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Abstract

A turbulent boundary layer (TBL), which occurs when a fluid flows over a surface of a

structure at a sufficient speed, can generate pressure fluctuations over the surface, sub-

sequently imposing a wall pressure field (WPF) on the structure that causes vibrations.

The spectrum of the WPF in a TBL consists of acoustic and hydrodynamic domains.

The hydrodynamic domain is also divided into sub-convective, convective, and viscous

regions. At high Mach number flow, the convective region of the WPF significantly

contributes to the structural vibrations. However, at low Mach number flow the struc-

ture effectively filters out the convective domain and the bending waves of the structure

aligns with the low-wavenumber domain of the WPF. Consequently, the primary cause

of vibration would be the low-wavenumber components of the WPF. Therefore, accu-

rate estimation of the WPF in the low-wavenumber domain is crucial for understanding

and predicting the flow-induced vibrations of structures. Existing TBL WPF models

accurately predict the convective region but show significant discrepancies in predicting

low-wavenumber levels. This thesis numerically investigates the feasibility of estimating

the low-wavenumber WPF using a microphone array (acoustic-based approach) and an

accelerometer array (vibration-based approach).

Initially, the key factors in the arrangement of microphones for the WPF estimation are

examined, and the challenges of the acoustic approach in estimating the low-wavenumber

WPF are highlighted. Subsequently, an inverse vibration method is proposed for the

WPF estimation in the low-wavenumber domain, focusing on the critical factors for

accurate WPF estimation. In both approaches, a known TBL WPF is used as the in-

put, and the estimated WPF obtained using the microphone or accelerometer arrays

is compared with the reference WPF of the input TBL model. To mimic experimen-

tal measurements, a virtual experiment is proposed for both approaches, involving the

synthesis of snapshots of the WPF. The impact of the number of realizations on the

accurate estimation of the low-wavenumber WPF is also studied.

Finally, two methods namely the modal expansion and reciprocity principle for cal-

culating the sensitivity functions, which are needed for vibration based approach, are

examined. The modal expansion method requires accurate extraction of the modal prop-

erties of the structure to compute the sensitivity functions, while the reciprocity principle

method relies on measuring the vibrational response of the structure when excited at

specific points where the measurement sensors are located. Experimental investigations

have been conducted to illustrate the challenges and effectiveness of each method in

computing the sensitivity functions. The results show that both methods are effective

and are in good agreement. ii
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Chapter 1

Introduction

The interaction of fluid flows with structures generates noise and vibrations which has

significant implications in many mechanical applications, including the vibration and

noise produced in water transport pipelines, aircraft cabin noise, and in automobiles

[29–31]. Different internal and external forces can cause a structure to vibrate and ra-

diate noise. A turbulent boundary layer (TBL), which occurs when a fluid flows over a

surface at a sufficient speed, can generate pressure fluctuations over the surface, subse-

quently imposing an unsteady load on the structure that leads to noise and vibrations.

These flow-induced vibrations might lead to structural fatigue, flutter and aeroelastic

instability, compromising the integrity and longevity of the structures. Moreover, the

noise generated by these vibrations can propagate away from the structure, affecting the

surrounding environment. This radiated noise can impact acoustic comfort in inhabited

areas and reduce the overall environmental quality. For example, in aircraft, such noise

can affect passenger comfort. Therefore, understanding how structures react to TBL

excitations is crucial for developing effective design strategies. By gaining insight into

fluid-structure interactions, engineers can devise methods to minimize flow-induced vi-

brations. This can lead to designs that enhance structural integrity, reduce maintenance

costs, and improve acoustic comfort and environmental quality.

The development of turbulent flow on a semi-infinite flat plate has been shown in Figure

1.1. The no-slip condition at the wall, slows down a fluid particle very close to the wall.

This means that any disturbance will push the particle away from the wall and cause

it to collide with particles travelling at a higher speed. In the absence of significant

1
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viscous forces to damp these motions, collisions result in more collisions, and ultimately

leading to the random disturbances that are characteristic of the turbulent boundary

layer [98]. In this case, the TBL generates a wall pressure field (WPF) over the surface

which results noise and vibrations.

U

z

Figure 1.1: Illustration of the boundary layer development (not to scale) . Figure
from [98].

Analytical expression of the WPF beneath of a TBL does not exist because of its random

and complex nature of these loads. Many of the analyses performed by scientists and

engineers are based on numerical simulations and empirical evidence from flow measure-

ments [71, 92]. Usually, three approaches are used to evaluate the WPF [89].

1. In the first approach (unsteady approach), the time-resolved flow field is avail-

able and averaged quantities are derived posteriorly. In this approach, unsteady

simulations such as Direct Numerical Simulations (DNS) or Large Eddy Simu-

lation (LES) are used to predict the cross-spectrum density (CSD) of the WPF

[24, 65, 163].

2. In the second approach, no time-resolved data is available, and instead, a statistical

expression is derived using the Poisson’s equation. Typically, Reynolds-averaged

Nervier-Stokes Simulation (RANS) is used in this statistical method to calculate

time-averaged turbulence statistics [41, 88, 142].

3. As part of the third approach, experimental data is used to formulate semi-

empirical models. This approach combines experimental observations with the-

oretical insights to develop models that can predict the statistical properties of

the WPF beneath a TBL. The foundation of semi-empirical models began with

the pioneering work of researchers like Willmarth and Wooldridge [173], Bull [21],

and Corcos [37], who conducted detailed measurements of the WPF.
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Although the first and second approaches can simulate the TBL fluid flow, they are

very costly to compute, especially if the fluid’s compressibility is considered [65]. Conse-

quently, researchers have given more attention to semi-empirical models, leading to the

development of many models in the last 50 years, each with varying degrees of accuracy,

aimed at predicting the WPF beneath a TBL [51, 110, 167, 171, 174].

Researchers have employed two approaches for measuring the WPF. The first one is

the acoustic based approach (ABA) which involves using a microphone array to directly

measure the sound waves created by a TBL. In this method, a network of microphones

record the sound waves produced by the pressure fluctuations. To estimate the TBL

WPF, the recorded sound signals are processed using techniques like Fourier transform,

beamforming, or other signal processing methods to extract information about the WPF.

An alternative approach involves measuring the vibration responses of a structure that is

excited by the WPF using an accelerometer array. The data from the accelerometers are

then used to identify the fluctuating pressure that would cause the resulting vibrations

of the structure.

1.1 Research Motivation

To accurately predict flow-induced noise and vibrations, an accurate estimation of the

WPF is required. A significant portion of the TBL energy is primarily transmitted

through pressure fluctuations at the convective wavenumber, kc = ω/Uc, where ω is the

angular frequency and Uc being the velocity of convection or the average speed of eddies

in the boundary layer. Figure 1.2 shows a schematic of the CSD of the TBL WPF,

ϕpp(k, ω), and vibration modal response of the structure, Ψs(k, ω). In this figure, the

acoustic and flexural wavenumbers are denoted as k0 = ω/c0 and kf = ω/cf , respectively,

where c0, cf are the sound speed and the bending wave speed, respectively. As shown

in Figure 1.2, the CSD of the WPF can be mainly characterized by two distinct regions:

the convective region and the sub-convective region. Vibration response of the structure

can be mathematically determined by integrating the product of the WPF CSD function

and modal response of the structure in the wavenumber domain [31].

While the peak energy in the TBL is concentrated around the convective wavenumber, it

is recognized that in low Mach number flows, the primary source of structural vibration
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arises from the low-wavenumber components of the WPF [17, 32, 74]. The reason is

that the structure acts as a filter, attenuating the excitation from the convective ridge

of the TBL at frequencies well above the coincidence frequency (the frequency at which

the bending wave speed in the structure and the convection speed are equal [114]). As a

result, the vibration induced by the TBL is primarily governed by the low-wavenumber

portion of the WPF [17, 32, 33, 74, 94, 126]. This highlights the importance of the

low-wavenumber WPF in the prediction of flow-induced vibrations.

ϕ

Figure 1.2: Schematic of the spatial matching of the wavenumber-frequency spectrum
of the TBLWPF and vibration modal function when Uc < cf < c0 (not in scale). Figure
from [2]

A variety of semi-empirical TBL models have been developed in the last 50 years [51,

110, 167, 171, 174]. Most of these studies have primarily focused on identifying the

convective ridge. Despite the fact that most models are in good agreement when it comes

to predicting the convective region, there is a significant discrepancy at subconvective

region. Due to the low amplitudes of the WPF in the low-wavenumber domain compared

to those at convective wavenumbers, they can easily be contaminated by convective

wavenumbers and also background noise. Thus, it has been difficult to model and

measure these levels of the TBL WPF. Moreover, most of the existing body of research

on estimation of the TBL WPF focuses on the convective ridge and not on the low-

wavenumber region despite of its importance. Therefore, ongoing research in this field

is essential.

The broad and main aim of this thesis is to find a procedure that enable us to estimate

the low-wavenumber WPF with good accuracy, not to develop a new model for WPF. To
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achieve this, both the ABA and vibration-based approach (VBA) have been examined to

understand how they estimate the low-wavenumber domain of the WPF and to highlight

their advantages and challenges.

1.2 Thesis Overview

In this section, we provide an overview of the remainder of this thesis. In Chapter 2,

we begin with a detailed description of the TBL concept and then conduct a literature

review of various TBL models developed by researchers. This chapter also discusses

the vibration response of structures under TBL excitations and examines the impact

of different models on structural response. Finally, we review the relevant literature on

measuring and identifying the WPF using the ABA and VBA.

Chapter 3 highlights the challenges of estimating the low-wavenumber WPF in a TBL

using a microphone array. A regularized Fourier-based approach is proposed to numer-

ically study the estimation of the low-wavenumber WPF. Performance of the proposed

method is initially evaluated by comparing the estimated WPF against a closed-form

input TBL model. Effects of sensor spacing, co-array factor, and sensor distribution

on the estimation of the low-wavenumber WPF levels are then investigated. To mimic

experimental measurements a virtual acoustic experiment is proposed, involving the

synthesis of snapshots of TBL-induced WPF.

The research of Chapter 3 was published in the Journal of Sound and Vibration [2]

titled ”On the challenges of estimating the low-wavenumber wall pressure field beneath

a turbulent boundary layer using a microphone array”. It was shown that to achieve

accurate estimation of the WPF all the three factors should be considered. It was found

that to obtain accurate results, in addition to the Nyquist criterion, one needs to use an

irregular array pattern with the maximum possible co-array factor. It was also showed

that reasonable estimation of the WPF in the convective region is much easier than that

in the low-wavenumber domain and can be achieved with relatively small number of

sensors. However, it has been shown that while the convective region can be identified

with a relatively small number of realizations in experimental situations, a significant

number of realizations is required to accurately estimate the low-wavenumber levels in

the TBL pressure field.
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In Chapter 4, we investigate the feasibility of estimating the low-wavenumber WPF by

analyzing vibration data from a structure excited by a TBL. The proposed approach is

based on the relationship between the TBL forcing function and structural vibrations

in the wavenumber domain. By utilizing vibration data obtained from a structure ex-

cited by a TBL at a single frequency, and incorporating the sensitivity functions of the

respective structure, it is possible to estimate the CSD of the pressure fluctuations in

the wavenumber domain. To demonstrate the effectiveness of the proposed method, an

analytical model of a simply-supported panel excited by a reference TBL model is em-

ployed. The vibration data of the panel is then used in an inverse method to identify the

low-wavenumber levels of the pressure fluctuations, which are then compared to those

of the reference TBL model.

The research in Chapter 4 was presented at the Inter-noise 20-23 August 2023 Chiba,

Japan, and also included in the refereed conference proceedings as ”H. Abtahi, M.

Karimi, and L. Maxit. Numerical study on the estimation of the low-wavenumber wall

pressure field using vibration data. INTER-NOISE and NOISE-CON Congress and

Conference Proceedings. Vol. 268. No. 6. Institute of Noise Control Engineering,

2023.” We also extended this work and investigated the performance of the proposed

method through a parametric study and virtual experiments. The outcome of this

investigation was presented in the Acoustic 4-8 December 2023 Conference in Sydney,

Australia, and later on a more comprehensive version of this work was published in

the Journal of Fluids and Structures [3] titled ”Identification of low-wavenumber wall

pressure field beneath a turbulent boundary layer using vibration data”. It was found

that, unlike the acoustic-based methods, where a relatively high number of sensors is

required to respect the Nyquist criterion, a few sensors are sufficient to estimate the

WPF in the low-wavenumber using the proposed vibration-based method. Moreover, it

was shown that unlike the ABA where a substantial number of realizations is needed

to accurately estimate the low-wavenumber levels in the TBL pressure field (due to

contamination by the convective ridge), utilizing the structure in the VBA filters the

convective region of the WPF, allowing for accurate estimation of the low-wavenumber

WPF using a significantly smaller number of realizations.

In order to minimize the number of realizations required, an alternative approach based

on the frequency band analysis, instead of a single frequency analysis, is proposed in

Chapter 5. The outcome of this Chapter was presented in the Inter-noise 25-29 August
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2024 Nantes, France, and also included in the refereed conference proceedings as ”H.

Abtahi, M. Karimi, and L. Maxit. A vibration-based method to estimate the low-

wavenumber wall pressure field in a turbulent boundary layer. INTER-NOISE and

NOISE-CON Congress and Conference Proceedings. Vol. 268. No. 6. Institute of Noise

Control Engineering, 2024.”

To identify the low-wavenumber components of the WPF using VBA (Chapters 4 and

5), it is necessary to calculate the sensitivity functions, which corresponds to the plate’s

response to a unit wall plane wave [115]. While this function can be computed analyti-

cally or numerically, it is challenging to experimentally obtain this function in practice.

The procedure for calculating the sensitivity functions is discussed in Chapter 6. In

this chapter, two methods for calculating the sensitivity functions—modal expansion

(Section 6.1.1) and the reciprocity principle (Section 6.1.2)—have been examined and

verified experimentally. An experiment was conducted in the Acoustics Lab at UTS

Tech Lab to determine the sensitivity functions experimentally. For this purpose, a

clamped plate was installed in the Acoustics Lab, and its vibrational response, excited

by a Shaker Brüel & Kjær Type V406 M4-CE, was measured using a Polytec Type

PSV-500-HV Xtra Laser Doppler Vibrometer (LDV). These data were then used to cal-

culate the sensitivity functions in Section 6.1.1 using the modal expansion method and

in Section 6.1.2 using the reciprocity principle method.

1.3 Contribution to Research

Below is a summary of the contributions of the research presented in this thesis:

For estimation of the WPF using the ABA, the main contribution of the study in Chap-

ter 3 is to highlight the challenges of estimating the low-wavenumber WPF in a TBL

using a microphone array. In particular,

• proposing a regularized Fourier-based approach to identify the low-wavenumber

levels of the WPF,

• studying the effects of three array parameters, namely sensor spacing, co-array

factor and sensor distribution on the performance of proposed method,
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• studying the effectiveness of using a microphone array to estimate the WPF in an

experimental condition using a virtual experiment,

• showing the number of realizations required for estimation of the WPF in the

low-wavenumber domain,

• showing the number of realizations required for estimation of the WPF in the

convective region,

• studying three different TBL models to investigate the effect of the convective

ridge on the identification of the low-wavenumber domain WPF.

For estimation of the WPF using the VBA, the main contribution of the study in Chap-

ters 4 and 5 is to estimate the low-wavenumber WPF in a TBL using an accelerometer

array. In particular,

• proposing truncated generalized singular value decomposition method to identify

the low-wavenumber levels of the WPF,

• studying the effect of sensor number and size of the plate on the accuracy of the

WPF estimation in the low-wavenumber domain,

• studying the effectiveness of using an accelerometer array to estimate the WPF in

an experimental condition using a virtual experiment,

• showing the minimum number of sensors and realizations required for estimation

of the WPF in the low-wavenumber domain,

• showing the advantages of using the VBA in estimation of the WPF in the low-

wavenumber domain compared to the ABA,

• proposing a frequency band method for estimating theWPF in the low-wavenumber

domain.

For the calculation of the sensitivity functions, the main contribution of the study in

Chapter 6 is to perform this calculation experimentally. In particular,

• studying two methods—modal expansion and the reciprocity principle—for calcu-

lating the sensitivity functions,
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• extracting the modal parameters of a plate experimentally and using these param-

eters to calculate the sensitivity functions using the modal expansion method,

• experimentally calculating the sensitivity functions using the reciprocity principle

and comparing the obtained results with those obtained from modal expansion

method.



Chapter 2

Literature Review

To provide a comprehensive summary of our study, this literature review is comprised

of three main sections. The first section, Section 2.1, reviews the TBL conception and

its interaction with a structure. Then, different semi-empirical WPF models developed

in the wavenumber domain have been reviewed. In Section 2.2, the vibration response

of structures under the TBL excitations, as well as the effect of different models on the

structural response, have been reviewed. Finally, the literature relevant to the research

for measuring and estimation of the WPF using the ABA and VBA are reviewed. It is

recognised from this review that there is an opportunity to investigate on estimation of

the WPF in the low-wavenumber domain.

2.1 Turbulent Boundary Layer Wall Pressure Field

2.1.1 Turbulent Boundary Layer Conception

TBL is a complex and critical phenomenon in fluid mechanics with numerous research

applications. Despite significant advances, the physics of turbulent flows remain chal-

lenging to fully comprehend. This section provides a brief overview of TBLs, highlighting

key concepts and historical milestones.

The concept of the boundary layer was first introduced by Ludwig Prandtl in 1905

[146]. Prandtl’s work bridged the gap between fluid mechanics and Euler’s theory of

inviscid flows, emphasizing the significance of fluid viscosity. According to Prandtl, the

10
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effects of viscosity cannot be ignored, no matter how small they may be, and this insight

has profoundly influenced the field of fluid-structure interaction over the past century.

Within the boundary layer, flow can be either laminar or turbulent depending on the

effects of viscosity.

The transition from laminar to turbulent flow is predicted by a dimensionless parameter

known as the Reynolds number, introduced by Osborne Reynolds in 1883 [150]. The

Reynolds number represents the ratio of inertial forces, which accelerate fluid particles,

to viscous forces, which dampen motion. When the Reynolds number increases, inertial

forces dominate, causing small disturbances in the flow to grow, ultimately leading to

chaotic turbulence.

Turbulence, however, may originate and propagate in a sufficiently complicated manner;

brief explanations will be given below [98]. Within a TBL, fluid particles will fluctuate

randomly and chaotically. These particles swirl and form irregular, rotating patches of

fluid known as eddies. Eddies originate from disturbances near the wall, causing fluid

particles to rotate and form small vortex filaments that roll along the wall. As these

vortex filaments lift from the wall, they encounter higher velocity flows, stretching into

shapes resembling horseshoes or hairpins. This vortex stretching process increases the

kinetic energy of the vortices, transferring energy from the main flow to the turbulence.

This process has been shown in Figure 2.1.

Secondary vortices with lower energy may form adjacent to the primary hairpin vortices.

These vortices oscillate and interact with other eddies, eventually becoming unstable

and breaking up. The remnants of these vortices form streamwise rolls, which lift other

vortex filaments from the wall, perpetuating the turbulent process. Thus, turbulence is

fundamentally characterized by rotation and the continuous transfer of energy through

vortex interactions.

Understanding the intricacies of TBLs is essential for numerous engineering applica-

tions, including aerodynamics, hydrodynamics, and fluid-structure interactions. Con-

tinued research in this field is vital for advancing our knowledge and improving practical

applications in engineering and technology.
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Figure 2.1: Schematic process of eddy formation in a turbulent boundary layer. Fig-
ure from [98].

2.1.2 Turbulent Boundary Layer Models

Due to the random nature of the pressure field, the typical methodology for analysing

TBL excitation of structures is based on random analysis techniques. Thus, the CSD of

WPF is considered as the essential quantity to calculate and evaluate the influence of

the fluid flow. Currently, no analytical formula can accurately predict the WPF.

Over the past 50 years, researchers have developed various semi-empirical TBL models

with differing levels of accuracy to estimate the WPF beneath a TBL [91, 104, 134].

These models fall into two categories: the auto-spectrum (or single point spectrum)

models and the normalized CSD models. The auto-spectrum models quantify the energy

of pressure fluctuations using mean square pressure fluctuations, while the normalized

CSD models describe the pressure energy distribution based on wavelength.

Graham’s formulation allows the CSD of WPF to be expressed independently as the

auto-spectrum (Ψpp(ω)) and the normalized CSD of the pressure field (ϕ̃pp(k, ω)) [71, 92].

This approach enables the use of each normalized wavenumber-frequency spectrum with

any auto-spectrum model as follows
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ϕpp(k, ω) = Ψpp(ω)

(
Uc

ω

)2

ϕ̃pp(k, ω), (2.1)

where k is the wavevector with components kx and ky in the streamwise and spanwise

directions in the (x, y) plane, respectively. This equation is valid when the wavenumber-

frequency spectrum fulfills the following requirement [92]

∞∫
−∞

∞∫
−∞

ϕ̃pp(k, ω)dk = 1, (2.2)

∞∫
−∞

∞∫
−∞

ϕpp(k, ω)dk = Ψpp(ω). (2.3)

Subsection 2.1.2.1 provides an overview of several developments of semi-empirical models

for calculating single-point wall pressure spectrum models. Most of the models have been

developed in the last fifty years, and are briefly presented here.

2.1.2.1 Single-point Wall Pressure Spectrum Models

Single-point wall pressure spectrum models, or power spectra, describe how to distribute

the mean-square fluctuating pressure with frequency. Essentially, it is how energies are

sorted into frequencies. A variety of models have been developed for point spectrum

prediction over the last 50 years [14, 15]. Hwang [91, 92] presented a summary of the

last 50 years of semi-empirical study on the prediction of TBL wall pressure frequency

spectrum.

The various length and velocity scales in the close vicinity of the wall mean that no

single scaling leads to a satisfactory fit of experimental data at all relevant frequencies.

Klebanoff [109], Laufer [112], and Townsend [165] showed that a TBL can be described

using viscous wall layer and friction layer. The viscous wall layer is situated very close

to the wall, where viscous effects dominate. Quantities in this region are defined using

inner variables such as wall-shear stress (τw = µfdU/dy, where µf is the dynamic vis-

cosity), friction velocity (uτ =
√
τw/ρ, where ρ is the density), and kinematic viscosity

(ν). Friction layer is situated further from wall. In this region, turbulent fluctuating
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motions prevail over viscous effects. Quantities in this region are defined using outer

variables such as the free stream velocity (U∞), dynamic pressure (12ρU
2
∞), boundary

layer thickness (δ), and displacement thickness (δ∗).

For a boundary layer along a flat plate, the point spectrum can be scaled using inner and

outer layer variables [4, 144]. The separation between these two regions occurs at the

frequency where the point spectrum reaches its maximum value. The overlap of the two

regions is known as the universal region. Figure 2.2 illustrates a typical wall pressure

spectrum (auto-spectrum), highlighting which scaling variables are most effective across

different frequency ranges.

τττ

τ

Figure 2.2: An overview of the spectral features for a TBL wall pressure spectrum at
different frequencies. Figure from [92].

By using dimensionless frequencies, the spectrum is divided into four distinct regions [92]:

• Low-frequency region: For ωδ/U∞ ≤ 0.03 (or ωδ/uτ ≤ 5), the spectrum varies as

ω2. In this region, flow structures in the outer layer dominate. Either q or τw can

be used as the pressure scale, with δ/U∞ as the time scale.
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• Mid-frequency region: For 5 ≤ ωδ/uτ ≤ 100, which includes the spectral peak at

approximately ωδ∗/U∞ = 50, τw is used as the pressure scale and δ/uτ as the time

scale.

• Overlap region: For 100 ≤ ωδ/uτ ≤ 0.3(uτδ/ν), this region is present when the

Reynolds number uτδ/ν > 333. Both outer and inner-layer scaling can collapse

the data in this range, with the spectrum varying approximately as ω−1. However,

studies by Goody [69] and Smol’yakov [161] suggest variations in the spectrum of

ω−0.7 and ω−1.1, respectively.

• High-frequency region: For 0.3 ≤ ων/u2τ , the high-frequency region is affected by

viscosity and is typically based on inner-layer variables. Pressure scales are defined

by τw and time scales by ν/u2τ .

In the low- and mid-frequency regions of the wall pressure spectrum, pressure fluctua-

tions are caused by physical processes occurring mainly in the outer layer. In contrast,

the higher frequency region reflects the physical behaviour occurring close to the wall.

According to Hwang [92], the following scaling laws can be applied for each region

• in the low-frequency region: Ψpp(ω)U∞/q
2δ∗ = f1(ωδ

∗/U∞) = constant×(ωδ∗/U∞)2,

• in the mid-frequency region: Ψpp(ω)u
∗/τ2wδ = f2(ωδ/uτ ),

• in the overlap region: ωΨpp(ω)τ
2
w = f3 = constant,

• in the high-frequency region: Ψpp(ω)u
2
τ/τ

2
wν = f4(ων/u

2
τ ).

Spectral characteristics that are frequency-dependent suggest that an appropriate auto-

spectra prediction model must rely on a wide range of scaling parameters. Below, we

present solutions from multiple researchers based on their work.

Robertson [153] conducted one of the earliest studies on single-point wall-pressure spec-

trum models. He developed a formulation for the pressure spectrum based on Lowson’s

work [117] using supersonic measurements from NASA-Ames. However, his model un-

derestimated spectral levels at low Strouhal numbers (Sh) and exhibited an excessive

roll-off at high Strouhal numbers. Despite these shortcomings, Robertson’s model pro-

vided a new formula that better represented experimental findings across a broader range
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of Mach numbers (Ma). For Mach numbers between 0.6 and 3.0, his calculated values

showed good agreement with experimental data. Subsequently, Amiet [6] proposed an

expression for the pressure spectrum based on measurements conducted by Willmarth

and Roos [172] over a flat plate. His expression is valid for 0.1 < ωδ∗/U∞ < 20.

In a 1974 investigation of the vibration response of spacecraft shrouds to in-flight fluctu-

ating pressures, Cockburn and Robertson [34] proposed a model for the auto-spectrum

density of the WPF. Their experiments were conducted on a 15◦ cone-cylinder payload

shroud at three different Mach numbers (Ma1 = 0.7, Ma2 = 0.8, Ma3 = 2.0). The data

was obtained from an Atlas-Agena launch vehicle, which featured a standard payload

shroud made of fiberglass skin with aluminum ring-frame stiffeners. The model had a

diameter of 1.676 meters and a total length of 5.791 meters, with a cylindrical section

length of 3.302 meters. While similar to the Robertson model [153], Cockburn and

Robertson used a modified estimate for the characteristic frequency that accounted for

the local thickness of the TBL.

In 1982, Kim and George [105] presented a mathematical formula by fitting a curve to

experimental data from Brooks and Hodgson [19] and Yu and Joshi [176] on an airfoil.

Their model is only valid for adverse pressure gradient conditions.

In 1982, Efimtsov [51] introduced his first model (Efimtsov 1) based on multiple wall

pressure measurements on aircraft fuselage during flight tests. The Efimtsov 1 model is

dependent on Reynolds (Re), Strouhal, and Mach numbers and is valid for 0.42 < Ma <

2.1 and 0.5 × 108 < Re < 4.85 × 108. These measurements evaluated pressure fields

at several points on the fuselage for a fully developed boundary layer and zero pressure

gradients. The Efimtsov 2 model [52] builds upon the original Efimtsov 1 model by

integrating further data collected from low and high-speed wind tunnel experiments at

TsAGI (Central Aerohydrodynamic Institute in Moscow, Russia). These measurements

encompass a Mach number range of 0.015 < Ma < 4 and Reynolds numbers from 6×102

to 1.5× 105 [52].

In 1987, Chase [26] updated his initial model, which was published in 1980 [28]. The

Chase frequency spectrum was obtained by integrating the wavenumber-frequency spec-

trum over the wavevector plane according to Eq. (2.3). According to Chase, the con-

vective velocity ranges between 0.65U∞ and 0.75U∞. A more accurate method for

measuring this value involves using the phase velocity derived from the cross-spectrum
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between two sensors aligned with the flow direction. Using this method and based on

the free stream and convective velocity, a ratio of approximately 0.75 ≤ Uc/U∞ ≤ 0.8

was computed for aircraft flight data [106].

To account for compressibility effects, Laganelli and Wolfe [111] derived a model in 1993

based on experimental studies and an expansion of Robertson’s model [153]. In 1994,

Goodwin [68] developed a model using flight test data from three supersonic aircraft.

In 1998, Howe [84] extracted a single-point wall pressure spectrum model from Chase’s

model [28], which is applicable at high frequencies. This model is known as the Chase-

Howe model [69]. Compared to the original Chase model, the updated Chase-Howe

model incorporates fewer TBL variables, resulting in a simpler formulation.

In 2000, Smol’yakov introduced a new model that applies distinct scaling variables for

different frequency ranges [161]. This model segments the spectrum into three regions:

low-frequency, universal, and high-frequency. After a comprehensive examination of

his mathematical formulation of the wavenumber-frequency spectrum and an extensive

set of published data [92], Smol’yakov developed this model. He used the boundary

layer momentum loss thickness (θ) as a dimensional factor in the Reynolds number,

introducing the momentum Reynolds number as Reθ = U∞θ/ν. His equations are valid

for Reθ > 103 (Re > 5× 105).

In 2004, Goody [69] modified Howe’s [84] model based on 19 different experimental

studies. Goody’s relationship, valid for 1400 < Reθ < 23400, yields higher levels at low

frequencies and results in a faster decay at high frequencies. By adding various terms

to the original formula, Goody better represented the spectrum across all frequencies.

