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H I G H L I G H T S  

• Analysed 1-minutely grid and decentralised solar PV energy demand data from 100 houses in a southwestern UK city. 
• Average electricity consumption decreased by 1.4—10% in April—August 2020 compared to 2019. 
• Grid electricity consumption was reduced by 24—25%, and from solar PV self-consumption increased by 7—8%. 
• Increased solar PV self-consumption was prominent in the morning and afternoon. 
• Might unlock solar PV’s potential of resolving the ‘Duck Curve.’  
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A B S T R A C T   

Integrating renewable energy technologies into a decentralised smart grid presents the ‘Duck Curve’ challenge — 
the disparity between peak demand and solar photovoltaic (PV) yield. Smart grid operators still lack an effective 
solution to this problem, resulting in the need to maintain standby fossil fuel-fired plants. The COVID-19 
pandemic-induced lockdowns necessitated a shift to remote work (work-from-home) and home-based educa-
tion. The primary objective of this study was to explore mitigating strategies for the duck curve challenge by 
investigating this notable shift in behaviour by examining the effect of remote work and education on grid and 
decentralised solar PV electricity use in 100 households with battery energy storage in the southwest of the UK. 
This study examined 1-min granular grid electricity and decentralised solar energy consumption data for 
April–August 2019 and 2020. The findings revealed statistically significant disparities in energy demand. 
Notably, there was a 1.4—10% decrease in average electricity consumption from April to August 2020 (during 
and following the lockdown) compared to the corresponding months of 2019. Furthermore, household grid 
electricity consumption was reduced by 24—25%, while self-consumption from solar PV systems increased by 
7—8% during the lockdown in April and May 2020 compared to 2019. This increase in self-consumption was 
particularly prominent in the morning and afternoon, possibly attributed to the growing prevalence of work- 
from-home and home-based education. The dynamic shifts in energy consumption patterns emphasised the 
role of decentralised solar PV energy in meeting the evolving needs of households during unprecedented societal 
changes. Additionally, remote work might unlock decentralised solar PV’s potential in resolving the ‘Duck 
Curve’, urging further investigation into the implications for energy infrastructure and policy development.   

1. Introduction 

Extreme events like heatwaves, flash floods, or pandemics can pro-
foundly impact individuals’ lives, leading to significant changes in daily 
routines and behaviour. For instance, the COVID-19 pandemic triggered 
widespread disruptions worldwide, prompting measures such as 

lockdowns and remote work arrangements. In response to the escalating 
situation, the UK government implemented lockdown measures in late 
March 2020, including closing schools, restaurants, and social venues 
[1]. By 03 March 2021, the UK had reported 4.2 million confirmed 
COVID-19 cases and 123,530 deaths [2]. Subsequent waves of infections 
led to additional lockdowns in November 2020 and January 2021 [2]. 
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Key workers, constituting 25.7% of the UK’s total working-age popula-
tion [3], faced varied work arrangements during the pandemic. While 
some could work remotely, most did not have this option, leading to job 
losses or furlough [4,5,6]. Data from the Office for National Statistics 
(ONS) indicated that approximately 47% of employed individuals 
adapted to remote work arrangements in April 2020, a substantial in-
crease from pre-pandemic levels [5]. Around 9.4 million individuals 
were also on furlough by 30 June 2020 [4]. 

Several studies and reports have illustrated the profound impact of 
the lockdown on people’s behaviours, evident not only in the UK but 
also in electricity demand profiles across various countries [7,8,9,10]. 
The lockdown induced an 18% decrease in morning electricity demand 
in the UK, with a comparatively lesser impact on weekend demand [11]. 
This decline aligns with expectations, considering the widespread 
closure of offices, schools, universities, and industries, leading to an 
overall reduction in grid-level electricity demand [7,12]. Given that 
residential sectors play a dominant role in nationwide electricity con-
sumption [13,10,14], understanding the specific patterns and behav-
iours of household consumption during the lockdown becomes crucial. 
Several studies reported reduced electricity demand during the COVID- 
19 lockdown in Spain, Portugal, Italy, the UK, and Belgium [9,10,15] 
and increased demand in the UK [16]. A study reported 13.49% power 
demand and 32.61% CO2 emissions reduction in Spain due to March and 
April 2020 lockdown measures compared to 2019 [9]. The electricity 
demand study in Spain, Italy, Belgium, the UK, Netherlands, and Sweden 
during April 2020 and 2019 showed Spain’s highest (25%) Demand 
Variation Index (DVI) reduction. Also, Italy, Belgium, and the UK had 
17.7%, 15.6% and 14.2% DVI reduction due to strict lockdown measures 
during the studied period. The Netherlands (with less restrictive mea-
sures) and Sweden (with no lockdown) showed an 11.6% reduction and 
a 2.1% increase in DVI, respectively [10]. Another study showed a 30% 
increase in energy consumption in the USA’s residential sector. In 
contrast, the electricity demand was lower due to the lockdown on the 
commercial buildings and manufacturing sectors [13]. Carvalho et al. 
showed a 7–20% decrease in electricity consumption in different Bra-
zilian regions, with the lowest 7% in the residential sector dominating 
the northeast subsystem [17]. A study reported that commercial and 
industrial activity and in-process heat and heating/cooling demand 
reduction were likely to contribute to lower-than-trend electricity con-
sumption during the day during the UK’s lockdown [7]. A sharp drop in 
electricity demand was reported as governments worldwide imposed 
lockdown restrictions, impacting the load composition and daily load 
profile [18]. Snow et al. analysed the drivers behind the Australian 
residential electricity demand due to the COVID-19 restriction of 491 
houses. They pointed out a significant increase in household electricity 
use with increased cooking and digital device use. However, overall 
energy use among most monitored Queensland households decreased 
during lockdown compared to the pre-lockdown period due to reduced 
air conditioner use as the weather cooled [19]. Kirli et al. showed a 25% 
reduction in aggregated electricity demand in Great Britain during 
lockdown [12]. El-Khozondar, H. J. et al. developed a hybrid off-grid 
energy system to power a COVID-19 quarantine centre in Gaza 
economically and sustainably, as demonstrated by HOMER-Pro analysis 
[20]. Their findings highlighted the system’s capacity to deliver envi-
ronmentally friendly, cost-effective, and affordable electricity to the 
quarantine facility compared to a standalone diesel generator system. 
However, studies and reports suggested that considerable uncertainties 
existed on the long-term impact of COVID-19 on the UK’s energy de-
mand [21,7]. National Grid Electricity System Operator (ESO) showed a 
reduction in total energy consumption during the lockdown compared 
to the pre-COVID market [8], primarily due to working from home and 
children being home. 

In January 2010, the total installed capacity of solar PV was 22.45 
MW, including 10.22 MW of domestic capacity. By January 2024, the 
UK’s solar PV install capacity was cumulatively 15,721.45 MW, of which 
domestic was 4623.31 MW (29.41%) [22]. Among the total solar PV 

installed capacity of 0 to ≤4 kW, 4 to ≤10 kW, 10 to ≤50 kW, 50 kW to 
≤5 MW, 5 to ≤25 MW, and > 25 MW size were 3614.2 MW, 829.3 MW, 
1272.1 MW, 3693.6 MW, 4440.1 MW and 1857.5 MW, respectively. In 
14 years, the total installed capacity increased by 700 times, whereas the 
total installed capacity increased by 452 times compared to domestic 
capacity. Despite the massive increase in installed capacity, the UK aims 
to double its solar capacity by 2030. Yet, this alone may not suffice to 
achieve a net zero economy by 2050, and a quadrupling of national 
green energy output by 2050, potentially reaching 80-120GW of solar 
capacity, is crucial. Achieving this could reduce carbon emissions by 
21.2 million tonnes annually, create 13,000 jobs, generate £17 billion in 
economic activity, and maintain a Compound Annual Growth Rate of 
11% [23]. Solar PV in the UK benefits from ample sunlight and gov-
ernment incentives but faces challenges such as intermittent generation, 
limited grid capacity, and land use conflicts [24]. Technology, policy 
support, and distributed generation offer opportunities. However, policy 
uncertainty, market saturation, and regulatory barriers pose threats 
[25]. 

