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The prediction of slope stability is considered as one of the critical concerns in geotechnical engineering.
Conventional stochastic analysis with spatially variable slopes is time-consuming and highly
computation-demanding. To assess the slope stability problems with a more desirable computational
effort, many machine learning (ML) algorithms have been proposed. However, most ML-based tech-
niques require that the training data must be in the same feature space and have the same distribution,
and the model may need to be rebuilt when the spatial distribution changes. This paper presents a new
ML-based algorithm, which combines the principal component analysis (PCA)-based neural network
(NN) and transfer learning (TL) techniques (i.e. PCAeNNeTL) to conduct the stability analysis of slopes
with different spatial distributions. The Monte Carlo coupled with finite element simulation is first
conducted for data acquisition considering the spatial variability of cohesive strength or friction angle of
soils from eight slopes with the same geometry. The PCA method is incorporated into the neural network
algorithm (i.e. PCA-NN) to increase the computational efficiency by reducing the input variables. It is
found that the PCA-NN algorithm performs well in improving the prediction of slope stability for a given
slope in terms of the computational accuracy and computational effort when compared with the other
two algorithms (i.e. NN and decision trees, DT). Furthermore, the PCAeNNeTL algorithm shows great
potential in assessing the stability of slope even with fewer training data.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Geological hazards triggered by slope instability, such as land-
slides and failure of dams and open-pit mines, are reported
worldwide and will result in huge social and economic losses (Ma
et al., 2018; Wang et al., 2021). It is therefore essential to analyze
and predict the slope stability for geotechnical engineers in prac-
tice. Generally, the stability of slope is evaluated primarily on the
basis of the well-known factor of safety (FOS), which is defined as
the ratio of the shear strength (or, alternatively, an equivalent
measure of shear resistance or capacity) to the shear stress (or other
equivalent measure required for equilibrium). In the last few de-
cades, numerous attempts have been made to conduct slope
ock and Soil Mechanics, Chi-
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stability analysis based on either the deterministic methods, such
as limit equilibrium method (Duncan, 1996), finite elements limit
analysis (Sloan, 1988), and strength reduction method (Dawson
et al., 1999), or the probabilistic methods, such as first-order sec-
ond-moment method (Christian et al., 1994), first-order reliability
method (Low and Tang, 1997), and random finite-element method
(Griffiths and Fenton, 2007). The former approach is simpler, and
requires less computing resources, but fails to consider the uncer-
tainty of soil properties (i.e. shear strength and cohesion); while the
latter approach is capable of capturing the influence of un-
certainties in soil properties, which makes it more reasonable to
estimate the slope stability.

The inherent spatial variability of soil properties, which is
attributed to different deposition conditions due to different
loading histories, has been considered one of the main sources of
geotechnical uncertainty. Such variability is typically modeled with
random fields and slope stability is estimated using the Monte
Carlo sampling approach orMonte Carlo coupledwith conventional
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Fig. 1. Schematic diagram of slope.
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deterministic methods, where the soil properties are commonly
assumed to follow different types of autocorrelation functions
(ACFs) (Jiang et al., 2014; Li et al., 2015). In a Monte Carlo-based
simulation, numerous simulations with varying soil properties is
required to obtain a good estimation of FOS, which, however, is
time-consuming and highly computation-demanding.

In recent years, with the development of artificial intelligence
technology and computer resources, machine learning (ML) has
yielded revolutionary results across diverse disciplines, and has
also been used as surrogate models for the slope stability analyses,
such as support vector machine (SVM) (Zhao, 2008; Kang et al.,
2016), artificial neural network (ANN) (Wang et al., 2005; He
et al., 2020, 2021a; Meng et al., 2021), decision tree (DT) (Hwang
et al., 2009), multivariate adaptive regression splines (MARS) (Liu
et al., 2019), and to name a few. The core idea of these ML-based
approaches is trying to use a small amount of data, which is
commonly generated by finite element simulations, as training
dataset to make predictions of FOS for a given slope. Most recently,
Qi and Tang (2018) proposed a hybrid ensemble method for the
improved prediction of slope stability, which combines with six ML
algorithms. He et al. (2020) conducted stochastic reliability ana-
lyses with promising accuracy based on two ML algorithms, i.e.
neural network (NN) and SVM with only a small size of training
data. Meng et al. (2021) adopted ANNs to predict three-
dimensional (3D) slope stability. He et al. (2021b) trained deep-
learning models with big data for the bearing capacity of strip
footing, which covers all the soil properties, loading conditions, and
spatial variability commonly encountered in practice, such that
numerical simulations and training are not necessary anymore for
this problem.