In 2005, Rackl and Weston [148] compared measured flight data to predictions from

Efimtsov’s model, identifying two discrepancies. First, they observed a broadband spec-

tral peak at a certain Strouhal number, attributed to specific frequency ranges that

enhance the contribution of turbulent energies based on boundary layer thickness. Sec-

ond, they noted a steeper roll-off at higher frequencies, where Efimtsov’s model predicted

a shallower negative slope compared to other models and flight data. To address these

issues, they modified the updated Efimtsov model [52] to incorporate the broadband

spectral peak appearing near the Strouhal number of Sh = 2πfδ∗/U∞ = 0.6. This
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requires converting the Efimtsov model to decibels, applying Rackl and Weston’s fac-

tors, and converting the corrected model back into the original units. Their expressions

include a function centered at 1000 Hz to adjust only the high-frequency slope.

In 2007, Rozenberg et al. [155] developed a model based on Goody’s model but used

displacement thickness instead of boundary layer thickness in their formulation. They

analyzed spectral variations between adverse pressure gradient and zero pressure gradi-

ent boundary layers using numerical and experimental results. They fitted new param-

eters to their analysis based on data from six different adverse pressure gradient flow

cases, opting to consider the maximum shear stress along the wall rather than the shear

stress suggested by Simpson [160].

In 2012, Miller et al. [134] reviewed various models, including Graham’s [71] formula-

tions, to evaluate each model’s appropriateness and accuracy for aircraft applications.

Compared to experimental data, the spectrum at low frequencies rolled off similarly to

the Goody model. Due to its mathematical simplicity, the Goody model was deemed

the most suitable single-point wall-pressure spectrum model for aircraft applications.

In 2014, Catlett et al. [25] introduced an empirical model for the TBL WPF under an

adverse pressure gradient. They used the Goody model with constants calibrated from

measurements taken over the trailing edge region of an airfoil profile in a wind tunnel

for various pressure gradient intensities.

Similarly, in 2016, Klabes et al. [108] developed another model based on the Goody

model. They re-evaluated the exponents and constants in Goody’s formula and proposed

a new normalized relationship according to the local kinetic energy values. Additionally,

in 2016, Hu and Herr [87] created a WPF model for zero, adverse, and favorable pressure

gradient TBLs in a wind tunnel, applying the Goody model to scale new parameters.

Figure 2.3 depicts a comparison of auto-spectrum models developed by Cockburn &

Robertson, Robertson, Efimtsov, Rack and Weston, Goody, Chase, Chase-Howe, and

Smol’yakov at Ma = 0.78 [107]. The Cockburn & Robertson, Robertson, Efimtsov,

Rack, and Weston models were derived from flight test data and wind tunnel model

results at high Mach numbers and Reynolds numbers. These models exhibit a large

plateau in the low-frequency domain with a pronounced roll-off at higher frequencies.
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In contrast, the second group comprises the Goody, Smol’yakov, and Chase-Howe mod-

els, each offering distinct spectral shapes, especially at low frequencies. These models

show an increase in spectral values as frequency rises, peaking in the mid-frequency

range before declining at higher frequencies.

The Chase model falls between these two groups. Like the Robertson & Robertson-

Cockburn and Weston & Efimtsov-Rackl models, it features a substantial plateau in

the low-frequency range. However, its predicted spectrum peaks at higher frequencies

before rolling off similarly to the Goody, Smol’yakov, and Chase-Howe models. Each

model exhibits unique characteristics and shapes tailored to fit specific measurements,

highlighting differences in data quality and model design.

Ψ
pp

Figure 2.3: Comparison of auto-spectra models at Ma = 0.78. Figure from [107].
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2.1.2.2 Normalized Wavenumber-Frequency Spectrum Models

Signal processing typically uses recorded data in the time domain to calculate corre-

lation functions. These data are derived as a result of observing two signals with a

space (or time) lag. This process eliminates non-recurring contents while periodically

recurring contents are filtered. The aim of correlation functions is to indicate how two

signals are related, which in turn provides insight into their relationship [107]. The

CSD can be calculated by a Fourier transform of correlation function with respect to

time. Additionally, the spatial Fourier transform of the CSD can be used to generate a

wavenumber-frequency spectrum ϕpp(kx, ky, ω) for each frequency [53].

Along with the auto-correlation empirical models, various cross-correlation empirical

models are developed by researchers. In this section, we review the available wavenumber-

frequency models for the TBL.

Figure 2.4 illustrates the wavenumber-frequency spectrum at a constant frequency, high-

lighting all distinct regions. The spectrum in Figure 2.4 is classified into the following

regions [22]:

• Supersonic region (not shown), k < ω/c = (k0);

• Sonic or acoustic region, k ≈ ω/c;

• Subconvective region, ω/c < k < ω/Uc;

• Convective region, centered around k = ω/Uc;

• Viscous region, k ≫ ω/Uc.
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Figure 2.4: Schematic of the characteristic region for wavenumber-spectrum of
ϕpp(kx, ky, ω). Figure from [85].

Bull demonstrated in [22] that the standard shape of the spectrum beneath the TBL is

primarily determined by pressure-field components associated with the phase velocity

ω/k = Uc. This zone, known as the wavenumber-spectrum convective ridge (centered

around kω = ω/Uc)), is where the primary source of TBL energy is concentrated. Acous-

tic radiation is defined as k0 = ω/c0. It occurs due to elements with phase velocities

equal to or greater than the speed of sound in fluids.

Graham [71] observed that, although the subconvective region is important for low-

Mach fluid flow applications, it holds less significance in high-Mach contexts, such as

those encountered in aircraft. In these situations, the convective region—containing

most of the TBL energy—becomes a primary factor in inducing vibrations in aircraft

structures. The viscous region, on the other hand, is characterized by the occurrence of

small-scale turbulence [133].

When examining various modeling approaches, it is evident that the core of the convec-

tive region, where energy primarily accumulates, exhibits a greater width in cross-flow
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directions compared to in-flow directions. This difference arises from variations in co-

herence length across each direction [107]. Additionally, Smol’yakov highlights in [162]

that wavenumber-frequency models generally fall into two main types.

The first type includes ”convertible” models, which allow for the transformation be-

tween an analytically derived wavenumber-frequency perspective of the spectrum and

a cross-spectrum format, and vice versa, through interactive Fourier transformations.

Smol’yakov explains that this convertibility enables the application of various techniques

to assess structural vibrations and flow-induced noise. In contrast, the second type en-

compasses models that do not share this advantageous property.

In 1964, Corcos [38] introduced his model by fitting a curve to the narrow-band spatial

correlation between wall pressures. The Corcos model is widely utilized in scientific

research. According to his hypothesis, the coherence loss between two spatially separated

points is the product of coherence loss in the streamwise direction and the spanwise

direction. In this model, the coefficients αx and αy represent the decay rates in the

flow and cross-flow directions, respectively. The Corcos model does not account for the

acoustic region.

Graham [70], along with measurements by Willmarth and Woolridge [173], estimated αx

and αy to be 0.1 and 0.77, respectively. Blake [14, 15] further suggested that αx = 0.32

and αy = 0.7 are suitable for aircraft boundary layers, while αx = 0.116 and αz = 0.70

are appropriate for smooth walls.

A significant drawback of the Corcos model lies in its formulation of coherence length. As

the frequency (ω) approaches zero, the model suggests that coherence length increases

without bound. In contrast, experimental data indicate that coherence length remains

finite at low frequencies due to the finite thickness of the TBL, which prevents unlimited

growth of coherence length. Analyzing this data, Blake [14] concluded that the Corcos

model lacks predictive power at low-wavenumbers because it ignores the finite size of the

TBL. Recent studies by Finnveden et al. [61], Cohen [36], and Hu and Herr [87] have

demonstrated that the correlation length coefficients do not remain constant across all

frequencies. Additionally, the Corcos model does not account for the compressibility of

the fluid. The Corcos model in the wavenumber-frequency domain is comprehensively

detailed in [28]. Figure 2.5 illustrates 2D and 3D plots of the Corcos model at 2000 Hz.
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Figure 2.5: 2D and 3D plots of the Corcos wavenumber-frequency for 15 m/s at 2000
Hz. Figure from [134].

In 1968, Cockburn and Jolly [35] enhanced the Corcos model by adding a boundary

layer thickness factor ϵδ∗ , addressing the boundary layer’s finite thickness overlooked

by Corcos. This modification improves coherence length predictions, particularly in

the low-frequency range. In 1982, Efimtsov [51] introduced a cross-correlation model

based on Corcos’ approach, but unlike Corcos, Efimtsov included the boundary layer

thickness when calculating coherence length, utilizing different correlation lengths αx

and αy. Efimtsov’s results are preferred over Blake’s recommendations because they are

based on an extensive series of measurements on aircraft across a Mach number range

of 0.41 < Ma < 2.1, whereas Blake’s recommendations are derived from a more limited

data set reported by Bhat [13]. Bhat observed shorter correlation lengths than those

associated with the ”smooth wall” parameters αy = 0.77 and αx = 0.1, attributing this

to factors such as misalignment between the x-axis and the flow direction and surface

roughness, which led Blake to use the rough-wall parameter αx = 0.32. However, the dif-

ferences between Efimtsov’s results and Bhat’s findings might be fully explained by flow

misalignment and another unconsidered factor: the decrease in correlation lengths with

Sh, which would impact the lower frequencies in Bhat’s data. Consequently, Efimtsov’s

expressions should be considered more reliable. While this model improves upon Cor-

cos’s, it still tends to overestimate the spectrum at low-wavenumbers.

Chase’s initial model [28], developed in 1980, offered better low-wavenumber domain

predictions compared to Corcos’ model, which tended to overestimate experimental data.

Figure 2.6 displays 2D and 3D plots of the Chase 1 model at 2000 Hz. At kx = ky = 0,

Chase’s first model introduces a discontinuity that reduces acoustic levels. It also fails
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to account for the supersonic region (|kx|< ω/c0) and does not accurately reproduce

features of experimental results in the low-wavenumber domain (ω/c0 < kx ≤ ω/Uc) [14].

To address this, Chase applied Kraichnan-Phillips’s theorem to the low-wavenumber

domain, aiming to develop a more accurate model that includes the acoustic domain

[26]. In 2005, Finnveden et al. [61] further modified the Chase model by examining the

vibration responses of structures excited by a TBL.

Building on Lighthill’s acoustic analogy and assuming that the velocity source terms fol-

lowed the general Corcos form, Ffowcs [171] derived an expression for the CSD of WPF

that included several unknown constants and functions requiring experimental determi-

nation. Hwang and Geib [93] later proposed a simplified version of this expression by

disregarding the effects of compressibility and assuming specific forms for the remaining

unknown functions.

Figure 2.6: 2D and 3D plots of the Chase 1 wavenumber-frequency for 15 m/s at
2000 Hz. Figure from [134].

In 1990, Mellen [131] developed an elliptical model for the CSD of WPF with αx = 0.10

and αy = 0.77. Instead of the distribution of rhombic coherence zones in the Corcos

model, which makes little physical sense, the Mellen model simulates a distribution of

elliptical coherence zones. The shape of the ellipse is controlled by the ratio αx/αy.

An illustration of the 2D and 3D plots of the Mellen model at 2000 Hz are shown in

Figure 2.7.
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Figure 2.7: 2D and 3D plots of the Mellen wavenumber-frequency for 15 m/s at 2000
Hz. Figure from [134].

In 1991, Smol’yakov and Tkachenko [167] investigated spatial correlations of WPF within

a TBL without a pressure gradient. They analyzed how these correlations varied with

spatial separation and boundary layer thickness, deriving a formula by fitting exponential

curves to their experimental results. The measurements took place in a closed-section

wind tunnel with a free-stream velocity of U∞ = 40 m/s. Figure 2.8 illustrates the

2D and 3D plots of the Smol’yakov model at 2000 Hz. They found that the low-level

low-wavenumber components of WPF in their model showed an improvement compared

to the Corcos model but were still higher than the experimental data. To correct this,

they adjusted the model by adding a correction factor to align it more closely with

the experimental data without significantly affecting the convective peak values. The

Smol’yakov and Tkachenko model produced a convective ridge with a quasi-elliptical

shape, rather than the rhombic shape, which was more realistic and consistent with

observations.

Figure 2.8: 2D and 3D plots of the Smol’yakov wavenumber-frequency for 15 m/s at
2000 Hz. Figure from [134].
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In 2006, Smol’yakov introduced a new model for calculating wavenumber-frequency spec-

tra as described in [162]. This model builds upon the earlier work of Smol’yakov and

Tkachenko [167], using a similar method for calculating the cross-spectrum. Unlike pre-

vious models, this new model accounts for the fluid’s viscosity, making it dependent on

the Reynolds number. Ignoring viscosity causes the coherence length to drop to zero as

frequency increases, due to the limiting effect of viscous forces on the minimum vortex

size. This model utilizes an auto-spectrum that explicitly accounts for viscosity, and it

assumes that the ratio of convective velocity to free-stream velocity varies according to

the dimensionless frequency ωδ∗/U∞. The model also incorporates coherence length as

a key parameter.

Figure 2.9 compares the shapes of different models at ky = 0 to highlight the location of

the convective ridge, where most energy is concentrated. The plots reveal that all models

exhibit a strong peak at kx = ω/Uc, ky = 0. If the boundary layer were convected at

speed Uc, all energy would collect there [71].

The models can be divided into two main categories. The first category includes models

centered around the Corcos model, including the Efimtsov and Jolly models, which are

based on the Corcos model’s principles of cross-flow direction and flow separation.

The second category includes models developed by Chase and Smol’yakov, which seek to

more accurately represent wavenumber regions distant from the convective ridge. These

models incorporate combined multidimensional wavenumbers for both flow and cross-

flow directions, producing a more elliptical shape that better reflects reality. In the

peak zone, differences can exceed 7 dB, and they can reach over 30 dB further from the

convective ridge. Compared to rhombic models, elliptical models offer a more realistic

representation in areas away from the convective ridge [107].
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ϕ̃

Figure 2.9: Comparison of wavenumber-frequency spectra models ϕpp(k, f) (dB, ref.
1 Pa2.Hz−1) at ky = 0 for 15 m/s at 2000 Hz. kx and ky represent the streamwise
and spanwise wavenumbers, respectively, and kc is the convective wavenumber. Goody
model is used for the auto-spectrum density.

2.2 Vibration Response of Structures Under TBL Excita-

tion

To gain a better understanding of how a TBL interacts with a structure, as well as

how different models of WPF with varying accuracy in the low-wavenumber domain

can impact the vibrational response of a structure, this section reviews researches on

the vibrational response of structures under TBL excitations. It also highlights the

importance of accurate estimation of WPF in the low-wavenumber domain.

The structural response to a random pressure field necessitates the application of ran-

dom analysis techniques, which have been extensively covered in numerous articles and

publications discussing the mathematics of random variables. The vibration responses
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of structures under the influence of stationary random processes, such as random WPF

beneath a TBL, are particularly relevant for naval applications. Notably, Paez [139] pro-

vided an insightful overview of the history of random vibration up to 1958, a milestone

year in the field marked by Crandall’s seminal proceedings [40], which is considered the

starting point of modern probabilistic structural dynamics.

Since then, standard text books on random vibration analysis techniques have been pub-

lished, including works by Bendat and Piersol [11], Newland [136], and Elishakoff [54].

These books serve as fundamental resources for introducing random load distribution

concepts. Regarding TBL excitation, various analytical, numerical, and experimental

methods have been employed [30, 46, 74, 100, 103, 116, 125, 130, 175] to investigate the

vibration response of planar structures excited by a TBL.

There are several approaches available for determining frequency response functions

(FRFs), including the use of finite element (FE) models or analytical models. The

dynamic behavior of a structure can be characterized by either a modal expansion tech-

nique or a wave-based approach. The modal expansion method is especially effective

for low-frequency excitation, where a few dominant modes typically influence the peak

responses. As a result, the overall frequency response function can be efficiently ex-

pressed as a combination of these individual modal responses [89]. On the other hand,

a wave method may be preferable, as it interprets the resonance response predicted by

the modal expansion method as the coincident superposition of traveling waves with

opposite wave-number vectors, described as incident and reflected waves [58].

Powell [145] introduced the idea of the joint acceptance function to clarify the interaction

between the forcing function and the structural modes. Wilby [169] expanded on this

concept to investigate the response of simple panels subjected to TBL excitation. During

this time, significant research focused on the response of flat plates to TBL, with key

contributions from Dyer [50], Maidanik [121], Ribner [151], Maestrello [119, 120], White

[168], and Davies [45]. It has been shown that FRFs can be calculated using a modal

expansion method, which involves summing the responses of individual modes. In certain

cases, FRFs assume an infinite plate model. Strawderman [164] reviewed models of plate

vibration induced by turbulent flow, using theories related to both finite and infinite

thin plates. The infinite plate model is particularly advantageous for its simplicity in

the mathematical development of estimating the power input from the TBL.
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In some cases, FRFs are based on the assumption of an infinite plate. Strawderman

[164] reviewed models of turbulent-flow-induced plate vibration using theories of both

finite and infinite thin plates. The infinite plate model is particularly useful due to its

simplicity in the mathematical developments for estimating the power injected by the

TBL.

For both finite and infinite structures, representing vibration behavior in the wavenum-

ber domain is beneficial. This approach offers two significant advantages. First, it

improves the analytical manageability of the problem and provides complete or par-

tial closed-form solutions, which can significantly reduce computational effort. Second,

wavevector-frequency analysis allows for a physical interpretation of the problem, par-

ticularly regarding the system’s filtering effect. It also shows how certain system char-

acteristics are distributed across wavevector and frequency variables, indicating the rate

at which these characteristics change with respect to distance and time [127]. This

method was first applied to predict sound radiation from standard geometries like flat,

baffled surfaces, as well as spherical and cylindrical shells. Foundational works by Junger

and Feit [99], Fahy [58], Skelton and James [95], and William [170] have detailed this

approach.

In this approach, the vibro-acoustic response can be interpreted as the outcome of pass-

ing the excitation spectrum through a three-dimensional filter (involving frequency and

two wavenumber components). This filter is characterized by a sensitivity function that

depends solely on the geometrical and mechanical properties of the structure [127]. This

function corresponds to the plate’s response to a unit wall plane wave [124]. Maury et al.

[127, 128] formulated the vibroacoustic response of a panel excited by either an incident

dynamic acoustic field or a fully developed turbulent layer analytically. Their work led

to the standard representation in the wavenumber domain, as the coupling evaluation

is achieved by integrating the product of the sensitivity function and the TBL wavevec-

tor spectrum over the wavenumber domain. Fundamental aspects of fluid-loading in

vibrating structures are also summarized by Blake [15] and Howe [84].

A critical aspect of this approach is the necessary accuracy for both the excitation model

and the wavenumber-frequency sensitivity function of the structure, as well as their rela-

tionship. For some infinite structures, where the sensitivity function is precisely known,

the accuracy of the excitation model fully determines the accuracy of the calculated
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system response. However, for finite and complex structures, the accuracy of numerical

approximations for the sensitivity function depends on the validity of the model’s sim-

plifying assumptions and the quality of the approximation method [127]. Recent studies

by Marchetto et al. [124, 125] estimated the sensitivity functions of a simply supported

plate using the reciprocity principle and examined the vibrational response of surfaces

under a diffuse acoustic field (DAF) and a TBL excitation.

2.2.1 Fluid-Structure Interaction in Wavenumber Domain

Visualizing the spectral contents of both the excitation and the sensitivity function on a

graph offers a clear interpretation of the spectral distribution of the system’s response.

The acoustic wavenumbers and convection wavenumbers are dependent on the angular

frequency ω, and they may coincident with each other [114]. Generally, we can say that at

low frequency, the convective peak will locate near the kx = 0, and it will coincident with

the acoustic domain. In this case, distinguishing the acoustic peak from the convective

ridge is difficult. By increasing the frequency, the radius of the acoustic region will

increase and also the wavenumber related to the convective ridge will move away from

the kx = 0. Accordingly, the acoustic peak can be distinguished from the convective

ridge at high frequency [31]. The region between convective region and acoustic domain

is called sub-convective domain (see Figure 2.4). Typically, the wavenumber-frequency

spectrum of the WPF is characterized by three distinct regions: the convective region,

the sub-convective region, and acoustic domain.

The interaction between fluid and structure, alongside the wavenumber-frequency spec-

trum of WPF, is influenced by the flexural waves (kf ) propagating along the interface

of the structure and fluid. The ability of flexural waves to match with the surrounding

fluids depends on whether these waves are subsonic (slower than the fluid wave speed)

or supersonic (faster than the fluid wave speed). Depending on the excitation frequency,

these waves can match with either the acoustic or hydrodynamic waves of the fluid. Hy-

drodynamic coincidence occurs at the angular frequency ωc when kc = kf , while acoustic

coincidence occurs at ω0 when k0 = kf [89].

A typical wavenumber-frequency diagram for the surface pressure spectrum ϕ(k, ω) of

a subsonic flow is depicted in Figure 2.10. Flexural waves exhibit dispersion, meaning

that their wave speeds increase with frequency. For problems associated with low-speed
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flows (Ma ≈ 0.1), convected wavenumbers kc can be up to two orders of magnitude

greater than corresponding acoustical k0 and structural kf wavenumbers, as illustrated

graphically in Figure 2.10 [89].

For finite panels, the discontinuities at the boundaries cause a superposition of travel-

ing waves with opposing free bending wave vectors, known as standing waves. These

standing waves occur at natural or specific frequencies ωmn (associated with discrete

wavenumbers kmn), such as kf = kresonance. Since the panel is finite in both the stream-

wise and spanwise directions, the standing waves form a two-dimensional regular pattern

in wavenumber space. At a given frequency ω, the resonant modes lie on a circle with a

radius of kf . When the wavenumbers of a vibration mode closely align with kc or k0, the

Fourier transform in space or wavenumber of the structural mode peaks around these

wavenumbers, making it more likely to absorb energy from the flow for that particular

mode of vibration. This phenomenon, known as panel acceptance, is often referred to

as ’wavenumber coincidence’ [89].

Figure 2.10: A schematic wavenumber-frequency diagram of a TBL WPF for a sub-
sonic flow. The standard wavenumber of resonance, kresonance, is acquired at the inter-
face between waves propagating at the free wavenumber, kf . Figure from [89]
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The spatial matching schematic of the wavenumber-frequency spectrum of the TBL

WPF, denoted as ϕpp(kx, ω), and vibration modal response of the structure, denoted

as Ψs(kx, ω) in a scenario where the fluid’s flow velocity equals or exceeds the velocity

of structural waves, is shown in Figure 2.11. As discussed in Section 2.2, the vibration

response of the structure can be mathematically determined by integrating the product of

WPF regions and modal response of the structures in the wavenumber domain [31]. Two

main sources of structural vibration are highlighted in shaded areas. In this scenario, the

convective wavenumbers in the flow align with the wavenumbers of the bending waves,

resulting in hydrodynamic coincidence [114]. This phenomenon is typically observed in

high Mach number flows, such as those over cars [31]. Consequently, the vibration of

the structure is predominantly induced by TBL excitation at convective wavenumbers.

ϕ

Figure 2.11: Schematic of the spatial matching of the wavenumber-frequency spec-
trum of the TBL WPF and vibration modal function when Uc ≈ cf < c0 (not in scale).

The convective wavenumbers, however, are too high in low Mach number flows associated

with structures excited by heavy fluids to match the bending waves of the underlying

structure and therefore do not cause significant vibration in these systems [17, 32, 74].

The reason is that the structure acts as a filter, attenuating the excitation from the

convective ridge of the TBL at frequencies well above the coincidence frequency. This

behaviour is shown graphically in Figure 1.2. In this figure three primary sources of

structural vibration are illustrated (shaded areas). These three major parts are respon-

sible for the final vibration data. The first one is the interaction between the amplitude
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peak of the acoustic spectrum and the corresponding wavenumber in the acoustic do-

main of the modal function shape. Two other regions are the interaction of convective

and modal shape peak with the corresponding wavenumber level of the WPF in the

hydrodynamic domain. Vibration response can be approximated by adding these three

parts. However, in this situation, structural wavelength occurs in the sub-convective

region of the wall pressure spectrum, and the vibration induced by the TBL is mainly

dominated by this domain of WPF [94].

This was confirmed by Hambric et al. [74] and Hwang and Maidanik [94], who inves-

tigated the vibration response of a baffled flat rectangular plate with various boundary

conditions under a low-speed TBL flow excitation. The study revealed that a plate with

simply supported or clamped boundary conditions significantly filters out the contribu-

tion of the TBL convective ridge to its vibrational response and at high frequencies,

where the flexural wavenumber of the plate was lower than the convective wavenumber,

the response of the plate with these boundary conditions was mostly due to the wall

pressure energy in the low-wavenumber region. Consequently, apart from the low level

of wall pressure spectrum beneath an attached TBL in the sub-convective region, these

low-wavenumber pressure levels are responsible for structure-born sounds and vibrations

in many applications. This highlights the importance of the low-wavenumber WPF in

the prediction of flow-induced vibrations.

Theoretically, for a homogeneous incompressible flow over a plane surface, the conser-

vation of mass dictates that the wavenumber spectrum value at kx = ky = 0 must

be exactly zero [22]. Additional considerations based on the pressure Poisson equation

suggest that the spectrum should increase as k2 at low-wavenumbers, a characteristic

included in the Chase model [28]. Chase later accounted for acoustic contributions at

low-wavenumbers, which altered this result [26]. Nonetheless, if the boundary layer

thickness δ is sufficiently large, the Chase model also predicts a wavenumber-white

plateau in the intermediate low-wavenumber range, approximately δ−1 < kx < 0.1kc

(see [118]).

However, experimental measurements [17, 47] have shown that the low-wavenumber

values do not vary with κ2 and tend to support the idea of an approximately plateau.

Additionally, because of growing the boundary layer flows over a flat surface, the pressure
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field near the wall is not completely homogeneous, so this assumption is not valid in real

flows, and as a result, other factors may contribute to the low-wavenumber results.

2.2.2 Effect of Different Models on Vibration Response of Structures

The correct spectral values for the subconvective region are still being debated. There-

fore, there is a need for further development of precise measurement methods and numer-

ical simulations for identification of the WPF. Historically, the levels of low-wavenumber

components of the WPF have been challenging to model and measure due to their low

magnitude relative to convective wavenumber pressures and the lack of experimental

validation. As shown in Figure 2.9, while different models generally agree on predicting

the convective ridge region, there is often significant uncertainty at wavenumbers below

the convective ridge. As expected, these differences can lead to different responses for a

system simulated by each model.

Based on the Corcos and Chase models, Figure 2.12 shows the acceleration power

specteral density of a plate with simply supported boundary conditions subjected to

TBL fluctuations [31]. According to this figure, there is a reasonable similarity between

the curves around the hydrodynamic coincidence frequency of fc = 65 Hz, but at other

frequencies, large differences are observed, with the Corcos model yielding results that

are 10 dB higher than those obtained using the Chase model. The reason is that the Cor-

cos wavenumber levels in sub-convective and super-convective regions are much higher

than those in Chase model. It is well-known that the Corcos model significantly overes-

timates levels in the subconvective region, which primarily affects the panel’s response

at frequencies higher than the hydrodynamic coincidence frequency. However, there is

still ongoing debate regarding the correct spectral values, particularly in the subcon-

vective region. This uncertainty justifies the ongoing efforts to develop more accurate

measurement devices and numerical simulations for WPF.

Moreover, Hambric and Lysak [73] demonstrated that although both the Corcos and

Mellen models can be used for conditions where flexural wavenumber is approximately

equal to convective wavenumber (kf ≈ kc), the Corcos model overestimates vibrations for

lower kf/kc ratios. The overestimates worsen with decreasing kf/kc ratio. Based on their

numerical comparison, applying the Mellen model with Smolyakov’s convection velocities

and length scales agree well with the measurements and improves low-frequency accuracy

[31].
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excited by a TBL load simulated using wavenumber-frequency spectra models, with
Corcos shown in solid lines and Chase in dashed lines. Figure from [31].

2.3 Methods for Measuring the WPF beneath a TBL

Despite technological advances, measuring wall-pressure fluctuations remains challeng-

ing, even for single-point measurements. One of the main challenges has to do with the

small turbulent wavelengths that must be resolved by the sensors [31]. Below, we review

two approaches, ABA and VBA, for measuring the WPF.

2.3.1 Acoustic-based Approach

Microphone arrays are typically used to measure the WPF. They directly capture the

sound waves generated by the WPF. To estimate the WPF, microphones are usually

placed near a rigid wall exposed to turbulent flow, recording the sound waves produced

by the pressure fluctuations. However, this approach has limitations related to spatial

resolution, which is constrained by microphone spacing and configuration. Reducing the

spacing between microphones can enhance resolution but often requires more sensors,

Figure 2.12: The acceleration power spectral densities of a simply-supported plate
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increasing both cost and setup complexity. Conversely, increasing the distance between

sensors may result in the failure to capture all samples of incoming sound waves, leading

to a reduction in the resolution of pressure fluctuations. Furthermore, the data recorded

in this approach can easily be contaminated by background noise.

There are various ways to measure two-point cross-spectral pressure. One straightfor-

ward method used by Panton and Robert [140] is to utilize two microphones and then

increase the distance between them along a line. This concept had been further ex-

panded to the point that an array of sensors was used for the first time by Maidanik

[122] and was further developed by Blake and Chase [16] and Farabee and Geib [62].

