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Lensless imagers based on diffusers or encoding masks
enable high-dimensional imaging from a single-shot
measurement and have been applied in various applica-
tions. However, to further extract image information such as
edge detection, conventional post-processing filtering oper-
ations are needed after the reconstruction of the original
object images in the diffuser imaging systems. Here, we
present the concept of a temporal compressive edge detec-
tion method based on a lensless diffuser camera, which
can directly recover a time sequence of edge images of a
moving object from a single-shot measurement, without fur-
ther post-processing steps. Our approach provides higher
image quality during edge detection, compared with the
“conventional post-processing method.” We demonstrate
the effectiveness of this approach by both numerical sim-
ulation and experiments. The proof-of-concept approach
can be further developed with other image post-processing
operations or versatile computer vision assignments toward
task-oriented intelligent lensless imaging systems.
© 2024 Optica Publishing Group under the terms of the Optica Open
Access Publishing Agreement
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Lenses have played an essential role in optical imaging sys-
tems over the past few centuries. Traditional imaging systems
designed to obtain high-dimensional images are often bulky
and expensive, such as multi-shot and scanning methods for
imaging multispectral or three-dimensional (3D) objects [1].
The recent rise of the concept of lensless “diffuser camera” is
driving the development of miniaturized and low-cost cameras
[2]. By encoding the high-dimensional information of objects,
the diffuser-assisted lensless imaging systems are able to recover
multiple-dimensional images such as 3D depth imaging [3], mul-
tispectral/hyperspectral imaging [4–6], 3D fluorescence imaging
[7], compressive temporal imaging [8,9], full-Stokes polar-
ization imaging [10], and multi-modality edge enhancement

imaging [11]. Generally, the starting point for such devices is
the characterization of the diffuser, such as calibrating the point
spread functions (PSFs) of a ground glass diffuser or phase mask.
Then, a two-dimensional (2D) image is captured by putting the
diffuser, instead of a lens, between an object and a 2D sensor.
Finally, inverse algorithms are implemented to recover high-
dimensional images. Recent advances in diffuser cameras have
shown great promise in both applications and adding new imag-
ing functionality. For example, in vivo lensless 3D microscopy
has been achieved by using a specially designed phase mask
[12], and multidimensional imaging, including spatial, spec-
tral, and polarization dimensions, can be encoded by a liquid
crystal metasurface diffuser [13]. In addition, programmable
diffusers, such as reconfigurable particle assembly masks [14],
show potential for developing tunable diffuser cameras.

After the images of an object are obtained, image post-
processing is critical for acquiring additional useful information
[15]. For example, edge detection has been widely used in
advanced driving assistance systems and geographic environ-
ment monitoring [16,17]. Since the results of the diffuser camera
are reconstructed from the raw data, a fusion of the tradi-
tional inverse algorithms used in diffuser cameras and image
post-processing algorithms could generate the post-processed
images directly from the raw data, without recovering the orig-
inal images of the objects. Such an implicit image processing
method, which is involved in computational optical imaging sys-
tems, would offer advantages over the post-processing method,
offering higher signal-to-noise ratios (SNRs) of edge detection
in the case of computational ghost imaging [18–20].

In this work, we propose a temporal compressive edge
detection method based on a lensless diffuser camera (Diffuser-
eCam), which can directly recover a sequence of edge images
of an object at different time points from a single-shot measure-
ment, without further post-processing steps. By only modifying
the forward model matrix in the reconstruction, rather than
modifying any steps in the experiment, we can incorporate the
image post-processing steps into the reconstruction algorithm.
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Fig. 1. Principle of the lensless diffuser camera for temporal com-
pressive edge detection (i.e., Diffuser-eCam). The system encodes
the temporal moving object in a 2D image on the chip CMOS sensor.
The sensor works in a rolling shutter mode in which different rows
of the CMOS sensor begin to be exposed at different times. For cali-
bration, a 100µm pinhole is placed at the object plane for the capture
of the system’s PSF, as shown at the bottom. By only modifying the
forward model matrix A in the reconstruction, the edge images of
the object can be directly reconstructed by inverse algorithms. The
multi-frame edge images of the moving object are reconstructed
from different rows of the measurement and corresponding rows of
the PSF image.

