senteces results directly on models
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Table 5.2 : Comparison with the SOTA methods on Ref-DAVIS17.

Method Backbone
Ref-DAVIS17

J&F J F

CMSA [215] ResNet-50 34.7 32.2 37.2

CMSA + RNN [215] ResNet-50 40.2 36.9 43.5

URVOS [147] ResNet-50 51.5 47.3 56.0

LBDT-4 [40] ResNet-50 54.5 - -

MLRL [196] ResNet-50 58.0 53.9 62.0

ReferFormer [198] ResNet-50 58.5 55.8 61.3

Ours ResNet-50 59.5 56.6 62.4

ReferFormer [198] Swin-L 60.5 57.6 63.4

Ours Swin-L 61.6 58.9 64.4

ReferFormer [198] Video-Swin-B 61.1 58.1 64.1

Ours Video-Swin-B 62.1 59.2 65.1

trained with A2D-Sentences.

5.3.3 SOTA Comparisons

We compare our method with the state-of-the-art methods on Ref-Youtube-VOS,

Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences. On Ref-Youtube-VOS, our

approach achieves 58.5 in L&F(%) with ResNet-50, as shown in Tab. 5.1, which

surpasses the recent SOTA method ReferFormer[198] with same backbone by 2.2

points. Moreover, it surpasses all the other SOTA methods with larger ResNet-

101 on all evaluation metrics, which fully suggests the superiority of our method.

When equipped with larger backbone, our method still show considerable superiority

with accuracy gap of 1.2 points for ResNet-101 and 1.0 points for Swin-L. We also

experiment our method with the well-known Video Swin Transformers [121]. Our

method with Video-Swin-Tiny backbone surpasses the SOTA method with the same
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Table 5.4 : SOTA results comparison on JHMDB-Sentences.

Method Backbone mAP

Hu et al. [72] VGG-16 17.8

Gavrilyuk et al. [53] I3D 23.3

ACAN [178] I3D 28.9

CMPC-V [115] I3D 34.2

MTTR (! = 8) [17] Video-Swin-T 36.6

MTTR (! = 10) [17] Video-Swin-T 39.2

ReferFormer† (! = 6) [198] Video-Swin-T 39.1

ReferFormer [198] Video-Swin-T 42.2

ReferFormer [198] Video-Swin-B 43.7

Ours Video-Swin-T 42.7

Ours Video-Swin-B 44.2

backbone by 1.8 points. With larger Video-Swin Transformers (Small and Base

models), our method still achieves SOTA performance, which shows the generality

of our method.

As shown in Tab. 5.2, our method surpasses the SOTA methods on Ref-DAVIS17

by over 1.0 points on both ResNet-50, Swin-L and Video-Swin-Base backbones, with

new a SOTA record 62.1 in L&F(%). We also experiment our method on A2D-

Sentences and JHMDB-Sentences datasets and compare with other SOTA results as

shown in Tab. 5.3 and Tab. 5.4. Our method achieves SOTA performances with new

records on both the two datasets. On A2D-Sentences, our HTML surpass SOTA

result by 1.7 points in mAP and higher recall by 1.6 on Precision@0.9. On JHMDB-

Sentences, our method still achieves a new SOTA record with 44.2 in mAP. These

results demonstrate the superiority of our method.
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Table 5.5 : Ablation study on the components of our HTML.

Components #Frames J&F J F

i. Baseline 5 55.6 54.8 56.5

ii. HTML w/o CMP 5 56.0 54.7 57.4

iii. HTML 5 56.3 55.0 57.5

iv. Baseline 8 56.2 55.0 57.3

v. HTML w/o CMP 8 57.1 56.0 58.2

vi. HTML 8 57.8 56.5 59.0

5.3.4 Ablation Study

In this section, we ablate core components of our HTML with Ref-Youtube-VOS

based on ResNet-50.

E↵ectiveness of our HTML. To validate the e↵ectiveness of our Hybrid

Temporal-scale Multimodal Learning framework, we investigate each of our com-

ponents by gradually adding them to the baseline [198]. First, comparing (i)&(iii)

in Tab. 5.5, our HTML improves the performance of baseline to 56.3 when 5 frames

are used for training, which is better than the baseline trained with longer input

frames. Further, when longer temporal input is available, comparing (iv)&(vi), our

HTML improves the model by 1.6 to 57.8 in L&F . These prove the e↵ectiveness of

our method with frames in di↵erent lengths.

Second, comparing counterpart networks using di↵erent number of frames, i.e.(iii)

and (vi), our method can benefit from longer temporal input (8 frames vs. 5 frames)

with an improvement of 1.5 points. This conclusion holds among the other coun-

terpart network pair, i.e.(ii)&(v). Further, each of our components brings an im-

provement of 0.3 when trained with total 5 frames, while the improvement can be

doubled to 0.7-0.9 with total 8 frames. This indicates that our method can better
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Table 5.6 : Ablation study on Hybrid Temporal Scales in (a) and (b), and Cross-

scale Multimodal Perception in (c).

(a) E↵ect of No. of temporal scales.

#Scales J&F J F

1 56.2 55.0 57.3

2 56.9 55.8 58.1

3 57.8 56.5 59.0

(b) E↵ect of No. of input frames.

Frames J&F J F

5 56.3 55.0 57.5

8 57.8 56.5 59.0

12 57.5 56.4 58.6

(c) E↵ect of direction of CMP.

Inter-scale J&F J F

None 56.2 55.0 57.3

l ! l + 1 56.9 55.8 58.0

l + 1 ! l 57.8 56.5 59.0

utilize the long temporal input.

Finally, taking 8 frames for instance, hierarchical multimodal learning and cross-

scale multimodal perception improves L&F by 0.9 and 0.7 respectively. It proves

the e↵ectiveness of each component of our HTML.

Length of language descriptions. We explore the performance of our method

with di↵erent sampled sets of language descriptions, to validate the ability of captur-

ing diversified linguistic object semantics. Since the train set of Ref-Youtube-VOS

contains an average of two language descriptions for each object, we sample the

shorter ones to form the Short set and the others to form the Long set.

As shown in bottom line of Fig. 5.3, the Long set has longer sentences than the

Short set in the average number of words. As shown in Fig. 5.3, when the objects

are described by Short query set, more input frames in single temporal scale achieve
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Figure 5.3 : Performance comparison of di↵erent query sets with di↵erent temporal

scales on Ref-Youtbe-VOS.

inferior performance (5 frames vs. 8 frames: 55.6 vs. 55.1). It’s interesting to

note that more visual content (8 frames) fails to improve the performance when the

linguistic content is insu�cient (shorter queries). When the complexity of queries

increases, i.e.with the Long query set, the quantitative relation is reversed: 8 frames

guided model obtains better performance than the model with 5 frames, increasing

by 0.8 (8 frames-Short query vs. 8 frames-Long query: 55.1 vs. 55.9). We infer

that this is caused by the mismatch of visual and linguistic object semantics. On

one side, shorter quires, i.e.relatively simple linguistic semantics, are insu�cient to

interpret longer videos. On the other side, the longer language descriptions contain

more content irrelevant to the visual input.

Di↵erently, our models trained with either the Short set or the Long set all

surpass the single temporal scale guided model. Impressively, when the objects
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Figure 5.4 : Visualization results of complex and simple language descriptions on

Ref-Youtube-VOS. Red masks indicate positive segmentation results and blue masks

indicate the negatives. Our HTML is able to clarify such object confusion.

are described by queries flexible in lengths, i.e.with the All set, our method gets a

performance boost by 1.6, while single temporal scale baseline (both 8 frames and

5 frames guided networks) improves by 0.3. This shows that our method has the

strong ability to solve the mismatch issue between visual content and diversified

linguistic contents.

Number of hybrid temporal scales. We investigate the e↵ectiveness of our

hierarchical multimodal learning, by exploring the number of hybrid temporal scales.

For fair comparison among di↵erent settings, the number of total input frames is

set to 8 in this subsection. As shown in Tab. 5.6 (a), when two temporal scales are

constructed, our method brings an improvement of 0.6 in L&F . When the number of
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temporal scales is increased to three, continuous improvement of 0.9 (56.9 vs. 57.8)

is observed. It proves that our model benefits from the increasing visual diversity

constructed by hybrid temporal scales.

Number of input frames. We explore the e↵ect of total input frames here.

In this subsection, hybrid temporal scales are constructed by default following

Sec. 5.2.2. As shown in Tab. 5.6 (b), more input frames bring an improvement

by 1.5 in L&F (5 frames vs. 8frames: 56.3 vs. 57.8). When the input frames

increase continuously to 12 frames, the performance saturates and drops slightly to

57.5. We conjecture that it is caused by insu�cient video-language pairs (8 frames

vs. 12 frames: 49k vs. 32k) compared to largely increased computation complexity

(8 frames vs. 12 frames: 21.5 GFLOPs vs. 33.6 GFLOPs for transformers).

Direction of inter-scale perception. We explore the e↵ect of direction of

inter-scale multimodal perception in CMP. Comparing first two lines of Tab. 5.6 (c),

l ! l+1 perception improves the baseline by 0.7 points; As in first and last lines, l+

1 ! l perception improves the baseline by 1.6 points. These prove the e↵ectiveness

of our inter-scale perception. We choose the latter one for better performance.

5.3.5 Visualizations

We visualize the segmentation results of complex and simple language descrip-

tions in Fig. 5.4. Specifically, we compare three settings, i.e., baseline with only

single temporal scale, HTML w/o CMP which constructs hybrid temporal scales,

and our final HTML which dynamically construct multimodal relations cross tem-

poral scales. As expected, when only single temporal scale is adopted, baseline fails

to segment the target in the video, e.g., the background rabbit in the subplot (a) is

mistakenly referred. The main reason is that the rabbit shares similar appearance

to the target object and also locates to the left of a person in last three frames. The

model is misled and confused by the single temporal scale. When applied with hy-
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brid temporal scales, the language description can interact with both long and short

temporal scales. Thus, the previous false prediction in the first frame is corrected.

Further, when applied with CMP, our model is able to clarify the object confusion

by discovering the core semantics on a scale and make correct predictions. Similarly,

in subplot (b), baseline is misled by the video clip where tennis ball only appears

in the middle two frames. When gradually applying our proposed modules, the

mistakenly predicted dog is clarified and further the target tennis ball is correctly

segmented.

5.4 Discussion

While our proposed approach achieves state-of-the-art results in referring video

object segmentation (RVOS), it still faces limitations that highlight opportunities for

further advancements. One key limitation is its focus on short-term to medium-term

video sequences, where performance may degrade when applied to long-term videos

with substantial scene changes, complex object interactions, or evolving contextual

information. Additionally, the reliance on predefined temporal scales for frame sam-

pling and processing constrains the model’s adaptability to varying video dynamics,

potentially limiting generalization in diverse scenarios. Furthermore, the approach

does not fully leverage the capabilities of large-scale pretrained multimodal mod-

els, which have demonstrated remarkable success in capturing intricate cross-modal

interactions and generalizing across datasets. To address these challenges, future

research should explore extending the framework to handle long-term video seg-

mentation by incorporating memory-augmented networks or global-attention-based

transformers to maintain temporal coherence and capture long-range dependencies.

Developing adaptive temporal scaling mechanisms that dynamically adjust frame

sampling and processing based on video content or linguistic descriptions could

further enhance the system’s robustness and flexibility. Additionally, integrating
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large vision-language models as feature extractors or fine-tuning them specifically

for RVOS could boost performance and scalability across diverse datasets. Finally,

exploring interactive RVOS, where systems incorporate user feedback or external

contextual cues to refine segmentation, represents a promising direction for real-

world applications. By addressing these limitations and pursuing these directions,

RVOS systems can evolve to meet the demands of increasingly complex and diverse

tasks.

5.5 Conclusion

In this work, we develop a HTML framework to align linguistic and visual fea-

tures by learning multimodal relations hierarchically in di↵erent temporal scales.

Moreover, we introduce an inter-scale multimodal perception module to construct

dynamic multimodal interactions across temporal scales. We conduct experiments

on four datasets and establish new state-of-the-art results. Particularly, our method

with ResNet-50 backbone surpasses the recent methods with ResNet-100. The com-

prehensive ablation experiments and visualization results show that our method is

able to discover core object semantics in the di↵erent modalities.
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Chapter 6

Dual-AI: Dual-path Actor Interaction Learning
for Group Activity Recognition

This chapter introduces the Dual-AI framework, which advances the understanding

of group activity recognition. Dual-AI innovatively combines spatial and temporal

data in dual paths to analyze both individual actions and their interactions within

a group, enhancing the accuracy of recognizing complex group dynamics. This

dual-path approach not only addresses the nuances of spatial and temporal data

integration but also highlights how tailored actor interaction models can significantly

improve the interpretation of collective activities in varied settings.

6.1 Introduction

Group Activity Recognition (GAR) is an important problem in video under-

standing. In this task, we should not only recognize individual action of each actor

but also understand collective activity of multiple involved actors. Hence, it is vital

to learn spatio-temporal actor relations for GAR.

Several attempts have been proposed to model actor relations by building visual

attention among actors [70, 199, 209, 220, 54, 103, 10]. However, it is often di�cult

for joint spatial-temporal optimization [170, 13]. For this reason, the recent ap-

proaches in group activity recognition often decompose spatial-temporal attention

separately for modeling actor interaction [54, 103, 209]. But single order of space

and time is insu�cient to describe complex group activities, due to the fact that

di↵erent group activities often exhibit diversified spatio-temporal interactions.
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Figure 6.1 : Accuracy per Category and Example of left spike and right set group

activity. Red dashed line and Violet dashed line below show spatial and tempo-

ral actor interaction respectively. With spatial and temporal modeling applied in

di↵erent orders, ST path and TS path learn di↵erent spatiotemporal patterns and

thereby are skilled at di↵erent classes, supported by the accuracy plot.

