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ABSTRACT

Graph, due to its specific relation reservation ability, has become one of the most
popular data storage modes in numerous applications, e.g., bioinformatics, chemi-
cal and social networks. Graph representation learning is a crucial topic in graph

data mining. Increasing attention is attracted by the graph neural networks (GNNs)
as a result of their remarkable success in learning informative graph representations.
Improving the expressiveness of GNN can help learn information-richer graph represen-
tations and thus is always a significant research goal. Besides, since the data collection is
a costly process, how to learn expressive graph representations with limited supervision
information is also important.

This thesis leverages three popular and practical graph-level classification tasks
to formulate the circumstances with different amounts of supervision information and
proposes three models to learn more expressive graph representations to solve them. In
detail, our thesis makes the following contributions:

• We introduce a collective node and graph-level structural information harnessed
model to improve the expressiveness of GNN. The proposed method significantly
outperforms competing methods in graph classification task and is more general-
ized to out-of-distribution graphs, enabling it to be applied to real-world application
in industry for higher accuracy and coping with unknown certainty in context.
Besides, the proposed method is resource- and time-efficient, enabling the method
to be applied to more platforms in industry.

• We propose a novel deep multi-scale oversampling framework and its instantiation
to address the imbalanced graph classification problem. This is the first work
that takes account of both within and between graph information to learn graph
representations for imbalanced graph classification. The proposed method signifi-
cantly outperforms its competing methods and offers a generic framework, in which
different advanced imbalanced learning loss functions and GNN backbones can
be easily plugged in and obtain significantly improved classification performance.
This research improves the performance for data-insufficiency tasks and can save
large amount of human resource in data collection.

• We formulate the graph-level anomaly detection problem as the task of detecting
locally- or globally-anomalous graphs and empirically verify the presence of these
two types of graph anomalies in real-world datasets. Then we introduce the first

ix



approach and its instantiation specifically designed to effectively detect both types
of anomalous graphs. The proposed method performs significantly better and can
be trained much more sample-efficiently and with more robustness when compared
with its advanced counterparts. This research would be of great importance to
varying applications in industry, e.g., omitting numerous experiments to identify
toxic molecules from a set of chemical compounds, reducing human trials in recog-
nizing drugs with severe side-effects or preventing the loss of millions of dollars by
detecting fraud communities.
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1
INTRODUCTION

The motivation and the contributions of this research are introduced in this

chapter, followed by the organization of this thesis.

1.1 Research Motivation

Graph has become one of the most powerful data storage modes due to its specific

structure characteristics to model objects and pairwise relations between them. There

is an increasing number of real-world high-impact tasks whose data are represented

by graphs, including social science, e-commerce networks, biology, traffic networks,

chemistry and physics. For example, in chemistry, chemical compounds can be denoted as

graphs when regarding atoms as nodes and chemical bonds between them as edges; in a

citation network, papers are regarded as nodes and the reference relationships between

them are edge attributes.

In the extensive graph learning fields, graph representation learning plays a crucial

role. A more informative graph representation can improve the results of the down-

stream tasks. Therefore, how to adequately utilize the known graph information to obtain

more meaty graph representations is an important research topic. One of the key issues

is to enhance the expressive power of the graph representation learning model, which

means to learn more informative and discriminative graph representations. Numerous

graph neural networks (GNNs) have demonstrated their excellent performance in graph

representation learning when compared with tradition methods in recent years. How to
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CHAPTER 1. INTRODUCTION

design GNN with high expressiveness is a challenging yet meaningful work. In addition,

the data collection process in real world is an expensive work and the obtained sample

set might be insufficient, e.g., some class of data might be extremely less than others or

even totally lacking. How to exploit expressive and discriminative graph representations

based on limited amount of supervision information is another challenge.

To examine the performance of the graph representation learning models, applying

them to down-stream tasks is a natural choice. The down-stream tasks can be various, e.g.,
node-level, edge-level or graph-level, according to the aiming problems in real application.

In this thesis, we turn the challenges above into learning graph representations for three

graph-level classification problems due to their meaningful real-world applications while

lack of focus, i.e., balanced graph-level classification, imbalanced graph-level classification

and one-class graph-level classification (also regarded as graph-level anomaly detection

(GLAD)). One application example of these three problems in chemistry domain is as

follows:

Example 1 (Example in Chemistry). In a graph dataset for chemical compounds, samples
can be toxic or nontoxic. Discovering the toxicity of the remaining compounds with
the toxicity of known samples can be regarded as the problem of balanced graph-level
classification. When collected samples are insufficient and the distributions of known
toxic and nontoxic samples are imbalanced, the problem turns to imbalanced graph-level
classification. Under the circumstance that only nontoxic compounds are gathered and
toxic items are required to discover, graph-level anomaly detection method is a good choice.

Therefore, this thesis is centered on establishing mechanisms to learning informative

and expressive graph representations to solve three challenging graph-level problems.

The aims of these problems are different, leading to varying emphasis of graph repre-

sentations for each problem: (i) for classification with sufficient data, the goal of graph

representation learning is to learn expressive representations with more informative

and discriminative knowledge of graphs; (ii) alleviating the influence of imbalanced

data distribution with the limited minority samples is significant for imbalanced graph

classification to learn representative graph embeddings; (iii) for graph-level anomaly

detection, capturing characteristic graph information only with one type of abnormal

samples is the focus.

4
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1.2 Contributions

This thesis explores on expressive graph representation learning. Due to the fact that

the data collection is an expensive and tough work, the gathered data in real-world

application might be insufficient. How to utilize finite known samples to learn graph

representation with high expressive power is an important research problem. We use

three significant down-stream tasks in graph domain that have varying amount of

supervision information to measure the expressiveness of the graph representation

learning methods. Our contributions in this thesis are summarized as follows:

• We explore more expressive graph representations based on balanced sample dis-

tribution for the balanced graph-level classification problem in Chapter 4. Some

popular message passing GNNs have been proved to have limited expressive-

ness [232]. We harness a diverse set of structure features that are learned with the

original features simultaneously by a designed specific message passing mecha-

nism to enrich the learned graph representations. This work has been published in

Neural Networks [142].

• When the known samples are distributed off-balance, the graph embeddings for

minority classes learned by the ordinary graph representation learning techniques

might be influenced by the samples from majority classes. To learn expressive

representations of the graphs in minority classes for imbalanced graph classi-

fication, we introduce a novel multi-scale oversampling scheme to learn graph

representations based on intra- and inter-graph semantics in Chapter 5, resulting

in representations possessing discriminative information embedded within and

between the minority graphs. This work has been published in IJCNN-24 [143].

• In Chapter 6, we formulate the graph-level anomaly detection problem as the

task of detecting locally- or globally-anomalous graphs, and empirically verify the

presence of these two types of graph anomalies in real-world datasets. We introduce

the first approach specifically designed to effectively detect both types of anomalous
graphs by joint random distillation of graph and node representations. The work

has been published in WSDM-22 [144].

Our research also has large potential practical values. Our proposed classification

algorithms offer higher accuracy than some existing classification methods, which help

alleviate error and would be of great significance in real-world tasks, e.g., reducing

inaccurate advertisement putting to social communities and saving a large amount

5



CHAPTER 1. INTRODUCTION

of money spent on human resources for molecule and chemical compound property

determination. Our research on graph-level anomaly detection, as the first end-to-end

deep method specifically designed to discover two types of abnormal graphs, is also

important to varying applications, e.g., omitting numerous experiments to identify toxic

molecules from a set of chemical compounds, reducing human trials in recognizing drugs

with severe side-effects or preventing the loss of millions of dollars by detecting fraud

communities.

1.3 Organization

We next introduce the organization of the rest of this thesis. Chapter 2 presents some com-

mon and fundamental concepts used through the thesis, including the common notations,

basic definitions on graphs, introduction of datasets and the measurements employed in

the following chapters. In Chapter 3, we first review literature of graph representation

learning methods, followed by works of balanced and imbalanced classification and

anomaly detection in graph domain.

Chapters 4–6 contain main research of this thesis. Chapter 4 focuses on how to

improve the expressive power of a message passing neural network to learn more

informative graph representation for graph classification. Chapter 5 explores improving

the graph representation learning of samples in minority class for imbalanced graph-

level classification. Chapter 6 aims to detect abnormal graphs with local/global anomalies.

Chapter 7 summarizes the thesis and discusses the possible future research directions.
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2
PRELIMINARIES

In this chapter, some most common symbols and notations that are important for the

understanding of the methods and algorithms reviewed and proposed in this thesis

are described, followed by the main definitions of our research problems. Later,

we provide a detailed introduction of the datasets and the performance measurements

employed in the thesis.

2.1 Notations

In this section, we first introduce some mathematical notations that will be used in the

following review. Generally, a graph can be illustrated as G = (VG ,EG), where VG is the set

of nodes and EG is the set of edges. The node set VG = {v1,v2, ...,vNG } contains NG = |VG |
nodes. The set of edges EG = {e i j = (vi,v j)}i j consists of MG = |EG | edges which connect

two nodes in VG . A graph data set with P graphs is denoted as G = {G1, ...,GP }.

In a graph G = (VG ,EG), the adjacency matrix is defined as A ∈ {0,1}NG×NG . The

element in i th row, jth column, A i, j, represents the connectivity of two vertices vi and

v j. In detail, if vi is adjacent to v j, A i, j = 1, otherwise, A i, j = 0. D ∈RNG×NG is a diagonal

degree matrix, i.e., D = diag(
∑NG

j=1 A1, j, ...,
∑NG

j=1 ANG , j). The neighborhood of node vi is

defined as N (vi) = {v j ∈ VG |e i j ∈ EG}. Some graphs are equipped with node attribute

matrix X , in which row xi is the attribute vector of node vi. For other variables, we use

uppercase letters for matrices and lowercase letters for vectors, for example, a matrix F
and a vector f.

7



CHAPTER 2. PRELIMINARIES

We also introduce some common notations for deep learning models. In this thesis,

superscripts are used to represent layers. The trainable parameters in each deep learning

model is represented by W. During training, H(l) is the learned hidden representation

matrix of nodes in l th layer and its i th row, i.e., h(l)
i , is the hidden representation vector

of node vi. The rectified linear unit (ReLU) ReLU(x)=max(0, x) is a commonly used acti-

vation functions in deep learning models. ρ(·) represents a general nonlinear activation

function. MLP(·) denotes a multi-layer perceptron.

Table 2.1 summarizes these common symbols and their descriptions. Additional

symbols will be defined in the following chapters if necessary.

Notations Descriptions
G A graph dataset.
G A graph.
VG The set of nodes in graph G.
EG The set of edges in graph G.
vi Node vi ∈ VG .
e i j Edge e i j ∈ EG .
| · | The length of a set.
NG The number of nodes in graph G.
MG The number of edges in graph G.
X The matrix of node attributes.
xi The attribute vector of node vi.
A The graph adjacency matrix.
D The diagonal degree matrix.
I The identity matrix.

N (vi) The neighborhood of node vi.
H(l) The hidden representation matrix of nodes in l th layer.
h(l)

i The hidden representation vector of node vi in l th layer.
l The layer index.
L The layer number.

W (l) Trainable model parameters in l th layer.
ReLU(·) The ReLU activation function.

ρ(·) A nonlinear activation function.
MLP(·) A multi-layer perceptron.

Table 2.1: Commonly used notations and their descriptions.
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2.2 Definitions and Problems on Graphs

This section introduces some basic definitions of graph and problems on graphs that this

thesis focuses on.

The nodes and edges in different graphs can have varying characteristics, resulting

in different types of graphs. We first present definitions of several graphs in following:

Definition 1 (Directed/Undirected Graph). An edge is a directed edge if one of its
endpoints is designated as the head and the other endpoint is designated as the tail,
otherwise it is an undirected edge. A directed/undirected graph is a graph in which each
edge is directed/undirected.

Definition 2 (Weighted/Unweighted Graph). A weighted graph is a graph in which each
edge is assigned with a weight, called its edge weight. If edges of a graph have no weights,
it is an unweighted graph.

Definition 3 (Attributed/Plain Graph). An attributed graph is a graph in which each
node is assigned with an attribute vector. Otherwise, it is a plain graph.

This thesis focuses on undirected and unweighted graphs due to their wide applica-

tions in real world.

Next, we introduce the three graph-level tasks researched in this thesis. Graph-level

classification aims to predict the class label for an entire graph. In Supervised Balanced
Graph-level Classification task, given a set of graphs G = {G i}i, each graph is assigned

with a class label and the class distribution is balanced, the aim is to learn an function

f : G → R, parameterized by W, such that f (G;W) outputs the label of graph G. For

Supervised Imbalanced Graph-level Classification task, the class distribution in training

dataset is imbalanced.

Anomalous graphs in a graph set can be classified into two categories, i.e., locally-

anomalous graphs and globally-anomalous graphs, which are respectively defined as

follows.

Definition 4 (Locally-anomalous Graph). Given a graph data set G = {G i}i, with each
graph G ∈G denoted by G = (VG ,EG), graph Ĝ is a locally-anomalous graph if Ĝ does not
conform to the graphs in G due to the presence of some anomalous nodes v, ∀v ∈ VĜ , that
significantly deviate from similar nodes in the graphs in G .
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Definition 5 (Globally-anomalous Graph). Given a graph data set G = {G i}i, graph Ĝ is
a globally-anomalous graph if the holistic graph properties of Ĝ do not conform to that of
the graphs in G .

The Unsupervised Graph-level Anomaly Detection focuses on identifying these two

types of abnormal graphs. Specifically, given a set of normal graphs G = {G i}i, graph-

level anomaly detection problem aims at learning an anomaly scoring function f : G →R,

parameterized by W , such that f (Ĝ i;W)> f (Ĝ j;W) if Ĝ j conforms to G better than Ĝ i.

2.3 Dataset and Performance Evaluation

The section displays crucial datasets and the measurements employed in the experiments

to evaluate the performance of models.

2.3.1 Dataset

The datasets used in this thesis are all public. Since the goals of this thesis concentrate

on three different tasks, the datasets and the processing methods used for different tasks

also should be varying. We will introduce these datasets respectively.

For balanced graph-level classification, 12 datasets from TUDataset graph classi-

fication benchmark [154] are employed. These datasets are from various areas, with

different number of classes and various sparsity. For datasets with plain graphs, node

labels will be used as node attributes. The detailed introduction of these datasets are

presented in Table 2.2.

For imbalanced graph-level classification, 7 datasets from the TUDataset graph

classification benchmark [154] are used. Besides, 9 NCI chemical compound graph

datasets for anticancer activity prediction from Pubchem Library1 are employed to

enlarge the imbalanced-ratio diversity of datasets. They are all binary datasets. NCI1 and

NCI109 used here are the whole datasets while the two datasets used in above balanced

task are balanced version by [154]. We use NCI1∗ and NCI109∗ here to differentiate

them. Table 2.3 displays the imbalanced ratios of these datasets. The imbalanced ratios

of BZR and COX2 are about 3.5: 1, which is relatively small and usual classification

method can obtain a satisfactory result. Aromatase, ATAD5, ER and p53 are with

medium imbalanced ratios, while the NCI datasets are generally much more imbalanced.

1http://pubchem.ncbi.nlm.nih.gov
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2.3. DATASET AND PERFORMANCE EVALUATION

Table 2.2: The detailed information of 12 public datasets for balanced graph-level classi-
fication. The ‘binary’ in the ‘Class’ column denotes the dataset is for binary classification
while ‘multi’ implies multi-class classification. The ‘#Graphs’ is the total number of
graphs in the dataset and the ‘#Nodes’ means the average number of nodes in the
dataset. The ‘✓’ in the ‘Attribute’ column indicates the data contains attributed graphs,
and otherwise they contain only plain graphs.

Dataset Area Class #Graphs #Nodes Attribute
BZR molecule binary 405 35.75 ✓
COX2 molecule binary 467 41.22 ✓
DD bioinformatics binary 1178 284.32 -
IMDB−BINARY social binary 1000 19.77 -
IMDB−MULTI social multi 1500 13.00 -
MUTAG molecule binary 188 17.93 -
NCI1 molecule binary 4110 29.87 -
NCI109 molecule binary 4127 29.68 -
PROTEINS_full bioinformatics binary 1113 39.06 ✓
REDDIT−BINARY social binary 2000 429.63 -
REDDIT−MULTI social multi 4999 508.52 -
ENZYMES bioinformatics multi 600 32.63 ✓

The use of datasets with different imbalanced ratios helps justify the applicability of our

method in dealing with various imbalanced data.

15 datasets from the TUDataset graph classification benchmark [154] and one dataset

from Toxicity Prediction Task2, which are illustrated in Table 2.4, are used in unsu-

pervised graph-level anomaly detection. Although these data sets are often used for

classification tasks, using the class with less instances as the abnormal class to execute

anomaly detection also makes sense. In the training dataset, the data of abnormal class

will be discarded directly and not be used in the training phase.

Datasets that are used to examine other abilities of the models will be introduced in

the corresponding chapter.

2.3.2 Performance Evaluation

Accuracy, the proportion of correct predictions among the total number of cases examined,

is the most commonly used measurement for classification. We employ accuracy as the

main measurement to examine the performance of models in balanced graph-level

classification task. To increase the credibility of our results, we also utilize the area

under the Precision-Recall curve (AUPRC) [15] as another evaluation metric, which

2https://tdcommons.ai/single_pred_tasks/tox/#herg−blockers
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Table 2.3: The imbalanced information of 16 public datasets for imbalanced graph-level
classification. ‘#pos’ and ‘#Graphs’ denote the number of graph samples in the minority
class and in the full dataset, respectively. ‘Ratio’ represents the ratio of the majority class
size to the minority class.

Dataset #pos #Graphs Ratio
NCI1∗ 1793 37349 19.8: 1
NCI33 1467 37022 24.2: 1
NCI41 1350 25336 17.8: 1
NCI47 1735 37298 20.5: 1
NCI81 2081 37549 17.0: 1
NCI83 1959 25550 12.0: 1
NCI109∗ 1773 37518 20.2: 1
NCI123 2715 36903 12.6: 1
NCI145 1641 37043 21.6: 1
BZR 86 405 3.7: 1
COX2 102 467 3.6: 1
P388 2298 41472 17.1: 1
Aromatase 360 7226 19.1: 1
ATAD5 338 9091 25.9: 1
ER 937 7697 7.2: 1
p53 537 8634 15.1: 1

provides a single value that summarizes the overall performance of a model. AUPRC

focuses on the performance of model on a specific class (defined as positive class) by

considering the Precision and Recall simultaneously, which are the proportion of true

positive predictions out of all positive predictions made by the model and the proportion

of true positive predictions made by the model from all actual positive samples in the

dataset, respectively. The AUPRC is the integration of the area under the Precision-

Recall curve which plots the Precision against the Recall at different threshold settings.

A perfect model would have a AUPRC of 1, indicating that higher AUPRC means better

performance. We use AUPRC to examine the performance of the models on one class and

be a supplementary to further testify our results.

F1-score [185], which is a weighted harmonic mean of Precision and Recall, is used

as the measurement for imbalanced graph-level classification. F1-score balances the

trade-off between Precision and Recall. If a model obtains high Precision but low Recall,

it indicates that the model predicts fewer false positives but misses a lot of true positives.

In contrast, a model with high Recall but low Precision makes more false positives

but identifies more true positives. In these cases, the F1-score can evaluate the overall

performance of the models. F1-score ranges from 0 to 1 and higher F1-score indicates

12
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Table 2.4: The detailed information of 16 public datasets for graph-level anomaly detec-
tion. The ‘#Graphs’ is the total number of graphs in the dataset and the ‘#Nodes’ means
the average number of nodes in the dataset. The ‘✓’ in the ‘Attribute’ column indicates
the data contains attributed graphs, and otherwise they contain only plain graphs.

Dataset Area # Graphs # Nodes Attribute
PROTEINS_full bioinformatics 1113 39.06 ✓
ENZYMES bioinformatics 600 32.63 ✓
AIDS molecule 2000 15.69 ✓
DHFR molecule 467 42.43 ✓
BZR molecule 405 35.75 ✓
COX2 molecule 467 41.22 ✓
DD bioinformatics 1178 284.32 −
NCI1 molecule 4110 29.87 −
IMDB-BINARY social 1000 19.77 −
REDDIT-BINARY social 2000 429.63 −
HSE molecule 8417 16.89 −
MMP molecule 7558 17.62 −
p53 molecule 8903 17.92 −
PPAR-gamma molecule 8451 17.38 −
COLLAB social 5000 74.49 −
hERG molecule 655 26.48 −

better performance.

For graph-level anomaly detection, the detection rate of anomalous samples is the

main indicator of the model performance. We employ the area under the ROC curve

(AUC) [72] as the measurement in this task. The ROC curve plots the True Positive Rate

(TPR) against the False Positive Rate (FPR) under different classification thresholds.

TPR equals to Recall, while FPR is the proportion of false positive predictions to the total

number of negative instances. The AUC is the area under the ROC curve, indicating

the probability that a randomly chosen positive sample will be ranked higher by the

model than a randomly chosen negative sample. Its consideration in the class-imbalance

nature of anomaly detection problems enables AUC to be an ideal measurement in outlier

detection tasks. A perfect model would obtain an AUC of 1, while a random model would

achieve an AUC of 0.5, namely that higher AUC means better performance. Although

AUPRC is also an eligible measurement for imbalanced datasets, it emphasizes the

performance of the models on one class instead of all classes. Therefore, we utilize AUC

as the measurement in the graph-level anomaly detection task.

The Wilcoxon signed rank test [37] is also leveraged in three tasks to measure the

performance significance of our proposed methods against its competitors.
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3
LITERATURE REVIEW

Graph representation learning is a crucial step to solve various graph tasks since

one can apply other machine learning tools to these representations conveniently

for any down-stream tasks. From traditional methods to deep methods, graph

representation learning is always a popular research topic in the past few decades.

Especially in recent years, numerous deep methods have demonstrated their excellent

performance in learning graph representation within rich graph knowledge. To solve var-

ious graph tasks, it is significant and important to have a comprehensive understanding

of these methods. Therefore, this chapter first review the literature that is related to

various graph representation learning models, including traditional methods and deep

methods. Literature based on these methods to solve graph classification and anomaly

detection problems is reviewed later. At the end of this chapter, a summary of this review

is offered.

3.1 Graph Representation Learning Methods

Traditional methods constitute this research direction in the early stage and later graph

kernel methods are proposed to improve the performance. With the popularity of deep

learning, graph neural networks become dominant solutions at present. These methods

are reviewed below in detail and summarized in Table 3.1.
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3.1.1 Traditional Methods

Graph representation learning methods at the early stage are non-deep. Among these

methods, methods based on matrix factorization are one of the pioneers, followed by

random walk based methods and graph kernel based methods. We review these methods

as follows.

Matrix Factorization Based Methods

Matrix factorization based methods are one of the pioneers in graph representation

learning works. These methods aim to reduce the high-dimensional graph matrix into

a low-dimensional space via matrix factorization. One type of these methods focuses

on decomposing node proximity matrix into low-dimensional matrix directly, which can

be divided into two phases, including the proximity-based matrix construction and the

matrix dimension reduction [237]. Many well-known matrix decomposition methods

are employed, e.g., singular value decomposition (SVD) [100], principal component anal-

ysis (PCA) [89]. The elements of proximity-based matrix measure proximity of node

pairs in the graph, whose construction is significant to the final performance of the

method. Various structural characteristics are utilized to construct the information-rich

proximity matrix, including adjacency matrix [1], different orders of graph adjacency

matrices [20; 117; 237], katz index [162], rooted page rank [162], the number of common

neighbors [162] and personalized page rank [240; 259]. Another type of matrix factoriza-

tion based methods considers the minimum eigenvalue of the graph Laplacian matrix to

obtain the node embeddings [1; 64]. However, the matrix factorization in these methods

suffers from expensive time and memory complexity for large-scale graphs and is with

limited generalization [75].

Random Walk Based Methods

Since structure is a significant and special characteristic of graph, researchers also

consider using graph structure to construct graph representation. The main idea is

to capture the graph structural information by random walks of each node and the

nodes occurring in same random walk should have similar node representations. Deep-

Walk [175] and Node2Vec [67] are two representative methods. They first generate a

set of random walks and then train a SkipGram model to obtain the node embeddings.

The difference between DeepWalk and Node2Vec is mainly the way which the random

walks are generated by. Many variations are later proposed to improve their perfor-
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mance [272; 182; 141; 86; 229; 21; 83]. However, this type of methods has less robustness

for noisy structure and less transductive learning ability [75].

Graph Kernel Based Methods

Graph kernel focuses on comparing the similarity between graphs or substructures

in graph. As another vanguard of graph representation learning, it calculates node

embeddings via mapping pairs of nodes to latent space by specific similarity measures.

In [189], a graphlet kernel is introduced, which establishes graph feature by counting

the number of different graphlets in graphs. With the inspiration from 1-dimensional

Weisfeiler-Lehman (WL) test [103], authors in [188] propose Weisfeiler-Lehman kernels

which represent graph as WL sequences with various height, including Weisfeiler-

Lehman subtree kernel, the Weisfeiler-Lehman edge kernel and the Weisfeiler-Lehman

shortest path kernel. Due to the limited expressive ability of 1-dimensional WL test, the

WL subtree kernel based on k-dimensional WL algorithm is presented in [153]. Other

WL algorithm based graph kernels are illustrated in [199; 157]. Since substructure

is a significant feature in graph, there are also works constructing graph kernel via

substructures, e.g., random walks [93; 92; 156] and shortest paths [13; 56; 238]. For

example, propagation kernels (PK) [156] capture structural information in graph by the

early stage distributions from propagation schemes such as random walks. Although

many works try to reduce the computational complexity of graph kernels, the calculation

of graph kernel is still costly on large-scale graphs.

3.1.2 Graph Neural Networks

The ability of traditional methods to deal with complex graph structures is limited.

Considering the excellent performance of deep methods on image and text data, re-

searchers begin to pay their attention to constructing deep models to learn graph in-

formation. Various deep graph neural network (GNN) models explode rapidly in recent

years and have demonstrated their remarkable performance [263; 226; 90]. Graph Re-

current Neural Networks (Graph RNNs) are mostly pioneer works of GNNs, which

exchange information between nodes and their neighbors until an equilibrium is reach-

ing [65; 187; 119; 207; 250; 68]. However, the recurrent layers in these models are mostly

with the same weights during the weight update phase, resulting in limited expressive-

ness in the relationship constraints between nodes and their neighbors [75]. Instead

of iterating node knowledge with contractive constraints, Graph Convolutional Neural

17



CHAPTER 3. LITERATURE REVIEW

Networks (GCNs) utilize a fixed number of layers with different weights to represent the

mutual dependencies between nodes and their neighbors. Because of its effectiveness

and convenience compared to other graph neural network methods, Graph Convolutional

Neural Networks (GCNs) are undoubtedly the hottest topic in the area of deep learning

on graph in recent years. Like CNNs, GCNs employ designed convolution and pooling

function to learn the local and global structural patterns and features of graphs. In the

following subsection, we will discuss these two functions respectively.