To demonstrate this, we introduce an edge detection filter into
the model matrix, which serves as a spatial filtering operation,
allowing the inverse algorithms to directly reconstruct the edge
images, without recovering their original images. With both
numeral simulations and experimental results, we show that this
method can improve the peak signal-to-noise ratios (PSNRs)
and information entropy (IE) of the resulting images more than
the “conventional post-processing method” using the same fil-
ter. Furthermore, we show how to recover multi-frame edge
images of a moving object from a single-frame 2D measure-
ment, by exploring the rolling shutter mode of the 2D sensor
[8,9,21,22]. Other image post-processing operations can be stud-
ied in diffuser cameras or other computational imaging systems,
to bypass the post-processing steps and enhance their result-
ing image quality. A diffuser camera is considered as a lensless
imaging system that uses a pseudo-random diffuser instead of
the traditional lenses to modulate the light field, as shown in
Fig. 1. The sensor no longer receives an image of the object,
but a blurry speckle pattern. In this work, we assume that the
object is located within the angular memory effect region of
the diffuser, in which the PSFs corresponding to different point
sources do not change their shape and only translate in the image
plane [23]. Another assumption is all the point sources within
the object are incoherent with each other. Then, the 2D measure-
ment I can be expressed as the convolution of the object O and
the system’s PSF P:

I(x, y) = O(x, y) ∗ P(x, y), (1)

where ∗ represents the convolution operation. For convenience,
we can also express it in the form of matrix multiplication:

y = AXobj, (2)

where y is the column vector composed of intensity values of
different pixels of I, Xobj is the column vector composed of
each intensity value of O, A is the forward model matrix or
calibration matrix that is related to the light modulation of the

diffuser, and each of its columns can be obtained by translating
and reshaping the diffuser’s PSF. By using inverse algorithms,
the original image Xobj can be reconstructed.

To extract the edges of the object, conventional methods
require post-processing operations on the original image Xobj,
which needs to be reconstructed in advance. Here we choose an
edge detection operator R [19] to demonstrate this effect:

R = ⎛⎜⎝
0 −1 0
−1 0 1
0 1 0

⎞⎟⎠ . (3)

The desired result Xedge can be yielded by convolving Xobj and
the edge detection operator R. It can also be expressed as the
form of matrix multiplication:

Xedge = R ∗ O(x, y) = RmXobj, (4)

where Rm is the corresponding matrix of the operator R. We can
use the identity matrix E = RmR−1

m to modify Eq. (2):

y = AXobj = AEXobj = (AR−1
m )(RmXobj) = A′Xedge, (5)

where A′

= ARm
−1 is the modified forward model matrix that can

be generated before the reconstruction starts. Then, the com-
pressed sensing algorithm, such as compressive sensing with
total variation regularization [24] and the TwIST algorithm [25],
can directly extract the object’s edge Xedge:

X̂edge = arg min
Xedge≥0

∥y − A′Xedge∥
2
2 − τ∥ΨXedge∥1, (6)

whereΨ is the linear change matrix that maps Xedge to the domain
with sparse representation and τ is a regularization parameter
that tunes the sparsity of the scene.

To reconstruct the images of a temporal moving object, we can
further explore the rolling shutter mode of the CMOS sensor.
The 2D resulting intensity distribution I can be expressed as the
convolution of the PSF P and the object O(x, y, t):

I(x, y) = O(x, y, t) ∗ P(x, y). (7)

The measurement y in the rolling shutter mode can be expressed
as the form of temporal integration:

y(r, c) =
∫ rmax∆+Te

0
S(t|r, c)I(r, c, t) dt, (8)

where r and c are the row index and column index of the CMOS
sensor, rmax is the max row index (r, c, and rmax are required to
be positive integers), Te is the exposure time, and ∆t is the offset
delay time of the sensor’s rolling shutter mode. S is the temporal
encoded function [9]:

S(t|r, c) =
⎧⎪⎪⎨⎪⎪⎩1, when⌈

t − Te

∆t
⌉ ≤ r ≤ ⌈

t
∆t

⌉ + 1

0, else
. (9)

Thus, the information of the temporal object is encoded into dif-
ferent rows of the single-shot raw data. By inputting the inverse
algorithms with these different rows, we can directly reconstruct
the multi-frame edge images of a moving object that corresponds
to different time points.