For example, Fig. 6.1 (a) refers to the l-spike activity in the volleyball, where

the hitting player (actor 1) and the defending player (actor 4) move fast to hit

and block the ball, while other accompanying players (e.g., actor 2 and actor 3)

stand without much movement. Hence, for this group activity, it is better to first

understand temporal dynamics of each actor, and then reason spatial interaction

among actors in the scene. On the contrary, Fig. 6.1 (b) refers to the r-set activity

in the volleyball, where most players in the right-side team are moving cooperatively

to tackle the ball falling on di↵erent positions, e.g., actor 1 jumps and sets the ball,

while actor 2 jumps together to make a fake spiking action. Hence, for this group

activity, it is better to reason spatial actor interaction first to understand the action

scene, and then model temporal evolutions of each actor. In fact, as shown in the
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Figure 6.2 : Accuracy comparison with data in di↵erent percentage on

Volleyball dataset. Our method achieves SOTA performance, and achieves 94.2%

with 50% data, which is competitive to a number of recent approaches [136, 54, 199]

trained with 100% data. Solid point means result with additional optical flow input.

accuracy plot of Fig. 6.1, the order of space and time interaction varies for di↵erent

activity categories.

Based on these observations, we propose a distinct Dual-path Actor Interaction

(Dual-AI) framework for GAR, which can e↵ectively integrate two complementary

spatiotemporal views to learn complex actor relations in videos. Specifically, Dual-

AI consists of Spatial-Temporal (ST) and Temporal-Spatial (TS) Interaction Paths,

with assistance of spatial and temporal transformers. ST path first takes spatial

transformer to capture spatial relation among actors in each frame, and then uti-

lizes temporal transformer to model temporal evolution of each actor over frames.

Alternatively, TS path arranges spatial and temporal transformers in a reverse order

to describe complementary pattern of actor interaction. In this case, our Dual-AI
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can comprehensively leverage both paths to generate robust spatiotemporal contexts

for boosting GAR.

Furthermore, we introduce a novel Multi-scale Actor Contrastive Loss (MAC-

Loss), which is a concise but e↵ective self-supervised signal to enhance actor con-

sistency between two paths. Via such actor supervision in all the frame-frame,

frame-video, video-video levels, we can further reduce action confusion between any

two individual actors to improve the discriminative power of actor representations

in GAR.

Finally, we conduct extensive experiments on the widely-used benchmarks to

evaluate our designs. Our Dual-AI simply achieves state-of-the-art performance

on all the fully-annotated datasets, such as Volleyball, Collective Activity. More

interestingly, our Dual-AI with 50% training data is competitive to a number of

recent approaches with 100% training data in Volleyball as shown in Fig. 6.2, which

clearly demonstrates the generalization power of our Dual-AI. Motivated by this,

we further investigate the challenging setting with limited actor supervision [209],

where Dual-AI also achieves SOTA results on Weak-Volleyball-M and NBA datasets.

All these results show that our Dual AI is e↵ective for learning spatiotemporal actor

relations in GAR.

6.2 Related Work

Group activity recognition has attracted a large body of work recently due to its

wide applications. Early approaches are based on hand-crafted features and typically

use probabilistic graphical models [1, 3, 2, 93, 94, 193] and AND-OR grammar

methods [4, 151]. Recently, methods incorporating convolutional neural networks

[11, 74] and recurrent neural networks [186, 207, 137, 11, 36, 152, 104, 74, 73] have

achieve remarkable performance, due to the learning of temporal context and high-

level information.
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Figure 6.3 : Our Dual-path Actor Interaction (Dual-AI) learning framework, where

S-Trans and T-Trans denote Spatial-Transformer and Temporal-transformer respec-

tively. It effectively explores actor evolution in two complementary spatiotemporal

views, i.e., ST path and TS path, detailed in Sec. 6.3.2. Moreover, a Multi-scale

Actor Contrastive loss is designed to enable interaction and cooperation of the two

paths as in Sec. 6.3.3.

More recent group activity recognition methods [199, 54, 70, 209, 45, 136, 103,

220] often require the explicit representation of spatiotemporal relations, dedicated

to apply attention-based methods to model the individual relations for inferring

group activity. [199, 220] build relational graphs of the actors and explore the

spatial and temporal actor interactions in the same time with graph convolution

networks. These methods simulate spatiotemporal interaction of actors in a joint

manner. Differently, [209] builds separate spatial and temporal relation graphs sub-

sequently to model the actor relations. [54] encodes temporal information with I3D

[22] and constructs spatial relation of the actors with a vanilla transformer. [103]

introduces a cluster attention mechanism for better group informative features with

transformers. Different from previous approaches, we propose to learn the actor

interactions in complementary Spatial-Temporal and Temporal-Spatial views and
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further promote actor interaction learning with a designed self-supervised loss for

e↵ective representation learning.

Vision Transformer has gradually become popular for computer vision tasks.

In image domain, ViT[42] firstly introduces a pure transformer architecture with-

out convolution for image recognition. Following works [102, 221, 120, 189] make

remarkable progress on enabling transformer architecture to become a general back-

bone on various kinds of downstream computer vision tasks. In video domain, many

works[64, 6, 101, 13, 46, 131] explore spatial and temporal self-attention to learn e�-

cient video representation. TimeSformer[13] investigates the di↵erent space and time

attention mechanisms to learn spatial-temporal representation e�ciently. MViT[46]

utilizes the multi-scale features aggregation to enhance the spatial-temporal rep-

resentation. Motionformer[131] presents a trajectory-focused self-attention block,

which essentially tracks space-time patches for video transformer. The above trans-

former architectures are designed for general video classification task. It has not

been fully explored to tackle the challenging GAR problem with transformers. We

propose to construct dual spatiotemporal paths with transformers to flexibly learn

actor interactions for group activity recognition.

6.3 Method

To learn complex actor relations in the group activities, we propose a distinct

Dual-path Actor Interaction (Dual-AI) framework for GAR. In this section, we in-

troduce our Dual-AI in detail. First, we describe an overview of Dual-AI framework.

Then, we explain how to build the interaction paths, with assistance of spatial and

temporal transformers. Next, we introduce a Multi-scale Actor Contrastive Loss

(MAC-Loss) to further improve actor consistency between paths. Finally, we de-

scribe the training objectives to optimize our Dual-AI framework.
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6.3.1 Framework Overview

As shown in Fig. 6.3, our Dual-AI framework consists of three important steps.

First, we need to extract actor features from backbone. Specifically, we sample K

frames from the input video. To make a fair comparison with the previous works in

GAR [11, 103, 199, 220, 219], we choose ImageNet-pretrained Inception-v3 [162] as

backbone to extract feature of each sampled frame. Then, we apply RoIAlign [68]

on the frame feature, which can generate actor features in this frame from bounding

boxes of N actors. After that, we adopt a fully-connected layer to further encode

each actor feature into a C dimensional vector. For convenience, we denote all the

actor vectors as X 2 RK⇥N⇥C . More details can be found in Sec. 6.4.2.

After extracting actor feature vectors, we next learn spatiotemporal interac-

tions among these actors in the video. Di↵erent from the previous approaches

[199, 220, 209, 208, 54], we disentangle spatiotemporal modeling into consecutive

spatial and temporal interactions in di↵erent orders. Specifically, we design spatial

and temporal transformers as basic actor relation modules. By flexibly arranging

these transformers in two reverse orders, we can enhance actor relations with comple-

mentary integration of both spatial-temporal (ST) and temporal-spatial (TS) inter-

action paths. Finally, we design training losses to optimize our Dual-AI framework.

In particular, we introduce a novel Multi-scale Actor Contrastive Loss (MAC-Loss)

between two paths, which can e↵ectively improve discriminative power of individ-

ual actor representations, by actor consistency in all the frame-frame, frame-video,

video-video levels. Subsequently, we integrate actor representations of two paths to

recognize individual actions and group activities.

6.3.2 Dual-path Actor Interaction

To capture complex relations for diversified group activities, we propose a novel

dual path structure to describe actor interactions. To start with, we build basic
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spatial and temporal actor relation units, with assistance of transformers. Then, we

explain how to construct dual paths for spatiotemporal actor interactions.

Spatial/Temporal Actor Relation Units

To understand spatiotemporal actor evolution in videos, we first construct basic

units to describe spatial and temporal actor relations. Since there is no prior knowl-

edge about actor relation, we propose to use transformer to model such relation by

the powerful self-attention mechanism.

Spatial Actor Transformer. In order to model the spatial relation of the

actors in single frame, we design a concise spatial actor transformer (S�Trans).

Specifically, we denote Xk
2 RN⇥C as the feature vectors of N actors in the k-th

frame. The spatial relation among these actors are modeled by X̂k = S�Trans(Xk),

which consists of three modules as follows,

X0 = SPE(Xk) +Xk
, (6.1)

X00 = LN(X0 +MHSA(X0)), (6.2)

X̂k = LN
�
X00 + FFN(X00)

�
. (6.3)

First, we use spatial position encoding (SPE) to add spatial structure information of

the actors in the scene, as in Eq. (6.1). We represent spatial position of each actor

with center point of its bounding box and encode the spatial positions with PE

function in [54, 20]. Second, we use multi-head self-attention (MHSA) [174] module

to reason the spatial interaction of the actors in the scene, as in Eq. (6.2). Finally,

we use feed-forward network (FFN) [174] to further improve learning capacity of the

spatial actor relation unit, as in Eq. (6.3).

Temporal Actor Transformer. In order to model the temporal evolution

of single actor across frames, we design a temporal actor transformer (T�Trans)

following the way in Eqs. (6.1) to (6.3). Di↵erently, we use the input as the feature
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vectors of the n-th actor across K frames, i.e., Xn
2 RK⇥C . In this case, the MHSA

module can reason the evolution of actor n in di↵erent time steps. Moreover, to

add temporal sequence information of actor n, temporal position encoding (TPE)

is used instead of SPE, which encodes frame index {1, ..., K} with PE function

in [174]. Finally, we can get actor features enhanced by temporal interactions, as

X̂n = T�Trans(Xn).

Dual Spatiotemporal Paths of Actor Interaction

Once the spatial and temporal relations of actors are built, we can further in-

tegrate them to construct spatiotemporal representation of the actor evolution. As

discussed in Sec. 6.1, the single order of space and time is insu�cient to understand

the complex actor interactions, leading to the failure of inferring group activities.

Thus, we propose a dual spatiotemporal paths framework for GAR to capture the

complex interaction of the actors.

It consists of two complementary spatiotemporal modeling patterns for actor

evolution, i.e., Spatial-Temporal (ST) and Temporal-Spatial (TS), by switching the

order of space and time as:

XST = T�Trans(X+MLP(S�Trans(X))) (6.4)

XTS = S�Trans(X+MLP(T�Trans(X))), (6.5)

where we adopt a residual structure to enhance the actor representation. MLP with

parameters in shape C ⇥ C is used to add non-linearity. By reshaping the frame

and actor dimension as batch dimension, S�Trans and T�Trans reason about spatial

and temporal actor interaction respectively.

By stacking spatial and temporal transformers in di↵erent orders, the actor rep-

resentation is reweighted and aggregated according to di↵erent spatiotemporal con-

text. ST path first reasons about the interaction of di↵erent actors in the scene of
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each frame. Then, the temporal evolution is modeled to reweight the built actor

interaction across di↵erent frames. As such, ST path is skilled at recognizing activi-

ties with distinct spatial arrangement, such as set in volleyball games. This activity

requires the player to move to a new position and set the ball, usually accompanied

by other players moving or jumping for fake spiking. Complementarily, TS path

reasons about the actor evolution, in the opposite order of ST path. It considers

temporal dynamics of each actor in the first place, and then reasons about spatial

actor interaction to understand the scene. Hence, it is skilled at recognizing activi-

ties with distinct actor evolution patterns, such as spike in volleyball games, which

requires hitter to jump and quickly hit the ball.

Subsequently, to fully take advantage of such complementary characteristic, we

feed the representation of actors from ST and TS paths to generate individual ac-

tions and group activity predictions, and fuse them as final predictions of dual

spatiotemporal paths.

6.3.3 Multi-scale Actor Contrastive Learning

The actor representation is reweighted and aggregated by dual spatiotempo-

ral paths, however, the modeling process is independent. To promote cooperation

of these two complementary paths, we design a self-supervised Multi-scale Actor

Contrastive loss (MAC-loss). As dual spatiotemporal paths model evolution of each

actor in di↵erent patterns, we define a pretext task of actor consistency. Specifically,

we design such constraints in multiple scales of frame and video levels.

Frame-Frame Actor Contrastive Loss. The frame representation of the

actor in one path should be similar with its corresponding frame representation in

the other path, while di↵erent from other frame representation of this actor in the

path. As shown in Fig. 6.4 (a), taking actor n in ST path as an example, we attract

frame representation in k-th frame (Xn,k

ST ) to its corresponding representation from
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Figure 6.4 : Illustration of MAC-loss for Actor N. It consists of three levels, i.e.,

frame-frame, frame-video and video-video. The blue block means the source of

negative pairs. For simplicity, we only show the constraints from ST path to TS

path. It is similar for the constraints from TS path to ST path.

TS path (Xn,k
TS ). Meanwhile, we repel the representation of actor n in other frames

from TS path (Xn,t
TS, where t �=k),

Lff (X
n,k
ST ,X

n,k
TS ) = − log

h(Xn,k
ST ,X

n,k
TS )∑K

t=1 h(X
n,k
ST ,X

n,t
TS)

, (6.6)

where h(u,v) = exp( u�v
||u||2||v||2 ) is the exponential of cosine similarity measure. Vice

versa, the loss for actor n in TS path can be obtained by Lff (X
n,k
TS ,X

n,k
ST ).