In CNNs, convolution operation is the most primary and crucial part. However, due

to the lack of a grid structure in graphs, standard convolution operations for images or

text cannot be directly employed by graphs [191]. The design of convolutional functions

has significant impact on the performance of GCNs. In existing GCNs models, the

convolution operations can be divided into two categories, including spectral convolutions

and spatial convolutions. The spectral convolutions design the filters by the spectral

graph theory while the spatial convolutions focus on the information propagation of node

neighborhoods.

Spectral Based Graph Convolutional Neural Networks

Authors in [17] propose Spectral Convolutional Neural Network (Spectral CNN),

which uses eigendecomposition of the graph Laplacian matrix L to introduce graph

convolution from the spectral perspective. One disadvantage of it is the high requirement

of computational complexity. Its another limitation is that learned filters cannot be

utilized by graphs with different structures and sizes. To reduce the computational

complexity and improve the efficiency, ChebNet [36] and CayleyNet [104] use some

polynomial filters to construct graph convolution operators.

Graph Convolutional Network (GCN) [96], which is a simple yet efficient GNN

backbone, is the first-order approximation of ChebNet and has been one of the most

popular GNN backbone. The hidden representation of node vi in the l th layer, h(l)
i , is

formulated as

(3.1) h(l)
i = ρ

 ∑
v j∈Ñ (vi)

1
D̃(i, i)D̃( j, j)

h(l−1)
j W (l)

 ,

where D̃ = D+ I and Ñ (vi)=N (vi)
⋃

{vi}. Its matrix form can be written as

(3.2) H(l) = ρ(D̃
1
2 ÃD̃

1
2 H(l−1)W (l)),

where Ã = A + I. Some improvements are made on GCN in several recent works. In

[112], Adaptive Graph Convolutional Network (AGCN) is proposed to learn hidden
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structural relations that are not specified by the graph adjacency matrix. The Dual

Graph Convolutional Network (DGCN) [276] constructs a dual graph convolutional

architecture through two convolutions: one is the common convolution in GCN and

another uses the positive pointwise mutual information (PPMI) matrix of the transition

probability to replace the adjacency matrix. LanczosNets [120] use Lanczos algorithm

to construct a low-rank approximation of graph Laplacian. In [230], the Graph Wavelet

Neural Network (GWNN) utilizes sparse graph wavelet transform instead of matrix

eigendecomposition to reduce computational cost. Authors in [275] employ a modified

Markov Diffusion Kernel to establish the Simple Spectral Graph Convolution (S2GC),

which captures the global and local contexts of each node with lower computation and

storage expense. GNNML3 [9] utilizes custom non-linear functions of eigenvalues and a

masked convolution support with desired length of receptive field and is experimentally

proven to be as powerful as 3-WL test.

Spatial Based Graph Convolutional Neural Networks

Another type of convolution operators is spatial convolutions, which transform and

aggregate neighbor features to calculate the representation of corresponding node. The

mostly pioneer work of spatial-based graph convolutional neural networks is Neural

Network for Graph (NN4G) [150]. This work sums up the neighborhood information of a

node to obtain graph convolutions. Diffusion Convolutional Neural Network (DCNN) [5]

uses a diffusion transition probability between nodes to determine the neighborhoods of a

node. GCN [96] also has its spatial interpretation, in which it applies weights to features

of node and its corresponding neighbors. Message Passing Neural Network (MPNN) [63]

provides a general framework of spatial-based graph convolution operations, which

could cover many previous methods including GCN [96] and [17]. In MPNN, the graph

convolution operation is regarded as a message passing process:

(3.3) m(l)
i = ∑

v j∈N (vi)
F (l)(h(l−1)

i ,h(l−1)
j ,xE

i, j), h(l)
i =U (l)(h(l−1)

i ,m(l)
i ),

where F (l) is the message passing function, U (l) is the node update function, xE
i, j is the

attribute of edge e i j, and m(l)
i is the message passed between vertices. Mixture Model

Network (MoNet) [152] introduces the relative weight between nodes, which is defined by

a mapping function. GCN [96] and DCNN [5] also can be generalized as special instances

of MoNet.

However, most previous models are inherently transductive, meaning that they can-

not address unseen nodes [70]. GraphSAGE [70] constructs an inductive GNN structure,
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which samples and aggregates features from local neighborhood of a node hierarchically:

(3.4) m(l)
i =AGGATE(l)({h(l−1)

j ,∀v j ∈N (vi)}), h(l)
i = ρ(W (l)

[
h(l−1)

i ,m(l)
i

]
),

where AGGATE(l)(·) is an aggregating function and [·, ·] is the concatenation operation.

Considering the remarkable performance of attention mechanism in image tasks,

Graph Attention Network (GAT) [203] introduces attention mechanism into GCNs:

(3.5) h(l)
i = ρ

( ∑
v j∈N (vi)∪{vi}

α(l)
i, jh

(l−1)
j W (l)

)
,

where α(l)
i, j is the attention of vi to v j in the l th layer and defined as

(3.6) α(l)
i, j =

exp(LeakyReLU(A (h(l−1)
i W (l),h(l−1)

j W (l))))∑
vk∈N (vi)∪{vi} exp(LeakyReLU(A (h(l−1)

i W (l),h(l−1)
k W (l))))

,

where A is an attention function to be learned. Authors in [203] also suggest that

multi-head attention could improve the expressive capability of the model. Later, Gated

Attention Network (GAAN) [253] proposes to learn extra attention score for different

heads. A Heterogeneous Graph Attention Network (HAN) is proposed in [212] to study

heterogeneous graph neural network by two attentions, i.e. the node-level and semantic-

level attentions. GATv2 [16] uses dynamic attention to enhance the expressive power of

GAT [203].

Previous GNNs are at most as powerful as the WL test in distinguishing graph

structures and some graph structures cannot be distinguished by some popular GNN

variants, such as GCN and GraphSAGE [232]. To solve such problem, [232] proposes

Graph Isomorphism Network (GIN), which is as powerful as the WL test by adding a

learnable parameter ϵ(l) to adjust the weight of the central node:

(3.7) h(l)
i =MLP

(
(1+ϵ(l))h(l−1)

i + ∑
v j∈N (vi)

h(l−1)
j

)
.

There are other GNN models focusing on varying effect of different neighbors during

the aggregating process. Inspired by [150], Contextual Graph Markov Model (CGMM)

constructs a deep architecture composed of layers of probabilistic models, which in-

troduces probabilistic explainability while maintaining spatial locality [6]. In [118],

Diffusion Graph Convolution (DGC) improves DCNN by summing up output of each dif-

fusion step instead of concatenating them. However, the distant neighbors will contribute

less under the transition probability matrix. PGC-DGCNN [200] establishes a shortest-

path adjacency matrix to increase the influence of distant neighbors. Partition graph
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convolution (PGC) [236] defines a criteria by which the neighbors of a node will be divided

into several groups. Some other methods rank neighbors of each node via some certain

criteria and select several neighbors with top ranks to share information [158; 59].

Some methods pay efforts to the message aggregation mechanism. Authors in [62]

derive personalized propagation of neural predictions (PPNP) and its fast approxi-

mation from an improved propagation mechanism based on personalized PageRank.

Principal Neighborhood Aggregation (PNA) [33] combines multiple aggregators with

degree-scalers. GraphAIR [79] explicitly models neighborhood interaction as well as

neighborhood aggregation to capture the complicated non-linear features in graph. Effi-

cient Graph Convolution (EGC) [196] uses spatially-varying adaptive filters to improve

the performance while reduce the memory complexity.

Combining Graph Kernels with Graph Neural Networks

There are some works combining graph kernels and neural networks, which can

utilize the strengths of both two mechanism. K-dimensional Graph Neural Networks

(k-GNN) [155] inaugurates this field, which combines the WL-subtree kernel with GNN.

Graph Neural Tangent Kernels (GNTKs) [46] are a new category of graph kernels, which

equals to infinitely wide multi-layer GNNs trained by gradient descent, and a general

recipe which translates a GNN architecture to its corresponding GNTK is presented in

[46]. Graph Convolutional Kernel Networks (GCKN) [23] present a family of multilayer

graph kernels and combine GCN and kernel method together. Heterogeneous Graph

Kernel based Graph Neural Network (HGK-GNN) [137] utilizes Mahalanobis Distance

to build Heterogeneous Graph Kernel (HGK) and further combines it with GNN. Graph

Structural Kernel Network (GSKN) [136] proposes an anonymous walk graph kernel

(AWGK) and derives its GNN structure to calculate its kernel mapping, which is then

compared with random walk kernel. Kernel Graph Neural Networks (KerGNNs) [54]

construct graph filters by trainable hidden graphs and update node representations

by graph kernels of them and subgraphs. These methods leverage the advantages of

graph kernels and graph neural netoworks, but they are also with weak efficiency on

large-scale graphs due to the limitation of graph kernels.

Obstacles and Improved GCNs

One of the main obstacles of using GCNs is the over-smoothing problem, which

means that the output representations might not be isolated when the depth of network
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is large. Many researches usually construct GCNs with 2 or 3 layers. To model deep

GCNs, inspired by the idea of ResNet, residual connections are added to GCNs in some

models [96; 176; 97; 233; 28]. Another problem that might hinder the applications of

GCNs is that, the number of neighbors when training GCNs might be extremely large

when a graph is large-scale or dense. Some sampling methods have been proposed to

address this issue. PinSage [241] proposes to use random walks on the graph to sample

neighbors. Stochastic Training of Graph Convolutional Network (StochasticGCN) [26]

utilizes the historical activation of the last batch as a control variable to reduce the sam-

pling variance, thereby theoretically guaranteeing an arbitrarily small sample size. In

Fast Learning with Graph Convolutional Network (FastGCN) [25], nodes are interpreted

as i.i.d. samples and the graph convolutions are deemed as integral transforms under

probability measures. Adapt [82] samples nodes in the lower layer that are conditioned

on the top layer. ClusterGCN [30] employs a graph clustering technique to sample a

subgraph and the convolutions are implemented on the sampled subgraph.

Pooling Module

To obtain the graph-level representations for final down-stream tasks, another crucial

module after acquiring node embeddings via a GNN is the readout operation. The basic

and effective readout operations are simple averaging, summation and max pooling

[51; 5] which are also popular in classical CNNs. However, such statistics might be

not representative enough to assist the model to distinguish different graphs. A fully

connected layer is commonly used as a final layer in the model to aggregate the repre-

sentation of nodes [17]. In [94], fuzzy histograms are constructed for each dimension of

the feature vectors and concatenated to obtain the graph-level representation. Works

in [116; 63; 200] apply attention mechanisms to improve the averaging and summation

pooling. Graph Multiset Transformer (GMT) [7] generates graph representation based on

a multi-head attention. In DCGNN [256], a SortPooling method is proposed, which sorts

the features in a consistent order and then feeds these sorted descriptors into a 1-D con-

volutional layer followed by a dense layer. Structural Semantic Readout (SSRead) [101]

summarizes node representations by considering their position information. Distribution

Knowledge Embedding (DKEPool) [27] views graphs as distributions and treats the pool-

ing operation as summarizing the entire distribution information by simple predefined

pooling operations. MPool [85] first utilizes motifs to model the relation between nodes

and later develops two motif-based graph pooling models to learn graph representations.

There is one type of methods that captures rich graph structural information by
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constructing coarsened graphs in sequence and then applies simple readout operation

to the coarsened graphs to gain the final graph representation. For such methods, the

construction of coarsened graph is vital. DiffPool [242] constructs differentiable soft clus-

ter assignment matrix by graph convolution. GPool [57] coarsens graph according to the

projection values of nodes calculated by a trainable projection vector. The self-attention

graph pooling (SAGPool) [102] obtains self-attention scores by graph convolution. Eigen-

Pooling [146] coarsens graph based on graph Fourier transform. STRUCTPOOL [246]

employs conditional random fields to compute the node cluster assignment matrix. Hier-

archical Graph Pooling with Structure Learning (HGP-SL) [262] adaptively forms an

induced subgraph for the subsequent layers according to the defined node information

score. HaarPooling [220] coarsens graph based on the compressive Haar transform of

the graph.

More complex criteria are proposed later for better model performance. A score

generated from an importance score and a representativeness score is used to select

significant nodes which are globally important and can represent more substructures

during graph coarsening in RepPool [109]. Moreover, in RepPool [109], both selected

and un-selected nodes are used when the coarsened graph is generated. Vertex info-

max pooling (VIPool) [109] coarsens graph based on the neural estimation of mutual

information between node features and neighborhood features. MinCutPool [12] hierar-

chically coarsens the graph with the cluster assignment matrix and can be optimized

by the minCUT objective. Adaptive Structure Aware Pooling (ASAP) [180] applies a

self-attention scheme to learn the cluster assignment matrix. Graph self-adaptive pooling

(GSAPool) [254] utilizes the local structure and the feature information of the nodes

to measure the importance of nodes. Topology-aware pooling (TAP) [58] considers local

score for each node by attending each node to its neighboring nodes and importance

score of each node globally in the entire graph together to choose nodes. MVPool [261]

evaluates the importance of nodes in different views via a set of measurements and

applies a structure learning mechanism with sparse attention to learn a refined graph

structure for the coarsened graph. An interpretable neighborhood information gain crite-

rion is defined to guide the node selection in iPool [61]. SEP [223] utilizes the concept of

structural entropy to obtain the hierarchical cluster assignment matrix. HoscPool [50]

constructs the cluster assignment matrix by minimizing relaxed formulations of motif

spectral clustering. DMoN [201] utilizes spectral modularity maximization to calculate

the cluster assignment matrix. Multi-channel Graph Pooling (MuchPool) [45] constructs

two coarsened graphs based on the local structure and node features as well as graph
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clustering and combines these two coarsened graphs to obtain the final pooled graph.

Coarsened Graph Infomax Pooling (CGIPool) [166] constructs positive and negative

coarsened graphs and makes the positive one with maximal mutual information with

the input graph while the negative one with minimal mutual information with the input

graph.

Some works propose to learn the representation of graph directly. In [187], an extra

node is added into the graph to represent the entire graph. The added node is connected

to all nodes and the network directly learns its features during the training process. GNs

[11] learns the representation of graph directly by information passing from all nodes

and edges.

Type Method Key idea Drawbacks

Traditional
Matrix factorization

Reduce the high-dimensional graph matrix
into a low-dimensional space via matrix

factorization.

Limited generalization; High
time and memory complexity.

Random walk

Capture the graph structural information
by random walks of each node; the nodes
occurring in same random walk should

have similar node representations.

Less robustness; Less
transductive learning ability.

Graph kernel
Map node pairs to latent space with

particular similarity measures.
High time and memory

complexity.

Deep Graph convolutional
neural network

Utilizes a fixed number of layers with
different weights to represent the mutual

dependencies between nodes and their
neighbors.

Over-smoothing problem;
Limited performance on
disassortative graphs.

Table 3.1: A summary of several types of graph representation learning methods.

3.2 Graph Classification Methods

Classification is always a popular and significant task no matter in image, text or graph.

Since the data collection is difficult, the data that we can leverage might be limited. My

research focuses on classification with sufficient (balanced) and insufficient (imbalanced)

data. GNNs have demonstrated their excellent achievement in various graph tasks when

compared with traditional methods. Therefore, my research and this section mainly focus

on GNN models.

3.2.1 Balanced Graph Classification Methods

Classification in graphs can be node-, subgraph- and graph-level. The graph representa-

tion learning methods mentioned in Section 3.1 can acquire node representations, which
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can be leveraged directly by arbitrary classifier. To capture more node information and im-

prove the classification performance, some tricks are introduced to applied to GNN back-

bones, including augmentation [183; 98; 216; 217; 269], sampling [25; 241; 277; 222; 278],

k-hop [205; 31; 235]. Different from node classification, the above structures that perform

excellently do not achieve well results on subgraph classification [214]. Until now, the

research on subgraph classification is extremely limited [3; 214; 87; 178]. However, since

graph-level classification focuses on learning discriminative information among graphs

instead of inside graph that the above node or subgraph classification methods aim to,

the above classification methods cannot be used directly for graph-level classification.

For graph-level classification, some works try to generalize convolutional neural

networks (CNNs) to graphs [172; 202; 221], whose challenge is to construct the fixed-size

graph receptive fields required by CNNs due to the specific structure of graphs. The

convolutional filters designed in GNNs avoid this issue. The graph representation learn-

ing methods and the pooling methods that are reviewed in Section 3.1 can be combined

together to learn informative graph-level representations, which are classified by an

arbitrary classifier. The discriminability of the learned graph representations is crucial

for the performance of the whole classification model. There are also other algorithms

that are proposed based on those GNN backbones to enhance the representation expres-

siveness of GNNs and further improve the classification performance. One direction is

to capture high-order knowledge. Some pooling mechanisms mentioned in Section 3.1.2

learn hierarchical information by coarsening graphs sequently to further improve the

informativeness of the learned graph embeddings, e.g., DiffPool [242], SAGPool [102],

HGP-SL [262], VIPool [109], etc. Some works aggregate knowledge not only from its

neighbors, but also from its k-hop neighborhood [159; 55]. A virtual node/edge is added

in [84; 105; 63] to enable each node to obtain knowledge from nodes outside its one-

hop neighborhood. Instead of learning from distant neighborhood, global topological

information is calculated via extended persistence in [258].

Data augmentation also becomes an efficient scheme in graph classification. Some

methods realize augmentation via enriching node features. For example, distance en-

coding is proposed in [110] to generate and add extra node features. RGIN [186] adds

random node features, while GSN [14] and fast ID-GNN [243] use the count of various

motifs to extend the node features. In [127], neighborhood features are augmented via a

generative model conditioned on local structures and node features. Except to node fea-

ture extension, augmenting the graph from the structure perspective is another popular

approach. For example, NestedGNN [257] and ID-GNN [243] sample a subgraph for each
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node and use the subgraphs to compute node embeddings and add them to complement

the original graph. The structural information used in these methods is local, while many

useful graph-level structural information is ignored. To alleviate this issue, in [128], a

dummy node that connects to all existing nodes is added without affecting original node

and edge properties for better graph representation learning. Mixup [217], G -mixup [71]

and graph transplant [168] mixup graphs to obtain more graph data for data-hungry

tasks. DropGNN [167] instead performs augmentation through iteratively removing

nodes randomly and executing multiple different runs on these node-dropout graphs.

TOGL [77] leverages persistent homology to incorporate global topological knowledge.

3.2.2 Imbalanced Graph Classification Methods

For data with imbalanced distribution, the classification methods reviewed above tend

to favor the majority class and under-represent samples from minority classes, leading

to sub-optimal performance. Most current methods for imbalanced classification in the

graph domain focus on node-level tasks. Some existing imbalanced learning methods,

e.g., resampling, re-weighting [35; 123], re-margining [19; 42], ensemble methods, can be

directly applied to node classification models. However, due to the topological properties

between nodes in graphs, such operations might cannot obtain the optimized result. Some

works try to improve them for the tasks in graph field. HSCL [34] adopts the hybrid

sampling method in contrastive learning to obtain discriminative representations. ReN-

ode [24] and TAM [194] design loss function incorporating graph structure knowledge.

Authors in [125] design a loss function FD-Loss for imbalanced node classification to

enable the model to focus on instances that are helpful for the task. Boosting-GNN [190]

adjusts training samples that are wrongly classified by setting higher weights on them.

In [211], the label difference index (LDI) is defined to establish the relationship between

class imbalance and misclassification, and one new loss function and four new methods

are proposed based on LDI, namely, improved focal loss (iFL), Graph Re-sampling (GRS),

Graph Re-weighting (GRW), Graph Metric Learning (GML), and Graph Bilateral-branch

Network (GBBN). Inspired by the ensemble-based methods, GraphDIVE [78] learns

multi-view graph representations to capture intrinsic diverse graph topological structure

characteristics and combines multi-view experts to make a more accurate prediction.

Besides, researchers also try to augment training samples to alleviate the deviation to

the majority class. For example, GraphSMOTE [270], GATSMOTE [131], GNN-CL [114],

Mixup [217], GraphMixup [225], ImGAGN [179], GraphENS [169], GraphTU [60],

SemiMixup [113] and Graph-DAO [227] generate synthetic training samples. KINC-
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GCN [8] introduces a kernel propagation method to augment the node features and

a self-optimizing cluster analysis and a graph reconstruction module are utilized to

help the classification. GraphSR [273] augments the minority classes with most similar

unlabelled nodes. The specific aggregation process of GNN can be improved to reduce

bias. Effective-aggregation Graph Convolutional Network (EGCN) [208] modifies the

aggregation operation by limiting the aggregation of inter-class edges from a local per-

spective while focusing more on the minority class from a global perspective based on

the imbalance ratio. Minority-weighted graph neural network (mGNN) [209] calculates

node membership values as weights during aggregation process. Balanced Topological

Augmentation (BAT) [134] dynamically locates and rectifies nodes crucially influenced

during message passing to reduce the errors and biases. Considering the special struc-

tural property of graph, [210] inserts buffer nodes into the graph to modulate the impact

of majority classes to enhance minor class representation. Distance-wise Prototypical

Graph Neural Network (DPGNN) [215] transfers knowledge from majority instances

to minority samples by the learned class prototypes and metric learning. Long-Tail

Experts for Graphs (LTE4G) [248] introduces a class prototype-based inference method

to adjust predictions. However, these methods balance classes inside a graph and cannot

be utilized directly to balance graphs in a graph set for graph-level classification.

To realize graph-level imbalanced classification, the existing imbalanced learning

methods can be used together with the graph representation learning methods. However,

they are not designed to tackle the class imbalance problem in graph classification,

resulting in sub-optimal performance. There is one method dedicated to develop trans-

ferable patterns on the structure-abundant head graphs in the cause of enriching the

structure-scarce tail graphs for more expressive graph representations [133], but it is

size oriented. Graph-of-Graph Neural Networks (G2GNN) [219] are designed and trained

using augmented graphs to learn graph representations for imbalanced graph classifica-

tion. Specifically, it utilizes kernel similarity to construct a graph of graphs (GoG) and

derives extra supervision for minority nodes from their neighborhoods by implementing

GoG propagation. In addition, the stochastic topological augmentation is used to improve

the model generalibility. However, the construction of GoG relies on kernel similarity

among graphs, which is computationally costly for large-scale graph datasets. Retrieval

Augmented Hybrid Network (RAHNet) [147] enriches the tail classes by using a graph

retrieval module to search for relevant graphs and introduces a category-centered su-

pervised contrastive loss to obtain discriminative representations. CoMe [239] optimizes

the representation learning and classifier learning jointly via tailored balanced con-
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trastive learning along with individual-expert classifier training, and then fuses and

distills the multiple expert networks from both global and local views for more excel-

lent collaboration ability. Authors in [234] find that feature-oriented augmentation and

structure-oriented augmentation have different influences on different types of graphs

and propose a degree-oriented optional augmentation to improve sample diversity. To en-

hance the generalibility of the model, a size-oriented GoGs is constructed. TopoImb [268]

focuses on problem whose imbalance exists in topological motifs and designs a topology

extractor to explicitly model and dynamically update the detection of structure groups,

following by a training modulator that assigns importance weights to under-represented

training samples to automatically and adaptively regulate the training process.

3.3 Graph Anomaly Detection

Anomalies in graph can be node, subgraph, edge (relation) inside a graph or whole graph

in a set of graphs. Node/graph embeddings learned by graph representation methods can

be input into traditional anomaly detection methods to identify outliers, but their results

are sub-optimal. Researchers try to design specific methods for graph anomaly detection

tasks, of which works that explore node-level anomaly detection (NLAD) in a graph

make up a significant proportion. Before the popularity of GNNs, works focus on shallow

models [80; 224; 255; 173; 106; 126]. For example, ANOMALOUS [173] employs CUR

decomposition to select representative samples and uses residual analysis to calculate

the normality of each sample. Due to the impressive performance of GNNs in other tasks,

more attention is paid to GNN-based NLAD methods. One type of solutions is to use

reconstruction errors of graph autoencoder (GAE) as anomaly scores. DOMINANT [39] is

the pioneered work, which constructs a GAE structure with a GCN encoder to compress

the input to low-dimensional representations and a decoder to reconstruct both the

topological structure and nodal attributes and uses the reconstruction errors of nodes to

spot anomalous nodes. Based on DOMINANT, several improved works are proposed [139;

10; 52; 115; 174; 184]. For example, in [10], two GAEs are applied to the attributes

and adjacency matrix respectively for outlier-aware node embeddings learning and

further an adversarial learning method is proposed; SpecAE [115] leverages GAE to

extract low-dimensional embeddings and carries out detection via density estimation;

GAD-NR [184] focuses on neighborhood reconstruction. Apart from the reconstruction

models, self-supervised model is also a popular choice [218; 130; 271; 38; 88; 228; 49]. For

instance, CoLA [130] constructs contrastive learning model on contrastive instance pair
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which pairs node and subgraph and the agreement within the pair is used to evaluate

the abnormality of nodes; AEGIS [38] employs a graph neural layer to learn anomaly-

aware node representations and a generative adversarial network (Ano-GAN) to detect

anomalies among new data inductively. In addition to the above two types of methods,

there are also other notable models [213; 99; 44; 267; 41; 170; 274; 111; 132; 177]. For

example, OCGNN [213] and [99] use representations of nodes to train a hypersphere to

discover abnormal nodes. GDN [41] leverages a deviation loss to enlarge the deviations of

the anomaly scores of abnormal and normal nodes. ResGCN [170] ranks anomalies based

on residual information. AAGNN [274] utilizes subtractive aggregation to represent

each node as the deviation from its neighbors. Normal nodes with high confidence

are employed as labels to learn a tailored hypersphere as the criterion of anomalies.

GraphConsis [132] improves the aggregation process of GNNs.

For abnormal edge detection, a probability distribution of nodes is established con-

ditioned on a specific node and its neighbors in [163] and the edge with low existence

probability has a high possibility to be regarded as an anomaly. Deep models with GNNs

for this task mainly focus on GAE. Based on GAE, AANE [47] designs a new loss, which

is composed of anomaly aware loss and adjusted fitting loss, to guide the choice of signifi-

cant abnormal edges during model training. Duan et al. [48] extend AANE by denoting

anomaly weights of edges with continuous parameters in a data-driven way. RGSE [135]

employs common-neighbor-based local structure features aligning with GAE for higher

robustness.

There are also some other approaches whose goal are subgraph anomaly detection.

[151] and [138] construct model based on residual matrix of graph while [193] applies

SPCA to the modularity matrix of a graph. Zhao et al. [265] formulate the problem as

maximizing a non-parametric scan statistic and then approximate it to a submodular

maximization problem. SADE [171] applies traditional anomaly detection methods to the

subgraph embeddings learned by specific method. Methods with GNNs are also mainly

GAE-based or contrastive learning-based. For example, AS-GAE [264] introduces a su-

permodular graph scoring function module to assign reasonable anomaly scores to the

subgraphs in the anomalous areas identified by a GAE. [81] proposes an improved unsu-

pervised contrastive learning method based on CoLA, which comprehensively compares

both the internal and external aspects of subgraphs and leverages a trained teacher

model as prior knowledge to modify the sampling probabilities for selectively aggregating

neighbor nodes.