This study presents a new ML-based method for conducting
stability analysis of slopes with different spatial distributions,
which combines the principal component analysis (PCA)-based
neural network and transfer learning (TL) techniques (i.e. PCAe
NNeTL). The Monte Carlo coupled with finite element simulation is
first conducted for data acquisition, where the ACF is also adopted
for describing the spatial variability of cohesive strength or friction
angle of soils. Then, the PCA approach is employed to reduce the
number of input variables (i.e. cohesive strength or friction angle of
each element in FE simulations) in the NN. Thus, the training pa-
rameters used in PCA-based NN (i.e. PCA-NN) with a given slope are
transferred to other slopes with the same geometry but different
spatial distributions. The proposed TL techniques exhibit satisfac-
tory performance even with a small size of the training dataset.
Table 1
Relevant soil strength parameters of slopes A-D.

Dataset m (ln kPa) s 4 (�) Number of nodes

A 2.2595 0.2936 19 386
B 2.665 0.2936 19 386
C 2.9526 0.2936 19 386
D 3.1758 0.2936 19 386
2. Data acquisition considering spatially variable soil
strength parameters

In the present study, eight slopes A-H with the same geometry
but different spatial distributions are considered. The slope stability
analysis is conducted, and the FOS is estimated by the strength
reduction method using the commercial finite element software
OptumG2. The saturated bulk unit weight is assumed as g ¼ 19kN=
m3. The upper loading is fixed to zero, and the boundary of slopes
are standard boundary conditions. The constitutive relationship of
soils is the Mohr-Coulomb model.

In a finite element simulation, the grid elements and nodes will
be automatically divided according to the shape of slope as shown
in Fig. 1. In slopes A-D, the drained friction angle of all nodes is
assumed as 4 ¼ 19�. The cohesive strength of soils at various
positions on the slope is assumed to satisfy logarithmic normal
distribution, which is expressed as (Charlton et al., 2018)
4035
ln CwN
�
m;s2

�
(1)

where C denotes the set of cohesion strength, m is themean value of
ln C, and s is the standard deviation of ln C. In the present study, the
values of m and s are shown in Table 1.

The cohesion strength of the ith position Qi in the random field
can be expressed as

cðxi; yiÞ ¼ exp½mþ sGðxi; yiÞ� (2)

where Qi ¼ ðxi; yiÞ is the coordinates of the random field position
Qi, and G is a standard normal distribution random field.

In order to take account of the inherent spatial variability of soil
properties, the following ACF is adopted for correlating the cohesive
strength of soils at any two positions on the slope (Wu et al., 2012;
Li et al., 2015).
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where COV is the covariance function and Var is the variance
function. The ACF satisfies the following form:

ACF
h
cðxi; yiÞ; c

�
xj; yj

�i
¼ exp

�
� 2

�
sx
dh

þ sy
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(4)

sx ¼ 		xi � xj
		 (5)

sy ¼
			yi � yj

			 (6)

where sx is the absolute difference in the horizontal distance be-
tween two nodes, sy is the absolute difference in the vertical dis-
tance between two nodes, dh ¼ 40 m is the horizontal
autocorrelation distance, and dv ¼ 1 m is the vertical autocorre-
lation distance as suggested by Li et al. (2015).

In slopes E-H, the cohesive strength is assumed as C ¼ 10 kPa.
The friction angle of soils at various positions on the slope is again
assumed to satisfy logarithmic normal distribution. The values of m
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and s are shown in Table 2. And the values of dh and dv are 40m and
1 m, respectively.
3. Stability assessment for a given slope using PCA-based
neural networks (PCA-NNs)

3.1. PCA

PCA is an efficient multivariate method for reducing the
dimensionality of datasets, increasing interpretability but at the
same time minimizing information loss, and has been successfully
used in many applications for several decades (Hasan and
Abdulazeez, 2021). The mathematical essence of the PCA method
is the rotation and transformation of coordinates. The original n
variables are linearly combined to generate n new variables in the
new coordinate system, while they are not related to each other
(Ture et al., 2007). For the sake of simplicity, take the slope with
only two nodes in the finite element simulations as an example, the
main steps of the PCA method are summarized as follows (Smith,
2002).