Frame-Video Actor Contrastive Loss. The frame representation of the actor

in one path should be consistent with its video representation in the other path, while

different from video representation of other actors in the path. As shown in Fig. 6.4

(b), taking actor n in ST path as an example, we attract its frame representation
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Xn,k

ST to its video representation X̃n

TS from TS path, which is obtained by pooling

frame representation Xn,1:K
TS . Meanwhile, we repel the video representation of other

actors in the minibatch from TS path (X̃i

TS, where i 6=n),

Lfv(X
n,k

ST ,X̃
n

TS) = � log
h(Xn,k

ST , X̃
n

TS)P
B⇥N

i=1 h(Xn,k

ST , X̃
i

TS)
, (6.7)

where B denotes the minibatch size. Vice versa, the loss for actor n in TS path can

be obtained by Lfv(X
n,k

TS , X̃
n

ST).

Video-Video Actor Contrastive Loss. Furthermore, we constrain the con-

sistency of video representation of each actor across dual paths, as shown in Fig. 6.4

(c). We achieve this by minimizing cosine similarity measure Lvv of corresponding

video representation (X̃n

TS, X̃
n

ST). Our proposed MAC-loss is then formed as

LMAC = �ffLff + �fvLfv + �vvLvv, (6.8)

where �{·} denote weights for the di↵erent components.

6.3.4 Training objectives

Our network can be trained in an end-to-end manner to simultaneously predict

individual actions of each actor and group activity. Combining with standard cross-

entropy loss, the final loss for recognition is formed as

Lcls=LCE(
ŷGts+ŷGst + ŷGscene

3
, yG) + �LCE(

ŷIts+ŷIst
2

, yI), (6.9)

where ŷ
I

{ts,st} and ŷ
G

{ts,st} denote individual action and group activity predictions

from TS and ST paths. y
I and y

G represent the ground truth labels for the target

individual actions and group activity. ŷG
scene

denotes the scene prediction produced

by separate group activity classifier, using features directly from backbone. � is the

hyper-parameter to balance the two items. Finally, we combine all the losses to

train our Dual-AI framework,

L = Lcls + LMAC . (6.10)
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During inference, we infer the individual actions and group activity by averaging

the predictions from the dual spatiotemporal paths.

Table 6.1 : Comparison with state-of-the-art methods on Volleyball dataset in

term of Acc.%.

Method Backbone
Data

Ratio

Optical

Flow

Individual

Action

Group

Activity

HDTM[74] AlexNet 100% - 81.9

CERN[150] VGG16 100% - 83.3

StageNet[137] VGG16 100% - 89.3

HRN[73] VGG19 100% - 89.5

SSU[11] Inception-v3 100% 81.8 90.6

AFormer[54] I3D 100% - 91.4

ARG[199] Inception-v3 100% 83.0 92.5

TCE+STBiP [219] Inception-v3 100% - 93.3

DIN [220] ResNet-18 100% - 93.1

GFormer[103] Inception-v3 100% 83.7 94.1

Ours
Inception-v3 25% 82.1 89.7

Inception-v3 50% 83.0 92.7

Inception-v3 100% 84.4 94.4

SBGAR[104] Inception-v3 100% X - 66.9

CRM[10] I3D 100% X - 93.0

Aformer[54] I3D 100% X 83.7 93.0

JLSG[45] I3D 100% X 83.3 93.1

ERN[136] R50-FPN+I3D 100% X 81.9 94.1

GFormer[103] I3D 100% X 84.0 94.9

Ours

Inception-v3 25% X 83.0 91.6

Inception-v3 50% X 84.0 94.2

Inception-v3 100% X 85.3 95.4
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Table 6.2 : Comparisons with previous state-of-the-art methods on Collective Ac-

tivity datatset.

Method Backbone MPCA

HDTM[74] AlexNet 89.7

PCTDM[207] AlexNet 92.2

CERN-2[150] VGG-16 88.3

Recurrent[187] VGG-16 89.4

stagNet[137] VGG-16 89.1

SPA+KD[167] VGG-16 92.5

PRL[70] VGG-16 93.8

CRM[10] I3D 94.2

ARG[199] ResNet-18 92.3

HiGCIN[208] ResNet-18 93.0

DIN[220] ResNet-18 95.3

TCE+STBiP[219] Inception-v3 95.1

Ours
ResNet-18 96.0

Inception-v3 96.5

6.4 Experiments

6.4.1 Dataset

Volleyball Dataset. This dataset [74] consists of 4,830 labeled clips (3493/1337

for training/testing) from 55 volleyball games. Each clip is annotated with one of

8 group activity classes. Middle frame of each clip is annotated with 9 individual

action labels and their bounding boxes.

Collective Activity Dataset. This dataset [31] contains 44 short videos with

every ten frames annotated with individual action labels and their bounding boxes.

The group activity class of each clip is determined by the largest number of the

individual action classes. We follow [208, 207, 220] to merge the crossing and walking
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Table 6.3 : Comparision with state-of-the-art methods on NBA and Weak-

Volleyball-M dataset following metrics adopted in [209]. * means the results

are from [209].

Method Backbone
Mod-

ality

NBA

Acc./Mean Acc.

Weak Vlb.

-M Acc.

TSN*[184] Incep-v1 RGB – / 37.8 –

I3D*[22] I3D RGB – / 32.7 –

Nlocal*[190] I3D-NLN RGB – / 32.3 –

ARG*[199] Incep-v3 RGB – / – 90.7

SAM[209] Res-18 RGB – / – 93.1

SAM[209] Incep-v3 RGB 49.1 / 47.5 94.0

Ours

Incep-v3 RGB 51.5 / 44.8 95.8

Incep-v3 Flow 56.8 / 49.1 96.1

Incep-v3 Fusion 58.1 / 50.2 96.5

Table 6.4 : Comparison with state-of-the-art methods trained with Volleyball

dataset of di↵erent data ratios in term of group activity recognition Acc.%.

Method 5% 10% 25% 50% 100%

PCTDM[207] 53.6 67.4 81.5 88.5 90.3

AFormer[54] 54.8 67.7 84.2 88.0 90.0

HiGCIN[208] 35.5 55.5 71.2 79.7 91.4

ERN[136] 41.2 52.5 73.1 75.4 90.7

ARG[199] 69.4 80.2 87.9 90.1 92.3

DIN[220] 58.3 71.7 84.1 89.9 93.1

Ours 76.2 85.5 89.7 92.7 94.4

into moving.

Weak-Volleyball-M Dataset. This dataset [209] is adapted from Volleyball

dataset while merging pass and set categories to have total 6 group activity classes,
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and discarding all individual annotations (including individual action labels and

bounding boxes) for weakly supervised GAR.

NBA Dataset. This dataset [209] contains 9,172 annotated clips (7624/1548 for

training and testing) from 181 NBA game videos, each of which belongs to one of

the 9 group activities. No individual annotations, such as individual action labels

and bounding boxes, are provided.

6.4.2 Implementation Details

We select the Inception-v3 model as our CNN backbone, following widely used

settings [11, 103, 199, 220, 219] in GAR. We also use ResNet-18 model as backbone

for Collective Activity Dataset, following widely used settings [208, 220]. We apply

the ROI-Align with crop size 5⇥5 and a linear embedding to get actor features with

dimension C = 1024. Each Spatial or Temporal transformer has one attention layer

with 256 embedding dimension. The �ff ,�fv,�vv in MAC-Loss are all set 1. More

details for K and N can be found in supplementary material.

6.4.3 SOTA Comparison

Full Setting. This setting allows us to train our model with all data fully an-

notated with group activities and individual annotations. We compare our method

with the state-of-the-art approaches on Volleyball and Collective Activity dataset.

As shown in Tab. 6.1, our approach (94.4%) with only RGB frames and Inception

backbone has already outperformed other SOTAmethods with computationally high

backbones (I3D, FPN) and additional optical flow input. Furthermore, equipped

with RGB and optical flow late fusion, our method can improve the SOTA result

by a large margin to 95.4%. Remarkably, even with only 50% data, our method

still surpasses the vast majority of the SOTA methods with 100% data, e.g., Ours

(50%) vs. SARF (100%): 94.2 vs. 93.1. As shown in Tab. 6.2, our approach also
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achieves state-of-the-art performance on Collective Activity dataset. These results

demonstrate the e↵ectiveness of our method.

Weakly Supervised Setting. Under this setting we use all raw data and

group activity annotations, without any individual annotations. We follow the [209]

to report results on Weak-Volleyball-M dataset and NBA dataset. As shown in

Tab. 6.3, our method surpasses all the existing methods by a good margin, estab-

lishing new state-of-the-art results. Specifically, our approach improves the previous

SOTA [209] by 2.5% on Weak-Volleyball-M and by 9% on NBA dataset in term of

Acc.%. It indicates that our Dual-AI framework can enhance the learning ability

of the model to obtain robust representation and achieve promising performance in

the case individual annotations missing.

Limited Data Setting. In this setting, we train our method with random

sampled data in di↵erent ratios to show the generalization power of our method. To

compare the results under this setting, we implement a number of previous SOTA

methods that have the o�cially-published codes available. As shown in Tab. 6.4,

our method surpasses previous SOTA methods in all data ratios. Moreover, with the

available training data decreasing, the performance of our method remains promising

and the gain against other methods gets enlarged, which demonstrates the robust-

ness of our method.

6.4.4 Ablation Study

Dual Spatial Temporal Paths. To validate the e↵ectiveness of our Dual

Spatiotemporal Paths, we investigate six settings. Particularly, we experiment with

50% data for limited Volleyball. In addition to T-S and S-T introduced in Section

Sec. 6.3.2, other two paths, i.e., S-S and T-T are introduced to validate in a broader

range. S-S/T-T means that features go through two successive Spatial/Temporal-

Transformer, respectively. As shown in Tab. 6.5, our Dual Paths achieves the best
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Table 6.5 : E↵ectiveness of our Dual Path Actor Interaction.

Dual-Path
Weak

Volleyball-M

Limited

Volleyball

Full

Volleyball

S-S 88.9 88.4 91.2

T-T 91.6 87.9 90.9

S-T 93.0 89.3 92.2

T-S 92.6 89.5 92.1

ST-TS Fusion 94.2 90.8 93.3

Table 6.6 : E↵ectiveness of our MAC-loss. Di↵erent components are ablated on

Volleyball dataset in term of Acc.%.

Components of MAC-loss Data Ratio

F-F F-V V-V 50% 100 %

90.8 93.3

X 91.2 93.5

X 91.0 93.3

X 91.6 93.6

X X X 92.1 94.0

result under di↵erent setting. The reason is that, dual-path TS and ST are good

at inferring di↵erent group activities and the learned representation from ST and

TS can complement each other, leading to a better performance. This demonstrates

that our dual path ST-TS is a preferable way to comprehensively leverage both paths

to generate robust spatiotemporal contexts for boosting group activity recognition.

Multi-scale Actor Contrastive Loss. We explore the performance of our

network with di↵erent components of MAC loss. As shown in Tab. 6.6, with dif-

ferent component of consistent loss (frame-frame, frame-video, video-video), our

network consistently outperforms w/o consistent loss. By utilizing all components
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(a) TS path (b) ST path (d) Dual paths + MAC-loss(c) Dual paths

r-set

r-spike

r-pass
r-winpoint

l-set
l-spike

l-pass

l-winpoint

Figure 6.5 : t-SNE [173] visualization of video representation on the Volleyball

dataset learned by di↵erent variants of our Dual-AI model: ST path only, TS path

only, Dual spatiotemporal paths, and final Dual-AI model.

Scene Fusion
Data Ratio

50% 100%

w/o 92.1 94.0

Early 92.0 93.9

Middle 92.2 94.0

Late 92.7 94.4

Table 6.7 : E↵ectiveness of scene information.

of MAC-loss, our network can achieve the best results. Note that, given less avail-

able training data, the loss can help network get a larger accuracy improvement. It

demonstrates that the MAC-loss can enable cooperation of the dual complementary

modeling process, thereby enhancing the learned representation from ST and TS

paths, especially with limited available data.

Scene Information. We investigate the e↵ectiveness of scene information, by

exploring the way to fuse scene context in a early, middle and late fusion manner.

As shown in Tab. 6.7, late scene context fusion is the best choice. Regardless of the

available data ratio, the scene information can improve the performance by around

0.6 in term of Acc.%. This is because that scene information can provide global-level

context, which can supplement the actor-level relation modeling and is crucial to

GAR.
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Figure 6.6 : Actor interaction visualization for l-spike activity with connected lines.

Brighter color indicates stronger relation. (a) For actor 8 in frame 0, we visualize

the temporal interaction with same actors in di↵erent frames for ST and TS paths;

similarly, we visualize the spatial interaction with di↵erent actors in frame 0. (b)

We visualize the actor interaction for actor 2 in frame 8 in the same way.

6.4.5 Visualization

Group Feature Visualization. Fig. 6.5 shows the t-SNE [173] visualization

of the learned representation. We project video representation extracted from Vol-

leyball validation dataset to 2-D dimension using t-SNE. We can see that learned

representation from Dual Path transformer (c) can be grouped better than single

Temporal-Spatial path (a) and Spatial-Temporal path (b). Furthermore, equipped

with MAC-loss, our Dual-AI network (d) is able to di↵erentiate group represen-

tations much better. These results demonstrate the e↵ectiveness of our Dual-AI

framework.

Spatial/Temporal Actor Attention Visualization. We visualize the actor

interaction of l-spike activity in Fig. 6.6. The attention weight between actors is

represented by connected lines, and the brightness of the lines represents the scale of

the attention weight. Orange and Blue lines correspond to the Spatial and Temporal
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interaction, respectively. As shown by spatial interaction in Fig. 6.6 (a), the spiking

player (actor 8) is more related with accompanying players in TS path, who are

“moving” (actor 6 and 10) and “standing” (actor 9). Di↵erently, in ST path, actor

8 has wider connections with accompanying players (e.g., actor 7 and actor 10)

and defending players (e.g., actor 0 and actor 4). Similarly, as shown by spatial

interaction in Fig. 6.6 (b), the actor 2 is related to di↵erent accompanying and

defending players in TS path and ST path respectively, showing complementary

patterns. As for temporal interaction in both (a) and (b), the anchor actor is more

related with early frames (frame 0 and frame 3) in TS path, while more related

with late frames (frame 7 and frame 8) in ST path, showing highly complementary

patterns.