However, the above methods can only identify local anomalies inside a graph. Dis-
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criminating abnormal graphs among graph set directly instead of anomalous components

inside a graph is also meaningful in numerous domains. One simple method is to combine

existing graph representation learning methods with anomaly detection methods directly

[266]. For better performance, some specifically designed methods are introduced in re-

cent years. One research direction is to learn more discriminative graph representations.

iGAD [251] uses an anomalous graph substructure-aware deep Random Walk Kernel

module to embed the knowledge of abnormal substructures into graph representations.

Yu et al. [244] combine GIN with Siamese network architecture for more comprehen-

sive graph representations. CVTGAD [108] designs a simplified transformer module

and a cross-view attention module for better graph representations. TUAF [245] learns

triple representations from the triple-unit graph which is transformed from original

graph and inputs it into an adaptive fusion readout to obtain a high-quality graph-level

representation. HRGCN [107] models the interactions among all the nodes and con-

siders both source-to-destination node categories and their edge categories for better

graph representations. Authors in [43] propose a spectral GNN, namely RQGNN, by

incorporating Rayleigh Quotient learning with Chebyshev Wavelet GNN to explore the

spectral aspects of anomalous graphs. GLADformer [231] incorporates a spatial-domain

Graph Transformer module and a spectral energy distribution deviations to enhance

global perception and proposes a Spectral GNN to guide the extraction of local anomaly

features.

GAE is also a powerful mechanism for GLAD. GLADC [140] constructs a GAE-based

contrastive learning mechanism and detects anomalies by the reconstruction and input

graph representations simultaneously instead of relying on the reconstruction solely.

HimNet [160] establishes a hierarchical memory structure via a GAE to detect both

locally and globally anomalous graphs.

Except these methods, there are also some other notable models. SIGNET [129]

measures the abnormality of each graph based on cross-view mutual information. Gma-

pAD [145] maps abnormal and normal graphs into a representation space with large

distance by calculating the similarity between graphs and inter-graph candidate nodes.

MssGAD [121] learns a separate multi-representations space to differentiate normal

and abnormal graph representation space. GLADST [122] trains two student modules

by normal and abnormal data respectively under the guide of a teacher module and

calculates the anomaly score for a graph based on the representation error value of two

student models.
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3.4 Summary

Traditional non-deep methods for graph representation learning often require more

memory and calculation resources and cannot deal with graphs with complex structure.

GNNs can leverage complex graph structure better through the specific message passing

mechanism to achieve better performance and have become the main tool for various

down-stream graph tasks in recent years. Different message passing mechanisms and

pooling schemes are proposed for more informative graph representations.

The focus of down-stream tasks in graph domain can be varying, i.e., node-level, edge-

level, subgraph-level and graph-level. Node-, edge- and subgraph-level tasks focus on

components inside a graph, while graph-level tasks pay main attention to whole graphs

in a graph set. Therefore, methods centered on local components cannot be applied to

graph-level tasks directly. Specifically designed methods are required to solve graph-level

tasks. Methods for different-level classification and anomaly detection tasks in graph

domain are reviewed in detail for a more comprehensive understanding of these types of

tasks.
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BALANCED GRAPH-LEVEL CLASSIFICATION WITH

COLLECTIVE STRUCTURE KNOWLEDGE AUGMENTATION

4.1 Introduction

In the past few years, GNNs have been emerging as one of the most powerful and suc-

cessful techniques for graph representation learning. Message passing neural networks

constitute a prevalent category of GNN models, which learns node features and graph

structure information through recursively aggregating current representations of node

and its neighbors. Diverse aggregation strategies have been introduced, giving rise to

various GNN backbones, such as GCN, GIN, and among others [226; 96; 70; 203; 232].

However, the expressive power of these message passing GNNs is upper bounded by

1-dimensional Weisfeiler-Leman (1-WL) tests [232; 155] that encode a node’s color via

recursively expanding the neighbors of the node to construct a rooted subtree for the node.

As shown in Figure 4.1, such rooted subtrees are with limited expressiveness and might

be the same for graphs with different structures, leading to failure in distinguishing

these graphs. This presents a bottleneck for applying WL tests or message passing neural

networks to many real-world graph application domains.

The failure of WL test is mainly due to the rooted subtree’s limited capabilities

in capturing different substructures that can appear in the graph. Since the message

passing scheme of GNNs mimics the 1-WL algorithm, one intuition to enhance the

expressive power of GNNs is to enrich the passing information, especially structural
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Figure 4.1: 1- and 2-WL tests fail to distinguish the two graphs as they obtain the same
rooted subtree (node coloring).

knowledge, to help GNNs model diverse substructures. One popular approach to achieve

this is data augmentation (DA) techniques [40]. One general framework in this line is

to compute additional node features based on structural properties and attach them to

original node features, such as DE [110], GSN [14], fast ID-GNN [243] and LAGNN [127].

Except extending node features, NestedGNN [257] and ID-GNN [243] compute and add

node embeddings based on the local subgraph of each node. However, these methods

only focus on local structure while many important global structure features are ignored.

Also, GSN and fast ID-GNN often rely on a properly pre-defined substructure set to

incorporate domain-specific inductive biases [257]. Further, these DA techniques are

focused on augmenting the graph with some individual features, which are difficult to

scale up to the incorporation of a diverse, large set of augmented features.

In this chapter, we propose a novel approach, namely collective structure knowledge-
augmented graph neural network (CoS-GNN), to leverage a variety of informative struc-

tural knowledge of graphs through DA for enhancing the expressiveness of existing

GNNs. Instead of implicitly using structural information in other DA methods, we ex-

plicitly extract collective, domain-adaptive graph structural statistics at the graph and

node levels as additional structure features. To fully leverage those augmented struc-

tural knowledge, we design a new message passing mechanism to respectively perform

neighborhood aggregation on graph data using these augmented structure features

and the original node attributes. Further, the new message passing can also model the

interaction between the augmented features and the original node attributes. In doing so,

our GNNs break down the upper bound of 1-WL tests and learn graph representations

with significantly improved expressiveness (see the graph representations produced by

CoS-GNN in Figure 4.2(b)(c) vs. those yielded by the original GCN).

In summary, our main contributions are as follows:
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(a) GCN (b) CoS-GCN w/o graph structure (c) CoS-GCN

Figure 4.2: The red and blue points represent the visualized graph representations of
two classes in REDDIT-BINARY yielded by (b) CoS-GCN with augmented node-level
structural features and (c) CoS-GCN with augmented structural features at both node
and graph levels are more class-separable than those produced by (a) the original GCN.

• We introduce a novel collective structure knowledge augmented GNN approach

(CoS-GNN) that explicitly harnesses a diverse set of node and graph-level struc-

tural information for enhancing the expressiveness of GNN-based graph represen-

tations. The approach is generic and applicable to different GNN backbones.

• To effectively leverage the augmented structural features, a new message passing

scheme is introduced in CoS-GNN, which simultaneously performs neighborhood

aggregation on the augmented features and the original node attributes, enabling

the learning of graph representations with significantly enriched structural knowl-

edge.

• Comprehensive experiments on 12 graph datasets demonstrate that CoS-GNN (i)

significantly outperforms competing methods in graph classification task; (ii) is

more generalized to out-of-distribution graphs.

In the rest of this chapter, we introduce the proposed CoS-GNN and its two instantia-

tions, namely CoS-GCN and CoS-GIN, in Section 4.2. Theoretical Analysis is presented in

Section 4.3. Section 4.4 displays the experimental results. The summary of this chapter

is provided in Section 4.5.

4.2 The Proposed CoS-GNN Model

4.2.1 Framework

The proposed CoS-GNN aggregates original and augmented structural features of single

nodes and whole graph to learn expressive graph representations. The key intuition

of CoS-GNN is to utilize various local (node) and global (graph) structural information

37



CHAPTER 4. BALANCED GRAPH-LEVEL CLASSIFICATION WITH COLLECTIVE
STRUCTURE KNOWLEDGE AUGMENTATION

to enrich the original graph structural knowledge, through which we can learn a more

informative and discriminative graph representation. The overall procedure of CoS-GNN

is illustrated in Figure 4.3, which is composed of the following three major components:

• Collective Graph Data Augmentation. In this component, we generate a diverse

set of specific structural features for each graph G (denoted by xgs
G ) and each node

vi in G (denoted by xns
i ). These two types of features are added to augment each

graph G from the structural knowledge perspective. It is a component that can be

done offline.

• Augmented Node-level Message Passing. This component is designed to iteratively

aggregate both the original and augmented node features, i.e., xi and xns
i , to learn

the node representation hi with significantly enriched structural knowledge for

each node vi. To this end, a new message passing mechanism is introduced for this

process. The node representations are then fed to a readout layer to gain the graph

representation hl .

• Graph-level Representation Fusion. This component aims to synthesize the learned

graph representation hl and the pre-defined graph-level structural features xgs
G

via concatenation/fully-connected layers to obtain the final representation hg. hg

is then fed to a down-stream graph-level learning task.

4.2.2 Harnessing Collective Structure Knowledge for GNN

In this section, two instantiations of our CoS-GNN with the commonly-used GCN and

GIN as the GNN backbone are introduced, namely CoS-GCN and CoS-GIN, respectively.

Collective Graph Data Augmentation

Graph is first augmented via computing some important node and graph statistics,

which serve as additional node and graph features to complement the original node

attributes. This component is shared by different model instantiations, and it can be

performed before the model training.

Specifically, a number of widely-used and domain-adaptive node-level features are

selected or generated, including the degree, triangle number, clique size, clique number,

core number, cluster coefficient and square cluster coefficient, resulting seven new

features in xns
i for each node vi. The last two coefficient measures capture the tendency
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Node structural augmentation
Graph structural augmentation

Graph 
representation

Down-stream
task

Message Passing

Figure 4.3: A schematic depiction of our CoS-GNN. Our CoS-GNN first calculates the
specific node- and graph-level structural features. Then a new message passing mecha-
nism is devised to utilize the original node attributes and the augmented node structural
features to compute the graph representation, which is further combined with the graph
structural augmentations for down-stream tasks.

of the node to form relatively dense communities, while other measures are to capture

substructural information from varying scales. The detailed definitions of these features

is as follows:

• Degree. The degree of a node/vertex is the number of edges that are incident to

the node, which is an important and commonly-used node structure statistic.

• Triangle. Triangle is a simple and direct structure, and we count the number of

triangles that use this node as a vertex.

• Clique. The clique is a substructure, in which every two distinct nodes are adjacent.

We calculate the size of the maximal clique and the number of maximal cliques

containing each given node.

• K-core. A k-core is defined as a maximal subgraph that is composed of nodes

with degree k or more, the core number of a node is the largest value k of a k-core

containing the given node. We collect the core number of each node as one of the

augmented node-structural characteristics.
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• Quantized values. Beyond the number, we also calculate the triangle/square clus-

tering coefficient for each node, which is the fraction of possible triangles/squares

through the given node that exist. This quantifies the tendency of nodes to form

relatively dense network groups, i.e., triangles or squares.

For graph-structural-level augmentation, a variety of important global statistics

are utilized, including triangle number, clique size, the existence of bridge, average

clustering coefficient, average global efficiency, and average local efficiency, to generate

six graph-level structural features xgs
G for each graph G. The three coefficients quantify

the abundance of dense communities in the graph and the other statistics are the

measurement of the node-to-node communication effectiveness within a graph. Detailed

definition of each statistic is presented as follows:

• Triangle. We use the total number of triangles as one graph feature.

• Clique. We count the size of the largest clique in the graph as the second graph

feature.

• Bridge. Another employed statistic is the existence of a bridge in the graph, which

is an edge whose removal will cause the number of connected components of the

graph to increase. The bridge is a specific characteristic of the graph.

• Quantized values. The average clustering coefficient for the graph is also included

to measure the abundance of dense network groups in the graph. The efficiency of

a pair of nodes is the multiplicative inverse of the shortest path distance between

the nodes, and we calculate the average efficiency of all pairs of nodes in the graph,

called average global efficiency, as one of the graph-structural statistics to measure

the effectiveness of communication in the graph. The local efficiency of a node is

defined as the average global efficiency of the subgraph induced by the neighbors

of the node. We utilize the average local efficiency, which is the mean of local

efficiencies of each node in the graph, as another statistic.

These collective statistics consider the configurations with different scales and com-

plexities, which are normally adaptive to graphs from different domains.

Augmented Node-level Message Passing

Once the augmented node structural feature xns is obtained, we then aggregate the

original feature x and the augmented features xns to learn the original node attributes
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and their interaction with augmented structural knowledge of nodes. One straightfor-

ward solution that many previous methods do is to concatenate them directly and then

apply GNN to perform the commonly-used neighborhood aggregation on nodes using

the combined feature. This approach is easy-to-implement but fails to capture intricate

interactions (e.g., higher-order and/or non-linear interactions) between the original node

attributes and augmented features. To address this issue, a novel message passing

mechanism for effectively capturing the diverse knowledge embedded in the two types of

features and their interactions is proposed. The experiments also show that the proposed

message passing mechanism outperforms the conventional message passing with the

concatenated input (see results in Table 4.8).

To this end, a dual-graph structure that facilitates the modeling of the original node

features, the modeling of the collective augmented node features, and the modeling of

the interactions between these two types of features in each message passing step is

constructed. In detail, given a graph G, we construct a new graph Ĝ with the same node

and structure as the original graph but with the xns as its node attributes and link the

corresponding nodes of G and Ĝ. This results in an augmented graph with a dual-graph

structure, G
′
.

Message Passing in CoS-GCN

Next we perform message passing on the dual-graph structure G
′
. When using GCN

as the GNN backbone, the adjacent matrix A
′
of G

′
can be written as

(4.1) A
′ =

(
A I
I A

)
,

and the degree matrix D
′
is

(4.2) D
′ =

(
D+ I 0

0 D+ I

)
,

where A and D are the adjacent and degree matrices of G. We then convolute the node
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features of G
′
by

(4.3)

H(l) = ρ

(
D̃

′− 1
2 Ã

′
D̃

′− 1
2

(
H(l−1)

n

H(l−1)
ns

)
W (l)

)

= ρ

(
D̃+ I 0

0 D̃+ I

)− 1
2
(

Ã I

I Ã

)(
D̃+ I 0

0 D̃+ I

)− 1
2
(
H(l−1)

n W (l)

H(l−1)
ns W (l)

)
= ρ

((
(D̃+ I)−

1
2 Ã(D̃+ I)−

1
2 D̃+ I

D̃+ I (D̃+ I)−
1
2 Ã(D̃+ I)−

1
2

)(
H(l−1)

n W (l)

H(l−1)
ns W (l)

))

= ρ

(
(D̃+ I)−

1
2 Ã(D̃+ I)−

1
2 H(l−1)

n W (l) + (D̃+ I)H(l−1)
ns W (l)

(D̃+ I)−
1
2 Ã(D̃+ I)−

1
2 H(l−1)

ns W (l) + (D̃+ I)H(l−1)
n W (l)

)
,

where Ã = A+ I, D̃ = D+ I and D̃
′ = D

′ + I. H(l−1)
n and H(l−1)

ns is the node representation

matrices of G and Ĝ after the (l−1)th convolutional layer. The feature input of the 0th

layer is node feature matrices X and X ns, which stack xi and xns
i (vi ∈ G) across all

graph nodes, respectively. W (l) is the parameter matrix of the l th convolutional layer.

Since the original node features and augmented node structural features can be very

different, two different convolutional filters (i.e., with different convolutional weights) is

employed to learn their knowledge as follows:

(4.4) H(l) =
(
H(l)

n

H(l)
ns

)
≈ ρ

(
(D̃+ I)−

1
2 Ã(D̃+ I)−

1
2 H(l−1)

n W (l)
n + (D̃+ I)H(l−1)

ns W (l)
ns

(D̃+ I)−
1
2 Ã(D̃+ I)−

1
2 H(l−1)

ns W (l)
ns + (D̃+ I)H(l−1)

n W (l)
n

)
,

where W (l)
n and W (l)

ns are the parameter matrices of l th layer for two types of features

respectively, and H(l)
n and H(l)

ns are the node representation matrices of G and Ĝ after

current l th message passing layer.

After L message-passing layers, the node representations of two graphs G and Ĝ in

each layer are aggregated to obtain the final node representation matrix as follows:

(4.5) H =AGGATEn(H(1)
n , · · · ,H(L)

n ,H(1)
ns , · · · ,H(L)

ns ),

where AGGATEn(·) is an aggregate function, and concatenation is used in our exper-

iments; H denotes the representation matrix that encapsulates the representation of

all individual nodes. Then a readout function is applied to obtain the learned graph

representation hl .

Message Passing in CoS-GIN

The framework can also be extended to other GNN backbones. Here we now present

how the proposed message passing method can be adopted to the case using GIN as our
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backbone. To this end, the GIN-based message passing is re-defined as follows:

(4.6)

h(l)
vi ,n =MLP(l)

n

(
(1+ϵ(l))h(l−1)

vi ,n + ∑
v j∈N (vi)

h(l−1)
v j ,n +h(l−1)

vi ,ns

)
,

h(l)
vi ,ns =MLP(l)

ns

(
(1+ϵ(l))h(l−1)

vi ,ns +
∑

v j∈N (vi)
h(l−1)

v j ,ns +h(l−1)
vi ,n

)
,

Then the obtained representations are combined via summation. In detail,

(4.7)

hn =∑
l

FC(l)
n (READOUT(H(l)

n )),

hns =
∑
l

FC(l)
ns(READOUT(H(l)

ns)),

where FC(l)
n (·) and FC(l)

ns(·) are fully-connected layers in the l th layer. The learned graph

representation hl is gained through adding them together:

(4.8) hl =hn +hns.

The key insight of the message passing mechanism in CoS-GIN is analogous to that

in CoS-GCN, but they are derived at different representation levels: matrix of node

representations in CoS-GCN vs. vectorized node representations in CoS-GIN, which is

mainly done for presentation brevity.

Graph-level Representation Fusion

After gaining the learned graph representation hl , MLPs are then employed to

synthesize it, together with the augmented graph-structural feature xgs, to learn the

final graph representations. In detail, hl and xgs are input into the two different MLPs

as:

(4.9) hMLP
l =MLPl(hl),hMLP

gs =MLPgs(xgs).

The information learned is then integrated to gain the final graph representation:

(4.10) hg =AGGATEg(hMLP
l ,hMLP

gs ),

where AGGATEg(·) is the aggregation function and concatenation is used here. Then the

graph representation can be used for any down-stream tasks. Algorithm 1 presents the

procedure of CoS-GCN to calculate graph representations, which can be later input to

any down-stream tasks.
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Algorithm 1 Graph representation learning via CoS-GCN

Input: Graph set G = {G i}i, two GNNs with parameter set {W (1)
n , ...,W (L)

n } and
{W (1)

ns , ...,W (L)
ns }, two MLP functions MLPl(·) and MLPgs(·)

Output: Graph representation hg for G ∈G

1: Augment node and graph structural knowledge to obtain X ns and xgs for each G ∈G

2: for G in G do
3: Compute H(l), l ∈ {1, · · · ,L} with Eq. (4.4)
4: Aggregate H(l), l ∈ {1, · · · ,L} with Eq. (4.5) to obtain H
5: Readout H to obtain hl
6: Input hl and xgs into MLPl and MLPgs respectively to gain hMLP

l and hMLP
gs

7: Aggregate hMLP
l and hMLP

gs to obtain the final representation hg for G
8: end for
9: return Graph representation hg for G ∈G

4.3 Theoretical Analysis

4.3.1 Expressive Power of CoS-GNN

This section discusses the expressive power of CoS-GNN. When comparing the expres-

siveness of GNN models, we can define that:

Definition 6. For any two GNN models: A and B, model A is said to be more expressive
than model B, if and only if 1) model A can distinguish all samples that model B can
distinguish, and 2) there exists samples which can be distinguished by model A but not
by model B.

To measure the expressive power of GNNs, the Weisfeiler-Lehman (WL) graph iso-

morphism test is commonly used, which is a family of algorithms (k-WL, k-FWL) used

to test graph isomorphism [148; 66]. Two graphs G1 and G2 are called isomorphic if

there exists an edge and color preserving bijection φ : V1 → V2. Next we show the strong

expressive power of our model CoS-GNN from the WL-test perspective:

Theorem 1. CoS-GNN is not less expressive than 1-WL and 2-WL tests.

Proof. We first consider the comparison with 1-WL test. This equals to prove such

statement: If CoS-GNN deems that two graphs are isomorphic, then 1-WL test will also

deem them isomorphic. If after k iterations, the CoS-GNN regards two graphs G1 and

G2 are isomorphic, we have h(k)
1,g = h(k)

2,g. Assuming that the AGGATEg is injective, we

can obtain that hMLP(k)
1,l = hMLP(k)

2,l and hMLP(k)
1,gs = hMLP(k)

2,gs , followed by h(k)
1,l = h(k)

2,l and
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xgs
1 = xgs

2 . Thus we have H(i)
1 = H(i)

2 and then h(i)
v,n = h(i)

u,n and h(i)
v,ns = h(i)

u,ns for v ∈ VG1 ,

u ∈ VG2 and i = 1, ...,k when the AGGATEn is injective.

What is needed to prove next is that the color extracted by 1-WL for node v and

u is same, i.e., c(k)
v = c(k)

u . We use the induction as [14] to demonstrate this. For i = 0,

since the initial node features are the same for both CoS-GNN and 1-WL, we can get

c(0)
v = c(0)

u when h(0)
v,n = h(0)

u,n. Suppose h( j)
v,n = h( j)

u,n,h( j)
v,ns = h( j)

u,ns ⇒ c( j)
v = c( j)

u holds for j =
1, · · · ,k−1, we later need to prove that it holds for j = k. Since each node representation,

including h( j)
v,n and h( j)

v,ns, is calculated by a COM function, if COM is injective, we have

h(k−1)
v,n =h(k−1)

u,n , h(k−1)
v,ns =h(k−1)

u,ns , AGGATE({h(k−1)
q,n |q ∈Nv})=AGGATE({h(k−1)

p,n |p ∈Nu}) and

AGGATE({h(k−1)
q,ns |q ∈Nv})=AGGATE({h(k−1)

p,ns |p ∈Nu}) when h(k)
v,n =h(k)

u,n and h(k)
v,ns =h(k)

u,ns.

According to Lemma 5 from [232], there exists an injective function. When AGGATE

is injective, we have h(k−1)
q,n = h(k−1)

p,n and h(k−1)
q,ns = h(k−1)

p,ns , which lead to c(k−1)
q = c(k−1)

p for

q ∈Nv and p ∈Nu. Since we have c(k−1)
u = c(k−1)

v according to the induction hypothesis,

we can get c(k)
u = c(k)

v . Therefore, the 1-WL test regards two graphs isomorphic if the

CoS-GNN regards them isomorphic.

Since 1-WL and 2-WL test have equivalent discrimination power [148; 257], CoS-GNN

is also at least as expressive as 2-WL test. ■

The theorem states that CoS-GNN is at least as expressive as 1-WL and 2-WL tests.

Some graphs that 1-WL and 2-WL tests cannot distinguish can be identified by the

proposed CoS-GNN. For example, 1-WL and 2-WL fail to distinguish the two graphs in

Figure 4.1, whereas CoS-GNN can easily differentiate them with the augmented features.

Thus, our CoS-GNN can often learn more expressive representations than popular GNNs

since they are mainly based on the 1-WL test, when handling complex graph datasets. For

example, it has been shown in [29] that MPNNs cannot perform induced-subgraph-count

of any connected pattern consisting of 3 or more nodes. For graphs with subgraphs that

MPNNs cannot learn to count, there would be some pairs of graphs with different number

of such uncounted subgraphs that are regarded as isomorphic by MPNNs. On the other

hand, CoS-GNN can discriminate these graphs through including structural features

that differentiate these subgraphs. As shown in Figure 4.1, the two graphs cannot be

distinguished by MPNNs, but they can be differentiated by the triangle counting for both

nodes and graphs, and the existence of bridge in the graphs as well.

When compared with higher-order WL tests, it can also be observed that our CoS-

GNN can distinguish graphs that 2-FWL test (which is equivalent to 3-WL test [148])

fails to identify, meaning that 3-WL test is not more expressive than our CoS-GNN. For

example, [4] and [14] have shown that the 2-FWL test fails to distinguish the well-known
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Figure 4.4: The strongly regular Rook’s 4×4 graph (left) and Shrikhande graph (right)
[14; 4]. The 3-WL/2-FWL test is not able to deem them as non-isomorphic. Rook’s 4×4
graph possesses 4-cliques while the Shrikhande graph features 5-rings, which does not
present in Rook’s.

Rook’s 4×4 and Shrikhande graphs, as illustrated in Figure 4.4. However, the clique

features incorporated into our CoS-GNN model help effectively discriminate these two

graphs.

4.3.2 Time Complexity Analysis

In this section, the time complexity of CoS-GNN is analyzed. The computation cost mostly

concentrates on the feature extraction stage and the message passing stage. Let N and

M be the number of nodes and edges in the graph respectively, in the feature learning

phase, the degree and triangle counting cost are O (N) and O (N2) time respectively.

The complexity of clique and core finding are respectively bounded by O (N ∗3N) and

O (N +M). The computation of triangle and square clustering coefficient is O (N2). The

bridge finding needs O (N +M) time. The average clustering coefficient, average global

and local efficiency require O (N2), O (N3) and O (N4) respectively. Therefore, the feature

extraction stage requires O (N4+N ∗3N +M) time. As for the message passing stage, the

time complexity of CoS-GNN equals to the corresponding vanilla GNN. Thus, the total

time complexity of CoS-GNN is O (N4 +N ∗3N +M)+OGNN .

4.4 Experiments and Results

4.4.1 Competing Methods

The proposed CoS-GNN is compared with 13 state-of-the-art (SOTA) methods:

• Graph kernels. Two graph kernels, i.e., Weisfeiler-lehman subtree kernel
(WL) [188] and Propagation graph kernels (PK) [156] are used as baselines.
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• Basic graph neural networks. Four popular networks, i.e., GCN [96], Graph-
SAGE (shortened by SAGE) [70], GAT [203] and GIN [232], are considered as

the network baselines.

• GNN-based augmentation methods. We also compare CoS-GNN with several

augmentation models that are built based on GNNs, including G -mixup [71],

Dummy [128], DropGNN [167], rGIN [186], NestedGNN [257], LAGNN [127],

and GSN [14].

The mean results and standard deviation based on 10-fold cross-validation is reported

for all datasets.

