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Abstract

In federated learning scenarios where both data and model owners make significant

contributions, traditional incentive models often fail to fairly assess the value of

these various inputs – especially intangible efforts. In this research, we address this

critical gap by introducing a novel framework that combines a multi-stage incen-

tive mechanism, a blockchain-based clearing protocol, and a contribution buy-back

method. The multi-stage incentive mechanism optimises compensation based on

both quantifiable and unquantifiable contributions from data and model owners. At

the same time, the blockchain-based clearing protocol facilitates trustless reward dis-

tribution, model ownership transfer, and cost-effective settlements. In addition, the

framework is also compatible with various existing contribution assessment mecha-

nisms through the contribution buyback method, mitigating risks arising from data

and model incompatibility and promoting reliable collaboration. This research sig-

nificantly advances federated learning by promoting fair compensation, security, and

ethical practices, enabling broader adoption across various domains. For example,

in healthcare, this approach can enable secure and equitable collaboration between

hospitals, healthcare facilities, and machine learning experts, advancing goals like

predictive analytics while ensuring data privacy and regulatory compliance.
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Chapter 1

Introduction

1.1 Background

With the rapid advancement of machine learning and artificial intelligence tech-

nologies, there is a growing reliance on big data, the cornerstone for building high-

accuracy models. Data-driven approaches have proven their effectiveness and po-

tential in various fields, including image recognition, natural language processing,

medical diagnostics, and financial analytics. However, there is increasing tension

between the demand for extensive data and the stringent data privacy protection

regulations worldwide, such as the General Data Protection Regulation (GDPR)[1]

in the European Union and the Consumer Privacy Act (CCPA)[2] in California,

USA. These laws reflect the public’s concern for privacy protection and impose lim-

itations on the free access to and use of personal data, presenting new challenges to

data-driven research and applications.

In this context, traditional centralized machine learning methods, where data is

typically aggregated at a single point for processing, may become infeasible or breach

regulations, especially in sectors dealing with sensitive information. Consequently,

there is a clear need for an innovative machine-learning approach that balances the

vast data requirements with individual privacy protection.

Federated learning has emerged as an innovative learning paradigm designed to ad-

dress the complex privacy issue in data-driven models. Initiated by McMahan et
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al.[3], [4] at Google to solve the problem of optimizing keyboard input for indi-

vidual users, this approach enables collaboration between multiple data owners to

collectively train shared models without requiring direct data exchange, thereby pre-

serving sensitive information. In federated learning, the model owner provides the

initialized global model, sets the training agenda, and oversees the overall learning

process. Data owners collaboratively train a model without having to reveal their

sensitive data. They receive an initialized global model from the model owner, uti-

lize their private data to improve the model locally, and then upload their updated

model parameters to the federated learning server managed by the model owner.

The model owner is responsible for collecting these updated parameters from all

participating data owners, integrating them into a new, enhanced global model,

and then redistributing this updated model back to the data owners for further re-

finement and training. This cyclical process continues until the model’s accuracy

reaches a standard satisfactory to all participants.

Through its unique structure, federated learning effectively addresses the issue of

data isolation inherent in traditional methodologies while maintaining adherence to

the highest privacy protection standards. This method has shown significant promise

in various sectors, including healthcare, finance, and insurance. For example, in

the healthcare sector, federated learning enables the aggregation of insights from

diverse institutional data, improving diagnostic accuracy and treatment outcomes

while meticulously protecting patient privacy.

However, the success of federated learning heavily relies on the active and qualita-

tive participation of all parties involved, including the provision of high-quality and

ample training data from data owners and the model owners’ efforts in model de-

sign and parameter tuning, along with significant computation, network, and power

resources consumed by the training. Behind these contributions are substantial

costs. Furthermore, participating in federated learning can expose individuals to

security risks, such as the potential for intermediate gradients to reveal important

training data information, as demonstrated by Song et al.[5]. There is also the risk

that curious parameter servers might uncover private data details using generative

adversarial networks.
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Due to these financial, computational, and security-related concerns, participants

may hesitate to contribute effectively to federated learning tasks unless they receive

adequate rewards to justify their involvement. Therefore, developing well-designed

and fair incentive mechanisms is crucial to ensure that all parties are appropriately

compensated for their contributions and risks. This is especially important as the

different types of federated learning may require tailored ways to evaluate the value

of data and computation. Without fair incentives, data owners may be reluctant

to share high-quality data, and model owners could lose motivation to engage fully

in the process, impacting the effectiveness of federated models. This thesis explores

the challenges related to incentives in federated learning. It proposes strategies

to address these challenges, aiming to encourage broader adoption and successful

implementation of this collaborative learning approach.

