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ABSTRACT

I
n real-world sports examination scenarios, various challenges arise due to the

complexity and uncontrollable factors in the testing environment. This thesis

presents an intelligent sports analysis system designed to address key issues in

objective sports examinations.

One major challenge we address is the problem of human keypoint prediction. Dur-

ing examinations, candidates’ skeletons may be occluded, leading to inaccurate key-

point predictions. To address this, we propose a method inspired by techniques used in

weather prediction. We employ Spatio-Temporal Graph Neural Processes (STGNP) for

effective spatio-temporal extrapolation of skeleton data. STGNP learns deterministic

spatio-temporal representations through cross-set graph neural networks and causal

convolutions, then generates latent variables for target locations using Graph Bayesian

Aggregation (GBA). GBA integrates contextual data with uncertainty estimates, allowing

the system to accurately infer and complete occluded keypoints. Extensive experiments

show that STGNP can effectively enhance the accuracy and stability of skeleton predic-

tion.

Another significant issue in practical examination settings, such as basketball skill

assessments, is the occlusions and errors that can lead to the loss of tracking for equip-

ment like basketballs and cones. Traditional object tracking and Re-Identification (Re-ID)

methods often struggle to cope in these dynamic scenarios. To overcome this, we propose

an enhanced object tracking model that incorporates additional positional information
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of the candidates. This integration not only improves the accuracy and robustness of

tracking but also ensures that the system can maintain reliable tracking even when

objects are momentarily occluded or lost from view, significantly enhancing the reliability

of the analysis.

Furthermore, real-world sports examinations often demand substantial computa-

tional resources due to the high computational load of deep learning algorithms. We

propose a novel method, Enhancing Skeleton-Based Human Motion Recognition with

Lie Algebra and Memristor-Augmented Long Short-Term Memory (LSTM) and Convo-

lutional Neural Networks (CNNs). This approach leverages Lie algebra for skeleton

representation and employs a combination of LSTM and CNNs for motion recognition.

By embedding the trained network weights into a memristor-based structure, we achieve

faster inference and reduced computational requirements, ensuring efficient performance

in resource-constrained environments. This method not only accelerates computation

but also reduces energy consumption, making it suitable for real-time applications.

Additionally, we explore the implications of these methodologies specifically in the

context of real-world basketball examination scenarios. The proposed solutions are

validated through extensive experiments and trials in this specific setting, demonstrating

their effectiveness and robustness.

In conclusion, this thesis provides innovative solutions to key challenges in sports

examinations, including keypoint prediction, object tracking, and computational effi-

ciency. These contributions improve the reliability and effectiveness of intelligent sports

analysis systems, increasing their adaptability to real-world scenarios and opening new

avenues for future advancements.
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1
INTRODUCTION

1.1 Background and Motivations

In real-world sports examination scenarios, various challenges arise due to the complexity

and uncontrollable factors in the testing environment. The goal of this research is to

design a comprehensive and fair intelligent sports examination system, taking basketball

skill assessments as a case study. Traditional methods for human pose estimation,

object tracking, and Re-ID face significant challenges in such dynamic and complex

environments. Human pose estimation, crucial for understanding players’ movements

and biomechanics, often struggles with accuracy due to occlusions, varying lighting

conditions, and rapid movements. On account of limited computational resources, using

small models results in more accuracy issues, while large models cannot be practically

applied. Advanced methods such as AlphaPose Fang et al. (2022), MMPose Contributors

(2020), and OpenPose Cao et al. (2019) have made significant strides in addressing

these issues by improving pose estimation accuracy even in challenging conditions

Papandreou et al. (2017); Cao et al. (2017). In video-based sports examinations, object

1



CHAPTER 1. INTRODUCTION

detection and Re-ID techniques are used together primarily to detect auxiliary equipment

used in the exams, such as basketballs, hoops, and cones. Modern object detection

algorithms like YOLO, with YOLOv8 being one of the most commonly used versions,

provide robust solutions for tracking in real-time, offering high accuracy and efficiency

Jocher et al. (2022). Re-ID techniques, which help in distinguishing and re-identifying

objects throughout the assessment, face issues with changes in appearance due to

occlusions and overlap with identical targets. Recent advancements such as ByteTrack

and BoT-SORT have shown remarkable improvements in Re-ID performance, enabling

more reliable identification of equipment in dynamic and cluttered environments Zhang

et al. (2022); Aharon et al. (2022). As shown in Figure 1.1, integrating these advanced

methods into a cohesive system that performs reliably in real-world sports environments

remains an ongoing research challenge, necessitating continuous development and

refinement. Some details will be provided as follows:

One significant challenge in accurately predicting human keypoints during examina-

tions is dealing with partial occlusion, which can lead to incorrect or incomplete keypoint

data. To tackle this issue, we utilize the STGNP Hu et al. (2023). This approach employs

spatio-temporal representations through cross-set graph neural networks and causal

convolutions. It generates latent variables for target locations using GBA, effectively

addressing occluded keypoints by robustly inferring and supplementing them. STGNP

offers precise uncertainty estimates and robust learning capabilities. By learning these

spatio-temporal representations and latent variables, STGNP can accurately predict

missing keypoints even in challenging situations. This makes it particularly suitable for

dynamic sports environments where occlusions are frequent, thus enhancing the relia-

bility of keypoint predictions and improving the overall performance of the intelligent

sports examination system.

Another major challenge in sports examinations is dealing with occlusion of equip-

2



1.1. BACKGROUND AND MOTIVATIONS

Figure 1.1: This figure illustrates a real-world basketball examination scenario where
human pose estimation, cone detection, and ball tracking have been successfully per-
formed. The image demonstrates the system’s capability to accurately identify and track
key elements such as the basketball, cones, player, and hoop, showcasing its effectiveness
in dynamic sports environments.

ment like basketballs and cones. Traditional object tracking and Re-ID methods often

falter in dynamic scenarios where objects are frequently occluded, lost from view, or

overlap with identical items. This issue is particularly problematic in complex exam-

ination environments where multiple identical objects, such as basketballs, are used.

The complexity of candidates’ movements and overlaps caused by 2D imaging can lead

to Re-ID failures, resulting in incorrect tracking and flawed evaluations in subsequent

tasks. To address this, we enhance object detection algorithms by integrating positional

information of the candidates. Our approach improves tracking accuracy and robustness

by incorporating the spatial and temporal context of candidates, allowing the system to

3



CHAPTER 1. INTRODUCTION

correct Re-ID errors. As a result, the system maintains accurate object tracking even

under challenging conditions. This positional integration significantly improves the

reliability of examination analysis, enabling the system to better handle occlusions and

complex interactions. This ensures fair and accurate skill assessments in dynamic sports

environments.

Real-world sports examinations often require significant computational resources

due to the demands of deep learning algorithms. To address this, we propose an innova-

tive method that improves skeleton-based human motion recognition using Lie Algebra

combined with Memristor-Augmented LSTM and CNN. Vision-based human action

recognition is vital in many fields, including healthcare, video surveillance, autonomous

driving, sports, and education Aggarwal and Ryoo (2011). Our method effectively repre-

sents human skeleton data by using Lie algebra and standard bone length measurements.

We employ a multi-layer LSTM recurrent neural network and CNN to capture complex

motion patterns with high accuracy Hu et al. (2019). To enhance performance, we embed

the trained network weights into a memristor-based structure, achieving faster inference

and lower computational requirements Wen et al. (2020). This approach not only speeds

up computation but also reduces energy consumption, making it highly suitable for

real-time applications. Although our current implementation is a software simulation,

we aim to apply this technology practically in the future, improving the efficiency and

reliability of human motion recognition in dynamic sports environments.

Many deep learning models have been applied to sports scenarios, but integrating

these technologies into a single intelligent system remains unexplored. Hence, our work

stands at the forefront of this field. There are three key issues that need to be addressed:

1) improving the accuracy of keypoint prediction, particularly under rapid and complex

movements, varying lighting conditions, and occlusions; 2) enhancing object detection

and recognition in intelligent examination scenarios, ensuring robustness amidst fre-
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quent occlusions and complex interactions; and 3) developing efficient computational

methods suitable for real-time applications in resource-constrained settings. Improving

keypoint prediction involves addressing the accuracy of keypoints in dynamic environ-

ments, where advanced pose estimation methods have made progress, but there remains

a need for techniques that can adapt to the unpredictability of real-world scenarios.

Enhancing object detection and recognition requires not only robust algorithms capable

of maintaining consistency but also the ability to handle sudden changes in movement

and appearance, which are common in dynamic sports environments. Traditional object

detection methods, despite advancements, often fail under these challenging conditions,

necessitating more sophisticated approaches that incorporate contextual and temporal

information. Developing efficient computational methods is critical, as real-time pro-

cessing is essential for practical applications. The high computational demands of deep

learning algorithms pose challenges, especially in resource-constrained environments

like on-field sports assessments. Innovations in hardware and algorithmic efficiency, such

as memristor-based networks, offer promising solutions by reducing energy consumption

and accelerating computation. For example, basketball skill assessments require precise

tracking and recognition of players and equipment in real-world conditions. Expanding

these methodologies to practical scenarios and designing adaptive algorithms to address

these challenges is imperative. Future research must focus on these areas to build more

reliable, efficient, and adaptable intelligent sports examination systems that can operate

effectively in diverse and dynamic environments.

This research aims to provide comprehensive solutions to these challenges. The

integration of STGNP for keypoint prediction addresses occlusions; advanced object

detection algorithms enhance tracking accuracy, and the use of memristor-based net-

works improves computational efficiency. The remainder of this paper is structured as

follows: Chapter 3 focuses on challenge 1, Chapter 4 offers solutions to challenge 2,
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and Chapter 5 tackles challenge 3. Chapter 6 further explores the practical application

of these methods in basketball skill assessments, highlighting their effectiveness and

robustness in real-world scenarios.

In conclusion, this study offers innovative approaches to dealing with key challenges

in sports examinations, including keypoint prediction, object tracking, and computational

efficiency. By addressing these issues, we improve the reliability and effectiveness of

intelligent sports analysis systems, setting the stage for further advancements in the

domain.

1.2 Research Questions and Objectives

1.2.1 Research Questions

The intelligent sports examination system for basketball skill assessments faces numer-

ous challenges due to the complexity and unpredictability of the real testing environment.

Traditional methods for human pose estimation, object tracking, and Re-ID often fall

short in such dynamic settings. This study aims to address these challenges by proposing

innovative approaches to improve the accuracy and efficiency of these tasks. Specifically,

this research focuses on the following research questions:

RESEARCH QUESTION 1 (RQ1): How to improve the robustness and accuracy of

human pose estimation?

Human pose estimation is crucial for understanding players’ movements and biome-

chanics. However, traditional methods face significant challenges due to occlusions,

varying lighting conditions, and rapid movements. Despite advancements made by meth-

ods such as AlphaPose, MMPose, and OpenPose in improving pose estimation accuracy,

issues persist in real-world scenarios with limited computational resources. In dynamic
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sports environments, occlusions are common and can significantly degrade the accuracy

and reliability of keypoint predictions. These occlusions can result from players moving

in close proximity, interactions with equipment, or rapid changes in body orientation.

Additionally, while current deep learning models perform well, their application in

resource-constrained settings is limited. Small models often fail to achieve the necessary

accuracy, impacting downstream tasks, while large models consume excessive resources,

making practical applications challenging. There is a need to develop methods that can

robustly handle occlusions and provide precise keypoint predictions, even in limited

resource settings, to ensure accurate analysis of players’ movements. Such advancements

are essential to enhance the overall understanding of biomechanics and improve the

fairness and reliability of sports examinations.

RESEARCH QUESTION 2 (RQ2): How to enhance object tracking accuracy amidst

frequent occlusions and complex interactions in real basketball examinations?

Object tracking is essential for monitoring the use of examination equipment, such

as basketballs and cones, during basketball skill assessments. Traditional methods

often struggle with occlusions and the presence of multiple identical objects, making

it difficult to maintain consistency and precision amidst frequent and unpredictable

movements. In real-world examination scenarios, occlusions can occur frequently as

players move in close proximity to each other or interact with equipment. The presence

of multiple identical props, such as basketballs, adds another layer of complexity to the

tracking process. Traditional Re-ID techniques may fail to correctly track and identify

these objects due to occlusions, brief disappearances from view, and the dynamic nature

of sports activities. Rapid changes in position and interactions further complicate the

tracking process. Addressing these challenges is crucial to improve the accuracy and

robustness of object tracking in complex and dynamic sports environments, ensuring

reliable data collection and analysis for performance evaluation.
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RESEARCH QUESTION 3 (RQ3): How to develop efficient computational methods

suitable for real-time applications in resource-constrained settings?

Real-world sports examinations require significant computational resources due to

the intensive demands of deep learning algorithms. Although current methods provide

accurate results, they often lack the efficiency needed for real-time applications, particu-

larly in environments with limited computational capacity. The challenge is to maintain

high performance and accuracy in human motion recognition while drastically reducing

computational demands and ensuring rapid inference times. This requires developing

innovative computational techniques that can operate effectively in resource-constrained

settings without sacrificing the accuracy and reliability of the examination system. Bal-

ancing the computational load with the necessity for real-time processing is crucial

for practical deployment, especially in field conditions where processing power and en-

ergy resources may be limited. Efficient algorithms must be designed to navigate these

constraints while delivering dependable performance for accurate and timely sports

assessments.

RESEARCH QUESTION 4 (RQ4): How to ensure the practical applicability and

scalability of proposed methods in real-world sports examination scenarios?

While several methodologies address key challenges in sports examinations, their

practical application and scalability in real-world conditions remain under-explored. En-

suring that these methods can be effectively applied in practical scenarios and adapt to

various sports environments is crucial. This research aims to investigate the implementa-

tion and scalability of proposed methods, assessing their performance and robustness in

real-world basketball skill assessments and their adaptability to different sports settings.

Identifying potential barriers and requirements for practical deployment is essential

for translating theoretical advancements into usable and reliable sports examination

systems. This includes understanding the variability in examination conditions, the
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diversity of sports disciplines, and the logistical aspects of deploying these systems at

scale. Ensuring scalability involves not only technical robustness but also considerations

of cost, ease of use, and integration with existing sports examination frameworks.

1.2.2 Research Objectives

To answer these research questions, we set up the corresponding Research Objectives

(RO) as follows:

RESEARCH OBJECTIVE 1 (RO1): To enhance the robustness of human pose

estimation in dynamic sports environments using STGNP. (Aims to answer RQ1)

Traditional methods for human pose estimation face significant challenges due

to occlusions, varying lighting conditions, and rapid movements in dynamic sports

environments. While many deep learning methods, such as AlphaPose and OpenPose,

have shown strong performance, their effectiveness varies with model size, and real-

world scenarios often have limited computational resources. Smaller models may lead

to inaccurate keypoint predictions, affecting overall performance. This research aims to

improve the robustness of human pose estimation by leveraging STGNP. Our approach

builds upon existing methods like AlphaPose and OpenPose by first identifying and

removing anomalous jittery keypoints. Subsequently, STGNP is employed to supplement

the missing keypoints. Inspired by the application of STGNP in weather monitoring-

where it predicts missing data from certain locations using information from surrounding

weather stations-we apply a similar approach to human skeleton keypoint completion.

STGNP effectively handles occluded keypoints by robustly inferring and supplementing

them, providing precise uncertainty estimates. Additionally, it corrects anomalies in

predicted keypoints, such as sudden coordinate changes, ensuring more accurate and

reliable pose estimations. This approach will significantly enhance the reliability of pose

estimations, which is crucial for understanding players’ movements and biomechanics
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in dynamic sports environments. By addressing the issues of occlusions and erroneous

keypoint predictions, this research aims to provide a robust solution for accurate player

movement analysis.

RESEARCH OBJECTIVE 2 (RO2): To develop advanced object tracking algorithms

that incorporate positional information to enhance object tracking accuracy amidst fre-

quent occlusions and complex interactions. (Aims to answer RQ2)

In sports examinations, traditional object tracking methods often struggle with occlu-

sions and the presence of multiple identical objects, such as basketballs. In real-world

examination scenarios, the use of examination equipment is necessary. For example, in

basketball skill assessments, candidates need to use props like basketballs and cones.

Traditional object tracking techniques face significant challenges in these complex exam-

ination environments, which may include multiple identical props or situations where

the props are occluded or briefly disappear from view, leading to incorrect tracking and

unreliable detection results. This research proposes integrating positional information

of candidates into object tracking algorithms to improve accuracy and robustness. By

incorporating the spatial context of candidates, the system can correct tracking errors,

ensuring precise tracking even in challenging conditions. Building upon the method

proposed in Yan et al. (2021), we enhance object tracking by including the candidate’s

positional information, enabling the system to correctly identify and track the rele-

vant examination props throughout the entire examination process. This integration

significantly improves the reliability of player and equipment tracking, ensuring accu-

rate and robust analysis of sports examinations despite the complexities of real-world

environments.

RESEARCH OBJECTIVE 3 (RO3): To develop a novel method for efficient computa-

tional processing in real-time applications using Lie Algebra and Memristor-Augmented

LSTM and CNN. (Aims to answer RQ3)
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Real-world sports examinations demand substantial computational resources due to

the high load of deep learning algorithms. This research proposes a novel method that

enhances skeleton-based human motion recognition using Lie Algebra and Memristor-

Augmented LSTM and CNN. Lately, as a subset of human-centric studies, vision-oriented

human action recognition has emerged as a pivotal research area, given its broad ap-

plicability in fields like healthcare, video surveillance, autonomous driving, sports, and

education. This brief applies Lie algebra and standard bone length data to represent hu-

man skeleton data. A multi-layer LSTM recurrent neural network and CNN are applied

for human motion recognition, capturing complex motion patterns with high accuracy.

Finally, the trained network weights are converted into a crossbar-based memristor

circuit, which can accelerate the network inference, reduce energy consumption, and

obtain excellent computing performance. By embedding trained network weights into a

memristor-based structure, this approach aims to achieve faster inference and reduced

computational requirements, making it highly suitable for real-time applications. This

innovation addresses the challenge of maintaining high performance and accuracy of

human motion recognition while operating efficiently in resource-constrained settings,

ensuring reliable and timely sports examinations.

RESEARCH OBJECTIVE 4 (RO4): To develop a modular and scalable video-based

intelligent sports examination system, ensuring practical applicability and adaptability

across various sports and dynamic environments. (Aims to answer RQ4)

While several methods address key challenges in sports examinations, their practical

application and scalability in real-world conditions remain under-explored. This research

aims to develop a comprehensive, modular, video-based intelligent sports examination

system, using basketball skill assessments as a primary example. The proposed system

will integrate all previously mentioned technologies, ensuring robust keypoint prediction,

accurate object tracking, and efficient computational processing. Video is chosen as the
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primary medium due to its ease of acquisition and deployment, making it a practical so-

lution for diverse settings. Evaluating the system’s performance in real-world basketball

skill assessments will provide insights into its effectiveness and robustness. Additionally,

the system will be designed for scalability and adaptability, facilitating its application

to different sports and dynamic environments. This includes investigating the system’s

adaptability to various examination conditions, sports disciplines, and environmental

challenges. By designing an adaptive framework, the research seeks to ensure that the

intelligent sports examination system can handle similar challenges in different contexts,

broadening its scope and impact. The objective encompasses both technical robustness

and practical deployment aspects, considering cost, ease of use, and integration with

existing sports examination frameworks to ensure the system’s real-world applicability

and scalability.

1.3 Research Contributions

This thesis is dedicated to providing a thorough examination of the obstacles encountered

while devising an intelligent sports analysis system for evaluating basketball skills. It

introduces novel methods aimed at enhancing the precision and speed of keypoint

prediction, object tracking, and computational tasks within dynamic and multifaceted

sports settings. The key contributions of this research are succinctly outlined as follows:

Enhanced Robustness of Human Pose Estimation

• Integration of STGNP with AlphaPose and OpenPose to improve the robustness of

keypoint prediction.

• Effective handling of occluded keypoints by robustly inferring and supplementing

them, providing precise uncertainty estimates.
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• Correction of anomalies in predicted keypoints, such as sudden coordinate changes,

ensuring more accurate and reliable pose estimations.

• Enhanced reliability of pose estimations, crucial for understanding players’ move-

ments and biomechanics in dynamic sports environments.

Advanced Object Tracking Algorithms

• Development of advanced object tracking algorithms that incorporate positional

information of candidates.

• Integration of the spatial context of candidates to correct tracking errors and

ensure precise tracking.

• Inclusion of candidate’s positional information to accurately identify and track

examination props, ensuring reliable object tracking amidst frequent occlusions

and complex interactions.

• Significant improvement in the reliability of player and equipment tracking, ensur-

ing robust analysis in complex and dynamic sports environments.

Efficient Computational Processing

• Proposal of a novel method using Lie Algebra and Memristor-Augmented LSTM

and CNN for efficient computational processing.

• Reducing the computational load of representing human skeleton data through the

use of Lie algebra and standard bone length data.

• Utilization of multi-layer LSTM recurrent neural networks and CNNs for human

motion recognition, capturing complex motion patterns with high accuracy.
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• Conversion of trained network weights into a crossbar-based memristor circuit to

accelerate network inference and reduce energy consumption.

• Achievement of faster inference and reduced computational requirements, making

the approach highly suitable for real-time applications.

Modular and Scalable Video-Based Intelligent Sports Examination System

• Development of a comprehensive modular intelligent sports examination system,

using basketball skill assessments as a primary example.

• Integration of robust keypoint prediction, accurate object tracking, and efficient

computational processing technologies.

• Evaluation of the system’s performance in real-world basketball skill assessments

to provide insights into its effectiveness and robustness.

• Design of the system for scalability and adaptability, facilitating its application to

different sports and dynamic environments.

• Investigation of the system’s adaptability to various examination conditions, sports

disciplines, and environmental challenges.

• Consideration of cost, ease of use, and integration with existing sports examination

frameworks to ensure real-world applicability and scalability.

Adaptability to Various Sports and Environments

• Investigation of the proposed methodologies for their potential adaptability to

different sports and dynamic environments.

• Design of adaptive frameworks to ensure the intelligent sports examination system

can handle similar challenges in different contexts.
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• Demonstration of the versatility and robustness of the proposed solutions in diverse

real-world scenarios.

• Ensuring accurate and reliable assessments across a wide range of sports and

dynamic environments.

1.4 Research Significance

The theoretical and practical significance of this thesis is summarized as follows:

Theoretical Significance: This research provides a comprehensive and standard-

ized definition of the challenges faced in intelligent sports examination systems, particu-

larly in dynamic sports environments. It develops innovative methods to enhance human

pose estimation, object tracking, and computational processing, addressing significant

gaps in existing literature. By integrating STGNP with methods like AlphaPose and

OpenPose, the study offers a robust solution for handling occluded keypoints, enriching

the theoretical understanding of pose estimation. The incorporation of positional informa-

tion into object tracking algorithms advances the understanding of tracking in complex

scenarios, offering new insights into maintaining accuracy amidst frequent occlusions

and identical objects. Additionally, the use of Lie Algebra and Memristor-Augmented

LSTM and CNN for efficient computational processing introduces a novel approach to

real-time applications in resource-constrained settings, contributing to the theoretical

development of energy-efficient deep learning models. This research also sets a founda-

tion for the scalability and adaptability of intelligent examination systems, ensuring

their applicability across various sports disciplines and environmental conditions.