(1) Centralize the cohesion matrix

Define Cij that represents the cohesion value of the ith node
(i¼ 1, 2) for the jth simulation (1� j � n). The standardization of ~Cij
can be calculated as ~Cij ¼ Cij � 1

n
Pn

j¼1Cij after data centralization
(see Fig. 2b), and the standardization of the cohesion matrix can be
expressed as

A ¼
�

~C11 ~C12 . ~C1n
~C21 ~C22 . ~C2n

�T
(7)

(2) Calculate the covariance matrix

In order to understand the relationship between the variables of
the input dataset, and therefore keep as much information of the
original data as possible, the following covariance matrix is then
computed as expressed by Shlens (2014):

B ¼ 1
n�1

ATA ¼ 1
n�1

2
66664

Xn
j¼1

~C1j
2 Xn

j¼1

~C1j ~C2j

Xn
j¼1

~C2j ~C1j
Xn
j¼1

~C2j
2

3
77775 (8)

(3) Compute the eigenvalues and eigenvectors for the covariance
matrix

Rank the eigenvectors in order of their eigenvalues, highest to
lowest. Define the contribution rate that represents how much
Table 2
Relevant soil strength parameters of slopes E-H.

Dataset m (ln kPa) s C (kPa) Number of nodes

E 2.9248 0.198 10 386
F 3.0249 0.198 10 386
G 3.1149 0.198 10 386
H 3.1993 0.198 10 386
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information the corresponding component under the new coordi-
nate contains.

(4) Choose a benchmark for dimensionality reduction

Define the sum of the contribution rate as the cumulative
contribution rate, which indicates how much information the new
coordinate contains (Pu et al., 2019).

b ¼
Pk

i¼1diPn
i¼1di

(9)

where b is the cumulative contribution rate, di is the eigenvalues of
the covariance matrix, and k is the size of the reduced dimension,
indicating that the new projection coordinates are composed of k
variables.

(5) Calculate the dataset after dimensionality reduction

The original data (see Fig. 2a) are projected onto the projection
coordinates determined by step (4) (see Fig. 2c), and the reduced
dimensionality data are obtained.
3.2. PCA-NN for predicting FOS

ANN is a computing model inspired by the biological neural
networks that constitute animal brains and has beenwidely used in
the field of geotechnical engineering (Anderson, 1995). Fig. 3a
shows a typical structure of NN, which includes one input layer
with n variables, one output layer with m output variables, and one
hidden layer. As shown in Fig. 3a, each layer includes neurons that
are not connected within the layer but are fully connected with the
neurons from the neighboring layers. The neurons’ weight is
adjusted to improve the accuracy of the model during the learning
process (Cheng et al., 2007). Fig. 3b shows a typical structure of
PCA-NN algorithm with the input size being reduced to k based on
the abovementioned steps of PCA. As indicated in Fig. 3b, the only
difference between NN and PCA-NN algorithms is the input vari-
able. PCA is used to remove new variables that have little impact on
the results, so as to achieve the purpose of data dimensionality
reduction. Therefore, the PCA-NN algorithm aims to reduce the data
dimensionality in order to find the optimal dimension, which can
both ensure a good fit and reduce the computation time.

To determine the optimal size of the input layer in a PCA-NN
algorithm, the datasets of slopes A and E are selected as exam-
ples, for which the finite element model involves 386 nodes with
the cohesive strength or the friction angle being spatially variable.
Therefore, the input size of the conventional NN algorithm is 386,
and the output size is 1 (i.e. FOS). The input size is reduced using the
PCA method. The original data compose a 5000 � 386 matrix,
which is centralized and then calculated the covariance matrix of
the sample matrix. After that, the eigenvalues and eigenvectors of
the covariance matrix are found, and the summed eigenvectors are
combined according to the size of the eigenvalues to form a map-
ping matrix. Finally, the first n columns of the mapping matrix are
set as the final mapping matrix according to the specified number
of features retained by PCA to achieve the purpose of data dimen-
sionality reduction. In this study, in order to find the optimal
dimension, a reduction of n from 386 to 10 was tested sequentially.
It is suggested that the performance of the NN algorithm will be
improved, and then approaches a stable level with increasing
hidden layers and number of neurons per layer for most cases. In
the present study, the architecture of the NN and PCA-NN algo-
rithms is fixed to one hidden layer with 30 neurons, while the



Fig. 2. Process of PCA: (a) Original data, (b) original centralization, and (c) original projection.

