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Abstract: Circular antenna arrays (CAAs) find extensive utility in a range of cutting-edge communi-
cation applications such as 5G networks, the Internet of Things (IoT), and advanced beamforming
technologies. In the realm of antenna design, the side lobes levels (SLL) in the radiation pattern
hold significant importance within communication systems. This is primarily due to its role in
mitigating signal interference across the entire radiation pattern’s side lobes. In order to suppress
the subsidiary lobe, achieve the required primary lobe orientation, and improve directivity, an
optimization problem is used in this work. This paper introduces a method aimed at enhancing
the radiation pattern of CAA by minimizing its SLL using a Hybrid Sooty Tern Naked Mole-Rat
Algorithm (STNMRA). The simulation results show that the hybrid optimization method significantly
reduces side lobes while maintaining reasonable directivity compared to the uniform array and other
competitive metaheuristics.

Keywords: circular antenna array; side lobes levels; optimization; array factor; directivity

1. Introduction

Designing antennas with significant directional attributes is crucial in meeting the
demands of long-range communication. To attain enhanced directional characteristics
like expanded electrical size and higher gains, radiating elements are structured in a
configuration that promotes constructive and destructive field patterns in desired and
undesired directions, respectively [1,2]. This configuration boasts various advantages,
including reduced Side Lobe Levels (SLL) and exceptionally high directive patterns. It also
facilitates effective control over the array radiation pattern’s steering direction toward the
optimal signal path. This control is achieved by manipulating factors like element count,
excitation coefficients, inter-element spacing, relative phases, and the overall geometrical
arrangement of the array (e.g., rectangular, linear, elliptical, circular, and others) [2].

Linear arrays, valued for their design simplicity and high main lobe directivity in
a specific direction [2], come with the limitation of inefficient radiation across the full
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360◦ azimuthal span. In contrast, circular arrays offer the advantage of electronic rotation
without distorting the radiation pattern, allowing the main lobe to be directed and focused
in any direction throughout 360◦ [3].

Circular antenna arrays (CAAs) are widely employed in modern communication
systems due to their advantages over linear and rectangular arrays. Their optimal design,
often involving the minimization of SLL, is crucial for mitigating undesirable radiation
beams in electromagnetic transmission [4]. Parameters of significant interest during antenna
array design encompass low SLL and a narrow First Null Beamwidth (FNBW). Many
synthesis techniques primarily aim to suppress unwanted signals by minimizing SLL [5–8].
The application of evolutionary optimization algorithms to address complex engineering
problems [9,10], particularly in array synthesis, is extensively explored in the existing
literature. Prominent examples of these algorithms include Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), and simulated
annealing (SA), among others. These algorithms offer effective strategies for optimizing
the design of circular antenna arrays, contributing to enhanced performance and reduced
undesired radiation.

Singh et al. present an innovative approach to enhance the performance of non-
uniform CAAs through the integration of optimization methodologies [11]. They proposed
a hybridization of the integrated harmony search (IHS) algorithm with the Differential
Evolution (DE) based Naked Mole-Rat Algorithm (NMRA) to address the optimization
challenges associated with non-uniform CAAs (NUCAAs). The non-uniform spacing in cir-
cular arrays offers potential improvements in radiation pattern characteristics. Leveraging
the harmonic search capabilities of IHS and the adaptive learning nature of DE-NMRA,
the proposed approach optimizes the arrangement and attributes of the antennas within
the circular array. The performance of the non-uniform CAA configurations is evaluated
using a fitness function that assesses radiation pattern features and other desired criteria.
Through iterative refinement, the hybrid algorithm converges towards solutions that ex-
hibit superior performance. Our experiments demonstrate the efficacy of the integrated
approach in achieving enhanced performance outcomes for non-uniform CAAs, making it
particularly valuable for applications demanding precision in directional radiation patterns.

The Hybrid Sooty Tern NMRA (STNMRA), a recently introduced meta-heuristics,
appears to be an enhancement of the standard Naked Mole-Rat Algorithm (NMRA) that
addresses some of its limitations [12]. NMRA is a metaheuristic optimization algorithm
inspired by the mating behavior of mole-rats, and it is used for solving various engineering
problems [13]. STNMRA integrates the exploration capabilities of the Sooty Tern Opti-
mization Algorithm (STOA) [14] into NMRA. By incorporating STOA, STNMRA aims to
improve its ability to explore the solution space effectively. By combining the strengths of
NMRA with the exploration capabilities of STOA, STNMRA aims to be a more robust and
effective optimization algorithm. It can efficiently explore diverse solutions, escape local
optima, and search for better solutions in complex optimization problems.

In this work, STNMRA is utilized to design CAA. STNMRA has solved the major
problems of both STOA and NMRA, including premature stagnation because of poor
exploitation in STOA and poor exploration in NMRA [15]. Hybridizing the algorithms
forces the individual algorithms to work in tandem to deliver consistent solutions and
provide a better chance of balanced exploration and exploitation. STNMRA has also proved
its worth in solving many real-world optimization problems [12].