Many studies have been conducted on solar PV and grid electricity 
control. Saxena, V. et al. introduced an AWFSOGI-based direct power 
control strategy for grid-connected solar PV systems, ensuring power 
quality and voltage regulation under adverse grid conditions [26]. 
Kumar, N. et al. introduced a novel voltage sensor(less)-based model 
predictive control (VSPC) scheme for efficient maximum power har-
vesting from a photovoltaic array in a solar-powered electric vehicle 
charging system, demonstrating its effectiveness in experimental vali-
dation [27]. Zafeiropoulou, M. et al. developed the F-channel platform, 
using AI and cloud computing to address balancing and congestion 
management issues in the Greek power system, enhancing TSO-DSO 
coordination and facilitating congestion, frequency, and voltage con-
trol services [28]. Pavlatos, C. et al. presented an electrical load fore-
casting methodology using bidirectional long short-term memory 
(LSTM) neural networks, achieving better accuracy compared to previ-
ous models, with the bidirectional LSTM’s mean absolute error (MAE) of 
0.122 outperforming recurrent neural networks (RNN), LSTM, and gated 
recurrent units (GRU) by approximately 25%, 46%, and 26%, respec-
tively, highlighting its potential for precise energy planning and market 
management in power systems [29]. Pavlatos, C. et al. introduced a 
Python-based framework utilising RNN for precise electrical load pre-
diction [30]. They achieved a root mean square error of 0.033, 
demonstrating its effectiveness in capturing data patterns and trends for 
energy-planning applications. 

Moreover, several studies also explored the mitigation strategies for 
the ‘Duck curve’— a daily power production graph revealing the timing 
misalignment between peak energy demand and solar power generation. 
It shows a distinct dip during daylight hours when solar generation 
peaks, resembling a duck’s silhouette [31,32,33]. Wang, Q. et al. pre-
sented a mitigation strategy for the duck-shaped net load power curve 
problem in high PV penetration systems, replacing thermal power sta-
tions with Concentrated solar power (CSP) stations [34]. It utilised the 
thermal storage system’s ability to dispatch and CSP unit fast output 
regulation to minimise overall cost and enhance system flexibility, as 
demonstrated through nonlinear optimisation. Hou, Q. et al. demon-
strated high PV penetration reshaped net-load curves, leading to pro-
posed probabilistic duck and ramp curves to model uncertainty. 
Empirical validation showed considerable uncertainty, with flexible 
resource planning enhancing power system flexibility, notably through 
coal-fired unit retrofitting in Qinghai, China [35]. Sheha, M. et al. pre-
sented a novel approach to citywide dynamic modelling using a bilevel 
programming algorithm, optimised dynamic pricing profiles leveraging 
air-conditioning systems and distributed storage to flatten demand 
curves, with an economic study showing levelized storage costs below 
$0.457/kWh and several cases with simple payback periods shorter than 
the system’s lifetime [31]. Calero, I. et al. investigated pre-cooling 
strategies in residential households to mitigate the “duck curve” effect 
caused by the massive deployment of small-scale PV generation [36]. It 
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demonstrated the technical feasibility of pre-cooling through thermal 
models and simulations. It proposed an aggregation technique to eval-
uate its effects on large grids in California and Texas, concluding that 
such techniques significantly flattened the system net demand curve. 
Olczak, P. et al. showed, in Poland, a surge in installed photovoltaic 
capacity, notably since 2018, led to the “duck curve” phenomenon, 
characterised by low daytime grid energy consumption and higher 
evening consumption, particularly on days with high sunlight [37]. This 
study analysed 608 PV installations, estimating a maximum daily dif-
ference of 3.9 kW per household in 2019 and a median value of 2.08 kW. 
Connecting 400,000 prosumer households was estimated to cause a 
maximum power fluctuation of about 1.6 GW in the national grid. 
Kalair, A. R. et al. developed a solution to the “duck curve” challenge 
through smart load-shedding devices in micro and nano grids, 
leveraging ICT technologies and Internet of Things (IoT)-based demand- 
side management to optimise energy consumption and mitigate peak- 
hour demands on the national grid, with future integration of big data 
technologies for utility-scale load management [38]. Pandey, H. W. et al. 
addressed the challenges of integrating renewable energy sources (RES) 
into the grid, mainly focusing on the “duck curve” phenomenon 
observed in the Indian grid scenario [39], which proposed strategies to 
mitigate it and employed TOPSIS to rank these strategies based on multi- 
criteria decision-making analysis. Watari, D. et al. proposed an optimal 
strategy for a resource aggregator (RA) to address the global problem of 
the duck curve, utilising dynamic pricing and battery systems at both RA 
and prosumer levels based on a model-free deep reinforcement learning 
(DRL) algorithm, with simulation experiments demonstrating signifi-
cant improvements in net load metrics [40]. 

The existing literature did not explore the potential of remote 
working in mitigating the ‘Duck curve.’ This study aimed to understand 
the initial shifts in behaviour during the onset of the lockdown, observe 
the easing of these changes as restrictions were lifted, and then examine 
a return to more conventional practices as we transition out of lock-
down, exploring the possibility of some changes becoming enduring. It 
focused on the first COVID-19 pandemic lockdown, which commenced 
on 23 March 2020 and gradually relaxed from mid-May in the UK. This 
study examined the period from April to August 2020, encompassing the 
summer and autumn months. Furthermore, 1-min intervals of residen-
tial grid electricity and decentralised solar energy generation and con-
sumption data from 100 homes in the southwest of the UK were 
analysed. The primary objective was to scrutinise the grid electricity 
consumption and self-consumption of photovoltaic (PV) energy, as res-
idential occupancy (and consequently, demand) might undergo signifi-
cant shifts to better align with solar PV generation during this 
timeframe. This study aimed to shed light on how energy practices 
evolved during the lockdown’s and subsequent phases’ unique circum-
stances, offering insights into the potential of enduring impact on energy 
consumption patterns and mitigating the ‘Duck curve.’ 

2. Methodology 

2.1. Data source and description 

This study used data from the Local Energy Market (LEM) Residential 
database within the Cornwall LEM project, a venture partially supported 
by the European Regional Development Fund through the European 
Structural and Investment Funds Programme 2014–2020 [41]. The 
dataset featured 1-min intervals of electricity demand, and generation 
data gathered from 100 residences in the southwest of the UK from 
August 2016 to December 2020. The project’s objective centred on 
creating a LEM trading platform tailored for homes and equipped with 
solar PV and behind-the-meter battery energy storage systems (BESS) 
(Fig. 1). Each site was outfitted with diverse measurements, encom-
passing on-site energy consumption, energy generated by the Solar PV 
system, energy charge/discharge to and from the BESS, energy imports 
and exports to and from the grid, along with intricate details regarding 

the allocation of energy from the Solar PV system and the BESS. These 
measurements included PV & BESS standby loads, BESS state of charge, 
and power-related parameters like active power, voltage, frequency, and 
power factor for the grid, BESS, and PV systems. Despite the primary 
compilation of the dataset for LEM trading experiments, our study 
focused primarily on consumption data. Performance data for PV and 
BESS was deliberately omitted to underscore the impact of COVID-19 on 
the broader population. Additionally, site-specific metadata associated 
with the time-series dataset was integrated, offering insights into 
dwelling characteristics and household composition, enriching our 
analysis. 

