
Knowledge-Based Systems 293 (2024) 111649

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Simple and deep graph attention networks
Guangxin Su a, Hanchen Wang b,∗, Ying Zhang c, Wenjie Zhang a, Xuemin Lin d

a University of New South Wales, Sydney, 2052, Australia
b University of Technology Sydney, Ultimo, 2007, NSW, Australia
c Zhejiang Gongshang University, Hangzhou, 314423, China
d The Shanghai Jiao Tong University, Shanghai, 200240, China

A R T I C L E I N F O

Keywords:
Deep graph neural networks
Oversmoothing
Graph attention networks
Attention mechanism

A B S T R A C T

Graph Attention Networks (GATs) and Graph Convolutional Neural Networks (GCNs) are two state-of-the-art
architectures in Graph Neural Networks (GNNs). It is well known that both models suffer from performance
degradation when more GNN layers are stacked, and many works have been devoted to address this problem.
We notice that main research efforts in the line focus on the GCN models, and their techniques cannot well
fit the GAT models due to the inherent difference between these two architectures. In GAT, the attention
mechanism is limited as it ignores the overwhelming propagation from certain nodes as the number of layers
increases. To sufficiently utilize the expressive power of GAT, we propose a new version of GAT named
Layer-wise Self-adaptive GAT (LSGAT), which can effectively alleviate the oversmoothing issue in deep GAT
and is strictly more expressive than GAT. We redesign the attention coefficients computation mechanism
adaptively adjusted by layer depth, which considers both immediate neighboring and non-adjacent nodes from
a global view. The experimental evaluation confirms that LSGAT consistently achieves better results on node
classification tasks over relevant counterparts.
1. Introduction

Graph neural networks (GNNs) [1–3] have emerged as a promising
tool for analyzing graph data, such as biochemical networks [4,5],
social networks [6,7], and academic networks [8], etc.

In the realm of neural network architectures, depth, signifying
the number of layers, is pivotal for performance in complex tasks,
as evidenced in Convolutional Neural Networks (CNNs) applied in
computer vision, which often incorporate dozens or even hundreds
of layers [9]. However, GNNs utilized in various applications tend
to be relatively shallow, typically comprising only a few layers. The
shallow architecture could lead to the oversight of complex patterns
in large-scale graphs. This limitation stems from challenges such as
graph bottlenecks, over-squashing, and oversmoothing, which hinder
the performance of deeper GNNs [10]. Towards the phenomenon of
oversmoothing, which is axiomatically defined as the exponential con-
vergence of suitable similarity measures on the node features, research
attempts have been made to deepen current GNN architectures and
understand their expressive power. Theoretical analysis investigates the
deep GNNs in the perspective of expressive power [11–15], training dif-
ficulty [16–18] and generalization [19]. Deepening techniques in GNNs
can be divided into three main categories [20]: those utilizing skip

∗ Corresponding author.
E-mail addresses: guangxin.su@unsw.edu.au (G. Su), hanchen.wang@uts.edu.au (H. Wang), ying.zhang@zjgsu.edu.cn (Y. Zhang),

wenjie.zhang@unsw.edu.au (W. Zhang), xuemin.lin@sjtu.edu.cn (X. Lin).

connections [21], graph normalization methods [16,22], and random
dropping strategies [23].

Nevertheless, existing research efforts [11–15,17–22] mainly focus
on the theoretical analysis and deepening techniques on GCNs, and
few of them Dasoulas et al. [16] consider the attention mechanism in
deep GATs. Their techniques cannot well fit the GATs models due to
the inherent difference between these two architectures. Under the at-
tention computation mechanism, GATs could compute the coefficients
implicitly rather than explicitly as GCNs do, and we can use more
information other than the topological information to determine each
node’s weight. However, we found that the performance degradation in
deep GAT is caused by the overwhelming propagation from nodes with
large degrees as the number of layers increases. Specifically, the feature
of the node with a higher degree will be aggregated via exponentially
increasing paths w.r.t. growing model depth, which will inevitably lead
to the high similarity between representations of all nodes when the
number of layers is large enough. The phenomenon of overwhelming
propagation is emerging as a principal contributor to the oversmooth-
ing problem. We characterize both as the exponential convergence of
appropriate similarity measures applied to node features.
vailable online 19 March 2024
950-7051/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.knosys.2024.111649
Received 27 August 2023; Received in revised form 23 January 2024; Accepted 16
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
mailto:guangxin.su@unsw.edu.au
mailto:hanchen.wang@uts.edu.au
mailto:ying.zhang@zjgsu.edu.cn
mailto:wenjie.zhang@unsw.edu.au
mailto:xuemin.lin@sjtu.edu.cn
https://doi.org/10.1016/j.knosys.2024.111649
https://doi.org/10.1016/j.knosys.2024.111649
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.111649&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Knowledge-Based Systems 293 (2024) 111649G. Su et al.

t
f
ℎ
n
d
w

3

D

𝐘

O
w

To preliminarily verify the issue of overwhelming propagation in
nodes with large degrees, in Section 4, we employ two intuitive yet ef-
fective neural network architectures, where nodes with a larger degree
are simply reweighted with smaller weights. This approach is designed
to constrain propagation in deeper layers, thereby providing a contrast
to the vanilla GAT. While the results indicate a significant enhancement
in performance, the overall effectiveness of these architectures does not
yet fully meet our expectations.

Following the initial validation of the overwhelming propagation is-
sues encountered in deep GAT, it remains elusive how to properly train
the GAT to utilize the expressive power of the model sufficiently. Da-
soulas et al. [16] has proposed a normalization technique based on
Lipschitz continuity, which alleviates the gradient vanishing/explosion
in deep GAT. In spite of Lipschitz normalization, the internal computing
mechanism of GAT has not changed, and attention coefficients are still
computed only among adjacent nodes, which means the overwhelming
propagation problem still exists in deep GAT with Lipschitz normal-
ization. Particularly, without a specifically designed framework, GAT
is not capable of avoiding being affected by the oversmoothing issue
due to its computation mechanism, e.g., overwhelming propagation
from the large-degree nodes. To better address this issue, we propose a
simple and deep version of GAT named Layer-wise Self-Adaptive GAT
(LSGAT). LSGAT has a newly designed attention coefficients compu-
tation mechanism, which considers the influence of both adjacent and
non-adjacent nodes. LSGAT adaptively adjusts the attention coefficients
with the layer depth and regularizes the coefficients for nodes with a
large degree, which eventually alleviate potential oversmoothing issue
significantly.

Contributions. The contributions of this paper can be summarized
as follow:

• We demonstrate that overwhelming propagation from large de-
gree nodes is the key factor to relieve the oversmoothing problem
in deep GAT.

• Based on the experimental validation of the influence of over-
whelming propagation problem in deep GAT, we further propose
a new version of GAT named LSGAT, which considers both neigh-
boring and non-adjacent nodes based on high-order proximity in
the aggregation process, to train GAT properly and alleviate the
oversmoothing issue.

• The effectiveness and versatility of LSGAT have been validated
in our extensive experimental results for node classification on
real-world datasets. Based on GAT, compared with the meth-
ods specifically designed for deep GAT, and multiple techniques
designed for deep GNNs, LSGAT consistently exhibits superior
performance. Even compared with the methods designed for
relieving the oversmoothing problem equipped with GCN and
ChebyNet, our LSGAT also has the best performance.

Roadmap. The rest of the paper is organized as follows: Section 2
presents the related works, and the preliminaries are introduced in
Section 3. We introduce and verify the overwhelming propagation
problem in Section 4. The details of proposed LSGAT are introduced
in Section 5. The experimental results are reported in Section 6, and
Section 7 concludes the paper.

2. Related work

In this section, we introduce the related works. Specifically, the
deep graph neural network methods and graph attention network-based
works are introduced.