The paper outlines several key contributions related to optimizing CAAs to achieve
specific performance objectives. The main contributions of this work are as follows:

• This CAA optimization problem is formulated to achieve three primary objectives:
directing the main lobe to a desired direction, minimizing the SLLs, and maximizing
the directivity of the antenna array for achieving desired radiation patterns and
minimizing interference.
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• A hybrid STNMRA, a nature-inspired optimization algorithm, is used to find optimal
solutions to the CAA optimization problem at a low computational cost and with
robustness to different problem instances.

• Antenna design and optimization often require assessing the 3D radiation patterns. In
this work, the results are tested in 3D to validate the desired figure of merit (typically
considers parameters such as the directivity, SLLs, and beamwidth).

• The STNMRA algorithm achieves the best figure of merit, indicating that it successfully
optimizes CAAs to meet the specified objectives. The optimized antenna arrays exhibit
good directivity and extremely low SLLs. Additionally, the study suggests that even
with a low number of antenna elements, it is possible to achieve excellent directivity
while minimizing SLLs.

The paper’s structure is organized as follows. In Section 2, the formulation of the array
factor for the CAA is detailed, along with an explanation of the objective function used
in CAA synthesis. Section 3 offers a concise overview of the STNMRA. The performance
analysis of STNMRA and a comparison with various existing optimization algorithms for
CAA synthesis are presented in Section 4. The paper concludes with Section 5, summarizing
the findings and conclusions drawn from the study and possible future work.

2. Circular Antenna Array

The configuration of the CAA is depicted in Figure 1. It comprises NE isotropic
antenna elements that are systematically distributed with uniform angular spacing (d)
along a circular arrangement [15]. In the x-y plane, the circle with a radius of r is taken into
consideration. Here, ϕ signifies the azimuth angle, and θ represents the elevation angle. It is
worth noting that all components of this array showcase consistent radiation characteristics.
This quality renders the entire structure an isotropic source, which is characterized by
uniform radiation in all directions.
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Figure 1. Configuration of CAA.

The array factor (AF) is generally used to define the array pattern of CAA. Equations (1)–(3)
are utilized to describe the AF of the CAA.

AF(ϕ) = ∑NE
n=1 Inej[βrcos (ϕ−ϕn)+αn ] (1)
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where αn and In indicate the excitation phase and amplitude of the nth antenna element,
respectively. The nth element’s angular position on the x–y plane is expressed as

ϕn =
2π(n − 1)

NE
(2)

The wave number βr is a function of angular spacing and the antenna elements count
and is expressed as:

βr =
2πr

λ
= ∑NE

n=1 dn = NEd (3)

The main lobe direction (ϕ0) is decided by the maxima of the AF, which is controlled
by soft controlling parameter αn expressed as:

αn = −βrcos(ϕ0 − ϕn) (4)

AF can be formulated as a function of the main lobe in the desired direction, given by

AF(ϕ) = ∑NE
n=1 Inej[βr(cos (ϕ−ϕn)−cos (ϕ0−ϕn))+ψ] (5)

where In is the controlled amplitude (normalized to the maximum value), and ψ represents
the phase that is being estimated to regulate the figure of merit (FOM) for the CAA (such
as higher directivity, low SLL, and the main lobe in the desired direction) and range from
[0, 1] and [−180◦, 180◦], respectively.

The goal of the aforementioned design problem is to optimize the key parameters, such
as maximizing directivity and suppressing SLL and the main lobe in the desired direction.

To minimize the SLL, the objective function OFSLL is expressed as

OFSLL =

∣∣∣∣AF
(

ϕSLL,
→
I ,

→
β,ϕ0

)∣∣∣∣∣∣∣∣AF
(

ϕmax,
→
I ,

→
β,ϕ0

)∣∣∣∣ (6)

Here ϕSLL represents the maximum side lobe angle.
In the main lobe direction (ϕ0), the goal is to maximize the directivity. For the mini-

mization problem, the same can be achieved as

OFD =
1

DIR
(

ϕ0,
→
I ,

→
β

) (7)

Another critical parameter involves aligning the main lobe in the desired direction,
denoted as (ϕ des), which is expressed as

OFML = |ϕ0 − ϕdes| (8)

Hence, the minimization of the objective function (OF CAA) guarantees the attainment
of the above-mentioned FOMs and is mathematically expressed as

OFCAA = OFSLL + OFD + OFML (9)

3. Hybrid Sooty Tern Naked Mole-Rat Algorithm (STNMRA)

In this section, an introductory overview of recently nature-inspired algorithms,
namely STOA and NMRA, is provided. Subsequently, we introduce the recently pro-
posed hybrid algorithm that combines elements from these two techniques.