The real power (PPV) of the PV panel under actual operation and 
climatic conditions following Eq. (1) and Eq. (2), adopted from [42]. 

PPV = PSTC
[
1+ βp(Tcell − TSTC)

] Ht

HSTC
(1)  

Tcell = Ta +7×10− 2Ht (2) 

Where: PPV was the real power according to the operating conditions 
(W); PSTC was the power of the module at the standard test condition; Tcell 

was the surface cell temperature (◦C); TSTC and HSTC were the cell surface 
temperature (◦C) and solar radiation (W/m2) at Standard Test Condi-
tions (STC), respectively; βp was the power temperature coefficient (W/ 
◦C), and Ht was the actual solar radiation incident on the PV module (W/ 
m2). Also, Ta was the air temperature (◦C). Usually, TSTC, PSTC, βp, Ht, and 
HSTC could be retrieved from the data sheet of the PV module, but the Tcell 

had to be estimated with Eq. (2). 
The state of charging and discharging (SoC) of the conducted deep 

cycle battery (integrated type of the battery lithium-ion) as a chemical 
reaction can be mathematically expressed in Eq. (3) and Eq. (4), adopted 
from [43]. The equation calculates the battery’s charge state at a time (t) 
based on the previous state of charge, the self-discharge rate, the dif-
ference between power generation and power consumption (considering 
efficiencies), and the efficiency of charging and discharging the battery. 
Eq. (5), adopted from [43], represented the calculation of the power 
supplied by an inverter Pinv(t) at time (t). 

SoC(t) = SoC(t − 1).(1 − σ)+
(

(PPV(t)+PWT(t) ) −
PL(t) + PEVDem

Ƞinv

)

×Ƞb

(3)  

SoC(t) = SoC(t − 1).(1 − σ)+
(

PL(t) + PEVDem

Ƞinv
− (PPV(t)+PWT(t) )

)

×Ƞb

(4)  

Pinv(t) =
Pm

l (t)
Ƞinv

(5) 

Where: SoC(t) and SoC(t − 1) were the estimated State of Charge at a 
time (t) and (t-1), respectively; σ was the Self-discharge rate of the 
battery, representing the loss of charge over time; PPV(t) was the power 

Fig. 1. Energy systems and flow in the monitored houses. The solid lines refer 
to the energy flow, while the dashed ones refer to the energy destination. 
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generated by the photovoltaic (PV) system at time (t); PWT(t) was the 
power generated by the wind turbine system at a time (t); PL(t) was the 
power consumed by loads at the time (t); PEVDem was the power demand 
from electric vehicles at a time (t); Ƞinv was the efficiency of the inverter, 
representing the conversion efficiency of DC power to AC power or vice 
versa, and Ƞb was the efficiency of the battery’s charging and dis-
charging, representing losses during energy conversion and storage 
processes. Pinv(t) was the power supplied by the inverter at the time (t), 
which was the output power of the inverter, which converts DC power to 
AC power (or vice versa) in systems like renewable energy systems or 
electric vehicles; Pm

l (t) was the power demanded by loads at a time (t), 
which could be the total power consumed by various electrical loads 
connected to the system. The BESS battery systems and sizing details 
were here [41]. 

Also, to explore the influence of weather on electricity consumption, 
weather data for 2019 and 2020 from the Meteoblue database (www.me 
teoblue.com) for southwestern UK. The metadata named European 
Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th 
Generation (ERA5, ERA5T) had a 30 km spatial and hourly temporal 
resolution [44]. However, it is crucial to acknowledge the inherent 
complexities associated with the estimation process, including under-
lying assumptions, potential inaccuracies, and uncertainties, as exten-
sively expounded upon in [45,46]. Any error in these variables could 
significantly affect the accuracy and reliability of the results obtained. 

2.2. Data analysis methodology 

Residential electricity consumption during the COVID-19 lockdown 
in the southwestern UK was examined using data from the Cornwall LEM 
database accessed through the MySonnenBatterie (MSB) portal. The 
analysis encompassed aggregated 1-min electricity consumption data 
from 100 houses, comparing disruptive periods from April to August 
2020 with the same period in 2019. Kernel Density Estimate (KDE) was 
employed to analyse data distribution, including mean, maximum, and 
minimum range differences. Weekday and weekend electricity con-
sumption patterns were also evaluated separately for both years. Addi-
tionally, we clustered houses based on heating fuel type (gas, oil, 
electricity) to assess the lockdown’s impact on each cluster’s electricity 
consumption. Paired t-tests were conducted to determine the statistical 
significance of differences in weekday and weekend consumption for 
different fuel types. 

Additionally, to deepen our comprehension of specific household 
activities, such as work and education, during disruptive periods like 
lockdowns, houses using primary heating fuels—gas, oil, and elec-
tricity— were analysed. This analysis aimed to delineate the discernible 
impact of the lockdown on high-resolution (minutely) electricity con-
sumption data. The 1-min average electricity consumption data for each 
heating fuel cluster was categorised into five periods within a day, 
spanning from morning to late night, for each month from April to 
August in 2019 and 2020. This segmentation allowed us to scrutinise 
differences in data distribution (KDE), mean, maximum, and minimum 
ranges during distinct parts of the day: Morning (5:00–11:59), afternoon 
(12:01–17:59), evening (18:00–20:59), early night (21:00–23:59), and 
late night (24:00–04:59). This detailed approach enables the inference 
of occupant activity at a granular level and facilitates the drawing of 
more detailed conclusions regarding the intricate interplay between a 
highly disruptive event and household responses. 

Thirdly, the analysis delved into the aggregated 1-min electricity 
consumption data encompassing the Grid and Battery Energy Storage 
System (BESS). This investigation aimed to assess the impact of the 
lockdown on the energy system variables outlined in Fig. 1. Subse-
quently, a detailed examination of grid and solar PV electricity con-
sumption was conducted across different segments of the day, providing 
insights into the effects of lockdown on user demand. Furthermore, the 
study employed the Seasonal-Trend Decomposition (STL) method [47] 

on grid and solar PV electricity data from 100 households. This approach 
allowed for a thorough exploration of changes in seasonal trends within 
total residential demand during the disruptive periods spanning from 
April to August 2020. A comparative analysis with the corresponding 
period in 2019 provided valuable context. The R code (from [48]) 
facilitated the execution of this analysis. Additionally, the research 
investigated the correlation between hourly electricity consumption 
data and the average outdoor temperature in the studied locations, as 
depicted in Supplementary Fig. 1. This inquiry sought to ascertain 
whether weather conditions significantly influenced electricity con-
sumption patterns. 