4.4.2 Parameter Settings

The following parameters are set by default for CoS-GCN and its competing methods,

including WL, PK, GAT, SAGE and GCN, on all 12 datasets: the learning rate is 0.001,

the batch size is set to 512, the number of network layers is 3, the hidden layer dimension

of network is 256, the classifier is a 3-layer MLP, pooling operation is max pooling, and

the number of epochs is 1,000. The iteration number of WL is 3. For GIN and CoS-GIN,

the learning rate is chosen from {0.01,0.001,0.0005,0.0001}, the batch size is selected

from {32,64,128,256}, hidden layer dimension is ranged in {16,64,128,256} and the

readout operation is either meanpooling or maxpooling. For other baselines, their public

codes are run with their recommended settings.

4.4.3 Comparison to SOTA Models

The graph classification accuracy results of CoS-GNN models (including CoS-GCN

and CoS-GIN) and 13 SOTA competing methods are reported in Table 4.1, where the

GNN backbone used in G -mixup, Dummy and DropGNN is all GIN due to its better

performance; the results of G -mixup on the IMDB and REDDIT datasets are taken

from [71]; the result of Dummy on DD, NCI1 and NCI109 are from [128]; the results

of NestedGCN and NestedGIN on DD, MUTAG and ENZYMES are from [257]; and ‘-’

means the results are not reported in the original papers.
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4.4. EXPERIMENTS AND RESULTS

It is clear that CoS-GIN and CoS-GCN achieve the best or second-best performance

on most of the datasets and the two top-ranked methods among all methods. Specifically,

CoS-GCN improves GCN by 0.8%, 2.2%, 3.0%, 3.1%, 3.2% and 8.3% for PROTEINS_full,

DD, IMDB-BINARY, NCI1, NCI109 and ENZYMES respectively, while the improvements

brought by CoS-GIN over GIN are 1.5%, 1.7%, 1.7%, 2.2%, 2.3%, 3.3% and 10.3% for

BZR, COX2, IMDB-BINARY, DD, NCI1, NCI109 and ENZYMES respectively. These

large performance advancement reveals that the structural information in these dataset

is specific and the feature augmentation and message passing process in our CoS-

GNN make full use of these structural information to improve its performance. When

compared with other augmentation methods, our models can also perform better than

the SOTA models on most datasets (i.e., NCI109 (0.2%), REDDIT-MULTI (0.2%), MUTAG

(0.4%), BZR (0.5%), IMDB-MULTI (0.5%) and NCI1 (1.4%)) and ranks top among all the

competitors on overall performance. We also perform a paired Wilcoxon signed rank test

to examine the significance of CoS-GNN against each of the competing methods across the

12 datasets. As shown by the p-values in Table 4.1, our CoS-GIN significantly outperforms

GSN-v and LAGIN at the 95% confidence level and exceeds other competitors at the 99%

confidence level. These results indicate that our collective node and graph structural

knowledge augmented GNNs can learn more important graph structure information for

graph classification. Besides, on individual datasets, CoS-GNN can gain 2%-11% accuracy

improvement maximally on specific datasets when compared to the best-performing

competing methods NestedGNN, GSN-v and LAGNN (for example, 5% enhancement

of NestedGIN on NCI1, 9% improvement of GSN on REDDIT-BINARY). This means

that the domain-adaptive graph structural knowledge in CoS-GNN can provide more

generalized information to improve the model performance across different datasets

while NestedGNN, GSN-v and LAGNN only consider the local structural information,

which limits their performance. In summary, compared to each SOTA method, CoS-GNN

may only have limited improvements on a few individual datasets, but the improvement

on a set of datasets is substantial, and its improvement is significant across the 12

datasets used.

We report the AUPRC results of CoS-GNN and the competing methods on binary

classification tasks in Table 4.2. Considering the limited performance of WL, PK and

LAGCN, we omit their results. As can be seen in Table 4.2, although our CoS-GNN is

not always the best model on every dataset, our CoS-GIN and CoS-GCN still achieve the

top two performance on overall datasets, which is consistent to the results in Table 4.1

and further demonstrates the excellent ability of our CoS-GNN.
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Table 4.2: AUPRC (mean±std) of CoS-GNN and SOTA competing methods for graph
classification on 9 real-world binary classification datasets. The best and second perfor-
mance per dataset is boldfaced and underlined respectively. The following acronyms,
PROTEINS_full (PROTS_full), IMDB-BINARY (I-BINARY), IMDB-MULTI (I-MULTI),
REDDIT-BINARY (R-BINARY) and REDDIT-MULTI-5K (R-MULTI), are used. ‘Rank’
indicates the average performance ranking of a model across all datasets: a smaller rank
value indicates a better overall performance.

Method BZR COX2 DD I-BINARY MUTAG NCI1 NCI109 PROTS_full R-BINARY Rank
GCN 0.674±0.124 0.541±0.152 0.760±0.055 0.831±0.038 0.783±0.113 0.842±0.023 0.824±0.0198 0.763±0.038 0.956±0.011 7.3
GAT 0.624±0.156 0.520±0.137 0.753±0.058 0.814±0.042 0.870±0.089 0.841±0.020 0.811±0.014 0.772±0.038 0.937±0.022 9.6
SAGE 0.661±0.170 0.565±0.144 0.803±0.038 0.813±0.042 0.899±0.0569 0.852±0.029 0.823±0.018 0.760±0.041 0.944±0.015 6.8
GIN 0.619±0.123 0.556±0.115 0.770±0.037 0.828±0.032 0.963±0.026 0.857±0.028 0.848±0.021 0.699±0.058 0.940±0.034 7.3
G−mixup 0.691±0.130 0.439±0.160 − 0.829±0.033 0.945±0.040 0.833±0.021 0.796±0.043 0.688±0.078 − 10.6
Dummy 0.570±0.067 0.554±0.175 0.800±0.040 − 0.915±0.074 0.808±0.031 0.786±0.027 0.772±0.040 − 9.6
DropGNN 0.675±0.085 0.555±0.172 0.690±0.044 0.837±0.024 0.962±0.027 0.879±0.020 0.863±0.021 0.708±0.051 0.938±0.029 6.1
rGIN 0.576±0.096 0.573±0.147 0.704±0.026 0.821±0.022 0.968±0.025 0.868±0.020 0.862±0.010 0.706±0.068 0.928±0.039 7.7
NestedGIN 0.587±0.233 0.563±0.180 0.784±0.049 0.840±0.039 0.962±0.029 0.851±0.020 0.842±0.025 0.745±0.050 − 6.9
GSN-v 0.694±0.143 0.528±0.150 0.699±0.050 0.828±0.073 0.969±0.031 0.857±0.0215 0.847±0.021 0.670±0.132 0.876±0.037 8.2
LAGCN 0.652±0.077 0.560±0.113 0.757±0.045 0.826±0.038 0.912±0.034 0.800±0.020 0.755±0.026 0.747±0.040 0.961±0.025 8.8
LAGIN 0.552±0.089 0.539±0.130 0.785±0.066 0.833±0.025 0.979±0.012 0.838±0.024 0.811±0.044 0.723±0.067 0.955±0.020 7.7
CoS-GCN 0.594±0.102 0.575±0.133 0.795±0.052 0.837±0.046 0.974±0.020 0.879±0.014 0.861±0.027 0.760±0.039 0.960±0.022 3.4
CoS-GIN 0.724±0.147 0.562±0.160 0.777±0.046 0.829±0.034 0.977±0.019 0.872±0.015 0.880±0.021 0.725±0.035 0.963±0.011 3.7

We also compare our CoS-GNN with vanilla GNNs on Open Graph Benchmark

(OGB) datasets – ogbg-molhiv and ogbg-molpcba in Table 4.3. Our CoS-GNN achieves

better performance than corresponding vanilla GNN in most situations, indicating the

positive contribution of the augmented features. The performance of CoS-GIN is a bit

worse than that of GIN on ogbg-molpcba, which might be because that although our

augmented features are useful, which is demonstrated by the improvement of CoS-

GCN compared with GCN, GIN has also learned enough useful structural information

and the augmentation operation in our CoS-GIN does not provide extra discriminative

information.

Table 4.3: Results (mean±std) of CoS-GNN and corresponding vanilla GNN on OGB
datasets – ogbg-molhiv and ogbg-molpcba. The best performance per dataset is boldfaced.

ogbg-molhiv ogbg-molpcba
Model AUC AP
GCN 0.7626±0.0098 0.1753±0.0023

CoS-GCN 0.7662±0.0165 0.2045±0.0034
GIN 0.7825±0.0077 0.2288±0.0027

CoS-GIN 0.7912±0.0068 0.2249±0.0034

We further calculate the training and inference time of our CoS-GNN and its com-

petitors to demonstrate the efficiency of the CoS-GNN. We use the same GIN structure

in all models. The results are reported in Table 4.4. We can see that our CoS-GIN is a

little more costly than simple augmentation operation with conventional GIN module,
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Table 4.4: Training and inference time of augmentation methods in graph classification
task. The following acronyms, PROTEINS_full (P_full), IMDB-BINARY (I-B), IMDB-
MULTI (I-M), REDDIT-BINARY (R-B) and REDDIT-MULTI-5K (R-M), are used. All
methods are with GIN as backbone. Each result is the time on the whole dataset.

Stage Method BZR COX2 DD I-B I-M MUTAG NCI1 NCI109 P_full R-B R-M ENZYMES

Training

G -mixup 0.028 0.033 - 0.055 0.068 0.011 0.255 0.203 0.068 - - 0.037
Dummy 0.019 0.022 0.236 - - 0.010 0.156 0.153 0.047 - - 0.023
DropGNN 0.338 0.242 - 0.201 0.420 0.054 2.258 2.311 1.148 - - 0.490
rGIN 0.048 0.056 0.359 0.104 0.123 0.021 0.405 0.374 0.117 0.825 2.154 0.059
NestedGIN 0.186 0.206 9.385 0.809 0.698 0.055 1.373 1.414 0.684 - - 0.296
GSN-v 1.738 1.970 6.111 4.632 3.312 1.196 1.385 1.387 1.394 39.601 50.874 1.327
LAGIN 0.049 0.055 0.357 0.101 0.117 0.022 0.365 0.367 0.117 0.757 2.087 0.060
CoS-GIN 0.087 0.099 0.704 0.172 0.198 0.036 0.585 0.586 0.199 1.537 4.389 0.102

Stage Method BZR COX2 DD I-B I-M MUTAG NCI1 NCI109 P_full R-B R-M ENZYMES

Inference

G -mixup 0.003 0.003 - 0.004 0.005 0.002 0.012 0.013 0.005 - - 0.003
Dummy 0.003 0.003 0.019 - - 0.002 0.012 0.012 0.005 - - 0.003
DropGNN 0.019 0.013 - 0.012 0.018 0.006 0.108 0.116 0.053 - - 0.025
rGIN 0.005 0.005 0.022 0.008 0.010 0.005 0.023 0.022 0.009 0.038 0.119 0.006
NestedGIN 0.015 0.015 0.588 0.063 0.053 0.006 0.091 0.094 0.040 - - 0.021
GSN-v 0.009 0.010 0.031 0.016 0.015 0.008 0.025 0.025 0.010 0.112 0.370 0.008
LAGIN 0.003 0.004 0.017 0.005 0.005 0.004 0.005 0.005 0.005 0.029 0.048 0.004
CoS-GIN 0.009 0.009 0.041 0.012 0.013 0.008 0.032 0.032 0.013 0.081 0.233 0.010

which is caused by the feature augmentation operation, but it is more efficient than

complex structural augmentation methods, including DropGNN and NestedGIN. Besides,

although our CoS-GIN is a little time-costly on some large-scale datasets, it can still be

successfully implemented on devices with limited computational ability, while G -mixup,

dummy, DropGNN and NestedGIN require more powerful devices on such instances,

which restricts their application.

4.4.4 Employ CoS-GNN as GNN Backbone

Combined with GNN-based Methods

In this section, we examine the applicability of our CoS-GNN as GNN backbone in

other GNN-based methods by replacing the GCN of G -mixup and Dummy with CoS-GCN.

We omit the results on REDDIT-BINARY and REDDIT-MULTI here because we can not

run G -mixup and Dummy on them by our device. The accuracy results of GCN-based

and CoS-GCN-based G -mixup and Dummy are reported in Table 4.5. The results show

that the CoS-GCN-based G -mixup outperforms GCN-based G -mixup on all datasets and

the largest improvement can be up to 32%. The performance of CoS-GCN-based Dummy
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Table 4.5: Accuracy (mean±std) results of G -mixup and Dummy using CoS-GCN as the
GNN module, with G -mixup and Dummy with GCN as baselines in graph classification.
‘Different’ denotes accuracy improvement (↑) or decrease (↓) brought by the replacement
of CoS-GCN. Both of two methods suffer out of memory on REDDIT-BINARY and
REDDIT-MULTI.

Dataset G−mixup(GCN) G−mixup(CoS-GCN) Difference
BZR 0.8295±0.0188 0.8666±0.0471 0.0371↑
COX2 0.7730±0.0482 0.7967±0.0416 0.0237↑
DD − − −
I−BINARY 0.7360±0.0350 0.7410±0.0243 0.0050↑
I−MULTI 0.5013±0.0283 0.5073±0.0264 0.0060↑
MUTAG 0.7173±0.1130 0.8830±0.0617 0.1657↑
NCI1 0.5007±0.0010 0.8212±0.0146 0.3205↑
NCI109 0.5038±0.0007 0.7986±0.0179 0.2948↑
PROTS_full 0.7152±0.0350 0.7512±0.0246 0.0360↑
ENZYMES 0.3456±0.0435 0.4909±0.0490 0.1453↑
p-value 0.0039 - -
Dataset Dummy(GCN) Dummy(CoS-GCN) Difference
BZR 0.8296±0.0203 0.8321±0.0482 0.0025↑
COX2 0.7899±0.0509 0.8112±0.0654 0.0213↑
DD 0.7776±0.0717 0.7699±0.0433 −0.0077↓
I−BINARY − − −
I−MULTI − − −
MUTAG 0.7813±0.1292 0.8673±0.0754 0.0860↑
NCI1 0.6608±0.1016 0.8092±0.0146 0.1484↑
NCI109 0.5527±0.0851 0.8013±0.0243 0.2486↑
PROTS_full 0.7557±0.0375 0.7556±0.0286 −0.0001↓
ENZYMES 0.4450±0.1038 0.6067±0.0602 0.1617↑
p-value 0.0547 - -

method is also better than the GCN-based Dummy on most datasets, achieving up to 25%

improvement. The paired Wilcoxon signed rank test indicates that the improvement of

CoS-GCN-based G -mixup and Dummy across 10 datasets is significant at 99% and 90%

confidence level, respectively. The decrease in accuracy of CoS-GCN-based Dummy on DD

and PROTEINS_full might be because that the specific structural statistics augmented

on the graphs are influenced and disturbed by the addition of the dummy node. When

compared with the results of single CoS-GCN, there are also some improvement brought

by CoS-GCN-based G -mixup on BZR (3.5%), MUTAG (0.5%) and NCI1 (0.5%) and by

CoS-GCN-based Dummy on ENZYMES (7.4%), which means that the combination with

other GNN-based methods can also enhance the power of CoS-GNN. Overall, our CoS-

GNN and other GNN-based methods are complementary and can be used as the basic

GNN module in GNN-based methods to improve their performance successfully.

Combined with Other Pooling Methods
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Table 4.6: Accuracy (mean±std) results of GCN and CoS-GCN with MVPool as the
readout operation. ‘Different’ denotes accuracy improvement (↑) or decrease (↓) brought
by CoS-GCN compared to GCN.

Dataset GCN-MVPool CoS-GCN-MVPool Difference
BZR 0.8273±0.0565 0.8345±0.0301 0.0072↑
COX2 0.7987±0.0351 0.7986±0.0430 −0.0001↓
DD 0.7750±0.0363 0.7962±0.0390 0.0212↑
I−BINARY 0.7280±0.0268 0.7350±0.0492 0.0070↑
I−MULTI 0.5180±0.0253 0.5080±0.0332 −0.0100↓
MUTAG 0.7178±0.0858 0.8406±0.1107 0.1228↑
NCI1 0.7791±0.0155 0.8015±0.0094 0.0224↑
NCI109 0.7754±0.0233 0.7989±0.0198 0.0235↑
PROTS_full 0.7556±0.0360 0.7664±0.0298 0.0108↑
R−BINARY 0.9050±0.0219 0.9140±0.0202 0.0090↑
R−MULTI 0.5311±0.0136 0.5515±0.0255 0.0204↑
ENZYMES 0.5833±0.0516 0.5917±0.0455 0.0084↑
p-value 0.0093 - -

There have been a type of pooling methods that hierarchically extract the graph

information [242; 261]. We demonstrate that our CoS-GNN structure can be combined

with these methods in this section. In each pooling layer, we use the real node features

to calculate the pooling criterion and construct the coarsened graph.

We run our CoS-GCN with a hierarchical pooling – MVPool as the pooling operation to

prove that our CoS-GCN can improve the performance of hierarchical pooling. The results

of CoS-GCN with MVPool and GCN with MVPool as baseline are reported in Table 4.6,

showing that CoS-GCN still can bring improvement on all datasets except COX2 and

IMDB-MULTI. The average improvement is 2.02% and the maximal improvement can be

up to about 12.28%. The paired Wilcoxon signed rank test indicates that the improvement

across 12 datasets is significant at 99% confidence level. These results demonstrate that

the augmented node and graph structural information also can provide extra useful

information while the pooling operation is learning graph structural information. The

accuracy decline of CoS-GCN with MVPool on COX2 is very marginal, only 0.01%. The

1% drop of CoS-GCN with MVPool on IMDB-MULTI might be because that the structural

information in IMDB-MULTI might be limited and the hierarchical learning of MVPool

can utilize most structural information in the graph. The feature augmentation in

CoS-GCN provides some redundant information to the CoS-GCN-MVPool.
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4.4.5 Enabling Out-of-distribution Generalization Tasks

We evaluate the generalization ability of CoS-GNN on out-of-distribution (OOD) data in

this section. This experiment is designed to compare the performance of CoS-GNN with

other two message passing neural networks (i.e., GCN and GIN) in OOD generalization.

These GNNs can be utilized as GNN backbone in various generalization methods to

obtain better performance further. The datasets we utilize are from GOOD1 [69]. GOOD-

Motif is a synthetic dataset designed for structure shifts, GOOD-HIV is a molecular

dataset, and GOOD-SST2 is a natural language sentiment analysis dataset. For each

dataset, the GOOD benchmark selects one or two domain features (e.g., base and size for

GOOD-Motif, scaffold and size for GOOD-HIV, and length for GOOD-SST2) and then

applies covariate and concept shift splits per domain to create diverse distribution shifts.

Following [69], the metric we use for GOOD-HIV is AUC and classification accuracy is

used for other datasets. We examine the generalization power of CoS-GNN with the

baseline models taken from the GOOD benchmark [69]. The GNN backbone used in the

baselines is GIN.

The results on the OOD and the in-distribution (ID) validation sets are reported in

Table 4.7. It can be seen from the results that our model CoS-GCN outperforms the basic

GCN on all settings except the one on GOOD-HIV; CoS-GIN gains better performance

than GOOD on all settings except GOOD-HIV. This is mainly because that the node

and graph structures augmented in our CoS-GNN are more generalizable w.r.t. different

shifts of base, size, or length on the three GOOD datasets, while being less generalizable

to the scaffold shift, a two-dimensional structural base of a molecule. The especially

outstanding performance of CoS-GNN on GOOD-Motif also helps justify this. Each

graph in GOOD-Motif is generated by connecting a base graph and a motif, and thus,

the structure of base graphs and motifs is highly differentiated. Thus, the augmented

structural information of each class enables the structure learning in CoS-GNN to obtain

substantially improved OOD generalization performance, when compared with vanilla

GNN.

4.4.6 Robustness w.r.t. Structure Contamination

Since the data collected in real applications may be with limited/noisy structural infor-

mation, the performance of our CoS-GNN, which harnesses rich structural information,

might be influenced by these contaminated information. In this section, we discuss the

1https://github.com/divelab/GOOD/
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Table 4.7: Results of CoS-GNN with two baselines on three OOD datasets. G-X is short
for the dataset name GOOD-X.

G-Motif Base
Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation
GCN 0.321±0.000 0.343±0.025 0.395±0.014 0.382±0.017
GOOD 0.687±0.034 0.700±0.019 0.814±0.006 0.809±0.007
CoS-GCN 0.868±0.004 0.865±0.003 0.934±0.000 0.932±0.001
CoS-GIN 0.888±0.020 0.896±0.007 0.931±0.001 0.923±0.009

G-Motif Size
Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation
GCN 0.346±0.008 0.350±0.003 0.391±0.0172 0.385±0.018
GOOD 0.517±0.023 0.513±0.019 0.708±0.006 0.694±0.009
CoS-GCN 0.863±0.043 0.816±0.077 0.935±0.000 0.933±0.002
CoS-GIN 0.598±0.070 0.555±0.096 0.918±0.006 0.898±0.014

G-HIV Scaffold
Covariate Concept

AUC OOD Validation ID Validation OOD Validation ID Validation
GCN 0.669±0.026 0.676±0.016 0.700±0.014 0.607±0.016
GOOD 0.696±0.020 0.689±0.021 0.723±0.010 0.653±0.035
CoS-GCN 0.690±0.017 0.699±0.023 0.708±0.009 0.605±0.026
CoS-GIN 0.684±0.021 0.663±0.036 0.722±0.011 0.636±0.016

G-HIV Size
Covariate Concept

AUC OOD Validation ID Validation OOD Validation ID Validation
GCN 0.591±0.020 0.580±0.012 0.638±0.0110 0.533±0.009
GOOD 0.600±0.029 0.584±0.025 0.633±0.025 0.448±0.029
CoS-GCN 0.607±0.019 0.619±0.005 0.654±0.008 0.547±0.007
CoS-GIN 0.585±0.029 0.599±0.028 0.731±0.006 0.622±0.016

G-SST2 Length
Covariate Concept

Accuracy OOD Validation ID Validation OOD Validation ID Validation
GCN 0.825±0.008 0.805±0.010 0.724±0.012 0.677±0.010
GOOD 0.813±0.004 0.778±0.011 0.724±0.005 0.673±0.001
CoS-GCN 0.828±0.010 0.814±0.014 0.730±0.007 0.685±0.023
CoS-GIN 0.822±0.012 0.796±0.021 0.737±0.012 0.685±0.013

impact of limited/noisy structural knowledge on our CoS-GNN. Specifically, we randomly

remove {1%,5%,10%,15%,20%} edges of the data and compare their results with the

results on original data. Our experiment is implemented on GCN backbone.

The results on NCI1 are displayed in Figure 4.5. It is obvious that both CoS-GCN and

GCN suffer from performance decline due to the edge removal and the decline level of

them is similar. Our CoS-GCN always have better performance than GCN under various

structural contamination situation. This means that limited/noisy structure brings no

more serious effects on the CoS-GCN. This might be because that the structures we

augment are in different scales and parts of the extracted features will be infected while
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Figure 4.5: Accuracy performance of CoS-GCN and GCN w.r.t. different structural
contamination rates.

others will still be exact. The unaffected structure features can correct the influence of

the wrong information brought by the limited/noisy graph structure.

4.4.7 Convergence Analysis

In this section we run an experiment to illustrate the convergence ability of our CoS-

GNN. In detail, we run the CoS-GCN on the REDDIT-BINARY dataset and record the

loss tendency of training and validation dataset. The result is shown in Figure 4.6. It is

obvious that both the training and validation loss will approach stability after a number

of epochs. Besides, the early stopping used during training can ensure the model against

overfitting and obtaining an excellent result.

4.4.8 Ablation Study

Ablation Study of the Graph Augmentation and the Specific Mes-
sage Passing Scheme

This section examines the importance of the graph augmentation and the message

passing scheme designed in CoS-GNN. All expeirments are based on CoS-GCN. We

first evaluate the performance of GCN with original/augmented features as sole in-

put (Vnf for real node feature, Vns for augmented node structure features, and Vgs for

augmented graph structure features), and then combine original and augmented node

features by convolution after concatenation (cv_ct(Vnf ,Vns)), concatenation after con-

volution (ct_cv(Vnf ,Vns))), and convolution with our proposed message passing method
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Figure 4.6: Loss variation tendency of CoS-GCN on the training and validation dataset
of REDDIT-BINARY.

(cv(Vnf ,Vns))). Incorporating the augmented graph features to cv(Vnf ,Vns) leads to the full

CoS-GCN.

The results of our ablation study using the graph classification task are displayed

in Table 4.8. The paired Wilcoxon signed rank test shows when compared with other

ablation parts except cv(Vnf ,Vns), the improvement of CoS-GCN across 12 datasets is

significant at 99% confidence level. The enhancement of CoS-GCN than cv(Vnf ,Vns) across

all datasets is significant at 85% confidence level. In detail, using node features (Vnf ) or

augmented node/graph structural features (Vns/Vgs) solely can achieve good performance,

and using Vnf often outperforms Vns and Vgs on most datasets. This indicates that

both the original and augmented features are useful in graph representation learning

but the augmented features is limitedly informative. The simple concatenation of Vnf

and Vns, i.e., cv_ct(Vnf,Vns) or ct_cv(Vnf,Vns)), helps improve the performance over the

using of them solely, indicating the complementary information gained from the graph

augmentation relative to the original node features. Our proposed message passing

(convolution) method on top of the real and augmented node features, i.e., cv(Vnf,Vns),

further enhances the results substantially, which demonstrates the effectiveness of our

proposed message passing in capturing intricate relations that cannot be captured in the

vanilla GCN. Lastly, incorporating the augmented graph-level features would lead to the

full model CoS-GNN that largely improves cv(Vnf,Vns), demonstrating that the generated

global graph structural features are also important for the overall improvement.

Ablation Study of the Augmented Features
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Table 4.8: Results of the ablation study of the graph augmentation and the message
passing mechanism in CoS-GCN in the graph classification task.