3.1. Sooty Tern Optimization Algorithm (STOA)

STOA is a swarm intelligence optimization technique designed to address real-world
optimization problems [14]. This algorithm draws inspiration from the migration and



Algorithms 2024, 17, 256 5 of 19

attacking behaviors exhibited by sooty terns in their natural environment. Sooty terns,
which are known to live in varying colony sizes, possess the remarkable ability to locate
and prey upon their food sources effectively.

The STOA algorithm emulates the migration and attacking behaviors of these sooty
terns through a mathematical framework. The algorithm is divided into distinct phases,
namely migration action and attacking action, to replicate the natural behaviors of these
birds. These phases facilitate the optimization process, allowing it to efficiently explore and
exploit the search space in pursuit of optimal solutions to complex problems.

3.1.1. Migration Action

In the migration process of sooty terns, three key conditions are considered and
described as follows:

Collision Avoidance: To emulate the migration behavior of sooty terns, the first condi-
tion considered is the avoidance of collision among the search candidates. This involves
assessing the new position of a candidate using a parameter denoted as Sc. This parame-
ter plays a crucial role in ensuring that candidates do not collide during their migration,
mimicking the birds’ natural tendency to avoid collisions during their movements.

−→
Cpc = Sc ×

−→
Ppc(t) (10)

Here,
−→
Cpc represents the position of a sooty tern that has successfully avoided colliding

with other search candidates,
−→
Ppc represents the current position of the candidate sooty

tern, t denotes the current iteration value, and Sc defines the movement of the search
agent (sooty tern) within the entire search area. This equation represents the process of
determining the updated position of a candidate sooty tern while taking precautions to
prevent collisions with other search candidates during the migration phase. This behavior
mimics the natural tendency of sooty terns to avoid collisions during their movements in
search of food sources.

Sc = cv −
(

t ×
(

Cv

tmax

))
; t = [0, 1, 2, . . . . . . tmax] (11)

The parameter Sc is defined as a function that exhibits linearly decreasing behavior
within a specified range between cv and 0. Here, cv is a controlling parameter, and its
value is set to 2. This characteristic of Sc is designed to influence the movement of search
agents (sooty terns) during their migration behavior, specifically by controlling the rate
of decrease in their movement as they approach the best-fitted positions. The parameter
cv plays a crucial role in shaping this behavior and determining the range over which the
linear decrease occurs.

Converging to Best Position: After avoiding collisions, the next step involves con-
verging each sooty tern towards the position of the best-fitted search agent Pbest. This is
expressed as

−→
Mpc = Cr ×

( −→
Pbest(t)−

−→
Ppc(t)

)
(12)

where
−→
Mpc represents the new positions of sooty terns,

−→
Ppc is the current position of the

search candidate,
−→

Pbest(t) is the position of the best-fitted search agent at iteration t, and Cr
is a random parameter calculated as

Cr = 0.5 × rand(0, 1) (13)

where rand(0,1) is a uniformly distributed random number between 0 and 1.
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Position Updating: In the final phase of migration behavior, each search candidate
updates its position in relation to the best-fitted search agent. This is calculated as

−→
Dpc =

−→
Cpc +

−→
Mpc (14)

where
−→
Dpc represents the updated position,

−→
Cpc is the position after avoiding collisions,

and
−→

Mpc is the result of the convergence step described above.
These steps collectively depict the intricate migration behavior of the sooty terns,

incorporating collision avoidance, convergence towards better positions, and position
updates in response to the best-fitted search agent’s position. This modeling approach
allows for effective exploration and optimization in the algorithm.

3.1.2. Attacking Action

In the exploitation phase, which emulates the attacking action of sooty terns during
migration, several behaviors are considered. These birds have the ability to adjust their
speed and attack angle, and they also change their altitude by flapping their wings. Addi-
tionally, they exhibit spiral activity in the air while attacking their prey, as observed in their
natural behavior [16]. This spiral activity is incorporated into the optimization algorithm to
enhance its exploitation capabilities for finding optimal solutions in complex optimization
problems. In this context, several parameters and equations are used to model the spiral
activity exhibited by sooty terns during the exploitation phase:

x1 = Sr × sin(q) (15)

x2 = Sr × cos(q) (16)

x3 = Sr × q (17)

Sr = p × emy (18)

Here the parameter Sr corresponds to the radius of each spiral turn, q is a variable
defined within the range [0 ≤ m ≤ 2π]. Two constants, denoted as p and y (values set to 1),
are responsible for shaping the spiral, and e is the parameter that represents the base of the
natural logarithm [14].

During this phase, the search candidates (sooty terns) update their locations using
Equations (15)–(18), which are employed to emulate the spiral activity. This modeling
approach allows the algorithm to mimic the natural behavior of sooty terns during their
prey attack, contributing to effective exploration and exploitation in optimization processes,
expressed as:

−→
Ppc(t) =

( −→
Dpc × (x1 + x2 + x3)

)
×

−→
Pbest(t) (19)

In this equation,
−→
Ppc(t) represents the position updating of the sooty terns with respect

to the iterations t. This position-updating process aims to select the global optimum solution
within the optimization algorithm. It reflects how the search candidates’ positions evolve
over time as they explore and exploit the search space, ultimately converging toward an
optimal solution.

