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Abstract

Robustness to uncertainties is crucial to col-
laborative robot control, particularly when per-
forming tasks under unpredictable external in-
fluences. One important class of challenging
problems is controlling the robot to perform a
specific task on a target that undergoes random
movements. To address this challenge, we con-
sider the problem of using a robot manipulator
to draw a given shape on a paperboard that can
have unpredictable small movements. An elec-
tromagnetic sensor is used to monitor the pose
of the paperboard. We design an MPC ( Model
Predictive Control) controller and compared it
with a few different feedback control strategies
for the robot to draw the required shape on the
paperboard. Simulations and physical exper-
iments using a Dobot demonstrate that using
the electromagnetic sensor information as feed-
back combined with different control strategies
can allow for accurate drawing. A video of our
experiments is available at https://youtu.

be/Wmj0GU5CYH4?si=cgnN9D3VRr0ZLRlK

1 Introduction

Collaborative robot control has been a critical research
topic in the field of robotics and has found widespread
applications in both industry and education for a long
time. However, in real-world scenarios, the working en-
vironment of robotic arms is not always as controlled
or interference-free as a factory setting. In such envi-
ronments, the uncertainties can significantly impact the
accuracy of robotic arm operations.

How can a robotic arm operate accurately under un-
certainties in the environment? The environment uncer-
tainties can be broadly categorized into three scenarios:
(1) the platform on which the robotic arm is mounted
can move, (2) the object that the robotic arm is manip-
ulating can move, and (3) both the platforms where the

robotic arm is installed and the object under manipu-
lation can move. In the cases of factory assembly lines
or surgical robot operations, the majority of cases fall
under the second scenario, because the robotic arms are
typically considered to be mounted on stable surfaces.

In this paper, we will focus on the second scenario,
where the robotic arm is tasked with operating on a
moving object. Existing research on this scenario largely
assumes that the object being manipulated in a stable
environment or under predictable disturbance[Lin and
Görges, 2020; Li et al., 2023a; Binder et al., 2019].If the
motion of the object or the platform on which the object
rests is random and unpredictable, many methods may
fail to achieve their claimed level of precision.

Moreover, most studies on robotic stability focus on
tasks like object grasping, which are completed in a
short, instantaneous action, without requiring sustained
operations[Yin et al., 2021; Zimmermann et al., 2021].
In contrast, some robotic tasks involve continuous oper-
ations along a pre-determined trajectory, which imposes
much higher demands on the robot’s stability and ro-
bustness. The quality of the task execution is required
to be extremely precise, as even a slight deviation can
have a significant impact. For example, when an or-
thopedic surgical robot performs surgery automatically,
the patient may experience slight vibrations or motions
during the surgical process which affects the accuracy of
the robot’s operation [Walker et al., 2022]. Therefore,
stricter requirements for precision and reliability under
such uncertainties are needed.

This paper considers the robot drawing problem,
which requires accuracy over a sustained period of time.
We assume the paperboard on which the robot is draw-
ing can have unpredictable small movements. In order to
achieve high accuracy in the drawing, we mount an elec-
tromagnetic sensor on the paperboard to track the pose
of the paperboard and use this information to guide the
control of the robot arm. We proposed a control method
based on MPC and compared it with three different feed-
back control strategies in simulation, and conduct physi-
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cal experiment using electromagnetic sensor. Our results
show that this electromagnetic sensor based on our con-
trol strategy can achieve good accuracy.

This paper is organized as follows. Section 2 intro-
duces the related works on robot manipulations under
uncertainties; Section 3 presents the problem formula-
tion; Section 4 talks about the our control methods and
compared methods; Section 5 shows the simulation re-
sults and physical experiment setup and the results; Fi-
nally, Section 6 presents the conclusions and some topics
for future work.

2 Related Works

The collaborative robots are composed of links connected
by joints into a kinematic chain, which are widely ap-
plied to many areas [Spong et al., 2020]. PID control
is the most commonly used feedback control algorithm
that combines proportional, integral, and derivative ac-
tions to maintain a desired setpoint by adjusting the
control input based on current and past errors [Borase
et al., 2021]. Some methods control the robot by cal-
culating the torque required to compensate for dynamic
changes [Nguyen-Tuong et al., 2008]. Another classical
control method is Passivity-Based Control (PBC), which
is a control strategy grounded in the concept of passivity
from systems theory. It is particularly useful for man-
aging dynamic systems, such as robotic and mechanical
systems, where energy considerations are crucial [Ortega
et al., 2017].