To demonstrate our proposed method, we conduct the numer-
ical simulation with static objects shown in Fig. 2. The original
images, which are the gray scale versions of “hand” and “tumor
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Fig. 2. Simulated results of edge detection by using the Diffuser-
eCam and “conventional post-processing method” with sampling
rates of 30%, 50%, and 70%. The original objects are the images
of (a) “hand” and (b) “tumor tissue.” The ground truth images
are shown in the lower right corner of the corresponding original
objects’ images.

tissue” from MATLAB’s image data, are shown in the left
column of Fig. 2. The ground truth edge images are embed-
ded in the lower right corner of the corresponding original
images. The results from the Diffuser-eCam and “conven-
tional post-processing method” at different sampling rates are
shown in Fig. 2 and indicated with Diffuser-eCam and “post-
processing,” respectively (see Supplement 1). The edge images
of the Diffuser-eCam are directly reconstructed from Eq. (6).
The “post-processing” method requires the reconstruction of
the image of the objects first using the compressive sensing
algorithm with the same prior according to Eq. (2) and then the
convolution of the object images and the edge detection operator
according to Eq. (4).

The image quality of the results, for both methods, increases
with the sampling rate. It is evident that the results of the
Diffuser-eCam have higher contrast and more details than those
from the “post-processing method.” For example, the edge
detection results of “hand” and “tumor tissue” from the Diffuser-
eCam are more prominent and have higher image contrast than
the post-processing method. The reason for the phenomenon can
be explained that objects’ edges have much higher sparsity than
the original objects’ images [20]. It is also noted that the quality
of edge detection, for the majority of real objects, is improved if
the object’s edge can be reconstructed directly, compared with
the traditional procedure that needs to reconstruct the original
object image in advance [18–20].

Then we conducted experiments to verify the advantages of
the proposed method by using static transmission objects, as
shown in Fig. 3. The collimated incoherent light first illuminated
the objects. The transmitted light was modulated by a diffuser
and then captured by a CMOS sensor (daA2500-14um, Basler),
which is placed 1 cm behind the diffuser. The PSF is calibrated
once as the objects are within the range of the optical angular
memory effect (see Supplement 1 for more details).

Figure 3 compares the post-processing method and Diffuser-
eCam for two different objects. The resulting images are

Fig. 3. Experimental results and comparison of the Diffuser-
eCam and “conventional post-processing method” with the two
objects: (a) three stripes and (b) the U-turn arrow. The example
resulting images of two different objects are shown at the bottom of
each subfigure, with a sampling rate of 50%. The reference images
are shown in the upper left corner of each subfigure. The image
quality of the results, at different sampling rates, is characterized
by using PSNR and IE. The red lines represent the PSNRs, and
the blue lines represent the IE values. The solid and dashed lines
are the calculated values from the Diffuser-eCam and “conventional
post-processing method,” respectively.

evaluated by the PSNR and IE [26]. With a sampling rate of
50%, the results from the Diffuser-eCam have smoother and less
noisy backgrounds than the post-processing method, as shown
at the bottom of each subfigure. The PSNRs of the images from
the two methods, at different sampling rates, are shown in red
solid and dashed lines, respectively. Generally, the PSNRs for
different objects increase as the sampling rate increases. Com-
pared with the post-processing method (red dashed lines), the
resulting images of the Diffuser-eCam have higher PSNRs and
less noise (red solid lines). The corresponding values of IE are
shown in the blue solid and dashed lines.

As shown in Fig. 3, the solid lines, whether red or blue, are
almost above the dashed lines. In other words, the PSNRs and IE
values of the results from the Diffuser-eCam are mostly higher
than the “conventional post-processing” results. The edge is
usually the place where the pixel value changes most obviously
in gray scale. Better edge quality results in higher IE value and
higher PSNR value that indicate lower noise. It implies that the
contribution to the growth of the PSNR and the IE is mostly
generated from the sharper edge rather than the more complex
background. Thus, it can be concluded that the Diffuser-eCam
has improved the image quality of the objects’ edge, compared
with the “conventional post-processing method.”