3.2. Naked Mole-Rat Algorithm (NMRA)

The nature-inspired optimization algorithm, known as NMRA, is derived from the
swarm intelligent behavior observed in naked mole-rats (NMRs) and was introduced by
Salgotra and Singh in 2019. NMRA is a relatively recent addition to the family of meta-
heuristic algorithms and draws inspiration from the mating patterns observed in mole-rats
in their natural habitat [13].

NMRs are eusocial animals typically found in colonies of sizes ranging from 70
to 80 individuals. These colonies are organized into two main categories: worker and
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breeder rats. The colony is led by a single female, known as the queen, who is responsible
for breeding. The breeder rats are chosen to mate with the queen, while the worker
rats perform various essential tasks within the colony. Breeder rats are considered the
productive members of the mole-rat community and play a crucial role in reproduction.

The mathematical model of NMRA encompasses three distinct phases:
Initialization: In this phase, the algorithm initializes a population of mole-rats, mim-

icking the composition of a natural mole-rat colony.
Exploration Phase: During this phase, the behavior of worker rats is emulated. These

worker rats engage in exploration activities within the algorithm, seeking out potential
solutions in the search space.

Exploitation Phase: In this phase, the algorithm models the behavior of breeder rats.
These breeder rats are responsible for exploiting the search space, with a focus on refining
and improving the solutions discovered during the exploration phase.

NMRA leverages these three phases to guide its search for optimal solutions in com-
plex optimization problems, drawing inspiration from the natural behaviors observed in
mole-rat colonies.

3.2.1. Initialization of Mole-Rats Population

In the NMRA, the optimization process involves the initialization of a population of
mole-rats, which are represented as vectors in a multidimensional search space. These mole-
rats are randomly distributed within the problem space, and each mole-rat is identified by
its position in the search space.

The initial population of NMRs is randomly generated, and it is represented as a
vector in a space with dimensions (dim ), where dim represents the problem parameters to
be optimized. Each mole-rat’s position (Mu,v) is determined as follows:

Mu,v = Mmin,v + rand × (Mmin,v − Mmax,v) (20)

Here, u ranges from 1 to M, representing the uth mole-rat; v ranges from 1 to dim,
representing the vth dimension of the search space; Mu,v is expressed using a random
number (rand) in the range [0, 1]; and the lower and upper boundaries of the problem
space are represented by Mmin,v and Mmax,v, respectively.

After initializing the population of mole-rats (search candidates) and computing their
fitness values, the members of two pools are identified: the worker and the breeder pool.
This partitioning is based on the fitness values of the mole-rats. Those with higher fitness
values are selected as potential breeders, while the rest become workers.

The initial fittest solution, denoted as Mbest, is then evaluated from the pool of potential
breeders. Mbest represents the current best-known solution among the population of search
candidates at the beginning of the algorithm. The partitioning of individuals into worker
and breeder pools, along with the selection of Mbest, are crucial steps in preparing the
algorithm for its exploration and exploitation phases, where the search for better solutions
and optimization occurs.

3.2.2. Worker Phase

During this phase, worker rats aim to enhance their fitness to have the opportunity to
become members of the breeder group.

Each worker rat generates a new solution based on its own knowledge and available
information. This new solution is computed as follows:

WRu(t + 1) = WRu(t) + λ
(
WRx(t)− WRy(t)

)
(21)

Here WRu(t) represents the uth worker rat’s solution at iteration t, WRu(t + 1) is
the new solution generated in the next iteration, λ is a randomly distributed parameter
between 0 and 1. WRx(t) and WRy(t) are the randomly selected solutions from the pool
of workers.
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After generating a new solution, the fitness value of this new solution is computed.
This fitness value represents how well this new solution performs with respect to the
optimization problem.

The worker mole-rats compare the fitness of the new solution with that of their
previous solution. If the fitness of the new solution is better (i.e., lower in a minimization
problem), they accept it as their current solution and keep it. If it is worse, they stick with
their previous solution.

This mechanism allows the worker mole-rats to explore the solution space by occa-
sionally accepting solutions that are better than their current ones and potentially rejecting
solutions that are worse. Over time, this exploration process can lead to improved solutions
within the worker pool.

The exploration phase, carried out by the worker mole-rats, is essential for the overall
optimization process, as it allows for the discovery of better solutions and the continuous
improvement of the population’s fitness.

3.2.3. Breeder Phase

During this phase, breeders seek to improve their solutions and may be chosen as
breeding partners for the queen. The breeder rats’ solutions are updated with respect to the
overall best solution (Mbest) based on the breeding probability (bp) with initial value of 0.5.
If a breeder rat is unable to improve its fitness, it may be downgraded to the workers group.