Fig. 3. Schematic diagram of (a) typical NN and (b) PCA-NN.

Table 3
Parameters used in the NN/PCA-NN algorithm.

Parameter Value

Hidden layer 1
Neuron 30
Learning rate 0.001
Epoch 10,000
RMSE 1 � 10�6
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learning rate and the number of iterations are fixed to 0.001 and
10,000 by trial and error, respectively. After initial tests, it is
determined the root mean square error (RMSE) is 1 � 10�6. All the
hyperparameters adopted in this paper are summarized in Table 3.
The nonlinear activation function, i.e. the sigmoid function is
adopted in this paper for enhancing the network representation
and learning ability, and is computed as

FðTÞ ¼ 1
1þ exp ð�TÞ (10)

where T is the linear weighted sum of inputs at the input layer plus
the bias term.

All simulations are conducted on a Dell laptop with Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz. The coefficient of
determination (R2) is employed as the measurement of goodness-
of-fit, which is defined as (Crewson, 2014)
4037
R2 ¼


n
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bti ti �Pn

i¼1
btiPn

i¼1ti
�2h

n
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where, bti is the predicted FOS and ti is the calculated FOS. An R2

value closer to 1 indicates a better performance of the model. A
dataset for the NN/PCA-NN algorithm is required to be randomly
split into two independent subsets, i.e. the training dataset and the
validation dataset. In the present study, the total number of avail-
able data is 5000, while the number of the training dataset is
ranging from 1000 to 4000.

Fig. 4a shows the performance of the PCA-NN algorithm with
varying number of input variable and training dataset in the case of
slope A. It is worth noting that even if the number of input variable
is reduced from 386 to 50, the performance of the PCA-NN algo-
rithm is better maintained or even better, while the performance of
the PCA-NN algorithm deteriorates when the number of input size
is further reduced, as indicated in Fig. 4a. Such behaviors seem
reasonable because those key input variables, such as the strength
of the soil represented by the nodes near the sliding surface, can be
selected using the PCA method when conducting slope stability
analysis, while the others with less useful information will be dis-
carded, resulting in a simpler structure of NN and a better perfor-
mance. It is also found that the larger the number of training
dataset, the higher the accuracy of the PCA-NN algorithm for a
given number of input size. Fig. 4a also shows the corresponding
computation time for all the cases of slope A. As expected, a larger
number of input variable and training dataset will both lead to a
higher computation time for the PCA-NN algorithm. This finding is
also applicable to the slope with different soil properties, for
example, slope E as shown in Fig. 4b.

In this study, the size of the input layer is fixed to 150 for the
PCA-NN algorithm considering both the computational accuracy
(i.e. coefficient of determination) and computational effort (i.e.
computation time). Furthermore, the cumulative distribution
function (CDF) of FOS is used for further evaluating the effective-
ness of the proposed PCA-NN algorithm (Huang et al., 2007). Fig. 5



Fig. 4. The performance of the PCA-NN algorithm with varying input variables and
training datasets: (a) slope A and (b) slope E. TD is short for the training dataset in the
figure.
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presents the comparisons between the PCA-NN algorithm at
different training datasets and the finite element method (FEM) for
predicting the CDF of FOS of slopes A and E. For each training
dataset, the CDF of FOS derived by PCA-NN algorithm and the re-
sults derived by FEM are very close, indicating that the PCA-NN
method can well capture the global distribution of finite element
prediction. As shown in Fig. 5, it is clear that the PCA-NN algorithm
proposed in this paper shows better performance compared with
FEM for a given slope in terms of computational efficiency as it only
needs several seconds, which is extremely fewer than that of FEM
even though the CDF of FOS is almost the same. In order to verify
the proposed PCA-NN algorithm, other two ML-based algorithms
are also adopted for comparisons, i.e. NN and DT in terms of
computational accuracy and computational effort. All the algo-
rithms are conducted with the same computer resource. Table 4
shows the coefficient of determination (R2) and computation
time (t) for all the three algorithmswith varying number of training
dataset. A larger number of training dataset will generally lead to
more accurate predictions and larger computation time of the three
ML algorithms. However, when the training dataset is sufficiently
large (i.e. 4000), these models have almost no significant
improvement. In general, the proposed PCA-NN algorithm is
4038
superior to the NN and DT algorithms due to its better performance
(i.e. higher coefficient of determination) and shorter training time.