Practical Significance: The findings of this thesis hold significant practical im-

plications for real-world sports examination scenarios. By developing a modular and

scalable video-based intelligent sports examination system, the study provides a com-
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prehensive solution that integrates robust keypoint prediction, accurate object tracking,

and efficient computational processing. The proposed system is rigorously validated

through real-world basketball skill assessments, demonstrating its effectiveness and

robustness in practical settings. The advanced object tracking algorithms and efficient

computational methods ensure precise tracking and rapid inference, addressing critical

challenges in dynamic sports environments. The adaptability of the system to various

sports disciplines and conditions underscores its practical relevance, offering a reliable

tool for performance evaluation and skill assessment in diverse sports contexts. Moreover,

this research lays the groundwork for the broader application of these methodologies,

extending their benefits to other sports and dynamic environments. The study’s contribu-

tions are pivotal in advancing the practical deployment of intelligent sports examination

systems, ensuring accurate and reliable assessments that enhance the fairness and

effectiveness of sports evaluations.

1.5 Thesis Structure

The structure of the thesis is shown in Figure 1.2 and the chapters are organized as

follows:

• CHAPTER 2: This chapter presents a comprehensive literature review pertinent

to this research. It introduces fundamental concepts and methodologies in human

skeleton keypoint recognition, object detection, and Re-ID. It also covers memristor

technology and its applications, along with a review of artificial intelligence in

sports, highlighting relevant advancements and challenges. The review provides a

foundation for understanding the current state of the art and identifies gaps that

this research aims to address.

• CHAPTER 3: This chapter tackles the research objective of enhancing the robust-
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ness of keypoint prediction in dynamic sports environments (RO1). It proposes

integrating STGNP with AlphaPose to improve keypoint prediction accuracy by

handling occlusions and correcting anomalies in predicted keypoints. Experimental

results demonstrate the effectiveness of this approach in dynamic sports settings,

addressing RQ1. The chapter details the methodology, implementation, and evalu-

ation of STGNP, showcasing its impact on keypoint prediction robustness.

• CHAPTER 4: This chapter focuses on developing advanced object detection and

tracking algorithms that incorporate positional information to enhance tracking

accuracy amidst frequent occlusions and complex interactions (RO2). By integrating

the spatial and temporal context of candidates and incorporating body information,

the proposed algorithms ensure precise tracking of examination props. The chapter

discusses challenges of traditional object detection and Re-ID methods and how the

proposed approach overcomes these issues, addressing RQ2. It includes a detailed

analysis of the algorithm’s performance in real-world sports environments.

• CHAPTER 5: This chapter discusses the development of efficient computational

methods suitable for applications using Lie Algebra and Memristor-Augmented

LSTM and CNN (RO3). It presents a novel approach to enhance skeleton-based

human motion recognition, achieving faster inference and reduced computational

requirements, which is crucial for resource-constrained settings. The chapter elabo-

rates on the theoretical underpinnings of Lie Algebra, the design of the memristor-

based structure, and the integration with LSTM and CNN, addressing RQ3. Ex-

perimental validation and performance metrics are provided to demonstrate the

efficacy of the proposed method.

• CHAPTER 6: This chapter aims to develop a modular and scalable intelligent

sports examination system, ensuring practical applicability and adaptability across

various sports and dynamic environments (RO4). It integrates robust human
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pose estimation, accurate object tracking, and efficient computational processing

into a comprehensive system. The system’s performance is evaluated in real-

world basketball skill assessments, providing insights into its effectiveness and

robustness. The chapter discusses the design principles, modular architecture, and

scalability features of the system, addressing RQ4. It also includes case studies

and real-world application scenarios to highlight the system’s versatility.

• CHAPTER 7: This chapter summarizes the findings of this thesis and suggests

directions for future work. It consolidates the research contributions, discusses the

implications of the results, and identifies potential areas for further exploration

and development in the field of intelligent sports examination systems. The chapter

emphasizes the significance of the research and outlines the steps needed to

advance the current state of the art.

18



Figure 1.2: Thesis Structure.





C
H

A
P

T
E

R

2
LITERATURE REVIEW

This chapter provides a detailed survey of the literature relevant to this research. As

shown in Figure 2.1 and Table 2.1, Section 2.1 examines human pose estimation, covering

its core concepts, methodologies, and recent advancements. Section 2.2 investigates

object detection techniques, addressing challenges like occlusions and the presence of

multiple identical objects. In Section 2.3, Re-ID techniques are analyzed, focusing on their

principles and applications. Section 2.4 discusses the potential of memristor-based neural

networks for enhancing computational efficiency. Finally, Section 2.5 reviews related

research, focusing on the application of these technologies in sports and considering their

broader impact and future potential.

2.1 Human Pose Estimation

Human pose estimation (HPE) plays a vital role in the field of computer vision, vital for

applications such as activity recognition and human-computer interaction. In the context

of intelligent examination systems, particularly in sports, accurate HPE is essential for

assessing and analyzing performance. This section provides a comprehensive exploration
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Figure 2.1: Overview of literature review.

of HPE, starting with fundamental concepts and terminologies, followed by an overview

of the methodologies employed in this field, and concluding with recent advancements

that have significantly propelled this research area forward.

2.1.1 Fundamental Concepts

HPE aims to locate and represent human body parts, constructing a detailed human

body representation (e.g., body skeleton) from input data such as images and videos Cao

et al. (2017). This task is foundational in computer vision, providing crucial geometric

and motion information about the human body that is applied across various domains,

including human-computer interaction, motion analysis, augmented reality (AR), and

virtual reality (VR) Pavlakos et al. (2017). The primary objective of HPE is to accurately

estimate the spatial configuration of human body parts from sensor data, particularly

images and videos Newell et al. (2016). Recent advancements in HPE have been signif-

icantly driven by the development of deep learning-based solutions Sun et al. (2019).
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Category Description

Human Pose Estimation Used for analyzing player movements and
biomechanics in basketball skill assess-
ments. Advanced models like STGNP, Al-
phaPose, and OpenPose enhance accuracy
by handling occlusions and rapid motion,
improving keypoint estimation reliability.

Object Detection Identifies and tracks key elements such
as basketballs, hoops, cones, and players.
YOLOv8 ensures real-time, high-precision
detection, with candidate position integra-
tion improving robustness against occlu-
sions and interactions.

Re-Identification (Re-ID) Ensures consistent tracking of identical
objects (e.g., basketballs, cones) across
frames and views. Techniques like Byte-
Track and BoT-SORT reduce identity mis-
matches and enhance object continuity in
dynamic scenarios.

Memristor-Based Neural Networks Enhances computational efficiency by
leveraging Lie Algebra and Memristor-
Augmented LSTM/CNN. This reduces en-
ergy consumption and accelerates infer-
ence, making real-time sports analysis
feasible in resource-limited settings.

Others (Applications of AI in Sports) Highlights AI’s role in modern sports ana-
lytics, optimizing skill assessments, train-
ing feedback, and decision-making. Ad-
vances in pose estimation, object detec-
tion, and computation improve fairness
and efficiency in sports examinations.

Table 2.1: Hierarchical Relationships Among Literature Review Components in the
Intelligent Sports Analysis System.

These approaches have demonstrated superior performance in both 2D and 3D pose

estimation Xiao et al. (2018). Despite these advancements, challenges such as occlusion,

depth ambiguities, and insufficient training data remain Mehta et al. (2017); Zhou et al.

(2018). The adoption of deep learning methods has transitioned the emphasis from
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manually engineered features and graphical models to approaches that are more reliant

on data, utilizing extensive datasets and sophisticated neural network frameworks to

enhance both precision and resilience.

Deep learning frameworks have introduced significant improvements in HPE, setting

new benchmarks. Early methods, constrained by their limited ability to generalize, have

given way to techniques utilizing CNNs and recurrent neural networks (RNNs), which

have proven pivotal in enhancing performance. Zheng et al. provide a comprehensive

review, systematically analyzing and comparing over 260 research papers, highlighting

significant strides made in the field Zheng et al. (2023). Transformer-based architectures,

with their self-attention mechanisms, have shown promise in capturing long-range de-

pendencies and contextual information, thus improving robustness against occlusions

and complex interactions Li et al. (2021); Xu et al. (2022). Researchers have also explored

auxiliary information, such as depth data and multi-view imagery, to enhance accuracy.

Multi-task learning, which optimizes for pose estimation and related tasks simulta-

neously, has been employed to leverage shared representations and improve overall

performance Papandreou et al. (2017); Yang et al. (2020). Additionally, innovative data

augmentation techniques and enhanced loss functions have been developed to address

persistent challenges in the field. These advancements demonstrate the continuous

evolution and potential of HPE technologies in addressing complex real-world scenarios.

2.1.2 Methodologies

Human pose estimation methodologies have undergone significant advancements in

recent years, primarily driven by deep learning techniques. CNNs form the foundation of

many HPE models, learning hierarchical features directly from large datasets to capture

the complex patterns of human body parts in images effectively. Models like Simple

Baselines Xiao et al. (2018) employ CNNs to refine pose estimates through upsampling
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layers, while heatmap regression techniques, as seen in Stacked Hourglass Networks

Newell et al. (2016), predict heatmaps for each keypoint, representing the likelihood of a

keypoint’s presence at each pixel location.

Graph Neural Networks (GNNs) have also contributed significantly by modeling

spatial relationships between body parts. Representing the human body as a graph, with

nodes corresponding to keypoints and edges representing spatial relationships, GNNs

can capture dependencies and improve pose estimation accuracy. For example, methods

like VNect Mehta et al. (2017) and MonoCap Zhou et al. (2018) extend 2D pose estimation

to 3D by predicting the depth of each keypoint from monocular images or video sequences,

providing a comprehensive understanding of human poses in three-dimensional space.

Recent methodologies encompass multi-person pose estimation, temporal models, and

self-supervised learning techniques. Multi-person pose estimation, tackled by techniques

such as OpenPose Cao et al. (2017) and HRNet Sun et al. (2019), involves estimating poses

for multiple people in an image using bottom-up and top-down approaches. Temporal

models, including RNNs and LSTM networks, capture motion information across frames

in video-based pose estimation, enhancing the consistency and accuracy of pose estimates

over time. Addressing the challenge of limited labeled data, self-supervised and semi-

supervised learning methods leverage unlabeled data to pre-train models or use a

combination of labeled and unlabeled data during training to improve performance.

Transformer-based architectures have also emerged as powerful tools in HPE, captur-

ing long-range dependencies and contextual information. Models like ViTPose leverage

the attention mechanisms in transformers to improve robustness against occlusions

and complex interactions Xu et al. (2022). Additionally, multi-task learning approaches

optimize for pose estimation and related tasks simultaneously, leveraging shared repre-

sentations to enhance overall performance Yang et al. (2020).

Evaluation metrics for human pose estimation include Percentage of Correct Key-
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points (PCK), Average Precision (AP), and Mean Squared Error (MSE), which assess

the accuracy and performance of these methodologies in different contexts. These ad-

vancements collectively demonstrate the continuous evolution and potential of HPE

technologies in addressing complex real-world scenarios.

2.1.3 Recent Advancements

Recent advancements in HPE have been significantly influenced by the development of

deep learning techniques. These advancements have enabled substantial improvements

in both 2D and 3D pose estimation accuracy and robustness. Deep learning methods

have effectively addressed many challenges, such as occlusion, depth ambiguities, and

insufficient training data, which have traditionally hindered HPE performance.

One of the significant advancements is the use of CNNs for learning hierarchical

features from large datasets. Models like Simple Baselines Xiao et al. (2018) and Stacked

Hourglass Networks Newell et al. (2016) utilize CNNs to refine pose estimates through

upsampling layers and heatmap regression, respectively. These models predict heatmaps

for each keypoint, representing the likelihood of a keypoint’s presence at each pixel

location. This approach has proven effective in capturing complex patterns of human

body parts in images.

GNNs have also made a notable impact by modeling the spatial relationships between

body parts. By representing the human body as a graph, with nodes corresponding to

keypoints and edges representing spatial relationships, GNNs can capture dependencies

and improve pose estimation accuracy. Methods like VNect Mehta et al. (2017) and

MonoCap Zhou et al. (2018) extend 2D pose estimation to 3D by predicting the depth of

each keypoint from monocular images or video sequences, providing a comprehensive

understanding of human poses in three-dimensional space.

Transformer-based architectures have emerged as powerful tools in HPE, capturing

26



2.1. HUMAN POSE ESTIMATION

long-range dependencies and contextual information. Models like ViTPose Xu et al. (2022)

leverage the attention mechanisms in transformers to improve robustness against occlu-

sions and complex interactions. Additionally, multi-task learning approaches optimize

for pose estimation and related tasks simultaneously, leveraging shared representations

to enhance overall performance Yang et al. (2020).

In recent years, methodologies for multi-person pose estimation, temporal models, and

self-supervised learning techniques have also advanced. Multi-person pose estimation,

tackled by techniques such as OpenPose Cao et al. (2017) and HRNet Sun et al. (2019),

involves estimating poses for multiple people in an image using bottom-up and top-down

approaches. Temporal models, including RNNs and LSTM networks, capture motion

information across frames in video-based pose estimation, enhancing the consistency

and accuracy of pose estimates over time. To address the challenge of limited labeled

data, self-supervised and semi-supervised learning methods leverage unlabeled data to

pre-train models or use a combination of labeled and unlabeled data during training to

improve performance.

These recent advancements collectively demonstrate the continuous evolution and

potential of HPE technologies in addressing complex real-world scenarios, paving the

way for more accurate and reliable human pose estimation systems.

2.1.4 Specific Models in Human Pose Estimation

AlphaPose, MMPose, and OpenPose are three notable frameworks that have signifi-

cantly advanced the field of HPE, especially in practical applications:

- AlphaPose is renowned for its high precision and efficiency in real-time human

pose estimation. It employs a top-down approach, where a person detector first identifies

human bounding boxes, followed by a single-person pose estimator that detects keypoints

within each bounding box. AlphaPose is widely used in applications such as sports
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analytics and video surveillance due to its accuracy and robustness.

- MMPose, part of the OpenMMLab project, provides a comprehensive toolbox for

pose estimation. It provides a wide range of advanced models and comprehensive tools

for training, evaluating, and deploying HPE models. MMPose is designed for flexibility

and extensibility, making it suitable for both research and industrial applications. Its

modular design allows easy integration and customization, catering to a wide range of

pose estimation tasks.

- OpenPose is one of the most popular open-source frameworks for multi-person

pose estimation. It utilizes a bottom-up approach, where keypoints for all individuals in

an image are detected simultaneously, followed by a part affinity field to associate the

detected keypoints with individual persons. OpenPose is extensively used in applications

ranging from entertainment to healthcare due to its robustness, versatility, and ability

to handle complex multi-person scenarios.

These models collectively push the boundaries of human pose estimation technology,

enhancing its accuracy, efficiency, and applicability across various domains. Their devel-

opment and widespread use demonstrate the practical potential of HPE in real-world

applications.

2.2 Object Detection

2.2.1 Fundamental Concepts

Object detection, a fundamental task in computer vision, involves the concurrent classifi-

cation and localization of objects within images or video streams. Essential components

of object detection include bounding box regression, which delineates the object’s extent,

and confidence scores, reflecting the probability that a given bounding box contains an
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object of interest. The Intersection over Union (IoU) metric is pivotal in evaluating detec-

tion performance, measuring the overlap between predicted and ground truth bounding

boxes Zou et al. (2023). Recent advancements have focused on improving the accuracy

and robustness of bounding box regression. For instance, Guo et al. Guo et al. (2023)

proposed the Balanced Corner-IoU (BC-IoU) loss and Point Offset Module (POM) branch

in the Scale Adaptive Network (SAN), enhancing small object detection performance.

Another approach unifies classification and bounding box regression heads to achieve

better overall precision, as demonstrated by Gao et al. Gao et al. (2022).

The limitations of traditional IoU metrics have also been addressed by introducing

generalized versions. Rezatofighi et al. Rezatofighi et al. (2019) presented the Generalized

IoU (GIoU) to optimize non-overlapping bounding boxes, while Wen et al. Wen et al. (2022)

proposed the Adaptive IoU (AIoU) method, which improves localization performance.

Moreover, specialized IoU-based loss functions have been developed to enhance detection

in specific contexts. For example, Cai et al. Cai et al. (2023) introduced the Corner-

point and Foreground-area IoU loss (CFIoU) for small object detection, and Wang et al.

Wang and Song (2021) proposed the Improved Loss based on Complete IoU (ICIoU) to

improve bounding box regression accuracy. The continual evolution of object detection

methodologies reflects the dynamic nature of this field, marking significant milestones

in both accuracy and efficiency.

2.2.2 Techniques

The evolution of object detection techniques has transitioned from traditional methodolo-

gies to advanced deep learning paradigms, each contributing significantly to the field’s

progression.
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2.2.2.1 Traditional Methods

Initial methods primarily utilized exhaustive search strategies like sliding windows

combined with handcrafted feature descriptors such as Histogram of Oriented Gradients

(HOG) Dalal and Triggs (2005). These features were then classified using machine learn-

ing algorithms, most notably Support Vector Machines (SVM) Cortes and Vapnik (1995).

Despite their innovation, these approaches encountered limitations in computational

efficiency and robustness across varying object scales and poses. The Deformable Parts

Model (DPM) Felzenszwalb et al. (2008) enhanced detection by modeling objects as a

collection of parts, but still faced challenges with computational demands and real-time

application viability.

2.2.2.2 Deep Learning-based Methods

The advent of deep learning has revolutionized object detection, primarily through CNNs.

Significant advancements include:

• R-CNN Family: Starting with R-CNN Girshick et al. (2014), which employs

selective search for region proposals followed by CNN-based feature extraction and

classification. Fast R-CNN Girshick (2015) enhanced efficiency by combining region

proposal generation and feature extraction within a unified network. Building on

this, Faster R-CNN Ren et al. (2015) further optimized the process by incorporating

a Region Proposal Network (RPN), making it more suitable for real-time tasks.

Mask R-CNN He et al. (2017) extended Faster R-CNN by adding a parallel branch

for predicting segmentation masks, facilitating instance segmentation.

• Single-Shot Detectors: Approaches like You Only Look Once (YOLO) Redmon

et al. (2016) and Single Shot MultiBox Detector (SSD) Liu et al. (2016b) eliminate

region proposals, opting for direct object localization and classification in a single
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forward pass. YOLO’s unified architecture provides real-time detection capabilities,

while SSD improves this with multi-scale feature maps for enhanced detection of

objects at various scales.

• Feature Pyramid Networks (FPN): Proposed by Lin et al. (2017), FPNs employ

a top-down architecture with lateral connections to create high-level semantic

feature maps at multiple scales, significantly improving the detection of objects of

various sizes.

• Anchor-Free Methods: Recent advancements, such as CenterNet Zhou et al.

(2019) and FCOS Tian et al. (1904), have introduced anchor-free methods that forgo

predefined anchor boxes, instead focusing on direct prediction of object centers and

related attributes. This approach reduces computational complexity and enhances

detection performance.

• Transformers in Object Detection: Vision Transformers (ViTs) Dosovitskiy et al.

(2020) and Detection Transformers (DETR) Carion et al. (2020) have introduced

a paradigm shift by leveraging self-attention mechanisms for object detection,

achieving state-of-the-art performance without the need for region proposals or

anchor boxes.

Overall, these deep learning-based methods have significantly advanced object de-

tection by enhancing accuracy, robustness, and real-time performance. The continuous

evolution in model architectures and training techniques promises even greater capabili-

ties in the future.

2.2.3 Addressing Challenges

Despite significant advancements, object detection continues to face numerous challenges

that require ongoing research and innovation.
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2.2.3.1 Occlusions

Occlusions remain a substantial challenge, often resulting in partial visibility of objects

and degrading detection performance. To address this, advanced strategies such as

multi-scale feature fusion, which integrates information across different levels of the

network, have been developed Saleh et al. (2021). These strategies enhance the ability

to detect partially visible objects by improving the network’s overall representation.

Additionally, attention mechanisms dynamically focus on the most relevant parts of

the image, selectively enhancing the representation of visible object parts. Techniques

such as Boundary-Aware Convolutional Networks (BACNs), which emphasize boundary

information through global feature fusion, have also been proposed to improve the

accuracy of occluded object detection.

2.2.3.2 Small Object Detection

Detecting small objects is inherently difficult due to their minimal pixel representation

and the high likelihood of being overshadowed by larger objects or background noise.

Effective techniques to address this challenge include constructing multi-resolution

feature pyramids that preserve fine-grained details and enhancing context information to

provide additional cues about the presence of small objects Li et al. (2020b). For instance,

models like YOLO-ACN, which incorporate attention mechanisms and advanced loss

functions such as Complete Intersection over Union (CIoU), significantly improve the

detection accuracy of small and occluded objects. Moreover, integrating super-resolution

techniques with dynamic feature fusion has shown promise in enhancing detection

capabilities for small objects by effectively increasing the resolution and clarity of the

target objects Noh et al. (2019).
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2.2.3.3 Multiscale Object Detection

Object detection across multiple scales presents a complex challenge due to the varying

sizes of objects within a single image. Techniques such as FPNs utilize a top-down archi-

tecture with lateral connections to build high-level semantic feature maps at multiple

scales Lin et al. (2017). This approach significantly improves the detection of objects

of different sizes, ensuring that small objects are detected with high accuracy without

compromising the detection of larger objects.

2.2.3.4 Illumination Variations and Background Interference

Variations in lighting and complex backgrounds introduce significant noise, complicating

the detection process. Advanced data augmentation techniques, including random crop-

ping, color jittering, and illumination adjustments, enhance the robustness of models

against these variations. Furthermore, robust feature extraction methods that can dif-

ferentiate between objects and background noise, coupled with models like BACNs that

integrate global context, significantly improve the ability to accurately detect objects in

challenging lighting and background conditions Fan et al. (2024).

2.2.3.5 Data Annotation and Model Generality

The acquisition and quality of labeled data are crucial for the performance of deep

learning models, yet labeling data is typically expensive and time-consuming. To mitigate

this, semi-supervised and unsupervised learning approaches, which utilize a combination

of labeled and unlabeled data, are being developed to improve model training efficiency

Li et al. (2024). These methods reduce the dependency on extensive labeled datasets.

Additionally, achieving both generality and real-time capabilities in object detection

systems is challenging. Domain adaptation techniques are essential for enhancing the

versatility and applicability of object detection models across various application domains,
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allowing models trained on one dataset to generalize to different domains.

In summary, ongoing research and innovation in multi-scale feature fusion, attention

mechanisms, advanced loss functions, and robust data augmentation techniques continue

to address these challenges, pushing the boundaries of object detection performance.