Deep Graph Neural Networks. There has been an important line
of research works that aim to relieve the oversmoothing issue. In-
spired by ResNets [9], the methods that are based on skip-connection
are proposed in [21,24–26] to exploit node representations from the
preceding layers. Specifically, Chen et al. [27] improves the capac-
ity of APPNP [28] by using initial residual and identity mapping
2

in each layer. Another line is using normalization to re-scale node
representations to constrain pairwise node distance [29–31]. In par-
ticularly, Zhou et al. [22] normalizes representations for nodes within
the same group separately, and isolates node distributions among dis-
tinct groups to prevent oversmoothing. Random dropout methods [14,
17] are connectivity-aware and graph-adaptive sampling approaches,
which could address oversmoothing and over-fitting problems. Re-
cently, Jin et al. [32] try to relieve the performance degradation
problem in deep GNNs from a new perspective named overcorrelation.
A series of works [14,19,33–35] have explored the underlying reasons
for performance degradation towards mitigation solutions.

Graph Attention Networks. Various research works focus on de-
signing the attention mechanism on graph neural networks for specific
tasks and applications. In a synthetic issue requiring dynamic node
selection, Brody et al. [36] developed a dynamic graph attention al-
ternative which is strictly more expressive than GAT. In recommender
systems, Wu et al. [37] developed dual graph attention networks to
cooperatively learn representations for two-fold social impacts. Park
et al. [38] proposed a new spatio-temporal graph attention paradigm
with spatial attention and temporal attention for capturing the spatio-
temporal dynamics in road networks. Wang et al. [39] developed
multi-hop attention graph neural network, which calculated the atten-
tion between the given node and its multi-hop neighbors. Dasoulas
et al. [16] tried to relieve the gradient explosion problem in deep GAT
by introducing the Lipschitz normalization.

3. Preliminaries

Notations and setup. Given a graph = (,) with 𝑛 = || denotes
he number of vertices, where each node 𝑣𝑖 ∈ is associated with a
eature vector ℎ𝑖 ∈ R𝑑 , a layer outputs a new set of node representations
′
𝑖 ∈ R𝑑′ , and edges ⊆ × , where (𝑣𝑗 , 𝑣𝑖) ∈ denotes an edge from
ode 𝑣𝑗 to node 𝑣𝑖, and its node degree is denoted as 𝑑𝑖. Let 𝑨 ∈ R𝑛×𝑛

enote the adjacent matrix, and �̂� ∈ R𝑛×𝑛 denote the adjacent matrix
ith self-loop, i.e., �̂� = 𝑨 + 𝑰𝑛.

.1. Definition of oversmoothing

efinition 1 (Rusch et al. [10]). Consider an undirected, connected
graph and let 𝐗𝑛 ∈ R𝑣×𝑚 denote the hidden features at the 𝑛th layer of
an 𝑁-layer Graph Neural Network (GNN) defined on . Define a node-
similarity measure 𝜇 ∶ R𝑣×𝑚 → R≥0 that adheres to the following
axioms:

1. Constant Node Feature Axiom: There exists a constant vector
𝐜 ∈ R𝑚 such that 𝐗𝑖 = 𝐜 for all nodes 𝑖 in if and only if 𝜇(𝐗) = 0, for
any 𝐗 ∈ R𝑣×𝑚.

2. Sub-additivity Axiom: For all 𝐗,𝐘 ∈ R𝑣×𝑚, the inequality 𝜇(𝐗 +
) ≤ 𝜇(𝑋) + 𝜇(𝑌) holds.

versmoothing with respect to 𝜇 is then characterized by the layer-
ise exponential convergence of the node-similarity measure 𝜇 to zero.

Formally, this is defined as:
3. For 𝑛 = 0,… , 𝑁 , it holds that 𝜇(𝐗𝑛) ≤ 𝐶1𝑒−𝐶2𝑛 with some

constants 𝐶1, 𝐶2 > 0.

3.2. Graph attention networks

Different from GCN and many other popular GNN architectures [3,
27] that weigh all neighbors with equal importance (e.g., mean and
max-pooling as aggregation), GAT [2] enables (implicitly) specifying
different weights to different nodes in a neighborhood. A scoring
function 𝑒: R𝑑 × R𝑑 ⟶ R computes a score for every edge

(

𝑣𝑗 , 𝑣𝑖
)

,
which indicates the importance of the features of the neighbor 𝑣𝑗 to
node 𝑣𝑖:
() (T [])
𝑒 𝒉𝑖,𝒉𝑗 = LeakyReLU 𝒂 ⋅ 𝑾 𝒉𝑖 ∥ 𝑾 𝒉𝑗 (1)

Knowledge-Based Systems 293 (2024) 111649G. Su et al.

a
s

w
v
n

𝛼

a
a
a

𝒉

w
p
a

4

t
t
t
t
i
p

t
c
o
d
g
m
i
h
c
c

a
n

a
i

𝑆

n
t
f
a
s

h
l
G
d
i
i
v
i
e
a
r
F
c

5

p

D
t
o
i

r
p
i
h
t

D
w
p

5

t
𝑣
𝑣

Fig. 1. Test accuracy and 𝑆𝑀𝑉 between different architectures based on Cora dataset
nd equipped with GAT. Zero means Zero-GAT, Reciprocal means Reciprocal-GAT. The
maller 𝑆𝑀𝑉 is, the smoother the node representations are.

here 𝒂 ∈ R2𝑑′ , 𝑾 ∈ R𝑑′×𝑑 are trainable parameters, and ∥ denotes
ector concatenation. These attention scores are normalized across all
eighbors using softmax, and the attention function is defined as:

𝑖𝑗 = sof tmax𝑗
(

𝑒
(

𝒉𝑖,𝒉𝑗
))

=
𝑒𝑥𝑝

(

𝑒
(

𝒉𝑖,𝒉𝑗
))

∑

𝑣𝑗′∈𝑖
𝑒𝑥𝑝

(

𝑒
(

𝒉𝑖,𝒉𝑗′
)) (2)

We denote the coefficient matrix, whose entries are 𝛼𝑖𝑗 , if (𝑣𝑖, 𝑣𝑗) ∈
, and 0 otherwise, as 𝑪 ∈ R𝑛×𝑛. Then, GAT computes a weighted
verage of the transformed features of the neighbor nodes followed by
non-linearity 𝜎 as the new representation of 𝑣𝑖, using the normalized

ttention coefficients:

′
𝑖 = 𝜎

⎛

⎜

⎜

⎝

∑

𝑣𝑗∈𝑖

𝛼𝑖𝑗 ⋅𝑾 𝒉
𝑗

⎞

⎟

⎟

⎠

(3)

here 𝒉′𝑖 denotes the representation of node 𝑣𝑖 in the next layer. In this
aper, we refer to Eqs. (1) to (3) as the computation of each layer in
n 𝐿-layer GAT.

. Overwhelming propagation problem in deep GAT

In this section, we define and investigate the overwhelming propaga-
ion problem in the node classification task of deep GAT. GAT computes
he attention coefficients 𝛼𝑖𝑗 for node 𝑣𝑖 only based on the feature and
opological relation with its neighbor nodes 𝑣𝑗 ∈ 𝑖. It is well known
hat the performance of GAT will decrease as the number of layers
ncreases, and the phenomenon could be attributed to oversmoothing
roblem and overcorrelation problem [32].