However, most of the methods above mainly focus on
the deterministic case or stable environment [Cui et al.,
2012]. With the development of robotics, it is natural
to expect manipulators to be able to work in dynamic
environments, such as underwater or on transportation
equipments. Visual servoing control is a classical method
for controlling a robot against a dynamic target, which
utilizes a camera and image processing techniques to
track the target position in real time and adjust the
trajectory of the robotic arm based on the visual in-
formation [Chaumette and Hutchinson, 2006]. Adaptive
control can adjust the control parameters in real time
based on the dynamic characteristics of the target to ac-
commodate its movement changes and is also suitable
for uncertain or time-varying systems [Åström, 1995].
Model Predictive Control (MPC) is one of the most pop-
ular methods to handle those complex scenarios. It em-
ploys a system model to predict future states and opti-
mize control inputs for precise tracking of moving targets
[Kouvaritakis and Cannon, 2016]. Disturbance observer
based control (DOB) methods have also garnered con-
siderable attention in control theory research. They are
designed to handle uncertainties and disturbances effec-
tively and have good performance in real time, but they
depend heavily on the accuracy of the system model and

finding the optimal parameters for disturbance observers
requires expertise and can be time-consuming [Chen et
al., 2015]. In recent years, reinforcement learning based
control methods turn into mainstream. Reinforcement
learning is a subfield of machine learning, concerned with
how to find an optimal behavior strategy to maximize
the outcome through trial and error dynamically and
autonomously [Kalashnikov et al., 2018].

With respect to robot drawing tasks, [Kemp and
Edsinger, 2006] control the movement of the pen tip to
draw marks by having the robot recognize the tip of the
tool and identify it as an image area. [Yussof et al.,
2005] combine linear and curved trajectories in differ-
ent ways to produce distinct characters. Aonther frame-
work is proposed to combine trajectories to produce dis-
tinct symbols rather than just simple letters [Zhang and
Weng, 2007]. In recent years, more computer vision tech-
niques are being used. [Pichkalev et al., 2019] describes
the algorithm of points extraction from the picture pro-
cessed by a canny edge detector that will be turned
in the curves using the cubic spline interpolation, and
use KUKA robot take the commands to drawing the re-
sult image. [Tsai et al., 2021] use Dobot Magician and
the Raspberry Pi development platform to integrate im-
age processing and robot-arm drawing. However, those
methods are mainly focus on how to use robot to draw
on a stationary paper or board. In this paper, we con-
sider the problem of a robot drawing on a paperboard
that can have a small movement, especially when that
movement is unpredictable. Also, instead of using vi-
sion for the feedback, we use an electromagnetic sensor
to monitor the pose of the paper.

3 Problem Formulation

3.1 Problem Statement

In this paper, we consider the problem of using a robot to
draw specified shapes on a paperboard which can move
randomly. To simplify the problem, we suppose that the
paperboard can only move in a 2D plane such as on a
table surface. A marker is attached to the robot end-
effector and can be used to draw on the paper. In order
to achieve accurate drawing, we mount an electromag-
netic (EM) sensor on the paperboard which can track
the pose of the paper. Figure 1 shows an example of the
experiment setup.

3.2 System model

In our control problem, the world coordinate system is
defined by the robot base {B}. The states of the system
consist of the robot end-effector position and the pose of
the paperboard.

For the Dobot robot used in our experiment, it can
only move in 4 degrees of freedom (DOF) including a 3D
xyz position and a 1D orientation along z axis. During
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Figure 1: Physical experiment setup: Using the Dobot
to draw a specific shape on paperboard that is moving
randomly. The electromagnetic (EM) system (including
generator, control box and sensor) is used to monitor the
motion of the paperboard.

the drawing, we can restrict the robot operation to a
fixed height (z is constant). In addition, since a marker
is used for the drawing, the robot end-effector orientation
is not so important and we mainly care about the end-
effector xy position. At time step k, the end-effector xy
position (in coordinate frame {B}) is denoted as

xR(k) = [xr(k), yr(k)]
T
, (1)

and xR(k) is the first part of our state vector.
Since the robot can move to any position within its

work envelope, we simplify the control input as the
change in the xy position, in coordinate frame {B},

u(k) = [xu(k), yu(k)]
T
. (2)