One advantage of diffuser cameras is their ability to achieve
compressive imaging that encodes a temporal scene into a
single-shot measurement by using the rolling shutter mode of
the sensor, in which the pixels in each row of the sensor are
sequentially exposed at different times. To further demonstrate
the reconstructed multi-frame edge images of a moving object
from a single-shot 2D measured speckle, as shown in Fig. 4, we
make use of a 3D-printed “car” as the object, as shown in the
inset image of Fig. 4(a). The “car” is mounted on a translation
stage (GCM-083904M, DHC) and is moved parallel to the dif-
fuser camera. Figure 4(b) shows the directly captured image of
the moving “car” by using the traditional lensed system with the

https://doi.org/10.6084/m9.figshare.25737819
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Fig. 4. Demonstration of the Diffuser-eCam for reconstructing
multi-frame edge images of a moving object, from a single-shot 2D
raw data. (a) 3D-printed “car” object is mounted on a translation
stage and is moving laterally in the experiment. The “car” is about 3
mm × 3 mm, and its ground truth image is shown in the upper right
corner of (a). The directly captured photo of the moving “car” by
using a traditional lensed system, and the corresponding edge image
is shown in (b). (c) 2D raw data captured by the Diffuser-eCam is
shown on the left. The example reconstructed edge images (with a
resolution of 65 × 65 pixels) corresponding to different time points
(t = 0, 1.7 ms,. . . , 59.5 ms) are shown in the middle and right,
which are selected from the 36 edge frames at 588 fps. Both the
traditional lensed system and Diffuser-eCam use the same CMOS
sensor (daA2500-14um, Basler), which is operated in the rolling
shutter mode and has a maximum frame rate of 14 fps at the full
resolution.

same CMOS sensor in the rolling shutter mode, and its post-
processed edge image is shown on the right. The image of the
“moving car” in Fig. 4(b) looks skewed, due to the rolling shut-
ter effect while shooting a dynamic scene. Figure 4(c) shows
the results of the Diffuser-eCam. The raw data is shown on
the left, which was also captured in the rolling shutter mode.
Since different rows of the measurement correspond to different
time points, the resulting multi-frame edge images at certain
time points can be reconstructed directly from the correspond-
ing rows of the raw data by the Diffuser-eCam. We can clearly
observe that the “car” is moving from the left to the right from
the sequential 36 frames (see Supplement 1). The selected edge
images of the moving “car” are shown in the middle and right
of Fig. 4(c), corresponding to different time points (t = 0, 1.7
ms,. . . , 59.5 ms). Different from Fig. 4(b) and its edge image, the
reconstructed results by the Diffuser-eCam show the clear and
undistorted edge images at 588 frame-per-second (fps), which is
enough to reveal that the moving “car” has an average velocity
of 67.2 mm/s during the exposure (see Supplement 1). Here
the Diffuser-eCam is able to directly reconstruct 36 frames
edge images of the moving object at 588 fps, in which the
employed CMOS sensor is operated at a much slower frame
rate.

In conclusion, we have proposed and demonstrated temporal
compressive edge imaging based on a lensless diffuser camera
from a single-shot measurement. The diffuser camera encodes a
temporal scene into a 2D image on the sensor. By only modifying
the forward model matrix in inverse algorithms, the edge images
of an object corresponding to different times can be directly
reconstructed from different rows of the 2D raw measure-
ment. The proposed method can achieve higher image quality,
compared with the “conventional post-processing method” that
convolves the retrieved object image with an edge detection
operator. Thus, the Diffuser-eCam shows not only a new dimen-
sion of diffuser cameras for edge detection but also higher
resulting image quality than the “conventional post-processing
method.”

One major advantage of the proposed method is that it does
not require any change to the experimental setup or mul-
tiple measurements, but only modifying the forward model
matrix during the reconstruction process. Therefore, our method
would inspire further developments of diffuser cameras with
the realization of other digital image processing tasks, such as
high-/low-pass filtering, deconvolution, and denoising. Further
complex vision tasks, such as face detection and fingerprint
identification, can be also considered. The simple hardware sys-
tem also makes the diffuser camera easily add new imaging
dimensions, such as wavelength and polarization, into the imag-
ing systems. Our scheme provides a new way to realize edge
detection based on a lensless diffuser camera. We, therefore,
anticipate that this work will open opportunities for developing
smart lensless imaging systems with versatile vision tasks.
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