In this approach, the microphones are spaced regularly at specific intervals in a linear

streamwise array. Using a linear streamwise equidistant array with intervals of d, they

could measure pressure fluctuations around kx = π/d by analyzing alternate microphone

outputs. These mode arrays were then used to calculate spectral levels in sonic and sub-

sonic regions by selecting suitable frequencies [31]. Another example of this approach

is Abraham and Keith [1] who utilized a linear array of evenly spaced flush-mounted

pressure sensors to directly measure the streamwise wavenumber-frequency spectra of

the WPF in an acoustically quiet tunnel.

While microphones can record the pressure magnitude of the WPF, spatial aliasing can

introduce noise into the measurement [43]. This issue arises due to the finite size of prac-

tical sensors and the process of signal averaging over a sensor’s surface, which inherently

limits the precision of WPF measurements at high frequencies [86]. Consequently, us-

ing larger sensors results in reduced resolution for high-frequency pressure fluctuations.

Corcos [39] was a pioneer in exploring the relationship between sensor size and the corre-

sponding spectral attenuation based on theoretical foundations. More recently, Hu [86]

introduced a correction model to address high-frequency attenuation associated with

sensor size when measuring WPF beneath the TBL.

Aliasing occurs in any array where sensor spacing cannot resolve the smallest turbulent

scales [31]. The results of using a large number of sensors were presented by Manoha

[123] and Bermer [18] to alleviate the aliasing effect. For example, wavelengths of acous-

tic waves for a flow with a convective velocity of Uc = 34 m/s are typically ten times

larger than those of the most powerful hydrodynamic waves [31]. Therefore, based on
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the fluid velocity and frequency of interest, there is a requirement to use many sen-

sors. In order to comprehensively capture the spatial characteristics of the two-point

cross-spectrum of the WPF, which can subsequently undergo Fourier transformation to

generate the wavenumber-frequency spectrum of wall pressure, an alternative method-

ology was introduced [7, 156]. In this technique, transducers were deployed in an array

spanning the diameter of a disk, arranged along a line that can be rotated to various

angular positions. The technique of using large arrays and small sensors has enabled

investigators to create clear maps illustrating the convective ridge and acoustic cone

[8]. For example, on a wall embedded under a TBL, Arguillat et al. [8] mounted 63

pressure microphones with different sizes across an antenna disk that could be rotated

to different positions. They rotate the disk in various positions to calculate the two-

point cross-spectrum characteristic of TBL flow. Then they calculated the wavenumber

frequency spectrum of the WPF by measuring the spatial dependence of that computed

cross-spectrum. By transforming data that comes from space-frequency measurements

into wavenumber-frequency spectra, original post-processing has been implemented to

separate the acoustic and the aerodynamic effects. A schematic of the test channel

mounted on the outlet of the wind tunnel and the measured wavenumber-frequency

spectrum is shown in Figure 2.13.

(a) (b)

Figure 2.13: (a) Test channel mounted on the outlet of the wind tunnel and (b)
measured spectrum at f = 1000 Hz in the wavenumber domain. Figure from [8].

It should be noted that a periodic arrangement of microphones is not the best choice

since it causes redundant distances between sensors [81]. The number of sensors would be

greatly increased if wavenumber aliasing were to be avoided by following the Shannon-

Nyquist criterion. This criterion states that the distance between two close sensors

should be kept smaller than half of the minimum effective wavelength in the TBL flow
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[31]. Various techniques have been proposed to optimize array efficiency. One of the most

common techniques is using an array with a spiral shape [49]. The advantage of using

a non-equidistant array was studied by Haxter and Spehr [81] in 2014. They evaluated

the efficiency of equidistant and non-equidistant array patterns in detecting a single

source in the wavenumber domain. Figure 2.14 illustrates these two types of patterns.

In the array on the left, the transducers are equidistantly spaced ∆x = ∆y = 0.1m, but

in the array on the right, the transducers are not equidistantly spaced. They showed

that opposed to the non-equidistant spaced array pattern, the equidistant array has

amplitudes on the side lobes identical to that of the main lobe. In other words, the

non-equidistant spacing of the transducers has the capability to transfer aliasing effects

at a greater wavenumber than in the equidistant array. Wavenumber spectrum from

the wind tunnel test were shown in Figure 2.15 for f = 1480 Hz and f = 2454 Hz.

The convective region is dominant in both frequencies, but the acoustic region is more

evident at lower frequencies. In addition to Nyquist criterion and array pattern, the

co-array size plays an important role in the array performance [31]. Co-array describes

the number of different cases where the distance between every pair of sensors is unique

[166]. As an example in [166], for a square array with 64 sensors, the maximum possible

number of separation with one pair of sensors is 4033 which 225 of them are only unique.

More recently, Schram et al. [158] applied a similar procedure to Ref. [81] and used

64 microphones on a rotatable disk to minimize the number of rotation angles and

acquisition time while providing a relatively uniform sampling of the co-array plane.

(a) (b)

Figure 2.14: (a) equidistant transducer distribution and (b)non- equidistant trans-
ducer distribution. Figure from [81].
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(a) (b)

Figure 2.15: Wavenumber spectrum from the wind tunnel test at (a) f = 1480 Hz
and (b) f = 2454 Hz. Figure from [81].

Measuring the wavenumber spectra is difficult, especially in the sub-convective and

acoustic domains. In an array, the size of the main lobe is inversely proportional to the

diameter; as an example, the corresponding disk diameter to an acoustic wavelength of

frequency 1.4 kHz is approximately 25 cm [31]. Therefore, using directly the Fourier

transform of the measured cross-correlations to resolve the acoustic section information

of the fluid flow with the wavenumber spectrum below say 2 kHz will be very difficult

[31].

To address these issues, advanced signal processing techniques have been developed to

extract the WPF information [31, 177]. This enables the direct measurement of pres-

sure fluctuations, offering detailed information about the pressure field’s characteristics

[82]. One widely used signal processing technique is beamforming, which combines mi-

crophone outputs to form a directed or focused sensitivity beam. This enhances the

desired signal while suppressing interference and noise from other directions. Various

beamforming techniques are discussed in [102, 132, 157].

Another method often used to boost an array’s low-frequency resolution is deconvolu-

tion, which is developed to compute the inverse of the ill-posed of the array’s point

spread function (PSF). Since wavenumber-frequency spectrums are positive quantities

by definition, one can use the DAMAS algorithm (introduced by Brooks et al. [20]) or

its variants effectively since they are developed based on a deconvolution algorithm with

a positive preconditioning value.
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The first attempt at implementing the deconvolution method to estimate WPF was made

by Ehrenfield and Koop [53] in 2008. Figure 2.16 illustrates the experimental setup used

to measure the wavenumber-frequency spectrum. They measured the WPF beneath a

compressible TBL at a high subsonic Mach number ofMa = 0.85 using a sparse array of

48 pressure transducers (Figure 2.16 (a)). They applied the infinite beamforming tech-

nique and DAMAS2 deconvolution algorithm to deconvolve the wavenumber-frequency

spectrum from the surface pressure array data. They only detect the domains associated

with convective peak and acoustic peak in their studies. The contour plot of the beam-

forming output map at f = 1172 Hz is illustrated in Figure 2.16 (b). The wavenumber

spectrum in Figure 2.18 indicates the presence of acoustic waves and convective ridge

within the wavenumber spectrum. Those sources propagating at speeds equal to or

higher than the speed of sound are positioned in an elliptical acoustic domain in the two

plots. The results indicate that convective fluctuations dominate at higher frequencies,

while acoustic fluctuations prevail at lower frequencies. They also demonstrated that

the cross-spectral density of homogeneous pressure fields depends only on the sensor sep-

aration vector and not on the absolute coordinates of each sensor. In other words, the

repetition of a large number of the same separation in an equidistant transducer array

has a side effect on determining a wide range of scales. Typically, the non-equidistant

transducer arrays (co-array) are designed to optimize the number and distribution of

separation vectors. Their results showed that the acoustic noise is particularly dominant

in the lower frequencies.

Flow direction

Rigid plate Sensor-array element

Window

Adaptive side walls

δ

Figure 2.16: Sketch of the experimental setup: side view of the plate in the test
section. Figure from [53].
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(a) (b)

Figure 2.17: (a) Layout of the sensor array with 48 sensor positions and (b) beam-
forming output map at f = 1172 Hz. Figure from [53].

(a) (b)

Figure 2.18: Wavenumber-frequency spectrum for (a) f = 1758 Hz and (b) f = 1172
Hz. Figure from [53].

In 2017, Haxter et al [80], conducted a study that built upon the work of Ehrefried

and Koop [53] by using the same microphone array arrangement to obtain the phase

velocity of TBL pressure fluctuations at high subsonic Mach number from wind tunnel

data affected by strong background noise. They used a method called CLEAN-SC to

remove the dominant existing acoustic signals and their coherent parts in the beam-

forming map, which improved the accuracy of their results. Additionally, as shown in

Figure 2.19, Prigent et al. [147] used beamforming and DAMAS deconvolution tech-

niques to process a synthetic field consisting of a diffuse acoustic field and the Corcos

WPF model. To estimate the WPF, they utilized an aligned microphone array with a

rotating configuration. Although the approach has limitations, including noisy data, it

can highlight a new path for a much better analysis of the sub-convective and acoustic

region of WPF.
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Figure 2.19: Examination of DAMAS2 algorithm in the estimation of WPF at ky = 0.
Figure from [147].

In order to assess the structural vibrations induced by a high-speed flow, Zhao et al.

[177, 178] proposed and developed an improved technique for the prediction of the WPF.

They used a conventional phased array technique to specify the wavenumbers of the

WPF and noise. The concept is introduced with an integrated expression for WPF in a

variety of situations. Then, a modified subsection approaching method is used to separate

the pressure fluctuations from the noise. An array design with variable spacing is

proposed in order to improve the precision of the count calculations for pressure

fluctuation separations. To improve the low-frequency wave number resolution, they used

a newly proposed method named the accelerated focusing method (AFM).

In this study, the researchers used the beamforming algorithm to plot the wavenumber

spectrum maps for different array patterns at f = 5000 Hz and compared the results to

the theoretical wave number of the pressure fluctuations and noise. They showed that

the circular arrays have a higher wavenumber resolution. However, it is essential for the

circular array design to account for the side lobe of the wavenumber graph. By using

a multiple-spiral array, they demonstrated that beam boundaries can be shown clearly,
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which is helpful for recognizing correlations. To provide evidence of the validity of the

proposed method, they conducted a wind tunnel test.

In order to investigate the characteristics of flow-induced WPF, Zhao and Lei [179]

conducted measurements in a hyper-sonic wind tunnel. They measured the wall pressure

variations using a linear sensor array and used a beamforming algorithm to identify

spatial correlations of the pressure fluctuations. Their research focused on the significant

characteristics of convective and acoustic modes for WPF arising from laminar flow,

transitions, and fully developed turbulence.

Recently, Damani et al. utilized a Kevlar-covered acoustic resonator-based cavity sen-

sor for capturing the low-wavenumber components of WPF beneath a TBL flow [42].

These sensors possess an innate ability to filter the convective pressure fluctuations ow-

ing to their physical dimensions. Their investigation primarily focused on streamwise

wavenumber-frequency spectrum outcomes, presuming the flow to be temporally sta-

tionary and spatially homogeneous in the flow direction. They noted that the spatial

averaging characteristics of these sensors are not uniformly distributed across the surface

area. However, the membrane-like characteristics of the Kevlar scrim indicate a gradual

decrease in sensitivity towards the edges of the sensors, posing a challenge in optimizing

these sensors for sub-convective pressure measurements [44]. Recognizing the limitations

of Kevlar-covered sensors, Damani et al. pursued an alternative approach by employing

multiple-neck Helmholtz resonator-based sensors [44]. These sensors offer a more precise

and predictable response to grazing flow and acoustics, providing an enhanced method

for measurement. They investigated a measurement technique utilizing large sensors

and a large array. The discrepancies between their predictions and the measured data

were suspected to stem from differences between the true spatial sensitivity of the sensor

and its modeled form, as well as variations in sensor dynamic response in the presence of

grazing flow. Comparisons with existing wall pressure models, they revealed that pres-

sure levels in the low-wavenumber domain are about 45 dB lower than the convective

pressures.
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2.3.2 Vibration-based Approach

Another approach for evaluation of the low-wavenumber WPF is based on measuring

the vibroacoustic responses of a structure excited by a TBL and then using the mea-

sured data to reconstruct the low-wavenumber WPF from an inverse method. This

approach takes advantage of the structure’s wavenumber filtering capabilities, reducing

contamination of the low-wavenumber domain by the convective region as it occurs in

the acoustic approaches. Another benefit of this approach is that it is non-intrusive as

the accelerometers can be placed on the side of the structure opposite to the one excited

by the fluid flow, therefore not impacting the turbulent flow. Consequently, there is no

need to drill holes in the structure to have flush-mounted sensors as required by the

ABA.

Jameson pioneered the use of a vibration-based approach to measure the amplitude of the

WPF in the low-wavenumber domain [97]. Employing a carefully designed rectangular

clamped plate, he minimized contributions from the convective peak of the TBL pressure,

ensuring that the low-wavenumber components of the WPF matched the wavenumber

of the plate’s bending waves. Jameson made the assumption that the spectral density in

the low-wavenumber frequency domain is symmetric (i.e. in kx, ky, and ω). He utilized

the individual modes of the clamped plate to create a theoretical framework for the

average power within each mode. Subsequently, he employed the accelerometer output

as an indicator of modal response to estimate the level of the low-wavenumber spectral

components in the TBL wall pressure. In 1977, Martin and Leehey employed a flexible

membrane excited by a turbulent airflow as a spatial filter to capture the wavenumber

components of the WPF, specifically focusing on ranges far below the convective region

but above the acoustic region [126]. In their experiment, they used a non-contact optical

sensor to monitor the displacement response at the center of the membrane. They

assumed that the WPF in the low-wavenumber range is uniformly flat. By applying

spatial Fourier transformation to the observed mode shape, they effectively translated

the modal response to the wavenumber domain. Subsequently, they computed the low-

wavenumber components of unsteady surface pressure based on the spatial-wavenumber

response of the structure and its resonance characteristics. Finally, they compared

the measured displacement response with data from modal analysis of the membrane.

Comparing the estimated low-wavenumber WPF in the Martin and Leehey’s work to
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those obtained by Blake and Chase in the same wind tunnel [16] and Jameson using an

acoustic-based approach [96], it was observed that the Blake’s estimation exceeded the

magnitude of the Martin and Leehey’s estimated WPF in the low-wavenumber domain.

Whereas, the estimated low-wavenumber WPF by Martin and Leehey surpassed that of

Jameson’s.

These studies laid the foundation for subsequent experiments. For instance, Boness et al.

[17] and Evans et al. [56] estimated the TBL surface pressure levels at low-wavenumbers

for both smooth and rough surfaces. To minimize the effect of background noise on

the measurement data, they used a reservoir of water to drive flow through the pipe

instead of using a water circulating pump. In Figure 2.20, two views of the experimental

test section and the flow measurement layout used by Bonness et al. [17] are shown.

They used an accelerometer array mounted on external surface of a water pipe, and

then the measured vibration of the pipe due to the internal WPF excitation was used

in an iterative inverse method to identify the WPF. A flush-mounted wall pressure

sensor array consists of two lines of sensors, with one array parallel to the flow and

the other array perpendicular to the flow. The modes of the cylinder act similarly to

Martin’s and Leehey’s membranes by reacting to fluctuating boundary layer pressures

at finite frequencies. In order to compute the modal force, they assumed a constant

pressure spectrum level in the low-wavenumber range around the modal wavenumber.

An analytical formulation for the modal force as a function of the TBL wavevector-

frequency spectrum and the computed sensitivity functions (obtained from experimental

modal analysis) were used. This was then used to compute the frequency response

function for each individual mode. Next, the low-wavenumber TBL pressure levels were

fine-tuned to align the computed vibration data with the measured data. Finally, the

measured low-wavenumber pressure data was compared with findings from other studies.

The low-wavenumber pressure data measured in this study were compared with those

calculated from TBL models by Smol’yakov, Chase, and Corcos (Figure 2.21). The

results for the smooth pipe indicated that the measured data fell between the predicted

results from the TBL models by Chase [27] and Smolyakov [162], registering a few

decibels below the lower bounds reported in related measurements in air by Farabee

and Geib [59] and Martin and Leehey [126]. However, the pressure levels for fully rough

conditions exhibited a 13 dB increase in low-wavenumber wall pressure compared to a

hydraulically smooth surface.
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Figure 2.20: Experimental test-section and flow measurement layout: (a) reference
noise sensors and accelerometer array and (b) reference noise sensors and pressure sensor
array. Figure from [17].

In 2014 Lecoq et al. [114] utilized the Force Analysis Technique (FAT) to localize the

acoustic components of DAF along with convective peak of turbulent wall pressure nu-

merically. To estimate the excitation, they initially computed the plate’s displacement

field and then incorporated it into the equation of motion, with spatial derivatives cal-

culated using a finite difference method. Introducing some noise to the displacement

to simulate experimental conditions, they demonstrated that the FAT method could

effectively localize the acoustic region of the excitation. Moreover, Leclere et al. [113]

recently compared results obtained from acoustic-based and vibration-based approaches

for separating and analyzing TBL and acoustic contributions. They utilized a beam-

forming technique to pinpoint the convective zone and acoustic peak.
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Figure 2.21: Measured low-wavenumber pressure spectrum levels as a function of
non-dimensional wavenumber:× present study, Δ Farabee and Geib data; ◦ Martin and 
Leehey data. Figure from [17].

2.4 Summary

The literature review, as discussed in Section 2.1, highlights the existence of numer-

ous semi-empirical models aimed at simulating the WPF beneath a TBL. In scenarios

involving structures exposed to high-speed flows, the convective region of the WPF be-

neath a TBL significantly influences their vibration characteristics. However, as inferred

from the review from Section 2.2, structures experiencing low Mach number flows tend

to filter out the convective domain of WPF. In such cases, WPF excitation necessitates

considering both hydrodynamic and acoustic contributions, with the primary cause of

vibration being attributed to the acoustic domain and low-wavenumber components

(or sub-convective domain) of the WPF. However, due to the challenge in modeling

and measuring the low levels of low-wavenumber components relative to the convective

wavenumber pressures, along with a lack of experimental verifications, accurately cap-

turing these levels poses significant difficulties. Consequently, there is substantial vari-

ation among the WPF models presented by researchers in the low-wavenumber region,

indicating a need for further investigation. Through the methods outlined in Section
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2.3, an effective approach to estimating the low-wavenumber components of WPF can

be established. This research project aims to address this gap, presenting a numerical

investigation into the estimation of WPF in the low-wavenumber domain in subsequent

chapters.



Chapter 3

Estimation of the

Low-wavenumber WPF beneath a

TBL using a Microphone Array

This chapter highlights the challenges of using an array of microphones for estimating

the low-wavenumber region of TBL WPF. Most previous studies have primarily focused

on identifying the convective ridge and acoustic peak. Moreover, the importance of the

low-wavenumber domain in the vibration of structures subjected to turbulent flow as

well as the significant discrepancies between different existing TBL models for this re-

gion are the main motivations for this work. The analytical formulation is detailed in

Section 3.1, where it is assumed that a microphone array is flush-mounted on a rigid sur-

face over which a TBL flows. A regularized Fourier-based approach (RFBA) is proposed

to numerically study the estimation of the low-wavenumber WPF. This approach relies

on the inverse Fourier transform (IFT) expression that links the CSD of the pressure in

both physical and wavenumber spaces. The discretization of the integral in this expres-

sion is achieved using the rectangular rule, which results in a linear matrix system. An

adapted regularization technique is then used to invert this system and estimate a stable

solution. To assess the capability of the RFBA in estimating the low-wavenumber com-

ponents of the WPF, numerical simulations of a TBL excitation are conducted, and the

WPF estimated by the RFBA using a microphone array is compared with the reference

WPF of a closed-form input TBL model. Considering this process, the effect of number

49
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of sensors, array pattern, co-array factor and data averaging on the estimated WPF are

examined. The findings are presented in Section 3.2. Initially, the equidistant cross-

array pattern (3.2.1.1) is analyzed to estimate the low-wavenumber WPF and examine

the impact of the Nyquist criterion on the WPF estimation in this domain. Next, the

non-equidistant cross-array pattern (3.2.1.2) is evaluated to explore the effect of the co-

array on the WPF estimation in the low-wavenumber range. Finally, an irregular array

pattern (3.2.1.3) is considered to assess the influence of sensor distribution on the WPF

estimation in the low-wavenumber domain. Moreover, to mimic experimental measure-

ments, a virtual acoustic experiment is proposed, involving the synthesis of snapshots of

the TBL-induced WPF (3.2.2). These snapshots are generated by employing so-called

uncorrelated wall plane wave (UWPW) technique [129]. Performance of the RFBA on

estimating the WPF in the low-wavenumber domain is evaluated based on this virtual

experiment. Finally, this chapter concludes with a summary of the findings in Section

3.3. It is demonstrated that although with relatively small number of snapshots the

convective region can be identified, a significant number of snapshots is required to well

estimate the TBL low-wavenumber region.

This chapter is based on the article “On the challenges of estimating the low-wavenumber

wall pressure field beneath a turbulent boundary layer using a microphone array”, pub-

lished in the Journal of Sound and Vibration [2].

3.1 The Regularized Fourier-Based Approach

This section covers the theoretical formulation of the regularized Fourier-based approach

to estimate the WPF in the wavenumber domain using pressure measurements obtained

from microphones. Figure 3.1 shows a network of Ns flush-mounted microphones that

are installed on a rigid surface. They are distributed within a rectangular area measuring

a× b. The position of each microphone is determined by the coordinates xi, denoted as

(xi, yi) for i ∈ {1, Ns}. The sensors are used for recording the WPF beneath a TBL. The

TBL is assumed to be homogeneous, stationary and fully developed over the surface.

The x-axis is considered parallel to fluid flow with a constant free stream velocity of U∞.

The wavenumber-frequency spectrum ϕpp(kx, ky, ω) of the wall pressure p(x, y, t) can be

expressed as follows [53]



51

a

b

Figure 3.1: Schematic representation of a microphone array mounted within a rect-
angular area with dimensions a in length and b in width to measure wall pressure
fluctuations from the TBL.

ϕpp(kx, ky, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Rpp(ξ, η, ω)e

−j(kxξ+kyη) dξdη, (3.1)

where (ξ, η) are the distances between two points in the (x, y) plane, ω is the angular

frequency, j =
√
−1 is the imaginary unit, and kx, ky are wavenumber components in

the streamwise and spanwise direction, respectively. Rpp(ξ, η, ω) is the temporal Fourier

transform of the space-time correlation function of wall pressure given by [53]

Rpp(ξ, η, ω) =
1

2π

∫ ∞

−∞
Gpp(ξ, η, τ)e

jωτ dt, (3.2)

Gpp(ξ, η, τ) = ⟨p(x, y, t) p(x+ ξ, y + η, t+ τ)⟩, (3.3)

where the angle bracket ⟨· · · ⟩ denotes the mathematical expectation. The IFT of the

Eq. (3.1) can be used to determine how the wavenumber spectrum ϕpp(kx, ky, ω) relates

to Rpp(ξ, η, ω)

Rpp(ξ, η, ω) =

∫ ∞

−∞

∫ ∞

−∞
ϕpp(kx, ky, ω)e

j(kxξ+kyη) dkxdky. (3.4)

By employing a rectangular integration method over a truncated wavenumber domain,

one can approximate Rpp(ω) between two points xi and xj as follows
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Rpp(ξi,j , ηi,j , ω) ≈
Nk∑
l=1

ϕpp(kx,l, ky,l, ω) e
j(kx,lξi,j+ky,lηi,j) δkxδky, (3.5)

where (ξi,j , ηi,j) = (xi−xj , yi−yj) with i, j = 1, 2, . . . , Ns and δkx, δky are the wavenum-

ber resolutions in the streamwise and spanwise directions, respectively, and Nk =

Nkx ×Nky corresponds to the total number of grid points in the truncated wavenumber

space, and each vector index l is assigned uniquely to a grid point (kx,l, ky,l). A cut-off

wavenumber is defined to take into account the convective contributions of the TBL

WPF (see Section 3.2). Eq. (3.5) can be represented in matrix notation as follows

Spp = QΦpp, (3.6)

where Spp is a vector consisting of the cross-spectrum elements and Φpp is a vector

consisting of the unknown WPF components in the truncated wavenumber space as

follows

Spp =



Rpp(ξ1,1, η1,1, ω)

Rpp(ξ1,2, η1,2, ω)
...

Rpp(ξi,j , ηi,j , ω)
...

Rpp(ξNs,Ns−1, ηNs,Ns−1, ω)

Rpp(ξNs,Ns , ηNs,Ns , ω)


N2

s×1

,Φpp =



ϕpp(kx,1, ky,1, ω)

ϕpp(kx,1, ky,2, ω)
...

ϕpp(kx,l, ky,l, ω)
...

ϕpp(kx,Nkx
, ky,Nky−1, ω)

ϕpp(kx,Nkx
, ky,Nky

, ω)


Nk×1

(3.7)

The components of Φpp are organized such that the first Nky components corre-

spond to ϕpp(kx,1, ky,l, ω) with l ∈ {1, Nky}, the next Nky components correspond to

ϕpp(kx,2, ky,l, ω) with l ∈ {1, Nky}, and so on. Also, for a microphone array with Ns

sensors, the elements of Spp can be measured for the discrete separations of sensors,

(ξi,j , ηi,j), which the firstNs components correspond to Rpp(ξ1,j , η1,j , ω) with j ∈ {1, Ns},

the next Ns components correspond to (ξ2,j , η2,j , ω) with j ∈ {1, Ns}, and so on. Besides,

Q is the matrix with the following elements
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Q = δkxδky



ej(kx,1ξ1,1+ky,1η1,1) ej(kx,1ξ1,1+ky,2η1,1) · · · · · · e
j(kx,Nkx

ξ1,1+ky,Nky
η1,1)

ej(kx,1ξ1,2+ky,1η1,2)
. . .

...
... ej(kx,lξi,j+ky,lηi,j)

...
...

. . . e
j(kx,Nkx

ξNs,Ns−1+ky,Nky
ηNs,Ns−1)

ej(kx,1ξNs,Ns+ky,1ηNs,Ns ) · · · · · · e
j(kx,Nkx

ξNs,Ns+ky,Nky
ηNs,Ns )


N2

s×Nk

. (3.8)

Considering Eq. (3.6), we arrive at N2
s equations for the Nk unknown coefficients. In

most cases, the number of unknowns Nk exceeds the number of equations N2
s . Eq. (3.6)

is therefore an under-determined system and the system of equations has no unique

solution. Using the Moore-Penrose inverse of matrix Q can yield a solution with mini-

mal 2-norm, but the problem posed by Eq. (3.4) is equivalent to a first-kind Fredholm

integral equation that is known to be ill-conditioned [76]. Hence, the inversion method

derived from the discretization of the Riemann integral formula leads to a severely ill-

conditioned linear system (i.e., Eq. (3.6)) with many tiny singular values. This means

applying the Moore-Penrose inversion using singular value decomposition (SVD) gen-

erates inadequate results. Since matrix Q can contain small rounding errors due to

computer calculation and vector Spp can contain errors induced by measurement in

practice, the ill-conditioning of Q can greatly amplify these errors, resulting in erro-

neous results. However, adapted regularization techniques can produce useful stabilized

solutions [12, 23, 76]. The goal of regularization theory is to provide proper side con-

straints with optimal weights so that the regularized solution is a good approximation

of the unknown solution.

There are several types of inverse algorithms that differ primarily in what kind of reg-

ularization for reconstruction process is used and how the regularization parameter is

computed [76]. Some of the most common methods include:

• Tikhonov regularization: This method adds a small regularization term to the

matrix, which helps to stabilize the solution and reduce the sensitivity to small

perturbations in the input data [64].

• Pseudoinverse: The Moore-Penrose pseudoinverse is a generalization of the inverse

matrix that can be used for non-square matrices. It can be calculated using the

SVD or the QR decomposition [67].
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• Truncated SVD: This method uses the SVD to decompose the matrix into its

singular values and singular vectors. It then truncates the singular values below

a certain threshold, effectively reducing the rank of the matrix and making it less

ill-posed [67].

• Conjugate Gradient Method: It is an iterative method that solves a system of

linear equations. It can be used to find an approximate inverse of a matrix [137].

• Ridge Regression: It is a variation of linear regression, It can be used to find an

approximate inverse of a matrix [78].

Moreover, there are several methods for determining the optimal value of the regular-

ization parameter in an inverse problem, including:

• Cross-validation [78]: This is one of the most widely used methods. It involves

dividing the data into a training set and a validation set, and using the training

set to determine the regularization parameter. The performance of the model is

then evaluated on the validation set for each value of the regularization parameter,

and the value that results in the best performance is chosen as the optimal value.

• L-curve method [75]: The L-curve is a plot of the solution norm versus the data

misfit norm, where the solution norm represents the smoothness of the solution and

the data misfit norm represents the fit to the data. The L-curve method consists

in finding the corner of the L-curve, which is the point on the L-curve where the

curvature changes. The regularization parameter that corresponds to the corner

of the L-curve is chosen as the optimal value.

• Generalized cross-validation (GCV) [66]: This method is an extension of cross-

validation that takes into account the degrees of freedom of the solution. GCV

uses an estimate of the degrees of freedom to adjust the cross-validation score, and

it is particularly useful when the data is noisy.