Thus, the state transition model of xR(k) is simply as

xR(k + 1) = xR(k) + u(k). (3)

For the drawing, we would like the robot end-effector
position to follow a pre-determined trajectory on the pa-
perboard. Since the paper is moving, the target trajec-
tory should be defined in the coordinate system defined
by the paper, {P}. We denote the k-th point in the
target trajectory as

L{P}(k) = (x
{P}
t (k), y

{P}
t (k)). (4)

For accurate drawing, the relation between the two
coordinate systems, {P} and {B}, is critical. We use
T{B}{P}(k) ∈ SE(2) to denote the relative coordinate
transformation between the paper frame and the robot
base frame at time k, and denote
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Figure 2: Chain of rigid transformation of the system

xP (k) = log(T{B}{P}(k)) ∈ se(2) (5)

as the second part of our state vector. Since we
assume the paper can have unpredictable small motions,
the state transition model for xP (k) can be described as

xP (k + 1) = xP (k) +w(k). (6)

where w(k) ∈ se(2) represents the unpredictable motion
from step k to step k + 1.

Since the robot end-effector position at any time can
be obtained directly, we can assume xR(k) is fully ob-
servable without any observation noise, this is our first
observation equation

zR(k) = xR(k). (7)

We use an EM sensor mounted on the paperboard to
track the paper position and orientation. The EM read-
ing gives the pose of the EM sensor in the EM generator
coordinate frame. After the calibration the EM sensor
reading (TEM2 in Figure 2) can be regarded as another
observation which is related to xP (k), as follows

zP (k) = log(T−1
base · T{B}{P}(k) · T−1

pre) + vR(k)

= log(T−1
base · expxP (k) ·T−1

pre) + vR(k)
(8)

where vR(k) represents the EM sensor reading noise.
The details of the calibration process can be found in
Section 5.2.

Our control problem is to design control input u(k)
based on the target trajectory L{P}(j), j ≥ 0 and the
observations zR(i), zP (i), i ≤ k, such that the robot end
effector position xP (k) follows the target trajectory on
the paper as accurately as possible.

4 Control Methods

The control objective to make the robot end-effector fol-
low the target trajectory on the paper can be described



in different formats, and solving the corresponding con-
trol problem exactly can be very challenging. In this
section, we will introduce our designed MPC control
method to solve our problem and compared it with three
traditional control methods. The common idea of these
three methods is to ignore the EM sensor reading noise
in (8) such that we can approximate xP (k) as a function
of zP (k),

xP (k) ≈ x̃P (k) = log(Tbase · expzP (k) ·Tpre). (9)

4.1 State equation

The motion of a rigid body, such as the platform for a
mobile manipulator, can be modeled as a linear time-
invariant system with affine disturbance[Woolfrey et al.,
2021], and using x̃P (k), we can transfer the target tra-
jectory in the paper frame {P} into a trajectory in the
base frame {B}. This trajectory in the base frame can
then be used to design the control input u(k). Based on
the definitions provided in Section 3.2, we can define the
state equation of this system as:

X(k + 1) = AX(k) +B1u(k) +B2w(k)

Z(k) = X(k)
(10)

where:

1. X(k) = [xR(k),xP (k)]
T ∈ R5×1 is the state vector

represents the position and orientation in the coun-
terclockwise direction of the paperboard in 2D space
and end effector position;

2. u(k) = [xu(k), yu(k)]
T ∈ R2×1 is the control value

add to end effector position;

3. A ∈ R5×5 is the identity matrix represents the state
matrix;

4. B1 =

[
0 1 0 0 0
1 0 0 0 0

]T
is the input matrix to ad-

just the control value to the state.

5. B2 =

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0

T

6. w(k) ∈ R3×1 represents the unpredictable motion;

7. Z(k) = [zR(k), zP (k)]
T ∈ R5×1is the observation

vector of the system.

4.2 Compared control methods

We use target trajectory to compute difference between
target value at k + 1 step and current end-effector posi-
tion at k step to get eposition as controller input below.

eposition(k) =

[
x̃
{B}
t (k + 1)

ỹ
{B}
t (k + 1)

]
−
[

xr(k)
yr(k)

]
(11)

where
[
x̃
{B}
t (k + 1), ỹ

{B}
t (k + 1)

]T
is computed by[

x
{P}
t (k + 1), y

{P}
t (k + 1)

]T
and x̃P (k).