Specifically in deeper GAT, the unique characteristics of the at-
ention coefficients computation mechanism, which have not been
onsidered in the previous work: the attention mechanism ignores the
verwhelming propagation from nodes with large degree as model
epth increases. That is, the node with higher degree will be aggre-
ated via more paths that are exponentially increased w.r.t. growing
odel depth, and hence GAT is more likely to suffer from oversmooth-

ng issue. Here, we hypothesize that the oversmoothing problem that
appened in deep GAT could be relieved by extra consideration to
onstraint the propagation of nodes with large degree in the coefficients
alculation mechanism, and we empirically verify that below.
Experimental Setup. We conduct experiments to observe the test

ccuracy and smoothness metric 𝑆𝑀𝑉 [40]. Specifically, 𝑆𝑀𝑉 uses
ormalized node representations to compute their Euclidean distance,
3

o

nd measures the oversmoothing problem in GNNs, the smaller 𝑆𝑀𝑉
s, the smoother the node representations are. Here:

𝑀𝑉 (𝑋) = 1
𝑁(𝑁 − 1)

∑

𝑖≠𝑗
𝐷(𝑋𝑖,∶, 𝑋𝑗,∶) (4)

where 𝑋𝑖,∶ denotes the 𝑖th row of the node representation matrix
𝑋 ∈ R𝑁×𝑑 . 𝐷(⋅, ⋅) is the normalized Euclidean distance between two
vectors:

𝐷(𝑥, 𝑦) = 1
2
‖

‖

‖

‖

𝑥
‖

‖

‖

𝑥‖‖
‖

− 𝑦
‖

‖

‖

𝑦‖‖
‖

‖

‖

‖

‖

(5)

To validate whether we can relieve the oversmoothing problem in
GAT by constraining the propagation of the nodes with large degree,
our LSGAT and two intuitive GAT variants are compared here: Zero-
GAT and Reciprocal-GAT. Zero-GAT means that the top 20% largest
degree nodes will not be aggregated any more from the third layer.
Reciprocal-GAT means that Eq. (1) will be updated as 𝑒

(

𝒉𝑖,𝒉𝑗
)

=

LeakyReLU
(

𝒂T ⋅ 1
𝑑𝑗

⋅
[

𝑾 𝒉𝑖 ∥ 𝑾 𝒉𝑗
]

)

, if the given node 𝑣𝑖 is linked with

ode 𝑣𝑗 , which belongs to the top 20% largest degree nodes from the
hird layer. The experiment is conducted on Cora dataset [41], which
ollows the data split way used in [1]. The reported values are the
verage results of five random experiments, and the parameter tuning
pace is unified.
Overwhelming Propagation Problem. From Fig. 1, we can see

ow seriously GAT is prone to be oversmoothing by the nodes with
arge degree in deeper layers. Compared with the performance of
AT with two layers, both the test accuracy and 𝑆𝑀𝑉 of GAT are
ramatically decreased as the number of layers increases. The intu-
tive architectures named Zero-GAT and Reciprocal-GAT both evidently
mprove the performance of vanilla GAT. Specifically, compared with
anilla GAT, the test accuracy and 𝑆𝑀𝑉 of Reciprocal-GAT are both
mproved by nearly 80% (in percentage) as shown in Fig. 1. The
xperiments based on intuitive models further verify the existence
nd influence of overwhelming propagation problem. The performance
esults of Zero-GAT and Reciprocal-GAT are not satisfactory enough.
ollowing this line, it is a critical challenge to redesign the coefficients
alculation mechanism in GAT.

. Layer-wise self-adaptive GAT

We first introduce two important definitions to demonstrate our
roposed LSGAT.

efinition 2 (Cong et al. [19]). Let 𝐿
𝑖 denote the L-layer computation

ree rooted at node 𝑣𝑖, which represents the structured L-hop neighbors
f node 𝑣𝑖, where the children of any node 𝑣𝑗 in the tree are the nodes
n (𝑖).

Fig. 2(a) illustrates an example of computation trees 𝐿
1 and 𝐿

2
ooted at nodes 𝑣1 and 𝑣2 with 𝐿 = 2. Please note that these com-
utation trees consider the self-loop of nodes. The colors of nodes
n Fig. 2(a) indicate the degree of nodes, i.e., darker color suggests
igher degree. The shape of each node illustrate the overlap-degree of
he corresponding node which is defined as follows:

efinition 3. Overlap-degree 𝑑(𝑙)𝑜𝑣𝑒𝑟(𝑗) is the number of paths that
ill be affected by the node 𝑣𝑗 in layer 𝑙 through GNNs propagation
rocesses, i.e., 𝑫(𝑙)

𝑜𝑣𝑒𝑟 =
∑𝑛

𝑖′=1 �̂�
𝑙
𝑖′𝑗 =

[

𝑑(𝑙)𝑜𝑣𝑒𝑟(𝑗)
]

𝑛×1
.

.1. Proposed technique for addressing oversmoothing

It is well known that the information can also be aggregated to
he non-adjacent nodes through layers of GNNs, e.g., in Fig. 2(a),
6 is not the neighbor of 𝑣1, but its information is propagated to
1 after two layers via the computation path 𝑣6 → 𝑣2 → 𝑣1. The

verlap-degree indicates the number of such computation paths, which

Knowledge-Based Systems 293 (2024) 111649G. Su et al.
Fig. 2. (a) The computation trees rooted at 𝑣1 and 𝑣2 in a 2-layer GNN. Color and shape suggest the degree and overlap-degree of each node. (b) The layer-wise scaling score (𝑙𝑠𝑠)
and scaled overlap-degree (𝑑∗

𝑜𝑣𝑒𝑟) varying number of layers 𝑙 and hyperparamter 𝛽 for nodes in Pubmed dataset.
exponentially grows w.r.t. node degree and number of GNN layers. For
example, the overlap-degree of 𝑣2 is 66 after two layers. The nodes
with larger overlap-degree tend to be aggregated to more parent nodes
via more paths in the computation tree. This phenomenon makes the
representations of nodes be similar, and eventually degrade deep GNN’s
performance. The similar analysis and experimental results can also be
found in [12,27,40].

Zero-GAT directly enforces the top 20% largest degree nodes not
to be aggregated any more from the third layer, which overly restricts
the propagation of the nodes with large degree. The potential disadvan-
tages exist in Reciprocal-GAT will be discussed in Section 5.2. In this
work, we aim to relieve oversmoothing problem and reduce the redun-
dant information that come from large degree nodes by regularizing
their attention coefficients. The regularization is adaptively adjusted
with the depth of model to set higher importance to shallow layers.
Here, we first give a self-adaptive threshold value 𝜏 to identify the
nodes with higher overlap-degree.

𝜏 = 𝑫(𝑙)
𝑜𝑣𝑒𝑟

(𝜂(𝑙))th (6)

Here, 𝜏 is 𝜂(𝑙)th value of 𝑫(𝑙)
𝑜𝑣𝑒𝑟 in an ascending order. 𝜂(𝑙) is defined

as 𝜂(𝑙) = 𝛽𝑛 + (1−𝛽)𝑛
𝑒𝑙 where 𝛽 ∈ [0, 1] is a hyperparameter that

determines the proportion of nodes to be regularized. Then, the scaled
overlap-degree matrix is computed as follows:

𝑫(𝑙)∗
𝑜𝑣𝑒𝑟 = 𝑫(𝑙)

𝑜𝑣𝑒𝑟∕𝜏 (7)

With the scaled overlap-degree matrix, the layer-wise scaling score,
denoted as 𝑙𝑠𝑠, is computed with the following equation:

𝑙𝑠𝑠(𝑙)𝑜𝑣𝑒𝑟(𝑗) =

{

1 𝑑(𝑙)∗𝑜𝑣𝑒𝑟(𝑗) ≤ 1
1∕𝑑(𝑙)∗𝑜𝑣𝑒𝑟(𝑗) 𝑑

(𝑙)∗
𝑜𝑣𝑒𝑟(𝑗) > 1

(8)

The layer-wise scaling scores for nodes in Pubmed dataset varying
𝛽 and layer 𝑙 are illustrated in Fig. 2. Then the layer-wise scaling
scores are multiplied with the scores computed in Eq. (1), i.e., 𝒂T ⋅
[

𝑾 𝒉𝑖 ∥ 𝑾 𝒉𝑗
]

, followed by LeakyReLU and a Softmax function. Specif-
ically, for a given node 𝑣𝑖, Softmax function is applied on values
activated by LeakyReLU between all neighboring nodes of node 𝑣𝑖,
𝑖.𝑒.,𝑣𝑗 ∈ 𝑖, and 𝑣𝑖 itself. As a result, the computation of the attention
coefficient in LSGAT is formulated as follows:

𝛼∗𝑖𝑗 =𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 (LeakyReLU(𝑙𝑠𝑠
(𝑙)
𝑜𝑣𝑒𝑟(𝑗) ⋅ 𝒂

T ⋅
[

𝑾 𝒉𝑖 ∥ 𝑾 𝒉𝑗
]

)) (9)

Please note that the layer-wise scaling score is applied before the
LeakyReLU and Softmax functions as a ‘‘soft’’ regulation to avoid the
loss of information from the nodes with large overlap-degree. Detailed
discussion is provided in Section 5.2.
4

In this paper, we denote the matrix of the attention coefficients 𝛼∗𝑖𝑗
as 𝑪∗(𝑙) ∈ R𝑛×𝑛 at 𝑙th layer. Finally, the representation computation of
node 𝑣𝑖 in each layer with LSGAT is as:

𝒉′𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑣𝑗∈𝑖

𝛼∗𝑖𝑗 ⋅𝑾 𝒉
𝑗

⎞

⎟

⎟

⎠

(10)

In matrix format, LSGAT can also be formulated as 𝑯 (𝑙+1) = 𝜎(𝑪∗(𝑙)

𝑾 (𝑙)𝑯 (𝑙)).