Dataset Vnf Vns Vgs cv_ct(Vnf,Vns) ct_cv(Vnf,Vns) cv(Vnf,Vns) CoS-GCN
BZR 0.840±0.028 0.847±0.028 0.788±0.010 0.808±0.041 0.830±0.025 0.845±0.038 0.832±0.036
COX2 0.811±0.043 0.782±0.008 0.782±0.008 0.805±0.043 0.805±0.044 0.803±0.058 0.824±0.055
DD 0.756±0.033 0.744±0.034 0.756±0.038 0.770±0.043 0.774±0.043 0.773±0.032 0.779±0.032
I−BINARY 0.724±0.036 0.709±0.056 0.706±0.052 0.725±0.069 0.741±0.042 0.738±0.033 0.754±0.052
I−MULTI 0.498±0.024 0.483±0.032 0.479±0.033 0.495±0.028 0.491±0.026 0.509±0.024 0.503±0.019
MUTAG 0.744±0.102 0.867±0.042 0.808±0.091 0.823±0.089 0.835±0.064 0.872±0.066 0.878±0.059
NCI1 0.785±0.016 0.690±0.018 0.634±0.015 0.790±0.017 0.789±0.019 0.808±0.011 0.816±0.013
NCI109 0.769±0.026 0.699±0.025 0.629±0.025 0.774±0.018 0.773±0.029 0.799±0.023 0.801±0.021
PROTS_full 0.749±0.028 0.728±0.031 0.730±0.023 0.758±0.034 0.752±0.029 0.762±0.027 0.757±0.028
R−BINARY 0.900±0.024 0.912±0.025 0.830±0.020 0.910±0.027 0.908±0.027 0.911±0.025 0.917±0.022
R−MULTI 0.533±0.013 0.544±0.018 0.503±0.027 0.543±0.015 0.543±0.021 0.554±0.011 0.554±0.028
ENZYMES 0.450±0.068 0.278±0.033 0.275±0.065 0.432±0.067 0.502±0.063 0.462±0.074 0.533±0.064
Rank 4.7 4.9 6.6 3.9 3.8 2.4 1.5
p-value 0.0015 0.0034 0.0005 0.0010 0.0005 0.1289 −

In this section, we evaluate the effect of each augmented features on the final perfor-

mance of CoS-GNN. We divided the augmented features into two categories, i.e., one is

the characteristics of some specific substructures, and another is some quantized values

to measure structural properties of the node/graph. Then we remove each feature and

their combinations in each category separately and compare the classification results

with our CoS-GNN. The removal of node and graph features is implemented separately.

The GNN backbone we use here is CoS-GCN.

Firstly, we delete degree, triangle, clique and k-core (denoted by w/o Dg, w/o Tri,

w/o CK respectively) and then remove their combinations, i.e., degree and triangle;

degree, clique and k-core; triangle, clique and k-core; all the characteristics (shortened

to w/o DT, w/o DCK, w/o TCK, w/o n_sub). We also remove quantized values – triangle

clustering coefficient, square clustering coefficient and their combination (written as w/o

TCo, w/o SCo and w/o n_quant respectively). The results are reported in Table 4.9. The

performance of all operations is compared simultaneously. It is obvious that the removal

of augmented features might cause better performance on some specific datasets but

will result in decline on many other datasets, leading to a clear decline in the overall

performance. Although our CoS-GCN still ranks first on the overall performance, the

paired Wilcoxon signed rank test indicates that the performance drop of models with

part of augmented features across 12 datasets is significant at 85% to 99% confidence

level. Deletion of degree and clique and k-core characteristics respectively and their

combinations often lead to worse performance, indicating their effect in the full CoS-GCN.

Omitting all the node structural characteristics performs better than removing part
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Table 4.9: Efficiency of the augmented node features in graph classification.

Separated features Completed
Structural Quantized Completed

Dataset w/o Dg w/o Tri w/o CK w/o TCo w/o SCo CoS-GCN
BZR 0.847±0.048 0.832±0.043 0.857±0.039 0.835±0.052 0.857±0.048 0.832±0.036
COX2 0.818±0.049 0.829±0.043 0.814±0.043 0.827±0.045 0.805±0.072 0.824±0.055
DD 0.774±0.027 0.757±0.028 0.750±0.021 0.753±0.027 0.756±0.032 0.778±0.032
I-BINARY 0.749±0.040 0.738±0.041 0.726±0.042 0.747±0.026 0.734±0.036 0.754±0.052
I-MULTI 0.473±0.039 0.498±0.019 0.469±0.031 0.489±0.029 0.486±0.034 0.503±0.019
MUTAG 0.861±0.093 0.841±0.070 0.803±0.082 0.851±0.066 0.872±0.068 0.878±0.059
NCI1 0.780±0.019 0.782±0.023 0.782±0.021 0.793±0.016 0.791±0.017 0.816±0.013
NCI109 0.777±0.025 0.783±0.019 0.767±0.024 0.776±0.018 0.780±0.023 0.801±0.021
PROTS_full 0.750±0.039 0.749±0.034 0.753±0.039 0.758±0.038 0.757±0.039 0.757±0.028
R-BINARY 0.915±0.013 0.920±0.009 0.889±0.025 0.915±0.018 0.905±0.018 0.917±0.022
R-MULTI 0.541±0.015 0.554±0.014 0.523±0.018 0.558±0.021 0.546±0.019 0.554±0.028
ENZYMES 0.490±0.048 0.568±0.057 0.557±0.074 0.523±0.043 0.545±0.066 0.533±0.064
Rank 6.3 4.6 7.8 4.8 5.4 2.8
p-value 0.0093 0.1387 0.0093 0.0400 0.0986 −

Combined features Completed
Structural Quantized Structural Completed

Dataset w/o TCK w/o DT w/o DCK w/o n_quant w/o n_sub CoS-GCN
BZR 0.842±0.039 0.845±0.053 0.857±0.042 0.815±0.064 0.832±0.052 0.832±0.036
COX2 0.807±0.051 0.827±0.062 0.816±0.041 0.803±0.054 0.822±0.056 0.824±0.055
DD 0.750±0.035 0.743±0.036 0.750±0.024 0.777±0.030 0.770±0.030 0.778±0.032
I-BINARY 0.731±0.050 0.732±0.041 0.726±0.049 0.750±0.053 0.726±0.034 0.754±0.052
I-MULTI 0.495±0.024 0.492±0.022 0.458±0.025 0.493±0.033 0.503±0.024 0.503±0.019
MUTAG 0.808±0.077 0.851±0.057 0.781±0.103 0.862±0.060 0.835±0.077 0.878±0.059
NCI1 0.775±0.014 0.783±0.022 0.751±0.012 0.816±0.017 0.817±0.013 0.816±0.013
NCI109 0.760±0.029 0.772±0.025 0.722±0.030 0.796±0.024 0.795±0.022 0.801±0.021
PROTS_full 0.758±0.042 0.750±0.031 0.748±0.036 0.755±0.025 0.761±0.026 0.757±0.028
R-BINARY 0.890±0.022 0.918±0.017 0.902±0.025 0.906±0.018 0.895±0.033 0.917±0.022
R-MULTI 0.528±0.021 0.551±0.013 0.549±0.022 0.557±0.009 0.550±0.022 0.554±0.028
ENZYMES 0.510±0.051 0.528±0.050 0.503±0.045 0.520±0.059 0.535±0.072 0.533±0.064
Rank 7.9 5.9 8.8 5.0 4.9 2.8
p-value 0.0034 0.0220 0.0049 0.0049 0.0488 −

of them on some datasets and this might be because that the remaining structural

characteristics increase the similarity among data.

Later, we delete augmented graph features sequentially (i.e., w/o Tri, w/o Cli, w/o

Bri, w/o ClCo and w/o Effi stand for removing triangle, clique, bridge numbers, average

clustering coefficient and average local and global efficiency, respectively; w/o TBri, w/o

ClBri and w/o TrCl denote deleting triangle and bridge numbers, clique and bridge

numbers and triangle and clique numbers; w/o g_quant and w/o g_sub means removing

the quantized values and graph substructural statistics, respectively). The results are

shown in Table 4.10. The performance of all operations is compared simultaneously.

The improvement of our CoS-GCN over the competing methods across the datasets is
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significant at 80% to 99% confidence level. The removal of triangle, clique, bridge and

their combination knowledge results in similar overall performance, which might be

because that each feature contributes to the performance of CoS-GNN differently in

different dataset. The deletion of average clustering coefficient or all quantized values

has larger effect on the final performance, which indicates that the average clustering

coefficient information is more discriminative. In summary, the graph-level substructural

characteristics are also beneficial in our CoS-GNN since the removal of them leads to a

clear decline of the overall performance of CoS-GNN.

Table 4.10: Efficiency of the augmented graph features in graph classification.

Separated features Completed
Structural Quantized Completed

Dataset w/o Tri w/o Cli w/o Bri w/o ClCo w/o Effi CoS-GCN
BZR 0.850±0.056 0.852±0.032 0.857±0.043 0.840±0.053 0.840±0.050 0.832±0.036
COX2 0.812±0.056 0.820±0.052 0.827±0.070 0.812±0.061 0.824±0.048 0.824±0.055
DD 0.759±0.031 0.769±0.026 0.764±0.029 0.766±0.030 0.764±0.020 0.778±0.032
I-BINARY 0.744±0.040 0.730±0.035 0.738±0.035 0.733±0.026 0.744±0.042 0.754±0.052
I-MULTI 0.487±0.028 0.480±0.024 0.475±0.035 0.475±0.024 0.471±0.024 0.503±0.019
MUTAG 0.830±0.065 0.856±0.067 0.856±0.082 0.867±0.064 0.878±0.058 0.878±0.059
NCI1 0.796±0.022 0.794±0.013 0.795±0.025 0.753±0.081 0.798±0.017 0.816±0.013
NCI109 0.783±0.018 0.779±0.016 0.774±0.025 0.772±0.025 0.776±0.028 0.801±0.021
PROTS_full 0.766±0.046 0.741±0.044 0.750±0.039 0.757±0.042 0.769±0.041 0.757±0.028
R-BINARY 0.915±0.014 0.915±0.017 0.914±0.017 0.917±0.021 0.920±0.015 0.917±0.022
R-MULTI 0.551±0.021 0.563±0.024 0.547±0.017 0.543±0.024 0.551±0.019 0.554±0.028
ENZYMES 0.520±0.049 0.547±0.067 0.537±0.044 0.523±0.085 0.535±0.041 0.533±0.064
Rank 5.5 5.3 5.5 6.8 4.4 2.9
p-value 0.0278 0.0669 0.0542 0.0039 0.168 −

Combined features Completed
Structural Quantized Structural Completed

Dataset w/o TBri w/o ClBri w/o TrCl w/o g_quant w/o g_sub CoS-GCN
BZR 0.845±0.037 0.847±0.056 0.845±0.068 0.785±0.023 0.830±0.051 0.832±0.036
COX2 0.822±0.050 0.799±0.068 0.807±0.055 0.784±0.011 0.798±0.057 0.824±0.055
DD 0.768±0.034 0.773±0.034 0.761±0.029 0.745±0.044 0.784±0.040 0.778±0.032
I-BINARY 0.736±0.036 0.731±0.034 0.723±0.036 0.567±0.059 0.736±0.051 0.754±0.052
I-MULTI 0.477±0.025 0.475±0.028 0.499±0.025 0.366±0.033 0.501±0.026 0.503±0.019
MUTAG 0.825±0.062 0.856±0.078 0.846±0.060 0.856±0.076 0.861±0.083 0.878±0.059
NCI1 0.790±0.030 0.787±0.015 0.787±0.027 0.784±0.018 0.810±0.016 0.816±0.013
NCI109 0.782±0.015 0.781±0.017 0.782±0.024 0.772±0.024 0.799±0.016 0.801±0.021
PROTS_full 0.762±0.036 0.754±0.044 0.745±0.045 0.742±0.020 0.748±0.029 0.757±0.028
R-BINARY 0.909±0.029 0.917±0.022 0.917±0.022 0.757±0.045 0.911±0.024 0.917±0.022
R-MULTI 0.540±0.026 0.560±0.015 0.556±0.019 0.250±0.053 0.552±0.015 0.554±0.028
ENZYMES 0.552±0.074 0.535±0.068 0.563±0.077 0.173±0.039 0.525±0.040 0.533±0.064
Rank 6.0 5.4 5.9 10.3 5.5 2.9
p-value 0.0679 0.0420 0.0977 0.0005 0.0068 −
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4.5 Summary

This chapter proposes a collective structure knowledge-augmented graph neural network

(CoS-GNN) to enhance the expressive power of conventional message passing neural

networks. The augmented node and graph features carry important and domain-adaptive

structural knowledge, enabling the model to achieve excellent performance on various

datasets. Then a message passing mechanism is proposed to integrate the original

and augmented graph knowledge, resulting in graph representations with significantly

improved expressiveness. This is justified by experiments in various down-stream tasks,

including graph classification, and OOD generalization.

Although the calculation of CoS-GNN might be more costly than the computation

of their corresponding vanilla GNN models, the performance improvement makes it

negligible. Besides, CoS-GNN is a bit more costly than simple augmentation operation,

which is caused by the feature augmentation operation, but it is more efficient than

complex structural augmentation methods and requires less computational time and

resources. Therefore, CoS-GNN provides a good trade-off between better performance

and resource- and time-efficient.

Furthermore, when CoS-GNN is employed as GNN backbone and applied to other

GNN-based methods, the performance of the model is successfully improved, indicating

the potential of CoS-GNN to be used as basic GNN.
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IMBALANCED GRAPH-LEVEL CLASSIFICATION WITH

MULTI-SCALE OVERSAMPLING

5.1 Introduction

In Chapter 4, we proposed an improved GNN for better performance in balanced graph-

level classification. However, when the sample classes are distribution-imbalanced, such

improvement can only have limited effect since it does not focus on the class imbalance

issue. One main challenge in imbalanced graph classification is to learn expressive

representations capturing discriminative local (i.e., node/subgraph levels) and global (i.e.,
graph level) knowledge of the graphs in under-represented (minority) classes. Solutions

able to address this challenge could have advanced performance.

There are numerous conventional imbalanced learning methods [260], such as class

re-sampling [73; 22; 91; 249], loss adjustment [123; 197; 19; 35; 181], logit adjust-

ment [149; 95; 76] and information augmentation [252; 204; 247; 32]. Most of them

are data-agnostic approaches, so they can often be combined with GNNs directly. For

example, oversampling [73], which balances the dataset by randomly duplicating the

samples from the minority class, is one of the most popular and easy-to-implement

methods for imbalanced learning on graph data. Other approaches such as imbalanced

learning loss functions (a.k.a. sample weighting methods) [123; 197; 19; 149; 95] ad-

dress the imbalance problem by (adaptively) assigning larger weights to the minority

samples during training. The resulting graph-level representations, however, ignore
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Figure 5.1: Motivation of pairwise- and subgraph-scale oversampling. (a) Pairwise-scale
classification. A minority graph wrongly classified based on graph-scale information can
be correctly classified based on graph interactions; (b) Subgraph-scale classification. In
some graphs, only their subgraphs are relevant to the classification; the other parts are
noisy. Oversampling the whole graphs may lead to the inclusion of more noise.

diverse discriminative information within the graphs and their interactions, especially

for the minority graphs. As a result, they are often lack of discriminative power for the

classification task.

There have been a number of deep methods designed specifically for imbalanced

classification in the graph domain. Particularly, a few data augmentation-based methods,

such as random edge/node elimination and mixup [217; 71], have been explored to capture

intra-/inter-graph interactions and generate more graphs to enrich the GNN-based

representations of minority graphs. However, it is difficult to perform meaningful intra-

graph augmentation or interpolations between graphs due to their non-Euclidean nature

and the lack of domain knowledge. Wang et al. [219] construct a graph of graphs (GoG)

on the oversampled and augmented graphs and perform GoG propagation to aggregate

neighboring graph representations for imbalanced graph classification. Nevertheless, as

the GoG is constructed on kernel similarity, its time complexity increases drastically with

dataset size (i.e., polynomial w.r.t. the number of graphs and cubic w.r.t. the maximum

number of nodes in a graph), and thus, it is prohibitively computationally costly for large

datasets.

In this chapter, we propose a novel multi-scale oversampling GNN, namely MOSGNN,

to learn various discriminative semantics within and between minority graphs for

imbalanced graph classification. MOSGNN is specifically designed to leverage graph

information at multiple scales, i.e., subgraph, graph, and pairwise-graph scales, to

generate a large number of minority-graph-oriented samples of diversified semantic

for mitigating the bias toward the majority graphs at different granularities in GNN-
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based models. To this end, in addition to the oversampling at the graph scale in general

oversampling-based approaches, MOSGNN jointly optimizes two auxiliary objectives on

pairwise graph relation prediction and multiple-instance-learning-based (MIL) subgraph

classification.

The pairwise graph relation prediction is designed to extend the classification in-

formation of the minority graphs by exploiting the inter-graph interactions. Through

pairing with other graphs, large-scale minority-oriented graph pairs can be generated

easily, i.e., majority-minority and minority-minority pairs vs. majority-majority pairs,

from which MOSGNN can learn discriminative pairwise patterns of the minority graphs

against that of majority graph pairs. This enables MOSGNN to correctly classify minority

graphs that are otherwise wrongly classified by the graph-scale oversampling module

(see Figure 5.1(a)). On the other hand, considering the specific structure characteristic of

graphs and the fact that given a graph, only part of the graphs, e.g., a few subgraphs, are

relevant to the graph classification (Figure 5.1(b)), we design a subgraph-level oversam-

pling to generate diverse subgraphs to represent graphs with different local semantics.

Since one graph can have relevant and noisy subgraph patterns, we use MIL to allow

MOSGNN to focus on only the relevant subgraphs of each graph. In doing so, MOSGNN

learns expressive minority graph representations based on the rich semantics embedded

within and between the graphs, enabling better classification performance.

In summary, we make three main contributions:

• We introduce a novel deep multi-scale oversampling framework to address the

imbalanced graph classification problem. It learns discriminative representations

of the minority graphs with the support of oversampling the minority graphs

that have largely augmented semantics at the subgraph, graph, and pairwise

inter-graph levels. This is the first work that takes account of both within and

between graph information to learn graph representations for imbalanced graph

classification.

• The framework is instantiated into a novel model, called MOSGNN. The model is

specifically designed to learn the minority graphs at multiple scales using graph

convolutional networks jointly optimized with subgraph-level MIL, graph-level

classification, and pairwise graph relation prediction. The two auxiliary tasks

offer much stronger inductive knowledge than the current graph augmentation

operation-based methods.
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• Comprehensive experiments on 16 imbalanced graph datasets with various imbal-

anced ratios show that MOSGNN (i) significantly outperforms five competing meth-

ods (Section 5.4.3), and (ii) offers a generic framework, in which different advanced

imbalanced learning loss functions and GNN backbones can be easily plugged in

and obtain significantly improved classification performance (Sections 5.4.4 and

5.4.5).

In the rest of this chapter, the proposed framework and its instantiation MOSGNN are

introduced in Section 5.2. A theoretical analysis is presented in Section 5.3. Experimental

results are provided in Section 5.4. This chapter is concluded in Section 5.5.

5.2 The Proposed MOSGNN Model

5.2.1 Framework

To solve the imbalanced graph classification problem, we propose a novel deep multi-scale

oversampling framework that augments GNNs with oversampling at three different

scales, i.e., subgraph, graph, and pairwise graph relation, to learn discriminative repre-

sentations of the minority graphs. The key idea here is to learn graph representations

from multiple-scale oversampling to capture diverse discriminative information of the

minority class graphs. To this end, we develop a framework with three classification

objectives from the perspectives of subgraph, graph and pairwise inter-graph scales,

respectively. The objective of each classification branch helps achieve an oversampling of

a particular scale. The final classification model is based on the combined results of three

branches that are jointly optimized. Particularly, the overall objective of our framework

can be generally formulated as:

(5.1) L = Lg +λLp +βLs,

where Lg, Lp and Ls are the loss functions for enforcing oversampling from the graphs,

pairwise graphs, and subgraphs respectively and λ and β are hyperparameters that

balance the importance of the three scales.

The overall procedure of the proposed framework is illustrated in Figure 5.2, which

consists of the following three components:

• Graph-level oversampling via standard graph classification. In this component, a

standard oversampling method is applied to the original dataset. The oversampled
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dataset is used to train a GNN-based classifier with a loss function Lg, yielding a

classification logit rg for each graph.

• Pairwise-graph oversampling via pairwise relation prediction. This module aims to

utilize the relation between every pair of graphs to gain discriminative inter-graph-

level information for the minority class. The graph pairs can be majority-majority,

majority-minority, and minority-minority graph combinations. The relation pre-

diction is to discriminate the majority-majority pairs against the two types of

minority-graph-oriented pairs via a loss function Lp. The oversampling is applied

at the pairwise graph level such that we have a balanced set of majority-majority

graph pairs and the majority-minority or minority-minority graph pairs. The rela-

tion prediction will output a prediction logit rp for each graph pair.

• Subgraph-level oversampling via MIL. This component is focused to apply the

oversampling to the subgraph level. It assumes that, given a graph, only a few

subgraphs within this graph are relevant to the graph classification. To accom-

modate this idea, we transform the graph classification into a weakly-supervised

subgraph classification where a graph is represented by a bag of subgraphs and

graph-level labels are given to perform the classification of the subgraphs. A loss

function of top-k multiple instance learning (MIL), Ls, is used to achieve this

goal. Oversampling is applied to the minority class samples before the generation

of the subgraphs of each graph. Since Ls is enforced on the subgraph samples,

the oversampling is equivalent to a subgraph oversampling. This component will

combine the prediction logits of subgraph bags to yield a graph-level prediction

score rs for each graph.

The three loss functions Lg, Lp, and Ls are jointly minimized at the training stage.

During inference, three prediction logits rg, rp and rs are lastly combined to define the

prediction probability of a test graph Ĝ as

(5.2) r(Ĝ)= rg +λrp +βrs.

5.2.2 Multi-scale Oversampling GNN

In this section, an instantiation of the framework, called MOSGNN, is introduced. Various

GNNs and pooling operations can be used as the graph representation learning backbone.

In our model, the commonly used GCN with the recently proposed MVPool [261] and

shared weight parameters is used by default in all three branches.
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Figure 5.2: Overview of the proposed framework. It augments and trains a GNN model
with oversampled graph data at the subgraph, graph, and pairwise inter-graph levels, to
capture diversified intra- and inter-graph information for the classification of minority
graphs. To achieve this goal, two auxiliary objectives, i.e., pairwise graph relation pre-
diction and subgraph-based MIL, are combined with the standard graph classification
objective to jointly optimize the GNN.

Graph-level Oversampling

A general graph-level oversampling is used to address the class imbalance in the

learning of the graph representations via GNNs. Specifically, this branch feeds the

balanced graph embeddings obtained from a GCN backbone into a multi-layer perception

(MLP) classifier to calculate the probability of each graph belonging to each class as

follows:

(5.3) sg
i =MLPg(hi;Wg),

where hi =GCN(G i;Wgcn) is the embedding of a graph G i from the oversampled graph

set. To optimize the GCN and MLP layers, a standard cross-entropy loss function is used:

(5.4) Lg =∑
i

CE(sg
i , yi),

where {yi}i is the label set and CE(·) is the cross entropy loss function. This standard

loss enforces the MOSGNN model to learn discriminative representations from the full

graphs. The two auxiliary loss functions below complement this loss function to learn
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more discriminative graph representations from the inter-graph relation and subgraph

perspectives.

Pairwise-graph-level Oversampling

The pairwise graph oversampling is devised to extend the classification information of

the minority graphs by exploiting the pairwise inter-graph interactions. To this end, a self-

supervised learning task is designed to reformulate the primary classification problem as

a pairwise relation prediction task. In particular, we first pair the majority and minority

graphs into three types of graph pairs, including majority-majority, majority-minority,

and minority-minority pairs, creating a new pairwise graph set P = {(hi,h j), yi j|hi,h j ∈
H }, where H is the graph embedding set produced by a GCN backbone, (hi,h j) is a

graph pair randomly sampled from the oversampled dataset, and yi j is a surrogate

label of the pair (hi,h j). Each pair (hi,h j) has one of the three pairwise relations:

Pma j,ma j, Pma j,min and Pmin,min. To significantly extend the minority class data and

balance the pairwise graph samples, the objective is further reformulated as a new

binary classification task, aiming at discriminating majority graph pairs Pma j,ma j from

minority-graph-related pairs Pma j,min/Pmin,min instead. In doing so, we leverage the

interactions within the minority graphs and between the minority and majority graphs to

generate a substantially large number of minority-graph-oriented pair samples. Learning

to differentiate Pma j,ma j from Pma j,min/Pmin,min would then capture discriminative

information of the minority graphs at the inter-graph level. More specifically, the pairwise

graph learning is formally defined as:

(5.5) Lp =∑
(i, j)∈P

CE(sp
i j, yi j),

where sp
i j =Rp(hi,h j;Wp) and hi =GCN(G i;Wgcn) (the same GCN is used to obtain h j),

Rp(·, ·;W) is the relation learning function, and yi j is the relation label of pair (hi,h j).

Since the intrinsic relationship between samples can be diverse across the datasets, it

is difficult to explicitly define it. In MOSGNN, we employ a minority graph prediction

network to learn it as:

(5.6) sp
i j =MLPp(hi ⊙h j;Wp),

where ⊙ is the concatenate operation and yi j = 0 if (hi,h j) is a Pma j,ma j pair and yi j = 1

otherwise.

Subgraph-level Oversampling
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Graph has rich local information, e.g., subgraph information can support the ac-

curate classification of graphs, while using full graph may fail due to the presence of

possible noisy nodes or subgraphs in the graphs. Considering this, we further devise a

subgraph-level oversampling to improve the graph classification results. This equals to a

weakly-supervised classification task where graph-level labels are given to perform the

classification of subgraphs, with each graph represented by a bag of subgraphs. Thus,

we employ a widely-used weakly-supervised learning technique MIL to implement this

component.

Specifically, we first randomly remove some nodes and edges to generate a bag of q
subgraphs {Gn

i }q
n=1 for each graph G i. A GCN with parameters Wsgcn is then applied to

each subgraph bag to gain their embeddings BG i = {hn
i }q

n=1, where hn
i is the embedding of

subgraph Gn
i . Considering the small number of minority data, we also pair the embedding

bags, i.e., majority-majority, majority-minority and minority-minority subgraph pairs

to produce more minority data. Similar to pair bags in pairwise graph oversampling,

the majority-majority pair bags are regarded as one class and the other two types of

pairs are treated as another class. That is, the subgraph bags are paired with each

other, resulting in B = {(BG i ,BG j ), ys
i j}, where ys

i j = 0 if (BG i ,BG j ) is a Pma j,ma j pair and

ys
i j = 1 otherwise. The pairwised subgraph bags focus on discriminative substructures

while the graphs in pairwise level are centered on interaction between graphs. They can

find similar patterns, but they also complement to each other.

In implementing the MIL task, we employ the recently proposed feature magnitude

learning-based top-k MIL approach [198]. Specifically, given a pair of subgraph bags

(BG i ,BG j ), the top-k MIL learning is implemented to map the pair to a prediction score

by:

(5.7) ss
i j =MIL((BG i ,BG j );Ws)=mean(Sk

i j;Ws),

where Sk
i j = topk({sn

i }q
n=1 ∪ {sn

j }q
n=1) are the top-k prediction scores of the predictions

from both subgraph bags BG i and BG j , and sn
i = MLPs(hn

i ;Ws) is the prediction score

of a single subgraph hn
i ∈ BG i . Note that MLPs(·) takes individual bags of subgraph

embeddings, rather than the concatenated embeddings of subgraphs to avoid prohibitive

computational cost, since there are a large number of possible subgraph pairs per two

graphs. The pairwise subgraph interaction is captured instead at the output layer via

the top-k prediction across the two subgraph bags. Then, the binary cross-entropy loss is

applied to optimize the MIL model:

(5.8) Lmil =
∑

(i, j)∈B
CE(ss

i j, ys
i j).
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In [198], it is shown that enforcing a feature magnitude-based gap between the classes

at the feature representation layers can further improve the classification performance.