The new solution for breeders is updated using the following formula:

BRu(t + 1) = (1 − λ)BRu(t) + λ(Mbest − BRu(t)) (22)

Here, BRu(t) represents the uth breeder rat’s solution at iteration t, λ controls the
mating frequency of breeders and helps identify the new breeder solution BRu(t + 1) in
the next iteration.

The optimization process continues through a number of iterations until a termination
condition is met. The best NMR from the entire population is selected as the potential
solution to the problem being analyzed.

3.3. Sooty Tern NMRA (STNMRA)

The STNMRA aims to benefit from the migration and attacking actions of sooty terns
and the eusocial behavior of naked mole-rats, combining them in a way that improves
optimization capabilities. This hybridization allows the algorithm to explore and exploit the
solution space effectively. STNMRA combines the strengths of STOA and NMRA to create
a hybrid optimization algorithm. It introduces elements from STOA into the worker phase
of NMRA while retaining the core structure of both algorithms. The algorithm incorporates
the parameter λ from NMRA, which controls the breeding frequency of breeder NMRs,
with a self-adaptive mechanism using the simulated annealing mutation operator (sa) [17].
This self-adaptive approach eliminates the need for manual parameter tuning by users.

The algorithm starts with the random initialization of search candidates within a
predefined range, and this is achieved using Equation (20).

3.3.1. Worker Phase

In this phase of the STNMRA, known as the worker phase or exploration phase, the
algorithm aims to find a solution near the optimal value. The worker phase of NMRA was
found to be less reliable. To enhance its performance, the STNMRA incorporates features
from STOA into the NMRA worker phase. To enhance exploration during the first half of
the iterations, the position updating equation (Equation (19)) from STOA is introduced.
This equation from STOA is used to update the positions of search candidates.

During the first half of the iterations, the algorithm uses the position updating equation
from STOA. This is performed to take advantage of the exploration capabilities of STOA. In
the second half of the iterations, the algorithm switches back to using the original NMRA
worker phase equation (Equation (21)). Parameters for both STOA and NMRA remain
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consistent with their basic algorithms. No new parameters are introduced, ensuring that
the original characteristics of each algorithm are retained.

The hybridization of the worker phase is designed to combine the exploration abilities
of both STOA and NMRA, potentially improving the algorithm’s ability to find solutions
near the optimal value. This dynamic approach, where different optimization strategies
are used during different phases of the iterations, can lead to better convergence and
solution quality.

3.3.2. Breeder Phase

In the hybrid STNMRA, the third phase is referred to as the breeder phase, which
closely resembles the breeder phase in the classical NMRA. This phase is responsible
for exploiting potential solutions close to the current best solution, ultimately aiming to
produce a global solution by mating breeder rats with the queen.

The exploitation phase in the breeder phase is essential for performing a global search.
It targets the solutions that are close to the current best solution (queen), aims to refine them
further, and uses the same Equation (22) of NMRA. No changes to this equation have been
made, ensuring that the essential breeding and solution update process remains consistent
with the classical NMRA.

Overall, the breeder phase of the STNMRA retains the core principles of the NMRA
algorithm. It focuses on exploiting promising solutions while maintaining a balance
between breeder and worker rats. This hybrid approach combines elements of both STOA
and NMRA to improve the algorithm’s ability to explore and exploit the search space
effectively, ultimately aiming for high-quality solutions.

3.3.3. Parameter Adaptation

In the hybrid STNMRA, the parameter λ, which is crucial for controlling the mating
frequency of breeder rats, has been modified to enhance the algorithm’s performance.
Instead of using a random value for λ, the algorithm incorporates a simulated annealing-
based mutation strategy (Al-Hassan et al., 2006) to adaptively adjust this parameter during
the optimization process [17], expressed as

λt = λmin + (λmax − λmin)× α(t−1) (23)

Here, λt represents the value of the parameter λ at iteration t;
λmin and λmax are user-defined boundaries that constrain the range of λ;
α is a constant value set to 0.95 [17]; t represents the current iteration.
This equation ensures that λ gradually adapts from λmin to λmax as the iterations

progress. Initially, λ is set close to λmin, and as the iterations continue, it moves toward
λmax. This dynamic adjustment of λ allows the algorithm to explore the search space more
effectively, finding a balance between exploration and exploitation.

The use of simulated annealing in λ adaptation enhances the STNMRA’s ability to
fine-tune its behavior during optimization, improving its chances of finding high-quality
solutions. This self-adaptive approach eliminates the need for manual tuning of parameters,
making the algorithm more robust and efficient.

3.3.4. Greedy Selection

In the final or selection phase of the hybrid STNMRA, a greedy selection technique
is applied to determine the best solution among the search candidates. This phase helps
identify the current local best solution based on the fitness value of the newly obtained
solution compared to the previously obtained solution. The selection technique is defined
(for minimization) by the following equation:

Snew =

{
Snew i f f (Snew) < f (Su(t))
Su(t) otherwise

(24)
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Here Snew represents the newly obtained solution, f (Su(t)) represents the fitness value
of the solution Su(t) at the current iteration.