2.3 Re-ID Techniques

2.3.1 Fundamental Concepts

Re-ID involves several fundamental concepts that are crucial for identifying individuals

across different views. One of the key concepts is feature extraction, where distinctive

features are extracted to identify individuals. For example, Liao et al. Liao et al. (2015)

emphasized the significance of local maximal occurrence (LOMO) representation in

this context. Another essential concept is feature matching, which involves matching

features between different views to re-identify individuals. Wang et al. Wang et al.

(2018a) demonstrated how learning discriminative features with multiple granularities

can enhance the effectiveness of feature matching. Additionally, metric learning is a

critical component, focusing on measuring the similarity between extracted features. Li

et al. Li et al. (2018) introduced a harmonious attention network to improve the accuracy

of metric learning.

2.3.2 Methodologies

Re-ID methodologies can be broadly categorized into traditional handcrafted feature-

based approaches and modern deep learning techniques. Traditional approaches rely on

manually designed features such as color histograms and texture descriptors. Farenzena

et al. Farenzena et al. (2010) discuss the symmetry-driven accumulation of local features

as a significant approach in this category. On the other hand, modern approaches leverage
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deep learning techniques, particularly CNNs and Generative Adversarial Networks

(GANs). These methods have shown significant improvements in the robustness and

scalability of Re-ID systems, as evidenced by Zheng et al. Zheng et al. (2019, 2017). Deep

learning-based methods have revolutionized Re-ID by enabling the extraction of more

discriminative and invariant features from images.

2.3.3 Challenges

Re-ID faces several challenges that impact its accuracy and robustness. One of the

primary challenges is occlusion, which occurs when parts of the object of interest are

blocked from view. Techniques to handle occlusions include local feature matching and

attention mechanisms. For instance, Yang et al. Yang et al. (2019) propose a region

attention network to effectively address occlusions. Another significant challenge is

dealing with multiple identical objects, which requires fine-grained feature extraction and

multi-task learning. Sun et al. Sun et al. (2018) emphasize the importance of refined part

pooling for distinguishing between similar appearances. These challenges necessitate

continuous advancements in Re-ID methodologies to ensure reliable performance in

diverse real-world scenarios.

2.4 Memristor-based Neural Networks

2.4.1 Introduction to Memristor Technology

Memristors, short for memory resistors, are passive electronic components that retain a

history of the voltage applied to them, embodying a non-volatile memory function. This

characteristic allows them to emulate synaptic connections in neuromorphic computing

systems, according to Wen et al. Wen et al. (2019). Unlike traditional transistors, which

operate in a binary manner, memristors support analog computation through variable
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resistance values. This capability enhances computational efficiency by enabling com-

plex operations within memory units, minimizing the need for data transfer between

processors and memory, as highlighted by Jo et al. Jo et al. (2009). Furthermore, their

unique properties make memristors a promising component in the development of future

computing architectures, offering potential solutions for the challenges faced in modern

computing systems.

A significant feature of memristors is their ability to be tuned to specific resistance

values by applying a voltage, which changes their conductivity. Remarkably, this change

is retained even when power is turned off. By organizing memristors into a crossbar grid,

numerous neural network computations can be performed in parallel, further leveraging

their unique capabilities in neuromorphic computing architectures, as discussed by Taha

et al. Taha et al. (2013). This parallelism significantly enhances the efficiency and scala-

bility of neural network implementations. Memristors are also crucial for implementing

synapses efficiently in neural networks, allowing for large-scale data processing with

synaptic behaviors similar to human brain neurotransmitters, as highlighted by Secco et

al. Secco et al. (2018). This efficient implementation of synaptic functions is vital for the

development of advanced neuromorphic systems.

2.4.2 Neural Network Integration

The integration of memristor technology into neural networks has led to the develop-

ment of various architectures, including LSTM networks and CNNs Wen et al. (2019).

Memristor-based LSTM networks are particularly effective for temporal data analysis,

capturing long-term dependencies crucial for tasks such as natural language processing

and time series forecasting Liu et al. (2020b). These networks benefit from the inherent

parallelism and low power consumption of memristor crossbars.

A typical LSTM network comprises multiple layers that process data in stages, with
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each layer capturing different aspects of the input sequence, as described by Yakopcic et

al. Yakopcic et al. (2016). Memristors can implement these layers efficiently, leveraging

their ability to perform analog computations and retain state information without

continuous power. Similarly, memristor-based CNNs are well-suited for spatial data

analysis, such as image recognition, where they can perform convolutions and pooling

operations in parallel, significantly accelerating the processing speed, as highlighted by

Huang et al. Huang et al. (2018). Additionally, memristive devices are utilized in various

neural network models, such as spiking, multilayer, and recurrent neural networks,

showcasing their versatility in neuromorphic computing, as demonstrated by Yang et al.

Yang (2014). These capabilities make memristors a key component in the advancement

of efficient and powerful neural network architectures, providing a foundation for future

innovations in the field.

2.4.3 Enhancing Computational Efficiency

One of the primary advantages of memristor-based neural networks is their enhanced

computational efficiency, as noted by Yao et al. Yao et al. (2020). Memristors’ ability to

perform in-memory computing reduces the latency associated with data transfer between

memory and processing units. This reduction in data movement not only speeds up

computation but also lowers energy consumption, making memristor-based systems

particularly attractive for edge computing applications, where power efficiency and quick

data processing are crucial. The inherent parallelism in memristor arrays further boosts

the computational throughput, enabling more complex and larger-scale neural network

models to be implemented efficiently.

In practical implementations, memristor-based neural networks have demonstrated

performance metrics close to those of traditional software-simulated networks. Hasan et

al. Hasan et al. (2017) report that, for instance, in the context of human action recognition,
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the integration of memristor circuits with LSTM and CNN architectures has shown

minimal accuracy loss while significantly improving inference speed and reducing energy

consumption. These improvements highlight the potential of memristor technology to

revolutionize the deployment of deep learning models in real-time applications. The

increased inference speed is especially advantageous for applications that demand quick

decision-making, including autonomous vehicles, robotics, and real-time monitoring

systems.

Furthermore, the use of fuzzy modeling to address device variation in multilevel

memristors enhances the robustness of memristive neural networks. As discussed in

the paper by Cui et al. Cui and Zhang (2019) on memristive synaptic circuits for deep

convolutional neural networks, fuzzy modeling helps in compensating for the variations

in the memristor devices, ensuring consistent performance across different manufactur-

ing batches and operating conditions. This approach not only improves the reliability of

memristor-based systems but also paves the way for their broader adoption in various

practical applications. The advancements in addressing device variation are crucial for

scaling up the production of memristor-based neural networks and integrating them into

existing technological ecosystems.

2.5 Applications of AI in Sports

2.5.1 Overview of AI Applications in Sports

AI, particularly deep learning, has revolutionized sports technology through its ability to

analyze and interpret vast amounts of data with high accuracy. One notable application

is in human pose estimation, where deep learning models like CNNs and RNNs have

been employed to enhance sports performance analysis despite challenges such as

occlusion and crowded scenes Samkari et al. (2023). These models can capture the
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intricate movements of athletes, providing valuable data for performance improvement,

injury prevention, and tactical analysis. Furthermore, AI has significantly impacted

video analysis programs like Coach’s Eye and Dartfish, which assist in skill-based

video capture, provide immediate feedback, and help game officials make informed

decisions Gajendra (2023). These tools utilize AI to break down complex movements into

understandable segments, offering coaches and athletes detailed insights into technique

and form.

2.5.2 Specific Case Studies

TrackNet, a deep learning network, was developed to accurately track high-speed and

tiny objects like a tennis ball in sports videos with impressive precision, recall, and

F1-measure results Huang et al. (2019). This innovation enables more accurate analysis

of player performance and game dynamics, offering deeper insights into aspects like shot

accuracy and ball trajectory. Additionally, the BiGRU recognition model outperformed

other deep learning networks in recognizing sport-related activities using multimodal

wearable sensors, achieving a maximum accuracy of 99.62% Mekruksavanich and Jitpat-

tanakul (2022). These sensors provide real-time data on athletes’ physical conditions,

helping to tailor training programs and prevent injuries. AI has also been employed

in biomechanics for tasks such as evaluating faults in sports movements using Expert

Systems and Artificial Neural Networks (ANNs), with applications in sports like javelin,

discus throwing, shot putting, and football kicking Ratiu et al. (2010). These applications

aid in refining athletes’ techniques, reducing the risk of injury, and enhancing overall

performance.

In another instance, deep learning-based approaches have shown enhancements

in human activity recognition, including in sports technology, as demonstrated by the

improved wolf swarm optimization with deep learning-based movement analysis and

39



CHAPTER 2. LITERATURE REVIEW

self-regulated human activity recognition technique Thanarajan et al. (2023). This tech-

nique allows for more precise monitoring of athletes’ movements, identifying areas for

improvement and optimizing training routines. Moreover, AI applications in sports train-

ing have improved the effectiveness of training activities, providing detailed analysis and

personalized guidance for athletes Xianguo and Cong (2021). By analyzing performance

data, AI can create customized training plans that address individual athletes’ strengths

and weaknesses, leading to more effective and efficient training sessions.

2.5.3 Broader Impact and Future Potential

The potential of deep learning in sports technology extends to enhancing decision-making

processes and performance analysis. For instance, deep reinforcement learning (DRL)

has been applied in sports game design, specifically in the ball return decision of a table

tennis robot, demonstrating higher accuracy rates in returning the ball and practical

applications for IoT fitness and sports technology development Wang et al. (2022b). These

advancements can lead to more intelligent sports equipment and training tools, providing

athletes with immediate, actionable feedback. Furthermore, AI has been utilized in sports

to monitor athletes’ physical conditions, analyze sports data, and provide real-time event

performance analysis, thus enhancing sports precision and maximizing athletes’ physical

function Huang (2022). Real-time analytics can help coaches make strategic decisions

during games, improving the team’s chances of success.

Moreover, the integration of AI in sports not only improves performance and analysis

but also holds promise for future advancements in athlete training and game strategy

optimization Zhao et al. (2023). Future applications may include more sophisticated

predictive models that can simulate game scenarios and suggest optimal strategies.

AI’s application in sports also includes ethical considerations, ensuring fairness and

addressing impacts on stakeholders like players, officials, and administrators Suman
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(2022). As AI continues to integrate into various sectors, it is essential to confront

challenges concerning data privacy, biases in algorithms, and the implications of AI on

the fairness of sports.

2.5.4 Challenges and Future Directions

While the applications of AI in sports are promising, numerous challenges persist. These

include identity mismatches due to similar appearances, motion blur from rapid move-

ment, and occlusions by other players or objects, which pose considerable obstacles Zhao

et al. (2023). The development of algorithms capable of real-time, accurate identification

and tracking under such conditions remains an active field of research. Moreover, the

task of standardizing datasets across different sports is complex, as each sport’s distinct

technical elements and rules complicate the creation of a uniform benchmark for specific

tasks. Establishing standardized, accessible, open-source, high-quality, and extensive

datasets is essential for furthering research and enabling accurate comparisons among

various models and techniques in sports analytics Zhao et al. (2023).

Additionally, the sports sector produces a large volume of detailed data through

sensors and IoT devices. Present data processing techniques mainly target computer

vision and have yet to fully leverage the capabilities of comprehensive deep learning

approaches. To optimize the utilization of these rich data sources, it is imperative to

develop methods that integrate detailed sensor data with visual data Zhao et al. (2023).

This convergence of diverse data streams could foster more thorough and perceptive anal-

yses, significantly advancing sports performance research. Integrating these data types

offers a holistic perspective on an athlete’s performance, encompassing biomechanics,

physiological aspects, and environmental factors.

Future research should focus on integrating multi-modal data and multi-task learn-

ing, developing foundational models, and generating high-quality synthetic data. The
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success of models like ChatGPT and recent breakthroughs in large models for image

segmentation indicate that merging these technologies for sports applications could

be highly beneficial Zhao et al. (2023). The practical deployment of these technologies

can enhance athletic performance, support real-time decision-making, and improve the

experience for sports professionals and enthusiasts. By employing these sophisticated AI

models, sports organizations can obtain deeper insights into performance metrics and

make more informed decisions.
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STGNP FOR HUMAN SKETLON KEYPOINT PREDICTION

To address the challenges identified in RQ1 regarding the robustness of keypoint pre-

diction in dynamic sports environments, this chapter aims to achieve RO1 by proposing

the integration of STGNP with existing human pose estimation methods. Traditional

methods for keypoint prediction often face significant obstacles due to occlusions, varying

lighting conditions, and rapid movements. Furthermore, existing human pose estimation

method like AlphaPose offers multiple model sizes, but in practical applications, the

larger, more accurate models are often not feasible due to resource constraints. Opting

for the smaller, lightweight models results in a loss of accuracy, leading to prediction inac-

curacies. To mitigate these issues, we introduce a novel approach that leverages STGNP

to enhance keypoint prediction accuracy by effectively handling occluded keypoints and

correcting anomalies such as sudden coordinate changes.

Section 3.1 provides an introduction to our motivations and the challenges associated

with keypoint prediction in dynamic sports environments. It discusses the limitations

of current methodologies and the need for robust solutions. Section 3.2 introduces

the definitions, notations, and the proposed integration of STGNP with human pose

43



CHAPTER 3. STGNP FOR HUMAN SKETLON KEYPOINT PREDICTION

estimation methods. This section explains how the proposed method addresses the

identified challenges, particularly the trade-off between model size and accuracy, and

improves keypoint prediction robustness. In Section 3.3, the proposed method is validated

through experimental evaluations, demonstrating its effectiveness in real-world sports

settings. Finally, Section 3.4 concludes this chapter, summarizing the key findings and

their implications for improving keypoint prediction in dynamic sports environments.

3.1 Introduction

Figure 3.1: Data for the target keypoint is generated using context keypoints 1-5, consid-
ering both the graph structure and exogenous covariates.

In Human Pose Estimation, numerous excellent results have been achieved by models

such as Alphapose Fang et al. (2022), MMPose Contributors (2020), and Openpose

Cao et al. (2019), which have performed well on various human keypoint datasets.

However, these models exhibit a common issue: keypoint drift. In practical applications,

we have observed that these models tend to suffer from varying degrees of keypoint

drift. Keypoint drift occurs when the prediction confidence of keypoints is relatively

low during complex rotations or occlusions of human movements, leading to inaccurate
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predictions and significant differences compared to adjacent frames. Human skeleton

data exhibit both spatial features, due to their graph structure, and temporal features, as

skeleton sequences form a time series. Therefore, human skeleton data can be considered

spatio-temporal data. Inspired by the application of Spatio-Temporal Graph Neural

Networks (STGNNs) in weather forecasting Lin et al. (2022), we apply this approach to

enhance human skeleton prediction.

In this paper, we tackle the challenge of spatio-temporal extrapolation for human pose

estimation. This process involves forecasting spatio-temporal data at target keypoints

using the surrounding context nodes and related external covariates, all within a fixed

graph structure composed of human skeleton keypoints, as depicted in Figure 3.1. For

example, we use multiple human pose estimation models to predict pose data. We then

extrapolate target keypoint data from context keypoints, considering covariates like

confidence levels that can affect keypoint prediction.

To fulfill our objectives, it is crucial to address spatio-temporal correlations, which rep-

resent spatial interdependencies in a graph coupled with temporal dynamics over time.

STGNNs are increasingly favored in this domain due to their robust learning capabili-

ties Han et al. (2021); Wu et al. (2019). Nevertheless, Neural Networks (NNs), including

STGNNs, face significant shortcomings: (i) They do not inherently estimate uncertainties.

Incorporating such estimations is essential for dependable decision-making Wang et al.

(2019); Wen et al. (2023), yet most NNs operate deterministically, failing to handle uncer-

tainties. (ii) Their generalization to novel scenarios is constrained. While NNs demand

extensive data to learn effectively, their parametric nature can restrict their flexibility

in new or changing conditions without retraining. Furthermore, they are particularly

sensitive to hyperparameter settings, requiring thorough tuning for best results.

The constraints of NNs have encouraged scholars to explore probabilistic models,

notably Gaussian Processes (GPs) Seeger (2004). GPs establish a probabilistic process
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where the spatio-temporal interactions are characterized using diverse kernels Patel

et al. (2022). Their foundation in Bayesian statistics and their non-parametric approach

allow effective handling of uncertainties and excellent generalization across various

functions Luttinen and Ilin (2012). However, the expressivity of GPs’ kernels may be

restrictive, presenting certain drawbacks. To mitigate these challenges, Neural Processes

(NPs) Garnelo et al. (2018) have been developed. NPs employ neural networks to formu-

late stochastic processes and introduce an aggregator for context integration, effectively

merging the advantages of NNs and GPs. This integration makes NPs an attractive

option for modeling complex spatio-temporal dynamics.

Regrettably, NPs are not readily adaptable to spatio-temporal graph data for several

reasons: (i) Their inefficiency in learning temporal dynamics. Current implementations

of NPs Singh et al. (2019); Qin et al. (2019) employ latent state transitions to recurrently

grasp temporal patterns. Nonetheless, these transitions often focus predominantly on

latent variables from earlier steps, overlooking essential context in subsequent sequences.

This issue, termed transition collapse, can hinder effective learning across extended

sequences Singh et al. (2019). (ii) Their inability to effectively represent spatial connections

within graphs. The aggregation methods used in existing NPs Gordon et al. (2020);

Kim et al. (2019); Volpp et al. (2020) do not sufficiently capture the intricate spatial

relationships inherent in graph structures. Moreover, the deterministic nature of these

processes proves less effective in handling data ambiguities, such as noise or missing

entries, as illustrated in Figure 3.1.

To address these limitations, we introduce the STGNP, designed for spatio-temporal

extrapolation across graphs. STGNP operates in two phases: initially, a deterministic

network captures the spatio-temporal node representations. This is achieved not through

recurrent architectures but by sequentially stacking convolution layers for temporal

dynamics Aksan and Hilliges (2019), and employing cross-set graph neural networks
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for spatial interactions. In the subsequent phase, state transitions are utilized to amal-

gamate the latent variables of target nodes in a top-down approach. These transitions

maintain horizontal time independence and incorporate extensive temporal evolution

from higher layers. Given that the number of transitions corresponds directly to the

number of layers rather than the sequence length, our model inherently avoids the

pitfalls of transition collapse.

In the transition’s aggregator, we recognize that various context nodes exhibit differ-

ing significance levels. Inspired by Volpp et al. (2020), we introduce the GBA approach,

which directly aggregates distributions over latent variables influenced by the graph’s

topology. This method posits that a context node’s impact on the latent distribution dimin-

ishes if it is geographically distant from the target or if it shows significant ambiguity, as

identified by the system. By incorporating the graph structure into the NP’s aggregator,

this strategy not only enhances the model‚Äôs ability to handle node uncertainties but

also improves its overall efficacy.

In conclusion, our principal contributions are as follows:

• We introduce the STGNP, a pioneering approach in extending Neural Processes to

the realm of spatio-temporal graph analytics. STGNP uniquely excels in explicitly

handling uncertainties and demonstrates robust generalization across various

functions, presenting a significant advancement over traditional NN-based meth-

ods. It also adeptly learns temporal dynamics and understands graph-structured

data, distinguishing it from conventional NP models.

• We develop the Graph Bayesian Aggregation technique, a Bayesian strategy for

contextual node aggregation. This method effectively incorporates the graph topol-

ogy and node uncertainties into the aggregation process, enhancing the model’s

accuracy and predictive quality.
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• We validate STGNP by conducting rigorous experiments across multiple human

skeletal datasets, and compare its performance with various foundational models.

The results from these experiments confirm that STGNP not only significantly out-

performs these models but also provides reliable uncertainty estimates, showcases

exceptional generalizability, and maintains resilience against noisy inputs.

3.2 Preliminaries

Initially, we establish the definitions and notations for spatio-temporal graph data.

Subsequently, we delve into the fundamental principles of neural processes.

3.2.1 Definitions and Notations

Definition 1 (Graph) A graph G = (V ,E ) is composed of a set of vertices V and a set

of edges E , which establish the connections and their weights between vertices. For any

vertex v ∈ V , its K-hop neighborhood, denoted by Nk(v), comprises vertices that can be

reached from v within K steps. Using E and the specified K , a K-hop adjacency matrix

AK is constructed to quantify the non-Euclidean distances among connected neighbors.

Definition 2 (Spatio-Temporal Data) In a graph, signals are gathered from each

node. Representing the data for node i, we define Yi = (yi,1, .., yi,t, .., yi,T) ∈ RT×dy , cap-

turing measurements across a time window T with dy as the feature dimension. The

collective data for all nodes is denoted by Y = (Y1, ..,Yn, ..,YN ) ∈RN×T×dy , where N repre-

sents the total number of nodes observed in the graph during the time window.

Definition 3 (Exogenous Covariates) Exogenous covariates, which often exhibit

strong correlations with node data, enhance the learning process. These covariates can

be sourced from various origins. For example, the confidence level can significantly
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influence the outcome of keypoint predictions. We represent these covariates as a tensor

X ∈RN×T×dx , taking them into explicit consideration in our analysis.

3.2.2 Neural Processes

NPs, as introduced by Garnelo et al. (2018), create stochastic mappings from inputs

x ∈ Rdx to outputs y ∈ Rdy , relying on a context set C = {(xn, yn)}N
n=1 of observed pairs.

Functionally similar to Gaussian Processes, NPs differ in that the stochastic mappings

are learned via neural networks rather than explicitly defined. NPs utilize a conditional

latent variable model, where the latent variable z’s distribution is determined by a

conditional prior p(z|C ) that is learned from the context set. With target inputs XD =
{xm}M

m=1 from a target set D, a likelihood module p(YD |XD , z) is trained to predict the

output YD . The generative process of NPs is given by:

(3.1) p(YD |XD ,C )=
∫

p(YD |XD , z)p(z|C )dz.

Practically, NPs treat target variables independently, leading to a decomposed like-

lihood p(YD |XD , z) factored as
∏M

m=1 p(ym|xm, z). This meta-learning structure, where

each context-target pair {C ,D} forms a distinct stochastic process, enhances the model’s

generality with minimal parameter dependence. The stochastic processes are ensured by

aggregating conditions C using a permutation-invariant function (e.g., mean, attention),

as required by the Kolmogorov Extension Theorem Øksendal (2003). As direct computa-

tion of the latent variable z’s marginalization is often impractical, the model typically

employs Monte-Carlo (MC) sampling to approximate Equation 3.1 Foong et al. (2020) or

uses a variational approach to maximize the evidence lower bound (ELBO) Garnelo et al.

(2018):

log p(YD |XD ,C )≥ Eq(z|C∪D)

[
m∑

m=1
log

p(ym|xm, z)p(z|C )
q(z|C ∪D)

]
,(3.2)
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where q(z|C ∪D) is the approximated posterior and p(ym|xm, z) is the likelihood, both

learned through neural networks. To address the intractability of the true conditional

prior p(z|C ), the same approximation function q(·) is utilized to estimate p(z|C )≈ q(z|C ).