2.3. Household details 

Of the 100 houses, 46 houses had Sonnen ECO 9.43 batteries, and the 
rest had Sonnen Hybrid 9.53 batteries, where the Solar PV size was 
1.71–4.86 kW, and BESS size was 2.5 kW or 3.3 kW (Fig. 2A and B). In 
terms of Floor area, 67 featured a floor area ranging from 41 to 191 m2 

(Fig. 2C). The distribution included 56 detached residences (comprising 
30 houses and 26 bungalows), 12 semi-detached houses, three mid- 
terrace houses, and six end-terrace houses. Among the 100 monitored 
homes, 213 occupants resided in 66 houses (34 had no available data). 
The demographic breakdown revealed 40 children, 138 adults aged 16 
and above, and 35 individuals over 65 (Fig. 2D). To examine the con-
struction history of these residences, nine out of the 66 houses (with 34 
having no available data) were constructed before 1945, while 25 were 
built between 1945 and 1980. Another 22 houses were established be-
tween 1981 and 2016, and three were newly built. Window configura-
tions varied, with 63 out of 77 houses featuring double-glazed windows, 
while eight had high-performance, partially double, and single-glazing. 
Wall constructions ranging from cavity walls with no insulation to 
various forms of insulation, including partial and complete insulation, 
were found in the homes. The U-value of the wall constructions ranged 
from 0.10 to 0.03 W/m2K. Among the 66 households (with 34 lacking 
income data), seven reported annual household incomes below £16,000. 
Fourteen and 19 households fell within the income brackets of 
£16,000–25,000 and £25,001-45,000, respectively. Additionally, 23 and 
three households reported annual incomes within the £45,001–70,000 
and £70,001–£100,000 ranges. 

In terms of household appliances (data available for 66 houses), over 
90% of the houses were equipped with essential appliances such as 
fridges, freezers, microwaves, ovens, toasters, kettles, washing ma-
chines, TVs, PC/laptops, and vacuum cleaners (Fig. 2E). Furthermore, 
high ownership rates were observed for smartphones (86%), dish-
washers (85%), tablets (83%), hairdryers (76%), digital/skybox/Apple 
TV (70%), hair straighteners (52%), and game consoles (33%). 
Conversely, only a few houses possessed fewer common appliances, such 
as food processors, blenders, mixers, heat pumps, spas, dehumidifiers, 
and printers. 

Households, on average, exhibited an annual heating demand of 
15,933 kWh, with a range spanning from a maximum of 59,130 kWh to a 
minimum of 1807 kWh. Additionally, the average yearly hot water de-
mand stood at 2624 kWh. The highest and lowest annual hot water 
demands were recorded among the monitored households at 5396 kWh 
and 1132 kWh, respectively. Regarding heating appliances, boilers were 
prevalent in 55 households (Fig. 2F). Of these, 34 relied on gas, while 18 
were fuelled by oil (Fig. 2G). Also, 19 houses utilised electric heating 
systems, encompassing underfloor heating, portable heaters, heat stor-
age, air source heat pumps, and ground source heat pumps (Fig. 2F). 
Only four households employed unconventional heating sources such as 
coal, wood logs, and wood pellets. The diversity in heating methods 
reflected the varied approaches adopted by households to meet their 
heating and hot water needs. 
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3. Results 

3.1. Aggregated electricity consumption 

The analysis of examining the impact of average temperature on 
aggregated hourly electricity consumption vs in the studied location of 
100 houses in April–August 2020 showed R2 values for April, May, June, 
July, and August 2020 were 0.159, 0.201, 0.258, 0.411, and 0.254, 
respectively (Supplementary Fig. 1). Due to the low correlation, the 
electricity consumption data were not weather-corrected. Electricity 
consumption between April and August 2020 decreased significantly, 
ranging from 1.4% to 10.6% compared to the same period in 2019 
(Supplementary Fig. 2). Analysing the aggregated 1-minutely average 
for 100 houses during the lockdown and subsequent months, the density 
distribution analysis of electricity consumption revealed a distinct 
bimodal shape (Supplementary Fig. 2). This bimodal distribution during 
the lockdown period (April and May 2020) indicated a shift in electricity 
consumption towards lower and higher consumption bins, suggesting a 

varied and possibly adaptive response to the unique circumstances 
imposed by the lockdown. However, the June to August 2020 distribu-
tion exhibited a unidirectional shift towards lower consumption bins, 
maintaining the bimodal characteristic (Supplementary Fig. 2). This 
shift in distribution during the later months of the study period implies a 
continued adjustment in electricity consumption patterns, potentially 
influenced by evolving societal behaviours and changes in restrictions. 
Notably, although the electricity consumption distribution for July and 
August 2019 also demonstrated a bimodal pattern, the bimodal distri-
bution became notably more pronounced from June to August 2020. 

Electricity consumption analyses on weekdays and weekends during 
April–August showed that in April and May 2020, weekends had a 
higher shift towards lower consumption bins than weekdays (Fig. 3A). 
Average consumption was reduced by 4.70% (weekdays) and 12.26% 
(weekends) in April, increased by 0.45% (weekdays), and decreased by 
6.93% (weekends) in May. However, weekdays and weekends signifi-
cantly shifted towards lower consumption bins from June to August. In 
June, the distribution changed from unimodal to bimodal, indicating 

Fig. 2. (A) Solar PV and (B) BESS size in the 100 houses and their battery types; (C) Floor area distribution among 77 houses (23 no data); (D) Number of occupants 
in 66 Houses (No data for 34 houses); (E) Cumulative number of appliances in 66 houses (there were no data for 34 houses); (F) Heating types in 100 households; (G) 
Heating fuel used in 100 houses. 
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two distinct consumption patterns. Moreover, average consumption was 
reduced by 11.57% (weekdays) and 8.13% (weekends) in June, 3.92% 
(weekdays) and 7.13% (weekends) in July, and 3.97% (weekdays) and 
4.94% (weekends) in August. This observation highlighted the sustained 
impact of the lockdown and related circumstances on electricity con-
sumption, underscoring a persisting alteration in consumer behaviours 
and energy usage patterns during the specified period. 

A paired t-test was performed on data collected from 100 houses, 
comparing their electricity consumption for April through August in 
both 2019 and 2020. The null hypothesis was that there would be no 
statistically significant difference in the mean consumption between the 
two years. The p-values obtained for April through August 2019 and 
2020 were all 0.000. In statistical terms, a p-value <0.05 was conven-
tionally considered indicative of statistical significance at a 95% confi-
dence interval. As all the obtained p-values were 0.000, falling well 
below this threshold, the evidence strongly supported rejecting the null 
hypothesis. Therefore, with a high confidence level, it showed a statis-
tically significant difference in mean electricity consumption from 2019 
to 2020 for each analysed month. These results referred to a notable shift 
or alteration in electricity consumption patterns among the examined 
houses during the specified months, highlighting the impact of external 
factors, such as the COVID-19 pandemic or other influential variables 
that may have contributed to the observed changes. 

We used paired t-tests to compare the electricity consumption be-
tween weekdays and weekends from April to August 2019 and 2020. 
The null hypothesis posited that there would be no statistically signifi-
cant difference in the mean consumption on weekdays and weekends 
when comparing the years 2019 and 2020. The obtained p-values for 
weekdays and weekends in the analysed months (April to August) for 
2019 and 2020 were all 0.000. In statistical terms, a p-value below 0.05 
indicated rejecting the null hypothesis at a 95% confidence interval. As 
all the p-values in our analysis were 0.000, well below the significance 
threshold, a statistically significant difference existed in mean electricity 
consumption for both weekdays and weekends when comparing 2019 
and 2020 across each month in the specified period (April to August), 
which signified a notable shift in electricity usage patterns during this 
timeframe. 