• Bayesian methods [63]: This method involves using a prior probability distribution

on the solution to determine the regularization parameter. The prior distribution

is used to encode prior knowledge or assumptions about the solution, and the

regularization parameter is chosen to balance the fit to the data with the prior

distribution.



55

• Discrepancy principle [55]: This method involves choosing the regularization pa-

rameter such that the solution is close to the data, but not too close. The regu-

larization parameter is chosen to be the smallest value such that the solution and

the data differ by a certain level of noise.

• Morozov discrepancy principle [135]: This method is similar to the discrepancy

principle, but it allows for the presence of noise in the data. The regularization

parameter is chosen to be the smallest value such that the solution and the data

differ by a certain level of noise, taking into account the noise in the data.

These methods are not always mutually exclusive and can be combined in a complemen-

tary way. The choice of the method depends on the specific characteristics of the problem

and the data, and it is usually based on the assumptions made about the data, the noise

and the prior information available. Different regularization techniques described in [76]

were applied to Eq. (3.6) to evaluate the WPF in the low-wavenumber domain. The

truncated generalized singular value decomposition (TGSVD) method with minimising

the first derivative 2-norm of the solution was found to be the most appropriate [76, 154].

The regularization parameter is determined from the corner of the discrete L-curve pro-

duced by the TGSVD method [77]. For the numerical applications presented herein,

the Matlab package developed by C. Hansen for the analysis and solution of discrete

ill-posed problems [76] was utilized (See Appendix A).

3.2 Results and Discussion

To evaluate the WPF in the low-wavenumber domain, the procedure described in Section

3.1 is employed, and the results obtained by the RFBA are examined.

According to the Graham formulation [70, 71], the CSD of the WPF can be computed

using various models for ASD of the pressure field, Ψpp(ω), and the normalized CSD of

the pressure field, ϕ̃pp(k, ω), independently from each other as Eq. (2.1).

Among various semi-empirical models developed for simulation of ASD of the WPF,

many works showed that the Goody model is more compatible with experimental data

compared to other models [92, 134]. Thus, the Goody model [69] is used in this work to

assess the ASD function of the WPF in Eq. (2.1),
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Ψpp(ω) =
3τ2ωδ

(
ωδ
Ue

)2
Ue

(
0.5 +

(
ωδ
Ue

)0.75)3.7 (
1.1R−0.57

T

(
ωδ
Ue

))7 , (3.9)

where RT = U2
τ δ/Ueν and Ue is the boundary layer edge velocity. It is worth mentioning

that Ψpp(ω) represents a one-sided radial frequency spectrum. Therefore, to transform

it into a cyclic frequency spectrum density Ψpp(f), it is multiplied by 2π.

For the normalized CSD function, various semi-empirical models have been developed

[134]. The Corcos model is by far the most popular model since it considers homogeneity

across the surface, and this assumption leads to a cross spectrum model dependent only

on the separation distances [38]. Thus, the Corcos model has two separate relationships

for representing the in-flow and cross-flow directions of the WPF [38]. Even though

separability is convenient analytically, it is not a realistic assumption. Other researchers

recognized this issue and proposed a simple change to the Corcos model. For example,

Mellen proposed an elliptical coherence zone, which is different from the Corcos model

with the rhombic coherence zone [31]. It is well known that Corcos model overpredicts

the amplitude of the low-wavenumber domain, whereas the Mellen model provides more

realistic predictions of the low-wavenumber levels. This has been confirmed by compar-

ing the vibration responses of a plate excited by a TBL modelled by the Corcos/Mellen

models with experimental data [100]. Therefore, in this study, the normalized CSD

function was obtained using the Mellen model [131] as follows

ϕ̃pp(kx, ky, ω) =
2π (αxαy)

2 k3c(
(αxαykc)

2 + (αxky)
2 + α2

y (kx − kc)
2
)3/2 , (3.10)

where αx = 0.1 and αy = 0.77. Also, the convection velocity Uc is approximated as

follows [21, 74]

Uc ≈ U∞

(
0.59 + 0.3e−0.89δ∗ω/U∞

)
, (3.11)

where δ∗ is the TBL displacement thickness.
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For all the subsequent numerical analyses, a wavenumber resolution of

δkx = δky = 4 m−1 is considered and the results are presented at frequency of

1000 Hz.

Furthermore, in order to assess the effectiveness of the proposed method for estimating

the WPF in the low-wavenumber domain, we have defined the low-wavenumber domain

as the region within the flexural wavenumber (−kf ≤ kx, ky ≤ kf ) of a steel plate

with a 1 mm thickness. The plate’s properties include a Young’s modulus of 210 Gpa, a

density of 7800 (kg m−3), and a Poisson’s ratio of 0.3, resulting in a flexural wavenumber

of kf = 63.26 m−1. The low-wavenumber region is indicated with the square area in

Figure 3.2 where the CSD function of the reference TBL using the Goody and truncated

Mellen models is plotted. In Section 3.2.1 and 3.2.2 we employ the RFBA to estimate the

WPF in the low-wavenumber domain and the results are compared with those simulated

using the theoretical WPF formula based on the Goody and truncated Mellen models

as shown in Figure 3.2.

A turbulent flow with an air flow speed of U∞ = 50 m s−1 is assumed flowing over the

rigid surface, see Figure 3.1. The values of air density and the kinematic viscosity are

set to 1.225 kg m−3 and 1.5111 × 10−5 m2 s−1, respectively. It is assumed that the

TBL is homogeneous, stationary and fully developed over the panel surface. The TBL

parameters used for this analysis are given in Table 3.1.

The simulations are performed in Matlab on a desktop computer with 32 GB of RAM and

four physical cores. To employ Eq. (3.5), one needs to truncate the wavenumber domain.

It is necessary to note that the range of the considered wavenumber domain should be

large enough to be able to include the significant contribution of the CSD function.

Hence, a cut-off wavenumber of 1.2kc was used in both the streamwise and spanwise

directions to take into account the convective contributions of the TBL WPF, where

kc = ω/Uc is the convective wavenumber. It is noteworthy to mention that converge

studies have been done for the selection of the cut-off wavenumber and wavenumber

resolution to ensure that the input TBL is accurately modelled.
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Figure 3.2: Contour plots of the Goody+Mellen wavenumber-frequency WPF model
ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) for a flow speed of 50 m/s at 1000 Hz.

Table 3.1: TBL parameters for a air flow with speed of 50 m/s.

Parameter Value

TBL thickness δ (mm) 5.77

TBL displacement thickness δ∗ (mm) 0.729

Wall shear stress τw (pa) 5.989

3.2.1 Effect of Microphone Array Parameters on the Estimated TBL

Wall Pressure Field

In this section, the effects of array parameters namely number of sensors, co-array factor

and sensor distribution on the performance of the RFBA are examined. The array size

is kept constant in all subsequent calculations.
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3.2.1.1 Effect of Sensor Spacing

Before processing the array data for signal analysis, the initial step involves establishing

the relative position of sensors, which is crucial in array creation. In this process, special

attention must be given to avoid spatial aliasing. Spatial aliasing arises as a result of

spatially under-sampling the aperture of the array. To avoid aliasing in time domain

signal processing, it is essential to sample the signal at a rate of at least twice the highest

frequency. This sampling rate, known as the Nyquist rate [138], can also be applied in

spatial domain signal processing by ensuring that the sampling interval does not exceed

one-half wavelength [166]

ksample = 2kmax =
2π

∆x
. (3.12)

This equation indicates a direct relationship between the Nyquist waveform frequency

and the sampling interval ∆x. This interval, as determined by the Nyquist principle,

sets a limit on the maximum distance that can exist between microphone positions. As

mentioned above, a criterion of 1.2 times of the convective wavenumber is considered

for the highest waveform frequency in measuring the pressure with a microphone array.

This criterion is taken into account in Eq. (3.12), so the minimum distance between

the microphone positions is obtained as ∆x = π/kmax. If this criterion is not fulfilled,

then the aliasing can be observed in the low-wavenumber domain, which is the region of

interest.

In this section, an equidistant cross-array pattern with the fixed size of a = 455 mm and

b = 375 mm is assumed to demonstrate the aliasing phenomenon and the effects of sensor

spacing on the estimated TBL WPF. The study considers a minimum of 16 sensors, with

the number of sensors increased by 4 until the maximum of 68 sensors is reached (as

shown in Figure B.1). Figure 3.3 presents the results for only four selected cases, namely

those with 16, 32, 48, and 68 sensors. As an additional feature, Figures 3.3 (c), (g), (k),

and (o) demonstrate all possible vector spacings between all pairs of sensors, along with

the co-array factors corresponding to each case study. In the upcoming section (Section

3.2.1.2), the impact of this parameter will be discussed. Figures 3.3 (b), (f), (j), and (n)

show the color map and Figures 3.3 (d), (h), (l), and (p) show the corresponding cross-

section view of the estimated WPF obtained by RFBA, respectively, for different number
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of sensors of cross-array pattern. The color maps in the Figure 3.3 include a rectangular

area which is surrounded by flexural wavenumber of the assumed plate and denoting

the range of low-wavenumber domain which needs to be evaluated (−kf ≤ kx, ky ≤ kf ).

This range is shown in the cross-section view of the results with the red dashed-line.

To quantify the performance of the proposed method in the estimation of the TBL WPF,

the mean absolute error (MAE) of the estimated WPF in the low-wavenumber domain

is calculated for each case with respect to the reference input TBL model based on the

Goody and Mellen Models [69, 131] in the corresponding low-wavenumber domain. The

MAE is computed in decibels rather than absolute values because the WPF amplitude

in the low-wavenumber domain is significantly low, and a logarithmic scale provides a

more meaningful comparison. The following formula is used to compute the MAE of the

estimated WPF in the low-wavenumber domain

MAE =
1

NkLW

NkLW∑
l=1

|10log10ϕepp(kx,l, ky,l, ω)− 10log10ϕ
r
pp(kx,l, ky,l, ω)|, (3.13)

where NkLW
corresponds to the total number of grid points in the low-wavenumber do-

main. ϕepp(kx,l, ky,l, ω) and ϕ
r
pp(kx,l, ky,l, ω) are the estimated and reference wavenumber-

frequency spectrum of the WPF, respectively. It can be observed from Figure 3.3 that

by increasing the number of sensors, the estimated WPF is improved, and it gradually

converges towards the reference input TBL model (see, Figure 3.2).

It is clear from Figures 3.3 (f) and (h) that RFBA struggle to provide reasonable es-

timation of the WPF due to the presence of aliasing phenomenon when Ns < 48. For

the given array size, the aliasing effect is mitigated by increasing the number of sensors

to 48. This is consistent with Nyquist criterion, as for the considered array size, ac-

cording to Eq. (3.12) at least 24 sensors are required along the x-axis and 20 sensors

along the y-axis to satisfy the Nyquist criterion and avoid aliasing effect. Assuming that

the number of sensors is the same in both the streamwise and spanwise directions, the

minimum number of sensors required to satisfy the criterion is Ns = 48 which is what

we observed in Figures 3.3 (j) and (i). An interactive plot demonstrating the impact of

increasing the number of sensors on reducing the aliasing effect is shown in Figure B.1

of the Appendix B.
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As illustrated by Figures 3.3 (j) and (n) and their corresponding MAEs, the accuracy

of estimated results is improved by increasing the number of sensors from 16 to 48,

but adding more sensors does not significantly enhance the estimated WPF in the low-

wavenumber domain(see Figures 3.3 (j) and (n)). This suggests that respecting the

Nyquist criterion alone is not sufficient for obtaining accurate estimation of the low-

wavenumber WPF. However, this does not hold true for the convective region. Figure

3.3 (h) shows that estimation of the convective region is much easier than the low-

wavenumber domain as it has the highest amplitude in the domain. Moreover, a good

estimation of this region is achieved using only 24 sensors which does not satisfy the

Nyquist criterion (see Figure B.1) and the estimated result in this region is quite accurate

when the Nyquist criterion is fulfilled. Therefore, unlike the low-wavenumber region,

accurate estimation of the convective region is possible by fulfilling only the Nyquist

criterion.

Figures 3.3 (c), (g), (k), and (o) also show that the co-array factor F is always below 0.4

for all the sensor spacing using the equidistant cross array. The effect of this parameter

is examined in the following section.
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Figure 3.3: Comparison of the estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1)
using RFBA for equidistant cross-array pattern with 16 (a-d), 32 (e-h), 48 (i-l), and
68 (m-p) sensors, respectively. Equidistant cross arrays for each case are shown in
(a), (e), (i), and (m) and associated set of distinct vector spacings between sensors
are presented in (c), (g), (k), and (o). Co-array factor (F ) are displayed for each case
and MAEs calculated between the reference input TBL model and the estimated low-
wavenumber WPF shown in (b), (f), (j), and (n) are 13.48 dB, 5.67 dB, 1.81 dB, and
1.49 dB, respectively. 2D wavenumber-frequency spectra for ky = 0 are plotted against
longitudinal wavenumber in (d), (h), (l), and (p).
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3.2.1.2 Effect of Co-array Factor

In terms of array performance, in addition to the minimum distance between sensors,

the size of co-array is an important factor to be considered. Co-array describes the

number of different distances between every pair of sensors in the array [31]. Given an

array of Ns sensors whose locations are given by

xm, m = 1, 2, . . . , Ns. (3.14)

The associated set of vector spacing between all pairs of elements in the array can be

expressed as

Xp = xm − xn, m = 1, 2, . . . , Ns, n = 1, 2, . . . , Ns. (3.15)

The set of points Xp is called the co-array of the array xm [79]. To evaluate the efficiency

of the different periodic array pattern with respect to aperiodic ones, the F factor is

introduced below, which show the ratio of the actual number of unique vector spacings

of an array, P , to the corresponding maximum number of spacings, Pmax

F =
P

Pmax
≤ 1. (3.16)

Since there are N2
s vectors, and Ns of these are zero, the maximum possible unique

vector spacings in an array consisting of Ns sensors can be calculated as follow

Pmax = N2
s − (Ns − 1) . (3.17)

An optimal array maximizes the number of unique vector spacings, resulting in F = 1.

The low value of F means that there will be a large number of duplicate distances

between the sensors, which usually can be seen in the periodic pattern. For instance, in

Figures 3.3 (c), (g), (k) and (o), the F factor decreases with an increase in the number

of sensors. This indicates that when more sensors are added in a cross-array pattern

at equal distances, the size of P will not increase as much as Pmax (Eq. (3.17)) due to

the repetitive occurrence of the same distances. Thus, it can be inferred that improper

sensor positioning can lower the F factor. This is one of the reasons why an accurate



65

WPF estimate in the low-wavenumber domain cannot be obtained by equidistant cross

array pattern even with 68 sensors (see Figures 3.3 (n) and (p)).

To maximize the co-array size while using a fixed number of sensors, it is generally

preferable to opt for a non-equidistant arrangement of the array. This will result in

a relatively low level of secondary lobes on the estimated WPF, which appear due to

the aliasing effect [166]. In the following, the effect of the non-equidistant cross-array

pattern on estimation of the WPF is studied.

To maximize F factor in the cross-array pattern, the position of sensors are arranged

non-equidistantly on the two cross lines, and the same study as above (Section 3.2.1.1)

has been carried out again. Figure 3.4 presents the results with the same number

of sensors as studied in Section 3.2.1.1. Similar to the equidistant-array pattern, the

convective region is the first region where the estimated WPF converges to the reference

model. However, in the non-equidistant array pattern, only 16 sensors are required to

identify this region (Figures 3.4 (b) and (d)), whereas in the equidistant array pattern,

it takes at least 24 sensors (see Figure B.1). Moreover, the estimated WPF obtained

by the RFBA in each case (Figures 3.4 (b), (f), (j), and (n)) is more accurate than

corresponding case in the equidistant cross-array pattern (Figures 3.3 (b), (f), (j), and

(n)), which is evident by the lower MAE for the non-equidistant array. As it can be seen

from Figures 3.4 (f) and (h), in this case the aliasing effect is less profound for the array

with 32 sensors when compared to the corresponding case shown in Figures 3.3 (f) and

(h). Consequently, this improvement results in a decrease in the MAE from 5.07 dB to

3.03 dB.

In the Appendix B, readers can access an interactive plot (Figure B.2) that showcases

how WPF estimation in the low-wavenumber domain is affected by 14 arrays of non-

equidistant cross-array patterns. The plot includes the results for different arrays from

16 to 68 sensors, with increments of 4.

Comparing the results presented in Figures 3.3 and 3.4, it can be concluded that re-

specting the Nyquist criterion and the maximum co-array factor can result in a better

estimation of the WPF. In the next section, it is demonstrated that in addition to sensor

spacing and co-array factor, sensor distribution plays a key role in accurate estimation of

the TBL WPF. Effect of this factor has been investigated using a random array pattern

in the following section.
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Figure 3.4: Comparison of the estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) using
RFBA for non-equidistant cross-array pattern with 16 (a-d), 32 (e-h), 48 (i-l), and 68
(m-p) sensors, respectively. Non-equidistant cross arrays for each case are shown in
(a), (e), (i), and (m) and associated set of distinct vector spacings between sensors
are presented in (c), (g), (k), and (o). Co-array factor (F ) are displayed for each case
and MAEs calculated between the reference input TBL model and the estimated low-
wavenumber WPF shown in (b), (f), (j) and (n) are 10.63 dB, 3.03 dB, 1.45 dB, and
1.31 dB, respectively. 2D wavenumber-frequency spectra for ky = 0 are plotted against
longitudinal wavenumber in (d), (h), (l) and (p).
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3.2.1.3 Effect of Sensor Distribution

As discussed above, the half-wavelength criterion is the main constraint of regular ar-

ray patterns. Failure to meet this criterion, results in spatial aliasing, which produces

secondary lobes on the estimated WPF as it was illustrated in Figures 3.3 (b) and (f).

It is possible to diminish these secondary lobes by removing all periodicities from the

microphone array. This results in a class of arrays known as irregular or aperiodic arrays

[166].

In order to design an irregular array, a random process can be used to determine sensor

locations. Another option would be to use an algorithm that ensures a certain degree

of irregularity in sensor positions. The latter should be used whenever a sensor location

can be specified and controlled because a knowledge-based sensor location approach

outperforms a random algorithm [166]. In this work, the second approach is employed

for distributing the sensors and creating a random-array pattern. Figure 3.5 shows the

estimated WPF using the RFBA for four random array patterns with the number of

sensors of 16, 32, 48, and 68. For additional visualization, an interactive plot (Figure B.3)

containing 14 random array patterns with sensors ranging from 16 to 68 in increments

of 4 is available in the Appendix B. All the configurations meet the Nyquist criterion

and have the maximum possible co-array factor (i.e. F = 1). For example, for the first

irregular array of 16 sensors, the sensor arrangement was designed such that at least

one pair of sensors satisfied the Nyquist criterion in both the streamwise and spanwise

directions. Following this, in each subsequent step, four new sensors were added to the

previous arrangement in such a way that at least one existing sensor could meet the

minimum distance required by the Nyquist criterion for each new sensor. This process

was repeated up to the fourteenth array of 68 sensors. Also, the position of sensors was

chosen in a manner that the F factor was always maximi and equal to 1. The obtained

results in Figure 3.5 show that using the irregular array with above conditions will avoid

spatial aliasing and also generate a more coherent vector spacing separation of ξ and

η which lead to the better estimation of the WPF compared with the regular array

patterns.

Figure 3.5 shows that using the irregular array the estimated WPF converges to the

reference WPF much faster than that using the regular array. For example, Figures

3.5 (j) and (l) show that applying RFBA to a random array with 48 sensors provides
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excellent estimations of the WPF in the low-wavenumber domain with a mean absolute

error of less than 1 dB. Moreover, RFBA provides an accurate result in the entire

considered wavenumber domain using 68 sensors (shown in Figures 3.5 (n) and (p)).

Therefore, employing a random array pattern while adhering to the Nyquist criterion

and optimizing the co-array factor yields improved the WPF estimations in comparison

to the other array patterns investigated in Sections 3.2.1.1 and 3.2.1.2. In Section 3.2.1,

we used a closed-from semi-empirical TBL model for computing the CSM. However,

in practice, only limited number of samples/snapshots of the WPF is available. To

investigate the impact of this factor on the proposed RFBA method, we introduce a

virtual acoustic experiment, which we examine in detail in the subsequent section.
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Figure 3.5: Comparison of the estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) using
RFBA for irregular-array pattern with 16 (a-d), 32 (e-h), 48 (i-l), and 68 (m-p) sensors,
respectively. Irregular arrays for each case are shown in (a), (e), (i), and (m) and
associated set of distinct vector spacings between sensors are presented in (c), (g), (k),
and (o). Co-array factor (F ) are displayed for each case and MAEs calculated between
the reference input TBL model and the estimated low-wavenumber WPF shown in
(b), (f), (j), and (n) are 10.08 dB, 2.68 dB, 0.61 dB, and 0.09 dB, respectively. 2D
wavenumber-frequency spectra for ky = 0 are plotted against longitudinal wavenumber
in (d), (h), (l), and (p).
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3.2.2 Virtual Acoustic Experiments

In the previous sections, the CSM was calculated from a closed-from semi-empirical

TBL model. It was then utilized to investigate the effects of sensor spacing, co-array

factor and sensor distribution on the performance of the RFBA in estimation of the

WPF in the low-wavenumber domain. However, the theoretical TBL models cannot

realistically simulate an experimental situation. Since the TBL pressure fluctuation is

a random process, if several records of these pressure fluctuations are taken under the

same experimental conditions, they would not be identical due to the random nature

of the excitation. Each outcome of an experiment, in the case of a random process, is

called a sample function. If n experiments are conducted, all the n possible outcomes

of a random process constitute what is known as the ensemble of the process.

In this section, this process is simulated using a virtual acoustic experiment where

different deterministic realizations of the TBL pressure fluctuations are computed, and

the CSM is then estimated from ensemble average of these realizations.

3.2.2.1 Wall Pressure Field Snapshots using the UWPW Technique

Simulation of random TBL with deterministic loading is the main concept of the UWPW

technique [129]. This approach mimics experimental conditions and calculates the WPF

underneath of a TBL by ensemble averaging of the different realization of wall pressure at

each frequency. The pressure beneath the TBL for the rth realization can be represented

by a set of UWPWs at the qth sensor of the array pattern as follows [100, 101, 129]

pr(xq, ω) =

Nk∑
l=1

√
ϕpp(kx,l, ky,l, ω)δkxδky

4π2
ej(kx,lx

q+ky,ly
q+θrl ), (3.18)

where θ is a random phase uniformly distributed in [0, 2π]. Similar to Eq. (3.5), Nk

corresponds to the total number of grid points in the truncated wavenumber space.

It is important to note that a cut-off wavenumber of 1.2kc was employed in both the

streamwise and spanwise directions to consider the convective contributions of the TBL

WPF. As an illustration, Figure 3.6 displays the representation of four realizations of

the surface pressure filed at a frequency of 1000 Hz and a flow velocity of 50 m/s. These

realizations are employed in ensemble averaging of different realizations to compute the
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Figure 3.6: (a)-(d): Four different realizations of the WPF synthesized by the UWPW
technique using the Goody and truncated Mellen models for a flow speed of 50 m/s at
1000 Hz.

CSM of the WPF. Figure 3.7 shows a flowchart describing the implementation of the

UWPW technique in the virtual acoustic experiment for estimation of the WPF in the

low-wavenumber domain.

Herein, three patterns (equidistant-cross array, non-equidistant-cross array, and irregular

array) with 68 sensors are analyzed, and the impact of varying the number of realizations

on estimating the WPF in the low-wavenumber domain using the RFBA is evaluated.

The Appendix B contains an interactive plot showcasing 19 case studies for the three

array patterns, highlighting the impact of varying numbers of realizations on estimation

���

���

Figure 3.7: Simulation process in the virtual acoustic experiments using the UWPW
technique.
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of the WPF in the low-wavenumber domain (see Figure B.4). Besides, for each array

pattern, the MAE (as defined in Eq. (3.13)) is shown to help quantifying the accuracy of

the estimated WPF for different realizations. Figure 3.8 only shows some selected results

for four different number of realizations. The obtained results shown in Figures 3.8 (f1)

and (i1), indicate that a relatively small number of realizations is sufficient to identify

the convective zone of the WPF in this virtual experiment and the random array pattern

exhibits a better performance compared with the other two arrays shown in Figures 3.8

(d1), (g1), (e1) and (h1). However, for the estimation of the WPF in the low-wavenumber

domain, a considerable number of realizations is necessary. For example, Figure 3.8 (f2)

shows that after 50000 realizations, the estimated results has a MAE of approximately

4.5 dB. Moreover, increasing the number of realizations from 50000 to 200000 reduces

the MAE by only 1 dB (see Figure 3.8 (l2)). This can be attributed to the fact that in the

virtual experiment an approximate CSM is used which struggles to realise the pressure

fluctuations in this region due to their low amplitudes compared to the convective region.

Moreover, the MAE values for three different patterns indicate that the irregular-array

pattern performs better than the equidistant and non-equidistant cross array patterns

when evaluating the WPF in the low-wavenumber domain.

To analyze the WPF synthesized with Eq. (3.18), the coherence obtained from the WPF

of Nr realizations are compared with the coherence obtained from the Mellen+Goody

model’s analytical formula in Figure 3.9. By usingNr realizations, the coherence between

point x and x′ can be estimated as follows

Γ(x,x′, ω) =

∣∣∣∣E [pr(x, ω)pr(x′, ω)
]
r∈{1,...Nr}

∣∣∣∣√
E
[
|pr(x, ω)|2

]
r∈{1,...Nr}

E
[
|pr(x′, ω)|2

]
r∈{1,...Nr}

, (3.19)

where pr(x, ω) is given by Eq. (3.18).

Figure 3.9 shows the results of Eq. (3.19) for Nr = 50, 500, 5000, and 50000 when applied

to the 34 equidistant sensors positioned in the streamwise direction. It can be observed

that a relatively small number of realizations is sufficient to estimate the coherence of

the WPF between closely spaced sensors, which plays a vital role in calculating the

convective peak in the WPF. However, there are significant discrepancies between the

estimated coherence and the analytical one for sensors that are spaced far apart. By

increasing the number of realizations, the estimated coherence for sensors with larger
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spatial separation approaches the analytically calculated coherence, which is crucial for

accurate WPF estimation in the low-wavenumber range. This behaviour clarifies why a

large number of realizations is necessary to estimate the WPF in the low-wavenumber

range.
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Figure 3.8: Comparison of the estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) using
the UWPW technique for three different array patterns, each comprising 68 sensors
shown in (a1)-(c1) and (a2)-(c2) for 500 realizations (d1-i1), 5000 realizations (j1-o1),
50000 realizations (d2-i2), and 200000 realizations (j2-o2). The color maps depicting
the estimated WPF are presented in (d1), (e1), (f1), (j1), (k1), (l1), (d2), (e2), (f2),
(j2), (k2), and (l2), with respective MAEs between the reference input TBL model and
the estimated low-wavenumber WPF of 26.86 dB, 16.20 dB, 12.90 dB, 20.12 dB, 8.01
dB, 7.48 dB, 10.80 dB, 4.65 dB, 4.55 dB, 8.37 dB, 4.22 dB, and 3.39 dB. The cross-
section view of the estimated low-wavenumber WPF are illustrated in (g1), (h1), (i1),
(m1), (n1), (o1), (g2), (h2), (i2), (m2), (n2), and (o2).



77

Figure 3.9: The TBL pressure filed coherence as a function of the spatial separation
in the streamwise direction. Solid line, analytical formula of the Mellen+Goody model;
dashed lines, numerical estimation considering 50, 500, 5000 and 50000 realizations.

3.2.2.2 Effect of Number of Realizations

In this section, the impact of the number of realizations on the estimation of the WPF in

the low-wavenumber domain is examined. Figure 3.10 presents a comparison of the MAE

values for the estimatedWPF as a function of frequency, using the irregular array pattern

with 68 sensors shown in Figure 3.8 (c2). To apply the acoustic approach for estimating

the WPF in the low-wavenumber domain, a minimum frequency of f = 400 Hz is chosen.

This selection ensures that the convective wavenumber of the TBL excitation remains

far from the flexural wavenumber of the panel (for more details, refer to Section 4.2).

The MAE values are plotted for various numbers of realizations. The findings indicate

that, as the number of realizations increases, the MAE values decrease. Moreover,

the graph in Figure 3.10 shows that the MAE increases at higher frequencies, indicating

lower accuracy in estimating the WPF in the low-wavenumber domain. This observation

underscores the challenges the ABA faces in estimating the low-wavenumber domain at

high frequencies.

3.2.2.3 Effect of the Convective Ridge on the Estimation of the Low-

wavenumber WPF

In previous Sections, we exclusively utilized the Mellen model as the input TBL model.

Since the levels of the WPF between the convective peak and the low-wavenumber
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Figure 3.10: Comparison of MAE for the estimated WPF in the low-wavenumber
domain as a function of frequency. The results showcase the impact of the number
realization on the accuracy of the estimated WPF for the irregular array pattern with
68 sensors.

domain are different for different semi-empirical models (see Figure 2.9), in this section

we investigate how this difference will affect the estimated low-wavenumber WPF. Hence,

we have implemented two additional models: the Chase model [28, 71] and the Corcos

model [38, 71], as input TBL models. As can be seen from Figure 2.9, among the three

models of Chase, Corcos, and Mellen, the levels of the low-wavenumber WPF are the

highest for Corcos model and the lowest for Chase model while they are somewhere in

between for the Mellen model. The disparities between the convective peak level and

the mean value of the WPF within the low-wavenumber domain are approximately 19

dB, 27 dB and 33 dB for the Corcos, Mellen and Chase models, respectively. In both

the Corcos and Chase models, the convective peak occurs at a similar level as observed

in the Mellen model [71].