In this equation, if the fitness of the newly generated solution Snew is better (i.e., lower
in the case of minimization problems) than the fitness of the previously selected solution
Su(t), then Snew is chosen as the current local best solution. Otherwise, the previous solution
Su(t) is retained.

This greedy selection strategy ensures that the algorithm continuously tracks the
best solution found during the optimization process and updates it whenever a superior
solution is discovered. Over the course of the iterations, this approach helps the algorithm
converge toward an optimal or near-optimal solution.

The combination of these phases, including the exploration phase (inspired by STOA),
the exploitation phase (similar to NMRA), parameter adaptation, and the final greedy selec-
tion, constitute the hybrid STNMRA algorithm. This combination leverages the strengths
of both STOA and NMRA to enhance the algorithm’s performance in optimization tasks.

The flowchart of STNMRA is shown in Figure 2.
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4. Simulation Results

In order to attain high directivity, low SLL, and desired major lobe direction, the
STNMRA optimization technique is employed to construct and explore the CAA with
element count NE. In the context of the problem under study, a total of 2NE parameters
need to be optimized, which comprises NE parameters for the excitation amplitudes and
an additional NE parameters for the phases. The count of search agents is directly related
to the population size, and each individual search agent is composed of 2NE elements (NE
amplitudes and NE phases). This is mathematically expressed as:

N =
(

I1, I2, I3, I4, . . . . . . INE−1, INE
, ψ1, ψ2, ψ3, ψ4, . . . . . . ψNE−1, ψNE

)
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STNMRA has been extensively employed to determine the optimal excitation ampli-
tude and phase for the array elements within the CAA design. The simulations have been
carried out using MATLAB version 2022b, utilizing a system with 16 GB RAM and a CORE
i7 CPU. For the implemented algorithms, specific parameters have been set: a population
size of 60, 30 number of runs, and a maximum iteration count of 500 for each algorithm.
The outcomes achieved through STNMRA are compared with those obtained using other
metaheuristic algorithms, namely Grey Wolf Optimizer (GWO), Sine Cosine Algorithm
(SCA), Salp Swarm Optimizer (SSA), and Cuckoo Search (CS) Algorithm. The respective
control parameters for these algorithms are detailed in Table 1.

Table 1. Parameter settings for 12-element CAA.

Algorithm Parameters

GWO NP = 60; D = 12; Gmax = 500; a = [2 to 0]; C = [0 to 2]
SSA NP = 60; D = 12; Gmax = 500; c1 = [2 to 0]
CS NP = 60; D = 12; Gmax = 500; pa = 0.25

SCA NP = 60; D = 12; Gmax = 500; r1 = [2 to 0]
STNMRA NP = 60; D = 12; Gmax = 500; bp = adaptive; λ = adaptive

Here, Gmax is number of iterations, D is dimension of population, NP is number of populations.

The convergence graph in Figure 3 displays the optimal dB score for the objective
function (OF CAA) that was achieved. The STNMRA algorithm’s fitness function has the
lowest value and can be further enhanced by varying the termination criteria for increased
directivity. Higher iterations will lengthen the computation process, which may not be
desirable in real-time applications. As a result, rather than using iterations, the algorithm
may be examined for an increased number of antenna elements to improve the directivity.
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Figure 3. Convergence characteristics for 12-element CAA.

With the required main lobe direction at 90◦, the controlling parameters are optimized
for 12-element CAA. Figure 4a shows the beam pattern that was achieved for the problem
under study. All of the simulated meta-heuristic algorithms have main lobe directions
that point in the desired direction of 90◦. However, compared to CS’s maximum SLL of
−13.572 dB, STNMRA’s maximum SLL is lower at −28.597 dB. However, compared to
−7.87 dB SLL for uniform excitation, all algorithms display better SLL results. A polar
plot provides better visualization for lobe orientation, as well as for the rear and side
lobes. The similar interference of least minor lobe levels in STNMRA as compared to other
optimization strategies can be drawn from the polar plot shown in Figure 4b. In comparison
to other competitive optimization techniques, STNMRA yields a bit wider beam width and
produces less directivity.
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The directivity attained for STNMRA is 12.38 dB compared to the 13.18 dB for CS
and is significantly higher than the necessary standard for real-world applications. The
3D radiation pattern makes the concept of the beam scanning area easier to understand.
Figure 5 shows the 3D beam patterns for all the approaches that have been described. The
SLL is maximal in uniform excitation and is nearly nonexistent in STNMRA with a slightly
wider beam width, as shown from the 3D pattern. The average computational time of the
STNMRA algorithm is 1.18 s for 12-element CAA, which is higher than other competitive
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optimization algorithms because of its complexity and its hybrid structure. Table 2 shows
the amplitude (In), phase (ψ), maximum SLL [dB], directivity [dB], and total computational
time obtained by different optimization algorithms for the synthesis of 12-element CAA.
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Table 2. Comparison of results attained for 12-element CAA.