Heating fuel was utilised as a critical parameter considering the UK’s 
building stock, leading to the identification of three distinct clusters: gas 
(34 houses), oil (18 houses), and electricity (19 houses) to classify res-
idences based on heating fuel types. Notably, houses with gas boilers 
exhibited the most significant changes in 2020 compared to those reliant 
on oil and electricity (Fig. 3B). A detailed examination of the gas boiler 
houses revealed a distinct bimodal distribution in April and May 2020, 
contrasting with the unimodal distribution observed in 2019. This 
bimodal pattern persisted from April to August 2020. The distribution 

Fig. 2. (continued). 
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Fig. 3. (A) Aggregated (minutely) electricity consumption distribution of 100 houses for weekdays and weekends in April–August of 2019 and 2020; (B) Aggregated 
(minutely) electricity consumption distribution for houses with gas, oil, and electricity for heating in April–August of 2019 and 2020. The horizontal line in the 
middle was the mean of the data, and the top and bottom horizontal lines were the maximum and minimum. 
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experienced shifts towards both higher and lower consumption bins, 
with the dominating trend leaning towards higher consumption. Also, 
the means moved upward compared to 2019, indicating an overall in-
crease in consumption during 2020. Furthermore, our findings showed 
that houses relying on gas heating experienced a 4–12% rise in average 
electricity consumption from April to July 2020 compared to the same 
period in 2019. However, a reversal in trend was observed in August, 
with average electricity consumption registering a 4–7% decline in 2020 
compared to the previous year. 

In contrast, residences using oil and electric heating fuels predomi-
nantly shifted towards lower consumption distribution in 2020 relative 
to 2019. For houses with oil-based heating systems, the average elec-
tricity demand exhibited reductions ranging from 3 to 29% during April 
to July and August 2020, compared to the corresponding months in 

2019. However, a 4.6% increase in average demand for these houses was 
observed in August 2020. Houses equipped with electric heating systems 
demonstrated consistent reductions in electricity demand, ranging from 
18 to 37% across April to August 2020 when contrasted with the same 
months in 2019. This broad analysis provided valuable insights into the 
diverse and dynamic energy consumption patterns among households 
with different heating fuel sources during the transformative year 2020. 

3.2. Time of use: Aggregated electricity consumption 

The analysis of monthly electricity consumption within major heat-
ing fuel clusters (gas, oil, and electricity) revealed a notable shift in 
distribution patterns between 2020 and 2019. The data underwent 
further categorisation and analysis in five-day intervals to gain in-depth 

Fig. 4. Change in average 1-minutely electricity consumption in the houses with gas-fuelled heating systems [(A) weekdays and (B) weekends], the houses with oil- 
fuelled heating systems [(C) weekdays and (D) weekends], and the houses with electric heating systems [(E) weekdays and (F) weekends]in April–August 2020 
than 2019. 
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insights. In the case of 34 houses equipped with gas-fuelled heating 
systems, a discernible change emerged in the average electricity demand 
from April to August 2020 compared to 2019 (Supplementary Fig. 3 A 
and Fig. 4A). On weekdays during this period, the morning and after-
noon electricity demand in these houses increased by an average of 
10–30% and 15–31%, respectively. Conversely, during the evening and 
early nights, there was a 5–13% reduction and 19–27%, followed by an 
upswing of 5–15% in late-night hours and weekends displayed a similar 
trend, with an elevated demand of 11–31% in the morning and 11–38% 
in the afternoon. Evening and early-night demand decreased 5–13% 
(except for a remarkable 10% increase in June 2020) and a subsequent 
2–15% rise in late-night hours from April to August 2020 compared to 
2019 (Supplementary Fig. 3B and Fig. 4B). Remarkably, there was an 
overall reduction of 15.2% in average electricity demand in June–April, 
suggesting a potential influence of the phased easing of lockdown 
measures initiated in mid-May. This period coincided with the phased 
reopening of schools, colleges, and nurseries in England starting 01 June 
2020 [49]. The observed decline in electricity consumption during 
morning and afternoon hours in the monitored houses from June to 
August could be attributed to a shift towards work-from-home, con-
trasting with the April 2020 lockdown period. This finding highlights 
the evolving dynamics of energy consumption patterns in response to 
changing societal circumstances. 

In the 18 residences equipped with oil-fuelled heating systems, a 
nuanced analysis of weekday electricity consumption patterns unveiled 
intriguing trends. Comparing April and June 2020 to the preceding year, 
the average electricity demand exhibited a notable reduction ranging 
from 15% to 43% during weekdays. The most significant decrease, 
reaching 43%, occurred in the evening hours of April, while June 
experienced a peak reduction of 53% during the late night. However, a 
departure from this trend was observed in May, July, and August 2020, 
when demand increased from 3% to 24% during the morning and af-
ternoon. Subsequently, the demand decreased by 2% to 33% in the 
evenings to late nights compared to the corresponding periods in 2019. 
An exception to this general decline was noted on the early nights in 
August 2020, when demand increased by 2% compared to the previous 
year (Supplementary Fig. 4A and Fig. 4C). 

During weekends, a divergent pattern emerged. In June 2020, the 
average electricity demand demonstrated a 4% increase in the morning, 
followed by a decrease in the afternoon (12%) and a substantial drop in 
the late night (54%) compared to 2019. Conversely, August 2020 wit-
nessed a 17% increase in the morning, a 1% reduction in the afternoon, 
and a 29% decrease in the evening. We experienced a resurgence in the 
early night with a 16% increase, followed by a 23% reduction in the late 
night compared to the same period in 2019. For a more granular un-
derstanding, a closer examination of minute-level electricity demand in 
August 2020 revealed intricate fluctuations. There was an upsurge in the 
morning and afternoon, followed by a decline in the evening and a 
subsequent rise in the early night, culminating in a reduction during late 
nights (Supplementary Fig. 4B and Fig. 4D). These detailed insights 
illuminated the dynamic nature of electricity consumption patterns in 
households with oil-fuelled heating systems, showcasing the impact of 
seasonal and temporal variations on energy usage during the specified 
timeframes. 

In the 19 residences equipped with electric heating systems, notable 
fluctuations in average electricity demand were observed across various 
months in 2020 compared to the corresponding periods in 2019. During 
April 2020, the average electricity demand reduced from 6% to 42%, 
with the most substantial decrease occurring in the evening. Similarly, 
the reduction ranged from 1% to 37% in May, again with the highest 
decrease observed in the evening. In June, the average electricity de-
mand decreased from 9% to 48%, with the most pronounced reduction 
recorded in the early night. In August, the decline ranged from 1% to 
36%, with the highest decrease observed in the early night. In contrast, 
July 2020 witnessed an upswing in average electricity demand, regis-
tering an increase of 15% in the morning and 0.4% in the afternoon, 

followed by reductions of 5% to 19% in the evening and late-night 
compared to 2019 (Supplementary Fig. 5 A and Fig. 4E). 

Analysing weekend patterns in April 2020, average electricity de-
mand demonstrated a decrease ranging from 26% to 46% in the evening, 
17% to 43% in the early night in May, 12% to 44% in the early night in 
June, and 2% to 25% in the early night in August, all in comparison to 
the respective weekends in 2019. In July 2020, average electricity de-
mand increased by 0.2% in the morning and 17% in the afternoon, 
followed by reductions of 6% to 22% in the evening and late-night 
compared to July 2019 (Supplementary Fig. 5B and Fig. 4F). These 
findings underscore the dynamic impact of temporal and seasonal var-
iations on residential electricity consumption patterns, particularly in 
homes utilising electric heating systems. 