For the estimation of the WPF, we employed a random array pattern with 68 sensors,

as shown in Figure 3.8 (c1). We calculated the MAE for the three TBL models with

different numbers of realizations, and the results are summarized in Table 3.2. The

findings indicate that when using the Corcos model, fewer realizations are required for an

accurate estimation of the WPF within the low-wavenumber domain. In fact, with just

50,000 realizations, we can achieve the WPF estimation with a MAE of approximately

2 dB. This number of realizations is significantly fewer than what is needed for the

Mellen model (nearly 1,000,000 realizations) to reach the same level of accuracy. This

can be attributed to the fact that the difference between the convective peak and the

low-wavenumber levels in the Corcos model is smaller than that in the Mellen model.
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Table 3.2: MAE of the low-wavenumber WPF for multiple numbers of realizations
using three closed-form semi-empirical models as reference input TBL models.

Semi-empirical models
Number of Realizations

500 5,000 50,000 200,000 500,000 700,000 1,000,000 2,000,000

MAE (dB) - Corcos Model 6.19 3.39 2.18 1.36 0.60 0.51 0.48 0.32

MAE (dB) - Mellen Model 12.90 7.48 4.55 3.39 2.72 2.61 2.19 2.03

MAE (dB) - Chase Model 26.06 20.31 15.97 13.87 11.27 11.14 10.59 9.34

Therefore, the low-wavenumber components of the WPF are less contaminated by the

convective ridge. Consequently, a lower number of realizations is necessary to attain an

accurate estimation of the WPF within the low-wavenumber domain.

This has been further confirmed by the results for the Chase model where its MAE

exceeds that of the Mellen model. For example, when using the Chase model, to achieve

the WPF estimation with approximately 9 dB error, almost 2,000,000 realizations are

required. Since the disparity in the WPF levels between the convective peak and the low-

wavenumber domain is the highest for the Chase model among the considered models,

the low-wavenumber components of the WPF are mostly masked by the large-amplitude

components of the WPF in the convective ridge. This is one of the main challenges of

measuring the low-wavenumber pressure fluctuations using a microphone array in real-

world scenarios as the difference between the convective peak and low-wavenumber levels

of the WPF is not known. This means it is not clear how many snapshots of the measured

signal is required to achieve an accurate estimation of the low-wavenumber region.

It should be noted that in this virtual experiment the effect of data sampling and using an

approximate CSM on the estimation of the TBL pressure field is demonstrated which is

only one aspect of a real experiment. However, other common sources of error including

instrumental, environmental, procedural, and human errors exist in practice. These

errors can be either random or systematic, impeding the accurate estimation of the

WPF in the low-wavenumber domain.
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3.3 Summary

In this work, the efficacy of using a microphone array on the estimation of the TBL

WPF in the low-wavenumber domain was studied. A regularized Fourier-based ap-

proach was proposed to identify the low-wavenumber levels of the WPF. Effects of three

array parameters, namely sensor spacing, co-array factor and sensor distribution on the

performance of each method were examined. It was shown that to achieve accurate

estimation of the WPF all the three factors should be considered. It was found that to

obtain accurate results, in addition to the Nyquist criterion, one needs to use an irregular

array pattern with the maximum possible co-array factor (F = 1). It was also observed

that reasonable estimation of the WPF in the convective region is much easier than that

in the low-wavenumber domain and can be achieved with relatively small number of

sensors.

Moreover, the effectiveness of using a microphone array to estimate the WPF in an

experimental condition was evaluated using a virtual experiment where the CSM was

approximated by an ensemble average of different realization of the WPF generated

by the UWPW technique. This mimics an experimental measurement where many

samples are collected from the random TBL pressure fluctuations. It was illustrated

that increasing the number of realizations results in more accurate estimation of the

wall pressure spectrum. Although, with relatively small number of realizations the

convective region can be identified, a significant number of realizations is required to

well estimate the low-wavenumber levels in the TBL pressure field.

To investigate the effect of the convective ridge on the identification of the low-

wavenumber domain WPF, three different TBL models were used individually as in-

put reference models. It was observed that the difference between the convective peak

and the low-wavenumber levels significantly affects the accuracy of the low-wavenumber

WPF estimation. In other words, the greater this difference, the higher the number of

realizations. This happens because the convective ridge obscures the low-wavenumber

components of the TBL WPF. This underscores a key issue when trying to capture the

low-wavenumber pressure fluctuations using a microphone array in real-world scenarios,

as the exact difference between the convective peak and the low-wavenumber levels is un-

known in practice. As a result, it remains unclear how many snapshots of the recorded

signal are required to achieve an accurate estimation of the low-wavenumber region.
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Moreover, this highlights the challenges in estimation of this region in the experiments

where not only a limited number of data samples can be recorded but also other sources

of error and uncertainty exist, such as background noise and the influence of microphone

instrumentation (particularly if not flush-mounted), which may contaminate the WPF

or affect the TBL.



Chapter 4

Estimation of the

Low-wavenumber WPF beneath a

TBL using an Accelerometer

Array: Single Frequency Analysis

In most of the previous studies using vibration-based approaches, it was assumed that

the WPF level in the low-wavenumber domain is constant. Furthermore, once the low-

wavenumber WPF was estimated, there was no reference WPF to ensure that obtained

results were accurate. This highlights the necessity for further study not only to im-

prove the process of identification of the low-wavenumber WPF but also to verify its

effectiveness before employing it in practice. This is only possible if the estimated WPF

could be benchmarked against a known input TBL WPF in the low-wavenumber do-

main. Thus, this chapter presents the the feasibility of estimating the low-wavenumber

WPF by analyzing vibration data from a structure excited by a TBL.

The methodology for estimating the WPF is outlined in Section 4.1, where an accelerom-

eter array assumed to be mounted on an elastic plate that is excited by a TBL WPF

crossing over it. The proposed approach is based on the relationship between the TBL

forcing function and structural vibrations in the wavenumber domain. By utilizing vibra-

tion data obtained from a structure excited by a TBL and incorporating the sensitivity

functions of the respective structure, it is possible to estimate the cross-spectrum density

82
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of the pressure fluctuations in the wavenumber domain. To demonstrate the effective-

ness of the proposed method, an analytical model of a simply-supported panel excited

by a reference TBL model is employed. The proposed method is then implemented in

a numerical study to verify the estimated WPF against an input reference TBL WPF

modeled by semi-empirical models. The findings are presented in Section 4.2, where the

results obtained using the closed-form semi-empirical TBL model and virtual vibration

experiment are compared. The solution procedure, along with the estimated WPF in

the low-wavenumber domain, is discussed in Section 4.2.1. This subsection examines the

effect of number of sensors and plate dimensions on the estimation of the WPF in the

low-wavenumber domain. This analysis is conducted while considering a closed form

semi-empirical TBL model as the input exciting force. Next, the process for virtual

experiments is detailed in Section 4.2.2, and the impact of the number of realizations/s-

napshots needed for a reliable estimation of the low-wavenumber WPF is investigated.

Finally, this chapter concludes with a summary of the findings in Section 4.3.

This chapter is based on the article “Identification of low-wavenumber wall pressure field

beneath a turbulent boundary layer using vibration data”, published in the Journal of

Fluids and Structures [3].

4.1 Methodology

This section is divided into three subsections. In Section 4.1.1, we introduce an inverse

vibration approach employed to estimate the TBL WPF in the low-wavenumber domain

based on vibration data from the excited panel. This section describes the relation

between the CSD of the WPF expressed in the wavenumber domain and the CSD of the

panel acceleration at various points. The accuracy of the proposed method is evaluated

through comparison with reference results. The CSD of the TBL WPF is simulated in

two different ways. The first way, discussed in Section 4.1.2, involves using closed-form

semi-empirical models as an input forcing function. This analysis enables us to examine

the impact of various parameters on the performance of the proposed method. The

second way, outlined in Section 4.1.3, involves simulating the input force using different

realizations/snapshots. To simulate an experiment, various realizations of the WPF will

be generated using the UWPW technique [129]. This approach allows for an investigation
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Virtual

Figure 4.1: Schematic of a random accelerometer array mounted on an elastic simply-
supported panel to measure acceleration response of the panel excited by wall pressure
fluctuations beneath the turbulent boundary layer.

into the influence of the number of snapshots required for reliable estimation of the low-

wavenumber WPF.

4.1.1 Inverse Vibration Method

In this section, an inverse vibration method is proposed to estimate the TBL WPF in

the low-wavenumber domain from vibration data. Let us consider a flat panel excited

by a TBL. We assume that the TBL is homogeneous, stationary, and fully developed

across the panel surface, and that the vibration of the panel does not influence the WPF.

Figure 4.1 illustrates the considered system for the numerical applications presented in

this chapter: the panel is rectangular and simply-supported on its four edges. An array

of Ns virtual accelerometers is mounted on the panel to measure the vibrations. The

x-axis is considered parallel to the streamwise direction, and the free stream velocity is

denoted by U∞. The panel has the density of ρs, length of Lx and width of Ly, and

bending stiffness of D = Eh3/(12(1 − ν2p)), where h is the panel thickness, E is the

Young’s modulus and νp is Poisson’s ratio. The Kirchhoff theory is considered here to

represent the motions of the considered thin panel, and to calculate the acceleration of

the panel [149].

The panel acceleration at point x, γ(x, t) induced by the WPF, can be expressed as the

convolution product [127]
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γ(x, t) =

∫∫
∑

p

∫ ∞

−∞
hγ(x, x̃, t− τ)p(x̃, τ) dτdx̃, (4.1)

where p(x̃, τ) is the WPF exerted on the surface of the panel
∑

p, and hγ(x, x̃, t) is the

acceleration impulse response at point x due to a normal unit force at point x̃.

Due to the random nature of the turbulent flow, the panel response can be described by

the cross-correlation function of the acceleration between two points x and x′, denoted

as Rγγ . Assuming a stationary and ergodic random process, Rγγ can be expressed as

follows

Rγγ(x,x
′, t) =

∫ ∞

−∞
γ(x, t)γ(x′, t+ τ) dτ. (4.2)

By substituting Eq. (4.1) into Eq. (4.2) and performing a temporal Fourier transform

on the cross-correlation function of the panel acceleration, the space-frequency spectrum

of the panel acceleration, Sγγ(x,x
′, ω), can be computed as follows [127]

Sγγ(x,x
′, ω) =

∫∫
∑

p

∫∫
∑

p

Hγ(x, x̃, ω)Spp(x̃, ˜̃x, ω)H
∗
γ(x

′, ˜̃x, ω) dx̃d˜̃x, (4.3)

where Hγ(x, x̃, ω) is the acceleration at point x for a normal force at point x̃, Spp(x̃, ˜̃x, ω)

is the temporal Fourier transform of the cross-correlation function of the WPF, and the

asterisk denotes the complex conjugate. The space-frequency spectrum of Spp(x̃, ˜̃x, ω),

can be expressed as follows by applying the inverse Fourier transform to the CSD function

of TBL pressure in the wavenumber domain, ϕpp(k, ω),

Spp(x̃, ˜̃x, ω) =
1

4π2

∫∫ ∞

−∞
ϕpp(k, ω)e

jk(˜̃x−x̃) dk, (4.4)

where k is the wavevector with components kx and ky in the streamwise and spanwise

directions in the (x, y) plane, respectively. By substituting Eq. (4.4) into Eq. (4.3) and

rearranging the terms, one obtains

Sγγ(x,x
′, ω) =

1

4π2

∫∫ ∞

−∞
Hγ(x,k, ω)ϕpp(k, ω)H

∗
γ(x

′,k, ω) dk, (4.5)
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where

Hγ(x,k, ω) =

∫∫
∑

p

Hγ(x, x̃, ω)e
−jkx̃ dx̃. (4.6)

Hγ(x,k, ω) characterizes the vibration behavior of the panel and is called sensitivity

function. Eq. (4.6) indicates that Hγ(x,k, ω) is the acceleration at point x when the

panel is excited by a unit wall plane wave of wavevector k.

The sensitivity function Hγ(x,k, ω) for a simply-supported rectangular panel corre-

sponding to the acceleration at point x when the panel is excited by a unit wall plane

wave is given by

Hγ(x,k, ω) = −ω2
M∑

m=1

N∑
n=1

ψmn(k)φmn(x)

Ω(ω2
mn − ω2 + jηsωωmn)

, (4.7)

where Ω = ρshLxLy/4 is the modal mass, ηs is the structural loss factor, and M, N are

the cut-off modal orders in the x and y directions, respectively. For a flat rectangular

panel with simply-supported boundary conditions, ωmn and φmn(x) are respectively the

modal frequency and mode shapes of the panel given by [103, 149]

ωmn =

√
D

ρsh

((
mπ

Lx

)2

+

(
nπ

Ly

)2
)
, (4.8)

φmn(x) = sin

(
mπx

Lx

)
sin

(
nπx

Ly

)
. (4.9)

The modal forces ψmn are calculated by integration over the panel surface A as follows

ψmn(kx, ky) =

∫
A
φmn(x, y)e

j(kxx+kyy) dA = Ixm(kx)I
y
n(ky), (4.10)

and

Irs |(r, s) = (x,m) ∨ (y, n) =


(

sπ
Lr

)
(−1)sej(krLr)−1

k2r−
(

sπ
Lr

)2 kr ̸= sπ
Lr

1
2 jLr otherwise

 . (4.11)
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Let us consider Ns accelerometers mounted on the panel surface excited by a TBL, see

Figure 4.1. The position of each accelerometer is determined by the coordinates xi,

denoted as (xi, yi) for i ∈ {1, Ns}. By truncating and sampling the wavenumber space,

and employing the rectangular rule to approximate the integration in Eq. (4.5), one can

compute the CSD of panel acceleration between two points xi and xj as follows

Sγγ(xi,xj , ω) =
1

4π2

Nk∑
l=1

Hγ(xi,kl, ω)ϕpp(kl, ω)H
∗
γ(xj ,kl, ω) δkxδky, (4.12)

where δkx and δky denote the resolutions of the wavenumber domain in the streamwise

and spanwise directions, respectively. The total number of points in the wavenumber

space is denoted by Nk = Nkx ×Nky , where Nkx and Nky indicate the number of points

considered in sampling the wavenumber space along the x and y axes, respectively. The

wavevector at a discrete point l is represented by kl = (kx,l, ky,l).

For the given array of Ns sensors, we define the CSD of the panel acceleration between

each Ns × Ns combination of sensors as Sγγ(xi,xj , ω), where i, j ∈ {1, Ns}. Then, all

computed CSD of accelerations are stored in a vector denoted as Sγ , referred to as

the acceleration CSD vector. The components of Sγ are organized such that the first

Ns components correspond to Sγγ(x1,xj , ω) with j ∈ {1, Ns}, the next Ns components

correspond to Sγγ(x2,xj , ω) with j ∈ {1, Ns}, and so on:

Sγ =



Sγγ(x1,x1, ω)

Sγγ(x1,x2, ω)
...

Sγγ(xi,xj , ω)
...

Sγγ(xNs ,xNs−1, ω)

Sγγ(xNs ,xNs , ω)


N2

s×1

. (4.13)

As the CSD of the panel acceleration between different sensors can be estimated by Eq.

(4.12), we can then write it in the following compact format

Sγ = QΦpp, (4.14)
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where Φpp is a vector consisting of the unknown WPF components in the truncated

wavenumber space as follows

Φpp =



ϕpp(kx,1, ky,1, ω)

ϕpp(kx,1, ky,2, ω)
...

ϕpp(kx,l, ky,l, ω)
...

ϕpp(kx,Nkx
, ky,Nky−1, ω)

ϕpp(kx,Nkx
, ky,Nky

, ω)


Nk×1

. (4.15)

The components of Φpp are organized such that the first Nky components corre-

spond to ϕpp(kx,1, ky,l, ω) with l ∈ {1, Nky}, the next Nky components correspond to

ϕpp(kx,2, ky,l, ω) with l ∈ {1, Nky}, and so on. Besides, Q is a matrix with the following

elements

Q =
δkxδky
4π2



Hγ(x1,k1, ω)H
∗
γ(x1,k1, ω) Hγ(x1,k2, ω)H

∗
γ(x1,k2, ω) · · · · · · Hγ(x1,kNk

, ω)H∗
γ(x1,kNk

, ω)

Hγ(x1,k1, ω)H
∗
γ(x2,k1, ω)

. . .
...

... Hγ(xi,kl, ω)H
∗
γ(xj ,kl, ω)

...
...

. . . Hγ(xNs ,kNk
, ω)H∗

γ(xNs−1,kNk
, ω)

Hγ(xNs ,k1, ω)H
∗
γ(xNs ,k1, ω) · · · · · · Hγ(xNs ,kNk

, ω)H∗
γ(xNs ,kNk

, ω)


N2

s×Nk

. (4.16)

The Q matrix and Sγ in Eq. (4.14) can be computed using Eqs. (4.7) and (4.12), re-

spectively. The elements of matrix Q can be acquired through experiments or numerical

simulations. At a specific excitation frequency, the vector Sγ can also be calculated

based on the panel vibration response to the TBL forcing function. According to Eq.

(4.14), we arrive at N2
s equations for the Nx ×Ny unknown coefficients. In most cases,

the number of unknowns Nx × Ny exceeds the number of equations N2
s . Eq. (4.14)

is therefore an under-determined system, and it has no unique solution. Moreover, Q

in Eq. (4.14) is a non-square matrix, and standard inversion cannot be applied to the

matrix. Hence, the goal is to find an approximate solution of ϕpp(k, ω) that minimizes

the residuals of the Eq. (4.14). For this purpose, a regularization technique can be

used as a pseudo-inverse method to estimate the WPF in the low-wavenumber domain

[76]. Consequently, the wall pressure CSD vector for that particular frequency can be

approximated as follows
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Φpp = [Q]†Sγ , (4.17)

where † denotes the pseudo-inverse.

Performance of the proposed method can be numerically evaluated by benchmarking the

estimated WPF against a reference input WPF. This can be done by exciting the panel

through a known forcing function and applying Eq. (4.17) to the computed vibration

response. Therefore, modeling the reference TBL forcing function is very important in

the performance evaluation of the proposed method. In Sections 4.1.2 and 4.1.3, we

have described two ways of simulating the reference TBL forcing functions, which allow

us to study the efficacy of the proposed method in both ideal and practical situations.

4.1.2 Closed-form CSD of the Wall Pressure Field

In this subsection, we have detailed the process of simulating the reference TBL forcing

function using the closed-form semi-empirical models. The CSD of the WPF in Eq. (4.5)

can be determined as per Graham formulation [70, 71] by utilizing different models for

auto-spectral density (ASD) of the pressure field, Ψpp(ω), and the normalized CSD of

the pressure field, ϕ̃pp(k, ω), independently, as stated in Eq. (2.1)

As in Chapter 3, this chapter employs the Goody model, presented in Eq. (3.9), and

the Mellen model, presented in Eq. (3.10), to evaluate the ASD function of the WPF

and the normalized CSD function in Eq. (2.1), respectively.

In order to calculate the panel acceleration using the closed-form semi-empirical models

in Eq. (4.12), a truncated number of wavenumbers in the x and y directions need to be

defined. When defining the cut-off wavenumbers in these directions, it is important to

ensure that the range of considered wavenumbers is large enough to be able to include

the significant contribution of the CSD function. For this study, a cut-off wavenumber of

1.2kc was used in both directions to account for the convective contributions of the WPF

of the TBL simulated using the Goody+Mellen model. It is noteworthy mentioning that

a convergence study has been performed to select the cut-off wavenumber and identify

the wavenumber resolution in the wavenumber domain to ensure that the input TBL is

accurately modeled and the estimated wall pressure field is converged.
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4.1.3 Realizations of the Wall Pressure Field

A closed-form formula for the TBL WPF does not exist in practice, and only a lim-

ited number of snapshots/samples is available. Therefore, we have introduced a second

procedure in this subsection, which involves a virtual model specifically designed for con-

ducting vibration experiments. To do this, a random TBL is simulated with determin-

istic loading using the UWPW technique [129], which mimics experimental situations.

This virtual experiment synthesizes TBL wall pressure and then uses this deterministic

forcing function to calculate the acceleration response of a panel using the ensemble

average of different realizations of wall pressure. The pressure beneath the TBL for the

rth realization can be represented by a set of UWPWs at point (xM , yM ) of the panel,

as shown in Eq. (3.18).

Using the modal expansion method (as described in Section 4.1.1 for evaluation of the

sensitivity functions), the acceleration response of a panel at point (xM , yM ) at a given

frequency of ω induced by the wall pressure (Eq. (3.18)) corresponding to the rth

realization at each sensor position can be obtained by [129],

γr(xM , yM , ω) = −ω2
M∑

m=1

N∑
n=1

F r
mn(ω)φmn(xM , yM )

Ω(ω2
mn − ω2 + jηsωωmn)

, (4.18)

where the modal forces are given by

F r
mn =

Nk∑
l=1

√
ϕpp(kx,l, ky,l, ω)δkxδky

4π2
ejθ

r
l ψmn(kx,l, ky,l). (4.19)

In the following section, we assess the results obtained from employing the proposed

approach to estimate the WPF in the low-wavenumber domain.

4.2 Results and Discussion

This section uses the formulation outlined in Section 4.1 to evaluate the WPF in the low-

wavenumber domain. This study investigates a rectangular steel panel with a simply-

supported boundary condition that is excited by a TBL. Table 4.1 presents the panel’s

dimensions and material properties. Figure 4.1 shows a turbulent airflow with a free flow



91

velocity of 50 m/s moving over the panel. The air density and the kinematic viscosity

values are set to 1.225 kg/m3 and 1.5111×10−5m2/s, respectively. The TBL parameters

for the panel are given in Table 4.2.

Table 4.1: Dimensions and material properties of the panel

Parameter Value

Young’s modulus E (Gpa) 210
Poisson’s ratio νp 0.3
Density ρs (kg/m3) 7800
Length Lx (mm) 455
Width Ly (mm) 375
Thickness h (mm) 1

Damping loss factor ηs 0.01
Flexural Wavenumber kf (1/m) 89.46

Moreover, selecting the wavenumber resolution is pivotal in the WPF calculations, ne-

cessitating a balance between computational costs and accuracy. As Q is dependent

on the wavenumber resolution, in this study, we adjust the wavenumber resolution at

each frequency to ensure a constant size for matrix Q across all frequencies. To ensure

that the computed CSD of the panel acceleration by the virtual accelerometers in both

techniques incorporates all major modes, in this study, we employed M = N = 50

in calculating Sγ(ω) according to Eqs. (4.7) and (4.12). However, for computing the

Hγ(x,k, ω) in Eq. (4.16), we only consider the modes number of M and N within

the frequency range [0, 1.3ω], as in practice, only the resonant modes in a given fre-

quency band can be reasonably estimated. Furthermore, in order to effectively utilize

the structure’s wavenumber filtering abilities for estimating the low-wavenumber domain

of the WPF through the panel’s vibration response, it is essential that the excitation

frequency be well above the coincidence frequency. This condition ensures that the con-

vective wavenumber of the TBL excitation remains far from the flexural wavenumber of

the panel. The flexural wavenumber kf of a panel is given by [72]

kf =
4

√
12ρs(1− ν2p)

Eh2
√
ω. (4.20)

Table 4.2: TBL parameters for air flow with speed of 50 m/s

Parameter Value

TBL thickness δ (mm) 5.77
TBL displacement thickness δ∗ (mm) 0.729

Wall shear stress τw (pa) 5.989
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It is important to note that the low-wavenumber domain investigated in this study is

defined within the range of the panel’s flexural wavenumber (−kf ≤ kx, ky ≤ kf ).

Figure 4.2 illustrates the flexural wavenumber of the plate and the convective wavenum-

ber of the TBL as a function of frequency. The figure demonstrates that the coincidence

frequency (the frequency at which the bending wave speed in the structure and the

convection speed are equal [114]) occurs around f ≈ 200 Hz. Consequently, to apply

the vibration approach for estimating the WPF in the low-wavenumber domain, a min-

imum frequency of f = 400 Hz is chosen. This condition ensures that the convective

wavenumber of the TBL excitation remains far from the flexural wavenumber of the

panel. Hence, the convective domain is filtered out by the structure (see Figure 1.2),

and this allows us to overcome the main challenge of estimating the low-wavenumber

components of the WPF using an acoustic method [2].
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Figure 4.2: Flexural and convective wavenumbers as a function of frequency.

Figure 4.3 illustrates the flowchart outlining the three-step procedure employed in this

work for estimating the WPF in the low-wavenumber domain. In the first step, the

CSD of the panel acceleration is calculated. Here, we have initially simulated the TBL

forcing function using both the closed-form semi-empirical models (Subsection 4.1.2)

and the UWPW technique (Subsection 4.1.3). The former employs Eqs. (4.7) and
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(4.12) to compute the CSD of the panel accelerations at the sensor positions. This

technique provides a theoretical framework for estimating the WPF in an ideal situation

and is particularly useful for parametric study and gaining insights into the fundamental

behavior of the proposed method (see Section 4.2.1). However, by utilizing the virtual

experiment model (see Section 4.2.2), it is possible to have a more realistic assessment

of the efficiency of using an accelerometer array to estimate the low-wavenumber WPF

in real-world situations. To achieve this, Eq. (3.18) simulates the TBL forcing function

using the UWPW technique, and the panel accelerations at the sensor positions are

computed using Eq. (4.18). In the second step, components of matrix Q are computed

by substituting the sensitivity function of the simply-supported panel (Eq. (4.7)) into

Eq. (4.16). In the final step, the regularization technique is applied to Eq. (4.17) to

estimate the low-wavenumber components of the WPF.

Start

Eq. (13)

Closed-form semi-
empirical models

UWPW technique

Eq. (17)

Eq. (7)

Compute     in
Eq. (9) 

Eq. (11)

Compute the sensitivity function
(Eq. (A.1))

Simulate the input forcing function

Step 1: Compute the CSD of the panel
acceleration

Step 2: Compute the components of matrix  

Eq. (12)

Step 3: Estimate the low-wavenumber WPF using
the regularization technique

Finish

Compute the sensitivity function
(Eq. (A.1))

Eq. (18)

Figure 4.3: Flowchart illustrating the procedure for estimating the low-wavenumber
WPF.
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4.2.1 WPF Estimation Using a Closed-form Semi-empirical TBL

Model

The initial step in measuring the acceleration response of the panel excited by a TBL

involves arranging sensors. However, practical limitations prevent using a large number

of accelerometers. This raises the question of how many sensors are needed to obtain

a reasonable estimation of the WPF in the low-wavenumber domain. In this work, we

employ a random array of sensors as shown in Figure 4.4 Each sensor is numbered to

highlight the sensors’ location for estimating the WPF in the low-wavenumber domain.

For example, when it is stated that 10 or 20 sensors are used in the array, it simply means

the sensors from 1 to 10 or 1 to 20 are selected from the 34 sensors shown in Figure 4.4.

In the upcoming subsections, we examine the impact of the number of sensors on the

estimation of WPF in the low-wavenumber domain using two numerical methods: 1)

the Moore-Penrose pseudo-inverse method [10] and 2) the TGSVD method [76].
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Figure 4.4: An irregular array pattern with 34 sensors; x-axis in streamwise and y-
axis in spanwise directions.
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4.2.1.1 Moore-Penrose Pseudo-inverse Method

To estimate the TBL WPF, Eq. (4.17) needs to be solved. As a first attempt, the

Moore-Penrose pseudo-inverse method [10] is employed to estimate the WPF using all

singular values (SVs) of matrix Q. This technique is particularly useful for inverting

non-square or singular matrices, which do not have a standard inverse. To study the

effect of the number of sensors on the estimation of the TBL WPF, the MAE of the

estimated WPF in the low-wavenumber domain is calculated for different number of

sensors with respect to the corresponding domain of the reference input TBL model

simulated using the Goody and Mellen Models. Eq. (3.13) is used to compute the MAE

of the estimated WPF in the low-wavenumber domain.

It should be noted that unlike the acoustic-based approach, where the co-array factor

and sensor locations were crucial for estimating the WPF in the low-wavenumber domain

[2], our investigation (results are not shown here) showed that in the vibration-based

approach the estimation of WPF in the low-wavenumber domain is almost independent

from the sensor positions and co-array factor.

Figure 4.5 depicts the MAE of the estimated WPF in the low-wavenumber domain as a

function of the number of sensors at some selected frequencies. For the results in Figure

4.5, the WPF is evaluated by applying the Moore-Penrose pseudo-inverse method to

obtain the inverse of the matrix Q in Eq. (4.17) using all SVs of matrix Q. In the

case of a rectangular plate, two mode numbers are necessary in both the x-direction

and the y-direction to label each vibration mode. Upon examining the mode numbers

and referring to Figure 4.5, it is found that for a given frequency of excitation, as the

number of sensors approaches the sum of maximum mode number of the plate along

x and y directions below the excitation frequency (Mb +Nb), a notable increase in the

MAE is manifested. The vertical dashed lines show this sum for each frequency. This

observation leads to the conclusion that to avoid a dramatic increase in MAE while

using the Moore-Penrose pseudo-inverse with all SVs, the maximum number of sensors

should be limited to the Mb + Nb at the excitation frequency. However, the condition

number for the matrix norm of Q in Eq. (4.17) is very large, classifying it as severely

ill-conditioned [76]. This condition implies that even a small perturbation in the input

data can lead to a significant impact on the solution, rendering the equation without

a unique solution [76]. Consequently, as the number of sensors increases, the condition
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number also increases, making the system more susceptible to numerical errors. This

effect explains why, beyond a certain sensor count, the MAE starts increasing despite the

expectation of improved accuracy with additional data. This suggests that numerical

instability, rather than physical limitations, is the primary reason for the observed trend.