The first control method is the most common position
control, utilizing the proportional control component as
follows.

u1(k) = (1 +Kp) · eposition(k) (12)

where the proportional gain Kp is a manually adjusted
parameter.

In the second control method, we build upon the first
approach by adding compensation for the difference in
observed values zP (k) and zP (k − 1). This difference is
obtained by comparing the observations from the previ-
ous and current steps. And this difference can be seen as
a predictive velocity of the paper motion and thus can
be applied as the feedback term on current controller.

u2(k) = (1+Kp)·eposition(k)+Kc ·R(k−1)t(k−1) (13)

where Kc is another gain parameter, and R(k − 1) and
t(k−1) are the rotation part and the translation part of
exp(zP (k)−zP (k−1)).

The third method adds integral component based on
control method 1. Multiplying Ki with the cumulative
sum of eposition from start to current step as the integral
control term

u3(k) = (1+Kp) ·eposition(k)+Ki ·
k∑

l=1

eposition(l) (14)

4.3 Our method

MPC (Model Predictive Control) is an advanced con-
trol method that optimizes control inputs by predicting
a system’s future behavior over a time horizon, using
a mathematical model. At each step, MPC minimizes
a cost function, often balancing tracking accuracy and
control effort, while respecting constraints on inputs and
states. In this paper, we define the MPC problem in a
discrete state framework, predicting the system’s state
over N steps to optimize and obtain the most suitable
control values. We assume our control method can com-
pensates for the movement of the paper perfectly then
we can get a new equation for optimization to substitute
the state equation.

X̄(k +N) = ANX̄(k) +

N−1∑
i=0

AiB1u(k + i)

Xk =


X̄(k + 1)
X̄(k + 2)

...
X̄(k +N)

 = ÃXk−1 + B̃U(k)

(15)

where



1. Xk ∈ R5N×1 includes all the states of current end-
effector position and paper pose use for prediction
in total N steps;

2. Ã =
[
A,A2, . . . ,An

]T ∈ R5N×5 includes all state
matrix in N steps;

3. B̃ =


B 0 ... 0

AB1 B1 ... 0
... ... ... ...

AN−1B1 AN−2B1 ... B1

 ∈ R5N×5N ;

4. Uk =
[
u(k),u(k + 1), ...,u(k +N − 1)

]T ∈ R2N×1

is a vector of the predicted control value in N steps;

5. N is the prediction horizon.

We propose an optimized error metric suitable for op-
timization defined as follows:

e(k) =
[(

xr(i)− xt(i)
{B}

)
,
(
yr(i)− yt(i)

{B}
)]T

(16)

and we can get Ek to represent vector of the error value
in N steps:

Ek = [e(k), e(k + 1), . . . , e(k +N)]
T

(17)

Then we can use a cost function for optimization:

J = ET
k QEk (18)

Q represents the weights for error, and R represents the
weights for the inputs. Then the problem can be formu-
lated as;

minJ(Ek, Uk) (19)

Our objective is to minimize the cost function, and
we use quadratic programming (QP) as the optimiza-
tion method to achieve this. Quadratic programming
solves optimization problems where the objective func-
tion is quadratic, enabling us to obtain a set of con-
trol values Uk that minimize the cost function, thereby
achieving our control goal. The use of the Our control
methods and compared methods in the robot drawing
can be summarized in Algorithm 1.

5 Experiments

5.1 Simulation Experiments

Simulation experiments are performed to compare the
different control methods used in three target trajecto-
ries with two different paper movement types.

Simulation setup

The three target trajectories on the paper are given using
the following waypoints (0 ≤ k ≤ 20) as follows. The
first target trajectory is a straight line

L
{P}
1 (k) = (x

{P}
t (k), y

{P}
t (k)) = (2k − 10, 0). (20)

Algorithm 1: Drawing robot control on Moving
Paperboard

1 Data: target trajectory L{P}

2 Initialize end-effector position xR(0) ;
3 while k less than Klimit do
4 get zR(k) from the robot
5 read EM sensor to get zP (k)
6 eposition(k)←

NextTargetInBase(L{P}(k + 1), zP (k));
7 u1, u2, u3 ←

CalculateControl(xR(k), eposition(k), zP (k));
8 uMPC ←

CalculateOptimization(minJ(Ek, Uk));
xR(k + 1)←Move(xR(k), u(1,2,3,MPC));

9 end

The second target trajectory is a quadratic curve

L
{P}
2 (k) = (x

{P}
t (k), y

{P}
t (k)) = (2k−10, (2k − 10)2

25
−4).
(21)

and the third target trajectory is a sine wave

L
{P}
3 (k) = (x

{P}
t (k), y

{P}
t (k)) = (2k − 10,

sin(2k)

2
).