Considering that the months (April to August) under study did not 
coincide with the peak heating season, initial expectations leaned to-
wards anticipating more noticeable changes in homes relying on electric 
heating. A thorough examination of the construction period of heating 
fuel types yielded only partial evidence to support this assumption. 
Among the 100 houses analysed, 71 were equipped with gas, oil, and 
electricity-based heating systems. Supplementary Fig. 6 A illustrates that 
65% of the houses with gas-based heating were constructed before 1980, 
while 90% and 50% of oil- and electricity-based heating homes shared 
this characteristic. However, a nuanced pattern emerged when cross- 
referencing heating fuel use with the age-wise occupancy of the hous-
es (Supplementary Fig. 6B). Specifically, 21 houses with gas-based 
heating systems accommodated 55 adults and 17 children (with no oc-
cupancy data for 13 houses). However, 12 houses with oil-based heating 
systems housed 36 adults and seven children (with no data available for 
six houses). In comparison, 16 houses with electricity-based heating 
systems accommodated 34 adults and ten children (with no occupancy 
data for three houses). During the lockdown period, it became apparent 
that the higher average demand in houses relying on gas for heating, as 
opposed to oil and electricity, might be attributed to more adults 
working and children engaging in remote schooling within these specific 
households. This demographic factor likely contributed to the observed 
variations in energy consumption among the different heating system 
categories. 

3.3. Grid and Solar PV electricity consumption 

The overall solar PV generation experienced significant fluctuations 
throughout April, May, June, July, and August 2020 compared to the 
preceding year. Notably, the average Solar PV generation exhibited an 
impressive increase of 11.3% and 9.6% in April and May 2020, 
respectively, surpassing 2019 (Fig. 5A). However, a subsequent 12–20% 
decline was observed in Solar PV generation from June to August 2020. 
Conversely, examining mean battery activities (charge, discharge, and 
grid export) from April to August 2020 revealed minimal variations 
compared to 2019 (Supplementary Fig. 7), which remained consistent 
even as aggregated electricity consumption experienced a significant 
reduction (Supplementary Fig. 1). Two specific types of instantaneous 
consumption were examined within the homes under study: grid and 
solar PV electricity. In the case of solar PV self-consumption, there was a 
significant surge in mean electricity consumption during the lockdown 
months of April and May 2020, recording increases of 7.6% and 6.9%, 
respectively, compared to 2019 (Fig. 5A). The increase coincided with 
an elevation in solar radiation during the same period (Fig. 5B). 
Following the easing of lockdown measures, the mean consumption 
exhibited minimal increases (ranging from 0.3% to 0.8%). An intriguing 
observation was the shift towards higher consumption bins during the 
lockdown months, explicitly maintaining an unimodal distribution. 

In contrast, grid electricity consumption depicted an average de-
mand reduction of 2% to 25% (Fig. 5C). The most substantial reduction 
occurred in April (25%) and May (24%) 2020, starkly contrasting to the 
corresponding months 2019. June witnessed a 20% reduction, followed 
by a 2% increase in July and a 2.5% decrease in August 2020. Notably, 
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(A) 

(B)  

(C)

Fig. 5. (A)Minutely aggregated Solar PV electricity consumption, (B) Hourly average solar radiation comparison, and (C) Minutely grid electricity consumption 
comparison between April–August 2019 and 2020. 
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the electricity demand shifted towards lower consumption bins, result-
ing in a bimodal distribution in April and a return to an unimodal dis-
tribution in May 2020. These nuanced patterns suggest a complex 
interplay of factors influencing energy consumption dynamics during 
the studied period. 

3.4. Time of use: Solar PV and grid electricity 

Between April and August 2020, there was a notable surge in Solar 
PV electricity consumption during weekday morning hours, witnessing 
an increase ranging from 39% to 56%, and on weekends, experiencing a 
broader range of 25% to 84% (Supplementary Fig. 8 and Fig. 6). Addi-
tionally, in the afternoons during the lockdown period, there was a 
substantial rise in electricity demand, ranging from 12.6% to 13.5% on 
weekdays and 2% to 5% on weekends. In the evenings, however, there 
was a reduction in demand during April to August 2020 compared to the 
same period in 2019. 

Demand decreased during the mornings of April and May 2020, 
ranging from 21% to 34% on weekdays and 30% to 53% on weekends, 
compared to 2019 (Supplementary Fig. 10 and Fig. 6) while examining 
the grid electricity consumption within the studied homes. In the af-
ternoons, there was a 5% increase in demand on weekdays but a sub-
stantial 53% decrease on weekends in April 2020, relative to 2019. 
However, demand decreased by 7% on weekdays and 4% on weekends 
in May. During the evenings, early nights, and late nights, the grid 
electricity demand experienced a reduction ranging from 7% to 30% on 
weekdays and 7% to 48% on weekends throughout the first lockdown in 
2020 compared to 2019. The disparity in grid electricity demand 
notably diminished in June 2020 post-lockdown. Moreover, the elec-
tricity demand on different days, weekdays and weekends in July and 
August 2020 closely resembled the patterns observed in 2019. The 

analysis showcased the dynamic shifts in electricity consumption pat-
terns, particularly in the context of solar PV energy and grid demand, 
during the unprecedented events of the 2020 lockdown. 

3.5. Seasonal-trend decomposition analysis 

The analysis of aggregated electricity consumption and its temporal 
distribution throughout the day revealed a significant influence of the 
COVID-19 lockdown on both solar PV generation and grid electricity 
consumption. Seasonal-trend decomposition using Loess (STL) analysis 
was implemented to investigate the seasonal electricity usage trends. 
The temporal evolution of electricity demand was focused on dis-
tinguishing between Solar PV-generated electricity and grid-supplied 
electricity. In 2019, there was a distinctive pattern in Solar PV elec-
tricity demand. There was an initial surge in demand during weeks 1 and 
2, followed by a decline in week three, only to see a resurgence in de-
mand during week 04 April 2019 (Fig. 7). The following year, May 2020, 
displayed a change from the trends in 2019. While the demand 
decreased in the first week, a notable increase was observed in the 
subsequent three weeks compared to 2019. This shift in consumption 
patterns during the initial stages of the lockdown might have demon-
strated a dynamic response to the modified societal and economic 
conditions. As the lockdown persisted, the divergence in seasonal trends 
between 2019 and 2020 became less pronounced, particularly from 
June through August 2020. Therefore, this analysis suggested a stabili-
sation or adaptation in electricity consumption behaviours during the 
later stages of the lockdown. The minimal difference in seasonal trends 
indicated a potential acclimatisation to the ‘new normal’ as people and 
industries adjusted their activities and energy consumption patterns to 
the ongoing restrictions. The STL analysis allowed us to separate the 
various components contributing to the seasonal trends. It provided 

(A)  (B) 

(C) (D) 

Fig. 6. Minutely average solar PV electricity consumption between April–August 2019 and 2020 during (A) weekdays and (B) weekends. Minutely average grid 
electricity consumption between April–August 2019 and 2020 during (C) weekdays and (D) weekends. Exceptional Minutely average solar PV electricity con-
sumption during late nights of weekdays and weekends (Supplementary Fig. 9), but the amount of consumption was minuscule. 
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insights into how much of the observed variability could be attributed to 
long-term trends, seasonal fluctuations, and irregular patterns, thus 
facilitating a better understanding of the intricate dynamics of elec-
tricity consumption. 

The fluctuations in Solar PV-generated electricity and grid electricity 
consumption during the lockdown periods underscored the dynamic 
interplay between external factors and energy usage patterns. These 
patterns reflected the immediate impact of the lockdown and hinted at 
the adaptive measures taken by individuals and organisations in 
response to the changing circumstances. The STL analysis revealed the 
evolving nature of electricity consumption during the COVID-19 lock-
down. From initial disruptions marked by deviations in demand patterns 
to a subsequent stabilisation and convergence to a ‘new normal,’ the 
intricate dynamics of energy consumption became apparent. This 
nuanced understanding could be vital for policymakers, energy plan-
ners, and researchers as they navigate the complexities of post-lockdown 
energy scenarios and plan for a more resilient and sustainable future. 