Moreover, as can be seen from Figure 4.5, the MAE is still large even when the above

threshold is considered. This suggests that an alternative approach must be explored to

achieve a more accurate estimation of the WPF in the low-wavenumber domain.
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Figure 4.5: MAE for the estimated WPF in the low-wavenumber domain as a function
of number of sensors at some selected frequencies using the Moore-Penrose Pseudo-
inverse method.

4.2.1.2 Truncated Generalized Singular Value Decomposition Method

To improve the accuracy of the WPF estimation in the low-wavenumber domain, nu-

merical regularization methods have been used for computing stabilized solutions for

discrete ill-posed problems. The goal of regularization theory is to provide appropriate
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side constraints with optimal weights so that the regularized solution is a suitable ap-

proximation of the unknown desired solution. These methods filter out contributions to

the solution that correspond to small singular values, but there is no specific procedure

that can solve every individual problem [76].

We used various regularization techniques described in [76] to compute the WPF through

Eq. (4.17). The truncated generalized singular value decomposition (TGSVD) method

was found to be more effective in estimating the WPF in the low-wavenumber domain by

minimizing the first derivative 2-norm of the solution [76]. The regularization parameter

for truncating the generalized singular value problem is determined using the corner

method, considering a minimum of 4 sensors for the array arrangement. This method

employs an adaptive pruning algorithm to identify the corner of a discrete L-curve

generated by the TGSVD method [77]. For the numerical applications presented herein,

the Matlab package developed by [76] for the analysis and solution of discrete ill-posed

problems was utilized (see Appendix C).

Similar to Figure 4.5, Figure 4.6 illustrates the MAE as a function of sensor numbers at

selected frequencies using the TGSVD method. Based on the observations made earlier

in Figure 4.5 concerning the relationship between the mode numbers and the number of

SVs used for the inversion of matrix Q, it is essential to restrict the number of SVs to

the sum of maximum mode number of the plate along x and y directions bellow each

frequency of excitation (Mb + Nb) when a higher number of SVs can be employed for

the WPF estimation. It is worth mentioning that for an array with Ns sensors, N
2
s CSD

can be computed. Thus, the number of SVs in matrix Q is equivalent to N2
s . Using

this observation, we set a preconditioning for determining the regularization parameter

using the corner method: if the number of sensors in the array arrangement is lower

than Mb + Nb at the exciting frequency, all SVs are used for regularization parameter

determination. However, if the number of sensors exceeds Mb + Nb, the regularization

parameter is determined using the first (Mb + Nb)
2 SVs. The results depicted in Fig-

ure 4.6 reveal that the utilization of the TGSVD method consistently yields lower MAE

at each frequency when compared to Figure 4.5, even for Ns ≤ (Mb+Nb). Additionally,

this figure highlights that the calculated MAE is lower at higher frequencies compared

to the corresponding MAE values at lower frequencies. This suggests that as we move

further away from the coincidence frequency, the panel’s vibration is dominated by the

low-wavenumber components of the WPF, resulting in a more precise estimation of the
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WPF. Furthermore, for frequencies beyond 1000 Hz, the MAE remains below 1 dB

when utilizing only 5 sensors, and increasing the number of sensors does not result in a

substantial enhancement in the estimation of the low-wavenumber WPF. Consequently,

in contrast to the acoustic-based approach [2], employing a relatively small number of

sensors in the vibration-based method is sufficient for accurate estimation of the WPF

in the low-wavenumber domain.
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Figure 4.6: MAE for the estimated WPF in the low-wavenumber domain as a function
of sensor number at some selected frequencies using the truncated generalized singular
value decomposition method.

In what follows, we showcase the results of the WPF estimation in the low-wavenumber

domain and the corresponding MAE calculations using the TGSVD method. The out-

lined procedure from the preceding subsections is applied at two selected frequencies:

1400 Hz (non-resonance frequency) and 1511 Hz (resonance frequency). We use a

wavenumber resolution of δkx = δky = 5.6 m−1 for the resonance frequency, and a

resolution of 6.1 m−1 for non-resonant frequencies. Figure 4.7 (a), (b) illustrate the

CSD of the TBL WPF generated using the Goody+Mellen model as the reference in-

put at 1400 Hz and 1511 Hz, respectively. The targeted low-wavenumber domain is

represented by a rectangular area in Figure 4.7 (a), (b).
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Figure 4.7 (c)-(f) present the estimated WPF obtained by applying the TGSVD method

to the CSM of acceleration data collected from an irregular arrangement of 10 sensors

mounted on the TBL-excited panel at resonance and non-resonance frequencies. Figure

4.7(c),(d) present a color map of the estimated WPF. Figure 4.7(e),(f) provide cross-

sectional views of both the reference and estimated WPF at ky = 0, with two red-

dashed lines indicating the boundaries of the low-wavenumber domain. Additionally,

the calculated MAEs between the reference input WPF and estimated WPF in the

low-wavenumber domain for f = 1400 Hz and f = 1511 Hz are 0.52 dB and 0.32 dB,

respectively. The results depicted in Figure 4.7 (c)-(f) demonstrate that by following

the procedure outlined in Section 4.1 and utilizing an irregular array consisting of 10

sensors, it is possible to accurately estimate the WPF in the low-wavenumber domain,

with an MAE below 1 dB. It can also be observed that when the excitation frequency

is sufficiently distant from the coincidence frequency, the panel filters the convective

region of the WPF. Hence, the panel vibration is mostly due to the low-wavenumber

domain of the WPF. As a result, the proposed method could estimate the WPF within

the low-wavenumber domain accurately, while the WPF outside of this domain cannot

be effectively estimated.

4.2.1.3 Improving the Accuracy of Low-wavenumber WPF Estimation at

Low Frequencies

As shown in Figure 4.6, the calculated MAE within the low-wavenumber domain of the

WPF at lower frequencies (f = 400 Hz and f = 600 Hz) is higher compared to that at

higher frequencies due to the proximity to the coincidence frequency. To enhance the

accuracy of the estimated WPF within the low-wavenumber domain for these particular

frequencies, we explored the impact of modifying the panel’s dimensions, as illustrated

in Figure 4.8. This involves considering a scaling ratio (SR) for the panel, where the Lx

and Ly dimensions of the panel were multiplied by the SR value, and the positions of the

sensors were adjusted or scaled accordingly. All other parameters were kept constant

during this investigation. It is important to note that this modification does not affect

the flexural wavenumber of the panel (as per Eq. (4.20)), ensuring that the targeted

low-wavenumber domain for estimation remains unchanged. As observed in Figure 4.8,

increasing the SR results in enhanced estimations of the WPF and a subsequent reduc-

tion in the MAE. To provide rationale for this observation, Figure 4.9 illustrates the
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Figure 4.7: Evaluation of the proposed method on the estimation of the WPF
ϕpp(k, f) (dB, ref. 1 Pa

2.Hz−1) in the low-wavenumber domain at 1400 Hz (left column)
and 1511 Hz (right column) using a random array pattern with 10 sensors. Reference
input CSDs of the WPF for each frequency are shown in (a) and (b), and map view of
the estimated WPF are presented in (c) and (d). 2D wavenumber-frequency spectra for
ky = 0 are plotted against longitudinal wavenumber in (e) and (f). MAEs calculated
between the reference input CSD and estimated WPF in the low-wavenumber domain
for f = 1400 Hz and f = 1511 Hz are 0.52 dB and 0.32 dB, respectively.

MAE against β = SR
√
A/λb across multiple low frequencies (close to the coincidence

frequency). Here, A represents the surface area of the original plate (Lx × Ly), and

λb = 2π/kf denotes the flexural wavelength of the plate at the excitation frequency.

This ratio signifies the number of wavelengths present in the plate at each frequency.
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Figure 4.8: Comparison of the MAE for the estimated WPF in the low-wavenumber
domain at (a) 400 Hz and (b) 600 Hz as a function of number of sensors for different
scaling ratio values.

As it can be seen from Figure 4.9, with a low number of flexural wavelengths (β ≤ 5),

the magnitude of MAE is notable. However, with an increase in β, the MAE decreases

across the selected frequencies. Particularly at high β values, the MAE converges to a

level below 1 dB. This trend implies that employing larger panels with β > 5, which

accommodate a greater number of flexural wavelengths of the plate, leads to improved

the WPF estimations at low-frequencies.

4.2.2 Virtual Vibration Experiments

In Subsection 4.2.1, we used a closed-form formula for the CSD function of the WPF

and employed the vibration of a panel excited by the forcing function based on this

WPF to estimate the input WPF through an inverse method. A parametric study was

then carried out to better understand the effect of each system’s parameter on the WPF

estimation. However, in practice, such a closed-form WPF does not exist. Even when

multiple records of the pressure fluctuations are obtained under the same experimental

conditions, they would not be identical due to the random nature of excitation. Each

outcome of an experiment involving random processes is known as a sample function,

and the collective set of potential outcomes is referred to as the ensemble of the process.

In order to have a more realistic assessment of the effectiveness of the proposed method

for estimating the WPF, a virtual vibration experiment is conducted. This involves

simulating the WPF using various deterministic realizations of TBL pressure fluctua-

tions, and then estimating the CSM through ensemble averaging of these realizations.
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Figure 4.9: Comparison of the MAE for the estimated WPF in the low-wavenumber
domain at low frequencies as a function of β = SR

√
A/λb.

To achieve this, the UWPW technique [129] described in Section 4.1.3 is employed for

simulating the WPF.

By employing multiple realizations, the acceleration response of the panel can be com-

puted using Eq. (4.18) for each realization. As an illustration, Figure 4.10 displays two

realizations of the surface pressure field at frequencies of 1400 Hz and 1511 Hz, accom-

panied by their corresponding panel displacements. Different number of realizations is

used in the ensemble averaging process to calculate the CSM of panel accelerations at

the sensor positions. Subsequently, the CSM of the panel acceleration can be obtained

by ensemble averaging of the calculated CSD of acceleration between different pairs of

sensors across all realizations. Figure 4.11 shows a flowchart describing the implementa-

tion of the UWPW technique in the virtual vibration experiment for estimation of the

WPF in the low-wavenumber domain. This approach allows simulation and estimation

of the WPF in a realistic manner.
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(a) (c)

(b) (d)

Figure 4.10: Two realizations of the WPF at (a) 1400 Hz and (c) 1511 Hz using the
truncated Mellen and Goody models for a flow speed of 50 m/s, accompanied by the
corresponding panel displacement in (b) and (d).

In following subsection, we study the effect of the number of realizations as a function

of the excitation frequency and number of sensors (Subsection 4.2.2.1) using the virtual

vibration approach on the estimation of the WPF in the low-wavenumber domain.

Saa

Calculating  plate Acceleration 
CSM at sensor positions

 for each Realization

Snapshots of plate response
#NR

Ensemble Average

Calculating Plate Acceleration 
 for each Realization

#NR
#NR

Figure 4.11: Simulation process in the virtual vibration experiments using the
UWPW technique.
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4.2.2.1 Effect of Number of Realizations

In this section, the impact of the number of realizations on the estimation of the WPF in

the low-wavenumber domain is examined. Figure 4.12 presents a comparison of the MAE

values for the estimated WPF as a function of frequency using an irregular array pattern

with numbers of sensors: Ns = 5, Ns = 10, and Ns = 15. In this figure, ”Ref. TBL”

represents the MAE computed using the closed-form formula. The MAE values are

plotted for various numbers of realizations. The findings indicate that with an increase

in the number of realizations, the MAE values converge towards the ideal case (Ref.

TBL). Furthermore, the graph in Figure 4.12 illustrates that MAE decreases at higher

frequencies, indicating greater accuracy in estimating the WPF in the low-wavenumber

domain. This observation underscores that the accuracy of the estimated WPF improves

as the frequency of excitation deviates further from the coincidence frequency, whether

it’s at resonance or non-resonance frequencies.
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Figure 4.12: Comparison of MAE for the estimated WPF in the low-wavenumber
domain as a function of frequency. The results showcase the impact of the number
realization on the accuracy of the estimated WPF for (a) Ns = 5, (b) Ns = 10, and (c)
Ns = 15.
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In Figure 4.13, the impact of the number of sensors on the estimation of the WPF in the

low-wavenumber domain is examined at two frequencies: 1) the non-resonance frequency

of f = 1400 Hz and 2) the resonance frequency of f = 1511 Hz. In this figure, the MAE

is plotted as a function of the number of sensors for the selected frequencies for different

number of realizations. These MAE values are compared with those obtained using the

reference input TBL excitation (Ref. TBL). The results indicate that as the number of

realizations increases, the MAE values approach the reference case. It is observed that

to achieve an accurate estimation of the WPF at these two selected frequencies with

MAE below 2 dB, more than 300 realizations are required. Furthermore, it is observed

that when a high number of realizations is used, increasing the number of sensors does

not result in a significant improvement in the estimated WPF.
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Figure 4.13: Comparison of MAE for the estimated WPF in the low-wavenumber
domain as a function of number of sensors. The results showcase the impact of the
number realization on accuracy of the estimated WPF for (a) f = 1400 Hz and (b)
f = 1511 Hz.

The color-maps and cross-section views at ky = 0 of the estimated WPF in the low-

wavenumber domain at f = 1400 Hz and f = 1511 Hz using different number of re-

alizations are demonstrated in Figure 4.14 and Figure 4.15, respectively. The MAE

between the input reference WPF (Figure 4.7 (a), (b)) and the estimated WPF in the

low-wavenumber domain is included for each case to assess the accuracy of the estima-

tions.
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Based on the results displayed in Figure 4.14 and Figure 4.15, it can be seen that

with only ten realizations (Nr = 10), the MAE exceeds 5 dB at the non-resonance

frequency, while at the resonance frequency, it is approximately 2 dB. However, as the

number of realizations increases to Nr = 100, the estimated WPF improves at both

frequencies, with the MAE dropping to 3 dB at the non-resonance frequency and 1.69

dB at the resonance frequency. Further increasing the number of realizations results

in even more accurate estimations, bringing the estimated WPF closer to the reference

WPF. Notably, for Nr ≥ 300, the estimated WPF exhibits high accuracy, with an

MAE of approximately 1 dB. When comparing Figure 4.7 (f) with Figure 4.15 (b),

(d), and (f), slight discrepancies between the estimated WPF and the reference become

apparent, especially in the lower end of the low-wavenumber domain. These differences

could be attributed to the number of realizations used to estimate the CSM. They can

be alleviated by increasing the number of realizations. Additionally, this observation

corresponds with the findings presented in Figure 4.12, indicating that regardless of

whether the excitation is at resonance or non-resonance frequency, the accuracy of the

estimated WPF at each number of realizations generally improves as the frequency of

excitation deviates further from the coincidence frequency.

Furthermore, upon comparing the results obtained by Abtahi et al. [2] with the above

findings, it can be inferred that, unlike the acoustic-based approach where a substan-

tial number of realizations is needed to accurately estimate the low-wavenumber levels

in the TBL pressure field (due to contamination by the convective ridge), utilizing the

vibration-based approach filters the convective region of the WPF, allowing for accu-

rate estimation of the low-wavenumber WPF using a significantly smaller number of

realizations.

4.2.2.2 Repeatability Study of the Virtual Vibration Experiment

The utilization of a random procedure in the UWPW technique to generate the phase in

Eq. (4.19) introduces variability in the CSM of the acceleration data obtained for each

realization of the panel. This variability has the potential to impact the MAE value of

the estimated WPF in the low-wavenumber domain. To assess the influence of this factor

on the WPF estimation, we considered four different numbers of realizations: Nr = 50,

Nr = 100, Nr = 200, and Nr = 300. We calculated the vibration response of the panel
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Figure 4.14: The estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) at f = 1400 Hz for
an irregular array pattern with 10 sensors for different numbers of realizations. The left
column shows the color maps of the estimated WPF, while the right column displays
the 2D wavenumber-frequency spectra for ky = 0. The MAE for each case is displayed
in decibels (dB).
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Figure 4.15: The estimated WPF ϕpp(k, f) (dB, ref. 1 Pa2.Hz−1) at f = 1511 Hz for
an irregular array pattern with 10 sensors for different numbers of realizations. The left
column shows the color maps of the estimated WPF, while the right column displays
the 2D wavenumber-frequency spectra for ky = 0. The MAE for each case is displayed
in decibels (dB).
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at f = 1400 Hz and generated probability density function (PDF) graphs based on 100

data samples collected for three irregular arrays with Ns = 5, Ns = 10, and Ns = 15,

as shown in Figure 4.4. Figure 4.16 displays the PDF graphs for these scenarios with

mean value µ of the collected samples. In the context of an experiment, this could be

regarded as a repeatability study that measures the variation in the estimated output

data under the same conditions.

This figure illustrates that the probability of encountering higher MAE values is signifi-

cantly higher for the case with Ns = 5 and Nr = 50 compared to the other cases. How-

ever, as the number of sensors and realizations increase, the mean value µ of the samples

decreases. This reduction indicates an improvement in the accuracy of the estimated

WPF in the low-wavenumber domain. Additionally, the results presented in Figure

4.16 underscore the robustness of employing the TGSVD method in the vibration-based

approach, especially when a substantial number of realizations and a sufficiently high

number of sensors are employed for the estimation of the WPF in the low-wavenumber

domain. For instance, with Ns = 15 and Nr = 300, the majority of the calculated MAEs

among 100 samples exhibit an accuracy below 1 dB, emphasizing the stability of the

method.
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Figure 4.16: The probability density function graphs showing the distribution of 100
samples obtained for different numbers of realizations at three irregular numbers of
sensors.

4.3 Summary

In this study, an inverse vibration method for the estimation of the TBL WPF in the

low-wavenumber domain was proposed. To demonstrate the efficacy of the method, an

analytical model of an elastic simply-supported panel subjected to a TBL excitation was
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considered. Acceleration data acquired from the panel was then employed to estimate the

WPF in the low-wavenumber domain. A parametric study was initially carried out using

a closed-form TBL forcing function to show the effects of number of vibration sensors and

size of the panel on the accuracy of the WPF estimation in the low-wavenumber domain.

It was found that, unlike the acoustic-based methods, where a relatively high number of

sensors is required to respect the Nyquist criterion, a few sensors are sufficient to estimate

the WPF in the low-wavenumber using the proposed vibration-based method. Moreover,

the error of the WPF estimation in the low-wavenumber domain at low frequencies (close

to the coincidence frequency) can be substantially reduced by increasing only the size

of the panel without changing other parameters. This allows accurate estimation of the

WPF over a wider frequency range.

Moreover, to quantify the potential effectiveness of the proposed method in practice,

virtual experiments were conducted using the UWPW technique, where the CSM was

approximated through an ensemble average of various realizations of the panel’s accel-

eration induced by the WPF. This simulated a practical scenario where limited samples

are available and can be collected from vibration measurements of the panel. It was

realized that a few hundred snapshots were required for accurately estimating the WPF

in the low-wavenumber domain. Additionally, to evaluate the repeatability of the pro-

posed procedure in real experiments for estimating the WPF in the low-wavenumber

domain, we considered different sets of realizations using the UWPW technique across

various numbers of sensors. The obtained results demonstrated the effective and accu-

rate performance of the proposed regularization method when a substantial number of

realizations and an ample number of sensors were employed for the estimating WPF in

the low-wavenumber domain.

Nevertheless, it is important to note that this investigation was under the assumptions of

having a homogeneous, stationary, and fully developed TBL with zero pressure gradient

across the plate. Additionally, it was assumed that panel vibrations do not affect the

WPF and that the random TBL force is ergodic. These simplifications underscore the

difficulties in estimating this region in experiments, where not only homogeneity in the

TBL and ergodic randomness may not hold true, but also various sources of error and

uncertainties, including background noise, instrumental and human errors, exist.



Chapter 5

Estimation of the

Low-wavenumber WPF beneath a

TBL using an Accelerometer

Array: Frequency Band Analysis

In Chapter 4, we explored the estimation of the WPF in the low-wavenumber domain

using single-frequency analysis. We demonstrated that, to achieve an accurate estima-

tion of the WPF with an MAE below 2 dB at frequencies well above the coincidence

frequency, more than 300 realizations are necessary.

However, collecting more than 300 samples of experimental data under identical con-

ditions to estimate the WPF in real-world scenarios could be a cumbersome and time-

consuming task. In order to maintain the accuracy of the estimated WPF while min-

imizing the number of realizations required, we propose a frequency band method in

this chapter, instead of the single frequency analysis. This method aims to reduce the

required number of realizations by leveraging computed acceleration data across multi-

ple discrete frequencies. However, when utilizing the frequency band method, we need

to make the assumptions that the ASD of the WPF is known in advance, and the low-

wavenumber components of the WPF remain independent of frequency within a narrow

frequency range (frequency band).

113
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Section 5.1 outlines the methodology for estimating the WPF using multiple discrete

frequencies. In this approach, an accelerometer array is assumed to be mounted on an

elastic plate that is excited by a TBL WPF. Similar to Chapter 4, the method is based

on the relationship between the TBL forcing function and structural vibrations in the

wavenumber domain. By using vibration data obtained from a TBL-excited structure at

multiple frequencies and incorporating the sensitivity functions of the respective struc-

ture, the cross-spectrum density of the pressure fluctuations in the wavenumber domain

can be estimated. To demonstrate the method’s effectiveness, an analytical model of a

simply-supported panel excited by a reference TBL model is used. The proposed method

is then tested in a numerical study to verify the estimated WPF against an input ref-

erence TBL WPF modeled by a semi-empirical model. The findings are presented in

Section 5.2, where the results from the virtual vibration experiment are compared. The

chapter concludes with a summary of the findings in Section 5.3.

This chapter is based on the article “A vibration-based method to estimate the low-

wavenumber wall pressure field in a turbulent boundary layer”, which will be presented

in the Inter-Noise 2024.

5.1 Analytical Formulation

In this section, we have detailed the process of estimating the WPF in the low-

wavenumber domain through the utilization of the frequency band method. In this

method, the cross-spectrum matrix (CSM) calculated for different frequencies within the

frequency band of [ωmin−ωmax] is utilized to estimate the WPF in the low-wavenumber

domain. Prior to implementing this method, it is assumed that the ASD of the WPF

(Ψ̄pp(ω)) has been experimentally measured using a microphone array. Therefore, esti-

mating the normalized CSD of the WPF is sufficient for the WPF estimation.

In Figure 5.1, the schematic diagram of the system under consideration is presented. In

the upcoming subsection, the frequency band approach is introduced for the estimation

of the WPF in the low-wavenumber domain.
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Figure 5.1: A Schematic diagram depicting the random array of accelerometers
mounted on an elastic plate to record the plate’s acceleration response to TBL-induced
wall pressure fluctuations.

5.1.1 Frequency Band Analysis

In this section, we have detailed the process of estimating the WPF in the low-

wavenumber domain through the utilization of the frequency band approach. The space-

frequency spectrum of the plate acceleration, Sγγ(x,x
′, ω), excited by the WPF can be

expressed by Eq. (4.5). Using a rectangular rule to approximate the integration of Eq.

(4.5) by truncating and sampling the wavenumber space, one can compute the CSD of

plate acceleration between two points xi and xj using Eq. (4.12).

Moreover, the CSD of the WPF as indicated in Eq. (4.5) can be calculated according

to Graham’s method [70, 71] expressed in Eq. (2.1) by employing various models for

the ASD of the pressure field, Ψpp(ω), and the normalized CSD of the pressure field,

ϕ̄pp(k, ω), separately. Normalizing the wavenumber values in the CSD of the WPF with

respect to kc =
ω
Uc
, the Graham’s formulation can be expressed to the following equation

ϕpp(k̄, ω) = Ψpp(ω)ϕ̄pp(k̄), (5.1)

where k̄ is the normalized wavenumber (i.e. k̄ = k
kc
). Introducing Eq. (5.1) in Eq.

(4.12) leads to the following equation for the CSD of the plate acceleration
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Sγγ(xi,xj , ω) =
1

4π2

Nk̄l∑
l=1

Hγ(xi,
ωk̄l

Uc
, ω)Ψpp(ω)ϕ̄pp(k̄l)H

∗
γ (xj ,

ωk̄l

Uc
, ω) δk̄xδk̄y. (5.2)

We define the CSD for the plate acceleration between every combination of sensors in

an array of Ns sensors as Sγγ(xi,xj , ω), where i, j ∈ {1, Ns}. These computed CSDs are

then stored in a vector denoted as S̄γ , known as the acceleration CSD vector. The ele-

ments of S̄γ are arranged such that the first Ns components correspond to Sγγ(x1,xj , ω)

with j ∈ {1, Ns}, the subsequent Ns components correspond to Sγγ(x2,xj , ω) with

j ∈ {1, Ns}, and so on:

S̄γ(ω) =



Sγγ(x1,x1, ω)

Sγγ(x1,x2, ω)
...

Sγγ(xi,xj , ω)
...

Sγγ(xNs ,xNs−1, ω)

Sγγ(xNs ,xNs , ω)


N2

s×1

. (5.3)

Given that the CSD of the plate acceleration between various sensors can be approxi-

mated using Eq. (5.2), we can express it in a more concise form as follows

S̄γ(ω) = Q̄(ω)Φ̄pp(ω), (5.4)

where Φ̄pp is a vector consisting of the unknown components of the normalized CSD of

the WPF, presented as a function of the normalized wavenumbers as follows

Φ̄pp(ω) =



ϕ̄pp(k̄x,1, k̄y,1, ω)

ϕ̄pp(k̄x,1, k̄y,2, ω)
...

ϕ̄pp(k̄x,l, k̄y,l, ω)
...

ϕ̄pp(k̄x,Nkx
, k̄y,Nky−1, ω)

ϕ̄pp(k̄x,Nkx
, k̄y,Nky

, ω)


Nk×1

. (5.5)
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The elements of Φ̄pp are arranged in such a way that the initial Nky components cor-

respond to ϕ̄pp(k̄x,1, k̄y,l, ω) with l ∈ {1, Nky}, the subsequent Nky components corre-

spond to ϕ̄pp(k̄x,2, k̄y,l, ω) with l ∈ {1, Nky}, and so forth. Additionally, Q̄ represents an

excitation-response matrix with the following elements

Q̄ =
Ψpp(ω)δk̄xδk̄y

4π2



Hγ(x1,
ωk̄1
Uc
, ω)H∗

γ(x1,
ωk̄1
Uc
, ω) · · · Hγ(x1,

ωk̄Nk̄
Uc

, ω)H∗
γ(x1,

ωk̄Nk̄
Uc

, ω)

Hγ(x1,
ωk̄1
Uc
, ω)H∗

γ(x2,
ωk̄1
Uc
, ω)

...
... Hγ(xi,

ωk̄l
Uc
, ω)H∗

γ(xj ,
ωk̄l
Uc
, ω)

...
... Hγ(xNs ,

ωk̄Nk̄
Uc

, ω)H∗
γ(xNs−1,

ωk̄Nk̄
Uc

, ω)

Hγ(xNs ,
ωk̄1
Uc
, ω)H∗

γ(xNs ,
ωk̄1
Uc
, ω) · · · Hγ(xNs ,

ωk̄Nk̄
Uc

, ω)H∗
γ(xNs ,

ωk̄Nk̄
Uc

, ω)


N2

s×Nk̄

. (5.6)

For a particular excitation frequency, the calculation of the vector S̄γ relies on the plate’s

vibrational response to the TBL forcing function. According to the this procedure,

we end up with N2
s equations for the Nkx × Nky unknown coefficients outlined in Eq.

(5.4). Typically, the number of unknowns Nkx ×Nky surpasses the number of equations

N2
s . Consequently, Eq. (5.4) represents an under-determined system and the system of

equations has no unique solution. Also, matrix Q̄ in Eq. (5.6) is not a square matrix,

and therefore, standard matrix inversion methods cannot be directly applied to it for

computing the Φ̄pp.

The normalized domain corresponds to low-wavenumber domain is k̄x,LW , k̄y,LW ∈

[
−Uckf

ω ,
Uckf
ω ]. Since kf ∝

√
ω, normalized low-wavenumber domain is proportional

to k̄x,LW , k̄y,LW ∝ 1√
ω
. This signifies that as the excitation frequency increases, the

extent of the low-wavenumber domain diminishes. Therefore, to define a fixed low-

wavenumber domain using this method, the low-wavenumber domain corresponding to

ωmin within the frequency band is chosen as the target domain for estimation. This

selection encompasses the low-wavenumber domain linked to the higher frequency in the

given frequency band.

The vector S̄γ and matrix Q̄ in Eq. (5.4) are frequency-dependent. Given the assumption

made by Martin and Leehey [126] and Bonness et al. [17] in their studies, one could posit

that the frequency-independent nature of Φ̄pp holds true within the low-wavenumber

domain across a small frequency band (i.e. [ωmin − ωmax]). Therefore, by taking into

account Nf discrete frequencies within the frequency band, Φ̄(ωi) ≈ Φ̄
[ωmin,ωmax]
pp , where

i ∈ {1, Nf}. Utilizing the results of S̄γ(ωi) and Q̄(ωi) at different frequencies, we can

derive the following set of equations
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
S̄γ(ω1)

S̄γ(ω2)
...