(22)
We assume that the origin of the paper frame coincides

with the center of the paper, and the axisX{P} and Y {P}

are set to be parallel to the robot’s axis X{B} and Y {B}

with the origin located at the robot coordinates frame
(10, 20). Then the initial position of the end-effector is

set to (x
{P}
r (0) = −10, y{P}

r (0) = 0).
We consider a series of different paper movements.

By changing the (x, y, θ) values of the paper’s center in
the robot coordinate frame, we simulated the EM sensor
readings, also known as xP (k) in equation (5).
We consider two types of movements in simulation ex-

periment: random movements and regular periodic ro-
tations. For random movements we give random value
with a normal distribution in both (x, y, θ) every step,
and for regular periodic movements we increase the θ
with 2.5× 10−3rad every step. To simulate the true EM
sensor reading we also add random value with a normal
distribution as noise.

Simulation results

We implemented and compared the three control meth-
ods discussed in Section 4. To visualize the drawing pro-
cess, we recorded the end-effector positions during the
drawing process and plotted it with the trajectory line
in Fig. 3(a)(c). To conveniently demonstrate the perfor-
mance of these different control methods, as well as to
visually compare the differences between the lines drawn
by the robot and the trajectory line, we also plotted the
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Figure 3: Simulation experiment results for drawing the strainght line: the green line represents control method
1, the blue line represents control method 2, and the red line represents control method 3. The black dashed line
indicates the target line. In subfigures (a) and (b), we simulated the paper being subjected to periodic rotational
motions, while in subfigures (c) and (d), we simulated random motion of the paper. Subfigures (a) and (c) are
presented in the robot base frame to show the actual motion trajectories, while subfigures (b) and (d) are shown in
the paper frame to illustrate the deviation between the control algorithm’s result and the target line.

trajectories in the paper coordinate frames shown in Fig.
3(b)(d). The black line is the target trajectory, in Fig.
3(a)(c) was projected to the robot base. The red line
represents the result from control method u1, the blue
line is the result from control method u2, and the green
line is the result from control method u3.
We also compared how the different disturbance affect

the control process. In Fig. 3(a)(b) we set regular peri-
odic rotations, and in Fig. 3(c)(d) random disturbances.

The results of drawing the quadratic curve and the
sine wave are presented in Fig. 4 and Fig. 5.

A performance metric

In order to evaluate the performance of different con-
trol methods quantitatively, we compute the area be-
tween the actual robot end-effector trajectory and the
target trajectory. This can be computed relatively eas-

ily in the paper coordinate frame. Firstly, the robot
end-effector position in each step is transferred into the
paper coordinate frame using the ground truth paper
poses, and we assume the movement trajectory between
the robot’s current position and its next position is a
straight line, then we can get the robot movement tra-
jectory during the drawing process. We calculated the
integral of the difference between the two trajectories to
obtain the area, which is denoted as E to evaluate the
control performance.

We have calculated e when using different control
methods with different target trajectories and conduct
repeated experiments for three times and calculate their
average value of e, then recorded them in Table 1.

According to the results from Fig. 3 to Fig. 5 and
Table 1, we can conclude that the our control method
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Figure 4: Simulation experiment results for drawing the quadratic curve.

Trajectory
type

Disturbance
Type

Control Method
U1 U2 U3 MPC

Line
Random 0.0098 0.0125 0.0570 0.0398
Regular
Rotation

0.0915 0.0934 0.0845 0.0960

Curve
Random 0.0110 0.0116 0.0617 0.0371
Regular
Rotation

0.0916 0.0915 0.3846 0.0960

Sine
Random 0.0125 0.0075 0.0680 0.0093
Regular
Rotation

0.0896 0.0971 0.0644 0.0954

Table 1: E (cm2) of three control methods in simulation

have the best real-time performance and have an great
performance in all cases for the considered simulation
scenarios.