6.5 Conclusion

In this work, we develop a Dual-AI framework to flexibly learn actor interactions

in Spatial-Temporal and Temporal-Spatial views. Furthermore, we design a distinct

MAC-loss to enable cooperation of dual paths for e↵ective actor interaction learning.

We conduct experiments on three datasets and establish new state-of-the-art results

under di↵erent data settings. Particularly, our method with 50% data surpasses a

number of recent methods trained with 100% data. The comprehensive ablation

experiments and visualization results show that our method is able to learn actor

interaction in a complementary way.
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Chapter 7

Video Recognition in Portrait Mode

This chapter shifts focus to the emerging trend of portrait mode video recognition.

With the increasing prevalence of portrait mode videos on social media platforms,

this format presents unique challenges due to its distinct aspect ratio and content

characteristics. This chapter explores the development of specialized methodologies

and the introduction of the PortraitMode-400 dataset, designed specifically to op-

timize recognition techniques for portrait mode videos. These advancements aim

to better accommodate the vertical orientation and subject-centric content typical

of this video format, enhancing both accuracy and applicability in contemporary

media environments.

7.1 Introduction

Most e↵orts in video recognition have focused on improving the accuracy and

e�ciency of di↵erent models and architectures on public benchmarks. Over the

past two decades, there has been a dramatic shift in the types of video recognition

models, starting from bags of features [156, 180, 133, 172, 179, 132, 163], moving on

to convolutional neural networks [205, 80, 49, 184, 50, 182, 210, 111, 170, 169, 22],

and more recently, vision transformers [7, 6, 101, 106, 47, 13, 121, 18, 119, 221, 131].

With the evolution of various models, video datasets have played a crucial role

in driving each generation of models. The introduction of each video dataset has

guided the research community to focus on new challenges. We have moved from

using datasets collected in controlled environments (e.g., KTH [146], Weizmann [15])

to more realistic videos (e.g., UCF101 [158], HMDB51 [90]), and now to large-scale
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PortraitMode-400

Figure 7.1 : A glance of PortraitMode-400, which is the first dataset dedicated to

portrait mode video recognition. It covers videos from 9 domains and 400 specific

categories. We show video samples (left to right, top to down) for aerial yoga,

riding neck, partner dancing (pop music), acrobatics, cooking fish soup, catching crab,

styling hair with hairpins and opening mystery card packs, from di↵erent domains

of our dataset.

web video datasets (e.g., Kinetics-700 [21], HowTo100M [125]).

While existing video datasets are mostly built on landscape mode videos, por-

trait mode videos have become increasingly more popular on major social media

applications. The shift from landscape mode to portrait mode is not just changing

the aspect ratios of the videos. It has significant implications for the types of con-

tent that are created and the spatial bias inherent in the data. Portrait mode videos

bring in distinct challenges for video recognition as well. For example, they tend to

focus more on the subject (i.e., typically humans) with much less background con-

text, and include more egocentric content. In addition, they contain a lot of verbal

communication that is essential to understand the video content. There is a pressing

need for portrait mode video datasets to explore these new research problems.
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This chapter introduces the first dataset dedicated to portrait mode video recog-

nition, named PortraitMode-400 (abbreviated as PM-400), shown in Figure 7.1.

The dataset consists of 76k videos collected from Douyin∗, a popular short-video

application, and annotated with 400 categories. The dataset’s taxonomy is built in

a data-driven way by aggregating search queries and covers a wide range of cate-

gories, including sports, food, music, handicrafts, and daily activities, among others.

Many of the categories are fine-grained, as shown in Figure 7.2 (a). The data an-

notation was performed by professionally trained human annotators, and additional

quality assurance was conducted to improve the annotation accuracy and consis-

tency. We built PortraitMode-400 as a single-label dataset, and removed videos

that can be tagged with multiple labels during annotation. While the recent 3Mas-

siv [63] dataset also includes a significant percentage of portrait mode videos, it

is mostly built for multi-lingual and multi-modal research, and only has 34 coarse

visual concepts, unlike PortraitMode-400.

In addition to introducing the PortraitMode-400 dataset, we have also made pre-

liminary attempts to investigate several critical research problems related to portrait

mode video recognition:

• How well does a model trained on landscape mode videos perform on portrait

mode videos, and vice versa? We investigate this question by constructing

a subset from the Kinetics-700 dataset [21] for a rigorous comparison and

visualize classification heatmaps (shown in Figure 7.3 and Figure 7.4) to reveal

the di↵erences in spatial bias resulting from the change in video format.

• What are the optimal training and testing protocols for portrait mode video

recognition? We delve into various components of state-of-the-art deep learn-

∗ Douyin is a popular social media application built for smartphones and primarily features

portrait mode short-form videos. https://www.douyin.com/
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ing systems, such as data augmentation, evaluation cropping strategies, etc.

Our discoveries challenge the existing conventions for landscape mode videos,

thus necessitating further exploration into portrait mode videos.

• How important is temporal information for portrait mode videos? Can we

recognize the actions from single frames [61] or do we need to utilize tempo-

ral information for accurate results? We explore di↵erent temporal utilization

strategies and find that integrating temporal information substantially im-

proves video recognition in portrait mode.

• Audio is a critical modality for video understanding [52, 82]. Does audio

contribute to video recognition in portrait mode? Our experiments show that

even simple audio integration can improve recognition accuracy, indicating

possibilities for multimodal video analysis.

7.2 The PortraitMode-400 dataset

In this section, we provide a comprehensive overview of the process behind con-

structing our PortraitMode-400 dataset. We begin by discussing our data-driven

approach to building a taxonomy, which is based on user queries. Next, we detail

our rigorous annotation process and the criteria we applied to ensure high-quality

and consistent annotations. Finally, we compare PortraitMode-400 with existing

datasets that are relevant to our work, highlighting the unique contributions and

advantages of our dataset.

7.2.1 Taxonomy

The videos in PortraitMode-400 were sourced from Douyin∗. To better capture

the various types of content that portrait mode videos can provide, we created a new

taxonomy for PortraitMode-400 instead of reusing categories from existing datasets.
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PortraitMode-400

(a) Hierarchical structure of our taxonomy

(b) Distribution of video numbers per category

(c) Distribution of aspect ratios for retrieved videos
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Figure 7.2 : Overview of our dataset. (a) We construct our taxonomy in a three-

level hierarchical structure, which contains 9 domains and 400 leaf-node categories.

(b) We show the distribution of video numbers per category of our dataset, which

contains a relatively balanced distribution of categories. (c) We plot the distribution

of aspect ratios for the retrieved videos via search queries. The majority of videos

(over 85%) are in portrait mode, with 16:9 being the dominant format.

Our approach involved building the taxonomy based on popular search queries from

Douyin users, which often include text descriptions about the corresponding videos.

However, we found that many search queries lacked visual semantic meaning, such

as celebrity names or song names. To address this, we manually selected candidate

queries containing verbs (e.g., “eating cakes”) or nouns indicating potential actions

(e.g., “concealer” which often leads to videos about how to use a concealer). After

manually examining approximately 38k search queries, we identified about 2.4k us-

able queries with corresponding videos that might contain actions or motions, as we

aimed to incorporate more temporal information in the final dataset.

With the initial set of selected search queries, our second step is to recursively
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Table 7.1 : Comparison of di↵erent portrait mode video datasets. S100-PM is a

portrait-mode-only subset sampled from Kinetics-700, as detailed in Section 7.2.3.

3Massiv contains 5% landscape mode videos and is targeted for video classification

in 34 coarse categories. Our PortraitMode-400 contains portrait mode videos only

and has more videos in a diversified taxonomy (400 classes).

Dataset % of PM # of Classes # of Videos Duration Avg. Duration Year

S100-PM [21] 100% 100 20k 1s-10s 9s ’19

3Massiv [63] 95% 34 50k 5s-2min 20s ’21

PortraitMode-400 100% 400 76k 2s-1min 27s ’23

aggregate the queries in a bottom-up manner. This process generates increasingly

abstract concepts, resulting in a hierarchical tree structure taxonomy, as illustrated

in Figure 7.2 (a). In addition to producing the final taxonomy, we have two other

objectives in this step: 1) merging similar queries into a final leaf node category

of the taxonomy; 2) splitting or removing queries that may overlap with existing

categories, so that all final categories are mutually exclusive. For example, we merge

tutorials for fitness, exercises for weight loss and fat-burning fitness exercises to aer-

obics ; we split calligraphy exercise into pen calligraphy and brush calligraphy . After

completing the second step, we obtained about 500 candidate categories derived

from the 2.4k selected search queries, which are organized in a three-layer hierarchy

as depicted in Figure 7.2.

The taxonomy used in the Kinetics-400 [81] dataset is built through a combina-

tion of reusing categories from previous datasets and crowdsourcing. In contrast to

Kinetics-400, our taxonomy is developed using a data-driven approach that better

reflects the current trends in social media. Besides, our taxonomy covers a wider
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range of content, including everyday activities (food, beauty care, entertainment,

etc) , natural phenomena (raining, snowing, etc) as well as transportation-related

activities (airplane taking o↵, launching rocket, etc). This is in contrast to existing

datasets that mostly focus on human actions. Furthermore, our taxonomy o↵ers

more fine-grained categories compared to 3Massiv [63], which is designed for coarse

visual concept classification. For instance, while 3Massiv has only one class for food,

our taxonomy includes 89 distinct categories under the food parent node, covering

various types of food and food-related activities such as cooking and eating.

7.2.2 Sampling and annotation

For each of the 500 candidate categories in the taxonomy, we have about 2 to 50

selected search queries associated with it, as described in Section 7.2.1. We retrieve

1.2k to 740k videos for each query from Douyin∗ depending on how frequently the

query has been searched. Subsequently, we create a pool of videos for each category

by aggregating all the retrieved videos from their corresponding queries. Figure 7.2

(c) illustrates the distribution of the aspect ratio of the retrieved videos. Although

16:9 is the dominant aspect ratio, there are also other aspect ratios for portrait mode

videos, such as 4:3. For the video pool, we use a few criteria to sample target videos

for annotation: 1) we select videos whose aspect ratios (height/width) are greater

than 1 to ensure that PortraitMode-400 includes only portrait mode videos; 2) we

select videos whose duration is shorter than 1 minute to limit annotation costs; and

3) we select videos that have been viewed over 700 times by Douyin users to ensure

that our dataset better reflects the typical types of content for portrait mode videos.

Finally, we perform deduplication on the video pool to eliminate duplicated

or similar videos. To achieve this, we extract feature vectors of each video using

Uniformer-Base [101] pretrained on Kinetics-700 dataset [21]. Next, we build a graph

by connecting video pairs with feature vectors having a cosine similarity greater
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than 0.98. We then apply the Louvain algorithm [16] on the graph to identify video

clusters and discard all the videos in each cluster except one. About 25% of videos

are removed through deduplication, and only videos that meet all the aforementioned

criteria move on to the next stage for human annotation.

The human annotation task is straightforward. An annotator is presented with

a given category and its video pool, and is asked to confirm or deny whether the

category name is a good match for the content of each video. Before starting anno-

tation, annotators undergo training to learn the annotation criteria for all candidate

categories, and they are required to pass a quality check test. Only annotators

with an accuracy greater than 95% are qualified for annotation to ensure the accu-

racy and consistency of their annotations. During annotation, annotators discard

videos that may be confused with multiple categories of our taxonomy, ensuring that

PortraitMode-400 is a strictly single-label dataset. Under our restricted rules, ap-

proximately 65% of videos are rejected. To ensure annotation quality, approximately

20% of annotations are reviewed by two additional examiners.

7.2.3 Comparisons with existing datasets

After finishing annotating all the videos, we keep all the categories that have at

least 100 videos. We keep at most 400 videos per category so that the distribution

of videos across di↵erent categories are more or less balanced, as shown in Fig-

ure 7.2 (b). Our dataset contains 76k videos in total, spanning over 400 categories.

We randomly sample 50 videos per category for testing, and the rest are used for

training. Table 7.1 compares the statistics of PortraitMode-400 with other relevant

datasets. Though 3Massiv mostly includes portrait mode videos, it is a multi-lingual

and multi-modal dataset designed for concept recognition with only 34 coarse con-

cepts. PortraitMode-400 has a more diversified and fine-grained taxonomy that is

dedicated for portrait mode video recognition.
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To conduct a rigorous comparison between landscape mode and portrait mode

video recognition, we created two subsets from the Kinetics-700 dataset: a portrait

mode subset and a corresponding landscape mode subset. The details of these sub-

sets are shown in Table 7.1. We first constructed the portrait mode subset, named

Selected-100 Portrait Mode (S100-PM), using the top 100 categories with the most

portrait mode videos in Kinetics-700. Each category in S100-PM contains 160 to 352

portrait mode videos, resulting in a total of 20k videos. To build a counterpart land-

scape mode version from Kinetics-700, we sampled the same number of landscape

mode videos as S100-PM for each category, resulting in a landscape mode subset

named Selected-100 Landscape Mode (S100-LM). Therefore, S100-PM and S100-LM

have the same taxonomy and the same video distribution per category. Although the

video content of S100-PM and S100-LM may di↵er due to di↵erent video formats,

we believe that they are still useful benchmarks for illustrating and validating the

di↵erence between landscape mode and portrait mode video recognition. We have

also tried AutoFlip† to convert landscape mode videos to portrait mode, thereby

ensuring the same video content in both subsets. However, the converted portrait

mode videos had unsatisfactory data quality. Thus, building S100-PM and S100-LM

from Kinetics-700 remains the best option for rigorously comparing di↵erent video

formats on recognition tasks.

7.3 Landscape Mode vs.Portrait Mode

Landscape and portrait mode videos, often shot in di↵erent ways and purposes,

display unique content and biases. This a↵ects subjects’ action patterns and overall

visual dynamics. Therefore, models trained on one mode may struggle in the other.