5.2. Discussion

In this section, we would like to provide further discussions about
the characteristics of LSGAT and the comparisons with the existing
works.

Choice and utilization of overlap-degree. One may wonder why
the overlap-degree is chosen in our model rather than degree. The
layer-wise aggregations in GNNs can enlarge the influence of the nodes
from deeper layers. If only consider degree of nodes layer-by-layer, the
global high-order information cannot be fully utilized in the computa-
tion. As the number of layers increases, the extent of overwhelming
propagation influence is divergent and should be treated differently
and adaptively with the number of layers, and 𝜂(𝑙) is used in LSGAT.
Furthermore, the layer-wise scaling scores based on the overlap-degree
could be smoother in terms of continuity as shown in Fig. 2 than that
based on degree. For example, the proportion of the largest group
in Pubmed dataset [41] with the same degree is 46%, which means
a large number of nodes will share the same scaling score in each
aggregation. As a comparison, the layer-wise scaling scores based on
the overlap-degree are different from each other and more helpful for
training a discriminative model. Besides, the layer-wise scaling scores
can also be directly multiplied with the attention coefficient, i.e., 𝛼∗𝑖𝑗 =
𝛼𝑖𝑗 ⋅ 𝑙𝑠𝑠

(𝑙)
𝑜𝑣𝑒𝑟(𝑗). However, we found that this variant of our model would

significantly ignore the information from the nodes with large overlap-
degree which are typically of great importance in the graph. Therefore,
we provide a ‘‘soft’’ regulation of the attention coefficients based on
overlap-degree for these nodes as shown in Eq. (9). The comparison in
Fig. 1 also verifies that the performance of LSGAT is much better than
the performance of Reciprocal-GAT.

Comparison with prior works. Zhou et al. [22] shared the similar
intuition as ours. They claim that most studies focus on performance
degradation problem based on immediate neighboring relationships,
but ignore the global graph structural information in each layer. Zhou
et al. [22] tackles the oversmoothing problem by making the represen-
tations similar for nodes that are in the same class and differentiating
for the nodes that are not. However, the information of nodes in a

Knowledge-Based Systems 293 (2024) 111649G. Su et al.

c
t
v
t
t
w
t

6

r
f

R
m

R
b

R
f
o

R

t
t
G
w
h
G

Fig. 3. The comparison of test accuracies between LSGAT and other general deep graph neural network methods, which are equipped with Graph Attention Networks (GAT).
d

t
S
t
r
r
a
f
r

w
W

Table 1
Dataset statistics.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3
Physics 34,493 247,962 8415 5
CoauthorCS 18,333 81,894 6805 15
Ogbn-Arxiv 169,343 1,166,243 128 40

fully connected graph could be aggregated to all other nodes in GNNs
if the network is deep enough, regardless the nodes belonging to the
same class or not. Thus, in our work, we utilize global information to
regularize the coefficient during aggregation.

The method in [23] is based on the random drop of edges, which
effectively prevents oversmoothing in deep GNNs. Compared with the
random dropout, LSGAT is based on the premise of retaining as much
information of nodes as possible, while weakens the feature expression
of the nodes that are more likely to suffer from the oversmoothing
problem, and hence improves the generalization ability of the model.

Versatility of our proposed mechanism. Our proposed LSGAT
onducts the regulation on the aggregation process without modifying
he model architecture, which allows LSGAT to be integrated with
arious existing GNN deepening techniques such as graph normaliza-
ion [22], GAT-Lip [16], and random dropping [23] to further improve
he performance of deep GNNs. In our experiments, we show that
ith skip-connection and identity mapping [27,42], LSGAT achieves

he state-of-the-art performance for node classification task.

. Experiment

In this section, we evaluate the performance of our LSGAT in
eal-world benchmarks under semi-supervised learning mainly on the
ollowing research questions:

Q1. Whether LSGAT outperforms other state-of-the-art deep GAT
odels?

Q2. When applied on GAT, how is the performance comparison
etween LSGAT and other deep GNN techniques?

Q3. When applied on GCN and ChebyNet, could LSGAT outper-
orm other algorithms, which are specifically designed to alleviate the
versmoothing issue that happened in deep GCNs?

Q4. How good is the versatility of our proposed LSGAT?
Specifically, we first introduce the experimental settings in Sec-

ion 6.1. To answer RQ1, in Section 6.2, we compare LSGAT with
he state-of-the-art models which are specifically designed for deep
ATs on node classification tasks. To answer RQ2, in Section 6.3,
e compare LSGAT with proposed deep GNNs techniques and multi-
op methods for node classification tasks, which are all applied on
AT. The comparisons between LSGAT and other deep GNNs methods
5

which are designed to alleviate the oversmoothing issue based on
GCN and ChebyNet have also been included in this section to answer
RQ3. To validate the versatility of LSGAT (RQ4), in Section 6.4, we
report the state-of-the-art performance of LSGAT with skip-connection
and identity mapping. To verify whether LSGAT and GAT-Lip could
improve the performance at the same time, the combined performance
of LSGAT and GAT-Lip has been analyzed in this section. Furthermore,
the hyper-parameter study of LSGAT has been reported in Section 6.5.

6.1. Experiment setup

All the codes are implemented in Python 3 and Pytorch 1.11.0, and
running on one NVIDIA Quadro RTX 2080Ti GPUs and one NVIDIA
Quadro RTX A6000 GPUs serve with CUDA 11.6. All models are trained
with a maximum of 1000 epochs using the Adam optimizer [43] and
early stopping. Weights in GATs models are initialized with Glorot
algorithm [44].

Datasets. Joining the practice of previous work, we evaluate
GNN models by performing the node classification tasks on six real-
world datasets: Cora, Citeseer, Pubmed [41], CoauthorPhysics, Coau-
thorCS [45], and Ogbn-Arxiv [46]. The statistics of these datasets and
data splits could be found in Table 1.

Baseline Methods and Models. To our best knowledge, GAT-Lip is
the only work proposed to improve the performance in deep GAT. The
methods try to relieve oversmoothing problem in deep GNNs include:
PairNorm [30], BatchNorm [29], DGN [22], and DropEdge [23]. As a
variant of GATs, MAGNA [39] incorporates multi-hop context informa-
tion into every layer of attention computation. DeCorr [32] is proposed
to help enable deeper GNNs from a feature overcorrelation perspective.

We consider three basic GNN models, GAT [2], GCN [1], and
ChebyNet [47]. Besides, as one of the state-of-the-art GNN variants,
it is meaningful to see whether GCNII will perform better based on
our LSGAT. Specifically, in GCNII, the computation in 𝑙th layer is
efined as 𝑯 (𝑙+1) = 𝜎(�̃��̃�), where �̃� =

((

1 − 𝛼𝑙
)

�̂�⊙𝑯 (𝑙) + 𝛼𝑙𝑯 (0)),

�̂�⊙ = �̂�− 1
2 (𝑨 + 𝑰𝑛)�̂�

− 1
2 , �̃� = (

(

1 − 𝛽𝑙
)

𝑰𝑛 + 𝛽𝑙𝑾 (𝑙)), 𝛼𝑙 and 𝛽𝑙 are
two hyperparameters that adjust initial residual and identity mapping
respectively.