3.3 Methodology

In this section, we introduce STGNP, a neural latent variable model designed to improve

spatio-temporal extrapolation. As depicted in the graphical model in Figure 3.2, STGNP

operates in two phases: the first involves learning deterministic representations (STRL),

and the second focuses on stochastic latent variables (GBA). We commence by outlining

the challenge of spatio-temporal extrapolation. This is followed by an explanation of

the deterministic phase where spatio-temporal representations are developed, and the

derivation of Graph Bayesian Aggregation for context aggregation in the stochastic phase.

We conclude with a discussion on the generative process and the optimization methods

employed. For clarity and conciseness, we limit our discussion to a single target node m

in subsequent sections.

3.3.1 Problem Statement

In this work, we adapt the Neural Processes framework to address spatio-temporal

extrapolation. Initially, we define the context set C , which includes nodes characterized

by exogenous covariates and observed data {(Xn,Yn)}N
n=1 ∈RN×T×(dx+dy). Our objective is

to construct a posterior predictive distribution p(YD |XD ,C , A) that can predict outcomes

YD ∈RM×T×dy for the target set D over an identical time interval. Here, M represents the

number of target nodes. This predictive task utilizes the covariates XD , the information

from the context set C , and the adjacency matrix A. Throughout this paper, we use the

subscript m for target nodes and n for context nodes, and the terms location, node, and

sensor are used synonymously.
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3.3.2 Spatio-Temporal Extrapolation

Spatio-temporal extrapolation aims to predict environmental states using available data.

Historically, methods like K-Nearest Neighbors (KNN) and Random Forest (RF) have

been employed to address this challenge, with KNN focusing on linear relationships

and RF on non-linear dependencies Fawagreh et al. (2014). Despite their effectiveness

in modeling spatial relationships, these techniques often fail to capture more dynamic,

complex correlations. GPs, which formulate stochastic processes with versatile kernels,

attempt to address this by adapting to diverse data features Seeger (2004); Li et al.

(2020a). For example, Patel et al. Patel et al. (2022) implement periodic and Hamming

distance kernels for different feature types. Nonetheless, the specificity of these kernels

and their computational demands limit broader application. Other methods treat spatio-

temporal extrapolation as a tensor completion problem, leveraging low-rank matrix

assumptions to efficiently identify patterns Yu et al. (2016). While efficient, these methods

are transductive and cannot generalize beyond the training dataset’s nodes. In contrast,

NNs have emerged as a predominant approach, exemplified by Cheng et al. Cheng et al.

(2018) who use attention models to infer air quality from dynamic and static data through

RNNs and MLPs, and by Han et al. Han et al. (2021) who enhance GCNs with multi-

channel attention modules. However, NNs often face challenges with uncertainty and

may overfit in data-scarce scenarios. Some NNs address extrapolation akin to kriging,

with methods that include or exclude temporal dynamics and exogenous covariates, as

shown by Appleby et al. Appleby et al. (2020) and Wu et al. Wu et al. (2021). Unlike these

methods, our approach successfully integrates both spatial relationships and temporal

dynamics.
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3.3.3 Neural Processes Family

NPs integrate the strengths of NNs and GPs by combining potent learning capabilities

with reliable uncertainty assessments Garnelo et al. (2018). NPs introduce latent vari-

ables across the context set, creating a conditional latent variable model, and employ a

likelihood function to produce target predictions. Le et al. Le et al. (2018) highlighted

that Neural Processes often struggled with underfitting, which was linked to the limita-

tions of the aggregation functions they employed, such as using a simple mean or sum.

Addressing this, Kim et al. Kim et al. (2019) developed Attentive Neural Processes (ANP),

enhancing the model’s ability to discern critical elements within and between the context

and target sets. Progressing further, Kim et al. Kim et al. (2022) introduced a stochastic

attention mechanism that uses Bayesian inference for weight determination, and Volpp

et al. Volpp et al. (2020) designed a stochastic aggregator for direct context variable inte-

gration. Nonetheless, these advancements primarily focus on spatial considerations and

do not extend to graph-structured data. Singh et al. Singh et al. (2019) then shifted the

focus to sequential data, proposing Sequential Neural Processes (SNP) which incorporate

state transitions through a variational recurrent neural network (VRNN) Chung et al.

(2015) to model temporal sequences stochastically. Yoon et al. Yoon et al. (2020) later

added Recurrent Memory Reconstruction to address distribution shifts in sequences.

Despite these innovations, the issue of transition collapse remains a significant challenge

in learning temporal relationships over extended periods. Our approach mitigates this

by employing causal convolutions to better handle temporal dynamics.
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3.3.4 Spatio-Temporal Representation Learning
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Figure 3.2: The graphical model depicted consists of three layers for clarity. The vari-
ables V l

m, Z l
m, and H l

n in RT×dl represent the deterministic representations and latent
variables for a target node m, and the representations for a context node, respectively.
The variable e in Rd0 is a learnable target token. The diagram also includes a shadowed
circle indicating an observed variable, while the labels STRL and GBA refer to the
processes of Spatio-Temporal Representation Learning and Graph Bayesian Aggregation,
respectively.

The deterministic phase of the model consists of three core components designed to

encapsulate both spatial and temporal correlations: a learnable target token, dilated

causal convolution, and cross-set graph convolution. We detail each component separately

before presenting an overview of the entire learning architecture.

Learnable Target Token Our model processes inputs of human pose estimation

keypoints and associated covariates; however, the data Ym for a specific target keypoint

remains undisclosed. Conventional techniques often preprocess this by either substi-

tuting zeros Appleby et al. (2020); Wu et al. (2021) or using linear interpolation to

approximate the values Hu et al. (2021). The zero-filling approach is unsuitable for
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human pose estimation as it requires complete keypoint data for subsequent analyses.

Additionally, interpolation tends to introduce substantial errors, adversely affecting the

model’s efficacy. Drawing inspiration from the Masked AutoEncoder He et al. (2022), our

approach employs a shared learnable token e ∈Rd0 to represent target node embeddings

and utilizes an embedding layer with parameter W ∈Rdy×d0 for context nodes. This token

is dynamically refined by the network to accurately represent the target node’s position

in the feature space, thereby circumventing the drawbacks of traditional preprocessing

methods.

Cross-Set Graph Convolution Layer Graph convolution is a fundamental technique

for capturing spatial relationships within graph structures. Traditional GCN approaches

often assume equal dependency across all nodes Wu et al. (2021); Hu et al. (2021), yet in

our scenario, the interactions between the target and context sets are critical due to their

impact on target keypoints. With this understanding, we suggest that neglecting intra-set

relations does not detrimentally impact our model’s effectiveness. Thus, we introduce the

cross-set graph convolution (CSGCN), which focuses exclusively on interactions between

the sets C and D. In detail, the update process for the target keypoint representation

V l−1
m ∈RT×dl−1 at layer l−1 involves incorporating influences from its K-hop neighbors

H l−1
n in the context set, weighted by adjacency weights Ak

m,n:

(3.3) V l
m =

K∑
k=0

V l−1
m +∑

n∈N c
k (m) Ak

m,nH l−1
n

1+∑
n∈N c

k (m) Ak
m,n

W l
k,

where W l
k ∈Rdl−1×dl represents learnable weights and N c

k (m) denotes the k-hop neigh-

bors of target node m identified from Ak. At the initial layer l = 0, V 0
m denotes the

broadcasted target token and H0
n the context embeddings. Compared to conventional

GCNs, CSGCN not only reduces computational complexity from O ((N+M)2) to O (N×M),

but also retains robust learning performance, as verified in our experimental results.
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Dilated Causal Convolution Layer We employ dilated causal convolutions (DC-

Conv) Yu and Koltun (2016) to capture temporal dependencies. Unlike the recurrent

structure, it learns temporal relations over long sequences by stacking causal layers.

This approach proves advantageous as the number of layers is considerably smaller than

the length of the sequence, mitigating the issue of transition collapse in the later stage.

Specifically, at time t, a 1D causal convolution learns a temporal representation hl
i,t ∈Rdl

for node i:

(3.4) hl
i,t = H l−1

i ⋆K l(t)=
k−1∑
s=0

K l(s)⊙H l−1
i (t−η× s),

where H l−1
i ∈ RT×dl−1 is a node representation at the previous layer, ⋆K l means a

DCConv with the kernel size c×dl−1 ×dl , and ⊙ is the Hadamard product. The dilation

factor η is initialized to 1 with an exponentially increasing rate of 2 van den Oord et al.

(2016) and zero-padding is used to ensure the inputs and outputs have the same time

length T.

𝐴

𝑋! 
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+
+

Layers
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Embed Embed

𝑒
Figure 3.3: The pipeline of the spatio-temporal representation learning network, where
we first capture temporal dependencies using the DCConv and then learn spatial rela-
tions by CSGCN. Embed denotes an embedding layer.
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Learning Framework As illustrated in Figure 3.3, each network layer initiates with a

CSGCN to delineate spatial relationships, subsequently integrating a DCConv to address

temporal dependencies within node representations. Moreover, covariate features are

embedded into node representations using a 1×1 convolution, though these covariates

are not directly engaged in CSGCNs and DCConvs due to potential variations in spatio-

temporal dynamics or non-existent relationships in certain contexts Tashiro et al. (2021).

The architecture employs stacked layers, connected by skip links, to formulate the target

node’s representations, where each layer preserves temporal relationships at different

scales. This setup ensures that upper layers capture broader, long-range interactions

while lower layers focus on detailed, granular details. Consequently, the stochastic

stage benefits from a hierarchical structure that provides access to multiple scales of

dependencies.

3.3.5 Graph Bayesian Aggregation

...
𝒞

Z!"#$

𝐻!" 𝐻#" 𝐻$"

𝑅!" 𝑅#" 𝑅$"

𝒟

𝐴!,#
𝐴!,$ 𝐴!,%

Z%"
𝑉!&

...

𝑝(𝑍!& )

𝑝(𝑅#& |𝑍!& , 𝐴!,#)

Figure 3.4: Graph Bayesian Aggregation involves two neural networks, Encl
Z(·) and

Encl
R(·), which are tasked with learning the mean and variance of the prior and latent

observation distributions respectively.
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The core component for the stochastic stage is our proposed Graph Bayesian Aggregation,

which aggregates information from context nodes and derives latent variables Z l
m ∈RT×dl

describing stochastic processes over target nodes. Figure 3.4 illustrates the aggregation

process. Based on Bayes’ theorem Bishop and Nasrabadi (2006), we assume a prior

p(Z l
m) over the target node. Then for each context node n, a latent observation model

p(R l
n|Z l

m, Am,n) is derived in which its mean conditions on a linear transformation of Zm

and Am,n. Thus once observe R l
n, the latent variable Z l is updated through its posterior:

(3.5) p(Z l
m|{(R l

n, Am,n)}N
n=1)=

∏
n∈N c

1 (m) p(R l
n|Z l

m, Am,n)p(Z l
m)∏

n∈N c
1 (m) p(R l

n)
,

where we suppose the latent observations are independent and only consider the 1-hop

neighbor to simplify the computation. The prior p(Z l
m) follows a factorized Gaussian:

p(Z l
m)=N (Z l

m|µZ l
m

,diag(σ2
Z l

m
)),

(µZ l
m

,σZ l
m

)=Encl
Z(Z l+1

m ,V l
m),

(3.6)

where µZ l
m

and σ2
Z l

m
are mean and variance learned by Encl

Z(·) that will be discussed

in the following section. For the latent observation model, we also impose a factorized

Gaussian. Note that instead of learning its mean, we learn the observation R l
n directly

together with its variance σ2
R l

n
, which guarantees valid Gaussian conditioning during

inference Volpp et al. (2020):

p(R l
n|Z l

m, Am,n)=N (R l
n|Am,nZ l

m,diag(σ2
R l

n
)),

(R l
n,σR l

n
)=Encl

R(H l
n),

(3.7)

where Rn and σ2
Rn

are parameterized by Encl
R(·). The Gaussian assumption avoids an

intractable computation of the marginal likelihood of the posterior’s denominator. In fact,

we can calculate it easily by Gaussian conditioning in a closed-form solution:

σ̄2
Z l

m
=

[(
σZ l

m

)−2 +∑
n∈N c

1 (m)

(
σR l

n
/Am,n

)−2
]−1

,(3.8)

µ̄Z l
m
= σ̄2

Z l
m

(
µZ l

m
/σ2

Z l
m
+∑

n∈N c
1 (m) Am,nRn/σ2

R l
n

)
,(3.9)
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where σ̄2
Z l

m
and µ̄Z l

m
are updated parameters and the operations are conducted in an

element-wise manner. With factorization, the conditioning is efficient to compute, avoid-

ing costly matrix inversion. In addition, all the calculations are differentiable so that

GBA can be optimized in an end-to-end way by stochastic gradient descent.

The aggregation mechanism has profound implications. Primarily, it integrates the

graph structure by employing a linear transformation via the adjacency matrix, aligning

it functionally with GCNs, albeit without considering uncertainty terms. This align-

ment suggests that GBA possesses learning capabilities comparable to those of GCNs.

Additionally, the aggregation accounts for node uncertainties, enhancing the model’s

effectiveness compared to previous methods. Analytically, the influence of a context node

is governed by its observed value R l
n, the variance σR l

n
, and the weight assigned by

the adjacency matrix Am,n. Equation 3.8 posits that a context node’s contribution to

the target is inversely proportional to its distance, implying decreased confidence from

distant nodes. Moreover, Equation 3.9 indicates that a node’s contribution is reduced

when its variance σR l
n

is high, reflecting increased uncertainty. This feature theoretically

enhances the model’s resilience against noisy data. Furthermore, the independence of

latent observations assumed in Equation 3.5 ensures a robust posterior, independent of

the context node count, reinforcing GBA’s inherent inductive capabilities without the

need for external sampling techniques Wu et al. (2021); Hamilton et al. (2017).

3.3.6 Generative Process

The target latent variable Z l
m depends on its representation V l

m and those of the context

nodes H l . The longer-range temporal dependencies are transited by conditioning Z l
m

on Z l+1
m , forming a vertical time hierarchy. In practice, given V l

m and a sample from

p(Z l+1
m ), the network Encl

Z(Z l+1
m ,V l

m) first learns a prior p(Z l
m) over the target node in

Equation 3.6. Then, the deterministic representations of context nodes are adopted

58



3.3. METHODOLOGY

to learn their latent observations by Encl
R(H l

n) in Equation 3.7. Next, parameters of

p(Z l
m) are updated according to Equation 3.8 and 3.9. After the bottom layer l = 1, a

likelihood model concatenates samples Zm = (Z1
m, ...ZL

m) from all layers and the target

node’s exogenous covariates Xm to predict its extrapolations Ym. Formally, the generative

process of STGNP is summarized as:

p(Ym, Zm|Xm,C , A)= p(Ym|Xm, Zm)
L∏

l=1
p(Z l

m|Z l+1
m ,V l

m,H l , A),(3.10)

where the first term is a likelihood; the second term denotes a conditional prior aggre-

gated through the GBA. Note that at the top layer L, ZL+1
m = 0 and the likelihood is

assumed to be a factorized Gaussian distribution.

3.3.7 Inference and Optimization

Typically, closed-form solutions for non-linear transitions and likelihood do not exist;

thus we train the model through variational approximation. The approximated posterior

q(Zm|C ∪D, A) has the same structure as the conditional prior but takes target node

data Ym as inputs. Then the deterministic and stochastic modules can be optimized

together by the ELBO:

log p(Ym|Xm,C , A)≥ Eq(Zm)[log p(Ym|Xm, Zm)]

−KL(q(Zm|C ∪D, A)||p(Zm|Xm,C , A)).
(3.11)

Given the hierarchical structure of Equation 3.10, the Kullback-Leibler divergence term

KL can be further decomposed as:

(3.12) KL(·||·)=
L∑

l=1
Eq(Z l+1

m )
[
KL(q(Z l

m|Z l+1
m ,V ′

m
l ,H l , A)||p(Z l

m|Z l+1
m ,V l

m,H l , A))
]

where unlike using the learned token, V ′
m

0 is the feature embeddings of Ym. Follow-

ing Garnelo et al. (2018), we use the same variational module to approximate the

conditional prior so that p(·)= q(·) in Equation 3.12 During optimization, ELBO can be
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minimized using stochastic gradient descent with the reparameterization trick Kingma

and Welling (2014).

3.4 Datasets and Evaluations

3.4.1 Datasets

Halpe-FullBody Similar to Alphapose Fang et al. (2022), we used the Halpe-FullBody

dataset. However, unlike them, we do not focus on the accuracy of the face and hands

here because, through observation, the accuracy of the face and hands is very low during

dynamic movements, far from being practically usable. Therefore, we do not consider

this situation for now. For each person, they annotated 136 keypoints, including 20 for

body, 6 for feet. The keypoint format is illustrated in Fig. 3.5.

COCO-WholeBody Concurrently, Jin et al. have annotated 133 whole body keypoints

using the COCO framework Jin et al. (2020). This dataset’s definition of keypoints is

largely in line with the Halpe-FullBody dataset, but it lacks annotations for the head,

neck, and hip. The training dataset encompasses 118K images featuring 250K instances,

while the test set includes 5K images. Our algorithm has also been tested using this

dataset.

3.4.2 Experimental Setup

3.4.2.1 Baselines.

We considered three baseline models, namely Openpose, HRNet, and FastPose50(Alphapose).
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Figure 3.5: Keypoint configuration for body and foot in the Halpe-FullBody dataset.

3.4.3 Overall Performance

Here, in order to simulate the drift of skeletal key points in a real scenario, we set the

confidence threshold to 0.3. Points below this value are considered missing key points.

The results are shown in Tables 3.1 and 3.2. It can be seen that after integrating our

model, the accuracy of most cases has improved, proving the effectiveness of our method.
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Method Input Size full-body foot body

AP AP50 AP75 APL APM AR AP AR AP AR

OpenPose Cao et al. (2019) N/A 0.281 0.569 0.233 0.331 0.297 0.343 0.409 0.644 0.542 0.589
OpenPose-STGNP N/A 0.414 0.674 0.396 0.425 0.319 0.370 0.529 0.685 0.603 0.633
HRNet Sun et al. (2019) 256×192 0.391 0.803 0.362 0.389 0.447 0.559 0.595 0.747 0.610 0.721
HRNet-STGNP 256×192 0.460 0.834 0.411 0.464 0.497 0.592 0.671 0.749 0.634 0.743
FastPose50 Fang et al. (2022) 256×192 0.454 0.794 0.466 0.482 0.498 0.544 0.719 0.787 0.649 0.711
FastPose50-STGNP 256×192 0.519 0.854 0.555 0.521 0.548 0.605 0.776 0.823 0.682 0.862

Table 3.1: Human pose estimation results on Halpe-FullBody dataset. Results are obtained using single-scale testing for fair
comparisons Fang et al. (2022). "STGNP" represents our model. Here we define key points with a confidence level less than
0.3 as missing points.

Method Input Size whole-body body foot

AP AR AP AR AP AR

OpenPose Cao et al. (2019) N/A 0.338 0.449 0.563 0.612 0.532 0.645
OpenPose-STGNP N/A 0.429 0.498 0.644 0.689 0.613 0.726
HRNet Sun et al. (2019) 256×192 0.432 0.520 0.659 0.709 0.314 0.424
HRNet-STGNP 256×192 0.521 0.595 0.668 0.749 0.302 0.449
FastPose50 Fang et al. (2022) 256×192 0.554 0.625 0.673 0.717 0.636 0.718
FastPose50-STGNP 256×192 0.602 0.714 0.766 0.817 0.682 0.812

Table 3.2: Human pose estimation results on COCO-WholeBody dataset. Results are obtained using single-scale testing for
fair comparisons Fang et al. (2022). "STGNP" represents our model. Here we define key points with a confidence level less
than 0.3 as missing points.
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3.5 Conclusion

We present the STGNP, marking the inaugural application of spatio-temporal extrapola-

tion in the Neural Processes family. This model adeptly handles temporal relationships

and mitigates transition collapse through the use of causal convolutions, while also

proficiently learning spatial dependencies with a cross-set graph network.

We applied our method to enhance human skeleton prediction results, demonstrating

its effectiveness in improving the accuracy and reliability of these predictions. The

Graph Bayesian Aggregation mechanism aggregates context nodes by considering their

uncertainties, thereby enhancing the learning capability of Neural Processes on graph

data.

In future work, we plan to further refine the STGNP model and explore its ap-

plications in other domains requiring spatio-temporal data analysis. Additionally, we

aim to investigate more sophisticated aggregation techniques and extend the model’s

capabilities to handle even more complex and dynamic scenarios.
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4
APPLYING SPATIO-TEMPORAL TRANSFORMERS TO

BASKETBALL TRACKING IN SPORTS EXAMINATIONS

To address RQ2, this chapter proposes a comprehensive framework for integrating

positional information into Re-ID algorithms. Section 4.1 details the motivations and

challenges of enhancing object tracking amidst frequent occlusions and complex interac-

tions. In Section 4.2, the definitions, notations, and the proposed integration method are

listed and explained. Section 4.3 introduces the basketball exam dataset we collected

and organized. Finally, Section 4.4 validates the proposed method through experimental

evaluations.

4.1 Introduction

In recent years, the field of object tracking has seen substantial advancements, particu-

larly in the context of automated systems and intelligent sports examinations. Traditional

tracking algorithms such as ByteTrack and BoT-SORT Zhang et al. (2022); Aharon et al.

(2022) have been widely applied across various domains, including sports analytics. How-

ever, these methods often fall short in real-world sports examination scenarios where
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occlusions and multiple identical objects, such as basketballs, are prevalent. This results

in significant challenges such as target loss and ID confusion Zhang et al. (2020); Ivasic-

Kos et al. (2021). To address these challenges, researchers have been exploring novel

approaches that integrate advanced Re-ID techniques and enhanced tracking methodolo-

gies. These approaches aim to improve the robustness and accuracy of object tracking

under complex conditions Zhang et al. (2012). Additionally, the incorporation of machine

learning models, particularly those leveraging deep learning, has shown promise in over-

coming the limitations of traditional methods Morimitsu et al. (2017). By continuously

adapting to changes in object appearance and leveraging contextual information, these

advanced models are better equipped to handle the dynamic and unpredictable nature

of sports environments Ivasic-Kos et al. (2021). As a result, the development of more

sophisticated tracking systems is crucial for enhancing the performance and reliability

of intelligent sports examinations.

Advanced tracking methods aim to tackle the challenges of object tracking in complex

sports environments by continuously adapting to dynamic conditions and occlusions.

These methods involve discarding outdated models and training new ones with updated

data to maintain accuracy in object identification and tracking. In this way, the tracking

system can always fit the latest data distribution, ensuring precise performance. Recent

studies have introduced state-of-the-art ideas, such as integrating automated machine

learning (AutoML) techniques to optimize tracking pipelines and adjust them in real-

time as conditions change Jiang and Zhang (2021). Online incremental learning-based

methods are also employed to accumulate knowledge and enhance the system’s ability

to adapt to evolving sports scenarios Cheng et al. (2015); Cao et al. (2024). Moreover,

lifelong learning approaches are developed to expand the system’s knowledge base,

making it adaptable to new and unforeseen situations. For example, advanced tracking

algorithms like the streaming decision tree utilize innovative techniques to address
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occlusions and maintain accurate tracking without knowledge forgetting Cheng et al.