The neural network with reduced inputs in PCA-NN performs
essentially the same as pure NN with full inputs. More complex
models (more inputs) usually require more data to train, and PCA
can remove the less influential variables and reduce the data
dimension, which can maintain better performance and greatly
reduce training time. The use of PCA is like the use of filters in deep
learning, and the selection of principal component is like abstrac-
tions in deep learning (He et al., 2021b), so it helps to obtain a better
model.

It should be noted that the slope cases considered in this study
are simple, there is a reasonable prospect that such a PCA-NN al-
gorithm shows great potential in greatly improving the computa-
tion effort but with a high standard of computation accuracy for
predicting the FOS of slopes with more complex conditions.

4. Slope stability assessment for slopes with different spatial
distributions by TL

4.1. TL method

For most ML algorithms, the same feature space and the same
distribution are needed for the training and validation datasets.
However, many ML models need to be rebuilt and the training
dataset needs to be recollected when the task changes. Therefore,
TL is proposed to establish the connection between the source task
domain and the target task domain (Gao and Mosalam, 2018).
Specifically, the objective of TL is to help improve the prediction
function in learning target task using the knowledge from source
domain with source target, more details can be found from the
work of Pan and Yang (2009) and Tan et al. (2018).

For example, as indicated in Fig. 6a, conventional ML-based
stochastic reliability analysis uses soil strength parameters to pre-
dict FOS, and slopes of the same shape with different spatial dis-
tributions may use different sets of hyperparameters, which cannot
establish the connection between models and models, resulting in
a significant increase in workload. The TL-based stochastic reli-
ability analysis attempts to apply the basic structure, hyper-
parameters, connection weights, and other knowledge of the
existing algorithm model (i.e. the source domain) directly to the
new model (i.e. the target domain), as shown in Fig. 6b. This
method can greatly reduce the sample data required for the
training of the new model, and at the same time achieve a better
fitting effect, which makes the slope stability analysis easier.

In this paper, a parameter-transfer approach is proposed to
predict the FOS of slopes B-D and FeH by transferring the hyper-
parameters of the PCA-NN algorithm adopted by slopes A and E (i.e.
the architecture of NN, the weights between nodes, the learning
rate, and the number of iterations), respectively. As mentioned
earlier, the input layer size of slopes A and E is reduced to 150 b y
the PCA method with the FOS being predicted using the NN algo-
rithm. It is worth noting that slopes A and E are already trained
algorithm models and can achieve good fitting effects. Moreover,
slope A is related to slopes B-D, and slope E is also related to slopes
FeH. Therefore, slope A and slope E will be used as the source
domain to perform TL on the target slopes. Building the slope al-
gorithm model from scratch is complex and time-consuming, and
TL can improve the computational efficiency and effect. Therefore,
in the following study, the input size used by the PCA-NN algorithm
for slopes B-D and FeH is also reduced to 150 to ensure that the
number of input variables is the same for all slopes, which is also a
prerequisite for utilizing transfer learning idea. Because all
connection weights of the trained PCA-NN algorithm model (i.e.
slope A) can be migrated to the target slope (i.e. slope B) only if the



Fig. 5. Cumulative probability distribution of FEM and PCA-NN for FOS on slopes A and E for four training datasets: (a)e(d) slope A; and (e)e(h) slope E.
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input size of all slopes is consistent. If the input size is inconsistent,
the connection weights cannot be migrated, so the connection
weights of the target slope need to be initialized, which will greatly
reduce the computational effect of the model in the case of small
training datasets.

We apply the architectural forms and hyperparameters (i.e.
number of hidden layers, number of hidden layer neurons, learning
rate, number of iterations, connection weights) of slopes A and E
directly to slopes B-D and E-H, respectively. The hyperparameters
for slopes B-D and E-H are also set as shown in Table 3. This is a set
of parameters that we have determined after many trials. Thus, we
migrate directly to slopes B-D and E-H. In NN algorithm, each
neuron is connected to all neurons in the next layer, and each
connection has a weight parameter that determines howmuch the
output of the current neuron affects the next layer. In this paper, the
number of input layer neurons is 150, the number of hidden layers
is 1, the number of hidden layer neurons is 30, and the number of
input layer neurons is 1. Therefore, there are 4530
(¼150 � 30 þ 30 � 1) connection weights.