This section examines how models adapt across these di↵erent modes, focusing on

their spatial information and cross-mode generalizability.

†https://ai.googleblog.com/2020/02/autoflip-open-source-framework-for.html
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Table 7.2 : Cross mode evaluation with di↵erent models on Selected-100. Evaluation

results performed on the PM subset correspond to the last column of Table 7.3.

Views during inference are shown by the multiplication of # of spatial crops and #

of temporal views. Rows highlighted perform best for the corresponding model.

Model Train Val. Acc. GFLOPs⇥views

X3D-M[49]

PM
PM 52.0 4.9⇥3⇥10

LM 41.2 4.9⇥3⇥10

LM
PM 44.5 4.9⇥3⇥10

LM 43.5 4.9⇥3⇥10

Uniformer-S[101]

PM
PM 42.0 41.8⇥1⇥4

LM 36.2 41.8⇥1⇥4

LM
PM 40.1 41.8⇥1⇥4

LM 40.8 41.8⇥1⇥4

MViTv2-S[106]

PM
PM 41.0 64.0⇥1⇥5

LM 35.7 64.0⇥1⇥5

LM
PM 33.7 64.0⇥1⇥5

LM 36.3 64.0⇥1⇥5

7.3.1 Cross Mode Evaluation

To show the impact of the di↵erent domain priors of landscape and portrait mode

videos on video recognition tasks, comparisons need to be made between the same

video content shot in portrait mode and landscape mode. Ideally, for each action

or event, we should shoot it with both portrait mode and landscape mode cameras.

However, such a process is time-consuming and hard to achieve. Therefore, we opt

for sampling original portrait mode videos and landscape mode videos with the same

distribution and taxonomy from Kinetics-700 [21], as detailed in Section 7.2.3.
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To explore the impact of the di↵erent priors to video recognition models, we

conducted extensive experiments using di↵erent subsets of S100 (S100-PM and S100-

LM). We trained various models on di↵erent subsets and evaluated their performance

on landscape mode videos and portrait mode videos, by randomly selecting 25%

videos as the validation set for each subset. For example, evaluated on S100-PM,

models trained with S100-PM and S100-LM respectively can be fairly compared to

see which video type is more e↵ective to train models for videos in portrait mode.

We conduct the experiments on three models, i.e. a CNN model X3D [49], a hybrid

transformer model Uniformer [101], and a pure transformer model MViTv2 [106] to

show the impact of video formats on di↵erent model architectures. During training

and testing, we resize frames based on the shorter side while preserving aspect ratios

and crop them into 224⇥224 pixel squares for input. We train all models from scratch

without pretraining to avoid the impact of pretraining dataset. Popular pretraining

datasets such as ImageNet [89] are biased towards landscape images which may add

additional bias to our analysis.

We summarize all results as in Table 7.2. By comparing results in each row, we

find that models trained on PM videos has a larger performance gap on the PM and

LM testsets than models trained with LM videos. Moreover, models trained on PM

data usually have better performance on PM testset compared to the models trained

with LM videos. For example, evaluated on S100-PM, X3D trained with PM videos

outperforms the model trained with LM videos by a large margin of 8% (51.2%

vs. 44.5%). When evaluated on S100-LM, X3D achieves relatively comparable

performance either trained with PM videos or LM videos (41.2% vs. 43.5%). This

indicates that training videos in portrait mode are necessary to achieve satisfying

performance on portrait mode videos.
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Figure 7.3 : The heatmaps of evaluating the Probing-P (a) and Probing-L (b) at

di↵erent spatial locations on the validation set of S100-PM. (c) shows the accuracy

di↵erences between Probing-P and Probing-L.

7.3.2 Spatial priors

To investigate the di↵erent spatial data priors of portrait mode videos and land-

scape mode videos, we extensively evaluate the models trained on S100-PM and

S100-LM on di↵erent frame positions to show the importance of frame features at

di↵erent locations.

Specifically, we first train Uniformer-S [101] with 112⇥112 crops and shorter-

side resized (set to a random value between 256 and 320) frames on either S100-PM

or S100-LM. We name the resulted two models Probing-P and Probing-L. Then we

evaluate the models with crops of 112⇥112 on di↵erent locations in a sliding window

at the shorter-side resized video clips. The sliding strides vary for portrait mode

and landscape mode videos in both height and width. For portrait mode videos, the

stride in height is set to 1/16 of the frame height and the stride in width is set to

1/9 of the frame width. Sliding strides of landscape mode videos are adjusted vice

versa.
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Using Probing-P and Probing-L, we compose an accuracy map of size 16 ⇥ 9

from the accuracies obtained from the di↵erent evaluation positions on the S100-

PM validation set as shown in Figure 7.3 (a) and Figure 7.3 (b). We further compute

the di↵erence between the two heat maps in Figure 7.3 (a) and (b) and obtain the

di↵erence map as in Figure 7.3 (c). Here, the di↵erence value in each position

indicates the gap of recognition abilities of the same model trained on landscape

mode videos and portrait mode videos, respectively. If a value on the di↵erent map

is greater than 0, it indicates that Probing-P achieves higher accuracy than Probing-

L. For example, as outlined by the yellow boxes in Figure 7.3 (c), mark 1 indicates

the model trained with PM videos is stronger to recognize the video categories at this

location, while mark 2 indicates models trained by PM and LM videos have similar

performance at this location. In general, it can be inferred from the brighter areas

in Figure 7.3 (a) that informative areas in PM videos are more densely concentrated

at the middle to lower half of the video. It can also be inferred from Figure 7.3

(c) that the bottom part of the PM videos contains specific domain knowledge that

does not exist in the LM videos, leading to bad performance of models trained on

LM videos in this region.

Similarly, we show the accuracy heat maps of the Probing-L and Probing-P

evaluated on the LM videos in Figure 7.4 (a) (b), with the di↵erence of the two

heat maps shown in Figure 7.4 (c). It can be seen that the informative areas in

LM videos are in the center part of the video, and the left and right sides on the

video frame contain specific domain knowledge that cannot be learned from PM

videos. For example, some actions with a wide background in LM videos may not

have similar visual cues in the PM videos.



118

Figure 7.4 : The heatmaps of evaluating the Probing-L (a) and Probing-P (b) at

di↵erent spatial locations on the validation set of S100-LM. (c) shows the accuracy

di↵erence between Probing-L and Probing-P.

7.4 Comparison of data preprocessing recipes

E↵ective data preprocessing is essential for achieving high performance in video

classification tasks. In this section, we investigate the impact of di↵erent data

preprocessing strategies on the performance of portrait mode video recognition.

We hypothesize that videos in di↵erent aspect ratios may require di↵erent crop

resolutions for optimal performance. To test this hypothesis, we perform extensive

experiments on various portrait mode video datasets, using di↵erent crop resolutions

and data augmentation techniques. Through our experiments, we identify the best

recipes for portrait mode videos when using CNN or transformer models, which are

di↵erent from that of landscape mode videos.

7.4.1 Resizing and area sampling

Resizing and cropping are critical steps in the data preprocessing pipeline for

video recognition, as they allow videos to be processed e�ciently and are also im-

portant ways of data augmentation. Di↵erent models in various architectures adopt

di↵erent strategies. The two popular strategies are the Inception-style method

[161, 50, 47, 101, 168, 121], and the shorter-side resizing method [154]. In this

subsection, we will explore these two methods in more detail and investigate their
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e↵ectiveness for portrait mode video recognition.

The shorter-side resizing method is widely used in video recognition methods

[22, 190, 169, 49, 181, 13, 127, 23, 236, 195, 160, 105, 182, 191, 201, 210]. It involves

resizing the video frames so that the shorter side of the frame is set to a length that

is fixed [23, 201] or randomly sampled within a range [22, 190, 169, 49, 181, 13, 127,

236, 195, 160, 105, 182, 191, 210], while the longer side is scaled proportionally. Then

the frames are centre-cropped to a square shape, typically 224⇥224 and passed into

the model. This approach ensures that the input frames have a consistent aspect

ratio and are cropped without distortion. In contrast, the Inception-style method

augments the shorter-side resizing method with two additional random sampling

steps. The first one is to sample a target pixel number from the whole-size video

frame by the random ratio between 8% and 100%. Then, it randomly samples an

aspect ratio between 3/4 and 4/3 and reshapes the crop area accordingly. Finally,

it crops the frames at a random position and resizes them to a fixed resolution in

squares (e.g., 224⇥224) without keeping the aspect ratio. This approach can sample

a diverse set of inputs and is designed to adapt the model to videos in di↵erent sizes.

We carry out extensive experiments on models of di↵erent architectures with

the two resizing strategies in Table 7.3. To alleviate the bias introduced by mixed-

orientation data, the models are trained from scratch and we keep any other training

setup identical to their original papers, except for learning hyper-parameters, such as

batch size and learning rate. During inference, identical augmentation and sampling

methods are adopted for di↵erent recipes. We guide the readers to supplemental

materials for more details.

As shown in Table 7.3, each model is evaluated on three di↵erent portrait mode

video benchmarks. For the CNN-based model, i.e., X3D-M [49], the random scaling

strategy from the Inception-style method brings an improvement of 2.2% (54.2% vs.
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Table 7.3 : Comparison of top-1 accuracy (%) of di↵erent resizing and area sampling

strategies for portrait mode videos, i.e., inception style (Incep.) and shorter-side

style(Short.). Views during inference are shown by the multiplication of # of spatial

crops and # of temporal views.

Model Data Incep. Short. GFLOPs⇥views

X3D-M[49]
S100-PM 54.2 52.0 4.9⇥3⇥10

3Massiv 53.7 52.6 4.9⇥3⇥10

PM-400 61.7 61.2 4.9⇥3⇥10

Uniformer-S[101]
S100-PM 39.7 42.0 41.8⇥1⇥4

3Massiv 42.8 43.6 41.8⇥1⇥4

PM-400 50.2 50.4 64.0⇥1⇥5

MViTv2-S[106]
S100-PM 36.9 41.0 64.0⇥1⇥5

3Massiv 50.4 52.1 64.0⇥1⇥5

PM-400 61.7 62.0 64.0⇥1⇥5

52.0%) on S100-PM [21], 1.1% (53.7% vs. 52.6%) on 3Massiv [63] and 0.5% on PM-

400. Di↵erently, as for the transformer-based models, i.e., Uniformer-S [101] and

MViTv2-S [106], randomly scaled input crops bring down the accuracy by a large

margin. For example, the random scaling reduces the performance of Uniformer-S

by 2.3% (42.0% vs. 39.7%) on S100-PM, 0.8% (43.6% vs. 42.8%) on 3Massiv and

1.3% (72.1% vs. 70.8%) on PM-400. MViTv2-S also shows performance drops from

0.3% to 4.1% across benchmarks. This suggests that optimal strategies diverge from

those used in mixed orientation benchmarks like Kinetics[81].

It may be hard to determine the cause of the interesting phenomenon, but we can

make a reasonable assumption that it is due to the di↵erent data priors in portrait

mode only video benchmarks, such as S100-PM and PM-400. With portrait mode
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Table 7.4 : Top-1 accuracy (%) of di↵erent training crop resolutions. The models are

always tested with the same square crops in 224⇥224 to ensure the same inference

cost across di↵erent training crop resolutions.

Model Data
Training crops

224⇥224 256⇥192 288⇥192

X3D-M[49]

S100-PM 52.0 51.6 50.8

3Massiv 52.6 52.5 50.8

PM-400 61.2 61.0 60.8

Uniformer-S[101]

S100-PM 42.0 43.3 45.4

3Massiv 43.6 44.6 45.8

PM-400 50.4 50.8 51.6

MViTv2-S[106]

S100-PM 41.0 40.0 45.5

3Massiv 52.1 52.3 53.8

PM-400 62.0 61.4 62.8

videos, the object and its movement are typically limited to a vertical space, which

may result in unique visual patterns that are not present in hybrid orientation

benchmarks, such as Kinetics. While the cause requires further investigation, these

results suggest that there may be unique characteristics of portrait mode videos that

require specialized recognition methods.

7.4.2 Shape of frame crop

In this subsection, we explore the impact of di↵erent crop strategies on model

performance in portrait mode video recognition. Specifically, we investigate the

performance of models trained and tested on crops of varying sizes and aspect ratios.
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Table 7.5 : Top-1 accuracy (%) of using the same resolution for both training

and testing crops. We also report the performance di↵erence compared with us-

ing 224⇥224 testing crops from the first column of Table 7.4, where " means higher

result.

Model Data
Testing crops

256⇥192 288⇥192

X3D-M[49]

S100-PM 51.40.2# 50.40.4#

3Massiv 52.60.1" 52.01.2"

PM-400 62.91.9" 63.12.3"

Uniformer-S[101]

S100-PM 44.41.1" 46.51.1"

3Massiv 45.71.1" 47.31.5"

PM-400 51.91.1" 53.31.7"

MViTv2-S[106]

S100-PM 39.80.2# 46.81.30"

3Massiv 52.70.4" 54.81.0"

PM-400 62.10.7" 63.70.9"

Traditional methods typically use square frame crops to ensure even coverage

of object and movement in both vertical and horizontal directions. However, we

argue that this approach may not be optimal for portrait mode videos, which typi-

cally contain object and movement information in vertical directions. Cropping the

frames into squares could potentially result in a loss of critical information and more

background noise. As shown in Figure 7.3, portrait mode videos possess more infor-

mative content distributed vertically, and cropping into squares may not e↵ectively

capture this information.

To comply with the unique information distributive characteristics, we propose

to crop the areas in vertical rectangles and input them directly into models without
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Table 7.6 : Temporal information importance: E↵ect of utilizing temporal

information for video recognition on di↵erent benchmarks.

Data Model # of Frames Top1-Acc.