(2015). These algorithms leverage continuous learning and adjustment mechanisms,

ensuring that the system remains responsive to new data and changing conditions

Huang et al. (2024). Additionally, the integration of Re-ID technologies has significantly

enhanced the ability to distinguish between multiple identical objects, reducing ID

confusion and improving tracking reliability Xalabarder (2021). The incorporation of

deep learning models, particularly CNNs and RNNs, has further improved the system’s

performance by enabling more sophisticated feature extraction and temporal modeling

Jiang and Zhang (2021); Cao et al. (2024). These advancements demonstrate that modern

tracking methods can effectively handle the dynamic and challenging environments of

sports examinations, providing reliable and robust performance Xuan and Xu (2022).

However, real-world sports examinations, such as basketball skill assessments, often

involve complex scenarios where tracking targets may experience occlusions or overlap

with identical objects, leading to issues in target tracking or Re-ID. These challenges

significantly impact subsequent computational processes, such as performance evaluation

and data analysis. For instance, during a basketball examination, multiple players and

identical basketballs may occlude each other, causing difficulties in maintaining accurate

tracking and identification of individual players and balls. Traditional tracking methods,

which are typically designed to handle single-stream tasks, struggle to manage these

multi-object and occlusion-rich environments effectively Zhang et al. (2022); Aharon

et al. (2022). Furthermore, the need to differentiate between multiple identical objects,

such as basketballs used in the same exam, adds an additional layer of complexity to the

tracking system.

Advanced tracking systems must, therefore, be capable of handling both labeled and

unlabeled data streams simultaneously, adapting to the dynamic and unpredictable

nature of sports environments Singh and Srivastava (2022). By leveraging sophisticated
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Re-ID techniques and deep learning models, these systems can improve their robustness

against occlusions and overlapping objects, ensuring more reliable and accurate tracking

Ko et al. (2021). Additionally, hybrid models that combine different tracking and Re-ID

approaches offer a promising solution to address these challenges, enhancing the overall

performance and efficiency of intelligent sports examinations Paik and Kim (2022). The

continuous adaptation and learning capabilities of these advanced systems are crucial

for managing the complexities of real-world sports scenarios, providing reliable data for

subsequent analysis and decision-making Hsu et al. (2019).

We introduce a sophisticated tracking framework that integrates examinee data into

the target tracking process, thereby enhancing the system’s ability to preserve consistent

IDs through occlusions or when objects overlap. Drawing inspiration from the Learning

Spatio-Temporal Transformer for Visual Tracking, our methodology employs an encoder-

decoder transformer structure at its core. The encoder captures the global spatio-temporal

feature interactions between target objects and their search areas, while the decoder

develops a query embedding to accurately locate the target objects in space. Departing

from conventional methods that depend on either proposals or predefined anchors, our

approach redefines object tracking by directly predicting bounding boxes, utilizing a

straightforward fully-convolutional network to directly determine the positions of object

corners Yan et al. (2021). The inclusion of examinee information not only enriches the

contextual data but also bolsters the model’s ability to reliably maintain target identities

under difficult circumstances.

This approach not only enhances the robustness of the tracking system but also

ensures more reliable and stable target recognition results for subsequent processes. The

encoder-decoder transformer allows our method to operate end-to-end without requiring

post-processing steps such as cosine window or bounding box smoothing, thereby simplify-

ing existing tracking pipelines. Our improved tracker effectively addresses the challenges
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faced by other methods in real-world examination scenarios by uniquely identifying and

tracking each player and object. This ensures that the equipment used by examinees, in

this case, basketballs, is consistently tracked, providing stable recognition results for

subsequent processes. This capability is particularly crucial in basketball examinations

where players and balls frequently occlude each other, and multiple identical balls are

used simultaneously.

Our system’s ability to maintain accurate and stable IDs under these conditions

significantly improves the reliability of the data collected for performance evaluation and

analysis. Moreover, this robust tracking capability supports advanced analytics, such

as player movement patterns and ball handling efficiency, providing deeper insights

into examinee performance. The continuous adaptation and learning capabilities of

our system are crucial for managing the dynamic and unpredictable nature of sports

environments, ensuring reliable data for performance evaluation and analysis. The

ability to adapt to new data and evolving conditions in real-time not only enhances

the system’s performance but also its applicability to various sports and examination

scenarios, making it a versatile tool for intelligent sports assessments.

4.2 Proposed Method

In this section, we formalize an enhanced spatio-temporal visual tracking framework

that incorporates contextual dynamic information and describe our proposed model

in detail. In a real basketball test, the appearance presented by the examinee as the

detection target may change significantly due to movement changes and object occlusion,

etc. Therefore, in order to achieve accurate target tracking, the model must dynamically

capture the examinee’s condition in real time. However, existing traditional baseline

methods tend to use only the first and current frames as inputs to the model, and this

input mode only considers spatial information and almost completely ignores the rich
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temporal correlation between multiple frames, and thus it tends to suffer from the prob-

lems of target loss and target confusion. In view of the aforementioned inherent flaws

prevalent in target tracking models, we thoroughly redesign the proposed enhanced

spatio-temporal visual tracking framework. In terms of model inputs, we not only employ

an initial spatial template but also introduce a dynamically updated template sampled

from intermediate frames, which contains important temporal information about the

primary target-the basketball-as it changes over time, as well as a contextual template

that incorporates information related to the examinee’s posture. This enables the model

to include dynamic information from both spatial and temporal dimensions, maintaining

tracking integrity even under challenging conditions. Architecturally, our model employs

a hybrid approach combining ResNet-50 and Transformer components to fully extract

spatio-temporal features from the inputs. In addition, there may be cases where the

examinee is occluded or out of the field of view during the examination, so the image of

a specific frame may not be able to be input into the model as a dynamic template. To

address this situation, we also add two score prediction heads consisting of a three-layer

perceptron to determine whether the current frame is reliable as a dynamic/context tem-

plate. To ensure that the model performs optimally on both localization and classification

subtasks, we adopt a two-stage training scheme to improve the model’s performance

on the two different tasks by decoupling localization and classification and performing

targeted end-to-end training separately.

In the experimental part, we collect and organize a dataset containing test videos of

nine basketball test events and compare our proposed model with several different main-

stream target tracking methods in specific application scenarios, and the experimental

results show that the proposed enhanced spatio-temporal visual tracking framework sig-

nificantly outperforms similar algorithms in several metrics, demonstrating a stunning

superiority. In addition, we also visualize the tracking effect of the model in real-world
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application scenarios, which fully demonstrates that it can effectively handle complex

tracking scenarios with higher accuracy and robustness.

4.2.1 Spatio-Temporal Transformer Tracking with Examinee

Info

In practical sports education examinations, examinees’ appearances may evolve over

time, leading to complex scenarios involving obstructions, target loss, or the detection

of multiple identical targets. Consequently, dynamic detection and tracking of targets

become crucial. In the enhanced spatio-temporal visual tracking framework we propose,

we not only harness information from both spatial and temporal dimensions, but also

integrate contextual information about examinees’ postures to address issues of ID

inconsistency, thereby achieving more stable tracking. The proposed framework makes

significant innovations in three aspects: network input diversification, introduction of an

additional score prediction head to compute the reliability of the dynamic templates, and

adoption of a two-stage training strategy that decouples localization and classification,

which are described point by point in the following subsections. Fig. 4 illustrates the

framework diagram of the proposed enhanced spatio-temporal visual tracking model.

Overall Architecture. Demonstrated in Fig 4.1, our proposed enhanced spatio-

temporal visual tracking framework combines advantages from STARK and MixFormer.

It mainly consists of four components: a convolutional backbone based on ResNet-50,

a transformer encoder and decoder, and finally a bounding box prediction head, and a

score head.

Input. Target tracking models widely utilized today typically extract features from

the spatial information within a single frame image. However, in complex application

scenarios such as basketball tests, the appearance of a tracking target does not remain

constant throughout the entire motion cycle. Furthermore, obstructions from surrounding
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Figure 4.1: Framework for our network

objects or temporary exits from the field of view during motion can severely limit the

performance of these models that only consider a single spatial dimension. In fact, the

multiple frames involved in the tracking process also have a strong temporal correlation.

Therefore, using diversified inputs that include both temporal and spatial dimensional

information for dynamic identification of tracking targets can significantly enhance

model robustness in complex environments. Inspired by the reference method (STARK),

our proposed enhanced spatio-temporal visual tracking framework employs three types of

templates at the input stage as illustrated in Figure 4.1: the traditional spatial template,

a dynamic template that updates with the basketball target as it changes over time,

and a context template that includes information related to the examinee’s posture.

The adoption of these three templates provides the model with an extensive array of

multi-dimensional spatio-temporal information, facilitating the simultaneous modeling

and capture of highly abstract global relationships between multiple levels of features.

This enables continuous tracking and target locking even in noisy environments or in
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the presence of obstructions.

Our Based Backbone. The backbone employed in our proposed framework is

similar to that used in STARK, where any network suitable for image-related tasks,

such as convolutional networks or ViTs, can serve as the primary architecture for initial

feature extraction. This flexibility allows for the integration of mainstream models

that are adept at handling various aspects of visual data processing, enhancing the

framework’s adaptability and performance in feature extraction from complex visual

inputs. Considering that in real world, the compute resource is limited, so here, we adopt

the vanilla ResNet He et al. (2016) as the backbone due to its proven effectiveness in

similar tasks, ease of deployment, and structural extensibility. Concretely, we remove the

last stage and fully-connected layers from the original ResNet He et al. (2016), making

no other changes. The input to the backbone includes a pair of images: a template

image of the initial target object z ∈R3×Hz×Wz and a search region of the current frame

x ∈R3×Hx×Wx . After passing through the backbone, the template z and the search image

x are mapped to two feature maps fz ∈R
C
s2 ×Hz×Wz and fx ∈R

C
s2 ×Hx×Wx .

Our approach diverges from this method by incorporating two additional dynamically

updated images: a dynamically updated template and a dynamically updated associated

region. In the context of our basketball skill assessment system, the associated region

corresponds to the examinee’s region. This addition allows our system to adapt more

effectively to the dynamic nature of the examination environment.

Encoder & Decoder. After initial feature extraction through the Backbone ResNet-

50, the resulting feature maps are passed through a bottleneck layer to reduce the

dimensionality in the channel dimension, compressing the original C feature channels

into d channels. Subsequently, the compressed feature maps are fed into an Encoder

and Decoder composed of Transformers. To accommodate the sinusoidal positional

encoding required by the Transformer input, the feature maps are then flattened and
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concatenated along the spatial dimension, producing a feature sequence with a length of

Hz
s ×Wz

s +Hx
s ×Wx

s +Hdt
s ×Wdt

s +Hdr
s ×Wdr

s and a dimension of d, where Hdt and Wdt represent

the height and width of the dynamically updated template, and Hdr and Wdr represent

the height and width of the dynamically updated associated region. The encoder consists

of stacked multi-head attention layers, with each layer capturing the hidden relationships

between any two elements in the input sequence-post positional embedding-from a global

perspective and in parallel. This structure allows the encoder to thoroughly learn the

dependencies of features across both temporal and spatial dimensions, thereby enabling

more precise localization and tracking of targets.

The decoder concurrently receives target queries and the output sequences passed

from the encoder, and based on this, it generates the tracking target object-specifically,

the bounding box of the basketball held by the examinee. The structure of the decoder is

essentially identical to that of the encoder, consisting of layers stacked with multi-head

attention mechanisms. However, the decoder employs masked multi-head attention,

which effectively screens out future data to prevent information leakage. By further

recognizing the spatio-temporal feature sequences learned by the encoder, the decoder

can robustly and accurately generate the final tracking bounding box. This process

ensures precise alignment and prediction in the context of visual tracking tasks.

Head. During target tracking predictions, the dynamic and context templates provide

the model with rich temporal information, yet these templates are not always available

in every frame. Complex scenarios, such as when the target briefly moves out of view,

is disrupted by similar targets, or becomes occluded, may render the current dynamic

and contextu templates unavailable for the model input. Therefore, in our proposed

enhanced spatio-temporal visual tracking framework, we incorporate two score prediction

heads that assess the reliability of the current dynamic and context templates. These

mechanisms ensure the model’s robustness by dynamically adjusting the input based
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on the contextual and temporal relevance and reliability of the information provided

by these templates. Inspired by the prediction head designs in both STARK Yan et al.

(2021) and MixFormer Cui et al. (2022), our method aims to integrate the strengths of

both approaches. Like STARK, we use a probability distribution to estimate the box

corners, thereby improving the robustness and accuracy of bounding box predictions.

However, similar to MixFormer, we simplify the design by adopting a fully-convolutional

corner-based localization head.

Initially, the search region features are derived from the output sequence of the

encoder, and their similarity to the decoder’s output embedding is calculated. These

similarity scores are then multiplied element-wise with the search region features to

highlight significant areas while diminishing the less distinctive ones. The resultant

feature sequence is transformed into a feature map f ∈R
d
s2 ×Hs×Ws , which is input into a

streamlined fully-convolutional network (FCN). This FCN, composed of multiple Conv-

BN-ReLU layers, produces two probability maps, Ptl(x, y) for the top-left and Pbr(x, y)

for the bottom-right corners of the bounding boxes.

Subsequently, the bounding box coordinates (x̂tl , ŷtl) and (x̂br, ŷbr) are determined

by calculating the expectation values of the corners’ probability distributions. Our ap-

proach enhances accuracy and robustness in object tracking by precisely modeling the

uncertainty in the coordinate estimates. This technique maintains the resilience seen

in STARK’s methodology while embracing the simplicity and efficiency inherent in

MixFormer’s fully-convolutional architecture.

Training and Inference. In our proposed target tracking framework, the detection

process necessitates completing both localization and classification steps. However,

traditional training methods optimize these subtasks simultaneously, leading to a trained

model that compromises between the two to achieve balance, thereby failing to reach

optimal performance in either localization or classification. Therefore, we employ a two-
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stage training method that decouples these subtasks. The first stage focuses on training

the model’s localization capabilities, with the loss function defined as follows:

(4.1) L =λiouL iou(bi, b̂i)+λL1 L1(bi, b̂i).

where bi represents the label and b̂i is the predicted bounding box. λiou and L iou are

predefined hyperparameters. This loss function primarily targets losses related to the

localization phase and does not optimize the prediction score heads used for classification.

After the completion of the first stage, all parameters unrelated to classification within

the model are fixed, and only the score heads are optimized. The loss function used for

this phase is accordingly modified as follows:

(4.2) Lce = yi log (Pi)+ (1− yi) log (1−Pi)

where yi is the label and Pi represents the the confidence. Through the novel two-stage

training process, our proposed tracking framework is able to achieve optimal capabilities

in both localization and classification. During the inference process, the initial template,

dynamic template, and context template, along with their corresponding features, are

initialized at the beginning. As illustrated in Figure 4.1, the search region is appropriately

cropped and fed into the model, which then generates the corresponding bounding box

and confidence score. The presence of confidence scores ensures that the model does not

update the dynamic and context templates in scenarios where the tracking target is

occluded or under other non-ideal conditions. This mechanism guarantees the model’s

precision and stability during the inference stage.

4.3 Dataset

To better address the issue, we collected a real youth backetball level examination dataset

from China. This dataset contains 810 videos from 30 youth testers aged between 8-14
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years old, containing 9 testing items: Triangle slide defense, dribbling layup, five-point

spot shooting, passing and catching the ball, front and back spin dribble, stationary in-

front dribble, stationary two-hand dribble, stationary behind-the-back dribble, stationary

between-the-legs dribble. There are different examination tools used in these actions,

such as cones, basket and basketball used in five-point spot shooting, different action

requires different tools.

4.3.1 Actions Definition

• Triangle Slide Defense. As shown in 4.2, in this action, the examinee should

move between the cones. From left to right are cone 2, cone 0, cone 1. The examinee

starts at cone 0 and completes the preparation action. Then, they slide to cone 1

and touch it, followed by sliding to cone 2 and touching it. Next, they slide back

to cone 0 and touch it, then slide to cone 2 and touch it. After that, they slide to

cone 1 and touch it, and finally slide back to cone 0 and touch it. The sequence of

touches should be: 0-1-2-0-2-1-0. In this action, the props used are cones.

Figure 4.2: Triangle Slide Defense.

• Dribbling Layup. As shown in 4.3. The examinee starts dribbling from the

preparation spot and dribbles around the cones from the outside, proceeding to
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make a layup.

When dribbling around the nearby cone: dribble with the right hand, and the

takeoff foot for the layup should be the left foot. At the moment of release, the right

knee should be higher than the left knee, and the right hand should be higher than

the left hand. If the layup misses, do not dribble around the cone again; perform a

follow-up shot.

When dribbling around the far cone: dribble with the left hand, and the takeoff foot

for the layup should be the right foot. At the moment of release, the left knee should

be higher than the right knee, and the left hand should be higher than the right

hand. If the layup misses, do not dribble around the cone again; perform a follow-up

shot. In this action, the props used include cones, baskets, and basketballs.

Figure 4.3: Dribbling Layup.

• Five-point Spot Shooting. As shown in 4.4, in this action, the examinee should

shoot twice at each of the five positions. In this action, the props used include cones,

baskets, and basketballs. In this item, it is necessary not only to detect the number

of hits and misses but also to judge whether the action during shooting is standard

and whether the position during shooting is correct.
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Figure 4.4: Five-point Spot Shooting.

• Passing and Catching the Ball. As shown in 4.5. The examinee is positioned

on the left. A completed air pass is defined as: one air pass from the right to the

left, followed by a return pass from the left to the right, constituting one air pass.

A completed bounce pass is defined as: one bounce pass from the right to the left,

followed by a return pass from the left to the right, constituting one bounce pass.

Perform 2 air passes forward and 2 bounce passes backward. In this action, the

test equipment used is a basketball.

Figure 4.5: Passing and Catching the Ball.

• Front and Back Spin Dribble. As shown in 4.6. For a right turn dribble: dribble

with the right hand, pivot on the left foot, and turn clockwise to the right. For
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a left turn dribble: dribble with the left hand, pivot on the right foot, and turn

counterclockwise to the left. In this exam, the prop that appeared was a basketball.

Figure 4.6: Front and Back Spin Dribble.

• Stationary In-front Dribble. As shown in 4.7. The examinee holds the ball

with one hand and completes the preparation action. Then, they perform 10 front

dribbles. A valid dribble is defined as dribbling the ball from one hand to the other

and back again. When transferring the ball between hands, it should bounce on

the ground only once. In this exam project, the prop used is a basketball.

Figure 4.7: Stationary In-front Dribble.

• Stationary Two-hand Dribble. As shown in 4.8. The examinee holds the ball

with both hands and completes the preparation action. Then, they perform 10
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simultaneous dribbles and 10 alternating dribbles. For simultaneous dribbles, both

balls must hit the ground at the same time. For alternating dribbles, the two

basketballs should hit the ground alternately. In this exam project, the prop used

is a basketball.

Figure 4.8: Stationary Two-hand Dribble.

• Stationary Behind-the-back Dribble. As shown in 4.9. The examinee holds the

ball with one hand and completes the preparation action. Then, they perform 10

behind-the-back dribbles. A valid behind-the-back dribble is defined as dribbling

the ball at least once beside the body, then dribbling it behind the back to the other

side, where it is caught by the opposite hand. The equipment used is a basketball.

Figure 4.9: Stationary Behind-the-back Dribble.
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• Stationary Between-the-legs Dribble. As shown in 4.10. The examinee holds

the ball with one hand and completes the preparation action. Then, they perform 10

behind-the-back dribbles. A valid between-the-legs dribble is defined as dribbling

the ball at least once beside the body, then dribbling it between the legs, where

it is caught by the opposite hand. The equipment used in this examination is a

basketball.

Figure 4.10: Stationary Between-the-legs Dribble.

In such real-world scenarios, there are many target tracking situations that include

occlusion, overlapping of the same targets, lighting conditions, and more. We first trained

our own YOLOv8 tracking model on nearly 80,000 images, including target recognition

for basketballs, hoops, and cones. Then we applied this model to the dataset and finally

manually corrected the recognition and tracking results for each video. This provided a

highly challenging target tracking recognition dataset.

4.4 Experiment

To evaluate our proposed method, we conduct comprehensive experiments to show

the performance of our model when dealing with the real examination sceneries. For

our model, the first consideration is the actual application scenario. Therefore, when
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choosing comparison methods, we need to consider memory usage and inference speed.

Hence, we carefully select 8 mainstream baseline methods to compare with our proposed

model. These methods encompass both deep learning and traditional machine learning

approaches. Experiments show that our target recognition method can not only accurately

identify the correct targets in this specific scenario but also provide better data for the

re-id model, making re-id more stable.

This section first introduces the implementation details of the model and specific

parameters. Then, it presents the evaluation metrics used in this part of the experiment

and displays the performance of other baseline methods, comparing them with our

method to demonstrate the superiority of the proposed method. Finally, the ablation

studies are presented to provide a detailed explanation of how the key components of the

proposed network impact the model’s performance.

4.4.1 Implenmentation Details

We implement our trackers with Python 3.9 and PyTorch 2.2.0, and run experiments on

a server equipped with two 48GB Nvidia A40 GPUs.

Model. For our experiments, we utilize ResNet-50 He et al. (2016) as the backbone,

initialized with parameters pre-trained on ImageNet. Throughout training, the Batch-

Norm Ioffe and Szegedy (2015) layers remain static. We extract backbone features from

the fourth stage at a stride of 16. Our transformer’s design mirrors that of DETR Carion

et al. (2020), featuring 6 encoder and 6 decoder layers, which include multi-head atten-

tion layers (MHA) and feed-forward networks (FFN). The MHAs are configured with 8

heads and a width of 256, while the FFNs possess 2048 hidden units. A dropout ratio of

0.1 is applied. The bounding box prediction head, influenced by MixFormer, utilizes a

fully convolutional corner-based localization approach. It directly computes the bounding

box of the tracked object by applying multiple Conv-BN-ReLU layers to predict the
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top-left and bottom-right corners. The final bounding box coordinates are determined by

calculating the expectation of the corner probability distributions. Unlike STARK, which

relies extensively on both the encoder and decoder within a more intricate framework,

our model simplifies the approach with a fully convolutional head.

Training. The training data comes from our collected dataset, which includes 10,000

frames sampled from 500 videos. In these frames, we only labeled the position of the

basketball. This focus is due to the high likelihood of the basketball being occluded,

overlapped, or repeated in exam scenarios.

Inference. By default, the dynamic template update interval Tu is set at 10, and the

confidence threshold tau at 0.5. The inference process involves merely a forward pass

followed by a coordinate transformation that maps the search region coordinates back to

the original image coordinates, omitting any additional post-processing steps.