Main Beam
Direction (ϕdes)

Hard
Controlling
Parameters

Algorithm Amplitude (In) Phase (ψ) Maximum SLL
[dB]

Directivity
[dB]

Computational
Time (s)

90◦
N = 12
d = λ

2

Uniform [1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0] −7.87 12.54 0.00

GWO

[1, 0.8878, 0.2037,
0.5398, 0.2, 0.3249,
0.2, 0.5745, 0.2057,

0.7740, 0.2017,
0.8430]

[1.39, 3.75, 113.33,
−57.36, −11.63,

69.67, −180, −31.4,
−157.88, 11.94,
0.14, −14.23]

−15.71 12.88 0.79

SCA

[1, 0.7402, 0.2,
0.9541, 0.2, 0.3412,
0.2, 0.6847, 0.4559,
0.8231, 0.7688, 1]

[−180, 180, −180,
−180, −106.37,
−88.08, 135.81,

178.76, −180, 180,
−141.04, −180]

−11.37 13.04 0.74

SSA

[1, 0.8708, 0.3265,
0.6346, 0.2053,
0.2770, 0.2231,
0.3991, 0.2073,
0.9062, 0.2733,

0.8611]

[180, −179.75,
152.03, 157.34,

−121, 180, −140.18,
93.69, 29.08,

−156.55, 116.9,
179.68]

−13.55 12.78 0.82

CS

[0.9397, 0.8231,
0.2797, 0.7587,
0.2136, 0.2118,
0.2039, 0.4659,
0.2231, 0.8539,
0.4372, 0.9871]

[180, 178.51, 172.55,
140.88, −180,

−116.7, −158.22,
113.17, 121.3,

−159.43, 144.71,
173.48]

−13.57 13.18 0.85

STNMRA

[0.9753, 0.3763,
0.3210, 0.3652,
0.2001, 0.2188,
0.2406, 0.2494,
0.2260, 0.4257,
0.2467, 0.8262]

[8.74, 22.96, 158.51,
−95.27, −97.04,

119.1, 26.33, −71.94,
−35.55, 91.91,

−102.4, −29.84]

−28.59 12.38 1.18

With the same conditions, the controlling parameters are again optimized for 24-element
CAA. Figures 6 and 7a show the convergence characteristics and beam pattern achieved
for the 24-element CAA, respectively. All of the algorithms in this scenario have main lobe
directions that point in the intended direction of 90◦. The highest side lobe level in the
24-element scenario, like the 12-element situation, is lowest in the STNMRA approach,
reaching a −16.372 dB maximum value as opposed to −12.918 dB for CS. Compared to
the −7.77 dB level without optimization, all optimization algorithms show better SLL
results. Figure 7b shows the polar plot for the beam pattern in the azimuth plane. In this
figure, STNMRA is seen to have the least minor lobe levels compared to other methods.
STNMRA’s directivity measurement for 24-antenna elements is 15.61 dB as opposed to
12 elements’ 12.38 dB. Additionally, all of the algorithms’ directivity measurements ranged
from 14.57 to 15.61 dB, which is better than the scenario with 12 elements. The 3D radiation
pattern of Figure 8 illustrates the beam scan area and beam width achieved. The SLL is
greatest in uniform excitation and is also minimal in STNMRA with good directivity and
small beam width, as shown from the 3D pattern. The average computational time of
the STNMRA algorithm is 2.08 s for 24-element CAA. Table 3 provides a summary of the
results attained for the 24-element CAA.
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While comparing the results for the CAA for 12 and 24 antenna elements, it has been
found that 12-element CAAs with sufficient directivity provide better SLL. On the other
hand, 24 elements of CCA with sufficient SLL yield superior directivity. However, a larger
CAA is required to achieve the increased directivity value. The directivity is more than
12 dB in all circumstances and is enough for usage in practical applications. The SLL,
another figure of merit, is superior to the CAA for 12 elements. In uniform excitation, the
SLL is almost unaffected because no controlling parameter has been used. In addition, the
STNMRA algorithm has the best maximum SLL when compared to the other optimization
methods. It has been observed that the computational time for STNMRA is increased to
almost double when there is an increase in the number of elements from 12-element to
24-element CAA. In addition, by increasing the number of iterations, the results can be
improved to an enhanced level at the expense of more computational time.
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Table 3. Comparison of results attained for 24-element CAA.