An intriguing pattern emerged during the lockdown period in the 
context of grid electricity. In the initial weeks (weeks 1–2) of the lock-
down in April 2020, there was an evident reduction in demand 
compared to the corresponding period in 2019 (Fig. 8). However, this 
decline in demand was followed by a somewhat unexpected increase in 

week three, only to decrease again in week four of April 2020. These 
fluctuations in demand during the early weeks of the lockdown denoted 
the COVID-19 lockdown’s influence on energy consumption patterns. 

In May 2020, the demand reduction continued, albeit with a slight 
increase in weeks 1 and 2. This nuanced shift in demand dynamics 
hinted at the evolving relationship between energy usage and the 
changing landscape of work and daily activities during the extended 
lockdown period. As the lockdown progressed, an interesting observa-
tion unfolded during the subsequent months of June to August 2020. 
The seasonal trends in electricity demand exhibited a minimal impact 
during this period, which could indicate a certain level of adaptability 
and stabilisation in the energy consumption patterns as people adjust to 
the new normal and adapt their lifestyles to the ongoing challenges. 

4. Discussions 

The initial COVID-19-induced lockdown in the UK on 23 March 2020 
had profound implications for residential electricity consumption, as 
evidenced by granular data analysis from 100 houses in a southwestern 
UK city. The study revealed a 7–27% increase in daily total electricity 
consumption during the analysed lockdown weekdays in April and May 
2020 compared to 2019. Although total electricity demand decreased 

Fig. 7. Seasonal-trend decomposition using Loess (STL) analysis of minutely aggregated solar PV electricity consumption during April–August 2019 and 2020.  
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after the phased relaxation of lockdown measures from mid-May on-
wards, enduring changes in residential electricity consumption patterns 
persisted from June to August 2020. Despite lifting the lockdown, work- 
from-home continued as offices and institutions remained closed, 
contributing to sustained alterations in electricity consumption behav-
iours. Notably, minutely average electricity consumption exhibited a 
6.4% and 1.4% reduction in April and May 2020, respectively, 
compared to the corresponding months in 2019 within the studied 100 
houses. The analysis further illustrated a shift in electricity demand 
distribution from an unimodal pattern in the summer to a bimodal dis-
tribution, particularly evident during weekdays and weekends in April 
and May. 

The lockdown-induced bimodal distribution shift, characterised by 
distinct clusters of higher and lower electricity consumption bins, hinted 
at two separate demand patterns likely influenced by the widespread 
adoption of work-from-home and home-based schooling. Moreover, a 
discernible shift towards lower energy consumption distribution from 
April to August 2020 prompted inquiries into the nature of home ac-
tivities during the lockdown and their subsequent impact on electricity 
demand. As heating was the dominating demand component of UK 

homes, an evaluation of house clusters based on heating fuel sources 
revealed a significant divergence in distribution, notably in houses with 
gas boilers compared to those with oil and electricity-fuelled heating 
systems. Even though the study excluded daily heating usage during the 
summer and autumn, the observed difference in distribution raised 
essential questions about household energy use practices. Examining the 
average electricity consumption of the three clusters across five periods 
of the day unveiled two distinct consumption groups. Houses with gas- 
fuelled heating systems exhibited a 10–30% and 15–31% increase in 
electricity consumption during the morning and afternoon, followed by 
a reduction in demand during the evening and early night. Interestingly, 
demand increased again late at night in August 2020 compared to the 
same period in 2019. Conversely, houses with oil and electricity-fuelled 
heating systems generally demonstrated reduced electricity consump-
tion from April to August 2020, except for specific periods in July and 
August. 

The observed contrasting electricity consumption patterns during 
and after the lockdown potentially contributed to the emergence of the 
bimodal distribution in 2020, deviating from the unimodal distribution 
patterns observed in 2019. Furthermore, the prevalence of adults and 

Fig. 8. Seasonal-trend decomposition using Loess (STL) analysis of minutely aggregated grid electricity consumption during April–August 2019 and 2020.  
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children in houses with gas-fuelled heating systems, as opposed to those 
with oil and electricity-fuelled systems, may have increased electricity 
demand due to the concurrent demands of work-from-home and 
schooling from home. While a detailed evaluation of household energy 
use practices was not feasible with the available granular electricity 
demand dataset, the study highlighted the significant impact of the 
COVID-19 pandemic-induced lockdown on residential electricity use in 
the UK. The differentiated effect on clusters of houses based on heating 
fuel sources underscores the need for further investigation to unravel the 
intricacies of residential practices within these households. 

An STL analysis was conducted to gain an in-depth analysis of these 
patterns. This analysis provided insights into the minutiae of solar PV 
and grid electricity demand trends during the UK’s first lockdown. 
Intriguingly, the 1-minutely data revealed that solar PV and grid elec-
tricity demand demonstrated opposing trends, showcasing the impact of 
localised solar generation on overall demand. As the lockdown gradually 
eased in mid-May 2020, an interesting trend emerged. The increased 
adoption of solar PV and the subsequent decrease in grid electricity 
consumption started to align with patterns observed in 2019. The trend 
indicated a potential correlation between the relaxation of lockdown 
measures and a return to more traditional energy consumption patterns. 

The change between solar PV and grid electricity demand high-
lighted the adaptability and responsiveness of energy consumption to 
external factors such as lockdown measures. The data suggested that as 
societal restrictions eased, there was a discernible shift towards a more 
familiar energy consumption landscape, potentially signalling a return 
to pre-pandemic habits. In conclusion, the analysis of grid electricity 
demand during the lockdown period revealed a dynamic interplay of 
factors shaping energy consumption patterns. The data painted a rich 
tapestry of how societal changes influenced energy use, from the initial 
reduction in demand to the subsequent fluctuations and eventual 
alignment with pre-lockdown trends. The STL analysis provided a 
granular understanding of the intricate relationship between solar PV 
and grid electricity demand, shedding light on the adaptability of energy 
consumption in the face of unprecedented challenges. 

The surge in residential electricity consumption, particularly during 
the COVID-19-induced lockdown, had opened a new realm of explora-
tion into the dynamics of energy use and its potential implications for 
sustainable practices. One notable aspect deserving further investigation 
was the increased consumption of solar PV-generated electricity, a 
phenomenon intertwined with the rise in work-from-home. As revealed 
by the granular analysis of electricity consumption patterns in the 
southwest UK, the lockdown led to an overall increase in daily total 
electricity consumption. It triggered lasting changes in residential con-
sumption behaviours. Amidst this shift, the specific uptick in solar PV- 
generated electricity consumption holds promising implications, espe-
cially in fostering sustainable and decentralised energy practices. 

Adopting work-from-home or remote work became a prominent 
feature of the post-lockdown era, with many individuals continuing to 
work from home even after the formal easing of restrictions. This pro-
longed reliance on home-based work has contributed to an increased 
demand for electricity, a portion of which may be supplied by solar PV 
systems installed in residential properties. Understanding the extent and 
dynamics of this increase in solar PV-generated electricity consumption 
might be crucial for several reasons: 

• Firstly, it raised inquiries about the efficiency and capacity of exist-
ing residential solar PV systems to meet the heightened demand. 
Assessing the performance of these systems during increased con-
sumption periods, such as daytime work hours, becomes essential. 
This evaluation ensures that solar PV installations should be opti-
mised to effectively support households engaged in sustained work- 
from-home energy needs.  

• Secondly, the potential impact on tariff systems was a crucial aspect 
that deserves further exploration. The increased reliance on solar PV- 
generated electricity for work-from-home might necessitate a re- 

evaluation of existing tariff structures. Tailoring tariffs to incenti-
vise working from home and encouraging decentralised renewables, 
such as solar PV, could have far-reaching effects on the sustainability 
of energy systems. Such policy, in turn, might contribute to a more 
distributed and resilient energy grid, reducing dependence on cen-
tralised power sources and mitigating the environmental impact.  