5.2 Physical Experiments

Experiment setup

The methods we compared in simulation are also tested
in the physical experiments (Fig. 1). The Dobot Magi-

cian (Dobot Robotics, Shenzhen, China) is used to hold
a marker to draw a straight line. Considering the chal-
lenging scenario that the paperboard can have random
movement during the drawing, we attach an electromag-
netic (EM) sensor on the paperboard to monitor its mo-
tion in real-time. The EM tracking system we use is the
Aurora Electromagnetic Tracking (Northern Digital Inc.,
Canada) with planar field generator, which can provide
six degrees of freedom measurements in 40 Hz [Sorriento
et al., 2019]. Its non-invasive nature and high sensitiv-
ity make it a critical technology for both industrial and
medical applications [Li et al., 2023b].

In order to compute the transformation between
Dobot’s base frame and the EM tracking frame (field
generator), we attach another EM sensor to the marker
(refer to Fig. 2) to perform a hand-eye calibration [Dani-
ilidis, 1999]. To solve the hand-eye calibration problem
formulated as:

Trob · Tmarker = Tbase · TEM1, (23)

the Dobot is moved arbitrarily to a sequence of poses
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Figure 5: Simulation experiment results for drawing the sine wave trajectory.

and Trob, forward kinematics of the robot and TEM1,
the transformation between the EM sensor and the field
generator are stored in each pose (Fig. 2). The initial
poses Tbase can be written with respect to TEM1 as

Tbase = Trob,0 · Tmarker · T−1
EM1,0. (24)

Substituting (24) in (23) and rearranging it, gives a
linear system of equations AX = XB to solve for
X = Tmarker, where

A = T−1
rob,0 · Trob,k,

B = T−1
EM1,0 · TEM1,k,

(25)

for k = 0, . . . , N poses. However, since the Dobot only
covers one degree of freedom in rotation and three de-
grees of freedom in translation, it is not possible to sim-
ply apply the methods based on skew theory [Park and
Martin, 1994] to solve the problem. Therefore, we apply
a linear method based on dual quaternions [Ulrich et al.,
2014]. Substituting the calculated Tmarker in (24) solves
for Tbase. Now the chain of transformations is closed.

To register the paperboard to pre-determined trajec-
tory space, several distinctive landmarks are selected,
i.e., the corners of the paperboard. The corresponding
landmarks on the paperboard, are manually identified
using an EM tracking probe. Then the rigid transfor-
mation Tpre can be calculated using these two sets of
landmarks. Now the marker tip position xmarker

tip in the
Dobot base frame can be found as:

xmarker
tip = Trob ·Tmarker ·T−1

EM1 ·TEM2 ·Tpre ·Pstart, (26)

where Pstart is the start point of the drawing trajectory
in the pre-determined frame.

Result
In the physical experiment, the we set the target tarjec-
tory as a straight line and the start point of the marker
tip on the paperboard can be found by (26). We used
control method 2 to control Dobot. During the draw-
ing, the paperboard attached with the EM sensor are
slightly moved randomly. As shown in Fig. 6, the red
line is the expected drawing line as the target trajec-
tory and the black line is the actual line drawn by the



Figure 6: Three examples of robot drawing results from
our physical experiments. Using control method 2 (ve-
locity predictive term) to draw Line trajectory when pa-
per is randomly moving.

Dobot. Due to the unpredictable movements of the pa-
perboard, it is hard to match the actual drawing with
the pre-determined line. But the control method effec-
tively reduces the effect of cardboard movement, and
the drawing results are not much off. A video of our ex-
periments is available at Youtube https://youtu.be/

Wmj0GU5CYH4?si=cgnN9D3VRr0ZLRlK

6 Conclusion and Future Work

This paper considers the problem of using a robot to
draw lines on a paperboard that can move randomly.
Electromagnetic (EM) sensors are used to track the pa-
perboard motion and provide feedback for robot trajec-
tory control. Simulation and practical experiments us-
ing a Dobot demonstrate the accuracy of our EM sensor
based feedback control strategies.

In the future, we will first do more testing on robot
performing more complicated drawings to evaluate the
accuracy of the feedback control methods, and also de-
velop more control algorithms taking into account the
EM sensor observation errors. After that, we will extend
our research into 3D where the paperboard can move ar-
bitrarily in 3D space. For that case, we are planning to
use a universal robot (such as UR10) which can achieve
3D orientation. Finally, we will investigate the surgical
robot operation problem where a robot is required for
performing accurate manipulations such as acetabular
preparation for total hip replacement.
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