Main Beam
Direction (ϕdes)

Hard
Controlling
Parameters

Algorithm Amplitude (In) Phase (ψ) Maximum SLL
[dB]

Directivity
[dB]

Computational
Time (s)

90◦
N = 24
d = λ

2

Uniform
[1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1]

[0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0]
−7.77 14.30 0.00

GWO

[0.7915, 0.7354,
0.7203, 0.7527,
0.7069, 0.3326,
0.6418, 0.2048,
0.4255, 0.2534,
0.2492, 0.3253,
0.4332, 0.2541,
0.2263, 0.2052,
0.2004, 0.9505,
0.5179, 0.2007,

0.9727, 1, 0.6929,
0.3677]

[179.99, −180,
−180, 129.48,
179.95, 108.24,

121.81, −9.4, 179.89,
−179.99, 42.52,
56.67, −160.05,
10.27, 109.46,

−120.25, −0.13,
144.98, −178.56,
−167.71, 138.71,
164.91, 179.01,

178.22]

−14.30 15.07 1.39

SCA

[1, 0.2, 0.8541, 1, 0.2,
0.2, 0.2344, 0.2559,
0.3729, 0.5079, 0.2,
0.2, 0.2550, 0.2118,
1, 0.2,0.5616, 0.2,

0.6227, 0.2029, 1, 1,
1, 1]

[−154.97, 180,
−180, −180, 180,
−180, 180, 180,

11.09, −180, 52.22,
−71.3, −180, 180,

100.03, −37.04,
−180, 173.97, −180,

106.01, 180, 180,
−180, 166.49]

−9.52 14.57 1.48

SSA

[0.7665, 0.5135,
0.8262, 0.9027,

0.9123, 0.8047, 0.2,
0.2008, 0.4671,
0.9620, 0.2862,
0.5007, 0.3917,
0.3374, 0.4158,
0.5321, 0.9590,
0.2619, 0.3310,

0.3480, 1, 0.9777,
0.9999, 0.3545]

[−164.53, 132.73,
150.41, −179.25,
−156.26, −151.3,
36.66, −130.32,
−169.11, 135.68,
−37.6, −175.33,
121.51, −71.42,
149.44, −54.12,
−176.55, 175.3,

−125.65, −171.41,
−174.49, 173.61,
−164.68, 162.06]

−14.01 15.39 1.52

CS

[0.7300, 0.6604,
0.9657, 0.9724,
0.7399, 0.5077,
0.9144, 0.3571,

0.3890, 0.2, 0.2070,
0.3632, 0.3101,
0.6556, 0.2003,
0.4653, 0.7108,
0.2499, 0.3996,
0.9408, 0.6948,
0.5643, 0.9990,

0.8898]

[172.42, 154.56,
155.62, −176.1,

−171.8, 158.59, 180,
179.91, −178.07,
158.54, −56.55,
−87.54, 58.72,
172.63, 96.69,

−147.2, −176.27,
−109.73, 169.72,
−177.32, 180,

173.55, −165.89,
−127.67]

−12.92 15.57 1.63

STNMRA

[0.8038, 0.5463,
0.7782, 0.9988,
0.8199, 0.5903,
0.5693, 0.2004,
0.5394, 0.3730,
0.5418, 0.7236,
0.2024, 0.6437,
0.2615, 0.4811,
0.7154, 0.2946,
0.6476, 0.5123,
0.9839, 0.9980,
0.9618, 0.8926]

[4.04, −8.58,
−24.08, −24.15,

3.43, −48.97, −2.98,
−16.77, 43.18,
−67.01, −171.4,
39.96, −169.25,
−76.64, 119.89,
85.65, −41.59,

119.26, 5.59, 133.35,
−48.01, 20.81,
46.93, 36.95]

−16.37 15.61 2.08
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5. Conclusions and Future Work

This research offers a comprehensive analysis and evaluation of CAA with a focus
on aligning the main lobe, achieving higher directivity, and minimizing SLL. While the
elements count and angular distance were kept fixed as hard controlling parameters, the
optimization process primarily revolved around the soft controlling parameters, namely
amplitude and phase adjustments. These adjustments were aimed at optimizing the array’s
performance in terms of FOM. To estimate the optimal values for these soft regulating
parameters, the STNMRA was utilized. The outcomes obtained through the STNMRA were
compared against those generated by other prominent algorithms, namely GWO, SCA,
SSA, and CS. This comparison provided a comprehensive assessment of the effectiveness
and efficiency of the STNMRA approach in optimizing CAA performance, particularly in
terms of main lobe alignment, directivity enhancement, and SLL reduction. The results of
simulations show that the optimum FOM is obtained for STNMRA with strong directivity
and nearly nonexistent SLL. According to the investigation, good side lobe minimizations
and low element numbers can both yield good directivity values. The STNMRA may also
be helpful not only for passive but also for dynamic real-world applications, such as smart
antennas, beam scanning, and radar.

Antenna array design often involves optimizing multiple conflicting objectives, such as
maximizing gain, minimizing sidelobe levels, and ensuring impedance matching. Balancing
these objectives requires sophisticated optimization techniques capable of exploring the
trade-off space effectively. The proposed approach struggles to handle such multi-objective
optimization problems efficiently. Future work may involve developing algorithms with
enhanced handling of multi-objective optimization and better adaptability to complex array
geometries and performance requirements.
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