• Thirdly, it could significantly contribute to mitigating the ‘Duck 
Curve.’ Effectively managing the surplus solar energy and meeting 
evening peak demand poses challenges, necessitating solutions like 
energy storage and demand response. This study showed that pro-
longed work-from-home and home-based schooling sustained 
altered consumption behaviours and the surge in solar PV-generated 
electricity consumption, particularly in the morning and afternoon, 
which might mitigate the duck curve. In previous studies, different 
mitigation strategies — such as replacing thermal power stations 
with CSP stations [34], enhancing power system flexibility [35], 
optimised dynamic pricing profiles leveraging air-conditioning sys-
tems and distributed storage [31], pre-cooling strategies in residen-
tial households [36], IOT [38]— were examined. However, this 
study showed that work-from-home/remote work and decentralised 
solar PV concurrently might also mitigate the duck curve. As a 
conceptual illustration in Fig. 9, the remote work would increase 
occupants’ solar PV self-consumption (at home) in the morning and 
afternoon, reducing the grid demand for office work and allowing the 
BESS system to store access power generated by the Solar PV to be 
used in the evening. Although the grid demand reduction in the 
morning and afternoon would increase the demand difference be-
tween the afternoon and evening, the demand reduction in the 
evening would significantly reduce the jump needed in grid elec-
tricity production. Thus, the proposed remote work would enable 
greater penetration of (decentralised) solar PV energy into the total 
energy system, particularly in the summer, and lower grid electricity 
production needed in the evening (Fig. 9). This study’s novel 
outcome reinforced the ongoing debate on work-from-home/remote 
work/hybrid work in the post-pandemic world, which could become 
a standard rather than a temporary solution to pandemic or natural 
disasters [50,51,52]. 

• Additionally, comprehending the correlation between the height-
ened consumption of solar PV-generated electricity and work-from- 
home could guide the formulation of policies advocating sustain-
able practices. Governments and energy regulatory bodies might 
evaluate introducing initiatives that facilitate the integration of 
renewable energy sources into home-based work environments, 
aligning with the demands of the ‘Duck Curve’. Relying more on 
solar PV for work-from-home presents opportunities and challenges, 
prompting the need to explore performance optimisation, reassess 
tariffs, and develop sustainable policies. Also, this could incentivise 
households to invest in or upgrade solar PV systems, fostering a more 
sustainable and environmentally conscious approach to work-from- 
home. 

Therefore, the increased consumption of solar PV-generated elec-
tricity due to the paradigm shift towards working from home represents 
an intriguing area for further investigation. This study was vital for 
optimising the performance of existing solar PV installations and 
shaping future energy policies and tariff structures. The complex rela-
tionship offers an opportunity to develop innovative strategies that 
support the increasing demand for work-from-home and contribute to a 
more sustainable and resilient energy landscape. 

5. Conclusion 

In our study, an examination of aggregated electricity demand 
revealed a 1.4–10% reduction in consumption. Notably, the case studies 
were equipped with Battery Energy Storage Systems (BESS), utilising 
electricity sourced from both solar photovoltaic (PV) panels and the 
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conventional grid. Our findings delineated a notable surge of 7.6–6.9% 
in solar PV electricity demand, concurrent with a substantial 24–25% 
downturn in grid electricity consumption during the lockdown period. 
The noticeable rise in solar PV electricity consumption during morning 
and afternoon aligned with the extended periods of work-from-home 
and schooling from home. This trend highlighted solar PV sources’ 
significant role in residential electricity consumption during the lock-
down. Adopting work-from-home and home-based education led to a 
surge in self-consumption of solar PV electricity. 

The study revealed that households with solar PV systems contrib-
uted surplus electricity to the grid yet experienced a shift towards 
consuming most energy during morning and afternoon peak usage pe-
riods. While this pattern reduced nighttime energy consumption, it 
resulted in an overall increase in electricity demand during the lock-
down. The increased generation of decentralised renewable solar elec-
tricity during remote work periods was observed during the lockdown, 
albeit returning to 2019 levels post-lockdown. Additionally, Seasonal- 
Trend Decomposition using Loess (STL) analysis provided insights into 
solar PV and grid electricity demand trends during the lockdown, 
highlighting the impact of localised solar generation on overall demand. 
As lockdown measures eased, a reversion to traditional consumption 
patterns aligned with 2019 trends was observed, indicating a potential 
correlation between lockdown relaxation and energy usage shifts. These 
findings emphasise the necessity for further research to comprehend 
evolving energy dynamics amidst societal disruptions like the COVID-19 
pandemic. 

Moreover, the impact of heightened self-consumption on the finan-
cial returns from grid feed-in necessitates further exploration. Our study 
raised intriguing questions about shifts in household practices and uti-
lising decentralised renewables. The elevated consumption of solar PV- 
generated electricity amid the prevalence of work-from-home demands 
a thorough investigation, given its potential to influence the develop-
ment of tariff systems that incentivise working from home and the 
expanded use of decentralised renewables. The complex interaction 
between residential behaviours and energy consumption patterns during 
the lockdown period underscored the need for further research to un-
derstand better and optimise the integration of renewable energy sour-
ces in our evolving societal landscape. 

Furthermore, our findings might contribute valuable insights into 
mitigating the ‘Duck Curve’ challenge. The observed shift towards 

increased solar PV consumption during daytime peak hours aligns with 
the typical dip in electricity demand during daylight hours, potentially 
addressing the timing misalignment between solar power generation 
and peak energy demand. Our research suggested encouraging work- 
from-home practices and optimising solar PV systems to meet height-
ened daytime consumption could help smooth out the ‘Duck Curve,’ 
which could lead to more efficient and sustainable energy grid man-
agement, reducing our dependence on centralised power sources and 
promoting environmentally conscious energy consumption. 

In addition to the insights, it’s imperative to acknowledge the 
inherent limitation stemming from the sample size of 100 households in 
the UK, which may constrain the generalisability of our findings. While 
our study offers valuable insights into decentralised renewable energy 
consumption dynamics and its implications for grid management, 
further research on a larger, countrywide scale is warranted to validate 
and expand upon our observations. Moreover, developing comprehen-
sive software packages or policy implications based on our findings re-
quires extensive research and development efforts, which fall beyond 
the scope of our study. Nevertheless, our research lays a solid foundation 
for future investigations to explore the scalability of our findings and 
develop practical solutions applicable at a national or even international 
level. Therefore, future research endeavours could focus on conducting 
large-scale studies encompassing diverse geographical regions and de-
mographic profiles to enhance the robustness and applicability of our 
findings. Additionally, efforts to translate our research insights into 
actionable policies and technologies, such as developing software 
packages or integration strategies for national control centres operated 
by transmission system operators (TSOs), hold significant promise for 
advancing the integration of renewable energy sources into mainstream 
energy systems. 
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Fig. 9. Conceptual illustration of (A) a Duck Curve, (B) Potential of the solar PV self-consumption (due to remote work) and BESS in mitigating the ‘Duck Curve’. 
Here, the (solid) blue line is the net grid electricity demand, and the (dotted) blue line is the red line is the reduced grid electricity demand due to higher solar PV 
generation, which might cause grid instability, leading to curtailment and hatched yellow and green area in (B) denoted the Remote work would increase occupants’ 
solar PV self-consumption (at home), reducing the grid demand for office work and allowing the BESS system to store access power generated by the Solar PV to be 
used in the evening. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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