Taking the transfer learning of slope A to slope B as an example,
the hyperparameters of slope B (e.g. the number of hidden layers
and neurons per layer, learning rate, number of iterations, RMSE)
directly use the parameters determined in slope A, which is the first
step of TL. The second step of TL is to transfer the connection
weights between the input layer and the hidden layer and the
connection weights between the hidden layer and the output layer
of slope A. The slope A model has been trained, and the connection
4039
weights between its layers have been optimized and adjusted to
minimize losses. Therefore, we assign 4530 (¼150 � 30 þ 30 � 1)
weight parameters of slope A directly to slope B, i.e. the initial
weight parameters of slope B are not randomly initialized, but have
been optimized and adjusted, so as to quickly achieve better pre-
diction performance under a small amount of training data. The
structure of the proposed network-based parameter passing algo-
rithm is shown in Fig. 7, where ui represents the weight between
the input layer and the hidden layer, and uj represents the weight
between the hidden layer and the output layer. Thus, all
4530 weight parameters and other training parameters between
nodes are transferred from the source slopes A and E to the target
slopes B-D and FeH in the initial state, respectively.
4.2. Application examples

In this study, the slope geometry is fixed, but soil properties are
allowed to vary spatially according to random field simulations. To
illustrate that the proposed method can perform TL on the same
shape slope with different spatial distributions, the prediction re-
sults of FOS using PCAeNNeTL algorithm are compared with the
coefficient of determination (R2) and mean absolute error (MAE) of
the pure PCA-NN algorithm under the different numbers of training
datasets, as shown in Fig. 8. MAE is defined as (Willmott and
Matsuura, 2005)
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MAE ¼

Pn
i¼1

jbti � tij
n

(12)

A MAE value closer to 0 indicates a better performance of the
model.

Fig. 8 shows the comparisons between PCAeNNeTL algorithm
and PCA-NN algorithm for predicting FOS in terms of R2 andMAE of
different slopes. In Fig. 8b, d, f, h, j, and l, each algorithm of each
subplot contains 4900 scatters that correspond to 4900 Monte
Carlo samples. It can be seen from Fig. 8 that the performance of
PCAeNNeTL algorithm is much better than that of PCA-NN algo-
rithm, especially when the number of training datasets is small,
indicating that all the hyperparameters of the proposed PCN-NN-TL
algorithm can reach the optimal values in a short training time. As
expected, the performances of both approaches are improved with
increasing of number of training dataset. However, the differences
of R2 and MAE between these two approaches decrease when the
number of training dataset increases. For example, as indicated in
Fig. 8, the value of R2 for the method of PCAeNNeTL is more than
0.8 for all the slopes, while the value of R2 for the pure PCA-NN
algorithm is almost 0 when the number of training data is 100. It
should be noted that the value of R2 for both approaches will be the
same when the number of training dataset is sufficiently large
because all the parameters will be the optimal values when the
models have been trained sufficiently, which is not presented in
this paper. The abovementioned findings highlight the conclusion
4040
that the PCAeNNeTL algorithm shows great potential in assessing
the stability of slope when it has fewer training data, while the
conventional NN algorithm needs a larger amount of training data
to reach the same level of performance.
5. Discussion and limitations of the proposed method

The previous sections have shown the effectiveness of the
proposed method in analyzing slope stability in terms of both
computational time and accuracy when compared with other
methods in the literature. The data for the training dataset are
generated from a simple case with a fixed slope geometry, while
the soil properties are allowed to change spatially according to
random field simulations. The PCA method incorporated into the
NN algorithm not only increases the computational efficiency by
reducing the input variables but ensures the same number of input
variables for the slope with different features, which is a prereq-
uisite for the parameter-transfer approach. Therefore, the proposed
PCAeNNeTL algorithm provides new ideas with a broad applica-
tion prospect in the field of slope stability analysis even though the
training data are not in the same feature space, for example, the
slope geometry is changed, or much more complex geological un-
certainties are expected to be considered.

It should be noted that the proposed method for the slope sta-
bility analysis problems still suffers from limitations in that the
input variables can only be a set of one-dimensional (1D) data (i.e.
the cohesive strength or friction angle) since the NN algorithm



Table 4
Coefficient of determination (R2) and computation time (t) of different algorithms of
slopes A and E.