K400 [81]
Uniformer-frames 16⇥4 72.1

Uniformer [101] 16⇥4 76.64.5"

3Massiv [63]
Uniformer-frames 16⇥4 41.9

Uniformer [101] 16⇥4 42.80.9"

PM-400
Uniformer-frames 16⇥4 45.7

Uniformer [101] 16⇥4 50.34.6"

Table 7.7 : Audio importance: Comparison of di↵erent modalities with o✏ine

feature embeddings.

Data Modality Top1-Acc.

3Massiv [63]

Visual 52.7

Audio 31.6

Visual+Audio 54.9

PM-400

Visual 54.6

Audio 15.2

Visual+Audio 57.0

distortion. We experiment with crops in di↵erent aspect ratios and in similar pixel

numbers to the square input, i.e., 256⇥192 and 288⇥192, in order to fairly compare

the models under di↵erent input resolutions. With input shape changed, we only

modify the last global pooling layer. We keep any other training details identical to

the setup using square inputs.

As shown in Table 7.4, we train models with di↵erent input crops on portrait

mode video benchmarks and test with square crops, i.e., 224⇥224 to ensure identical
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inference cost. It is thrilled to see that increase in aspect ratio introduces continu-

ing performance improvement for transformer-based models, i.e., Uniformer-S and

MViTv2-S. We also observe that change in aspect ratio degrades the performance

of X3D-M, showing di↵erent behaviour to transformer-based models. The potential

reason could be due to the fixed square receptive field of convolution networks re-

gardless of the input resolutions, which is not compatible with the elongated image

shape.

In order to further validate the benefits of rectangular input, we evaluate the

performance of X3D-M [49], Uniformer-S [101] and MViTv2-S [106] on non-square

training resolutions and tested them on three portrait mode video benchmarks. We

find that the three models achieve higher accuracies on 3Massive and PM-400 with

both crops in 256⇥192 and 288⇥192. On S100-PM, Uniformer-S and MViTv2-

S achieve better testing results with 288 ⇥ 192 resolution, with FLOPs increased

by around 15% (47.5G vs 41.8 for Uniformer-S; 72.7G vs. 64.5G for MViTv2-

S). Note that FLOPs of 256⇥192 are smaller than square 224⇥224 (single clip

inference cost: 40.6G vs. 41.8G for Uniformer-S; 62.9G vs. 64.5G for MViTv2-

S). The performance boost further supports the potential benefits of rectangular

input for video recognition in portrait mode.

7.5 The importance of temporal information

In this subsection, we investigate the importance of utilizing temporal informa-

tion for portrait mode video recognition. We show that the PortraitMode-400 is a

valuable resource for evaluating video models in the challenging setting of portrait

mode video recognition.

We design two baselines with di↵erent temporal utilization approaches and ex-

tensively evaluate the models trained on Kinetics-400 [81], 3Massiv [63] and our

PortraitMode-400. Specifically, we build our baselines with Uniformer-S and train
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the models with 224⇥224 crops. Uniformer-frames is constructed with image-based

Uniformer-S and temporal aggregation of predicted logits using mean pool. It serves

as a naive baseline since the temporal information is incorporated simply by merging

the predicted logits across frames. For more advanced temporal correspondance, we

train a video-based Uniformer-S endowed with self-attention on temporal dimension,

building and learning temporal relations in di↵erent levels.

As shown in Table 7.6, by leveraging temporal self-attention, Uniformer-S obtain

accuracy improvement by 4.5% and 4.6% on Kinetics-400 and PortraitMode-400 re-

spectively. Interestingly, the 3Massiv dataset, most of which videos are in portrait

mode, does not show as large of a performance gain from using temporal information

as our PM-400. In contrast, our PortraitMode-400 dataset shows a significant per-

formance gain from using temporal information, attributable to its diverse collection

of videos rich in intricate temporal dynamics.

7.6 The importance of the audio modality

In this section, we aim to explore the significance of audio information in portrait

mode video recognition. To achieve this, we adopt the R3D-50 [66] backbone trained

on Kinetics-700 [21] for spatio-temporal modeling and the VGG [67] model trained

for sound classification [56] for audio modeling, following the practice in 3Massiv [63].

We freeze the audio-visual backbones and train the classifier and multimodal fusion

layers.

Our findings, as presented in Table 7.7, reveal that the model trained with audio

consistently outperforms the model trained without audio on both the PM-400 and

3Massiv by approximately 2.4 points. This indicates that audio information plays

a crucial role in portrait mode video recognition. Incorporating audio information

can significantly enhance the performance of the model. We argue that audio cues

can provide additional information about the subject’s actions, emotions, and the
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surrounding environment, which poses unique challenges for video recognition in

portrait mode.

7.7 Discussions

In this work, we advocate conducting research on portrait mode videos. To this

end, we introduce the PortraitMode-400 dataset dedicated for portrait mode video

recognition with a fine-grained taxonomy. We also make initial attempts to explore

the specific properties of portrait mode videos, including their spatial bias, and the

optimal training and evaluation protocols, with e↵ects of the temporal information

and audio modality. We believe our dataset can serve as a testbed to facilitate

further research such as novel architecture designs and multi-modality modeling on

portrait mode videos.
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Chapter 8

Shot2Story20K: A New Benchmark for
Comprehensive Understanding of Multi-shot

Videos

This chapter introduces Shot2Story20K, a new benchmark for the comprehensive un-

derstanding of multi-shot videos. Recognizing the complexity of videos that contain

multiple, distinct shots, this chapter addresses the challenge of generating cohesive

narrative summaries that accurately link these separate events. The Shot2Story20K

dataset facilitates this by providing detailed annotations for both visual content

and audio narratives across sequential shots. Here, we explore methodologies that

leverage large language models to synthesize these multimodal inputs into coherent

summaries, pushing the boundaries of video captioning and storytelling in dynamic

and complex video environments.

8.1 Introduction

Video captioning is a long-standing video understanding task to facilitate open-

world video analysis with the help of human-annotated captions. Since a video may

contains multiple events, dense captioning benchmarks (Ego4D [59], YouCook2 [229],

ActivityNetCaps [88]) are tailored to capture the information of multiple events in a

video ranging from 3-20 minutes. However, even within seconds, we find that there

are already more than one single event in a lot of daily videos such as news broad-

cast, tutorial videos, and movies. Specifically, shot transition, which is a common

technique to transfer from one event to another, or to switch the viewpoint of a

single event, happens less than every 4s for average English movies after 2010 [32].
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Shot 0: 0-6.5s

Caption: It's a man in a kitchen chopping something with 
a knife. The man is wearing a T-shirt with the number 
19 on it. He seems to hurt himself and appears in pain. 
The video is in black and white. The yellow words 
"DON'T RISK IT" appear on the screen. Then the scene 
changes to a bowl of guacamole with chips on the side. 

Narration Caption: The background voice says don't risk 
getting injured from cutting up avocados.

Shot 1: 6.5-10.5s

Caption: It's a close-up of a person 
scooping avocado out with a spoon 
on a wooden cutting board. There is 
also a white bowl next to it.

Narration Caption: The background 
voice says the product is 
refrigerated and pre-scooped for 
the customers.

Shot 2: 10.5-13.5s

Caption: It's a woman in a pink 
shirt with a cast on her arm. She 
holds her thumb up with the injured 
arm. The word "SWEET" in purple is 
typed on the screen.

Shot 3: 13.5-15.7s

Caption: It's a bowl of guacamole 
with chips on the side. There is a 
plastic container of guacamole 
with a purple package next to it.

Video summarization:

The video begins with a man in a kitchen, wearing a T-shirt with the number 19 on it. He is chopping something with a knife, but he seems to hurt himself and appears in pain. 
This scene is presented in black and white for dramatic effect. As a cautionary message, the yellow words "DON'T RISK IT" appear on the screen. The video then transitions to a 
bowl of guacamole with chips on the side, and the package of the product is also shown. The audio during this segment warns viewers not to risk getting injured from cutting up 
avocados. The video then shifts to a close-up shot of a person scooping out avocado with a spoon on a wooden cutting board. A white bowl is placed next to the cutting board. 
The audio during this segment informs viewers that the product is refrigerated and pre-scooped for the customers, implying that it's a safer and more convenient alternative to 
preparing avocados manually. The next scene features a woman in a pink shirt with a cast on her arm, suggesting that she might have injured herself while preparing food. She 
holds her thumb up with the injured arm, possibly indicating that she approves of the pre-scooped avocado product. The word "SWEET" in purple is typed on the screen, 
perhaps to emphasize her satisfaction with the product. The video concludes with a shot of a bowl of guacamole with chips on the side. A plastic container of guacamole with a 
purple package is also shown, likely the product that has been discussed throughout the video. The video seems to be a promotional material for a pre-scooped, refrigerated 
avocado product, highlighting the risks of preparing avocados manually and the convenience of their product.

… … …

Figure 8.1 : An annotated example of our PortraitMode-400 with sing-shot visual

captions and narration captions. Moreover, we provide coherent and reasonable

video summaries to facilitate comprehensive understanding of multi-shot videos.

Although some existing captioning benchmarks [204, 88, 229] already use multi-shot

videos, they often annotate the captions in a coarse-grained manner, either provid-

ing a holistic caption or asking annotators to subjectively choose the boundary of

each event. To better accommodate the multi-shot formation of videos, we believe a

new video benchmark with rich textual descriptions based on video shots is favored

in the research community.

On the other hand, multi-shot videos are often accompanied by rich narrations

that relates to the di↵erent events happening in the video. A model needs to capture

both the visual and audio signals to understand the underlying story. Specifically,

narrations may contain key information that cannot be inferred from pure visual

information only. See Figure 8.1, without the narration, a viewer is unable to

capture the relationship between the man’s action and the avocado product in the

first shot.

In this work, we propose a new benchmark Shot2Story for audio-visual under-
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Figure 8.2 : Statistics of Shot2Story. Our dataset comprises videos with 2 to 8

shots each. Most shots range from 1 to 5 seconds, accompanied by detailed visual

captions and narration captions. It features extensive summaries, highlighting video

progressions, transitions, camera cuts and narration descriptions, with statistics of

frequent expressions depicted in the figure.

standing of multi-shot videos. We collected a dataset of 20,023 short videos where

the average number of shots in each video is 4.0. For each video shot, we annotate

a detailed textual description for the video frames and another textual description

for the human speech. We also leverage a state-of-the-art large language model

(LLM) GPT-4 [128] to generate a long textual video summary from the annotated

clip descriptions, which are further verified by human annotators. The summary

includes additional details such as transitions of di↵erent shots, progression of mul-

tiple events, and mapping of the subject identities in di↵erent scenes. An overview

of our dataset can be seen in Figure 8.2.

To benchmark the advances of multi-modal video understanding, we designed

several distinctive tasks using our dataset, including single-shot captioning, multi-

shot summarization, and video retrieval with shot description. We design and im-
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plemented several baseline models using a frozen vision encoder and an LLM, by

prompting the LLM with frame tokens and ASR (Automatic Speech Recognition)

text. Through extensive experiments, we show that: (1) the ASR text is critical

to understand the complex multi-shot scenario, (2) processing the video as a whole

without the shot-structure degenerates the model’s capacity of understanding the

multi-shot video, (3) the summarization model trained on our benchmark can be

generalized to other datasets with longer durations (ActivityNet) and out-of-domain

topics (MSRVTT). Without any bells and whistles, we attains competitive results on

zero-shot video question-answering by converting the problem into pure text-based

QA with the generated video summaries.

8.2 The Shot2Story benchmark

8.2.1 Overview

Our new benchmark Shot2Story contains 20,023 videos. The length of each each

video is ranging from 10s to 40s. For each video, we first use a o↵-the-shelf shot

detection method TransNetV2 [159] to split it into shots. For each video shot, we

annotate captions for both visual and audio information. Then we further annotate

video summaries based on the annotated shot captions. Figure 8.2 shows an overview

of our dataset with some key statistics. An example of one annotated video is shown

in Figure 8.1.

8.2.2 Data preparation

We source videos for our dataset from the public video benchmark HDvila100M [206].

It o↵ers a large collection of narrative videos, comprising 3M YouTube videos seg-

mented into 100M clips, each about 13 seconds long. We choose this data source

for its concise yet complex multi-shot formats, diverse topics, and abundant ASR

content. Since we prefer videos with both rich visual and ASR information, we de-
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sign several filtering techniques to exclude those videos with either low visual-ASR

correlation or static visual content.

We start with keeping video clips with durations between 10 to 40 seconds, since

we observe that the majority of the video clips from HDvila100M fall in this range.

Then we remove videos with more than 8 shots due to the heavy annotation cost.

We also notice that the video segments with too many shots in HDvila100M tend to

be slideshows or image collages that deviates from our focuses. Further, to harvest

videos with rich visual-ASR correlations, we set up a metric between video shots

and ASR texts. Specifically, we uniformly sample 4 video frames for each shot and

obtain the cosine similarity score between the video shot embedding and the text

embedding using CLIP [138] encoders. We only keep the videos containing at least

one shot that is visually correlated to ASR with a threshold of 0.25. In the next

step, in order to obtain videos with diverse shot contents, we set up an inter-shot

metric to filter out the videos with similar adjacent shots. We compute the cosine

similarities between embeddings of adjacent shots and keep the videos with all inter-

shot similarity scores smaller than 0.9. Finally, to further remove the videos with

static contents, we adopt an intensity-based scene changes filter in PySceneDetect∗

with a threshold 11 in our segmented shots. If the filter is unable to detect new

segments at a low threshold, it is conceivable that the shot contains static contents.

We only keep the video clips in which all shots contain no static content based on

our filtering method.

As a result, from a total of 1.1M sampled video clips from HDvila100M, we

obtain 20, 023 video clips that meet our quality standard. The number of shots in

each video is from 2 to 8. These videos are then shared with our annotators for

further annotations.

∗https://www.scenedetect.com/
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8.2.3 Annotation of single-shot captions

After using TransNetV2 to divide the target videos into video shots, we ask

annotators to annotate both visual-only captions and audio-related captions for each

shot. We split the annotation of these two captions to facilitate separate modeling

of these two types of information source.