Implementations. We have strictly followed the experiment set-
ings of previous works in each comparison section. Specifically, in
ection 6.2, we follow the setting used in [16], and we directly report
he best performance of GAT and GAT-Lip shown in its work. The
esults of Section 6.3 are based on the best performance and setting
eported in [22,32,39]. Furthermore, the techniques such as ResNet [9]
nd LayerNorm [48] which were used in MAGNA are removed for a
air comparison. In Section 6.4, we follow the setting used in [27] and
eport the best results shown in the work.
GAT-Lip Settings. We evaluate the performance of GNN models

ith respect to increasing model depth for the node classification task.
e used again the Adam optimizer [43] with a weight decay 𝐿 =

5 × 10−4 and the initial learning rate was set in 0.1, 0.01, 0.005, 0.001 .
{ }

Knowledge-Based Systems 293 (2024) 111649G. Su et al.
Fig. 4. (a) The t-SNE visualization of node representation for GAT on Cora dataset in 30 layers (node colors represent classes). (b) The t-SNE visualization of node representation
for LSGAT on Cora dataset in 30 layers (node colors represent classes).
• Model Selection. We performed for all models and datasets
cross-validation with predefined train/validation/test splits and
reported the best-achieved validation accuracy.

• Model Depth. In order to examine the model behavior under the
depth increase, for each architecture we used models consisting
of 𝑙 GNN layers, where 𝑙 ∈ {2, 5, 10, 15, 20, 25, 30}. We run each
experiment 5 times and we keep the configuration with the best
average accuracy.

• GAT Hyper-parameter tuning. For each model depth and GNN
model, we performed grid search for hyper-parameter tuning.
The hyper-parameters of GAT were tuned as the following: The
dimensionality of the hidden units was set in {8, 16, 64, 128}. The
number of attention heads was selected between {1, 2, 4, 8} and
we experimented over two standard aggregators of the attention
heads: (a) concatenation and (b) averaging of the attention heads.
The dropout of the attention weights was set in {0, 0.2, 0.5}.

Experiments settings of Section 6.3 are strictly followed the work
[32]. Specifically, for BatchNorm, PairNorm and DGN, we reuse the
performance reported in [22] for GCN and GAT. For ChebyNet, we
use their best configuration to run the experiments. For DropEdge,
we tune the sampling percent from {0.1, 0.3, 0.5, 0.7}, weight decay
from {0, 5𝑒−4} dropout rate from {0, 0.6} and fix the learning rate to
be 0.005. For DeCorr, we reuse the best results shown in [32]. For
MAGNA, we use their basic configuration to run the experiments, how-
ever, for a fair comparison, we remove the resnet [9] and LayerNorm
used its original work, we also limited the maximum hidden number
to 128, which is used in other works under attention mechanism. For
our work, We set the number of hidden units as {8, 16, 32, 64, 128}.
The number of attention heads was selected between {1, 2, 4, 8}. We
tune the hyperparameters for all datasets from the following sets:
{0, 0.1,… , 0.6} (dropout rate), 5×10{−3,−4} (learning rate), 5×10{−3,−4,−5}
(L2 regularization).

For experiments in Section 6.4, we directly use the best performance
and settings of related works reported in GCNII [27].

GCNII Settings. 0.1 (𝛼𝑙 for initial residual), 5 × 10−4 (L2 regu-
larization), and other hyperparameters are tuned by grid search. The
experiments are randomly repeated for ten times, and the average
accuracy and the standard deviation are reported.

6.2. Comparison with GAT-based algorithms

We evaluate the performance of the proposed LSGAT and existing
deep GATs methods w.r.t. the increasing number of layers for node
classification on kinds of real-world datasets. The mean values of results
with standard deviations are shown in Table 2, where the ‘‘Variation’’
denotes the accuracy gap between models with 2 and 30 layers. The
6

underlined values are the best results through all models and layers on
the specific dataset. From Table 2, it can be observed from variation
that LSGAT has remarkably alleviated the oversmoothing issue that
happened in GAT as the number of layers increased. Simultaneously,
LSGAT could achieve the best performance among all layers compared
with vanilla GAT and GAT-Lip in most comparisons. The accuracy of
LSGAT is greatly higher than other methods as depth equals to 30 in all
datasets. Particularly, on CoauthorPhysics dataset, the accuracy of our
method LSGAT is 87.0% which is much better than the previous best
performance by GAT-Lip (63.9%). Furthermore, LSGAT performs the
best through almost all corresponding numbers of layers, specifically
in Citeseer, Pubmed, CoauthorPhysics, and Ogbn-Arxiv datasets. At the
same time, LSGAT consistently demonstrated improved performance
with an increased number of layers across four out of five datasets.
Particularly noteworthy is its performance on the Pubmed dataset.
Here, it was observed that LSGAT consistently outperformed other
models when the number of layers was fewer than 25. This trend
highlights the efficacy of LSGAT in leveraging deeper architectures
for enhanced performance in most cases. In conclusion, considering
both the stability and accuracy through all layers, LSGAT significantly
outperforms the baseline methods, especially when the number of
layers is large enough. What is more, as a new version of GAT, we can
see that the performance gap between LSGAT and GAT has dramatically
increased as the number of layers increases. Intuitive classification
results between vanilla GAT and LSGAT with 30 layers can be found
in Fig. 4.

6.3. Comparison with other deep GNN algorithms

To further validate the enhanced performance of LSGAT, which is
developed with a focus on mitigating the overwhelming propagation
issue, we first analyze the comparison between the state-of-the-art
algorithms designed for deep GNNs and our LSGAT based on GAT
to verify the performance. The deep GNNs algorithms compared here
include: PairNorm [30], BatchNorm [29], DGN [22], DropEdge [23],
MAGNA [39] and DeCorr [32]. As shown in Fig. 3, LSGAT consistently
exhibits superior performance. Especially the results with mainly com-
pared layers: fifteen layers and thirty layers, among sixty-four cases
based on eight algorithms, our LSGAT achieves the best performance in
sixty-three cases (63/64). Specifically, in the examination of the Cite-
seer and Cora datasets, particularly at the 30th layer, the performance
of our model (denoted as LSGAT) surpasses the second-best method by
a significant margin, approximately 15%–20%. The comparison implies
that with the proper consideration of overwhelming propagation, GAT
itself could be effective in both shallow and deep layers.

Additionally, we compare LSGAT with other advanced deep GNN

methods aimed at addressing the oversmoothing issue, such as Pair-

Knowledge-Based Systems 293 (2024) 111649G. Su et al.
Fig. 5. The comparison of test accuracies between LSGAT and other general deep graph neural network methods, which are equipped with Graph Convolutional Neural Network
(GCN).
Fig. 6. The comparison of test accuracies between LSGAT and other general deep graph neural network methods, which are equipped with ChebyNet.
Table 2
Summary of classification accuracy (%) results among deep GAT based methods.