Dataset Number of TD PCA-NN NN DT

R2 t (s) R2 t (s) R2 t (s)

A 1000 0.947 10.7 0.9429 125.4 0.0746 0.14
2000 0.9639 21.1 0.9724 194.5 0.0813 0.24
3000 0.9675 28.2 0.9814 275.3 0.0763 0.4
4000 0.9688 47.6 0.9848 375.8 0.0927 0.56

E 1000 0.9405 11.2 0.9366 100.6 0.3519 0.16
2000 0.959 19.1 0.9691 158.9 0.4136 0.28
3000 0.9649 29.1 0.9788 230.3 0.4103 0.37
4000 0.969 47.3 0.9816 302.6 0.4319 0.5

Note: TD is short for the training dataset.
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adopted in this study. In that case, the cross-correlation between
cohesive strength and friction angle of soil cannot be well consid-
ered. Such a limitation can be alleviated using a more advanced NN
algorithm such as the convolutional NN algorithm, which can fully
consider the couple relationship between soil input parameters
with multi-dimensional data. Furthermore, the present study also
suffers the same limitation as other studies in the sense that the
choice of hyperparameters is more or less empirical.
Fig. 7. Structure of the network-based parameter-transfer algorithm.
6. Summary and conclusion

This paper presented a new technique to build a surrogate
model for predicting the FOS slope with different spatial distribu-
tions of soil properties (i.e. PCAeNNeTL). The PCA-NN algorithm
improves the computational efforts at a small cost of computational
accuracy compared with the conventional NN algorithm, and the TL
algorithm is adopted for improving the computational accuracy of
unknown target slopes with limited training data. The main con-
clusions are as follows:

(1) Eight slopes with different spatial distributions of cohesive
strength or friction angle are considered in this paper. The
FOS is estimated by the Monte Carlo coupled with finite
Fig. 6. Learning process of (a) conventional ML-based stochastic rel
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element simulations, where the inherent spatial variability of
cohesive strength or friction angle is considered via the ACF.

(2) NN algorithm establishes the relationship between the input
variables (i.e. samples of random fields) and the output
variable (i.e. FOS) for a given slope, which has been proven its
satisfactory computational time compared with conven-
tional Monte Carlo coupled with finite element analysis,
although it still needs a long training time because of the
numerous trainable parameters for those complex slopes.
This paper further proposes a new PCA-NN algorithm with
the aim of improving computational time at a small cost of
iability analysis and (b) TL-based stochastic reliability analysis.



Fig. 8. Comparisons between PCAeNNeTL algorithm and PCA-NN algorithm for predicting FOS in terms of R2 and MAE of different slopes: (a)e(b) slope B; (c)e(d) slope C; (e)e(f)
slope D; (g)e(h) slope F; (i)e(j) slope G; and (k)e(l) slope H.
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Fig. 8. (continued).
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computational accuracy. The PCA method is employed to
reduce the number of input variables of the NN algorithm. It
has been demonstrated that the computational time of the
PCA-NN algorithm is only 1/10 of that of the NN algorithm,
and the computational accuracy (i.e. R2) of the PCA-NN al-
gorithm can be basically the same as the NN algorithmwhen
the dimensionality is reduced to 150.

(3) For the slopes with the same geometry but different spatial
distributions of soil properties, the PCA-NN models
commonly need to be rebuilt and the training dataset needs
to be recollected for each slope. TL algorithm is therefore
introduced to transfer the hyperparameters from the previ-
ous slope to target slopes with limited training data. It is
found that the TL algorithm greatly improves the perfor-
mance of the PCA-NN models, especially when the number
of training data is limited. The PCAeNNeTL algorithm pro-
vides new ideas with a broad application prospect in the field
of slope stability analysis in terms of both computational
time and computational accuracy even when the field-
measured training data are limited.
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List of symbols

g saturated bulk unit weight
4 drained friction angle
C set of cohesion strength
m mean value of cohesion
s standard deviation of cohesion
Qi ith position in random field
G standard normal distribution random field
sx absolute difference in the horizontal distance between

two nodes
sy absolute difference in the vertical distance between two

nodes
dh horizontal autocorrelation distance
dv vertical autocorrelation distance
A standardization of the cohesion matrix
Cij cohesion value of the ith node for the jth simulation
B covariance matrix
b cumulative contribution rate
d eigenvalues of the covariance matrix
k size of reduced dimension
T the linear weighted sum of inputs at the input layer plus

the bias term
R2 coefficient of determination
t computation timebti the predicted FOS
ti the calculated FOS
ui the weight between the input layer and hidden layer
uj the weight between the hidden layer and output layer
4044
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