For visual-only caption, we require annotators to describe the major subjects

and events in the video. Since it is an open-world setting, the videos can be quite

diverse and hard to describe. In order to reduce the di�culties of annotating a

caption from scratch, we generate an initial video caption using MiniGPT-4 [232]

by sampling 4 image frames from the video clip and prompting the model using the

prompt below.

MiniGPT-4 prompt: ###Human:<Img>Frame1</Img ><Img>Frame2</Img>

<Img>Frame3</Img><Img>Frame4</Img>Please describe this video. Do not in-

clude details that you are not sure of. For example, if there is text in the image, do

not include the content of the text if they are not clearly shown. ###Assistant:

Although MiniGPT-4 is originally designed for image understanding, empirically

it is able to generate captions for videos, both comprehensively and reasonably. It is

able to describe di↵erent subjects including person, animals, food, tools, and virtual

objects like animated characters. We ask annotators to correct any mistakes they

find in the generated captions, and to add missing details to the captions. The

mistakes include incorrect description of the object categories, attributes, actions,

facial expressions etc. Also, there might be some subjective description generated

by MiniGPT-4 such as emotion and atmosphere. We ask annotators to remove all

these subjective descriptions. For example, the annotator corrects the caption from

“standing in front of the car” to “getting close to the car”, and adding a missing

detail of “a close-up shot of the front”. In this way, we find the annotation speed
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significantly faster (⇠ 3⇥) compared to writing a caption from scratch. On the other

hand, we find the captions generated this way has more coherent style and tend to

cover more details of the video.

In contrast to the traditional video captioning benchmarks [204, 88, 229], we

also annotate narration captions in addition to the visual-only captions. Di↵erent

from existing audio captioning benchmarks [55], we focus more on human speeches

rather than acoustic events. The annotators are required to associate the human

speech with the video content and summarize the main idea of the speech. We

require annotators to describe the source of the speech using visual information.

For example, if someone is talking, the annotator needs to describe which person

in the video is talking. If the human speech refers to some object in the video, the

annotator is required to describe which object in the video the speaker is referring to.

Note that the speaker identity and reference of visual objects are critical information

for understanding a video that cannot be trivially obtained using existing algorithms.

There are existing research on speaker identification [84] and visual grounding [5,

228], but they only work well on constraint scenarios. Given this annotation process,

our narration captioning task requires a joint understanding of visual and audio

signals.

8.2.4 Annotation of video summary

To create video summaries with the annotated video-shot captions, we leverage

an LLM-based approach. Specifically, we form a text prompt with incorporating all

shot captions and ASR text included, and uses GPT-4 [128] to generate a cohesive

summary. The quality is assured through further review and correction by our

annotators.

We prompt GPT-4 to produce coherent, fluent text summaries with transition

expressions such as “the video begins”, “following this”, and “in the final scene”
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Figure 8.3 : Model structure for video-shot captioning. Visual tokens from the

CLIP [138] visual backbone and Q-Former [97, 232], along with text prompts, form

the input to the LLM [30]. ASR input is optional for single-shot video captioning.

to connect video-shot descriptions. The generated annotations also encompass a

higher-level understanding of shots, using key phrases such as “scene shifts back to”

and “returns to the scene” to denote recurring scenes across di↵erent shots. Notably,

GPT-4 often identifies and links the same subjects across scenes without relying on

explicit re-identification models. It draws on descriptive and attributive text from

our shot captions like “a newsroom” or “a man wearing a black suit” to infer scene

or subject identity. To ensure quality, annotators carefully review and correct any

inconsistencies in scene or subject references within these summaries.

8.2.5 Comparison to existing benchmarks

Compared to existing video description datasets, our dataset is more challenging

due to the explicit modeling of the multi-shot nature of web videos. Our textual

description includes both shot-level captions and video-level summaries, combining

visual and audio understanding, which provides a unique test bed for multi-modal

video understanding. Table 8.1 shows a high-level comparison of our new dataset

with existing video captioning benchmarks. Most existing video captioning bench-
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marks, such as MSRVTT [204], YouCook2 [229] and ActivityNet Caps [88], also

use multi-shot videos as annotation source, but they either annotate a holistic cap-

tion for the video (MSRVTT) or ask annotators to decide the boundary of di↵erent

events. In our study, we observe that video shots naturally create a sequence of

related events, leading us to annotate distinct captions for each shot. Ego4D [59]

only annotates dense visual captions but not audio captions for relatively long ego-

centric videos. Video Storytelling [98] is a small-scale dataset with annotations of

multiple events in a videos and provides a summary of the video by concatenating

all captions.

A recent work VAST [26] feed generated video and audio captions into an LLM

to generate video summary. However, their work processes a multi-shot video as

a whole and lacks the granularity of the events in di↵erent shots. Additionally,

VAST directly uses predicted captions without any human verification, which indi-

cates their video summaries can be noisy and containing biases from the captioning

models. Our dataset stands out from VAST with its more detailed visual and au-

dio shot captions. These captions, averaging 35.3 words for visual and 17.8 words

for audio, are the result of a thorough manual annotation process. Although our

video summary is also generated using an LLM, it is further verified by annotators

to make sure there is no hallucinated details from the LLM. Our dataset has an

average length of 201.8 wprds for the video summary, which is much longer than

existing benchmarks, and longer than the combined length of captions in one video

in ActivityNet and YouCook2.

8.3 Tasks and Experiments

8.3.1 Basic settings

For all the tasks described in this section, we follow the same training/valida-

tion/test split. Specifically, the number of videos for training, validation, and test
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Table 8.2 : Performance of single-shot video captioning task. V and A means Visual

and ASR.

Modalities B M R C

V 10.5 16.0 30.1 38.8

V+A 10.7 16.2 29.6 37.4

set are 14016, 1982 and 4025, respectively. We resize the frames to 224 ⇥ 224. We

employ ViT-G/14 from EVA-CLIP [48] and Q-Former from BLIP-2 [97] as visual

encoder, and Vicuna v0-7B [30] as the language model. We load pretrained Q-

Former from MiniGPT-4 [232]. In training, we update only Q-Former parameters,

keeping the ViT and LLM frozen. We adopt AdamW [122] as our optimizer and use

a learning rate of 8e-5. We train the models for 40 epochs with a batch size of 128

for single-shot video captioning and narration captioning. We finetune our video

summarization models on the single-shot captioning model with a batch size of 16.

8.3.2 Single-shot video captioning

To understand the visual content of each video shot, we introduce the single-shot

video captioning task. Note that the task is to generate descriptions for individual

video shots, while ASR information can be leveraged to improve the accuracy of

the captions. For this task, we adapt the framework of MiniGPT-4 [232], with the

model structure depicted in Figure 8.3. Specifically, we adopt the similar structure

as we generate pseudo captions for data annotation in Sec. 8.2.3. First, we sample

Ns frames from a video shot, and encode them using a fixed vision encoder, then

feed the encoded features to a Q-Former to produce visual tokens. The visual tokens

are appended into a text prompt and the LLM is asked to generate a caption for

this video shot.
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Figure 8.4 : Model structure for multi-shot video summarization model SUM-shot.

We arranges visual tokens in a multi-shot format to encapsulate multi-shot informa-

tion. Additionally, ASR text is incorporated for audio-visual video summarization.

We compare two model variants on this task. One is with the ASR text as addi-

tional context cues in the text prompt and the other is without the ASR information.

We evaluate our models using BLEU@4 [130] (abbreviated to B), METEOR [37] (ab-

breviated to M), ROUGE [110] (abbreviated to R) and CIDEr [175] (abbreviated to

C), and show the results in Table 8.2. It shows that inclusion of ASR-derived texts

yields a modest enhancement in the B and M by 0.2. Conversely, it incurs a decre-

ment of 0.5 and 1.4 in R and C, respectively. These results imply that ASR text

complements visual data without introducing discrepancies, yet posing integration

challenges for augmenting single-shot video captioning performance. Figure 8.5 (a)

displays output examples of our model’s single-shot video captioning. It accurately

details visual elements within the shot, e↵ectively capturing actions like “gesturing

with her hands” and articulates secondary elements within a scene like “a doll on

the couch”.
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Table 8.3 : Performance of single-shot narration captioning task. V and A means

visual and ASR.

Method Modalities B M R C

VALOR [25] Audio 6.6 10.0 23.9 13.5

Ours
A 4.7 17.1 30.3 130.9

V+A 18.8 24.8 39.0 168.7

8.3.3 Single-shot narration captioning

Human narration is another critical factor to understand a multi-shot video. It

often provides information of the background knowledge and commentator’s view

on visual events. We conduct experiments to predict the narration caption of a

video-shot and name this task single-shot narration captioning. We adopt the same

model structure as single-shot video captioning with the ASR text as additional

input, except that the prediction target is the narration caption. We compare with

existing audio captioning model VALOR [25]. We finetune VALOR on our single-

shot narration captions and show the results in Table 8.3. We also add another

baseline model that only takes ASR text as input and predicts the narration captions

using Vicuna [30].

Since our narration captions contain descriptions about the related visual infor-

mation as well, e.g. the subject, referred objects etc, using only ASR text does not

produce satisfactory results. The baseline model VALOR is unable to capture the

rich ASR text information with only the raw audio, leading to a weak performance of

13.5 in CIDEr. Our model combining visual and ASR text can generate reasonable

narration captions on most cases. As shown in Figure 8.5 (a), our model identifies

narration sources and aptly describes spoken content, as highlighted by phrases like
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“the background voice says” and “the man in a hat is talking”.

8.3.4 Multi-shot video summarization

Multi-shot video summarization is a new task that is distinct from existing video

description tasks. It requires the model to understand the shot structure of the given

video and to provide a coherently paragraph to describe the progression of events in

the di↵erent shots. In this section, we experiment with three model variants. The

first model SUM-text uses a two-stage approach, first generating captions using our

video-shot captioning model for each video shot, then embed the generated captions

into a text prompt as the input to the LLM (Vicuna-v0 [30]) to generate a video

summary. The second model SUM-holistic uses similar model as Figure 8.3. We

uniformly sample 16 frames from the full video clip and prompt the LLM with frame

tokens and ASR text. The third model SUM-shot uses a more refined framework

by sampling 4 frames in each video shot and prompting the LLM with frame tokens

from di↵erent shots, as is shown in Figure 8.4. Compared to SUM-holistic and SUM-

shot, SUM-text is not trained end-to-end and may loss critical information with the

captioning step, for example, it cannot capture the correspondence of the same

subject in two shots. SUM-holistic does not have the shot information explicitly

and rely on the LLM to parse the video shots using the provided frame features.

SUM-shot is given the shot structure as input, which makes it easier to generate

descriptions based on the di↵erent shots. We compare with Video-ChatGPT [124]

by instruction-tuning their model on our video summary data without the ASR

input.

Table 8.4 shows the results of the three models. It is shown that SUM-text

achieves the overall best performance, although it is a two-stage model with pre-

generated shot captions. SUM-shot is slightly worse than SUM-text, indicating that

better model design needs to be explored for end-to-end video summarization. SUM-
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!

"
Human speech: Pu%er pocket holds two pu%ers for quick and easy access in the front. We have a flap that you can close to protect your discs, but theres also 
velcro in there, so that when youre ready to play, you have easy access to your discs.

SUM-shot video summarization:
the video begins with a close-up shot of a gray and black backpack with a blue cover. the backpack is placed on a wooden table, and a male 
voice can be heard explaining that the putter pocket holds two putters for quick and easy access in the front. next, the scene transitions to a 
man in a red shirt sitting at a red table with four backpacks on it. he introduces a flap that can be closed to protect the discs in the backpack. 
the man explains that there is velcro in the backpack, which allows people to easily access their discs when they are ready to play. finally, 
the video returns to a close-up shot of the gray and black backpack with the blue cover on the wooden table. a person is seen taking out a 
colored disk from the backpack and placing it in the flap. the male voice explains that the backpack has easy access to the discs.

(b) Example predictions of multi-shot video summarization. 

!

" Human speech: explains to us the fear she has.

(a) Example predicEons of single-shot video capEoning and narraEon capEoning. 

Single-shot video captioning:
in the video, two men are looking at a large pile of rocks in a room. 
one man is wearing a hat and glasses

Human speech: But when you look at something like this, how many man 
hours have gone into peeling back the matrix?

Single-shot narration captioning:
the background voice says that the woman explains to people the fear 
she has.

Single-shot narration captioning:
the man in a hat is talking about how many man-hours have gone into 
peeling back the matrix.

!

" Human speech: When Apple first introduced the TouchBar, it tried to make it seem a lot cooler than it was, but really what it does is it makes it more annoying 
to hunt down the keys you wanna find.

SUM-shot video summarization:
the video begins with a close-up view of a macbook pro's keyboard, showcasing the various keys and their arrangement. the scene then 
transi=ons to a man si<ng on a couch, holding a laptop in his hand. he is dressed in a black shirt and jeans, and he is discussing the touchbar 
on the macbook pro. as he talks, he shows the laptop to the camera. the video then returns to the close-up view of the macbook pro's 
keyboard, this ?me focusing on the touchbar. the man on the couch con=nues to hold the laptop in his hand, discussing the touchbar and its 
func=onality. finally, the video ends with a close-up shot of a person interac?ng with the touchbar on the laptop, showcasing its features and 
func?onality.

Single-shot video captioning:
in the video, a woman is si?ng on a couch. she is wearing a blue tank 
top. she is gesturing with her hands. there is a doll on the couch.

… … … … …

… … … … …

… …… …

Figure 8.5 : Example predictions of our models. (a) demonstrates our model’s

single-shot video captioning, producing precise descriptions and identifying nar-

ration speakers, e.g., gesturing with hands, a man in a hat speaking. (b) shows

multi-shot video summarization, with accurate captions in green and errors in red,

illustrating the model’s ability to narrate event sequences and maintain subject con-

sistency, as seen in the progression from close-up of a backpack to transitions to a

man and return to the backpack.
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Table 8.4 : Performance of models on video summarization. E2E means whether

the model is trained in an end-to-end approach.