Dataset Method Layers Variation

2 5 10 15 20 25 30

Cora GAT 𝟖𝟐.𝟐 ± 𝟏.𝟏 78.9 ± 1.0 57.8 ± 0.6 35.5 ± 1.1 32.2 ± 1.1 30.0 ± 1.2 𝟐𝟑.𝟗 ± 𝟎.𝟔 58.3
GAT-Lip 𝟖𝟐.𝟐 ± 𝟎.𝟔 83.3 ± 2.2 80.7 ± 1.1 78.8 ± 1.2 76.6 ± 0.6 71.6 ± 1.1 𝟔𝟖.𝟖 ± 𝟐.𝟎 13.4
LSGAT 𝟖𝟐.𝟐 ± 𝟏.𝟎 79.1 ± 1.3 77.5 ± 0.6 76.4 ± 1.1 76.2 ± 0.8 74.8 ± 1.5 𝟕𝟑.𝟓 ± 𝟎.𝟖 8.70

Citeseer GAT 𝟔𝟔.𝟖 ± 𝟎.𝟒 65.0 ± 1.1 62.9 ± 0.7 61.2 ± 2.8 60.9 ± 1.1 59.9 ± 2.1 𝟓𝟔.𝟏 ± 𝟑.𝟏 10.7
GAT-Lip 𝟔𝟕.𝟏 ± 𝟎.𝟖 65.9 ± 1.6 62.6 ± 1.8 62.1 ± 1.7 60.1 ± 1.5 60.9 ± 2.5 𝟓𝟗.𝟒 ± 𝟑.𝟖 7.70
LSGAT 𝟔𝟕.𝟔 ± 𝟎.𝟖 68.1 ± 0.9 63.8 ± 0.8 60.9 ± 2.5 62.4 ± 1.3 62.5 ± 0.4 𝟔𝟏.𝟐 ± 𝟏.𝟒 6.40

Pubmed GAT 𝟕𝟔.𝟑 ± 𝟏.𝟗 78.1 ± 1.1 64.5 ± 1.0 57.4 ± 0.5 51.5 ± 1.4 48.8 ± 1.4 𝟐𝟗.𝟓 ± 𝟏.𝟏 46.8
GAT-Lip 𝟕𝟕.𝟔 ± 𝟏.𝟐 78.2 ± 0.7 75.4 ± 0.8 72.4 ± 0.5 73.2 ± 0.8 67.7 ± 1.1 𝟔𝟓.𝟎 ± 𝟏.𝟓 12.6
LSGAT 𝟕𝟔.𝟓 ± 𝟎.𝟓 77.0 ± 0.8 78.6 ± 1.2 77.6 ± 0.8 77.4 ± 0.7 76.2 ± 1.5 𝟕𝟐.𝟖 ± 𝟏.𝟒 3.70

Physics GAT 𝟗𝟑.𝟐 ± 𝟎.𝟔 91.0 ± 0.1 88.3 ± 0.1 77.0 ± 10 50.0 ± 16 15.3 ± 0.3 𝟏𝟑.𝟔 ± 𝟎.𝟐 79.6
GAT-Lip 𝟗𝟑.𝟒 ± 𝟎.𝟐 91.6 ± 1.2 90.4 ± 0.8 84.2 ± 4.3 72.6 ± 8.7 71.7 ± 7.6 𝟔𝟑.𝟗 ± 𝟏.𝟑 29.5
LSGAT 𝟗𝟑.𝟕 ± 𝟎.𝟒 92.1 ± 0.6 91.7 ± 0.3 91.5 ± 0.4 91.2 ± 1.0 91.0 ± 0.4 𝟖𝟕.𝟎 ± 𝟐.𝟕 6.70

Ogbn-arxiv GAT 𝟕𝟐.𝟐 ± 𝟐.𝟒 72.5 ± 2.0 67.8 ± 2.6 59.5 ± 0.7 53.9 ± 0.8 52.9 ± 0.3 𝟑𝟏.𝟒 ± 𝟐.𝟏 40.8
GAT-Lip 𝟕𝟐.𝟎 ± 𝟐.𝟎 72.3 ± 4.4 72.4 ± 2.4 69.7 ± 1.7 67.3 ± 2.1 66.8 ± 2.5 𝟔𝟐.𝟐 ± 𝟏.𝟖 9.80
LSGAT 𝟕𝟐.𝟐 ± 𝟐.𝟐 72.7 ± 3.5 71.8 ± 2.7 70.5 ± 0.4 67.9 ± 2.1 67.3 ± 3.1 𝟔𝟒.𝟒 ± 𝟏.𝟐 7.80
Norm [30], BatchNorm [29], DGN [22], and DropEdge [23], which
are primarily based on the GCN and ChebyNet models. The results,
depicted in Figs. 5 and 6, clearly demonstrate that LSGAT consistently
outperforms these five algorithms. This is particularly evident in the
Citeseer dataset, where LSGAT’s performance consistently surpasses the
best outcomes of other baseline methods by about 10%, especially
notable at fifteen and thirty layers. The findings indicate that LSGAT
markedly outperforms other techniques specifically tailored for GCN
and ChebNet models. This positions LSGAT as an advantageous choice
for future research and practical applications, particularly for complex
tasks requiring substantial graph models with deep layers.

6.4. Combining with other deep GNN methods

Combining with GCNII. As one of the state-of-the-art deep GCN
variants, the authors of GCNII suggested in [27] to have a try of new
7

version of GCNII, which includes attention mechanism. In this section,
we further investigate the performance of LSGAT with initial residual
and identity mapping introduced in GCNII, named as LSGAT-GCNII.
The results are demonstrated in Table 3, where parentheses include
the number of layers of the model that achieves the best performance.
As shown in Table 3, LSGAT-GCNII further enhances the performance
with new state-of-the-art results on several datasets. As highlighted in
Section 4 and mentioned in GCNII, the nodes with large degrees are
more likely to suffer from oversmoothing problem. With redesigned
self-attention mechanism, the component �̂�⊙𝑯 (𝑙) in GCNII is replaced
by 𝑪∗𝑯 (𝑙) in LSGAT-GCNII, which is much more sensitive to the
nodes with high overlap-degrees during aggregation, and better relieve
the oversmoothing problem. LSGAT-GCNII fills the gap and improves
the performance of GCNII based on the theory that nodes with high
degrees are more likely to lead to the oversmoothing problem, which is
not addressed in GCNII. Therefore, through all datasets, LSGAT-GCNII

Knowledge-Based Systems 293 (2024) 111649G. Su et al.
Table 3
Comparison results of test accuracy (%) between GCNII and LSGAT-GCNII.

Dataset Method Layers Best

2 4 8 16 32 64

Cora GCNII 82.2 82.6 84.2 84.6 85.4 85.5 85.5 ± 0.5(64)
LSGAT-GCNII 83.8 83.9 84.5 85.0 85.6 85.5 85.6 ± 0.7(32)
Improvement +1.6 +1.3 +0.3 +0.4 +0.2 +0.0 +0.1

Citeseer GCNII 68.2 68.9 70.6 72.9 73.4 73.4 73.4 ± 0.6(32)
LSGAT-GCNII 71.6 72.3 73.3 73.2 73.4 72.4 73.4 ± 0.8(32)
Improvement +3.4 +3.4 +2.7 +0.3 +0.0 −1.0 +0.0

Pubmed GCNII 78.2 78.8 79.3 80.2 79.8 79.7 80.2 ± 0.4(16)
LSGAT-GCNII 79.2 79.3 79.4 79.6 79.8 80.4 80.4 ± 0.5(64)
Improvement +1.0 +0.5 +0.1 −0.6 +0.0 +0.7 +0.2
Table 4
Test accuracies (%) of LSGAT based on different 𝛽 w/wo GAT-Lip.