4.4.2 Evaluation Metrics

In this study, we employ three key evaluation metrics to measure the performance of

our basketball tracking algorithm: Area Under the Curve (AUC), Normalized Precision

(PNorm), and Precision (P). These metrics provide a comprehensive assessment of the

tracking algorithm’s effectiveness in various aspects. Below, we detail the significance

and calculation of each metric.

The AUC metric evaluates the overall performance of the tracking algorithm by

calculating the area under the Success Plot curve. The Success Plot is a graph that plots

the success rate against different overlap thresholds, where the success rate is defined

as the proportion of frames in which the overlap between the predicted bounding box

and the ground truth exceeds a certain threshold. A higher AUC value indicates better

tracking performance, reflecting a higher average success rate across all thresholds. In

this study, AUC is expressed as a percentage to facilitate comparative analysis.
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The PNorm measures the accuracy of the tracking algorithm by evaluating the average

distance between the predicted object position and the ground truth, normalized by the

size of the object. This normalization allows for fair comparison across objects and scenes

of different scales. PNorm is particularly useful for understanding how precisely the

tracker follows the object, regardless of its size. It is expressed as a percentage, with

higher values indicating higher precision and better tracking accuracy. By using PNorm,

we can assess the algorithm’s capability to maintain accurate tracking over time and

varying conditions.

The P evaluates the accuracy of the tracking algorithm by calculating the proportion

of frames where the center of the predicted bounding box is within a specified distance

from the center of the ground truth bounding box. Precision is expressed as a percentage,

representing the fraction of frames that meet this criterion. A higher Precision value

indicates better tracking accuracy. This metric provides a straightforward and intuitive

way to assess how closely the predicted positions match the actual positions of the tracked

object, making it particularly relevant for practical applications where exact positioning

is critical.

By utilizing AUC, PNorm, and P, we can obtain a holistic understanding of our

basketball tracking algorithm’s performance. AUC provides insight into the overall

success rate across various overlap thresholds, PNorm evaluates the normalized tracking

precision across different scales, and P measures the exact positional accuracy of the

tracked object. These metrics together ensure a thorough evaluation, highlighting both

the strengths and areas for improvement in our tracking approach.

4.4.3 Results and Analysis

Due to the special nature of the application scenario, we did not make comparisons

on publicly available major benchmarks. Instead, we compared with the latest object
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tracking methods using real-world datasets that we collected. Table 4.1 shows the

experimental results of different methods on real basketball dataset.

Metrics
Methods

STARK KeepTrack DTT SAOT AutoMatch TREG DualTFR TransT Our method

AUC(%) 67.0 67.0 59.9 61.5 58.1 63.8 63.4 64.8 68.2
PNorm(%) 76.5 76.6 66.8 70.8 68.4 74.0 71.9 73.7 77.6

P(%) 70.1 70.2 61.1 63.4 59.9 66.2 66.5 69.0 73.7

Table 4.1: Comparison of various methods on the dataset we collected, including
STARK Yan et al. (2021), KeepTrack Mayer et al. (2021), DTT Yu et al. (2021), SAOT Zhou
et al. (2021), AutoMatch Zhang et al. (2021), TREG Cui et al. (2021), DualTFR Xie et al.
(2021), and TransT Chen et al. (2021). Black bold text indicates the best results.

The comparison results in Table 4.1 demonstrate that our method achieves the best

performance across all three evaluation metrics: AUC, PNorm, and P, with values of 68.2,

77.6, and 73.7, respectively. We analyze the key structural components of our approach

and explain the reasons behind its superior performance compared to other methods.

Our method employs a template cropping mechanism, which significantly enhances

the adaptability of the tracking algorithm. By continuously updating the template based

on the latest visual context, our model can effectively handle variations in the appearance

of the basketball players, such as changes in posture and occlusions. This dynamic

updating helps maintain high tracking accuracy, contributing to superior performance in

AUC and PNorm.

We utilize ResNet-50, a robust convolutional neural network, for feature extraction.

ResNet-50 is known for its deep architecture and residual learning capabilities, which

allow it to capture rich and discriminative features from input images. These high-

quality features are crucial for precise object tracking, providing a solid foundation for

subsequent processing stages. The effectiveness of ResNet-50 is reflected in our method’s

overall tracking success metric AUC.

Our method leverages a Transformer Encoder and Decoder framework, which is
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highly effective for capturing both spatial and temporal dependencies. The self-attention

mechanism in the Transformer architecture enables the model to concentrate on key

input features, enhancing the accuracy of both bounding box predictions and confidence

scores. This architecture’s capability to model long-range dependencies contributes

significantly to the high PNorm score.

The Bounding Box Prediction Head is designed to predict the precise location of the

target. By using the rich features generated by the Transformer Decoder, this module

can accurately estimate the target’s bounding box. The precise bounding box predictions

lead to high performance in AUC and P, as the model consistently locates the target

accurately.

The Score Head evaluates the confidence of the predicted bounding boxes, ensuring

that only the most reliable predictions are considered. This scoring mechanism helps in

filtering out low-confidence predictions, thereby improving the overall tracking precision

and robustness. The effectiveness of the Score Head is evident in the high P and PNorm

scores, indicating reliable and accurate tracking.

4.4.4 Ablation Study

Ablation studies help understand the contribution of each component in a model by sys-

tematically removing parts and observing the impact on performance. For the proposed

basketball tracking algorithm, we will perform ablation studies on three key components:

Dynamic Template (DT), Context Template (CT), and Score Head (SH). The ablation

study results presented in Table 4.2 provide insight into the contributions of different

modules to the overall performance of our proposed tracking method.

Removing the dynamic template (DT) mechanism results in a noticeable decrease

across all performance metrics. The AUC drops by 1.9 points from 68.2 to 66.3, indicating

a reduction in overall tracking performance. The PNorm decreases by 3.4 points from
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Dataset Method AUC(%) PNorm(%) P(%)

Method without the DT 66.3 74.2 71.6

Basketball Dataset
Method without the CT 67.4 76.2 72.3
Method without the SH 67.6 76.8 72.9

Proposed method 68.2 77.6 73.7

Table 4.2: The performance of our method after removing various modules.

77.6 to 74.2, suggesting a decline in the precision of tracking over different scales. The

precision (P) also falls by 2.1 points from 73.7 to 71.6, showing that the ability to maintain

accurate target positions is compromised. This highlights the importance of dynamic

template cropping in adapting to changes in the target’s appearance and improving

tracking robustness.

Eliminating the context template (CT) causes a moderate decrease in performance

metrics. The AUC drops by 0.8 points from 68.2 to 67.4, indicating a slight reduction

in overall tracking performance. The PNorm decreases by 1.4 points from 77.6 to 76.2,

reflecting a reduction in normalized precision. The precision (P) falls by 1.4 points from

73.7 to 72.3, indicating a decrease in the accuracy of the bounding box predictions. These

results underscore the role of the context template in providing additional contextual

information that aids in accurate target localization.

Removing the score head (SH) leads to a slight drop in performance. The AUC

decreases by 0.6 points from 68.2 to 67.6, showing a minor reduction in overall tracking

performance. The PNorm falls by 0.8 points from 77.6 to 76.8, indicating a slight decline

in normalized precision. The precision (P) decreases by 0.8 points from 73.7 to 72.9,

reflecting a reduction in the reliability of the tracking results. The score head is crucial

for evaluating the confidence of the predicted bounding boxes and filtering out unreliable

predictions.
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4.5 Conclusion

This study presents a new tracking framework designed to effectively tackle the chal-

lenges of object tracking in complex sports environments, with a particular focus on

basketball examinations. Our method integrates examinee information into the track-

ing model, significantly enhancing the robustness and accuracy of target identification

and tracking, even under conditions of occlusions and overlapping identical objects. By

leveraging an encoder-decoder transformer architecture, our approach captures global

spatio-temporal feature dependencies and predicts object positions directly, providing a

more reliable and stable tracking solution compared to traditional methods. Furthermore,

we proposed a new dataset collected from real-world sports scenarios. This dataset is

specifically designed to support research in human skeleton prediction, object track-

ing, and Re-ID. The dataset offers rich annotations and diverse scenarios, making it a

valuable resource for advancing the state-of-the-art in these fields. Our experimental

results demonstrate that our tracking framework not only improves the performance and

reliability of intelligent sports examinations but also provides a robust foundation for

subsequent analytical processes such as performance evaluation and data analysis. The

continuous adaptation and learning capabilities of our system ensure that it remains

effective in dynamic and unpredictable environments, thereby supporting advanced

analytics and deeper insights into examinee performance.
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ENHANCING SKELETON-BASED HUMAN MOTION

RECOGNITION WITH LIE ALGEBRA AND

MEMRISTOR-AUGMENTED LSTM AND CNN

5.1 Introduction

As artificial intelligence evolves, particularly with advancements in deep learning neural

networks, human action recognition has found extensive applications in healthcare

Rafferty et al. (2017); Sun et al. (2022); Guo et al. (2021). Due to its wide application

in video surveillance, autonomous driving, physical education, and other fields, it can

greatly improve people’s quality of life and simplify work processes Li et al. (2022). In

the realm of human action recognition, visual approaches to represent human actions

can be broadly categorized into three groups: RGB-oriented Finn et al. (2016), skeleton-

driven, and those rooted in depth maps Liu et al. (2016a). Among them, bone-based

(skeleton-based) representations have received extensive attention due to their viewpoint

independence and ease of describing motion.

At present, the data collection technology of human body posture is becoming more
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and more mature. There are 3D bone data acquisition devices such as Kinect on the

hardware and Openpose Cao et al. (2017), which uses deep neural networks for bone

recognition and synthesis on the software level. Human skeletal data can be seamlessly

extracted from either videos or images. In the context of human action recognition,

the manner in which actions are represented is pivotal. An optimal representation

should precisely encapsulate the spatial dynamics associated with joints and bones.

Predominantly, unit quaternions and Euler angles serve as the go-to methodologies to

encapsulate human movement. However, the unit quaternion may cause numerical and

analytical difficulties, and the Euler angle will have the problem of a Vientiane lock.

Representation methods based on Lie groups and Lie algebras Vemulapalli et al. (2014)

solve these problems well and provide a more reasonable representation method for the

representation of human behavior. At the same time, using Lie algebra to represent bone

data can not only gain computational advantages, but can also be combined with standard

bone data, ignoring the effect of bone length. At the same time, the representation method

based on Lie algebra divides the human skeleton data into five parts; we can calculate

these five parts separately, and further realize the accurate judgment of an action.

At the same time, many model methods and target detection algorithms have also

been proposed for human action recognition in deep learning, including energy-relation

diagrams (ERD), 3 layers of long short-term memory (LSTM-3LR) Fragkiadaki et al.

(2015), stacked recurrent network (SRNN) Jain et al. (2016), YOLO Redmon and Farhadi

(2018), etc. These methods have made important contributions to human action recog-

nition and target detection. However, an effective model often needs to combine data

of multiple dimensions for calculations, and contains a large number of parameters,

which requires a lot of computing power, and may consume a lot of time when processing

skeleton data, which makes the model less applicable. Therefore, the model cannot

achieve a good performance when dealing with real-time streaming information.
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To address these issues, the advent of memristors has significantly contributed to

accelerating model computation as one of the branches of neuromorphic computing.

The emergence of memristors provides options for the hardware implementation of

neuromorphic computing. Memristor crossbar-based networks can achieve extremely

high parallel speeds and consumes very little energy during computation. This has

comprehensive practical value Smagulova and James (2019).

This brief applies Lie algebra and standard bone length data to represent human

skeleton data. A multi-layer LSTM recurrent neural network and CNNs are applied for

human motion recognition. Finally, the trained network weights are converted into the

crossbar-based memristor circuit, which can accelerate the network inference, reduce

energy consumption, and obtain an excellent computing performance.

Our work advances human action recognition and neuromorphic computing with

key contributions: (1) Implemented network structures with memristors, demonstrat-

ing minimal accuracy loss, and showcasing the efficiency of memristor technology in

deep learning; (2) adapted the use of Lie algebra for skeletal representation within

a memristor-based network structure for the first time, enhancing the integration of

advanced motion capture techniques with neuromorphic computing; (3) and explored

potential applications of memristors in neuromorphic computing, setting a foundation

for future low-power, high-speed computing solutions.

5.2 Proposed Method

5.2.1 Skeletal Human Motion Representation

As a fundamental problem in human action-related tasks, there are currently three

popular methods: RGB-based, depth-image-based, and bone-based methods. Considering

generality and easy availability, this paper chooses a representation method based on
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skeletal data Hu et al. (2019).

For a more refined representation of human action data, while mitigating the effect

of skeletal length variation, we’ve adopted the methodologies of Lie algebra and the

standard skeleton data representation. Lie algebras are mathematical structures es-

sential in studying continuous symmetry and differential equations. They serve as the

algebraic counterparts to Lie groups, which represent continuous transformations. A Lie

algebra is defined as a vector space equipped with a binary operation known as the Lie

bracket, adhering to bilinearity and the Jacobi identity. These properties ensure that the

algebra captures the concept of infinitesimal symmetries. Lie algebras play a crucial role

in mathematics and physics, especially in differential equations, geometry, and quantum

mechanics. As visualized in Figure 5.1, we configure the local coordinate framework for

em by imposing minimal rotation and translation adjustments to the global coordinate

setup. This results in em serving as the definitive reference for the x-axis’s position

and orientation, taking its starting joints as the coordinate’s inception point. Post this

transformation, as demonstrated in Equation (5.1), the relative positioning of en within

the localized system of em is discerned, signified as em
n . Subsequent to this, we engineer

a 3D rigid transformation articulated as

Rn,m dn,m

0 1

, where Rn,m constitutes a 3×3

rotational matrix, and dn,m is the corresponding 3D translational vector, facilitating the

shift of em to align with the position and orientation of en.

(5.1)

em
n,end

0

=

Rn,m dn,m

0 1




ln

0

0

1


.
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Figure 5.1: Lie Group Depiction of Skeletal Translation and Rotation.

In the context of this representation, em
n,end signifies the terminal joint of em

n , and ln

denotes the length of en. Analogously, by employing a distinct transformation matrix, we

ascertain em’s position within the local system of en. Consequently, given M as the total

count of bones, we derive M× (M−1) transformation matrices. From a computational

standpoint, a 3D rigid transformation can be characterized within the framework of the

special Euclidean group, denoted as SE(3). Ultimately, a skeleton can be characterized

as a trajectory in the multi-dimensional space SE(3)× ...×SE(3).

To negate the impact of varying bone lengths, which essentially eliminates the

influence of diverse body types on identical posture evaluations, we adopt a standard-

length bone data for classification. This implies that, only the rotation matrix becomes

essential for a human pose representation. Moreover, given that the human form can

be depicted as a linkage structure with five primary segments - the spine, a pair of legs,

and a pair of arms, as illustrated in Figure 2 - our focus is on computing the rotation

matrix specifically between two contiguous bones sharing a joint, rather than between

any arbitrary bones within a segment. This approach retains the inherent structure

of the skeletal framework by honoring the anatomical constraints between chains. A

subsequent advantage of this methodology is the reduced count of rotation matrices, thus
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offering potential computational efficiencies.

Figure 5.2: Schema of LSTM Unit.

Operationally, the axis-angle representation (n, θ) is initially derived as follows:

(5.2) n= cross(en, em)
∥cross(en, em)∥ ,

(5.3) θ = arccos(en · em).

Here, cross signifies the outer product, and · represents the inner product. Following

this, the rotation matrix Rn,m is inferred via the Rodriguez formula:

(5.4) Rn,m = I + sin(θ)n∧+ (1− cos(θ))n∧2.

In our discussion, I ∈R3×3 represents the identity matrix, while n∧ signifies the skew-

symmetric matrix associated with n. It’s essential to recognize that this collection of

rotation matrices is a member of the special orthogonal group SO(3). Consequently, the

skeleton can be envisioned as navigating a path in SO(3)× ...×SO(3). Given the intricate

nature of regression within the curved domain SO(3)× ...×SO(3), we aim to convert

this domain to its tangent space, which is seen as the Lie algebra SO(3)× ...×SO(3). To
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achieve this, we employ an approximate logarithm map method:

(5.5) ω(Rn,m)= 1
2sin(θ(Rn,m))


Rn,m(3,2)−Rn,m(2,3)

Rn,m(1,3)−Rn,m(3,1)

Rn,m(2,1)−Rn,m(1,2)

 ,

(5.6) θ(Rn,m)= arccos(
Trace(Rn,m)−1

2
).

In essence, the skeleton is projected onto a set of Lie algebra vectors, denoted as follows:

ω= [ω1T

1 , ...,ω1T

K1
, ...,ωCT

1 , ...,ωCT

KC
]T , where C indicates the total chains (for our setup, C =

5, which mirrors human movement) and Kc(c ∈ 1, ...,C) signifies the number of bones in

the c-th chain reduced by one.

The bone representation method we’ve employed offers dual benefits: first, it negates

the effect of bone length on the final outcomes; and second, it curtails the computational

parameter count needed for the subsequent neural network processing.

5.2.1.1 Utilizing LSTM and CNN Architectures

In pursuit of an enhanced accuracy, this study integrates both LSTM and CNN architec-

tures, as described by Li et al. (2017b), to handle data presented in the Lie algebra form.

Recognizing that human skeletal action data encompasses both temporal and spatial

dimensions, an amalgamation of LSTM and CNN networks is deemed optimal. This is

because the LSTM structure excels at amalgamating temporal context features, while

CNN thrives at spatial feature extraction Huang et al. (2023); Liu et al. (2020a); Wang

et al. (2022a).

As an advanced version of the traditional RNN, LSTM proficiently captures long-

range temporal characteristics. Importantly, it addresses the notorious gradient explosion

or vanishing challenges encountered in conventional RNNs, marking it particularly adept

for a time-series data analysis. A classic LSTM model is employed here. The concept of
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gating–encompassing the input, forget, and output gates lies at the core of the LSTM’s

functionality. The mathematical computations within the LSTM unit are articulated as

follows:

(5.7) f t =σ(Wf · [ht−1, xt]+bt),

(5.8) i t =σ(Wi · [ht−1, xt]+bi),

(5.9) C̃t = tanh(WC · [ht−1, xt]+bC),

(5.10) ot =σ(Wo · [ht−1, xt]+bo),

(5.11) Ct = f t ⊗Ct−1 + i t ⊗ C̃t,

(5.12) ht = ot ⊗ tanh(Ct).

Here, ⊗ represents the Hadamard product, Ct and ht indicate the cell and hidden

states, respectively, and f t, i t, and ot distinguish between the forget, input, and output

gates, respectively. Within the scope of this research, a tri-layered LSTM architecture is

leveraged to mine temporal features from the dataset.

As previously highlighted, the LSTM network excels at extracting features in the

temporal domain. To further amplify our model’s classification efficacy, we’ve incorporated

auxiliary network structures as delineated in Li et al. (2017b); Krizhevsky et al. (2012).

AlexNet, which is a seminal deep CNN, has demonstrated a robust performance across

various applied tasks. By integrating the capabilities of both the LSTM and AlexNet

architectures, our approach is adept at capturing the nuanced interplay between the

temporal and spatial features within the dataset. This synergy ensures that the strengths

of one network offset any limitations of the other.
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5.2.2 Memristor-based LSTM and CNN

Both LSTM and CNN networks have a very large amount of parameters, which makes

practical applications difficult. In many edge computing devices, the computing power

that meets the conditions cannot be provided. At the same time, for the future computing

systems, power consumption and speed are two goals currently pursued. Our ultimate

goal is to want low-power, fast computing devices. While neuromorphic computing has

significant advantages, it can solve complex problems while consuming very little power

and area Taha et al. (2013). This feature gives neuromorphic computing the ability to be

widely used.

In recent years, the memristor Chua (1971) has received great attention as one

of the directions of neuromorphic computing. Memristors, which are defined as mem-

ory resistors, are passive electronic components capable of retaining a voltage history,

thus embodying a non-volatile memory function. This feature facilitates their applica-

tion in neuromorphic computing systems by emulating synaptic connections. Unlike

binary-operating transistors, memristors support analog computations through variable

resistance values, enhancing the computing efficiency by enabling complex computations

within memory units, thereby minimizing the data transfer between the processors and

memory. This physical property, which can be tuned to a specific resistance value by

applying a voltage to change its conductivity, is crucial for its functionality. Remarkably,

this characteristic can be retained in the memristor even after a power down. By or-

ganizing memristors into a grid of crossbars Wen et al. (2018a); Jo et al. (2009), many

neural network computations can be performed in parallel, further leveraging the unique

capabilities of memristors in neuromorphic computing architectures.
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5.2.2.1 Memristor Crossbar

As shown in Figure 5.3, a single layer feed forward neural network is implemented by

using a 5×6 crossbar with four inputs and three outputs. Memristors are placed at the

intersections of the bar structure and represent the weights of the network. Thanks to

this special structure, the input can be processed in parallel, resulting in a faster speed

Hasan et al. (2017). Similarly, by leveraging the output from the prior crossbar layer as

the input for the subsequent one, we can construct a multi-tiered feedforward neural

network.

,

Figure 5.3: Schema of Memristor Crossbar.

5.2.2.2 Memristor-based LSTM

ANNs have become a cornerstone in the field of machine learning, mimicking the struc-

ture and function of the human brain’s neural networks. These computational models

consist of nodes or neurons, organized in layers, that process input data through a series

of transformations and connections. The most basic form of these networks includes

fully connected layers, where each neuron in one layer connects to every neuron in the

subsequent layer, thus facilitating the learning of complex patterns in the data.

The transition from theoretical neural network models to practical applications within

computer systems has been marked by significant advancements in the computational

power and algorithms. This evolution has enabled the implementation of complex neural
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network architectures, such as CNNs for image processing and RNNs for sequential

data analyses. Among these, LSTM networks, a specialized form of RNNs, have been

particularly effective in capturing long-term dependencies in the sequence data, which is

a critical aspect in fields such as natural language processing and time series forecasting.

There are already many LSTM circuits implemented with memristors. A crossbar

based LSTM architecture was proposed Wen et al. (2019), and the effectiveness of the

structure was demonstrated by a textual sentiment analysis. Then, an on-chip trained

LSTM, namely the MbLSTM, was proposed in Liu et al. (2020b) . Similar to Wen et al.

(2019), the activation functions sigmoid and tanh were approximately implemented

through intentionally designing circuit parameters. In this paper, in order to realize the

LSTM network structure, we adopt the scheme in Liu et al. (2020b). Instead, we ended

up using ex-situ training to write the trained weights into the LSTM architecture.

According to the architecture in Liu et al. (2020b), the general structure of LSTM cell

is shown in Figure 5.4. Thus we can get the following:

(5.13) ct(k)=−it(k) · [−at(k)]− [− f t(k) · ct−1(k)]

and

(5.14) ht(k)=−ot(k) · tanh(ct(k)),

where tanh in (5.14) is the approximate activation function implemented by a circuit.