We accordingly employ this regularization here as:

(5.9) Lreg =
∑

(i, j)∈B
max

(
0,m− gk(BG i )+ gk(BG j )

)
,

where G i is a minority class graph, G j is a majority class graph, m is a pre-defined

margin, and gk(·) denotes the mean of the top-k L2-norm values across the subgraph

embeddings in each bag. Thus, the overall loss function of the subgraph-scale branch is

as:

(5.10) Ls = Lmil +ηLreg,

where η is a parameter that balances the two loss terms.

Training and Inference

At the training stage, we first use oversampling and GCNs (with MVPool-based

graph pooling) to generate class-balanced batches of graph/subgraph embeddings in each

branch, and then jointly optimize the following overall loss:

(5.11) L = Lg︸︷︷︸
graphs

+ λLp︸︷︷︸
pairwise graphs

+ βLs︸︷︷︸
subgraphs

,

where Lg, Lp, and Ls are respectively specified as Eq. (5.4), (5.5), and (5.10), and λ

and β are hyperparameters that balance the influence of the three components on

the overall classification. It yields a MOSGNN model with optimal parameters W∗ =
{W∗

gcn,W∗
sgcn,W∗

g ,W∗
p ,W∗

s }.

Algorithm 2 presents the procedure of training MOSGNN. After the data oversam-

pling in Step 1, MOSGNN performs stochastic gradient descent-based optimization to

train GCNs and three MLPs in Steps 2-11. Particularly, Step 4 computes the graph-scale

loss, Steps 5-6 calculate the pairwise-scale loss and Steps 7-8 obtain the subgraph-scale

loss. Step 9 gathers the losses and Step 10 performs gradient descent steps on the loss

to optimize the parameters in GCNs and MLPs. We finally gain the graph representa-

tion learning networks-GCN(W∗
gcn), GCN(W∗

sgcn), and MLPs in each scale-MLPg(W∗
g ),

MLPp(W∗
p ), MLPs(W∗

s ).

During inference, given a test graph sample G, its graph embedding should be paired

with other graph embeddings to extract relationships between them. We evaluated

the pair of the test graph with itself and graphs randomly sampled from the training
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Algorithm 2 Training MOSGNN
Input: Imbalanced training graph set G = {G i}i
Output: Two graph representation learning networks-GCN(W∗

gcn), GCN(W∗
sgcn), MLP

in each scale-MLPg(W∗
g ), MLPp(W∗

p ), MLPs(W∗
s )

1: Randomly oversample the graph set G to obtain the balanced set
2: for j = 1 to n_batches do
3: Compute graph representations {hG}G by using GCN(Wgcn)
4: Compute graph-scale prediction probability sg

i with Eq. (5.3) and further loss
function with Eq. (5.4)

5: Randomly pairwise {hG}G to obtain pairwise graph set P

6: Compute pairwise-interaction prediction probability sp
i, j with Eq. (5.6) and further

loss function with Eq. (5.5)
7: Establish subgraph bags and obtain subgraph embedding bags by using

GCN(Wsgcn)
8: Compute subgraph-scale loss with Eqs. (5.7)-(5.10)
9: Gather the losses from three scales to calculate the final loss with Eq. (5.11)

10: Perform a gradient descent step on Eq. (5.11)
11: end for
12: return The graph representation learning networks-GCN(W∗

gcn), GCN(W∗
sgcn), MLP

in each scale-MLPg(W∗
g ), MLPp(W∗

p ), MLPs(W∗
s )

data and obtained similar results. Therefore, we choose to easily pair test graphs with

themselves to obtain the prediction of the pairwise scale. Finally, the classification

probability predicted by MOSGNN for G is defined as:

(5.12) r(G)=MLPg(h;W∗
g )+λMLPp(h⊙h;W∗

p )+βMIL(BG ,W∗
s ),

where h = GCN(G,W∗
gcn). Class with maximum probability in r(G) is the class of G

predicted by MOSGNN.

Enabling Other Imbalanced Learning Loss Functions

There have been many imbalanced learning loss functions adaptively assigning

larger weights to the minority samples during training. We found empirically that

the performance of these advanced loss functions can be further improved under our

MOSGNN framework by simply plugging these losses to replace the cross entropy loss

in MOSGNN (see Section 5.4.4).
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5.3 Theoretical Analysis

The time complexity of the proposed MOSGNN is analysed. The graph-scale oversam-

pling is the vanilla oversampling-based GNN whose computational requirements come

from the oversampling operation, GNN and the MLP classifier. Let N be the number of

majority graphs in the original data set. Our oversampling operation is simply duplicat-

ing data and its complexity is O(N). Since the GNN encoder can be various and we use

OGNN to stand for its complexity. The MLP classifier whose layer number and dimension

are constant requires O(N) time. The extra computational requirements are due to

the pairwise-graph-scale and subgraph-scale modules. As for the pairwise graph scale,

the oversampling and GNN operations can use the results from the graph scale. Both

the graph pairing and relation prediction steps require O(N). Therefore, the pairwise

graph scale module needs O(N) additional time. As in [219], the complexity of subgraph

augmentation is linearly proportional to the size of graph and imposes no additional time

compared with GNN encoder. The GNN operation needs extra OGNN time, while the MIL

module takes an extra O(N) time for score calculation and O(kN log q) ≈ O(N) for the

selection of top-k scores in each bag. Therefore, the total time complexity of MOSGNN is

O(N)+OGNN . For example, with GCN as GNN backbone, the time complexity will be

O(N(M+1)), where M denotes the maximal number of edges in graphs.

5.4 Experiments and Results

5.4.1 Competing Methods

There are three exisiting GNN-based imbalanced graph classification methods, i.e.,
mixup [217], G2GNN [219] and SOLT-GNN[133]. The construction of GoG in G2GNN

relies on GraKeL [192], which supports only small datasets. Since most of our datasets

have a large scale (NCI and Tox datasets have 30K and 8K samples) and they are

not supported by GraKeL, we cannot apply G2GNN to these datasets. Besides, the

imbalance issue in SOLT-GNN is on the graph size, rather than the class imbalance,

which is different from our setting. Therefore, our MOSGNN is compared to five state-

of-the-art (SOTA) competing methods from four different directions: i) Re-sampling:
Oversampling [73] and SMOTE [22]; ii) Data Augmentation: Mixup [217]; iii) Re-
weighting: FocalLoss [123]; and iv) Logit Adjustment: LALoss [149].
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5.4.2 Parameter Settings

The following parameters are set by default for MOSGNN and its competing methods on

all 16 datasets: the batch size is set to 256, the number of GCN layers combined with

MVPool is 3, the dimension of hidden layer in the MVPool-based graph pooling is 128,

the pooling ratio of MVPool is 0.8, and the number of epochs is 200. The learning rate

is 10−3 for all method except LALoss, which use a linear learning rate warming up in

the first five epochs to reach the base learning rate 0.1 as recommended in [149]. All

methods are trained with Adam except LALoss, which is trained with the SGD optimizer

following [149]. All methods select the best decision threshold with the classification

probability varying from 0.3 to 0.9 using a step size of 0.1. The Mixup hyperparameter

used to combine two graphs into one is selected from {0.05,0.1,0.15,0.2,0.25,0.3}. The

parameters λ and β in MOSGNN are selected from {1.0,0.5,0.25,0.0}. The parameter q
in the subgraph branch of MOSGNN is set to 10, while the other three parameters m, k
and η are set to 100, 3 and 0.0001 respectively, as suggested in [198]. Other parameters

in the competitors are set as suggested in their original works.

5.4.3 Comparison to SOTA Models

The results of comparing MOSGNN to five competing methods are reported in Table 5.1.

Our MOSGNN performs best on all datasets. The improvement of MOSGNN compared

with the best competing method per dataset is large on most datasets, e.g., NCI33 (2.9%),

NCI109∗ (4.3%), NCI81 (4.4%), BZR (4.7%), NCI41 (5.1%), COX2 (5.5%), Aromatase (6%)

and ATAD5 (7.8%). Oversampling, FocalLoss and LALoss are the three most effective

competing methods, but they cannot well leverage the intra- and inter-graph structure

information, learning less discriminative representations. MOSGNN achieves this by

the multi-scale oversampling and largely outperforms them. The p-value results indicate

that the improvement of MOSGNN over all the competitors is significant at the 99%

confidence level, demonstrating the superiority of MOSGNN on graph datasets with

diverse imbalanced ratios.

In addition, we report the macro-F1 score and AUPRC of the proposed MOSGNN and

its competitors in Table 5.2 and Table 5.3. It is obvious that the proposed model achieves

top-1 performance and the paired signed-rank test indicates the improvement across the

16 datasets is significant at the 99% confidence level, which further demonstrates the

better ability of MOSGNN to discriminate the imbalanced samples.

74



5.4. EXPERIMENTS AND RESULTS

Table 5.1: F1 score (mean±std) of MOSGNN and five SOTA competing methods. #pos
and #Graph denote the number of graph samples in the minority class and in the full
dataset, respectively. ‘Ratio’ denotes the ratio of the majority class size to the minority
class. ‘Rank’ indicates the average performance ranking of a model across all datasets:
a smaller rank value indicates a better overall performance. The best performance per
dataset is boldfaced.

Dataset #pos #Graph Ratio SMOTE Mixup Oversampling FocalLoss LALoss MOSGNN
NCI1∗ 1793 37349 19.8: 1 0.253±0.030 0.384±0.038 0.447±0.037 0.425±0.033 0.371±0.003 0.477±0.023
NCI33 1467 37022 24.2: 1 0.208±0.014 0.336±0.023 0.439±0.020 0.415±0.016 0.318±0.040 0.468±0.011
NCI41 1350 25336 17.8: 1 0.252±0.021 0.382±0.040 0.432±0.021 0.415±0.010 0.302±0.005 0.482±0.015
NCI47 1735 37298 20.5: 1 0.263±0.002 0.316±0.032 0.428±0.009 0.383±0.022 0.324±0.003 0.448±0.019
NCI81 2081 37549 17.0: 1 0.274±0.029 0.359±0.033 0.437±0.019 0.428±0.026 0.380±0.009 0.481±0.013
NCI83 1959 25550 12.0: 1 0.288±0.009 0.340±0.035 0.412±0.022 0.428±0.002 0.354±0.015 0.440±0.014
NCI109∗ 1773 37518 20.2: 1 0.264±0.023 0.347±0.036 0.424±0.006 0.389±0.011 0.339±0.009 0.466±0.020
NCI123 2715 36903 12.6: 1 0.270±0.025 0.291±0.082 0.389±0.017 0.400±0.011 0.352±0.009 0.426±0.013
NCI145 1641 37043 21.6: 1 0.272±0.022 0.320±0.037 0.451±0.001 0.409±0.028 0.335±0.015 0.468±0.018
BZR 86 405 3.7: 1 0.520±0.062 0.485±0.033 0.542±0.030 0.459±0.052 0.502±0.032 0.589±0.025
COX2 102 467 3.6: 1 0.328±0.048 0.283±0.201 0.438±0.057 0.343±0.245 0.089±0.126 0.494±0.055
P388 2298 41472 17.1: 1 0.323±0.022 0.522±0.004 0.547±0.013 0.532±0.016 0.465±0.009 0.561±0.013
Aromatase 360 7226 19.1: 1 0.044±0.063 0.089±0.069 0.222±0.086 0.101±0.074 0.172±0.058 0.282±0.091
ATAD5 338 9091 25.9: 1 0.061±0.048 0.000±0.000 0.120±0.058 0.139±0.055 0.146±0.016 0.223±0.027
ER 937 7697 7.2: 1 0.049±0.042 0.124±0.049 0.195±0.028 0.137±0.048 0.088±0.018 0.201±0.023
p53 537 8634 15.1: 1 0.230±0.047 0.162±0.115 0.211±0.026 0.255±0.029 0.220±0.024 0.258±0.050

Rank 5.4 4.8 2.4 3.1 4.3 1
p-value 0.0004 0.0004 0.0004 0.0004 0.0004 -

Table 5.2: Macro-F1 score (mean±std) of MOSGNN and five SOTA competing methods
on 16 real-world imbalanced graph datasets. ‘Rank’ indicates the average performance
ranking of a model across all datasets: a smaller rank value indicates a better overall
performance.

Dataset #pos #Graph Ratio SMOTE Mixup Oversampling FocalLoss LALoss MOSGNN
NCI1∗ 1793 37349 19.8: 1 0.608±0.015 0.679±0.018 0.708±0.023 0.699±0.016 0.668±0.001 0.726±0.012
NCI33 1467 37022 24.2: 1 0.583±0.011 0.657±0.011 0.709±0.010 0.696±0.008 0.646±0.021 0.724±0.006
NCI41 1350 25336 17.8: 1 0.601±0.010 0.675±0.018 0.700±0.010 0.693±0.005 0.633±0.005 0.727±0.006
NCI47 1735 37298 20.5: 1 0.610±0.001 0.645±0.015 0.699±0.004 0.678±0.012 0.645±0.002 0.710±0.010
NCI81 2081 37549 17.0: 1 0.607±0.017 0.663±0.016 0.701±0.008 0.697±0.014 0.674±0.004 0.725±0.008
NCI83 1959 25550 12.0: 1 0.604±0.004 0.647±0.016 0.684±0.011 0.689±0.003 0.654±0.007 0.693±0.009
NCI109∗ 1773 37518 20.2: 1 0.612±0.011 0.661±0.018 0.698±0.005 0.680±0.006 0.653±0.005 0.721±0.010
NCI123 2715 36903 12.6: 1 0.602±0.012 0.625±0.039 0.672±0.011 0.679±0.007 0.652±0.005 0.692±0.006
NCI145 1641 37043 21.6: 1 0.617±0.011 0.648±0.018 0.713±0.001 0.691±0.014 0.651±0.006 0.722±0.010
BZR 86 405 3.7: 1 0.691±0.053 0.678±0.015 0.709±0.028 0.659±0.025 0.677±0.012 0.725±0.043
COX2 102 467 3.6: 1 0.532±0.086 0.565±0.090 0.635±0.013 0.596±0.113 0.465±0.037 0.648±0.028
P388 2298 41472 17.1: 1 0.642±0.011 0.749±0.001 0.759±0.008 0.754±0.009 0.718±0.004 0.767±0.009
Aromatase 360 7226 19.1: 1 0.489±0.032 0.521±0.034 0.567±0.038 0.518±0.032 0.552±0.027 0.601±0.057
ATAD5 338 9091 25.9: 1 0.502±0.024 0.476±0.000 0.521±0.021 0.535±0.024 0.529±0.008 0.568±0.020
ER 937 7697 7.2: 1 0.481±0.010 0.525±0.024 0.558±0.014 0.523±0.021 0.509±0.006 0.557±0.008
p53 537 8634 15.1: 1 0.549±0.031 0.552±0.058 0.565±0.015 0.580±0.003 0.566±0.012 0.584±0.051

Rank 5.7 4.4 2.3 3.1 4.4 1.1
p-value 0.0004 0.0004 0.0005 0.0004 0.0004 -
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Table 5.3: AUPRC results (mean±std) of MOSGNN and five SOTA competing methods
on 16 real-world imbalanced graph datasets. ‘Rank’ indicates the average performance
ranking of a model across all datasets: a smaller rank value indicates a better overall
performance.

Dataset #pos # Graph Ratio SMOTE Mixup Oversampling FocalLoss LALoss MOSGNN
NCI1∗ 1793 37349 19.8: 1 0.189±0.016 0.348±0.025 0.401±0.033 0.379±0.030 0.304±0.013 0.413±0.031
NCI33 1467 37022 24.2: 1 0.142±0.020 0.275±0.028 0.383±0.009 0.341±0.025 0.267±0.026 0.407±0.015
NCI41 1350 25336 17.8: 1 0.175±0.010 0.336±0.007 0.361±0.024 0.363±0.027 0.253±0.007 0.417±0.015
NCI47 1735 37298 20.5: 1 0.173±0.004 0.298±0.015 0.356±0.010 0.333±0.020 0.266±0.011 0.401±0.013
NCI81 2081 37549 17.0: 1 0.190±0.026 0.317±0.025 0.387±0.013 0.389±0.025 0.330±0.022 0.423±0.027
NCI83 1959 25550 12.0: 1 0.208±0.006 0.322±0.023 0.375±0.014 0.388±0.008 0.331±0.016 0.403±0.004
NCI109∗ 1773 37518 20.2: 1 0.170±0.009 0.320±0.025 0.383±0.007 0.354±0.020 0.270±0.009 0.411±0.019
NCI123 2715 36903 12.6: 1 0.196±0.016 0.315±0.005 0.349±0.027 0.379±0.023 0.302±0.011 0.387±0.012
NCI145 1641 37043 21.6: 1 0.177±0.013 0.314±0.008 0.386±0.026 0.373±0.033 0.263±0.024 0.404±0.009
BZR 86 405 3.7: 1 0.521±0.066 0.460±0.040 0.550±0.041 0.536±0.050 0.476±0.032 0.629±0.047
COX2 102 467 3.6: 1 0.366±0.055 0.350±0.066 0.457±0.064 0.403±0.126 0.286±0.028 0.461±0.072
P388 2298 41472 17.1: 1 0.270±0.022 0.508±0.018 0.530±0.019 0.521±0.020 0.449±0.003 0.558±0.008
Aromatase 360 7226 19.1: 1 0.101±0.012 0.164±0.031 0.158±0.023 0.148±0.010 0.157±0.037 0.217±0.073
ATAD5 338 9091 25.9: 1 0.119±0.020 0.121±0.014 0.166±0.018 0.148±0.010 0.119±0.013 0.193±0.060
ER 937 7697 7.2: 1 0.108±0.009 0.142±0.028 0.199±0.020 0.162±0.028 0.142±0.006 0.147±0.013
p53 537 8634 15.1: 1 0.184±0.026 0.260±0.042 0.222±0.021 0.261±0.008 0.202±0.010 0.205±0.022

Rank 5.7 4.1 2.3 2.7 4.9 1.3
p-value 0.0004 0.0009 0.0072 0.0045 0.0004 -

5.4.4 Enabling Different Loss Functions

This section evaluates the applicability of our model to enable other imbalanced learning

loss functions. In detail, we replace the cross-entropy loss in MOSGNN with FocalLoss

and LALoss, named as MOS-Focal and MOS-LA respectively. The results are reported

in Table 5.4, showing that MOS-Focal and MOS-LA substantially outperform FocalLoss

and LALoss respectively on all datasets except ATAD5 and p53 for FocalLoss and p53

for LALoss. The average improvement is 4.6% and 7.6% and the maximal improvement

can be up to about 13% and 33% w.r.t. FocalLoss and LALoss respectively. The paired

signed-rank test indicates the improvement across the 16 datasets is significant at 99%

confidence level. The performance drop of MOS-Focal w.r.t. FocalLoss on Aromatase are

very marginal, having only a difference of 0.28%. The decreased performance on p53 is

relatively large, since the subgraph-scale oversampling in MOSGNN works adversely on

p53 (as shown in Table 5.8) and this effect is further enlarged likely due to the sample

weighting schemes in two losses.

We also report the F1-macro score result of classification when using MOSGNN-

enabled FocalLoss and LALoss in Table 5.5. We can see from Table 5.5 that the MOSGNN

structure brings improvement on most datasets, which is consistent with the F1 score

result above.
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Table 5.4: F1 score (mean) using MOSGNN-enabled FocalLoss and LALoss, with the
original FocalLoss and LALoss as baselines. ‘Diff.’ denotes the F1 score improvement (↑)
or decrease (↓) of ‘MOS-X’ compared to the original ‘X’ loss.

Dataset Focal MOS-Focal Diff. LA MOS-LA Diff.
NCI1∗ 0.4250 0.4971 0.0721 ↑ 0.3712 0.4179 0.0467 ↑
NCI33 0.4153 0.4558 0.0405 ↑ 0.3179 0.3962 0.0783 ↑
NCI41 0.4154 0.4503 0.0349 ↑ 0.3016 0.4211 0.1195 ↑
NCI47 0.3829 0.4342 0.0513 ↑ 0.3240 0.3778 0.0538 ↑
NCI81 0.4282 0.4859 0.0577 ↑ 0.3799 0.4193 0.0394 ↑
NCI83 0.4281 0.4453 0.0172 ↑ 0.3543 0.4263 0.0720 ↑
NCI109∗ 0.3892 0.4788 0.0896 ↑ 0.3388 0.4302 0.0914 ↑
NCI123 0.4004 0.4267 0.0263 ↑ 0.3516 0.3888 0.0372 ↑
NCI145 0.4086 0.4604 0.0518 ↑ 0.3346 0.4105 0.0759 ↑
BZR 0.4591 0.5296 0.0705 ↑ 0.5024 0.5688 0.0664 ↑
COX2 0.3426 0.4725 0.1299 ↑ 0.0889 0.4177 0.3288 ↑
P388 0.5319 0.5628 0.0309 ↑ 0.4646 0.5379 0.0733 ↑
Aromatase0.1005 0.1554 0.0549 ↑ 0.1721 0.2230 0.0509 ↑
ATAD5 0.1393 0.1365 −0.0028 ↓ 0.1455 0.1739 0.0284 ↑
ER 0.1373 0.2610 0.1237 ↑ 0.0875 0.1848 0.0973 ↑
p53 0.2550 0.1536 −0.1014 ↓ 0.2202 0.1736 −0.0466 ↓
p-value 0.0061 - 0.0009 -

Table 5.5: Macro-F1 score (mean) using MOSGNN-enabled FocalLoss and LALoss, with
the original FocalLoss and LALoss as baselines. ‘Diff.’ denotes the F1 score improvement
(↑) or decrease (↓) of ‘MOS-X’ compared to the original ‘X’ loss.

Dataset Focal MOS-Focal Diff. LA MOS-LA Diff.
NCI1∗ 0.6991 0.7365 0.0374↑ 0.6684 0.6875 0.0191↑
NCI33 0.6956 0.7169 0.0213↑ 0.6464 0.6746 0.0282↑
NCI41 0.6925 0.7117 0.0192↑ 0.6332 0.6956 0.0624↑
NCI47 0.6776 0.6998 0.0222↑ 0.6452 0.6643 0.0191↑
NCI81 0.6970 0.7269 0.0299↑ 0.6735 0.6906 0.0171↑
NCI83 0.6892 0.7015 0.0123↑ 0.6535 0.6918 0.0383↑
NCI109∗ 0.6799 0.7267 0.0468↑ 0.6529 0.7024 0.0495↑
NCI123 0.6790 0.6926 0.0136↑ 0.6521 0.6709 0.0188↑
NCI145 0.6913 0.7192 0.0279↑ 0.6505 0.6871 0.0366↑
BZR 0.6592 0.7042 0.0450↑ 0.6773 0.7199 0.0426↑
COX2 0.5956 0.6385 0.0429↑ 0.4649 0.6161 0.1512↑
P388 0.7535 0.7687 0.0152↑ 0.7177 0.7553 0.0376↑
Aromatase 0.5184 0.4974 -0.0210↓ 0.5516 0.5608 0.0092↑
ATAD5 0.5354 0.5323 -0.0031↓ 0.5292 0.5448 0.0156↑
ER 0.5227 0.5827 0.0600↑ 0.5092 0.5462 0.0370↑
p53 0.5799 0.5412 -0.0387↓ 0.5663 0.5319 -0.0344↓

5.4.5 Enabling Different GNN Backbones

This section measures the applicability of MOSGNN framework to other GNN backbones.

We replace the GCN in our model with GIN [232] and GAT [203] respectively and use

sum/mean pooling as the readout module. Since the Oversampling performs best in the
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competitors, we only compare Oversampling with our method in this experiment. The

results are shown in Table 5.6. It is obvious that the usage of GIN brings improvement

on most datasets for both MOSGNN and Oversampling and our MOSGNN has better

results on all datasets. The enhancement brought by GAT is limited, which might be

because of the usage of MVPool with GCN in original MOSGNN. However, our MOSGNN

still has better performance than Oversampling on all datasets. We also report the

AUPRC results of replacing GCN in MOSGNN with GIN and GAT in Table 5.7 to further

demonstrate this.

Table 5.6: F1 score results (mean±std) of using GIN/GAT as backbones. The best perfor-
mance is boldfaced. ‘Baseline’ denotes ‘Oversampling’.

Dataset GIN GAT
Baseline MOSGNN Baseline MOSGNN

NCI1∗ 0.541±0.006 0.542±0.033 0.440±0.035 0.472±0.016
NCI33 0.489±0.008 0.534±0.013 0.417±0.022 0.456±0.022
NCI41 0.509±0.007 0.537±0.018 0.433±0.008 0.458±0.004
NCI47 0.498±0.026 0.512±0.004 0.399±0.015 0.453±0.016
NCI81 0.534±0.011 0.540±0.017 0.459±0.019 0.474±0.021
NCI83 0.489±0.015 0.504±0.007 0.436±0.018 0.457±0.017
NCI109∗ 0.490±0.023 0.527±0.009 0.438±0.023 0.442±0.015
NCI123 0.459±0.025 0.498±0.016 0.417±0.015 0.431±0.016
NCI145 0.536±0.009 0.545±0.010 0.438±0.012 0.467±0.012
BZR 0.503±0.044 0.586±0.017 0.486±0.078 0.557±0.063
COX2 0.443±0.055 0.502±0.040 0.530±0.046 0.539±0.074
P388 0.614±0.014 0.622±0.007 0.547±0.013 0.566±0.008
Aromatase 0.238±0.059 0.285±0.009 0.236±0.027 0.307±0.030
ATAD5 0.241±0.074 0.281±0.088 0.187±0.093 0.231±0.047
ER 0.165±0.026 0.207±0.037 0.156±0.040 0.224±0.042
p53 0.220±0.005 0.225±0.027 0.205±0.077 0.229±0.030
p-value 0.0004 - 0.0004 -

5.4.6 Sample Efficiency

As the minority samples are typically difficult or costly to obtain, this section examines

the performance of our model w.r.t. decreasing sample size of the minority class in

training data, i.e., sample efficiency. We perform the experiment using 1%, 5%, 10%, 25%,

50% and 100% of training minority samples, respectively. The experiment is focused

on the nine NCI datasets, with λ= 1 and β= 1 by default in MOSGNN; the competing

methods use the hyperparameter settings that are optimal on the original training

data per dataset. The F1 score results are displayed in Figure 5.3. MOSGNN obtains

consistently higher F1 scores than the five competing methods in almost all cases. This

superiority is particularly clear when only 5% and 1% minority samples are used. This

78



5.4. EXPERIMENTS AND RESULTS

Table 5.7: AUPRC results (mean±std) of using GIN/GAT as backbones. The best perfor-
mance is boldfaced. ‘Baseline’ denotes ‘Oversampling’.