S̄γ(ωNf
)

 = Φ̄[ωmin,ωmax]
pp


Q̄(ω1)

Q̄(ω2)
...

Q̄(ωNf
)

 . (5.7)

If the number of frequencies is such that N2
s ×Nf is larger than the size of Nkx ×Nky ,

then the system will be overdetermined, and the matrix Q̄ that needs to be inverted will

be better conditioned. The objective is to seek an approximate solution for ϕ̄
[ωmin,ωmax]
pp

within the low-wavenumber domain, aiming to minimize the residuals of the Eq. (5.4).

To achieve this, a regularization technique can be employed to estimate the WPF in the

low-wavenumber domain, as suggested in [76].

5.1.2 Virtual Vibration Experiments

The performance of the proposed approach can be assessed numerically by comparing the

estimated WPF with a known reference input WPF. This evaluation involves exciting

the plate with a predetermined forcing function and applying Eq. (5.7) to the resulting

vibration response. In this study, a virtual model is utilized to simulate the TBL ex-

citation. To achieve this, the TBL excitation force is simulated through deterministic

loading, employing the UWPW technique as described in [129]. This technique aims to

replicate experimental scenarios by synthesizing TBL wall pressure. Subsequently, the

deterministic forcing function is utilized to compute the plate’s acceleration response,

utilizing the ensemble average of various realizations of wall pressure. The pressure

beneath the TBL for the rth realization is characterized by a series of UWPWs at a

specific point (xM , yM ) on the plate, as detailed in [100, 101, 129].

pr(xM , yM , ω) =

Nk∑
l=1

√
ϕ̄pp(k̄x,l, k̄y,l, ω)δk̄xδk̄y

4π2
ej(k̄x,lxM+k̄y,lyM+θrl ), (5.8)

Then, utilizing the modal expansion technique, the acceleration response of a plate at

the specified point (xM , yM ) for a given frequency ω, caused by the wall pressure (Eq.

(5.8)), corresponding to the rth realization at each sensor location, can be computed

using Eq. (4.18). The modal forces in Eq. (4.18) can be obtained by [129]
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F r
mn =

Nk∑
l=1

√
ϕ̄pp(k̄x,l, k̄y,l, ω)δk̄xδk̄y

4π2
ejθ

r
l ψmn(k̄x,l, k̄y,l). (5.9)

Using Eq. (4.18), the CSD of acceleration between two points of xi and xj using the

UWPW technique can be computed as follows

Sγγ(xi,xj , ω) =
1

Nr

Nr∑
r=1

γr(xi, yi, ω)γ
∗r(xj , yj , ω), (5.10)

where Nr is number of realizations. In the following section, we assess the results

obtained from employing the proposed method to estimate the WPF in the low-

wavenumber domain.

5.2 Results and Discussion

This section utilizes the analytical formulations described in Section 5.1 to assess the

WPF within the low-wavenumber range. To demonstrate the effectiveness of the sug-

gested approach, we analyze the performance using the identical plate characteristics

and TBL properties as studied in Chapter 4.

This study employs the Goody model to evaluate the ASD function of the WPF, and

the Mellen model for the normalized CSD function. Eq. (5.8) serves for simulating the

input TBL forcing function. To simulate the TBL, Eq. (4.12) needs a truncated number

of wavenumbers in both the x and y directions. For this study, a cut-off wavenumber of

1.2kc was chosen in both directions to accommodate the convective contributions of the

TBL’s WPF. Additionally, the wavenumber resolutions used for the WPF calculations

should strike a balance: not too small to avoid increasing computational costs, yet not

too large to skip the main WPF values. In this study, the wavenumber resolution is

fixed at δkx = δky = 5.6 m−1 for all examined frequencies.

In order to guarantee that the calculated CSD of the plate acceleration, measured by the

virtual accelerometers, encompasses all significant modes, we opted to use M = N = 50

when computing S̄γ(ω) in Eq. (4.12) through Eq. (5.10). However, when calculating

the Q̄ matrix as expressed in Eq. (5.6), we limit our consideration to the modes M
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Figure 5.2: Contour plots of the Mellen wavenumber-frequency model ϕ̄pp(k̄, f) (dB,
ref. 1 Pa2.Hz−1) for a flow speed of 50 m/s at 1400 Hz.

and N within the frequency range [0, 1.3ωmax]. This choice is made as in practice, only

resonant modes within a given frequency band can be reasonably estimated.

Figure 5.2 depicts the normalized CSD of a TBL WPF based on the Mellen model in the

normalized wavenumber domain for the reference TBL at f = 1400 Hz. It’s crucial to

emphasize that the rectangular area shown in this figure indicates the low-wavenumber

domain under investigation in this study.

To compute the TBL WPF, Eq. (5.7) must be resolved. However, this equation falls

under the category of ill-posed problems, meaning that even small perturbations in the

input data can greatly impact the solution. Same as Chapter 4, the TGSVD technique

is employed here to estimate the WPF within the low-wavenumber domain. This is

achieved by minimizing the 2-norm of the first derivative of the solution, as described in

[76]. The regularization parameter, crucial for truncating the generalized singular value

problem, is determined using the corner method. This technique utilizes an adaptive

pruning algorithm to pinpoint the corner of a discrete L-curve produced by the TGSVD

method [77].
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This study assumes an irregular array of accelerometer to estimate the low-wavenumber

WPF. The sensors arrangement remains consistent with that outlined in Chapter 4.

In this study, we consider the frequency band of f = [1400 − 1475] Hz to estimate

the WPF in the low-wavenumber domain, and subsequently compare the findings with

those obtained using a single frequency of f = 1400 Hz in Chapter 4. This method

involves leveraging the CSM computed for various frequencies and employing these data

to estimate the WPF. To transform the underdetermined system of equations in Eq.

(5.7) into an overdetermined system, a minimum of Nf = 76 frequency steps is required.

Consequently, a frequency step of df = 1 Hz is adopted in this example to over-determine

the system of equations.

To evaluate the effectiveness of the proposed method in estimating the TBL WPF, we

calculate the MAE of the estimated WPF in the low-wavenumber domain relative to the

reference input TBL model, which is based on the Mellen model (Figure 5.2). The MAE

of the estimated WPF in the low-wavenumber domain is computed using the following

formula

MAE = 1
NkLW

NkLW∑
l=1

[
10log10

(
ϕ̄[ωmin,ωmax]
pp (k̄l)

)
e
− 10log10

(
ϕ̄[ωmin,ωmax]
pp (k̄l)

)
r

]
, (dB) (5.11)

where
(
ϕ̄
[ωmin,ωmax]
pp (k̄l)

)
e

and
(
ϕ̄
[ωmin,ωmax]
pp (k̄l)

)
r

are the estimated and reference

wavenumber-frequency spectrum of the WPF in the frequency band, respectively, and

NkLW
corresponds to the total number of grid points in the low-wavenumber domain.

Figures 5.3 (a), (c), and (e) illustrate the color maps of the estimated normalized WPF

using Eq. (5.7) across the frequency range of [1400 − 1475] Hz for varying numbers of

realizations. Figure 5.3 (b), (d), and (f) illustrate the cross-sectional views of both the

reference and estimated WPF at k̄y = 0. Two red-dashed lines in the figure represent

the boundaries of the low-wavenumber domain. Moreover, the MAE values in decibels

(dB) are presented for each case. The results shown in Figure 5.3 reveals that utiliz-

ing a group of closely spaced frequencies instead of a single frequency [3] reduces the

required number of realizations to obtain a certain level of accuracy of the estimated

WPF. For instance, when using the frequency band method, the MAE for Nr = 5 de-

creases from almost 5 dB (obtained for the single frequency method in Chapter 4) to 1.66

dB, indicating a good improvement. Moreover, doubling the number of realizations to

Nr = 10 further reduces the MAE to 1.12 dB, indicating a reasonable level of accuracy

in estimating the WPF.
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Figure 5.3: The estimated normalized WPF ϕ̄pp(k̄, f) (dB, ref. 1 Pa2.Hz−1) in fre-
quency band of [1400− 1475] Hz for an irregular array pattern with 10 sensors, shown
for different numbers of realizations. The left-hand plots depict the color maps, while
the right-hand plots display the 2D wavenumber-frequency spectra for k̄y = 0. The
MAE for each case is displayed in decibels (dB).
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Figure 5.4 compares the MAE as a function of the number of sensors for different number

of realizations, depicted separately for (a) a single frequency of f = 1400 Hz (Chapter

4) and (b) a frequency band of f = [1400− 1475] HZ. These MAE values are compared

with those obtained using the reference input TBL excitation (Ref. TBL). The find-

ings demonstrate that for accurate estimation of the low-wavenumber WPF at a single

frequency of f = 1400 Hz with an MAE below 2 dB, over 300 realizations are neces-

sary. In contrast, employing the frequency band method requires only 20 realizations to

effectively estimate the WPF in the low-wavenumber domain. Moreover, it is evident

that increasing the number of sensors does not yield substantial enhancements in the

estimated WPF when a sufficient number of realizations are utilized in both scenarios.

However, it is worth mentioning that in employing frequency band method, we have

made two assumptions: (1) the ASD of the WPF is available beforehand through exper-

imental measurements or computational fluid dynamics simulation, and (2) the WPF in

the low-wavenumber domain is frequency independent within the small frequency range

under consideration for implementing the proposed methodology.
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Figure 5.4: The comparison of MAE for the estimated WPF in the low-wavenumber
domain as a function of number of sensors. The results highlight the impact of the
number realization on accuracy of the estimated WPF for (a) single frequency of f =
1400 Hz [3] and (b) frequency band of f = [1400− 1475] Hz.
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5.3 Summary

This chapter investigated the effectiveness of using a vibration-based method at multiple

discrete frequencies for estimating the WPF in the low-wavenumber domain. The fre-

quency band formulation with the assumption that the low-wavenumber WPF does not

vary within the frequency band of interest was applied to identify the low-wavenumber

levels of the WPF. It was found that few number of realizations is enough to accurately

estimate the WPF in the low-wavenumber region using the frequency band method.

This is advantageous in practice as only a few data samples need to be recorded at each

frequency. Furthermore, it was observed that due to the filtering properties of the plate,

the proposed method is limited to estimating the WPF within the low-wavenumber

domain, and the WPF outside of this domain cannot be estimated accurately.



Chapter 6

Experimental Identification of

Plate’s Sensitivity Functions

As discussed in Chapters 4 and 5, identifying the WPF using the VBA requires the

calculation of the Q and Q̄ matrices via Eqs. (4.16) and (5.6), respectively. To compute

these matrices, we must determine the sensitivity functions of the plate under study.

As described in Chapter 4, the sensitivity function Hγ(x,k, ω) for a panel corresponds to

the acceleration at point x when the panel is excited by a unit wall plane wave with the

wavenumber k. In Chapter 4, it was shown that Eq. (4.7) can be used to evaluate the

sensitivity function in the wavenumber domain. To obtain the sensitivity function using

this equation, the modal properties of the structure under study, such as modal shapes,

natural frequencies, and structural loss factors, are required. A simply-supported plate

was used in Chapters 4 and 5 to evaluate the sensitivity functions because analytical

formulations for the modal frequencies and mode shapes of a simply-supported plate are

available.

While sensitivity functions can be computed analytically or numerically for a given

structure, it is challenging to experimentally obtain them in practice, which is required

for estimating the low-wavenumber WPF using the VBA. Therefore, this chapter is

dedicated to experimental evaluation of the sensitivity functions for a steel palte using

two methods: modal expansion and the reciprocity principle.

125
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Initially, the modal expansion method, discussed in Section 6.1.1, is employed. This

method requires the modal properties of the steel plate to calculate the sensitivity func-

tions. However, accurate measurement of all modal frequencies and mode shapes of the

plate is challenging in practice. As an alternative, the reciprocity principle method is

explored in Section 6.1.2 for computing the sensitivity functions. The results from these

two methods are then compared and verified.

6.1 Experimental Setup

In this section, we evaluate the sensitivity functions of a plate experimentally. The

experimental setup used for calculation of the sensitivity functions in this section

is shown in Figure 6.1. The experiment considers a steel plate with dimensions of

980.1 mm × 965.5 mm and a thickness of 2.44 mm, as depicted in Figure 6.1 (a). The

testing was conducted using measurement equipment from the UTS Acoustics Lab, as

listed in Table 6.1. Excitation was applied using Shaker B&K Type V406 M4-CE (Figure

6.1 (b)), while the response was recorded and analyzed using Polytec Type PSV-500-HV

Xtra Laser Doppler Vibrometer (Figure 6.1 (d)).

Table 6.1: The equipment used in the vibration measurements

Equipment Name Description

Laser Doppler Vibrometer Polytec Type PSV-500-HV Xtra S/N:
(1) 299160

Vibration Shaker Brüel & Kjær Type V406 M4-CE S/N:
(1) 472991/21

Vibration Transducer DJB Type AF/100/10 S/N:
(1) 9120002 (2) 9120003

Linear Power Amplifier Brüel & Kjær Type LDS LPA 100 S/N:
(1) B0100E1A17K0033

The rectangular steel plate used in the experiment is shown in Figure 6.2. This plate was

drilled at 40 points and bolted to a frame which was attached to a thick concrete wall

at 38 points. To prevent obstruction of the laser beam by the shaker and its hanger,

the shaker was positioned to excite the plate from one side, while the scanning LDV

measured the plate vibrations from the opposite side. A force transducer is placed at

the shaker’s excitation point to measure the applied forces. Two corner holes were left

open (highlighted in grey in Figure 6.2) to allow for the passage of cables connecting the

shaker to the LDV. The diameters of the holes are 10 mm (shown in blue) and 12.5 mm
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Figure 6.1: Experimental setup used for calculation of the sensitivity functions. (a)
A rectangular steel plate bolted to a carbon steel frame and attached to a concrete
wall, (b) The shaker used for excitation of the plate, (c) The hydraulic folding engine
crane used for hanging the shaker, and (d) the scanning laser Doppler vibrometer.
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(shown in purple) in the figure. The sensitivity functions have been computed at 15

points. The coordinates of these points are presented in Table 6.2. The location and

order of these points are also indicated by red circles and numbers, respectively, in the

Figure 6.2. Table 6.3 presents the panel’s geometrical and mechanical properties.

Table 6.2: Coordinates of 15 points on the plate used for calculation of the
sensitivity functions

Point Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x (mm) 856.4 732.7 609.2 492.2 372.7 250.5 140 489 488 487 486 486 486 485 484

y (mm) 485 485 485 486 484 482 484 869.5 769.5 669.5 569.5 391.5 293 193 94.5

Figure 6.2: Schematic of the rectangular plate used in the experiment, showing 15
measurement points, whose locations and order are indicated by red circles and num-
bers. The plate was bolted to a frame attached to a thick concrete wall at the blue
holes (10 mm diameter) and purple holes (12.5 mm diameter). The two grey holes were
left open.

Table 6.3: Dimensions and material properties of the panel

Parameter Value

Young’s modulus E (Gpa) 210
Density ρs (kg/m3) 7721
Length Lx (mm) 980.1
Width Ly (mm) 969.5
Thickness h (mm) 2.44

In this chapter, two methods for acquiring the sensitivity functions have been evaluated.

The first method involves obtaining the damped natural frequencies and mode shapes

of the plate, followed by using Eq. (4.7) to calculate the sensitivity functions. The

alternative method, based on the reciprocity principle, involves exciting the plate at
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specific points and using the plate’s response to compute the sensitivity functions at those

points. In the subsequent sections, both methods, modal expansion and the reciprocity

principle, are employed to compute the sensitivity functions of the plate experimentally,

and the results are compared.

6.1.1 Modal Expansion Method

In this section, our aim is to compute the sensitivity functions of the plate using the

procedure explained in Chapter 4. The relationship for calculating the sensitivity func-

tion is derived from Eq. (4.7), which expresses the sensitivity function as a function

of the plate’s modal properties. To obtain the sensitivity functions using Eq. (4.7),

it is necessary to determine the modal mass (Ωmn), structural loss factor (ηs), modal

frequencies (ωmn), modal shapes (φmn), and modal forces (ψmn). The accurate de-

termination of these parameters is critical for ensuring the reliability of the sensitivity

function calculations. The modal mass, Ωmn, in Eq. (4.7) can be calculated as:

Ωmn = ρsh

∫
A
φ2
mn(x, y) dA. (6.1)

Additionally, the modal forces ψmn are calculated using the Fourier transform via Eq.

(4.10) as follows:

ψmn(kx, ky) =

∫
A
φmn(x, y)e

j(kxx+kyy) dA. (6.2)

Here, we will determine the modal parameters of the plate using enhanced Frequency

Response Function (eFRF) which is obtained from Complex Mode Indicator Function

(CMIF) [5, 83, 141, 143, 159]. In summary, the modal parameters can be identified

through the following five steps. For more details, please refer to Appendix D.

1. CMIF Curves: In the first step, the eigenvalues of the normal matrix are plotted

as CMIF curves on a logarithmic magnitude scale as a function of frequency. The

number of curves corresponds to the number of reference points, which represent

either excitation or measurement locations in the modal test. For example, in

a Single Input Multiple Output (SIMO) configuration, where there is only one
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excitation point (reference), one CMIF curve is generated. If two references are

used, such as in a Multiple Input Multiple Output (MIMO) configuration, two

CMIF curves will be produced. The value of each peak’s eigenvector, equivalent

to the modal participation factor, is obtained in this step. Peaks in the CMIF plot

indicate the presence of vibration modes and their approximate frequencies. How-

ever, not all peaks represent modes; errors such as noise, leakage, nonlinearity, and

cross eigenvalue effects can create false peaks. For example, leakage errors can be

minimized by including several spectral lines of data in the singular value decom-

position calculation. Cross eigenvalue effects occur when two modes contribute

equally at a specific frequency, causing their eigenvalue curves to cross [159].

2. eFRF: The CMIF method is able to distinguish closed and also coupled modes.

Then, these identified peaks are used as initial estimate of natural frequencies

to create eFRF for each mode. The eFRF method is employed as second step

to identify natural frequencies and scale an equivalent single Degree of Freedom

(DOF) characteristic linked to each peak observed in the CMIF [5, 143].

3. RFP Method: In the third step, the rational fraction polynomial (RFP) method

performs multiple reference curve fitting using the modal participation factors

to estimate modal frequencies and damping for the previously detected peaks.

The estimated frequency is the damped natural frequency, where the maximum

magnitude of the singular value occurs. The frequencies and damping of all modes

are then listed in a spreadsheet [159].

4. Modal Residues: Once the modal frequencies and damping are estimated, modal

residues (magnitudes and phases) can be determined in the fourth step, using the

modal participation factors [159].

5. Mode Shapes: In the fifth step, after curve fitting is completed, mode shapes

are computed based on the relative strengths of the modal participation factors

for each reference and the largest participation factor for each mode [159].

Due to the close resemblance of the plate’s geometry to that of a symmetrical square

plate, it’s possible that the plate exhibits repeated roots or closely coupled modes. These

nuances cannot be accurately resolved using a single reference curve fitting method. To

address this, when two repeated roots are present, it’s necessary to utilize at least two
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references or responses (rows or columns) of the Frequency Response Function (FRF)

matrix to identify the modal parameters (refer to Appendix D).

In this experimental setup, the plate was excited at 15 points specified in Table 6.2 using

a shaker, while response measurements were taken at 400 points for each excitation. The

spatial resolution was set to δx = δy ≈ 50 mm for the scanned grid points. Measurements

were conducted over a frequency range from 0 to 1600 Hz with a resolution of 0.5 Hz.

Each signal was recorded for a duration of four seconds, resulting in a total of 3200

FFT lines. The Burst Chirp waveform type was used for the shaker excitation, with the

amplitude set to 0.1 and the burst length to 50%.

Figure 6.3 shows the coherence between each excitation and corresponding vibration for

the frequency range of 0 to 1000 Hz. The coherence between force and vibration mea-

sures the correlation or degree of linear relationship between the force applied to a plate

(excitation) and the resulting vibration response of the plate at excitation points. This

high coherence indicates that the force is effectively transmitting energy to the struc-

ture, and the structure is responding to the force input in a predictable and consistent

manner. It is often desirable to have high coherence between force and vibration sig-

nals, especially in structural testing and modal analysis, as it ensures that the measured

responses accurately reflect the applied excitation and can provide reliable insights into

the dynamic behavior of the structure. As it can be seen for wide range of frequencies

the coherence is close to 1, which means that the vibration response of the structure

at those frequencies is directly and strongly influenced by the applied force. In other

words, the measured vibrations closely follow the force input, indicating a high level of

consistency or synchronization between the two signals.

Figure 6.4 illustrates the average FRF spectrum obtained across all 400 measurement

points for each excitation force, spanning frequencies from 0 to 1000 Hz.
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Figure 6.3: Coherence between between each excitation force and and corresponding
vibration

Figure 6.4: Average spectrum of vibration displacement for each excitation.

With the FRF matrix available, we can now move on to estimating the modal parame-

ters. Due to the 15 points of excitation and 400 measurement points for each excitation,

the size of the FRF matrix at each frequency is 400 × 15. Figure 6.5 illustrates the

CMIF derived from the SVD of the FRF matrix. The peaks identified from the CMIF

are utilized for the initial estimation of natural frequencies. This initial estimation is

crucial for generating the eFRF for each mode according to Eq. (D.8). The eFRF is a

weighted average of all measured FRFs, where the left and right singular vectors used

as discrete modal filters. Following the determination of eFRF, the RFP method is

applied to the eFRF functions to estimate modal parameters. This is done by curve
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fitting the FRF. The FRF can be expressed in either rational (polynomial) fraction or

partial fraction form. In both approaches, all modal parameters (frequency, damping,

and modal coefficient) for all modes are estimated simultaneously (for more detail refer

to Appendix D).

Figure 6.5: CMIF function (dB, ref. 1 Hz2) from multiple-input multiple-output
measurements.

Using the modal properties obtained from the aforementioned results, we can extract

the natural mode shapes of the plate from the FRF response using Eq. (D.7). Figure

6.6 illustrates the first 24 natural frequencies of the plate, along with the corresponding

structural loss factors and mode shapes.

As observed, due to the large dimensions of the plate, the first 18 mode shapes occur at

frequencies below 200 Hz. To calculate the sensitivity functions at higher frequencies,

a greater number of mode shapes are required. Extracting mode shapes at the higher

frequencies necessitates measuring the vibrational response of the plate at more points.

In this experiment, 400 points (20 × 20) were considered for measuring the vibration

response of the plate. Applying the modal properties and mode shapes shown in Figure

6.6 to Eq. 4.7, one can calculate the sensitivity functions using the modal expansion

method.
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𝑓1 = 24.33 Hz 
𝜂1 = 0.0411 

𝑓2 = 43.67 Hz 
𝜂2 = 0.0149 

𝑓3 = 52.37 Hz 
𝜂3 = 0.0079 

𝑓4 = 69.67 Hz 
𝜂4 = 0.0075 

𝑓5 = 77.17 Hz 
𝜂5 = 0.0126 

𝑓6 = 86.71 Hz 
𝜂6 = 0.0106 

𝑓7 = 102.75 Hz 
𝜂7 = 0.0072 

𝑓8 = 105.64 Hz 
𝜂8 = 0.0069 

𝑓9 = 119.77 Hz 
𝜂9 = 0.0112 

𝑓10 = 133.42 Hz 
𝜂10 = 0.0143 

𝑓11 = 142.66 Hz 
𝜂11 = 0.0054 

𝑓12 = 145.44 Hz 
𝜂12 = 0.0149 

𝑓13 = 152.33 Hz 
𝜂13 = 0.0101 

𝑓14 = 171.95 Hz 
𝜂14 = 0.0165 

𝑓15 = 187.65 Hz 
𝜂15 = 0.0105 

𝑓16 = 189.56 Hz 
𝜂16 = 0.0071 

𝑓17 = 190.79 Hz 
𝜂17 = 0.0074 

𝑓18 = 196.92 Hz 
𝜂18 = 0.0101 

𝑓19 = 209.46 Hz 
𝜂19 = 0.0061 

𝑓20 = 230.02 Hz 
𝜂20 = 0.0169 

𝑓21 = 245.80 Hz 
𝜂21 = 0.0065 

𝑓22 = 251.84 Hz 
𝜂22 = 0.0052 

𝑓23 = 275.91 Hz 
𝜂23 = 0.0097 

𝑓24 = 294.76 Hz 
𝜂24 = 0.0103 

Figure 6.6: The first 24 mode shapes of the plate with corresponding damped natural
frequencies and structural loss factor.
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6.1.2 Reciprocity Principle Method

As evident, computing the sensitivity functions using the modal expansion method ne-

cessitates numerous mode shapes and modal frequencies, which can be challenging to

obtain for complex structures. To extract mode shapes of the plate at high frequencies,

measuring the vibrational response at more locations across the plate is essential. How-

ever, increasing the density of measurement points significantly prolongs the experiment

runtime. As an alternative approach, the reciprocity principle method can be utilized,

which circumvents the limitations associated with the modal expansion method.

As explained in Chapter 4, the sensitivity function Hγ(x,k, ω) for a panel represents the

acceleration at point x when the panel is excited by a unit wall plane wave. The direct

form of the sensitivity function is given by:

Hγ(x,k, ω) =

∫∫
∑

p

Hγ/Fn
(x̃,x, ω)e−jkx̃,dx̃. (6.3)

The right-hand side of Eq. (6.3) can be interpreted as the space-wavenumber transform

of Hγ(x̃,x, ω) with respect to the spatial variable x̃. The points x̃ become observation

points on the panel surface
∑

p, meaning that the space-wavenumber transform is per-

formed over the panel’s vibration acceleration field. In this form, the sensitivity function

is calculated by integrating the frequency response functions between point x and all

points on the panel surface x̃ [124].

A simpler alternative involves using the reciprocity principle [124]. This principle states

that the ratio of the panel’s normal acceleration at point x to the normal force applied

at point x̃ is equal to the ratio of the normal acceleration at point x̃ to the normal force

applied at point x as follows

Hγ/Fn
(x, x̃, ω) = Hγ/Fn

(x̃,x, ω). (6.4)

Consequently, the sensitivity functions Hγ(x,k, ω) can be determined by exciting the

panel with a normal force at point x and performing a space-wavenumber transform of

the transfer function between the panel’s vibration acceleration response and the force

function spectrum, as illustrated in Figure 6.7.
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Figure 6.7: Schematic view of the sensitivity functions calculation using (a) direct
interpretation of the sensitivity functions and (b) corresponding reciprocal interpreta-
tion. Figure from [124].

A scanning laser vibrometer can be used to measure the spatial vibratory response of

the panel. The reciprocity principle leverages the fundamental idea that the response

at a point due to a unit load applied at another point is the same as the response at

the second point due to a unit load applied at the first point. This method simplifies

the calculation process by avoiding the need for extensive modal analysis. Instead of

identifying all the individual mode shapes and natural frequencies, which can be complex

and computationally intensive, the reciprocity principle provides a more straightforward

approach. By applying known forces and measuring responses, the sensitivity function

can be accurately determined with fewer computational resources.

In this section, we follow this procedure to calculate the sensitivity functions using ex-

perimental data. Practically, the acceleration field must be measured on a regular grid of

points, typically using a scanning laser vibrometer. The space-wavenumber transform is

then approximated by a discrete Fourier transform. To prevent aliasing effects, the spa-

tial resolution between grid points should be chosen to accurately represent the spatial

variations of the acceleration field. For a homogeneous isotropic thin panel, the spatial

resolution (δx) should be no more than a quarter of the natural flexural wavelength (λb)

of the panel at the highest frequency of interest. For more complex panels, a preliminary

study should be conducted to determine the appropriate spatial resolution, potentially

using a numerical model of the panel or a trial-and-error approach [124].

As noted in Section 6.1.1, measurements were taken over a frequency range from 0 to

1600 Hz with a resolution of 0.5 Hz. To implement the methodology described in this

section, the plate acceleration field was calculated on a uniform mesh of 20× 20 points

in the x and y directions. This setup provides a spatial resolution of approximately
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δx ≈ δy ≈ 5 cm. This resolution ensures at least four points per flexural wavelength of

the plate, making the responses valid for frequencies up to 586 Hz [124].

The highest wavenumbers kmax
x and kmax

y that can be resolved in the x and y directions,

respectively, are determined by [124]

kmax
x = kmax

y =
π

δx
=

π

δy
≈ 63 m−1. (6.5)

The sensitivity functions have been calculated at the 15 points specified in Table 6.2.

To achieve this, a shaker with an amplifier was used to excite the plate at each point,

and for each excitation, the LDV was used to scan the plate and measure its accelera-

tion response. A transducer was connected to the shaker to measure the magnitude of

input force. The discrete Fourier transform is then applied to the measured vibrational

transfer function between the panel acceleration field and source magnitude to obtain

the sensitivity function at each point. In the next section, the sensitivity functions will

be computed using the reciprocity principle, and the results obtained will be compared

with those obtained with modal expansion method.

6.2 Results and Discussion

In this section, the sensitivity functions are calculated and compared using two meth-

ods: the modal expansion method (Section 6.1.1) and the reciprocity principle method

(Section 6.1.2). Figure 6.8 shows the squared absolute value of sensitivity functions at

two resonance frequencies of f = 52 Hz and f = 172 Hz, at the 15 points specified in

Table 6.2. Comparing the results shown in Figure 6.8 demonstrates that the computed

sensitivity functions obtained from the reciprocity principle method are very similar to

those obtained from the modal expansion method.