Moreover, the multiplication is perfermed by existing analog multipliers. ht(k) is con-

verted to [−Vr,Vr] for the next step

(5.15) V t
h(k)= R4

R3
ht(k).
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Figure 5.4: Memristor crossbar based LSTM cell, where f , i, a, o are four memristor
based LSTM units.

5.2.2.3 Memristor-based CNN

As another auxiliary network of the overall network, CNNs can capture spatial features

well. In Yakopcic et al. (2016), the authors proposed a simulated memristor crossbar

implementation of the CNN. In this structure, the convolution of the image is not done

once, but divided into multiple iterations. Thus, considering the size of the memristor

crossbar, an image is divided into multiple inputs, and the final convolution results are

spliced to obtain the final result. Certain arrangements were made through the convolu-

tion kernel to realize the CNN structure that processed the entire picture at one time

in Yakopcic et al. (2017). However in this structure, if the size of the picture increases,

the number of memristors significantly increases, which is one of the drawbacks of this

method. Meanwhile, a new convolution method was proposed to reduce the parameters by

about 75% and reduce the number of multiplication computations for the convolutional

layers by 30% within an acceptable accuracy loss Wen et al. (2020). A fully hardware-

implemented memristor convolutional neural network was proposed in Yao et al. (2020).
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In this brief, we consider the possibility of a practical application and reduce the number

of the memristor. We adopt the structure in Yakopcic et al. (2016) to implement the CNN.

Figure 5.5 shows a single column of the memristor crossbar for performing convolution.

Same as in Yakopcic et al. (2016), we set VS1 =−1V ,VD1 = 0V ,VS2 = 0V ,VD2 = 1V , Mg

is a memristor used to control the feedback gain, σβ is the bias, and R f is the unity

gain. In this structure, the convolution kernels are determined in advance during the

network training process. Since the convolution kernel may have negative values, in

order to allow the convolution operation to process both positive and negative values, the

convolution kernel and input values are divided into two column vectors:

(5.16)
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.

As shown in (5.16), a convolution kernel will be rearranged into two column vectors, each

storing the absolute value of the original value of the convolution kernel. One column
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represents positive values and the other column represents negative values:

(5.17)
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0 0.5 0

→



0

0.5

0.3

0.5

0.8

0.5

0

0.5

0



→



0

0.5

0.3

0.5

0.8

0.5

0

0.5

0





0

−0.5

−0.3

−0.5

−0.8

−0.5

0

−0.5

0



.

As shown in (5.17), for input x, the permutation method is different. x is divided into two

columns, each containing all the values in x, one positive and another negative.

Figure 5.5: A Single Column of Memristor Crossbar for Performing Convolution.

Finally, through (5.18), the convolution kernels are converted to conductivity values:

(5.18) σ± = (σmax −σmin)
max(|W |) W±+σmin.

For the final output activation function sigmoid, a circuit simulation is also used

here to approximate the sigmoid function Wen et al. (2019); Liu et al. (2020b); Yakopcic
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et al. (2016). At this point, we implement a single convolution operation. Based on the

convolution operation under this structure, it is impossible to process all input values

at one time; therefore, it is necessary to divide a feature map into multiple inputs, then

ultimately splicing to obtain the result of the convolution operation. To some extent, this

approach reduces the space of the memristor, sacrificing a certain amount of time.

5.2.2.4 Dataset

In this brief, we use H3.6M dataset Ionescu et al. (2013), which contains 3.6 million 3D

skeleton data of human action sequences, and the NTU RGB+D Dataset Shahroudy et al.

(2016), which is a comprehensive collection encompassing 56,578 samples of 60 distinct

action categories. These actions are captured from multiple perspectives, including a

frontal view, two lateral views, and oblique views at 45 degrees to the left and right. The

dataset features performances by 40 participants, whose ages range from 10 to 35 years,

providing a diverse basis for action recognition research. According to the method from

Hu et al. (2019); Du et al. (2015), we transformed the 3D data into Lie algebras; in order

to exclude the effect of bone length on the classification, we used a uniform standard

bone length.

5.2.3 System Structure Overview

The architecture of our system is depicted in Figure 5.6. Initially, the skeleton data

from the dataset is transformed into the Lie algebra representation. This approach

diverges from traditional methods by utilizing skeletal data encoded in the Lie algebra,

as opposed to the direct use of the skeleton data. Inspired by the methodologies in Li et al.

(2017b,a); Wang et al. (2018b); Hu et al. (2019), we compute temporal-domain features

(TPF) from the transformed data. A key modification in our process is reshaping the Lie

algebra-encoded skeletal data to align with the TPF extraction techniques described in
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these references, ensuring our method remains consistent with established practices.

Unlike, Li et al. (2017b) where the LSTM network inputs were spatial-domain features

(SPF), our model’s inputs are action sequences transformed into a Lie algebra.

Figure 5.6: Overview of the Proposed System.

In our model, frame indices are denoted by i ∈ (1, ...,T) and elements within the Lie

algebra vector ω by j ∈ (1, ...,K), where K =∑C
c=1 Kc. For simplicity, we refer to elements

in ω as bones. Our three-layer LSTM architecture processes this data in stages: the first

layer captures the overall motion information from the bones represented in Lie algebra;

the second layer employs a dedicated LSTM to model the spine; and the final layer uses

another set of LSTMs to analyze the remaining skeletal parts.

For computing the final output score of each network, we adopt a multiply-score

fusion method as described in (5.19):

(5.19) label = Fin(max(v1 ◦v2 · · ·v9 ◦v10)).

In this context, v represents the score vector, with ◦ signifying element-wise multiplica-

tion. Meanwhile, Fin identifies the index corresponding to the maximum element.

First, we train the weights of the network via software network, and then map

the weights to the memristor circuit through a transformation. The resulting circuit

106



5.2. PROPOSED METHOD

achieves a significant improvement in the inference speed over the software-implemented

network.

5.2.4 Experiment and Result

The Human 3.6M dataset contains 3.6 million 3D human pose data, including 17 scenes:

discussion, smoking, taking pictures, talking on the phone, and so on. First, we convert

the dataset to a Lie algebra representation. Compared with the original representation,

the human pose data represented by the Lie algebra is more conducive to a calculation,

and we use the standard bone length to replace the original bone length, excluding the

influence of bone length on classification.

Then, we implement and train networks by Pytorch Paszke et al. (2019). The result

is shown in Table 5.1. We adopt the network architecture in Li et al. (2017b), which is

combined with three LSTM networks and seven multi-layer CNNs. We make a small

change in the front part of the network structure. For the input to the LSTM network,

our structure contains the transformed Lie algebra. At the same time, we also adopt the

method of calculating a TPF for the input of the CNN network. We train the weights of

the network on the software and obtain an accuracy rate close to Ref. Li et al. (2017b).

In this section of our study, we employ a simulated memristor architecture using

MemTorch Lammie et al. (2022), a simulation platform for memristive deep learning

systems that seamlessly integrates with the PyTorch machine learning (ML) library.

MemTorch facilitates the emulation of memristor crossbars and enables direct interaction

with PyTorch, allowing for the straightforward mapping of network structures such as

LSTM and CNN onto the crossbar architecture. We utilize MemTorch’s capability to map

both the network structure and the weights for simulated inference, opting to utilize

perfect-state memristor structures despite MemTorch’s support for modeling imperfect

memristor properties.
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Dataset Method Cross Subject Cross View Accuracy

H3.6M

All-Mul-Score fusion
(LSTM+CNN)

(Software Implementation)
81.78% 88.97% 86.31%

All-Mul-Score fusion
(LSTM+CNN)

(Memristor Simulation)
80.67% 88.44% 85.98%

NTU RGB+D

All-Mul-Score fusion
(LSTM+CNN)

(Software Implementation)
82.78% 91.13% 86.53%

All-Mul-Score fusion
(LSTM+CNN)

(Memristor Simulation)
79.80% 87.97% 83.31%

Table 5.1: Experimental results on H3.6M and NTU RGB+D Datasets. A large number
of experiments have shown that the structure based on Memristors consumes much less
energy than traditional software-simulated neural networks Wen et al. (2019); Liu et al.
(2015); Wen et al. (2018b).

To further validate the acceleration capabilities of memristors, we conduct tests

on individual neurons using a simulated circuit setup to calculate power consumption.

In these tests, we focus on the maximum values of the input and internal weights

derived from our trained model. For a fair comparison, we use these maximum weights

throughout the simulations. The results, summarized in Table 5.2, underscore the

significant reduction in hardware complexity and power consumption achieved with

memristor-based synapses compared to traditional CMOS-based designs.

CMOS-based Memristor-based

Hardware Units per Synapse 16 1
Max Power of A Synapse (µW) ≈76.0 9.7

Table 5.2: Comparison of Power Consumption for Single Neuron: CMOS-based vs.
Memristor-based Systems.

Drawing on insights from existing literature Budiman et al. (2018); Sarwar et al.

(2013); Wen et al. (2019, 2018a), it is essential to note that employing actual memristor

structures can further reduce power consumption and accelerate inference speeds com-
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pared to the simulated memristor structures used in our study. However, within the scope

of this research, we choose to focus on the simulation aspects of memristor-based systems,

given the constraints of our experimental setup, rather than empirically demonstrating

these potential enhancements.

5.3 Conclusions

This study explores the application of memristor-based circuits to simulate neural

networks in the context of human action recognition using skeletal data. By leveraging

Lie algebra and standardized bone length data for an efficient representation of human

skeletons, we demonstrate the feasibility of using memristor technology to approximate

the functionality of multi-layer LSTM recurrent neural networks combined with CNNs.

Our work contributes to the field by showcasing a novel use of memristor circuits for

network inference, which offers a promising avenue for reducing energy consumption

and accelerating inference times in deep learning models.

A pivotal aspect of our research focuses on the construction of networks using mem-

ristor circuits, which are capable of achieving performance metrics closely approximating

those of software-simulated networks. Although our memristor network implementa-

tion remains within the realm of the simulation, the inherent efficiency and low power

consumption of memristor structures are well-documented. This approach not only ad-

dresses critical challenges in deploying deep learning models for real-time applications,

but also highlights the potential of the memristor technology as a sustainable and

efficient computing alternative to traditional, power-intensive computational methods.

Furthermore, we illustrate that it is possible to maintain a balance between computa-

tional efficiency and model accuracy, which is often a significant challenge in optimizing

deep learning models. The ability to achieve near-original performance metrics with
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memristor-based simulations underscores the potential of our method for broad appli-

cations in various sectors, including healthcare, autonomous driving, surveillance, and

sports analytics.

In conclusion, our research highlights the viability of memristor-based deep learning

systems for human action recognition, marking a step towards the practical implemen-

tation of energy-efficient and fast neural network simulations. The implications of our

work are far-reaching, suggesting a future where memristor technologies play crucial

roles in enabling real-time, energy-efficient, and accurate computational tasks across

diverse applications.
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6
VIDEO BASED INTELLIGENT SPORTS ANALYSIS SYSTEM

FOR OBJECTIVE SPORTS EXAMINATIONS

Ensuring the practical applicability and scalability of proposed methods in real-world

sports examination scenarios is a significant challenge. Despite advancements in method-

ologies addressing key issues in sports examinations, their real-world application and

adaptability remain under-explored. This chapter aims to investigate the practical imple-

mentation and scalability of these methods, with a focus on basketball skill assessments.

By evaluating the performance and robustness of the proposed intelligent sports ex-

amination system in real-world scenarios, we aim to identify potential barriers and

requirements for practical deployment. This includes understanding the variability in

examination conditions, the diversity of sports disciplines, and the logistical aspects of

scaling these systems.

In this chapter, we first discuss the motivations and challenges of deploying intelligent

sports examination systems in Section 6.1. Section 6.2 provides a review of related work,

highlighting existing solutions and their limitations. Section 6.3 introduces the design of

our modular and scalable intelligent sports examination system, detailing the integration

111



CHAPTER 6. VIDEO BASED INTELLIGENT SPORTS ANALYSIS SYSTEM FOR
OBJECTIVE SPORTS EXAMINATIONS

of robust keypoint prediction, accurate object tracking, and efficient computational

processing. Section 6.4 describes the datasets used for evaluating the system, covering

both basketball skill assessments and other sports scenarios to test adaptability. In

Section 6.5, we present the experiments and evaluations conducted to assess the system’s

performance and scalability in real-world conditions. Section 6.6 offers a discussion on

the findings, addressing the practical challenges and proposing solutions for effective

deployment. Finally, Section 6.7 concludes the chapter, summarizing the key insights

and future directions for research.

This chapter aims to develop and test a comprehensive, modular intelligent sports

examination system that ensures practical applicability and adaptability across diverse

sports and dynamic environments, ultimately facilitating the transition from theoretical

advancements to real-world implementation.

6.1 Introduction

Sports exams are widely used for evaluating the performance of athletes in various

sports disciplines, including basketball, soccer, and track and field. These exams are

typically conducted by human examiners who evaluate the performance of athletes based

on specific criteria. However, such evaluations can be subjective, leading to inaccurate

results and unfair outcomes. In recent years, computer vision and machine learning

techniques have emerged as promising solutions to address the subjectivity and inac-

curacy issues associated with sports exams. These techniques can help in tracking the

movements of athletes, identifying errors, and providing objective and accurate scores.

One critical aspect of computer vision and machine learning techniques in sports

exams is the ability to track the movements of athletes and objects. Object tracking is a

technique that involves detecting and tracking the position of objects in a video sequence.

112



6.1. INTRODUCTION

It is widely used in sports exams to track the movements of balls, hurdles, and other

objects. Several studies have proposed different object tracking algorithms, such as the

kernelized correlation filter-based approach Henriques et al. (2014), deep learning-based

approaches Nam and Han (2016), and multi-object tracking approaches Berclaz et al.

(2011).

Another crucial aspect of computer vision and machine learning techniques in sports

exams is the ability to predict human body movements accurately. Human body prediction

involves identifying the position and orientation of body parts in a video sequence.

One widely used technique for human body prediction is skeleton prediction. Skeleton

prediction involves detecting the position and orientation of human joints in a video

sequence. Several studies have proposed different skeleton prediction algorithms, such

as the graph-based approach Shotton et al. (2011), the physics-based approach Poppe

(2007), and the deep learning-based approach Cao et al. (2017).

Moreover, action recognition is another important aspect of computer vision and

machine learning techniques in sports exams. Action recognition involves identifying

the type of movement performed by an athlete in a video sequence. Several studies

have proposed different action recognition algorithms, such as the deep learning-based

approach Carreira and Zisserman (2017), the 3D convolutional neural network-based

approach Tran et al. (2015), and the spatiotemporal attention-based approach Girdhar

et al. (2017).

However, the integration of these techniques into an intelligent sports analysis

system for objective sports exams remains a challenging task. One of the primary

challenges is the interference-resistant person and object tracking in the exam scenarios.

Another challenge is the accurate classification of bone motion sequences and error point

identification. Therefore, this study aims to develop an intelligent sports analysis system

for objective sports exams using computer vision and machine learning techniques. The
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proposed system will address challenges such as interference-resistant person and object

tracking, accurate classification of bone motion sequences, and error point identification.

The system will be tested using basketball exams as an example, and its potential

applications will be evaluated.

6.2 System Design

This section provides an overview of our system design, explaining the rationale and

methodology behind our architectural choices. Our goal is to create a highly available,

modular, scalable, and portable system for various sports examination scenarios. By

adhering to these principles, we aim to develop a robust platform that meets current

needs and anticipates future advancements. The architecture emphasizes real-world

applicability and operational efficiency, focusing on high availability to minimize down-

time, modularity for easy upgrades and maintenance, and scalability to handle varying

loads. Portability ensures the system can be adapted to different sports examinations

with minimal reconfiguration. Our design leverages cutting-edge technologies and best

practices in software engineering. As illustrated in Figure 6.1, the system’s structure

begins with the front end collecting video data and exam information, while the backend

interface processes requests from the front end. The prediction module includes human

key point prediction and object tracking. Results are sent to the Rule module for scor-

ing, then visualized and returned to the front end. The following sections detail each

system component, their roles, interactions, and the underlying technologies driving

their functionality, demonstrating how they collectively achieve reliability, efficiency, and

adaptability.

Front-End System. As illustrated in Figure 6.2, the front-end system is a sophis-

ticated web application developed using Java, designed to provide an interactive and

user-friendly interface. It is primarily responsible for facilitating seamless interaction
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Figure 6.1: This figure illustrates the system’s structure. The front end collects video data
and exam information, while the backend interface processes requests from the front
end. The prediction module includes human key point prediction and object tracking.
Results are sent to the Rule module for scoring, then visualized and returned to the front
end.

between the users and the underlying hardware and software components. The system’s

functionalities can be categorized into several key tasks:

• Camera Interaction and Video Recording: The front-end system interfaces

with multiple cameras, leveraging their APIs to initiate and control video recording

sessions. This involves capturing real-time video streams, handling synchroniza-

tion issues, and ensuring that the video data is correctly encoded and stored for

subsequent processing.

• Video Playback and Feedback: Users can review recorded videos through the

front-end interface. This feature includes capabilities for playing back videos,

navigating through video timelines, and cropping videos as needed. The system

provides intuitive controls and feedback mechanisms to ensure a smooth user

experience.

• Submission of Examination Data: The system allows users to submit examination-
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related information, including the recorded video footage, to the back-end APIs.

This process involves packaging the video data along with relevant metadata,

securely transmitting the data over the network, and handling any potential

transmission errors or interruptions.

• Score Calculation Requests: Once the examination data is submitted, the front-

end system sends requests to the back-end for score calculation. This involves

invoking RESTful APIs, handling asynchronous responses, and ensuring that the

requests are processed efficiently.

• Result Video Playback and Score Display: After the back-end processes the

examination data and computes the scores, the front-end retrieves and displays

the results. This includes playing the result videos, if applicable, and presenting

detailed score statistics through an interactive and visually appealing interface.

The system ensures that the data is presented in a clear and comprehensible

manner, facilitating easy interpretation by the users.

The architecture of the front-end system is designed to be modular and extensible,

allowing for easy integration of new features and components. It employs modern web

development frameworks and follows best practices in terms of security, performance,

and usability. The use of Java provides robustness and portability, ensuring that the

system can be deployed across various platforms with minimal modifications.

Overall, the front-end system plays a crucial role in bridging the gap between the

users and the complex back-end processing, providing an efficient, reliable, and user-

centric interface for the examination process.

Backend System Interface. The Backend System Interface, shown in Figure 6.3, is

crucial for seamless interaction with the front-end system. It is responsible for handling

requests from the front end, which include examination data, video information, and
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Figure 6.2: This diagram depicts the overall structure of the front-end system. This
system is responsible for interacting with cameras, recording videos, playing back videos,
and submitting exam information functions, while also interacting with users through a
web page.

other relevant statistics. This section details the backend’s role in processing these

requests and interfacing with subsequent deep learning models.

Upon receiving examination requests from the front end, the backend system initiates

a series of preprocessing tasks. These tasks include resizing the video to ensure uniform

input dimensions and extracting individual frames from the video. This preprocessing

step is crucial for preparing the video data for analysis by deep learning models.

The backend system is built using Flask, a lightweight and efficient web framework.

Flask provides a robust foundation for building scalable and maintainable web appli-

cations. It enables the backend to handle multiple concurrent requests and ensures

efficient communication with the front-end system.

The interaction between the backend system and the deep learning models is another

key functionality. Once the video data is preprocessed, the backend forwards it to the
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Figure 6.3: This diagram depicts the backend system API structure. The API interface
built with Flask can interact with the frontend system, receive video and exam informa-
tion, preprocess videos, and provide APIs for interacting with the backend deep learning
module.

appropriate deep learning models for further analysis. The results from these models are

then processed and sent back to the front end, providing users with detailed examination

scores and statistics.

By leveraging Flask, the backend system ensures a modular and extensible architec-

ture, allowing for easy integration of additional features and models in the future. This

design choice also facilitates the maintenance and scalability of the system, ensuring it

can handle increased loads and new examination scenarios as needed.

In summary, the Backend System Interface plays a pivotal role in the overall system

architecture by managing the flow of data between the front-end interface and the deep

learning models. Its design ensures efficient preprocessing, reliable communication, and

scalability, aligning with the system’s goals of high availability and adaptability.

Prediction Module. The Prediction Module consists of two key components: the
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Human Skeleton Prediction Module and the Object Tracking Module, as shown in Figure

6.4. These components are designed to handle the diverse requirements of various exam-

ination scenarios by performing specialized predictions based on the video information

and frames received from the backend system.

Figure 6.4: This image describes the structure of the Prediction Module. We use two deep
learning modules, namely the human skeleton prediction module and the target tracking
module, while using Jemalloc as memory assistance to help reclaim memory during the
inference process.

The Human Skeleton Prediction Module is responsible for analyzing the human

body’s movements and postures. This module utilizes advanced deep learning models

to predict the skeletal structure from the input video frames. The predicted skeletal

data is crucial for assessing the performance and techniques of examinees in sports

examinations, providing detailed insights into their movements and form.

The Object Tracking Module focuses on identifying and tracking specific objects

within the video frames. The objects to be tracked vary depending on the nature of the

examination. For instance, in a basketball examination, the module would track the ball,

whereas in a running test, it might track the examinee’s position relative to the track.
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This module employs sophisticated algorithms to maintain accurate tracking throughout

the video, ensuring reliable and consistent results.

Both modules receive video information and frames from the backend system and

perform their respective predictions. The outputs of these predictions are then used to

generate detailed examination scores and feedback, which are sent back to the front end

for user review.

During practical deployment, we encountered issues with memory management,

particularly with the deep learning models experiencing delayed memory reclamation,

leading to memory crashes. To address this, we integrated Jemalloc, a memory allocator

known for its efficient handling of memory fragmentation and allocation overheads.

Jemalloc significantly improves memory management, ensuring timely memory reclama-

tion and preventing crashes, thereby enhancing the overall stability and performance of

the Prediction Module.

In summary, the Prediction Module is a critical component of the system, designed to

provide accurate and reliable predictions through its Human Skeleton Prediction and

Object Tracking modules. By addressing memory management challenges with Jemalloc,

we ensure that the module operates efficiently, contributing to the system’s goals of high

availability and robustness.

Rule Module. The Rule Module is a critical component designed to address the

limitations of traditional deep learning models in accurately assessing examination

performance under diverse conditions. This module encompasses a variety of tasks

such as video stream classification and skeleton sequence classification. However, in

practical examination scenarios, these models often face challenges such as the inability

to precisely evaluate the completion of actions and the requirement for extensive, high-

quality datasets, which are difficult to obtain.
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Examinations demand not only the evaluation of whether actions are performed

correctly but also the assessment of the usage of examination tools. For instance, in a

basketball examination, the evaluation involves the examinee’s position, gestures, the

positions of the basketball and the hoop, and whether the shot is successful. Traditional

deep learning models struggle to address these specific needs effectively.

Therefore, our system employs the Rule Module, which consists of a series of heuristic

rules to perform these assessments. This module receives the prediction results from the

Prediction Module, including the skeleton sequences and object tracking sequences. By

aligning these two sequences, the Rule Module evaluates each frame based on predefined

rules tailored to the specific examination requirements.