Dataset Method Layers

2 5 10 15 20 25 30

Cora LSGAT 0.2 80.5 ± 1.1 79.1 ± 1.3 77.5 ± 0.6 76.1 ± 1.6 75.8 ± 1.8 74.8 ± 1.5 73.5 ± 0.8
LSGAT + Lip 0.2 80.5 ± 0.8 79.1 ± 1.3 77.1 ± 0.6 76.0 ± 1.3 75.8 ± 1.5 74.8 ± 1.5 69.3 ± 6.2
LSGAT 0.4 80.5 ± 0.4 78.9 ± 1.0 77.2 ± 0.5 76.3 ± 0.5 75.5 ± 0.4 74.6 ± 2.2 69.2 ± 1.6
LSGAT + Lip 0.4 80.1 ± 0.6 78.9 ± 0.5 77.6 ± 1.0 76.4 ± 1.4 75.3 ± 1.8 74.2 ± 0.8 72.4 ± 2.7
LSGAT 0.6 80.6 ± 1.3 78.7 ± 1.0 77.2 ± 1.6 76.4 ± 1.1 76.2 ± 0.8 74.5 ± 2.3 71.2 ± 3.0
LSGAT + Lip 0.6 80.1 ± 0.3 78.7 ± 1.2 77.3 ± 1.0 76.8 ± 0.7 75.3 ± 1.0 74.0 ± 1.5 70.2 ± 3.1
LSGAT 0.8 80.4 ± 1.0 78.6 ± 0.7 77.2 ± 0.7 76.2 ± 0.7 75.9 ± 0.6 74.3 ± 2.5 71.4 ± 2.1
LSGAT + Lip 0.8 80.2 ± 0.4 78.8 ± 0.8 77.1 ± 0.8 77.0 ± 1.9 75.2 ± 1.1 75.9 ± 1.3 73.0 ± 3.4

Pubmed LSGAT 0.2 76.1 ± 1.5 76.1 ± 0.7 76.3 ± 0.5 77.3 ± 1.1 76.9 ± 0.9 75.9 ± 1.9 72.8 ± 1.4
LSGAT + Lip 0.2 76.2 ± 0.8 76.0 ± 1.1 76.4 ± 1.6 77.0 ± 0.6 76.9 ± 1.0 76.2 ± 1.6 71.9 ± 4.4
LSGAT 0.4 76.3 ± 0.5 76.9 ± 1.1 75.9 ± 1.5 76.8 ± 1.4 77.4 ± 0.7 75.7 ± 2.0 73.2 ± 8.0
LSGAT + Lip 0.4 76.5 ± 0.8 76.7 ± 1.6 76.8 ± 1.2 76.8 ± 1.5 78.0 ± 0.8 76.4 ± 1.0 75.7 ± 3.0
LSGAT 0.6 76.2 ± 0.7 76.7 ± 0.8 76.6 ± 1.1 77.3 ± 0.3 77.0 ± 1.3 75.7 ± 0.8 72.1 ± 2.4
LSGAT + Lip 0.6 76.3 ± 1.8 76.5 ± 0.8 76.8 ± 2.9 76.9 ± 1.0 77.5 ± 1.1 76.1 ± 0.8 72.0 ± 2.6
LSGAT 0.8 76.5 ± 0.5 77.0 ± 0.8 76.9 ± 1.2 77.6 ± 0.8 76.7 ± 1.0 76.2 ± 1.5 71.3 ± 3.4
LSGAT + Lip 0.8 76.4 ± 1.2 76.7 ± 0.5 77.0 ± 0.6 77.0 ± 1.0 77.7 ± 0.5 76.7 ± 0.9 71.7 ± 2.2
i

7

p
p

m
t
n
i
o
c
b
T
s
i
a

C

c
o
Z

Table 5
Test accuracies (%) of LSGAT based on different 𝛽.

Dataset Method Layers

10 20 30

Cora LSGAT 0.2 77.5 ± 0.6 75.8 ± 1.8 73.5 ± 0.8
LSGAT 0.4 77.2 ± 0.5 75.5 ± 0.4 69.2 ± 1.6
LSGAT 0.6 77.2 ± 1.6 76.2 ± 0.8 71.2 ± 3.0
LSGAT 0.8 77.2 ± 0.7 75.9 ± 0.6 71.4 ± 2.1

Pubmed LSGAT 0.2 78.3 ± 0.5 76.9 ± 0.9 72.8 ± 1.4
LSGAT 0.4 77.9 ± 1.5 77.4 ± 0.7 73.2 ± 8.0
LSGAT 0.6 78.6 ± 1.2 77.0 ± 1.3 72.1 ± 2.4
LSGAT 0.8 77.9 ± 1.2 76.7 ± 1.0 71.3 ± 3.4

generally outperforms GCNII. Specifically, the improvement brought
by LSGAT can be up to 3.4% on Citeseer. Notably, with no more
than sixteen layers, the improvement of LSGAT-GCNII is significant.
As number of layers increases, the improvement generally shrinks,
whose reason is in the computation process of GCNII. As introduced in
Section 6.1, because of the initial residual connection, the fraction of
information from 𝑙th layer, i.e., 𝑪∗𝑯 (𝑙) in LSGAT-GCNII, dramatically
reduces when 𝑙 increases. The performance improvement brought by
LSGAT reduces accordingly.

Combining with GAT-Lip. To address the gradient explosion issue
that happened in deep GAT, Dasoulas et al. [16] proposed GAT-Lips,
which could be applied to GAT and our LSGAT. From the results shown
in Table 4, we can see that both algorithms contribute to the im-
provement of performance, and the performance is further significantly
improved on the original GAT and LSGAT.

6.5. Parameter study

In this subsection, we take a deeper look at the proposed LSGAT to
8

find whether there exists the best proportion (𝛽 in Section 5) between e
large degree nodes and small degree nodes in each setting. As shown
in Table 5, the performances based on different proportion are all good
enough compared with vanilla GAT (𝛽 = 0.0). This further verifies that
the performance of deep GAT could be improved by constraining the
nodes with a large degree in deeper layers. Simultaneously, our analysis
reveals no positive correlation between the value of 𝛽 and overall
outcomes, indicating the necessity of adjusting 𝛽 as a hyperparameter
n future experiments.

. Conclusion

In this paper, we investigated that oversmoothing problem hap-
ened in deep GAT could be relieved by considering overwhelming
ropagation caused by the nodes with large degree.

Then, we propose a novel and versatile coefficient computation
echanism LSGAT to properly train GAT. This mechanism could rescale

he propagation influence based on overlap-degree from adjacent and
on-adjacent nodes adaptively with the number of layers, and specif-
cally limit the propagation of nodes with large degrees to relieve the
versmoothing problem in deep GAT. Specifically, LSGAT does not
hange the architecture of GAT, and our layer-wise scaling scores could
e calculated offline and easily applied to GAT in the training phase.
he results of extensive experiments on various real-world datasets
how the advantage of our proposed method over the baselines. Specif-
cally, with initial residual and identity mapping, our proposed LSGAT
chieves the state-of-the-art performance as a deep GNN.

RediT authorship contribution statement

Guangxin Su: Writing – original draft, Validation, Software, Con-
eptualization. Hanchen Wang: Writing – review & editing, Writing –
riginal draft, Methodology, Formal analysis, Conceptualization. Ying
hang: Writing – review & editing. Wenjie Zhang: Writing – review &

diting, Supervision. Xuemin Lin: Supervision.

Knowledge-Based Systems 293 (2024) 111649G. Su et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

Ying Zhang is supported by ZJNSF LY21F020012, and Wenjie Zhang
is supported by ARC FT210100303.

References

[1] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, arXiv preprint arXiv:1609.02907.

[2] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, 2017, arXiv preprint arXiv:1710.10903.

[3] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large
graphs, Adv. Neural Inf. Process. Syst. 30 (2017).

[4] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, Y. Shen, Graph contrastive learning
with augmentations, Adv. Neural Inf. Process. Syst. 33 (2020) 5812–5823.

[5] H. Wang, D. Lian, Y. Zhang, L. Qin, X. Lin, GoGNN: graph of graphs neural
network for predicting structured entity interactions, in: Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on
Artificial Intelligence, 2021, pp. 1317–1323.

[6] X. Huang, Q. Song, Y. Li, X. Hu, Graph recurrent networks with attributed
random walks, in: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 732–740.

[7] X. Dong, B. Jin, W. Zhuo, B. Li, T. Xue, Improving sequential recommendation
with attribute-augmented graph neural networks, in: Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, 2021, pp. 373–385.

[8] H. Gao, Z. Wang, S. Ji, Large-scale learnable graph convolutional networks, in:
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 1416–1424.

[9] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[10] T.K. Rusch, M.M. Bronstein, S. Mishra, A survey on oversmoothing in graph
neural networks, 2023, arXiv preprint arXiv:2303.10993.

[11] Y. Yan, M. Hashemi, K. Swersky, Y. Yang, D. Koutra, Two sides of the same coin:
Heterophily and oversmoothing in graph convolutional neural networks, 2021,
arXiv preprint arXiv:2102.06462.