Additionally, Figures 6.9 and 6.10 illustrates the squared absolute value of the sensitivity

functions of the plate at 15 point locations calculated as a function of frequency for ky = 0

and kx = 0, respectively. In both figures, the results obtained using the modal expansion

and reciprocity principle method are presented and compared. The dispersion curves for

the acoustic wave number k0 and the plate bending wave number kf are also displayed

in both figures. Both figures show that the calculated sensitivity functions around the
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Figure 6.8: Interactive plots of squared absolute value of the sensitivity functions
|Hγ(x,k, f)|2 (dB, ref. 1 m2.s−4.Hz−1) at 15 points specified in Table 6.2 using (a),(b)
modal expansion method and (c),(d) reciprocity principle method at two resonance
frequencies of 52 Hz and 172 Hz.

natural frequency of the plate have higher intensity compared to other frequencies.

As shown, the results from both methods are in very good agreement, particularly at

low frequencies. However, the slight discrepancies observed at higher frequencies can

be attributed to inaccuracies in the extracted modal properties at those frequencies.

This is because, at higher frequencies, the natural mode shapes of the plate exhibit

more complex patterns, with multiple peaks and valleys, which demand finer spatial

resolution to capture accurately. Accurately representing the displacement variation in

these modes requires a higher density of measurement points. In this study, the number

of measurement points was insufficient to resolve these detailed features, including the

peaks, valleys, and the curvature of the displacement between them at higher frequencies.

Consequently, this limitation results in inaccuracies in the extracted mode shapes at

higher frequencies.
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Figure 6.9: Interactive plots of squared absolute value of the sensitivity functions
|Hγ(x,k, f)|2 (dB, ref. 1 m2.s−4.Hz−1) at 15 points specified in Table 6.2 using (a)
modal expansion method and (b) reciprocity principle method as a function of frequency
along kx ≥ 0 for ky = 0. Solid line: flexural wavenumber kf according to the Eq. (4.20).
Dashed line: acoustic wavenumber of k0 = ω/c0.

To further compare the accuracy of the computed sensitivity functions using the modal

expansion and reciprocity principle methods, the CSD responses of the plate between

point 1 and other points, when the plate is excited by a TBL WPF, are plotted in Fig-

ure 6.11. Herein, the Goody-Mellen model is considered for the TBL excitation force.

Additionally, the TBL parameters specified in Table 3.1 are used for the simulation of

the input TBL model. As can be seen, the computed CSDs from both the modal expan-

sion and reciprocity principle methods match very well, especially at low frequencies.

However, as the frequency increases, small differences between the results emerge. This

highlights the importance of accurately extracting the modal properties of the plate for

precise sensitivity functions calculation through the modal expansion method.
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Figure 6.10: Interactive plots of squared absolute value of the sensitivity functions
|Hγ(x,k, f)|2 (dB, ref. 1 m2.s−4.Hz−1) at 15 points specified in Table 6.2 using (a)
modal expansion method and (b) reciprocity principle method as a function of frequency
along ky ≥ 0 for kx = 0. Solid line: flexural wavenumber kf according to the Eq. (4.20).
Dashed line: acoustic wavenumber of k0 = ω/c0.
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Figure 6.11: Interactive plots of comparing the CSD of plate acceleration Sγγ (dB,
ref. 1 m2.s−4.Hz−1) between point 1 and other points (specified in Table 6.2) achieved
through the input Goody+Mellen TBL model and the computed sensitivity functions
obtained via two methods: the reciprocity principle (solid line) and modal expansion
(dashed line).
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6.3 Summary

This chapter investigated two methods for calculating the sensitivity functions exper-

imentally: the modal expansion and reciprocity principle. To illustrate the challenges

and effectiveness of each method, an experimental study was conducted in the Acoustics

Lab at UTS with a bolted plate. The sensitivity functions obtained from both methods

were compared, and the experimental results showed the sensitivity functions obtained

from two methods are in good agreement. The modal expansion method requires the

modal properties of the structure to compute the sensitivity functions. Accurate extrac-

tion of these properties is essential but challenging, especially for complex structures and

at high frequencies, as it necessitates detailed measurements of the structure’s response

at numerous points.

The reciprocity principle method, on the other hand, relies on measuring the vibra-

tional response of the structure when excited at specific points where the sensitivity

function is to be calculated. This method bypasses the difficulties of needing detailed

modal properties and provides a practical alternative when accurate modal extraction

is difficult.

In conclusion, while both methods are effective for calculating the sensitivity function,

the modal expansion method’s dependency on precise modal property extraction poses

significant challenges. The reciprocity principle method offers a viable alternative, avoid-

ing the limitations inherent in the modal expansion method. By applying the reciprocity

principle method, one can obtain the sensitivity functions of the plate and then using

the VBA technique described in Chapters 4 and 5 the low-wavenumber components of

the WPF can be identified. This involves calculating the Q and Q̄ matrices using Eqs.

(4.16) and (5.6) through the calculated sensitivity functions.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis discussed and examined the ABA and VBA in estimation of the TBL WPF

in the low-wavenumber domain. For each approach, the contribution to the existing

research was summarized, and suggestions for future research were offered.

The first approach tackled in this thesis was the ABA. Based on the detailed findings

from Chapter 3, the effectiveness of microphone arrays in estimating the TBL WPF

at low-wavenumbers was thoroughly investigated. The study introduced a regularized

Fourier-based method tailored for identifying these low-wavenumber components. Key

array parameters—sensor spacing, co-array factor, and sensor distribution—were sys-

tematically analyzed to optimize the estimation accuracy. It was revealed that achieving

precise results necessitates careful consideration of all three factors, particularly advo-

cating for irregular array patterns with a high co-array factor (F = 1). Additionally,

the research was extended through further investigation using virtual experiments, sim-

ulating multiple realizations of the WPF through the UWPW technique. This approach

underscored that increasing the number of realizations enhances the fidelity of the esti-

mated wall pressure spectrum, especially in discerning the convective region. However,

a substantial number of realizations were indispensable for accurately capturing the

low-wavenumber levels within the TBL pressure field.
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An additional investigation explored the impact of convective ridges on low-wavenumber

WPF identification, employing various TBL models as input references. This analysis

highlighted the significant influence of convective peaks on accuracy, stressing the chal-

lenge of isolating low-wavenumber components amid convective disturbances. It was

observed that as the difference between the convective peak and the low-wavenumber

levels increases, the convective ridge obscures the low-wavenumber components of the

TBL WPF. Consequently, a higher number of realizations is required for an accurate

estimation of the WPF in the low-wavenumber domain. The study underscored the

complexity in real-world scenarios where precise differentiation between convective peaks

and low-wavenumber levels remains elusive, necessitating further research to determine

optimal snapshot requirements for accurate estimation.

Moreover, the research illuminated practical challenges encountered during experimen-

tal setups, including limited data availability, background noise, and potential errors

from instrumentation and human factors. These factors collectively underscored the

intricacies and uncertainties involved in reliably estimating low-wavenumber TBL WPF

using microphone arrays in experimental settings. In summary, Chapter 3 provided

critical insights into the methodologies and challenges associated with estimating low-

wavenumber TBL wall pressure fields using microphone arrays. The findings laid a

foundation for subsequent chapters, emphasizing the need for robust methodologies and

further exploration to enhance accuracy and reliability in practical applications.

Chapter 4 focused on introducing an inverse vibration method for estimating the TBL

WPF within the low-wavenumber domain using single frequency analysis. The study

employed an analytical model of an elastic simply-supported panel subjected to TBL

excitation, utilizing acceleration data from the panel to estimate the WPF. A paramet-

ric study explored the impact of sensor number and panel size on estimation accuracy,

particularly highlighting the method’s efficiency compared to traditional ABA. The re-

search demonstrated that unlike ABA methods requiring high number of sensors to meet

the Nyquist criterion, the VBA achieved accurate WPF estimation with fewer sensors.

Notably, increasing panel size effectively reduced error at low frequencies near the co-

incidence frequency, enhancing WPF estimation across a broader frequency spectrum.

Virtual experiments using the UWPW technique demonstrated practical applicability,

indicating that a few hundred snapshots sufficed for accurate low-wavenumber WPF

estimation. Furthermore, virtual experiments affirmed the method’s repeatability and
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accuracy when employing sufficient realizations and sensors. However, the study oper-

ated under idealized conditions—assuming a homogeneous, stationary, fully developed

TBL with zero pressure gradient across the panel. With additional assumptions of

non-interference between panel vibrations and the WPF, along with ergodicity of the

TBL force. Variability in TBL characteristics, non-ergodic randomness, and prevalent

sources of error such as background noise and instrumentation challenges posed further

complexities in practice. In conclusion, Chapter 4 elucidated the effectiveness of pro-

posed inverse vibration method in estimating low-wavenumber TBL WPF, highlighting

its practical advantages over conventional acoustic methods.

Chapter 5 delved into the application of the VBA across multiple discrete frequencies

to estimate the TBL WPF within the low-wavenumber domain. The study employed

a frequency band formulation assuming constancy of the low-wavenumber WPF across

the chosen frequency range, aimed at identifying and quantifying these specific pressure

fluctuations. The research revealed that the frequency band method allowed for ac-

curate estimation of the low-wavenumber WPF with a minimal number of realizations,

underscoring its practical advantage in requiring fewer data samples per frequency. This

efficiency is particularly beneficial in experimental settings where data acquisition con-

straints exist. To sum up, Chapter 5 advanced our understanding of utilizing vibration-

based methods at multiple discrete frequencies for low-wavenumber TBL WPF esti-

mation. While demonstrating efficacy in targeted applications, the study underscored

methodological constraints that necessitate consideration in practical implementations

and further research.

Chapter 6 focused on exploring two distinct methods for calculating the sensitivity func-

tion: the modal expansion and reciprocity principle. The modal expansion method en-

tails deriving sensitivity functions based on the modal properties of the structure. This

approach necessitates accurate measurement and computation of these modal properties,

which becomes particularly intricate for complex structures. The method’s effectiveness

hinges on precise modal properties, which can be challenging. Conversely, the reciprocity

principle method offers an alternative by leveraging the vibrational response of the struc-

ture when excited at specific points. This method bypasses the need for extensive modal

property determination, focusing instead on practical measurement scenarios where di-

rect excitation points are accessible. It proves especially useful in situations where

accurate modal data extraction is impractical or challenging. The chapter provided a
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comparative analysis by conducting an experimental investigation at the Acoustics Lab

at UTS using a rectangular plate bolted along all the edges to a fixed frame within a con-

crete wall. Results demonstrated very good agreement between experimental calculation

of the sensitivity function using both methods. To sum up, while both modal expansion

and reciprocity principle methods exhibit efficacy in calculating the sensitivity function,

the modal expansion method’s dependency on precise modal property extraction poses

significant challenges, especial at high frequencies. The reciprocity principle method

emerges as a robust alternative, offering practical advantages and circumventing limita-

tions associated with complex modal analysis. This comparative assessment underscores

the importance of method selection based on the specific characteristics and constraints

of the structural dynamics under study.

7.2 Future work

This thesis has primarily focused on the theoretical evaluation and virtual experiments

for the estimation of the WPF in the low-wavenumber domain. While significant insights

have been gained, several avenues for future research can enhance the robustness and

applicability of the findings presented herein.

One immediate extension of this work is to conduct real-world experiments in a controlled

wind tunnel environment. By exciting a plate with airflow, the estimation of the WPF

in the low-wavenumber domain can be validated experimentally. For the ABA, an array

of microphones flush-mounted on the plate can be used to measure the WPF. The

recorded data will then be processed using RFBA method to estimate the WPF in the

low-wavenumber domain. This practical implementation will help verify the theoretical

models and virtual experiments conducted in this study, providing a more comprehensive

understanding of the technique’s effectiveness in realistic scenarios.

Similarly, for the VBA, an array of accelerometers can be mounted on the opposite side

of the plate exposed to airflow. The vibrational response of the plate, induced by the

TBL, will be recorded. Using this data, the WPF in the low-wavenumber domain can

be estimated using the TGSVD method investigated in Chapters 4 and 5, allowing for a

comparative analysis between the ABA and VBA methods in a real experimental setup.



147

This dual approach will help identify the strengths and limitations of each method under

practical conditions and guide future improvements.

Beyond experimental validation, further research could explore the impact of different

plate materials and boundary conditions on the WPF estimation accuracy. Investigating

how variations in material properties and clamping conditions influence the sensor data

and subsequent WPF estimations can provide valuable insights into the adaptability

and reliability of the proposed methods.

Another promising direction is the development of advanced signal processing techniques

and machine learning algorithms to enhance the accuracy and efficiency of WPF estima-

tion. By leveraging modern computational methods, it may be possible to better handle

the complexities and uncertainties inherent in real-world data, such as background noise,

sensor inaccuracies, and non-stationary TBL characteristics.

Additionally, the application of the proposed methods in more complex geometries and

flow conditions could be explored. Extending the study to include curved surfaces,

non-uniform flow fields, and varying TBL characteristics will broaden the scope of the

research and its potential applications in diverse engineering contexts.

Finally, collaborative research integrating computational fluid dynamics (CFD) simula-

tions with experimental data can further refine the estimation techniques. By comparing

CFD predictions with experimental measurements, more accurate models of the WPF

can be developed, enhancing the overall understanding of the TBL dynamics and their

impact on structural vibrations.

In conclusion, while this thesis has laid a solid foundation for estimating the WPF in

the low-wavenumber domain, substantial opportunities exist for expanding and validat-

ing this work through real-world experiments, advanced computational methods, and

broader applications. Pursuing these directions will significantly contribute to the field

of aeroacoustics and structural dynamics, providing practical solutions for noise control

and structural health monitoring in various engineering applications.



Appendix A

TGSVD Method: Acoustic-based

Approach

Using Eqs. (3.5) and (3.8), one can calculate the vector Spp and matrix Q. To obtain

the best estimation of the WPF components, the following steps from Ref. [76] are

employed:

Step 1: compute discrete first derivative operators;

L=get_l(size(Q,2),1);

Step 2: Compute the compact generalized SVD of a matrix pair;

[UU,sm,XX]=cgsvd(Q,L)

Step 3: Compute all TGSVD solutions;

k_tgsvd=1:size(sm,1)

[X_tgsvd,Rho,Eta]=tgsvd(UU,sm,XX,Sp,k_tgsvd);

Step 4: Find the corner of a discrete L-curve via an adaptive pruning algorithm;

k_corner=corner(Rho,Eta)
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Step 5: Find the estimated WPF components for the optimal regularization parameter

obtained from the corner method;

Phipp=X_tgsvd(:,k_corner)



Appendix B

Interactive Plot of Estimation

WPF in the Low-wavenumber

Domain Using ABA

Figure B.1: Interactive plots of estimated WPF using RFBA method for equidistant
cross-array pattern.
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Figure B.2: Interactive plots of estimated WPF using RFBA method for non-
equidistant cross-array pattern.
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Figure B.3: Interactive plots of estimated WPF using RFBA method for irregular-
array pattern.
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Figure B.4: Interactive plots of estimated WPF using the UWPW technique and
different numbers of realizations for three patterns.



Appendix C

TGSVD Method:

Vibration-based Approach

Using Eqs. (4.12) and (4.16), one can calculate the vector Sp(ω) and matrix Q. To

obtain the best estimation of the WPF components, the following steps from [76] are

employed:

Step 1: compute discrete first derivative operators;

L=get_l(size(Q,2),1);

Step 2: Compute the compact generalized SVD of a matrix pair;

[UU,sm,XX]=cgsvd(Q,L);

Step 3: Compute the TGSVD solutions (see Subsection 4.2.1.2);

if size(sm,1)<(M_b+N_b)^2+1

k_tgsvd=1:size(sm,1);

else

k_tgsvd=1:(M_b+N_b)^2;

end

[X_tgsvd,Rho,Eta]=tgsvd(UU,sm,XX,Sp,k_tgsvd);

Step 4: Find the corner of a discrete L-curve via an adaptive pruning algorithm;
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k_corner=corner(Rho,Eta);

Step 5: Find the estimated WPF components for the optimal regularization parameter

obtained from the corner method;

Phipp=X_tgsvd(:,k_corner);



Appendix D

Determining Modal Parameters

of a Mechanical System by Using

Complex Mode Indicator

Function

Modal identification entails the estimation of structural system modal parameters from

a set of Frequency Response Functions (FRFs). These parameters comprise complex-

valued modal frequencies, modal vectors, and modal mass. The most prevalent form of

modal testing is single reference modal testing, employing either a single fixed input or

a single fixed output. Typically, a roving hammer or a shaker serves as the excitation

source, while a single transducer measures the resulting acceleration. Single Input Mul-

tiple Output (SIMO) configuration is the most commonly utilized approach in single

reference modal testing. However, in cases when the structure is very complex (consists

of many different parts with different structural properties) or when the structure has

more modes with the same or very close natural frequency (repeated roots or closely

coupled modes), multiple reference testing is required in experimental modal analysis

[83]. Hence, it becomes necessary to utilize two or more fixed inputs or outputs, known

as multiple reference or MIMO (multiple input multiple output) modal testing. When

the inputs are fixed, the FRFs are computed between each input and multiple outputs,

constituting multiple columns of the FRF matrix (with the inputs serving as references).
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Conversely, when two or more fixed outputs are employed, the FRFs are computed be-

tween each output and multiple inputs, forming multiple rows of the FRF matrix (with

the outputs acting as references) [48]. A structure is said to have repeated roots or closely

coupled modes when two or more of its modes exhibit the same or similar frequencies

but possess different mode shapes. This issue arises in certain symmetrical structures or

highly complex systems. To detect repeated roots or closely coupled modes, the number

of rows or columns in the FRF matrix must be at least equal to the number of modes

sharing the same frequency. Consequently, the number of reference points must be at

least equal to the number of modes with identical frequencies. Thus, with two reference

points, two repeated modes can be accurately identified; with three reference points,

three repeated modes can be correctly distinguished, and so forth.

The CMIF [159] emerges as a straightforward and effective approach for discerning the

modes within a complex system. By displaying the physical magnitude of each mode and

the damped natural frequency for each root, the CMIF facilitates mode identification.

Moreover, the CMIF has the capability to detect repeated roots and closely coupled

modes, owing to the availability of multiple reference data. Additionally, the CMIF

provides comprehensive modal parameters, such as damped natural frequencies, mode

shapes, and modal participation vectors. The CMIF concept is realized through the

SVD of the FRFs matrix at each spectral line.

In multiple references modal testing, the FRF matrix characterizes the relationship

between multiple inputs and multiple outputs. At each spectral line of an N degree-

of-freedom system, the FRF matrix of the structure can be represented as shown in

Eq. (D.1). The size of the FRF matrix is N0 ×Ni, where N0 represents the number of

response points and Ni represents the number of excitation points. For simplification,

the mass matrix of the structure is assumed to be the identity matrix [159].

[Y (jω)] = ΣN
r=1

[Ar]

jω − λr
= ΣN

r=1

Qr{φ}r{L}Hr
jω − λr

, (D.1)

where:
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[Y (jω)] − FRF matrix of size N0 ×Ni,

[Ar] − rth residue matrix of size N0 ×Ni,

{φ}r − rth mode shape of size N0 × 1,

{L}i − rth modal participation factor of size N0 × 1,

Qr − scaling factor for rth mode,

λr − system pole value of rth mode.

Eq. (D.1) in a compact form is [48]:

[Y (jω)] = [Ξ]

[
Qr

(jω − λr)

]
[L] (D.2)

where:

[Ξ] −mode shapes matrix of size N0 × 2N,

[L] −modal participation factor matrix of size Ni × 2N,[
Qr

(jω − λr)

]
− equivalent singular value

Eq. (D.1) represents the response of the structure, denoted by [Y (jω)], to a unit excita-

tion force at a specific frequency ω. This response can be expressed as the summation,

or linear combination, of 2N residue matrices [Ar] divided by the difference between the

modal frequency (system pole) λr and the discrete frequency jω (sampling frequency

location in the Laplace domain). In conjunction with the equation, the residue matrix

is defined as the product of the mode shape {φ}r and the modal participation factor

{L}Hr , weighted by a scaling factor Qr (for rth mode). This scaling factor serves as an

indicator of the mode’s magnitude when the mode shape and modal participation factor

are scaled to be unitary vectors [48].

Through SVD [9], any matrix [A] can be decomposed into the product of three matrices.

When multiplied, these matrices express [A] in terms of its linearly independent com-

ponents. Additionally, SVD enables the determination of the rank of matrix [A]. The

CMIF relies on the SVD of the FRF matrix. SVD is employed on the FRF matrix to

identify the roots (or modes) of the system. This process decomposes the FRF matrix

into three matrices for each frequency. If the number of effective modes is less than or
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equal to the smaller dimension (number of responses or references) of the FRF matrix,

two singular vectors are obtained through singular value decomposition. Singular value

decomposition can be expressed by the equation [9, 159].

[Y (jω)] = [U(jω)][σ(jω)][V (jω)]H , (D.3)

where:

[U(jω)] − left singular matrix of size N0 ×N0 (unitary matrix)

[σ(jω)] − singular value matrix of size N0 ×Ni (diagonal matrix)

[V (jω)] − right singular matrix of size Ni ×Ni (unitary matrix) ,

In Eq. (D.3), the middle matrix represents a diagonal matrix of singular values. When

the scaling factor is constant for a mode, the magnitude of the singular value increases

with the decrease in distance between the modal and discrete frequencies (as defined

in Eq. (D.2)). Comparing two different modes, the singular value is larger for the

mode with stronger contribution and a larger residue value (as described in Eq. (D.1)).

Mode shapes are represented by the left singular vectors of the matrix [U(ω)]. The

right singular vectors in matrix [V (ω)] represent the corresponding modal participation

factors. Both mode shapes and modal participation factors are scaled to form unitary

vectors (unitary matrices) [159]. As the singular values at a particular spectral line

reflects the quantity of linearly independent modes, the matrix [Y (jω)] near resonance

transforms into [141]

Y (jω) ∼= σ1(jω)u1(jω)ν
H
1 (jω), (D.4)

where the subscript ”1” indicates the first (=highest) singular value [141].

The CMIF is determined by solving the eigenvalues from the normal matrix derived from

the FRF matrix at each spectral line. Obtaining the normal matrix involves multiplying

the FRF matrix (as per Eq. (D.3)) on the left by its Hermitian matrix, resulting in [159]

[Y (jω)]H [Y (jω)] = [V (jω)][σ2(jω)][V (jω)]H . (D.5)
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CMIF is equal to the square of the magnitude of the singular value of the FRF matrix

[159]

CMIFk(jω) = ϑk(jω) = σ2k(jω), (D.6)

where

CMIFk(jω) − kth CMIF at frequency ω,

ϑk(jω) − kth eigenvalue of the normal matrix of FRF matrix at frequency ω,

σ2k(jω) − kth singular value of the FRF matrix at frequency ω

The left matrix in Eq. (D.3) corresponds to mode shapes. For the kth eigenvalue curve

at frequency jωp, the unscaled mode shape can be derived from the equation [159]

{u(jωp)}k = [Y (jωp)]{ν(jωp)}kϑ(jωp)
−1
k ,

k = 1, 2, . . . , Nk

(D.7)

where

Nk − number of repeated roots detected at frequency jωp,

jωp − frequency of detected peaks that is the approximate damped natural

frequency of the rth mode

,

{u(jωp)}k − unscaled mode shape for kth repeated root at jωp,

{ν(jωp)}k − equivalent mode participation factor for kth repeated root at jωp.

The peaks identified in the CMIF plot signify the presence of modes, with the frequen-

cies at these peaks corresponding to the damped natural frequencies. The modal shapes

remain relatively consistent in the vicinity of each peak. Utilizing multiple neighboring

spectral lines from the FRF matrix simultaneously can enhance the accuracy of mode

shape estimation. The right matrix in Eq. (D.3) corresponds to modal participation

factors, illustrating the degree to which each mode contributes to the FRFs across dif-

ferent reference points, essentially indicating the effectiveness of exciting each modal

vector from various reference locations.
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The CMIF method is able to distinguish closed and also coupled modes. Then, these

identified peaks are used as initial estimate of natural frequencies to create eFRF for

each mode. The eFRF method is employed to identify natural frequencies and scale an

equivalent single Degree of Freedom (DOF) characteristic linked to each peak observed

in the CMIF [5, 143]. The eFRF operates on the principle of transforming from physical

to modal coordinates and can be described as a weighted mean of all the measured

FRFs, with the left and right singular vectors serving as discrete modal filters. This

method facilitates the isolation of modes. The eFRF is defined as follows [90]

eFRF(ω)r = {U(ωr)}H [Y (ω)]{V (ωr)], (D.8)

where eFRF(ω)r is an enhanced frequency response function of r-th mode.

In the subsequent stage, the rational fraction polynomial method is applied to these

functions to estimate modal parameters [60]. This is done by curve fitting the FRF. The

FRF can be expressed in either rational (polynomial) fraction or partial fraction form.

In both approaches, all modal parameters (frequency, damping, and modal coefficient)

for all modes are estimated simultaneously.

The rational fraction polynomial is an iterative method used to estimate modal param-

eters from a function that describes the dynamic behavior of a mechanical system. This

method posits that the frequency response function can be expressed as a ratio of two

polynomials, as follows [57, 152]

Y (ω) =
Σm
k=1ak.(ω)

k

Σn
k=1bk.(ω)

k
, (D.9)

where ak, bk are sought unknown polynomial coefficients. These coefficients are deter-

mined by minimizing the error function, as defined by equation [90, 152]

ei = Σm
k=0ak(ωi)

k − ℏi[Σn
k=0bk(ωi)

k + (ωi)
n], (D.10)

where ℏi represents FRF data at frequency ωi. The error function is minimized using

the least-squares technique. Equation (D.10) can also be applied to the eFRF. In this

work, this estimation method is used for each of the eFRFs.
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The orders of the numerator and denominator polynomials in Eq. (D.10) are indepen-

dent of each other. These equations are linear, and their coefficients are identified during

the curve fitting process. Eq. (D.10) represents the analytical formulation of the FRF

data, with FRF being the transfer function evaluated along the frequency axis. The

denominator polynomial is referred to as the characteristic polynomial of the system,

with its roots corresponding to the poles of the transfer function. These roots are termed

the roots of the characteristic polynomial. If the characteristic polynomial is zero, the

transfer function becomes infinite. The solutions (roots) where the numerator polyno-

mial is zero represent the values at which the transfer function is zero. These values are

known as the zeros of the transfer function. Consequently, by solving the roots of the

numerator and characteristic polynomials, the poles and zeros of the transfer function

can be determined. A root-finding solution is then employed to ascertain the modal

parameters.

Figure D.1 displays two sets of CMIF curves [9]. The upper set shows one variation of

the CMIF, while the lower set illustrates another form. In understanding the CMIF,

each peak signifies the presence of a mode at that particular frequency. For example, in

the upper plot, the blue curve exhibits three peaks, indicating that the CMIF identifies

three modes in this scenario. If a second peak appears at the same frequency as the first

peak, it suggests the existence of two modes at that frequency. However, it is crucial

that the second curve peaks at the same frequency as the first one; otherwise, it doesn’t

represent an additional mode [9].



Figure 1 – CMIF (upper) and Tracked CMIF 

163

Figure D.1: CMIF (upper) and Tracked CMIF (lower). Figure from [9]

The CMIF is used to focus on the most significant singular values, while the Tracked

CMIF is employed to monitor the vector associated with a singular value. In the lower

plot of Fig. D.1, tracking is centered on the vector corresponding to the singular value

rather than the largest singular value. Observing the blue vector, it peaks at a lower

frequency before gradually decreasing. Similarly, the red vector begins with a modest

amplitude, peaks midway through the frequency range, and then declines steadily. The

green line starts with minimal amplitude, progressively peaking as the blue and red

vectors decline. Thus, the choice between tracking the largest singular value (upper

plot) or the vector linked to the singular value (lower plot) depends on the aspect of the

CMIF being considered [9].
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Figure D.2: CMIF with multiple modes. Figure from [9]

In situations where multiple modes exist at identical frequencies, the CMIF plot would

exhibit one or more singular values peaking simultaneously. Figure D.2 illustrates this

scenario [9], showing three modes sharing the same frequency at the initial peak in

the expanded CMIF plot. Subsequently, three distinct peaks are observed at higher

frequencies. Therefore, within this expanded frequency band, the CMIF plot indicates

the presence of six distinct modes.
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[141] F. Pápai and I. Szűcs. The role of singular values of measured frequency response

function matrix in modal damping estimation (part i: Theory). Tehnicki Vjesnik,

22(3):729–734, 2015.

[142] L. Peltier and S. Hambric. Estimating turbulent-boundary-layer wall-pressure

spectra from cfd rans solutions. J. Fluids Struct., 23(6):920–937, 2007.

[143] A. W. Phillips, R. J. Allemang, and W. A. Fladung. The complex mode indicator

function (cmif) as a parameter estimation method. In Proceedings of the 16th

International Modal Analysis Conference, volume 3243, page 705, 1998.

[144] S. B. Pope. Turbulent flows. Meas. Sci. Technol., 12(11):2020–2021, 2001.

[145] A. Powell. On the fatigue failure of structures due to vibrations excited by random

pressure fields. J. Acoust. Soc. Am., 30(12):1130–1135, 1958.

[146] L. Prandtl. Uber flussigkeitsbewegung bei sehr kleiner reibung. Verhandl. 3rd Int.

Math. Kongr. Heidelberg (1904), Leipzig, 1905.
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