Dataset GIN GAT
Baseline MOSGNN Baseline MOSGNN

NCI1∗ 0.514±0.014 0.503±0.020 0.372±0.033 0.420±0.007
NCI33 0.433±0.012 0.466±0.015 0.368±0.014 0.394±0.021
NCI41 0.462±0.012 0.490±0.026 0.356±0.022 0.393±0.011
NCI47 0.471±0.005 0.461±0.015 0.359±0.015 0.411±0.023
NCI81 0.503±0.031 0.494±0.039 0.412±0.024 0.421±0.015
NCI83 0.451±0.031 0.475±0.017 0.388±0.005 0.422±0.012
NCI109∗ 0.459±0.014 0.478±0.019 0.378±0.011 0.387±0.025
NCI123 0.404±0.040 0.463±0.005 0.371±0.022 0.401±0.015
NCI145 0.493±0.011 0.512±0.004 0.376±0.010 0.427±0.006
BZR 0.606±0.035 0.590±0.055 0.573±0.018 0.546±0.061
COX2 0.476±0.067 0.478±0.055 0.530±0.063 0.551±0.104
P388 0.594±0.025 0.609±0.014 0.539±0.004 0.547±0.004
Aromatase0.221±0.005 0.218±0.031 0.168±0.013 0.207±0.039
ATAD5 0.217±0.068 0.258±0.063 0.160±0.026 0.214±0.042
ER 0.127±0.011 0.138±0.014 0.139±0.014 0.152±0.011
p53 0.156±0.006 0.178±0.036 0.168±0.014 0.194±0.034
p-value 0.0174 - 0.0019 -

might be because that MOSGNN is able to utilize the fine-grained subgraph information

and the majority graph samples via MIL and pairwise relation prediction respectively,

which helps alleviate the impacts of the decreasing minority data to some extent and

maintain the consistent improvement.

5.4.7 Robustness w.r.t. Label Noise

Noisy class labels are one common challenge to supervised tasks. The challenge is much

greater in imbalanced classification if the minority class samples are incorrectly labeled

as the majority one. This section evaluates the capability of the models in handling this

challenge. Specifically, we randomly flip a subset of the labels of the minority samples to

the majority class label, with the subset size ranging from 0% up to 30% of the minority

samples. Other experiment settings are as in Section 5.4.6.

The F1 scores of the six methods under different levels of label noise are reported in

Figure 5.4. The results show that our model MOSGNN achieves the best robustness on

all nine datasets, outperforming all the competing methods under almost all label noise

levels across the nine datasets. It is impressive that, compared to the rapid decreasing

performance of the other methods like Mixup, FocalLoss and LALoss, the performance

of MOSGNN and Oversampling is barely affected by the increasing label noises on

most of the datasets, indicating the advantage of the oversampling methods over the
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Figure 5.3: F1 score (y-axis) on nine NCI datasets with decreasing training data.

data generation and sample weighting (imbalanced loss) based methods in handling

label noises. MOSGNN is substantially better than Oversampling due to its additional

subgraph and inter-graph oversampling.

5.4.8 Ablation Study

This section examines the importance of three oversampling modules in our model.

We first evaluate three oversampling branches separately (Lg, Lp, or Ls), and then

incrementally add pairwise-graph-scale and subgraph-scale branches until we obtain

the full model MOSGNN. The results are reported in Table 5.8. It is shown that using

graph-scale (Lg) or pairwise-graph-scale oversampling (Lp) individually can achieve good

performance. Jointly optimizing Lg and Lp further improves the individual performance,

indicating the complementary information gained from two types of oversampling. Using

Ls only cannot classify samples successfully, since the subgraph-based classification

discards many nodes per graph, but it can still achieve fairly good F1 scores on some

datasets, indicating that important information in some datasets are actually embedded

in subgraphs. Therefore, combining Ls with Lg or Lp can obtain better performance than

using single scale on those datasets. The worse performance obtained by combinations
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Figure 5.4: F1 score (y-axis) on nine NCI datasets with different levels of label noise.

of two scales in Lg, Lp and Ls might be because that pairs of the three scales do not

capture the full graph semantic well and part of their results are not consistent. This

problem can be alleviated when three scales are used together, which is exactly what we

have in our MOSGNN. Overall, the three oversampling done by Lg, Lp, and Ls helps sig-

nificantly enhance the representations of minority graphs over their individual/pairwise

uses, indicating they all have important contributions to the superior performance of

MOSGNN.

We also evaluate the effects of two hyperparameters (λ and β) to the performance

of MOSGNN. In Figure 5.5, we show the results with β = 1.0 fixed and varying λ in

{0,0.25,0.5,1}, and vice versa. Clearly, larger λ can bring better results in most datasets,

which indicates that the information gained from the pairwise-graph-scale oversampling

is general useful for the performance of MOSGNN. On the other hand, more efforts are

required to tune the parameter β for an effective use of the subgraph-scale oversampling.

Nevertheless, both parameters can be well tuned on the validation dataset; the results

here suggest that more careful tuning of β is desired in practice.
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Table 5.8: F1 score (mean±std) of MOSGNN and its ablated variants. The best perfor-
mance per dataset is boldfaced. ‘Rank’ indicates the average performance ranking of a
model across all datasets: a smaller rank value indicates a better overall performance.

Dataset Lg Lp Ls Lg & Lp Lg & Ls Lp & Ls MOSGNN
NCI1∗ 0.447±0.037 0.455±0.010 0.215±0.152 0.438±0.028 0.457±0.032 0.468±0.041 0.477±0.023
NCI33 0.439±0.020 0.444±0.023 0.209±0.148 0.429±0.006 0.441±0.008 0.438±0.032 0.468±0.011
NCI41 0.432±0.021 0.437±0.038 0.283±0.019 0.452±0.016 0.438±0.006 0.461±0.027 0.482±0.015
NCI47 0.428±0.009 0.402±0.036 0.196±0.139 0.426±0.016 0.387±0.043 0.433±0.025 0.448±0.019
NCI81 0.43pm0.019 0.450±0.011 0.206±0.146 0.456±0.017 0.440±0.020 0.439±0.010 0.481±0.013
NCI83 0.412±0.022 0.421±0.029 0.183±0.134 0.440±0.014 0.420±0.011 0.414±0.014 0.440±0.014
NCI109∗ 0.424±0.006 0.426±0.008 0.296±0.045 0.458±0.014 0.440±0.008 0.445±0.020 0.466±0.020
NCI123 0.389±0.017 0.409±0.008 0.296±0.011 0.425±0.015 0.391±0.014 0.403±0.004 0.426±0.013
NCI145 0.451±0.001 0.451±0.015 0.201±0.142 0.465±0.011 0.447±0.007 0.448±0.013 0.468±0.018
BZR 0.542±0.030 0.576±0.009 0.353±0.048 0.589±0.025 0.515±0.025 0.583±0.045 0.589±0.025
COX2 0.438±0.057 0.452±0.058 0.353±0.086 0.468±0.077 0.405±0.069 0.456±0.047 0.494±0.055
P388 0.547±0.013 0.551±0.012 0.275±0.195 0.561±0.013 0.546±0.017 0.530±0.017 0.561±0.013
Aromatase 0.222±0.086 0.259±0.082 0.084±0.060 0.243±0.079 0.125±0.033 0.206±0.025 0.282±0.091
ATAD5 0.120±0.058 0.200±0.064 0.171±0.059 0.223±0.027 0.186±0.065 0.182±0.091 0.223±0.027
ER 0.195±0.028 0.152±0.050 0.095±0.038 0.201±0.023 0.173±0.022 0.191±0.053 0.201±0.023
p53 0.211±0.026 0.263±0.028 0.137±0.028 0.258±0.050 0.255±0.026 0.241±0.026 0.258±0.050
Rank 4.9 3.6 6.9 2.4 4.7 4.0 1.1
p-value 0.0002 0.0004 0.0002 0.0156 0.0002 0.0002 -

Figure 5.5: F1 scores (y-axis) of MOSGNN with different hyperparameter (λ and β)
settings on nine NCI datasets.

5.5 Summary

This chapter introduces a novel deep multi-scale oversampling approach MOSGNN for

imbalanced graph classification. It can significantly extend the graph samples of the

minority class with rich intra- and inter-graph semantics. These semantic-augmented

minority graphs enable more effective training of GNNs on imbalanced graphs. The exper-

iments show that MOSGNN learns significantly improved imbalanced graph classifiers

over SOTA competing models.

In addition, the sample efficiency experiment demonstrates that MOSGNN performs

better than other competitors when the sample number of the minority class is insuf-

ficient. Moreover, the robustness experiment proves that MOSGNN achieves the best
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robustness when suffering from different level of sample contamination. Thus, MOSGNN

can have more stable performance when the samples are a little unreliable.

We further find that MOSGNN can be a generic framework, in which different

advanced imbalanced learning loss functions and GNN backbones can be easily plugged

in and obtain significantly improved classification performance.

However, the inter-graph relationship learning via pairwise operation is defined as

binary classification, and thus the proposed MOSGNN only supports binary classifi-

cation. In many real-world applications, the number of classes might exceed two. The

proposed method cannot be employed to solve such tasks. How to define the inter-graph

relationship between multi-class samples and establish efficient scheme to extract the

relationships needs further research.
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6
GRAPH-LEVEL ANOMALY DETECTION WITH GLOBAL AND

LOCAL KNOWLEDGE DISTILLATION

6.1 Introduction

Chapter 4 and Chapter 5 discuss the graph-level classification problems with sufficient

and imbalanced samples. However, there is an extreme case, in which only one type of

samples are known. This classification problem formulates one-class classification that

aims to classify other samples from the known class of samples. We also call this problem

graph-level anomaly detection (GLAD) when regard the known type as normal class and

other types are abnormal.

Despite the prevalence of graph data and the importance of anomaly detection therein,

GLAD has received little attention compared to anomaly detection in other types of data

[2; 164]. One primary challenge in GLAD is to learn expressive graph representations

that capture local and global normal patterns in the graph structure and attributes (e.g.,
descriptive features of nodes). This is essential for the detection of both locally-anomalous

graph – relating to individual nodes and their local neighborhood (G5 in Figure 6.1) –

and globally-anomalous graph – relating to holistic graph characteristics (G6 in Figure

6.1).

In this chapter, inspired by Knowledge Distillation (KD) [74; 18; 206], we introduce

a novel deep anomaly detection approach for GLAD that learns both global and local

normal patterns by joint random distillation of graph and node representations – global
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𝑮𝟏

𝑮𝟒
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Normal Abnormal

Figure 6.1: A set of graphs with two anomalous graphs indicated. The squares above/-
below the nodes represent node features. G5 is a locally-anomalous graph due to the
unusual local properties (e.g., structure) of the orange node, while G6 is a globally-
anomalous graph because it does not conform to G1 to G4 in holistic graph properties.

and local (i.e., glocal) graph representation distillation. The random representation

distillation is done by training one GNN to predict a random GNN that has its neural

network weights fixed to random initialization, i.e., the predictor network learns to

produce the same representations as that in the random network, as shown in Figure

6.2(a) and (b). To accurately predict these fixed randomly-projected representations, the

predictor network is enforced to learn all major patterns in the training data. By applying

such a random distillation on both graph and node representations, our model learns

glocal graph patterns across the given training graphs. When the training data consists

of exclusively (or mostly) normal graphs, the learned patterns are a summarization

of multi-scale graph regularity/normality information. As a result, given a graph that

shows node/graph-level irregularity/abnormality w.r.t. these learned patterns, the model

cannot accurately predict its representations, leading to a much larger prediction error

than that of normal graphs, as shown in Figure 6.2(c). Thus, this prediction error can be

defined as anomaly score to detect the aforementioned two types of graph anomalies.

Accordingly, this chapter makes the following major contributions:

• The GLAD problem is formulated as the task of detecting locally- or globally-

anomalous graphs, and the presence of these two types of graph anomalies in

real-world datasets is empirically verified (Section 6.4.7).

• A novel deep anomaly detection framework that models glocal graph regularity and

learns graph anomaly scores in an end-to-end fashion is introduced. This results in
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Figure 6.2: Demonstration of GLocalKD working on a popular dataset – AIDS. (a) Repre-
sentations of training graphs output by the random target network. (b) Representations
of training graphs learned by the predictor network. (c) Prediction errors (anomaly
scores) of GLocalKD on test graphs. Visualization in (a) and (b) is based on t-SNE.

the first approach specifically designed to effectively detect both types of anomalous

graphs.

• A new GLAD model, namely Global and Local Knowledge Distillation (GLocalKD),

is further instantiated from the framework. GLocalKD implements the joint ran-

dom distillation of graph and node representations by minimizing the graph- and

node-level prediction errors of approximating a random graph convolutional neural

network. GLocalKD is easy-to-implement without requiring the challenging graph

generation, and it can effectively learn diverse glocal normal patterns with small

training data. It also shows remarkable robustness to anomaly contamination,

indicating its applicability in both exclusively normal training data setting and

anomaly-contaminated unlabeled training data setting.

• Extensive empirical results on 16 real-world datasets from chemistry, medicine,

and social network domains show that GLocalKD (i) significantly outperforms

seven state-of-the-art competing methods (Section 6.4.3); (ii) is substantially more

sample-efficient than other deep detectors (Section 6.4.4), e.g., it can use 95% less

training samples to achieve the accuracy that still outperforms the competing

methods by a large margin; and (iii) by using a single default GNN architecture,

performs very stably w.r.t. different anomaly contamination rates (Section 6.4.5)

and the dimensionality of the representations (Section 6.4.6).

The rest of this chapter is organized as follows. The proposed framework and its

instantiation GLocalKD are detailed in Section 6.2, followed by a theoretical analysis
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in Section 6.3. The evaluation results are provided in Section 6.4. This work is then

summarized in Section 6.5.

6.2 The Proposed GLocalKD Method

6.2.1 Framework

To solve the GLAD problem, we propose an end-to-end scoring framework that syn-

thesizes two graph neural networks and joint random knowledge distillation of graph

and node representations to train a deep anomaly detector. The resulting model can

effectively detect both types of anomalous graphs.

Overview of the Framework

Our framework jointly distills graph-level and node-level representations of each

graph, to learn both global and local graph normality information. It consists of two

graph neural networks – a fixed randomly initialized target network and a predictor

network – with exactly the same architecture and two distillation losses. It learns the

holistic (fine-grained) graph normality by training the predictor network to predict the

graph (node) level representations produced by the random target network. Let hG and

ĥG respectively be the graph representation of G yielded by the predictor and target

networks, and hi and ĥi be the respective node representation for a node vi in G produced

by the two networks, the overall objective of our approach can be given as:

(6.1) L = Lgraph +λLnode,

where λ is a hyperparameter that balances the importance of the two loss functions,

Lgraph and Lnode are respective graph-level and node-level distillation loss functions:

Lgraph = 1
|G |

∑
G∈G

KD
(
hG , ĥG

)
,(6.2)

Lnode =
1
|G |

∑
G∈G

(
1
|G|

∑
vi∈VG

KD
(
hi, ĥi

))
,(6.3)

where KD(·, ·) is a distillation function that measures the difference between two feature

representations and |G | is the number of graphs in G .

The overall procedure of the training stage of our framework is shown in Figure 6.3,

which works as follows:
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Figure 6.3: The proposed framework.

• We first randomly initialize a graph network φ̂(·;W) as the target network and

fix its weight parameters Ŵ. For every given graph G, it will yield a graph-level

representation ĥG and node-level representation ĥi for each node vi in G.

• A predictor network φ(·;W), with the same architecture as φ̂, is parameterized by

W and trained to predict the representation outputs of the target network φ̂. That

is, for every given graph G, it produces the graph-level representation hG and the

node-level representation hi, ∀vi ∈ VG .

• Lastly, for graph G, ĥG , hG , ĥi, and hi are integrated into a loss function L , which

is minimized to train the predictor network φ(·;W).

At the evaluation stage, the anomaly score for a given graph G is defined as

(6.4) score(G;Ŵ ,W∗)=KD
(
hG , ĥG

)+λ
1
|G|

∑
vi∈VG

KD
(
hi, ĥi

)
,

where W∗ are the learned parameters of the predictor network.

Key Intuition

The graph-level and node-level representations of graphs are learned by GNNs, whose

powerful capabilities of capturing graph structure and semantic information have been

proved in various learning tasks and applications. The joint random distillation in our

framework forces both graph representations and node representations of the predictor

network to be as close as possible to the corresponding outputs of the fixed random target
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network on normal graph data. This resembles the extraction of different patterns (either

frequently or infrequently) presented in the random representations of graphs and nodes,

respectively. If a pattern frequently occurs in the random representation space, the

pattern would be distilled better, i.e., the prediction error in Eq. (6.2) or (6.3) is small due

to a large sample size of the pattern; and the prediction error is large otherwise. As a

result, our joint random distillation learns such regularity information from both graph

and node representations. For a given test graph G, its anomaly score score(G;Ŵ ,W∗)

would be large if it does not conform to the regularity information embedded in the

training graph set G at either the graph or the node level, e.g., G5 and G6 in Figure 6.1;

and score(G;Ŵ ,W∗) would be small otherwise, e.g., G1 − G4 in Figure 6.1.

6.2.2 Joint Random Distillation of Graph and Node
Representations

An instantiation of the proposed framework called Global and Local Knowledge Distil-

lation (GLocalKD) is presented in the following section, in which we use widely-used

graph convolutional network (GCN) to learn node and graph representations and the

joint distillation is driven by two mean square error-based loss functions.

Random Target Network

We first establish a target network with randomly initialized weights to obtain graph-

and node-level representations in the random space. Different graph representation

approaches may be used to generate the required representations as the prediction

targets of the predictor network. Theoretically, various deep graph networks, such as

GCN, GAT and GIN, can be employed as the graph representation learning module. In

our work, a standard GCN is used, because GCN and its variants have proved their power

to learn expressive features of graphs and good computational efficiency [263; 226].

Specifically, ˆGCN(·,Ŵ) : G = (VG ,EG) → RNG×k is a GCN with fixed randomly initial-

ized weights Ŵ (i.e., the GCN is frozen after random weight initialization), where NG is

the number of nodes in G and k is a predefined dimensionality size of node representa-

tions. For each graph G = (VG ,EG), ˆGCN(·) takes adjacency matrix A and feature matrix

X as input, and maps each node vi ∈ VG to the representation space using Ŵ. Let ĥ(l)
i

be the hidden representation of node vi in the l th layer, which is formally computed as
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follows:

(6.5) ĥ(l)
i =ReLU

 ∑
v j∈Ñ (vi)

1√
D̃(i, i)D̃( j, j)

ĥ(l−1)
j Ŵ (l)


where ĥ(l−1)

j represents the hidden representation of node v j in the (l−1)th layer, N (vi)

denotes the 1st-order neighbors of vi and Ñ (vi)=N (vi)∪ {vi}, and the input representa-

tion of vi in the 0th layer, ĥ(0)
i , is initialized by its feature vector in X , i.e., ĥ(0)

i = X (i, :).
Thus, the output random node representation ĥi for node vi can be written as:

(6.6) ĥi =ReLU

 ∑
v j∈Ñ (vi)

1√
D̃(i, i)D̃( j, j)

ĥ(L−1)
j Ŵ (L)


where L is the number of layers of ˆGCN(·). The feature matrix X is composed of node

attributes for attributed graphs. For plain graphs, following [256], we use the node degree

as the node feature to construct a simple X , since the degree of nodes is one of the key

information for the discriminability of nodes and graphs.

Next, a READOUT operation is applied to the node representations to obtain the

graph-level representation for G. Considering that our goal is to detect anomalies,

we need to aggregate extreme features across the node representations. Thus, the

maxpooling is employed in the READOUT operation:

(6.7) ĥG =max {ĥi,∀vi ∈ VG}.

Predictor Network

The predictor network is a graph network used to predict the output representations

of the target network, ĥi and ĥG . We employ a GCN with the exactly same structure

as the target network as the predictor network, which is denoted as GCN(·,W) : G =
(VG ,EG)→RNG×k with the weight parameters W to be learned. Then, similar to ˆGCN(·,Ŵ),

GCN(·,W) yields the node representation hi for node vi by the following formulation:

(6.8) hi =ReLU

 ∑
v j∈Ñ (vi)

1√
D̃(i, i)D̃( j, j)

h(L−1)
j W (L)


After the same READOUT operation as in ˆGCN(·,Ŵ), the graph representation hG is

computed as follows:

(6.9) hG =max {hi,∀vi ∈ VG}.
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Thus, the only difference between the random target network ˆGCN(·,Ŵ) and the

predictor network GCN(·,W) is that Ŵ is fixed after random initialization while W needs

to be learned through the following glocal knowledge distillation.

Glocal Regularity Distillation

We further perform glocal regularity distillation by minimizing the distance between

the (graph- and node-level) representations produced by the predictor network and the

target network. Specifically, the graph-level and node-level distillation loss are defined

as:

(6.10) Lgraph = 1
|G |

∑
G∈G

∥hG − ĥG∥2,

(6.11) Lnode =
1
|G |

∑
G∈G

(
1
|G|

∑
vi∈VG

∥hi − ĥi∥2

)
.

To learn the global and local graph regularity information simultaneously, our model

is optimized by jointly minimizing the above two losses:

(6.12) L = Lgraph +Lnode.

That is, λ in Eq. (6.1) is set to one in Eq. (6.12) since it is believed that it is equivalently

important to detect both of locally- and globally-anomalous graphs. We will discuss in

Section 6.3 in more details about why our model can learn the global and local graph

regularity.

Algorithm 3 presents the procedure of training GLocalKD. After random weight ini-

tialization of Ŵ and W in Step 1, GLocalKD performs stochastic gradient descent-based

optimization to learn W of the predictor network in Steps 2-11, while the parameters in

Ŵ are fixed. Particularly, Step 4 samples a mini-batch B with size batch_size. We obtain

node representations and graph representations from both of ˆGCN(·,Ŵ) and GCN(·,W)

in Steps 6-7, respectively. Step 9 then performs gradient descent steps on our loss Eq.

(6.12) w.r.t. the parameters in W. We finally obtain the predictor network GCN(·,W∗)

with the learned W∗ and the random target network ˆGCN(·,Ŵ).

Anomaly Detection of Using GLocalKD

By joint global and local random distillation, the learned representations in our

predictor network capture the regularity information at both the graph and node levels.
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Algorithm 3 Training GLocalKD
Input: Normal training graph set G = {G i}i
Output: Target network – ˆGCN(·,Ŵ), predictor network – GCN(·,W∗)

1: Randomly initialize Ŵ and W , with Ŵ fixed
2: for i = 1 to n_epochs do
3: for j = 1 to n_batches do
4: B ←Randomly sample batch_size graphs from G

5: for G in B do
6: Compute node representations ĥi and hi, ∀vi ∈ VG
7: Compute graph representations ĥG and hG
8: end for
9: Perform a gradient descent step on Eq. (6.12) w.r.t. the parameters in W

10: end for
11: end for
12: return ˆGCN(·,Ŵ), GCN(·,W∗)

Specifically, given a test graph sample G, its anomaly score is defined by the prediction

errors in both graph and node-level representations:

(6.13) score(G;Ŵ ,W∗)= ∥∥hG − ĥG
∥∥2 + 1

|G|
∑

vi∈VG

∥hi − ĥi∥2.

This indicates that the locally- and globally-anomalous graph anomalies are treated

equally important in our anomaly scoring, sharing the same spirit as the overall objective

in Eq. (6.12).

6.3 Theoretical Analysis

We show below that GLocalKD can normally produce a larger anomaly score for an

abnormal graph than that for a normal one. Specifically, consider a regression problem

with data distribution Ĝ = {G i, yi}i (yi is the regression target) and a Bayesian setting in

which a prior p(W⋆) over the parameters of a GCN, GCN(·,W⋆), is considered. The aim

is to calculate the posterior after iteratively updating on the data. According to [18], our

task can then be formulated as the optimization problem below:

(6.14) min
W

E(G i ,yi)∼Ĝ∥GCN(G i,W)+GCN(G i,W⋆)− yi∥2 +R(W),

where R(W) is a regularization term from the prior [161]. Let F be the distribution

over functions fW = GCN(·,W)+GCN(·,W⋆), where W is the solution of Eq. (6.14) and

W⋆ is drawn from p(W⋆), then the ensemble F can bee seen as an approximation of the

posterior [161].
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When we select the graphs from the same distribution and set the label yi to zero,

the optimization problem

(6.15) argmin
W

E(G i ,yi)∼Ĝ∥GCN(G i,W)+GCN(G i,W⋆)∥2

is equivalent to distilling a randomly drawn function from the prior. From this perspec-

tive, each entry of the representation outputs of the target and the predictor networks

would correspond to a part of an ensemble and the prediction error would be an estimate

of the predictive variance of the ensemble when the ensemble is assumed to be unbiased,

as discussed in [18]. If we consider GCN(·,W⋆) as the target network with randomly

initialized W⋆ and regard GCN(·,W) as the predictor network, the prediction errors of

the node representations as well as graph representations in the predictor network would

be an estimate of the predictive variance of the results of two networks. In other words,

our training process aims to train a predictor network so that the node representations

and graph representations of the two networks on each training sample are as close as

possible. Then, for the graph with patterns similar to many other training graphs, the

prediction errors in Eqs. (6.10) and (6.11) are small, i.e., small predictive variance in

Eq. (6.14), because there are sufficient such samples to train the prediction model; the

abnormal graphs, by contrast, are drawn from different distributions from the training

graphs and dissimilar to most of the training data, leading to large predictive variance

in Eq. (6.14). Thus, the prediction errors in our joint random distillation can distinguish

both locally- and globally-anomalous graphs from normal graphs.

6.4 Experiments and Results

6.4.1 Competing Methods

Seven competing methods from two types of approaches are used.

• Two-step Methods. This approach first uses state-of-the-art graph representation-

based methods to obtain vectorized graph representations, and then applies ad-

vanced off-the-shelf shallow anomaly detectors on top of the representations to

calculate anomaly scores. InfoGraph [195], WL [188] and PK graph kernels [156]

are used in our experiments. Anomaly detectors, including iForest [124] and kNN

ensemble (LESINN) [165], are utilized. The combination of these embedding meth-

ods and detectors leads to six two-step methods.
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• End-to-end Methods. We also compare GLocalKD with the one-class GCN-based

method, namely OCGCN [266], which can be trained in an end-to-end manner

as GLocalKD. OCGCN is optimized using a SVDD objective on top of GCN-based

representation learning.

We report the mean AUC and standard deviation based on 5-fold cross-validation for

all datasets, except HSE, MMP, p53 and PPAR-gamma that have widely-used training

and test splits. For these four datasets, the results are based on five runs with different

random seeds.