[12] Q. Li, Z. Han, X.-M. Wu, Deeper insights into graph convolutional networks
for semi-supervised learning, in: Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[13] K. Oono, T. Suzuki, Graph neural networks exponentially lose expressive power
for node classification, in: International Conference on Learning Representations,
2019.

[14] W. Huang, Y. Rong, T. Xu, F. Sun, J. Huang, Tackling over-smoothing for general
graph convolutional networks, 2020, arXiv preprint arXiv:2008.09864.

[15] C. Cai, Y. Wang, A note on over-smoothing for graph neural networks, 2020,
arXiv preprint arXiv:2006.13318.

[16] G. Dasoulas, K. Scaman, A. Virmaux, Lipschitz normalization for self-attention
layers with application to graph neural networks, in: International Conference
on Machine Learning, PMLR, 2021, pp. 2456–2466.

[17] W. Huang, Y. Li, W. Du, R.Y. Da Xu, J. Yin, L. Chen, M. Zhang, Towards
deepening graph neural networks: A GNTK-based optimization perspective, 2021,
arXiv preprint arXiv:2103.03113.

[18] S. Luan, M. Zhao, X.-W. Chang, D. Precup, Training matters: Unlocking potentials
of deeper graph convolutional neural networks, 2020, arXiv preprint arXiv:
2008.08838.

[19] W. Cong, M. Ramezani, M. Mahdavi, On provable benefits of depth in training
graph convolutional networks, Adv. Neural Inf. Process. Syst. 34 (2021).

[20] T. Chen, K. Zhou, K. Duan, W. Zheng, P. Wang, X. Hu, Z. Wang, Bag of tricks
for training deeper graph neural networks: A comprehensive benchmark study,
IEEE Trans. Pattern Anal. Mach. Intell. (2022).
9

[21] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, S. Jegelka, Representa-
tion learning on graphs with jumping knowledge networks, in: International
Conference on Machine Learning, PMLR, 2018, pp. 5453–5462.

[22] K. Zhou, X. Huang, Y. Li, D. Zha, R. Chen, X. Hu, Towards deeper graph neural
networks with differentiable group normalization, Adv. Neural Inf. Process. Syst.
33 (2020) 4917–4928.

[23] Y. Rong, W. Huang, T. Xu, J. Huang, Dropedge: Towards deep graph con-
volutional networks on node classification, 2019, arXiv preprint arXiv:1907.
10903.

[24] G. Li, M. Muller, A. Thabet, B. Ghanem, Deepgcns: Can gcns go as deep as
cnns? in: Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, pp. 9267–9276.

[25] H. Zhang, T. Yan, Z. Xie, Y. Xia, Y. Zhang, Revisiting graph convolutional
network on semi-supervised node classification from an optimization perspective,
2020, arXiv preprint arXiv:2009.11469.

[26] S. Luan, M. Zhao, X.-W. Chang, D. Precup, Break the ceiling: Stronger multi-scale
deep graph convolutional networks, Adv. Neural Inf. Process. Syst. 32 (2019).

[27] M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li, Simple and deep graph convolutional
networks, in: International Conference on Machine Learning, PMLR, 2020, pp.
1725–1735.

[28] J. Klicpera, A. Bojchevski, S. Günnemann, Predict then propagate: Graph neural
networks meet personalized pagerank, 2018, arXiv preprint arXiv:1810.05997.

[29] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, in: International Conference on Machine
Learning, PMLR, 2015, pp. 448–456.

[30] L. Zhao, L. Akoglu, Pairnorm: Tackling oversmoothing in gnns, 2019, arXiv
preprint arXiv:1909.12223.

[31] K. Zhou, Y. Dong, K. Wang, W.S. Lee, B. Hooi, H. Xu, J. Feng, Understanding
and resolving performance degradation in graph convolutional networks, 2020,
arXiv preprint arXiv:2006.07107.

[32] W. Jin, X. Liu, Y. Ma, C. Aggarwal, J. Tang, Feature overcorrelation in deep graph
neural networks: A new perspective, 2022, arXiv preprint arXiv:2206.07743.

[33] A. Loukas, What graph neural networks cannot learn: depth vs width, 2019,
arXiv preprint arXiv:1907.03199.

[34] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan, V. Prasanna,
L. Jin, R. Chen, Deep graph neural networks with shallow subgraph samplers,
2020, arXiv preprint arXiv:2012.01380.

[35] G. Li, C. Xiong, A. Thabet, B. Ghanem, Deepergcn: All you need to train deeper
gcns, 2020, arXiv preprint arXiv:2006.07739.

[36] S. Brody, U. Alon, E. Yahav, How attentive are graph attention networks? 2021,
arXiv preprint arXiv:2105.14491.

[37] Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph
attention networks for deep latent representation of multifaceted social effects
in recommender systems, in: The World Wide Web Conference, 2019, pp.
2091–2102.

[38] C. Park, C. Lee, H. Bahng, Y. Tae, S. Jin, K. Kim, S. Ko, J. Choo, ST-GRAT:
A novel spatio-temporal graph attention networks for accurately forecasting
dynamically changing road speed, in: Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, 2020, pp. 1215–1224.

[39] G. Wang, R. Ying, J. Huang, J. Leskovec, Multi-hop attention graph neural
network, 2020, arXiv preprint arXiv:2009.14332.

[40] M. Liu, H. Gao, S. Ji, Towards deeper graph neural networks, in: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 338–348.

[41] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Collective
classification in network data, AI Mag. 29 (3) (2008) 93.

[42] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks,
in: European Conference on Computer Vision, Springer, 2016, pp. 630–645.

[43] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[44] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249–256.

[45] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, Pitfalls of graph neural
network evaluation, in: Relational Representation Learning Workshop, NeurIPS
2018, 2018.

[46] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec,
Open graph benchmark: Datasets for machine learning on graphs, Adv. Neural
Inf. Process. Syst. 33 (2020) 22118–22133.

[47] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst. 29
(2016).

[48] J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization, 2016, arXiv preprint
arXiv:1607.06450.

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb3
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb4
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb5
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb6
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb7
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb8
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb9
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb9
http://arxiv.org/abs/2303.10993
http://arxiv.org/abs/2102.06462
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb12
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb13
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb13
http://arxiv.org/abs/2008.09864
http://arxiv.org/abs/2006.13318
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb16
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb16
http://arxiv.org/abs/2103.03113
http://arxiv.org/abs/2008.08838
http://arxiv.org/abs/2008.08838
http://arxiv.org/abs/2008.08838
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb19
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb20
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb21
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb22
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb22
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1907.10903
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb24
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb24
http://arxiv.org/abs/2009.11469
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb26
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb27
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb27
http://arxiv.org/abs/1810.05997
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb29
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb29
http://arxiv.org/abs/1909.12223
http://arxiv.org/abs/2006.07107
http://arxiv.org/abs/2206.07743
http://arxiv.org/abs/1907.03199
http://arxiv.org/abs/2012.01380
http://arxiv.org/abs/2006.07739
http://arxiv.org/abs/2105.14491
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb37
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb38
http://arxiv.org/abs/2009.14332
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb40
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb40
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb40
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb40
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb40
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb41
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb41
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb41
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb42
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb42
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb42
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb44
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb45
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb45
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb45
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb45
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb45
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb46
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb46
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb46
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb46
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb46
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb47
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb47
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb47
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb47
http://refhub.elsevier.com/S0950-7051(24)00284-3/sb47
http://arxiv.org/abs/1607.06450

	Simple and deep graph attention networks
	Introduction
	Related Work
	Preliminaries
	Definition of oversmoothing
	Graph Attention Networks

	Overwhelming Propagation Problem in Deep GAT
	Layer-wise Self-adaptive GAT
	Proposed Technique for Addressing Oversmoothing
	Discussion

	Experiment
	Experiment Setup
	Comparison with GAT-based Algorithms
	Comparison with other Deep GNN Algorithms
	Combining with Other Deep GNN Methods
	Parameter Study

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References