For instance, in a basketball examination, the module would check the alignment

of the skeleton sequence (indicating the examinee’s movements and gestures) with the

object tracking sequence (indicating the positions of the basketball and hoop). The rules

might include criteria such as the positioning of the examinee‚Äôs hands relative to the

ball, the trajectory of the ball, and whether the ball passes through the hoop. Each frame

is assessed to determine if the action is successful or if any violations occur.

By using a rule-based approach, the system can flexibly adapt to various examination

scenarios without the need for extensive and precise datasets required by traditional

deep learning models. This approach ensures that the module can effectively evaluate

complex actions and tool usage, providing accurate and reliable results.

In summary, the Rule Module plays a vital role in the system by leveraging heuristic

rules to overcome the limitations of deep learning models. It ensures comprehensive

assessment by aligning and evaluating the skeleton and object tracking sequences,

thereby meeting the specific requirements of various sports examinations.

Visualization Module. The Visualization Module is a crucial component designed to
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enhance user interaction by providing a clear and comprehensive visual representation of

the examination results. This module directly receives the output from the Rule Module

and transforms the raw data into an easily interpretable format.

Upon receiving the scores and penalty information from the Rule Module, the Visu-

alization Module overlays this information onto the corresponding video frames. This

includes not only the final scores but also specific deductions or penalties incurred during

the examination. By integrating these visual cues directly into the video, the system

provides an intuitive understanding of the performance and areas for improvement.

Additionally, the Visualization Module visualizes the skeletal data and object tracking

information. This involves rendering the predicted skeletal structures and tracked

objects within the video frames, allowing users to see the alignment and accuracy of

their movements and the interaction with the examination tools. This visual feedback is

crucial for users to understand the precise mechanics of their actions and how they were

evaluated.

The key functionalities of the Visualization Module include:

• Overlaying Scores and Penalties: The module annotates the video with scores

and penalties, highlighting specific moments where points were gained or lost.

This provides a clear and immediate understanding of the examinee’s performance

throughout the video.

• Visualizing Skeletal Information: The predicted skeletal data is overlaid on the

video, showing the user’s movements in a clear and structured manner. This helps

in analyzing posture and movement accuracy.

• Visualizing Object Tracking Information: The tracked objects, such as balls or

other tools, are highlighted within the video frames, illustrating their interaction
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with the examinee. This visualization aids in understanding the context of the

performance relative to the examination tools.

By providing these visual enhancements, the Visualization Module ensures that

users can easily interpret the examination results and understand the detailed aspects

of their performance. This module plays a vital role in making the system user-friendly

and effective for training and feedback purposes.

In summary, the Visualization Module transforms the raw output from the Rule

Module into a comprehensive visual format. It overlays scores, penalties, skeletal data,

and object tracking information onto the video, offering users clear and actionable

insights into their performance. This visualization is essential for effective feedback and

continuous improvement in various sports examinations.

6.3 Dataset

To evaluate our system, we collect a dataset from a real youth level three basketball

examination conducted in Shanghai, China. As illustrated in Figure 6.5, the examination

comprises nine different items, each recorded using standard cameras with 1080P

resolution at 30 FPS. The data collection process is meticulously designed to capture

comprehensive information across multiple dimensions of the examination. The dataset,

which we collect, is detailed in Chapter 4, Section 4.3. The shooting angle of the video is

as depicted in the figure.

The examination takes place across five distinct areas on two courts, with each

item being recorded from various angles to ensure a comprehensive dataset. Typically,

2-3 cameras are used per item to capture different perspectives, providing a robust

foundation for subsequent analysis. This multi-angle recording setup not only enhances
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Figure 6.5: Data collection process for a youth level three basketball exam, consisting of
9 items across 5 areas on 2 courts. Each item is recorded from different angles using 2-3
standard cameras.

the accuracy of our predictions but also ensures that critical moments and actions are

adequately documented.

Additionally, this dataset includes the manual scoring results from professional

examiners. These scores serve as a benchmark against which we compare the system’s

automated scoring. By comparing the system’s results with the manually assigned

scores, we evaluate the accuracy and reliability of our automated scoring mechanism.

This comparison is crucial for validating the effectiveness of our system in real-world

applications.

By leveraging this carefully curated dataset, we are able to test and validate the

system under realistic conditions, reflecting the challenges and dynamics of actual

basketball examinations. This real-world data is essential for assessing the effectiveness

and reliability of our system, ensuring that it performs well in practical applications.

6.3.1 Exam Items and Deduct Score Rules

The exam items include: Triangle Slide Defense, Dribbling Layup, Five-point Spot

Shooting, Passing and Catching the Ball, Front and Back Spin Dribble, Stationary In-

front Dribble, Stationary Two-hand Dribble, Stationary Behind-the-back Dribble, and
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Figure 6.6: We use the Alphapose Halpe 26 keypoints Fang et al. (2022) model.

Stationary Between-the-legs Dribble. In this dataset, we encode each rule based on the

deduction rules in real exam scenarios to form a system of rule modules. To track and

analyze these movements, we utilize the Alphapose Halpe 26 keypoints model, as shown

in Figure 6.6, ensuring accurate detection of critical points for scoring. The deduction

rules of each exam item are as follows:

6.3.1.1 Triangle Slide Defense.

As shown in Figure 4.2, the Triangle Slide Defense includes 14 deduction points:

1. Lowering the head in the basic defensive stance: Identified when the angle formed

by points 17-18-19 in the skeleton recognition model is less than 130 degrees.

2. Failing to open arms in the basic defensive stance: Identified when the angle under

the armpit is less than 30 degrees.

3. Incorrect knee angle in the basic defensive stance: Recognized when the left knee

angle is greater than 170 degrees or the right knee angle is greater than 140 degrees.

4. Feet not forming an outward ’V’ shape in the basic defensive stance: Detected
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when the distance between points 15 and 16 is more than 1.3 times the distance between

points 20 and 21.

5. Incorrect number of slides in the triangle slide defense: Deducted if the touch

sequence 0-1-2-0-2-1-0 is not completed.

6. Incorrect sliding path: Deducted if the touch sequence does not follow the required

order within the seven slides.

7. Excessive vertical movement while sliding: Identified when the vertical head

movement exceeds 50 units between frames.

8. Lowering the head while sliding: Detected similarly to the basic stance using the

angle of points 17-18-19.

9. Feet not forming an outward ’V’ shape and touching each other during the horizon-

tal slide: Identified using the same criteria for the ’V’ shape and if the distance between

points 24 and 25 is less than 30 units.

10. Failing to raise hands to interfere during the horizontal slide: Identified if the

arms are not opened as specified.

11. Feet not forming a ’T’ shape and touching each other during the upward slide:

Recognized when the foot angle is less than 30 degrees with the heel as the vertex.

12. Toes not pointing in the direction of the backward step: Identified if the toe

direction angle relative to the line connecting points 2 and 0 is greater than 45 degrees.

13. Failing to raise hands to interfere during the upward slide.

14. Failing to raise hands to interfere during the backward slide.

6.3.1.2 Dribbling Layup.

As shown in Figure 4.3, the dribbling layup includes 9 deduction points:
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1. Missed layup: Judged as a layup action, but the ball did not go in.

2. Missed shot: Judged as a shot action, but the ball did not go in.

3. Layup violation - carrying: Judged at the moment of the layup, tracing back 10

frames after bypassing the cone. First, determine the dribbling hand; if the ball is above

the hand and both the hand and ball are above the waist, it is considered a carry.

4. Layup violation - traveling: Judged at the moment of the layup, tracing back 10

frames after bypassing the cone. Count the number of dribbles and steps (looking for

peaks in the distance between the feet for each step taken). Compare the dribble times

with the steps; if there are three steps between two dribbles, it triggers a traveling

violation.

5. Layup with incorrect hand: Judged at the moment of the layup, tracing back 10

frames after bypassing the cone. First, determine if the cone is the near or far one. During

this process, measure the distance between the ball and each hand. For each frame, if

the ball is closer to the left hand, add 1 to the left hand score; if closer to the right hand,

add 1 to the right hand score. If the dribbling hand is not the outside hand, it triggers a

violation.

6. Incorrect takeoff foot for layup: Judged at the moment of the layup, tracing back

10 frames after bypassing the cone. First, determine if the cone is the near or far one. If

bypassing the far cone and the left knee is lower than the right at the moment of the

layup, it triggers a violation. If bypassing the near cone and the right knee is lower than

the left, it triggers a violation.

7. Layup with incorrect hand: Judged at the moment of the layup, tracing back 10

frames after bypassing the cone. First, determine if the cone is the near or far one. If

bypassing the far cone and the left hand is lower than the right at the moment of the

layup, it triggers a violation. If bypassing the near cone and the right hand is lower than
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the left, it triggers a violation.

8. Failing to bypass the cone from the outside: Draw the candidate’s X-axis chart to

find the valley, indicating the turning point. Determine whether the candidate is to the

left or right of the cone. If to the right, it triggers a violation for not bypassing the cone

from the outside.

9. Excessive distance from the cone: After determining the candidate has bypassed

the cone from the outside, check the difference between the candidate’s x-coordinate and

the cone’s x-coordinate. If the difference exceeds 80, it is considered too far.

6.3.1.3 Five-point Spot Shooting.

As shown in Figure 4.4, the dribbling layup includes 4 deduction points:

1. Incorrect foot position in standard shooting stance: When the candidate finishes

shooting from position N, but the next shot is not from position N+1, it triggers a

violation.

2. Incorrect knee angle in standard shooting stance: If the candidate’s knee angle does

not drop below 175 degrees from arriving at each spot to initiating the shooting action, it

triggers a violation. This parameter can be custom-adjusted in the configuration file.

3. No wrist flexion upon release: Due to hand recognition issues, accurate judgment

is difficult. Currently, if the predicted angle between the hand and the arm exceeds 180

degrees 5 frames after the ball is released, it is considered incorrect.

4. Missed shot: The ball is shot but does not go in.

6.3.1.4 Passing and Catching the Ball.

As shown in Figure 4.5, the passing and catching the ball includes 9 deduction points:

1. Incorrect number of passes: Not satisfying the requirement of 2 aerial passes or 2
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bounce passes. This parameter can be custom-adjusted in the configuration file.

2. Incorrect knee angle in basic stance: Before starting the pass, if the candidate’s

knee angle in the skeleton recognition model is greater than 170 degrees, it is considered

incorrect. This parameter can be custom-adjusted in the configuration file.

3. Failure to shift weight forward in basic stance: Before starting the pass, if the side

waist angle in the skeleton recognition model is greater than 170 degrees, it triggers a

violation. This parameter can be custom-adjusted in the configuration file.

4. Elbows not abducted in basic stance: Based on predicted values, if the underarm

angle is set greater than 5 degrees, it is considered incorrect. This parameter can be

custom-adjusted in the configuration file.

5. Pass deviating from the correct trajectory: If at the moment of catching the ball, the

horizontal distance between the catcher’s feet and the passer’s feet exceeds 70 units, it is

considered that the ball’s trajectory is incorrect. This parameter can be custom-adjusted

in the configuration file.

6. Arms not extended to receive the ball: If the angle of the receiver’s elbow joint is

less than 90 degrees when catching the ball, it triggers a violation. This parameter can

be custom-adjusted in the configuration file.

7. Failure to cushion the ball to the chest or abdomen after touching the ball: Tracing

back to the last catch at the moment of passing the ball. If the distance between the

ball’s center and any point on the hip joint is consistently greater than 100 units, it is

considered that the ball was not cushioned to the chest or abdomen. This parameter can

be custom-adjusted in the configuration file.

8. Failure to return to basic stance after catching the ball: Tracing back to the last

catch at the moment of passing the ball. If the basic stance requirements (knee angle

and forward weight shift) are not met, it triggers a violation. This parameter can be
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custom-adjusted in the configuration file.

9. Dropping the ball after catching: Tracing back to the last catch at the moment of

passing the ball. If the distance between the ball and the left heel exceeds 300 units, it is

considered a dropped ball. This parameter can be custom-adjusted in the configuration

file.

6.3.1.5 Front and Back Spin Dribble, Stationary In-front Dribble, Stationary

Two-hand Dribble, Stationary Behind-the-back Dribble, and

Stationary Between-the-legs Dribble.

As shown in Figures 4.6, 4.7, 4.8, 4.9, and 4.10, these items each include 9 deduction

points:

1. Incorrect dribbling action: Triggered when the corresponding action is performed

incorrectly.

2. Incorrect number of dribbles: Triggered when the required number of dribbles is

insufficient.

3. Basic stance holding the ball - feet not shoulder-width apart: If the shoulder width

is 3.5 times greater than the distance between the heels, it is considered incorrect. This

parameter can be custom-adjusted in the configuration file.

4. Basic stance holding the ball - incorrect hip angle: If the hip angle is greater than

175 degrees, it is considered incorrect. This parameter can be custom-adjusted in the

configuration file.

5. Basic stance holding the ball - incorrect knee angle: If the left knee angle is greater

than 175 degrees or the right knee angle is greater than 170 degrees, it is considered

incorrect. This parameter can be custom-adjusted in the configuration file.

6. Basic stance holding the ball - elbows not abducted: If the underarm angle is less
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than 5 degrees while holding the ball, it is considered incorrect. This parameter can be

custom-adjusted in the configuration file.

7. Dribbling with head down: If the angle formed by points 17-18-19 in the skeleton

recognition model is less than 130 degrees, it is considered head down. This parameter

can be custom-adjusted in the configuration file.

8. Dribbling violation - carrying: If the ball appears above the waist and the distance

between the hand and the ball’s center is less than the ball’s radius plus 10 units, with the

ball above either hand, it is considered carrying. This parameter can be custom-adjusted

in the configuration file.

9. Dropping the ball: If the distance between the ball and the left foot exceeds 300

units, it is considered a dropped ball. This parameter takes into account the dynamic

dribbling distance and is only triggered for significant deviations. This parameter can be

custom-adjusted in the configuration file.

6.4 Experiments and Evaluation

Our experiments are conducted on an NVIDIA GeForce RTX 3090 GPU with 24GB of

memory. The computational tasks are set up to run in parallel, with a maximum of

four tasks running simultaneously. When the number of tasks exceeds four, they are

queued and processed sequentially. This setup ensures efficient utilization of the GPU’s

capabilities while managing resource constraints effectively. Compared to the time taken

for manual scoring, our program is on average more than five times faster.

The results of our automated scoring system are compared against the manual scoring

results provided by professional examiners. The comparative analysis is presented in

Table 6.1. The table illustrates the correlation and discrepancies between the automated

and manual scores, highlighting the accuracy and reliability of our system.
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Action Accuracy

Y+BoT+H26 CT+H26 Y+BoT+KE CT+KE (Ours)

Triangle Slide Defense (14) 0.81 0.81 0.88 0.95
Five-point Spot Shooting (4) 0.40 0.78 0.57 0.90
Passing and Catching the Ball (9) 0.66 0.85 0.69 0.92
Front and Back Spin Dribble (9) 0.46 0.81 0.59 0.88
Stationary In-front Dribble (9) 0.63 0.74 0.70 0.91
Stationary Two-hand Dribble (9) 0.85 0.85 0.85 0.95
Stationary Behind-the-back Dribble (9) 0.60 0.77 0.57 0.87
Stationary Between-the-legs Dribble (9) 0.55 0.79 0.51 0.89
Dribbling Layup (9) 0.49 0.73 0.63 0.80

Table 6.1: Accuracy Comparison Across Different Methods in Basketball Skill Evaluation. Evaluated on 810 videos from
30 youth testers aged 8-14, each performing 9 testing items. Methods compared include: Y+BoT+H26 (YoloV8+BoT-
SORT+Halpe26), CT+H26 (Context Track+Halpe26), Y+BoT+KE (YoloV8+BoT-SORT+Key Point Enhance), and CT+KE
(Context Track+Key Point Enhance (Ours)). The numbers in parentheses indicate the number of deduction items for each
action.
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6.5 Conclusions

In this chapter, we design and implement an intelligent sports examination system that

is fair, objective, and efficient. The system is built using a modular design, ensuring ease

of expansion and adaptability to various sports examination scenarios. By integrating

advanced computer vision and machine learning techniques, we address key challenges

in sports assessments, such as interference-resistant tracking, accurate classification of

motion sequences, and error point identification.

Our system is rigorously tested using data from real-world scenarios, specifically

a youth level three basketball examination in Shanghai, China. The dataset includes

comprehensive video recordings and manual scoring results, providing a robust basis for

evaluating the system’s performance. The Rule Module, tailored to the specific require-

ments of the basketball examination, aligns the skeletal and object tracking sequences

to evaluate each frame, ensuring precise scoring and identification of violations.

We conduct experiments on an NVIDIA GeForce RTX 3090 GPU with 24GB of memory,

utilizing parallel task execution to enhance processing efficiency. The results, compared

against manual scoring, demonstrate the system’s high accuracy and significant time

savings, processing each video in approximately half its duration.

By visualizing the scoring results and motion data directly on the video frames,

the system provides clear and actionable feedback to users. This visualization includes

overlaying scores, penalties, skeletal information, and object tracking data, making the

assessment results easily interpretable.

The development and testing of this intelligent sports examination system highlight

its practical applicability and potential for real-world deployment. The system’s modular

design ensures it can be extended and adapted to other sports disciplines, addressing

the diverse requirements and challenges of various examination scenarios.

133



CHAPTER 6. VIDEO BASED INTELLIGENT SPORTS ANALYSIS SYSTEM FOR
OBJECTIVE SPORTS EXAMINATIONS

Overall, this chapter demonstrates the feasibility and effectiveness of a comprehen-

sive, modular intelligent sports examination system. By connecting theoretical advance-

ments with practical implementation, we offer a robust solution for objective sports

assessments, laying the foundation for further research and development in this area.
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CONCLUSION AND FUTURE RESEARCH

This thesis addresses several significant challenges in the realm of video-based intelligent

sports examination systems. By using basketball skill assessments as a primary example,

this research illustrates the broader applicability of our solutions to various sports

disciplines. The primary contributions of this research are organized as follows:

Effective Human Skeleton Keypoint Completion. We proposed a robust method

for keypoint prediction enhancement by integrating STGNP with existing human pose

estimation methods. This approach addresses the issue of occluded keypoints by robustly

inferring and supplementing missing keypoints and providing precise uncertainty es-

timates. It also corrects anomalies in predicted keypoints, such as sudden coordinate

changes, ensuring more accurate and reliable predictions.

Advanced Object Tracking in Specific Scenarios. Our development of advanced

object tracking algorithms incorporates positional information to enhance accuracy

amidst frequent occlusions and complex interactions. This ensures precise tracking of ex-

amination props by integrating the spatial context of candidates and incorporating body

information, effectively addressing the challenges posed by traditional object tracking
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methods.

Accelerated Computational Processing. We introduced a novel method for effi-

cient computational processing that leverages Lie Algebra to represent human skeletal

structures, significantly reducing computational overhead. In conjunction with this,

our use of Memristor-Augmented LSTM and CNN technologies further accelerates

computation and decreases the power requirements. This integrated approach not

only achieves faster inference but also ensures suitability for real-time applications

in resource-constrained environments. Additionally, it involves embedding trained net-

work weights into a memristor-based structure, opening new avenues for enhanced

computational acceleration.

Modular and Practical Intelligent Examination System. We designed a com-

prehensive modular intelligent sports examination system, using basketball skill as-

sessments as a primary example. The system integrates robust keypoint prediction,

accurate object tracking, and efficient computational processing technologies into a

cohesive unit. We evaluated the system’s performance in real-world basketball skill

assessments, providing insights into its effectiveness and robustness. Additionally, we

ensured the scalability and adaptability of the system, facilitating its application to

different sports and dynamic environments. Cost, ease of use, and integration with

existing sports examination frameworks were also considered to ensure the system’s

real-world applicability and scalability.

7.1 Research Significance

The theoretical and practical significance of this thesis are profound and multifaceted:

Theoretical Significance: This research provides a nuanced and standardized

framework for identifying and addressing the challenges inherent in video-based intel-
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ligent sports examination systems, particularly in dynamic and complex sports envi-

ronments. Our innovative methods for enhancing human keypoint prediction through

STGNP, advanced object tracking, and the incorporation of Lie Algebra for efficient

representation of human skeletal structures address significant theoretical gaps. Addi-

tionally, integrating Memristor-Augmented LSTM and CNN for computational efficiency

contributes to the development of energy-efficient deep learning models suitable for

real-time applications in resource-constrained settings.

Practical Significance: The development of a modular, scalable intelligent sports

examination system, exemplified through basketball skill assessments, has been rigor-

ously validated in real-world settings. This system not only ensures precise tracking and

rapid inference but also demonstrates substantial adaptability to various sports disci-

plines under different conditions. The practical implementations of our research have

laid a foundation for extending these advanced methodologies to broader applications

in sports and dynamic environments, proving the system’s reliability for performance

evaluation and skill assessment.

In conclusion, this thesis presents a comprehensive and effective strategy for exploit-

ing the complexities of developing intelligent sports examination systems. By exploit-

ing STGNP for robust human keypoint completion, utilizing advanced object tracking

techniques, and adopting energy-efficient computational methods like Lie Algebra and

Memristor-Augmented neural networks, this research significantly enhances the capa-

bilities of intelligent systems in dynamic sports settings. Moreover, the development

and real-world validation of a modular, scalable system underscore its practical utility

and flexibility, establishing a new standard for future advancements in the field. These

contributions not only improve the precision and efficiency of sports examination systems

but also guarantee their reliable performance, laying a solid foundation for continued

innovation and wider application in various sporting and dynamic environments.
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7.2 Future Research

This thesis identifies the following directions for future research:

Advanced Tracking Algorithms with Large Language Models.

One of the future research directions is to develop more advanced tracking algorithms

that leverage the understanding capabilities of large language models (LLMs). By inte-

grating LLMs, we aim to automatically and accurately identify the correct examination

props or subjects in sports examinations. This will provide a solid foundation for down-

stream tasks, such as performance analysis and skill assessment. The incorporation

of LLMs will enhance the system’s ability to interpret complex scenarios, improving

tracking precision and robustness in dynamic sports environments.

Designing More Advanced Neural Network Structures with Memristors.

Future research will focus on designing memristor circuits to achieve more advanced

and efficient neural network structures. While current neural network models have

rapidly evolved, the application of memristors has been hindered by architectural design

challenges. Addressing these challenges will enable the development of more powerful

and energy-efficient solutions, enhancing the scalability and performance of intelligent

sports assessment systems for real-time evaluations.

Integration with Large Language Models for Rule Generation.

Another important direction is the integration of large language models to assist in

writing downstream decision rules for the intelligent sports examination system. By

utilizing the knowledge and flexibility of LLMs, we can develop more adaptable and

transferable examination systems that can be easily migrated to different sports or as-

sessment tasks. This integration will simplify the process of customizing the examination

system for various sports disciplines, ensuring that the system remains versatile and

effective across diverse applications.
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