Model E2E ASR B M R C

Video-ChatGPT [124] 3 7 5.0 14.0 19.7 1.2

SUM-shot w/o ASR 3 7 9.8 18.4 24.9 4.7

SUM-text 7 3 12.2 20.4 27.1 9.2

SUM-holistic 3 3 10.9 18.3 26.2 6.3

SUM-shot 3 3 11.7 19.7 26.8 8.6

holistic is consistently worse than SUM-shot, showing the importance of the shot

structure in predicting a video summary matching the transition of shots. SUM-

shot w/o ASR underperforms compared to SUM-shot and SUM-holistic, highlighting

ASR’s significance in multi-shot understanding. Video-ChatGPT is not able to

match the performance of our models, potentially due to their weakness in processing

multiple scenes and lack of ASR input. Video-ChatGPT directly encodes the whole

video into a sequence of tokens and may loss a lot of details in the frames, while

ours directly feeding frames tokens into LLM without compressing them.

Figure 8.5 (b) illustrates our SUM-shot model’s predictive capabilities. The

model adeptly narrates event sequences with appropriate emphasis. For instance,

in the MacBook-example, it not only details the keyboard but also rationalizes the

display of various keys, aligning with the ASR data about the touchbar discussion,

thus crafting a coherent summary. Nonetheless, some predictions, marked in red, are

erroneous, such as the non-existent “returns to a close-up view of the macbook” shot.

These inaccuracies likely stem from the LLM’s tendency to “hallucinate” plausible

yet non-factual details. Despite these errors, the model demonstrates a proficiency

in generating consistent and nuanced summaries, highlighting both the potential of
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Table 8.5 : Comparison of performance for text-to-video (T2V), text-to-shot (T2S),

and video-to-text (V2T) retrieval tasks.

Method Pretrain Datasets
T2V T2S V2T

R@1" R@5" R@10" R@1" R@5" R@10" R@1" R@5" R@10"

Alpro [96] WebVid-2M+CC-3M 46.3 69.5 78.4 50.3 76.3 83.2 45.2 69.8 78.2

Clip4clip [123] CLIP400M 47.2 70.4 77.6 52.4 78.2 85.4 48.9 70.2 78.1

UMT [100] CLIP400M+UMT25M 66.3 81.8 85.8 68.6 88.4 92.0 64.9 82.3 86.2

our model and the challenges that our dataset presents for future research.

8.3.5 Video question-answering with summary

Since the generated summaries are long and complex, the traditional captioning

metrics (B, M, R, C) may not reflect the true quality of the generated summaries.

We thus adopt another video understanding task, zero-shot video question-answering

(QA), to further evaluate the quality of our generated summaries. Existing work [62]

directly uses image captions as input to an LLM to generate question response.

However, no such work has been done for videos.

Specifically, we directly apply our video summarization model on video QA

benchmarks MSRVTT-QA [203] and ActivityNet-QA [218] by splitting the testing

videos into video shots and feeding them into the SUM-shot model. The gener-

ated summaries and the associated questions are then fed into a Vicuna model to

derive the answers. Note there is no adaptation or finetuning conducted for the

Vicuna model. Since the original answers in the QA benchmarks are very short

and the generated responses from LLM tend to be a long sentence, we levarge

the gpt-3.5-turbo model to generate a binary decision of whether the answer

is correct, following Video-ChatGPT [124]. We compare our results with Video-

ChatGPT [124], MovieChat [157] and VideoChat [99] as in Table 8.2. Note that
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Video-ChatGPT and VideoChat both use large amount of instruction tuning data

to learn to directly generating answers from visual features and the text prompt,

while ours bypasses instruction tuning by distilling the video information into a

video summary. Additionally, for a direct comparison, we evaluate Video-ChatGPT

on question-answering in the same methodology as ours. As shown in Table 8.6,

our model outperforms Video-ChatGPT by a large margin. Our model also follows

the zero-shot QA settings since the model only uses Shot2Story as training data.

Note that MSRVTT contains a large portion of videos with out-of-domain topics

such as tv shows and food, while ActivityNet has much longer videos than our

training videos. This validates the the robustness and transferability of our model

across di↵erent topics and longer videos. This surprisingly good result indicates

that a comprehensive and detailed video summary is a high quality abstraction of

the video, facilitating a wide range of tasks including video QA and video-based

conversation.

8.3.6 Video retrieval with shot description

Text-based video retrieval is another task to evaluate multi-modal video represen-

tations. Traditional video retrieval often utilizes highly condensed text descriptions

with benchmarks such as MSRVTT [204], LSMDC [144], and VATEX [192]. Re-

trieval models can simplify the problem by leveraging key objects / actions in the

video withoutunderstand more complex details such spatial-temporal information

and user intent. We present a distinct setting for retrieval with only descriptions of

one video shot. Specifically, we design three settings: (1) using a shot description as

query source to query the corresponding video (T2V). (2) using a shot description

as query source to query the specific shot (T2S). (3) using a video as source to query

a randomly sampled shot description in this video (V2T).

We report results on the testing set of our benchmark with 4025 videos, in-
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Table 8.6 : Performance on video question answering. IT means whether the model

uses video-text instruction tuning data. All methods follow the zero-shot manner.

Model IT
QA MSRVTT ActivityNet

Input QA QA

VideoChat [99] 3 V+T 45.0 26.5

Video-ChatGPT [124] 3 V+T 49.3 35.2

MovieChat [157] 3 V+T 49.7 51.5

Video-ChatGPT [124] 3 T 53.7 37.4

SUM-shot+Vicuna 7 T 56.8 47.4

cluding 15913 shots. We evaluate several baseline models including Alpro [96],

CLIP4clip [123], and UMT [100] and show the results in Table 8.5. In the three re-

trieval tasks, Alpro underperforms relative to Clip4clip by approximately 2.0 points

in R@1, while UMT outperforms Clip4clip significantly, with an R@1 improvement

of 19.1 for T2V and 16.2 for T2S. The performance comparison confirms that re-

fined video-language alignment is crucial for retrieval accuracy. While Alpro employs

regional token alignment and CLIP4clip uses global video-text matching, UMT ad-

vances the field with its R@1 improvements, utilizing masked modeling and distilling

a ViT [43] for more detailed alignment. In light of these findings, our Shot2Story,

enriched with ASR information that closely aligns with visual elements, presents an

opportunity to harness ASR as a natural linkage for improving video-text alignment,

potentially guiding future enhancements in this domain. Additionally, a compar-

ison between video and shot retrieval tasks reveals that T2V presents a greater

challenge than T2S, aligning with our hypothesis that retrieving a full video using

a shot caption necessitates a more detailed understanding of the video. It confirms

the capacity of our dataset to facilitate detailed and complex video understanding

tasks.
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8.4 Conclusion

In this work, we present a large-scale video understanding benchmark with an-

notations based on video shots. We provide detailed textual descriptions for each

shot as well as a comprehensive video summary for the whole video. With the rich

and diverse descriptions, our benchmark serves as a playground for more powerful

multi-modal video understanding models, ready to be extended for a range of other

video understanding tasks, such as video question answering, visual grounding, and

video-based conversation.
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Chapter 9

Conclusion and Future Works

Concluding the exploration, this thesis has delved deep into the complexities of video

content analysis, an area increasingly pivotal as video data becomes more ubiqui-

tous and varied. This journey started with addressing foundational challenges in

video object perception and extended into the nuanced demands of holistic video

understanding, reflecting the dual need for precision in detection and depth in in-

terpretation.

In the realm of video object perception, we significantly advanced the field

with the Hierarchical Video Relation Network (HVR-Net) and Progressive Frame-

Proposal Mining (PFPM), enhancing object detection and leveraging sparse an-

notations to tackle practical issues of scalability and e�ciency. Additionally, the

Hybrid Temporal-scale Multimodal Learning (HTML) framework refined the ability

to integrate textual descriptions with video content for precise referring video object

segmentation.

Transitioning to holistic video understanding, the introduction of the Shot2Story

benchmark and Dual-AI framework marked substantial improvements in narrative

synthesis and group activity recognition. Moreover, the development of methodolo-

gies for Portrait Mode Video (PMV) recognition adapted video analysis techniques

to the emerging trends of social media content, showcasing the adaptability of video

analysis in various formats. These contributions have significantly broadened our

understanding of complex video interactions and the contextual interpretation of

scenes.
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Overall, this thesis contributes a suite of methodologies that significantly advance

the state of the art in video content analysis. The strategies developed herein for

both detecting intricate object details and unravelling complex video narratives

o↵er robust pathways for future research. These innovations hold the promise of

enhancing various applications, from automated surveillance systems to advanced

multimedia content curation, driving forward the capabilities of computer vision

systems in handling the ever-increasing complexity of video data environments.

Looking ahead, the convergence of large vision-language models and large lan-

guage models presents an exciting opportunity to unify video object perception and

holistic understanding into a single, powerful framework. Such integration could

significantly enhance video analysis by leveraging the strengths of these models to

interpret complex multimodal data seamlessly. Instances and their relationships are

crucial for understanding video content in depth. Large models, with their extensive

capabilities for contextualizing information, can improve how machines perceive and

interpret narratives and scenes. Furthermore, specialized single-object perception

models, essential for customized scenes, could also benefit from the advancements in

large models, particularly in terms of robustness and adaptability. Exploring these

integrations could lead to more sophisticated, e�cient, and context-aware video

analysis systems, pushing the boundaries of what is currently possible in video un-

derstanding technology.

In conclusion, my PhD research has rigorously explored video content analy-

sis, specifically tackling challenges in video object perception and holistic video

understanding through innovative frameworks. Looking forward, embracing large

models tailored for enhanced human-machine interaction, developing more general-

ized scenarios, and creating robust data collection pipelines for customized scenes

are pivotal. These steps will significantly advance our capability to analyze and

interpret complex video environments. This thesis has laid a crucial foundation for
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these endeavors, marking substantial progress in the field and charting a course for

future innovations that will further refine the generalizability and e↵ectiveness of

video content analysis systems.
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[146] Christian Schüldt, Ivan Laptev, and Barbara Caputo. Recognizing human

actions: A local SVM approach. In 17th International Conference on Pattern

Recognition, ICPR 2004, Cambridge, UK, August 23-26, 2004, pages 32–36,

2004.

[147] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos: Unified referring

video object segmentation network with a large-scale benchmark. In Computer

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,

2020, Proceedings, Part XV 16, pages 208–223. Springer, 2020.

[148] Yunhan Shen, Rongrong Ji, Shengchuan Zhang, Wangmeng Zuo, and Yan

Wang. Generative adversarial learning towards fast weakly supervised detec-

tion. 2018.

[149] Jing Shi, Jia Xu, Boqing Gong, and Chenliang Xu. Not all frames are equal:

Weakly-supervised video grounding with contextual similarity and visual clus-

tering losses. pages 10444–10452, 2019.

[150] Tianmin Shu, Sinisa Todorovic, and Song-Chun Zhu. Cern: confidence-energy

recurrent network for group activity recognition. pages 5523–5531, 2017.

[151] Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic, and Song



168

Chun Zhu. Joint inference of groups, events and human roles in aerial videos.

pages 4576–4584, 2015.

[152] Xiangbo Shu, Jinhui Tang, Guojun Qi, Wei Liu, and Jian Yang. Hierarchical

long short-term concurrent memory for human interaction recognition. 2019.

[153] Mykailo Shvets, Wei Liu, and Alexander C. Berg. Leveraging long-range tem-

poral relationships between proposals for video object detection. In ICCV,

2019.

[154] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[155] Parthipan Siva and Tao Xiang. Weakly supervised action detection. volume 2,

page 6, 2011.

[156] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to

object matching in videos. In 9th IEEE International Conference on Computer

Vision (ICCV 2003), 14-17 October 2003, Nice, France, pages 1470–1477,

2003.

[157] Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou,

Feiyang Wu, Xun Guo, Tian Ye, Yan Lu, Jenq-Neng Hwang, et al. Moviechat:

From dense token to sparse memory for long video understanding. arXiv

preprint arXiv:2307.16449, 2023.

[158] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A

dataset of 101 human actions classes from videos in the wild. CoRR,

abs/1212.0402, 2012.

[159] Tomáš Souček and Jakub Lokoč. Transnet v2: An e↵ective deep network ar-

chitecture for fast shot transition detection. arXiv preprint arXiv:2008.04838,

2020.

[160] Ximeng Sun, Rameswar Panda, Chun-Fu Richard Chen, Aude Oliva, Roge-



169

rio Feris, and Kate Saenko. Dynamic network quantization for e�cient video

inference. In Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, pages 7375–7385, 2021.

[161] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. Going deeper with convolutions. pages 1–9, 2015.

[162] Christian Szegedy, Vincent Vanhoucke, Sergey Io↵e, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. pages 2818–

2826, 2016.

[163] Kevin Tang, Bangpeng Yao, Li Fei-Fei, and Daphne Koller. Combining the

right features for complex event recognition. In Proceedings of the IEEE In-

ternational Conference on Computer Vision, pages 2696–2703, 2013.

[164] Peng Tang, Xinggang Wang, Song Bai, Wei Shen, Xiang Bai, Wenyu Liu,

and Alan Yuille. PCL: Proposal cluster learning for weakly supervised object

detection. 2018.

[165] Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Multiple instance

detection network with online instance classifier refinement. pages 2843–2851,

2017.

[166] Peng Tang, Xinggang Wang, Angtian Wang, Yongluan Yan, Wenyu Liu, Jun-

zhou Huang, and Alan L. Yuille. Weakly supervised region proposal network

and object detection. 2018.

[167] Yansong Tang, Zian Wang, Peiyang Li, Jiwen Lu, Ming Yang, and Jie Zhou.

Mining semantics-preserving attention for group activity recognition. In Pro-

ceedings of the 26th ACM international conference on Multimedia, pages 1283–

1291, 2018.

[168] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre



170
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