6.4.2 Parameter Settings

The target network and the predictor network in GLocalKD share the same network

architecture – a network with three GCN layers. The dimension of the hidden layer is

512 and the output layer has 256 neural units. The learning rate is selected through the

grid search, varying from 10−1 to 10−5. The batch size is 300 for all data sets except the

four largest datasets HSE, MMP, p53 and PPAR-gamma, for which the batch size is 2000.

For the competing methods, the network architecture and the optimization of OCGCN

is the same as our model. The other methods are taken from their authors. We probed

a wide range of hyperparameter settings in both iForest and LESINN. We found that

the performance of iForest does not change much with varying hyperparameter settings,

while LESINN can obtain large improvement of using one subsampling size setting

over the others (see Table A.1 in Appendix A.1). Due to these observations, iForest with

subsampling size and the number of trees respectively set to 256 and 100 is used by

default, while LESINN with the subsampling size setting that performs best on most of

the datasets is used.

6.4.3 Comparison to SOTA Methods

The AUC results of GLocalKD and its seven competing methods are reported in Table 6.1.

Our GLocalKD model is the best performer on 7 datasets, achieving improvement ranging

from 1% to 12% on many of these datasets compared to the best contenders per dataset,

e.g., AIDS (3.7%), PROTEINS_full (6.7%), PPAR-gamma (10.3%), MMP (10.5%), p53

(11.9%); and its performance is very close to the best contenders on some other datasets,

such as DD and COLLAB. The consistent superiority of GLocalKD is mainly due to

its capability in learning both global and local graph regularity. Its performance may

drop significantly, e.g., decrease to performance equivalent to a random detector, if only

95



CHAPTER 6. GRAPH-LEVEL ANOMALY DETECTION WITH GLOBAL AND LOCAL
KNOWLEDGE DISTILLATION

one of these patterns is captured (see Table 6.3). The seven competing methods fail to

work in many datasets mainly because their graph representations capture only partial

local/global pattern information.

We also perform a paired Wilcoxon signed rank test to examine the significance of

GLocalKD against each of the competing methods across the 16 datasets. As shown

by the p-values in Table 6.1, GLocalKD significantly outperforms the iForest-based

methods and OCGCN at the 99% confidence level. The confidence level of the superiority

of GLocalKD over LESINN-based methods ranges from 85% and 95%. However, note

that LESINN heavily relies on its subsample size (see Table A.1 for the full results of

InfoGraph-LESINN, WL-LESINN and PK-LESINN in Appendix A.1). GLocalKD works

less effectively on COLLAB than some contenders, which may be due to the inseparability

of anomalies from the normal graphs as the contenders also do not perform well on it.

Table 6.1: AUC results (mean±std) on 16 real-world graph datasets. The following
acronyms, PROTEINS_full (PROTS_full), IMDB-BINARY (I-BINARY) and REDDIT-
BINARY (R-BINARY), are used. The best performance is boldfaced.

Dataset InfoGraph WL PK OCGCN GLocalKDiForest LESINN iForest LESINN iForest LESINN
PROTS_full 0.464±0.019 0.336±0.047 0.639±0.018 0.712±0.053 0.627±0.009 0.572±0.031 0.718±0.036 0.785±0.034
ENZYMES 0.483±0.027 0.528±0.046 0.498±0.029 0.624±0.050 0.493±0.013 0.608±0.033 0.613±0.087 0.636±0.061
AIDS 0.703±0.036 0.955±0.023 0.632±0.050 0.584±0.016 0.476±0.014 0.421±0.010 0.664±0.080 0.992±0.004
DHFR 0.489±0.015 0.625±0.028 0.466±0.013 0.596±0.056 0.467±0.013 0.568±0.054 0.495±0.080 0.558±0.030
BZR 0.528±0.060 0.731±0.071 0.533±0.032 0.720±0.032 0.525±0.052 0.775±0.063 0.658±0.071 0.679±0.065
COX2 0.580±0.052 0.670±0.079 0.532±0.027 0.590±0.056 0.515±0.036 0.671±0.039 0.628±0.072 0.589±0.045
DD 0.475±0.012 0.310±0.034 0.699±0.006 0.638±0.045 0.706±0.010 0.833±0.023 0.605±0.086 0.805±0.017
NCI1 0.494±0.009 0.598±0.035 0.545±0.008 0.743±0.015 0.532±0.006 0.670±0.012 0.627±0.015 0.683±0.015
I-BINARY 0.520±0.028 0.565±0.017 0.442±0.032 0.612±0.046 0.442±0.035 0.585±0.047 0.536±0.148 0.514±0.039
R-BINARY 0.457±0.003 0.262±0.027 0.450±0.013 0.239±0.028 0.450±0.012 0.487±0.013 0.759±0.056 0.782±0.016
HSE 0.484±0.026 0.657±0.051 0.477±0.000 0.528±0.000 0.489±0.003 0.469±0.016 0.388±0.041 0.591±0.001
MMP 0.539±0.022 0.571±0.037 0.475±0.000 0.307±0.000 0.488±0.002 0.322±0.008 0.457±0.038 0.676±0.001
p53 0.511±0.014 0.520±0.025 0.473±0.000 0.390±0.000 0.486±0.004 0.329±0.001 0.483±0.017 0.639±0.002
PPAR-gamma 0.521±0.023 0.541±0.036 0.510±0.000 0.461±0.000 0.499±0.017 0.388±0.015 0.431±0.043 0.644±0.001
COLLAB 0.453±0.003 0.319±0.033 0.506±0.020 0.536±0.014 0.529±0.023 0.550±0.043 0.401±0.183 0.525±0.014
hERG 0.607±0.033 0.701±0.048 0.665±0.042 0.802±0.047 0.679±0.034 0.798±0.052 0.569±0.049 0.704±0.049
p-value 0.0005 0.0262 0.0004 0.1089 0.0005 0.1337 0.0018 −

In terms of computational efficiency, we record the training and test time of each

method on 3 datasets: REDDIT, p53 and COLLAB. REDDIT and COLLAB are the

datasets with most average number of nodes and edges in all 16 datasets, respectively.

P53 contains the most number of graphs. The training time of the two-stage methods

is only the graph representations/embeddings learning time. The results are shown in

Table 6.2. As shown in Table 6.2, GLocalKD and OCGCN have a similar time complexity

and run much faster than the other methods in online detection, since iForest/LESINN

methods require extra steps on top of the graph representations to compute the anomaly
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scores. On the other hand, GLocalKD and OCGCN are generally more computationally

costly than the WL and PK based methods because GLocalKD and OCGCN typically

require multiple iterations to perform well.

Table 6.2: Training time and test time on 3 datasets: REDDIT-BINARY, p53 and COLLAB
(seconds on each epoch).

Dataset InfoGraph WL PK OCGCN GLocalKDiForest LESINN iForest LESINN iForest LESINN

Training Time
REDDIT-BINARY 3536.36 3536.36 8.01 8.01 127.09 127.09 1397.40 1395

p53 60.61 60.61 9.42 9.42 821.29 821.29 297.37 337.80
COLLAB 2059.66 2059.66 63.24 63.24 416.95 416.95 2421.83 2510.52

Test Time
REDDIT-BINARY 5.79 15.19 3.72 29.37 84.46 112.20 4.65 4.97

p53 19.67 24.54 225.44 207.95 301.89 250.79 0.66 0.97
COLLAB 12.41 34.44 39.50 313.65 273.82 573.90 9.28 8.88

6.4.4 Sample Efficiency

This section examines the performance of our model w.r.t. the amount of training data,

i.e., sample efficiency, using the deep competing method OCGCN as baseline. We use

respective 5%, 25%, 50%, 75% and 100% of original training samples to train the models,

and evaluate the performance on the same test data set. We report the results on the

attributed graph datasets only. Similar results can be found on the other datasets.

The AUC results are shown in Figure 6.4. It is very impressive that even when 95%

less training data are used, GLocalKD can retain similarly good performance across

nearly all the six datasets. By contrast, the performance of OCGCN can drop significantly

on some datasets, such as ENZYMES and AIDS, if the same amount of training data is

reduced. As a result, GLocalKD can outperform OCGCN by large margins even it uses

95% less training data than OCGCN on such datasets.

6.4.5 Robustness w.r.t. Anomaly Contamination

Recall that we tackle the semi-supervised anomaly detection setting with exclusively

normal training samples. However, the data collected in real applications may be con-

taminated by some anomalies or data noises. This section investigates the robustness of

GLocalKD w.r.t. different anomaly contamination levels in the training data. We vary

the contamination rates from 0% up to 16%. Again, we report the results on the six

attributed graph datasets only due to page limitation; OCGCN is used as baseline.

AUC results of GLocalKD and OCGCN with different anomaly contamination rates

are shown in Figure 6.5. GLocalKD is barely affected by the contamination and performs
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Figure 6.4: AUC performance of GLocalKD and OCGCN using different amount of
training data.

very stably on all the datasets, contrasting to OCGCN whose performance decreases

largely with increasing contamination rate on ENZYMES and AIDS. This is mainly

because GLocalKD essentially learns all types of patterns in the training data by the

random distillation, by which it is able to detect the anomalies as long as those anomalous

patterns are not as frequent as the normal patterns in the training data; whereas OCGCN

is sensitive since its anomaly measure, SVDD, is sensitive to the anomaly contamination.

6.4.6 Sensitivity Test

This section tests the sensitivity of GLocalKD to the representation dimension and the

GCN depth. For the first test, we vary the output dimension of GCN in {32,64,128,256,512};

for the GCN depth, we evaluate the performance of GLocalKD using L GCN layers, with

L ∈ {1,2,3,5}. The results are illustrated in Figures 6.6 and 6.7.

As can be seen from the results, GLocalKD performs stably using different represen-

tation dimensionality sizes on most datasets. The dimensionality size – 256 – is generally

recommended as this setting enables GLocalKD to perform well on diverse datasets.

Besides, GLocalKD achieves better performance with increasing depth on nearly all

the datasets, but the performance is flatten when increasing the depth from three to five.

A network depth of three is generally recommended, since deeper GCN does not help
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Figure 6.5: AUC performance of GLocalKD and OCGCN w.r.t. different anomaly contam-
ination rates.

achieve better performance but is more computationally costly.
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Figure 6.6: AUC results w.r.t. representation dimensionality.

6.4.7 Ablation Study

In this section, we examine the importance of the two components, Lgraph and Lnode,

in our model. To do that, we derive two variants of GLocalKD, including GLocalKD

w/o Lnode that denotes the use of random distillation on the graph representations only,
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Figure 6.7: AUC of GLocalKD with different GCN depths.

and GLocalKD w/o Lgraph that represents the use of random distillation on the node

representations only.

The results of GLocalKD and its two variants are shown in Table 6.3. It is clear

that using Lgraph (or Lnode) only can obtain better performance on some datasets, while

it may perform worse on the other datasets, compared with GLocalKD. Joint random

distillation by using both of Lgraph and Lnode can achieve a good trade-off and perform

generally good across all the datasets.

It is interesting that GLocalKD w/o Lgraph significantly outperforms GLocalKD w/o

Lnode in a number of datasets, e.g., AIDS, DHFR, DD, MMP, p53, PPAR-gamma and

hERG, indicating the dominant presence of locally-anomalous graphs in those data; on

the other hand, the inverse cases occur on ENZYMES, IMDB and HSE, indicating the

dominance of globally-anomalous graphs in these three datasets. These results show that

modeling fine-grained graph regularity is as important as, if not more important than,

the holistic graph regularity for the GLAD task, since both types of graph anomalies can

present in the graph datasets.

6.5 Summary

This chapter proposes a novel framework and its instantiation GLocalKD to detect

abnormal graphs in a set of graphs. As shown in the experimental results, graph datasets

can contain different types of anomalies – locally- and globally-anomalous graphs. To the

best of our knowledge, GLocalKD is the first model designed to detect both types of graph

anomalies. Extensive experiments demonstrate that GLocalKD performs significantly

better in AUC.
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Table 6.3: Detection of locally/globally-anomalous graphs.

Dataset GLocalKD w/o Lnode w/o Lgraph

PROTEINS_full 0.785±0.034 0.686±0.045 0.757±0.040
ENZYMES 0.636±0.061 0.642±0.096 0.505±0.036
AIDS 0.992±0.004 0.963±0.014 0.997±0.006
DHFR 0.558±0.030 0.459±0.036 0.596±0.030
BZR 0.679±0.065 0.623±0.079 0.671±0.049
COX2 0.589±0.045 0.585±0.051 0.557±0.055
DD 0.805±0.017 0.528±0.093 0.805±0.017
NCI1 0.683±0.015 0.458±0.058 0.682±0.015
IMDB 0.514±0.039 0.610±0.103 0.490±0.044
REDDIT 0.782±0.016 0.574±0.085 0.781±0.016
HSE 0.591±0.001 0.655±0.007 0.589±0.000
MMP 0.676±0.001 0.543±0.016 0.680±0.000
p53 0.639±0.002 0.495±0.016 0.641±0.000
PPAR-gamma 0.644±0.001 0.600±0.044 0.644±0.000
COLLAB 0.525±0.014 0.501±0.055 0.526±0.012
hERG 0.704±0.049 0.566±0.043 0.703±0.057

In addition, GLocalKD can be trained much more sample-efficiently when compared

with its advanced counterparts. It is also shown that GLocalKD achieves promising

AUC performance even when there is large anomaly contamination in the training data,

indicating that GLocalKD can be applied to not only settings with exclusively normal

training data but also settings with anomaly-contaminated unlabeled training data.

However, the proposed GLocalKD lacks of interpretability. That is, it cannot indicate

the type and location of the anomalies. Anomaly explaining and locating can be very

useful for human to discover and correct the problem in time. Thus, further research

needs to be explored to construct a model which can detect abnormal graphs with various

types of anomalies and offer the explanation and location of the outliers.
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7.1 Conclusion

The specific structure of graph enables it to be a powerful data storage mode in various

fields, including social network, biology, chemistry and physics. Numerous real-world

applications in these domains can be formulated by problems in graph. Graph represen-

tation learning is a significant module for solving these problems efficiently.

To obtain better results for the down-stream tasks, improving the expressiveness

of the obtained graph representations is crucial. Besides, how to deal with the limited

amonut of supervision information resulting from the expensive data collection process

is another issue. In this thesis, we explore graph representation learning for three

graph-level classification problems with different ratios of known samples, i.e., balanced

graph-level classification, imbalanced graph-level classification and one-class graph-level

classification (graph-level anomaly detection). Our explorations result in three expressive

graph representation learning modules in Chapters 4-6. A detailed summary is offered

as follows:

• We proposed CoS-GNN framework and its two instances, CoS-GCN and CoS-GIN,

that utilized collective augmented node and graph structure knowledge and a

specific designed message passing mechanism to learn graph representations for

balanced graph-level classification. Our experiments on data sets from various

domains demonstrated remarkable improvement over several state-of-the-art mod-
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els, indicating the expressiveness of the learned representations brought by the

augmented knowledge.

• To address the data insufficiency issue, we introduced a multi-scale oversampling

framework and its instance MOSGNN that learned expressive minority graph

representations based on intra- and inter-graph semantics resulting from over-

sampled graphs at multiple scales - subgraph, graph, and pairwise graphs for

imbalanced graph-level classification. Excellent experimental results over five

state-of-the-art models demonstrated the effect of semantic-augmented minority

graphs in MOSGNN.

• We empirically demonstrated that anomalies in graph could be local, i.e., individual

abnormal nodes and their first-order neighborhood or global, i.e., abnormal sub-

graph/full graph characteristics. We introduced a deep framework and its instance

GLocalKD that learned rich local and global normal pattern information by joint

random distillation of graph and node representations to identify graphs with one

or both types of anomalies simultaneously for graph-level anomaly detection. Exper-

iments on graph data sets from diverse fields proved the ability of our GLocalKD

to capture informative patterns from normal graph representations.

The improvement of the proposed methods indicates that these methods address

the varying amount of supervision information well. This provides possible research

directions for the academic community to better leverage the limited amount of known

information. To the industry, the improvement brought by the proposed methods may

mean millions of dollars saving by reducing mistake operations or preventing fraud.

7.2 Future Work

In the previous chapters, we proposed methods to learn graph representations for three

graph problems with different amount of supervision information. To build more easy-

to-use and more practical methods for more extensive application scenarios, there are

several more interesting yet challenging directions remaining exploration.

Large Language Models (LLMs), especially the ChatGPT, impress everyone and start

a trend of Artificial Intelligence. Their revolutionary success in natural language pro-

cessing and computer vision tasks attracts attention to apply LLMs to the graph domain.

It is believed to be a potential research direction for solving various graph tasks. Some

pioneers have tried to apply LLMs to graphs and obtained improved performance [53].
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However, due to the specific characteristics of graph data, there are still some problems

remaining to be solved.

Exploring Improving the Ability of GNNs

One worthy research direction is to use LLMs to improve the performance of GNNs.

There have been some existing works combining LLMs with GNNs that gain large

performance improvement [53]. In these methods, LLMs are often used as enhancers,

predictors or alignment components. Such applications may not meet the full potential

of LLMs. Deeper fusion of LLMs and GNNs may obtain better performance and remains

to be researched.

Another study direction is to establish a large graph model separately. Such research

is extremely challenging with the following two problems but significantly meaningful

for graph domain.

High-quality Data Collection

The success of LLMs requires rich data for training. Graphs can have different types,

e.g., static or dynamic, directed or undirected, weighted or unweighted, attributed or plain.

In addition, statistics of graphs, including size, density and degree, also can be various.

Collecting samples with varying types and characteristics is helpful for empowering the

large graph model address diverse down-stream graphs. However, gathering such large

amount of graph data is difficult and expensive. How to accelerate this process and save

human resources and cost is a meaningful question required to solve.

Exploring Generalization to Various Applications

The previous graph models only focus on one specific task and lack of generalization

ability to other applications. In fact, problems in graph domain formulated from various

real-world applications are distinct. For example, the problem can be node-level, edge-

level or graph-level; the aim of the problem can be classification, prediction or graph

generation. A unified large graph model that can solve all these problems will be a

revolutionary finding and be significant to numerous real-world graph applications.
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A.1 The Influence of Subsample Size on LESINN

Table A.1 shows the effect of subsample size on the performance of LESINN. We fix the

ensemble size and vary the sumsample size with {2,4,8,16,32,64,128,256} to record the

result.
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Table A.1: The influence of subsample size on LESINN. ‘PROTEINS_full’ are shortened
by ‘PROTS_full’.

Dataset Method size=2 size=4 size=8 size=16 size=32 size=64 size=128 size=256

PROTS_full
Info-LESINN 0.399±0.048 0.398±0.049 0.390±0.049 0.380±0.049 0.367±0.047 0.357±0.047 0.345±0.048 0.336±0.047
WL-LESINN 0.769±0.017 0.779±0.014 0.780±0.014 0.779±0.016 0.777±0.021 0.769±0.029 0.742±0.047 0.712±0.053
PK-LESINN 0.759±0.023 0.766±0.024 0.769±0.020 0.769±0.018 0.765±0.019 0.702±0.068 0.633±0.057 0.572±0.031

ENZYMES
Info-LESINN 0.465±0.078 0.465±0.072 0.462±0.059 0.465±0.051 0.466±0.042 0.477±0.041 0.496±0.044 0.528±0.046
WL-LESINN 0.519±0.066 0.488±0.069 0.485±0.065 0.498±0.050 0.518±0.040 0.538±0.037 0.577±0.044 0.624±0.050
PK-LESINN 0.562±0.053 0.553±0.041 0.564±0.030 0.579±0.025 0.590±0.034 0.596±0.043 0.594±0.038 0.608±0.033

AIDS
Info-LESINN 0.883±0.041 0.889±0.039 0.900±0.038 0.912±0.035 0.924±0.033 0.935±0.030 0.944±0.027 0.955±0.023
WL-LESINN 0.651±0.016 0.526±0.021 0.437±0.019 0.424±0.012 0.447±0.016 0.483±0.013 0.528±0.014 0.584±0.016
PK-LESINN 0.578±0.026 0.468±0.037 0.385±0.021 0.352±0.017 0.358±0.010 0.374±0.009 0.393±0.010 0.421±0.010

DHFR
Info-LESINN 0.460±0.042 0.473±0.046 0.486±0.040 0.509±0.042 0.541±0.039 0.575±0.035 0.608±0.034 0.625±0.028
WL-LESINN 0.365±0.038 0.401±0.047 0.457±0.049 0.480±0.048 0.509±0.052 0.538±0.055 0.573±0.059 0.596±0.056
PK-LESINN 0.368±0.032 0.400±0.027 0.431±0.021 0.453±0.027 0.474±0.040 0.503±0.051 0.541±0.056 0.568±0.054

BZR
Info-LESINN 0.557±0.043 0.568±0.037 0.600±0.039 0.632±0.039 0.658±0.040 0.690±0.050 0.721±0.068 0.737±0.071
WL-LESINN 0.540±0.054 0.549±0.050 0.576±0.061 0.620±0.055 0.679±0.053 0.700±0.050 0.717±0.043 0.720±0.032
PK-LESINN 0.528±0.070 0.542±0.067 0.578±0.075 0.631±0.073 0.693±0.072 0.739±0.068 0.764±0.066 0.775±0.063

COX2
Info-LESINN 0.588±0.064 0.611±0.050 0.616±0.052 0.628±0.058 0.639±0.066 0.661±0.069 0.673±0.066 0.670±0.079
WL-LESINN 0.444±0.101 0.487±0.089 0.512±0.074 0.557±0.075 0.583±0.073 0.599±0.074 0.605±0.067 0.590±0.056
PK-LESINN 0.443±0.093 0.465±0.085 0.472±0.080 0.523±0.073 0.568±0.067 0.608±0.061 0.648±0.046 0.671±0.039

DD
Info-LESINN 0.320±0.038 0.318±0.033 0.315±0.032 0.313±0.031 0.310±0.032 0.308±0.032 0.307±0.032 0.310±0.034
WL-LESINN 0.543±0.052 0.540±0.048 0.535±0.050 0.547±0.055 0.560±0.054 0.578±0.055 0.605±0.051 0.638±0.045
PK-LESINN 0.800±0.023 0.811±0.028 0.816±0.028 0.819±0.027 0.822±0.026 0.827±0.027 0.831±0.025 0.833±0.023

NCI1
Info-LESINN 0.479±0.016 0.482±0.018 0.487±0.019 0.495±0.023 0.508±0.027 0.532±0.031 0.561±0.034 0.598±0.035
WL-LESINN 0.533±0.029 0.566±0.029 0.590±0.024 0.621±0.019 0.650±0.015 0.676±0.014 0.710±0.014 0.743±0.015
PK-LESINN 0.525±0.021 0.542±0.024 0.558±0.019 0.586±0.019 0.607±0.017 0.624±0.015 0.646±0.013 0.670±0.012

IMDB
Info-LESINN 0.431±0.033 0.438±0.033 0.441±0.029 0.467±0.045 0.482±0.043 0.505±0.037 0.541±0.023 0.565±0.017
WL-LESINN 0.398±0.040 0.397±0.028 0.404±0.028 0.437±0.027 0.504±0.055 0.586±0.058 0.605±0.057 0.612±0.046
PK-LESINN 0.392±0.045 0.384±0.037 0.385±0.033 0.406±0.023 0.462±0.045 0.552±0.057 0.582±0.050 0.585±0.047

REDDIT
Info-LESINN 0.449±0.023 0.461±0.030 0.418±0.038 0.346±0.048 0.290±0.032 0.276±0.028 0.268±0.027 0.262±0.027
WL-LESINN 0.231±0.026 0.234±0.026 0.237±0.027 0.239±0.027 0.239±0.027 0.239±0.028 0.239±0.028 0.239±0.028
PK-LESINN 0.224±0.024 0.295±0.035 0.422±0.017 0.440±0.013 0.448±0.013 0.457±0.010 0.471±0.010 0.487±0.013

HSE
Info-LESINN 0.586±0.116 0.589±0.107 0.596±0.100 0.606±0.092 0.617±0.083 0.629±0.071 0.644±0.060 0.657±0.051
WL-LESINN 0.341±0.000 0.421±0.000 0.468±0.000 0.482±0.000 0.495±0.000 0.507±0.000 0.518±0.000 0.528±0.000
PK-LESINN 0.361±0.005 0.393±0.011 0.407±0.011 0.419±0.006 0.435±0.004 0.446±0.008 0.462±0.013 0.469±0.016

MMP
Info-LESINN 0.626±0.051 0.612±0.051 0.600±0.048 0.587±0.043 0.579±0.039 0.574±0.038 0.571±0.038 0.571±0.037
WL-LESINN 0.422±0.000 0.363±0.000 0.344±0.000 0.333±0.000 0.330±0.000 0.320±0.000 0.313±0.000 0.307±0.000
PK-LESINN 0.400±0.010 0.362±0.002 0.354±0.004 0.348±0.004 0.341±0.006 0.332±0.005 0.326±0.007 0.322±0.008

p53
Info-LESINN 0.573±0.046 0.567±0.045 0.551±0.041 0.537±0.037 0.532±0.033 0.525±0.030 0.520±0.028 0.520±0.025
WL-LESINN 0.435±0.000 0.429±0.000 0.413±0.000 0.413±0.000 0.409±0.000 0.403±0.000 0.396±0.000 0.390±0.000
PK-LESINN 0.341±0.007 0.342±0.005 0.340±0.004 0.339±0.003 0.339±0.004 0.336±0.003 0.332±0.001 0.329±0.001

PPAR-gamma
Info-LESINN 0.629±0.026 0.625±0.038 0.616±0.042 0.605±0.044 0.594±0.049 0.574±0.049 0.553±0.043 0.541±0.036
WL-LESINN 0.379±0.000 0.409±0.000 0.428±0.000 0.444±0.000 0.460±0.000 0.461±0.000 0.458±0.000 0.461±0.000
PK-LESINN 0.408±0.005 0.405±0.006 0.404±0.007 0.400±0.012 0.400±0.014 0.397±0.016 0.388±0.015 0.388±0.015

COLLAB
Info-LESINN 0.286±0.048 0.272±0.038 0.264±0.032 0.260±0.026 0.255±0.023 0.255±0.024 0.275±0.029 0.319±0.033
WL-LESINN 0.603±0.029 0.587±0.026 0.535±0.029 0.450±0.030 0.373±0.025 0.365±0.019 0.445±0.018 0.536±0.014
PK-LESINN 0.621±0.037 0.606±0.031 0.558±0.046 0.474±0.057 0.394±0.054 0.382±0.051 0.472±0.051 0.550±0.043

hERG
Info-LESINN 0.574±0.044 0.601±0.046 0.610±0.050 0.628±0.053 0.641±0.052 0.659±0.051 0.685±0.049 0.701±0.048
WL-LESINN 0.742±0.035 0.753±0.026 0.764±0.027 0.772±0.031 0.782±0.035 0.795±0.043 0.802±0.048 0.802±0.047
PK-LESINN 0.762±0.036 0.769±0.037 0.775±0.039 0.779±0.042 0.791±0.043 0.798±0.049 0.800±0.054 0.798±0.052
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