1.2 Research Problems

Current incentive mechanisms in federated learning often presuppose a dominant

model owner who dictates reward structures. However, in open and competitive

markets, this model breaks down. Consider a scenario where healthcare providers

lacking comprehensive machine learning expertise band together to form the ’Data

Owners Alliance.’ They aim to develop AI-powered predictive analytics for person-

alized care delivery while safeguarding individual patient data privacy. To achieve

this, they partner with a machine learning professional services entity — either a

research organization or a consulting firm, referred to as the ’Model Owner’— spe-

cializing in models robust to varying data streams (wearables, in-house diagnostics,

etc.) that enable rapid health pattern detection. Aiming to gain a competitive edge

in their field, both parties strive to maximize profits by pooling resources, including

sensitive patient data, clinical knowledge, and capital outlay - all vital to success-

ful predictive health applications. The data owners contribute training data and

capital while seeking model owners capable of not only handling diverse data but

integrating it into real-time health monitoring under strict regulatory limitations.

Upon project success, the model owner receives a predetermined training incentive,

funded by the data owners, and transfers ownership of the collaboratively trained

4



model to the alliance following a predetermined equity distribution structure.

The risk-averse nature of healthcare mandates a federated learning scenario with

nuanced incentives to offset the uncertainty of achieving the desired model per-

formance. The lack of technical expertise on the part of the data owner further

fuels the need to justly incentivize the model owner, whose optimization efforts may

not be fully visible during the collaboration, while data owners confront the chal-

lenge of demonstrating the value of their data contributions match their financial

investment. This multi-faceted goal structure makes designing fair and sustainable

incentives incredibly complex.

To succeed, both parties must pool sensitive patient data, clinical knowledge, capi-

tal, and technical expertise. However, without the right incentives, participants may

hesitate to share their most valuable resources, jeopardising the project’s potential.

In such multi-faceted collaborations, the timing of rewards becomes crucial. Multi-

stage incentives are particularly important because they address the risks faced by

both parties. Data owners can assess model quality incrementally, reducing the

risk of investing resources in a biased or inaccurate model. Model owners receive

compensation throughout the process, mitigating the risk of non-payment after sig-

nificant effort. This framework formed the foundation for my research into optimal

incentive contracts.

The thesis addresses the following interlinked research problems:

• Problem 1: Valuing Strategic Contributions and Mitigating Moral Hazard:

How can incentive mechanisms be designed to fairly evaluate and incentivize

the unquantifiable strategic contributions of data owners and model owners

in multi-stage federated learning? This must consider the ethical implications

of the valuation method and the risks associated with collaborative decision-

making.

• Problem 2: Designing a Fair and Efficient Liquidation Protocol: How to

achieve transparent and secure reward liquidation and transfer model own-

ership in multi-stage federated learning? The protocol must ensure fairness

for all participants while minimizing computational overhead in resource con-

strained environments.
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• Problem 3: Addressing Data-Model Mismatches: Due to objective data het-

erogeneity, there may be a gap between the data owner’s prior estimate of the

contribution value of their data and the actual contribution value during the

model training process. How can we manage the risks of such data-model mis-

matches? These risk management mechanisms should promote transparency

within collaborative projects and enable fair course corrections when pre-

agreed performance indicators are not met.

1.3 Contributions

This thesis advances the field of federated learning incentives by developing and

analysing mechanisms that prioritise fairness, efficiency, and sustained participation

in open collaboration scenarios. Specific contributions include:

• Theoretical Mechanism for Valuing Strategic Contributions: In multi-

stage federated learning, where incentive contracts are established upfront, we

delve into the dynamic between data owners and model owners. We employ a

multi-stage game theory model that accounts for moral hazard to understand

this relationship. Federated learning is rife with information asymmetries.

”Hidden information” makes it difficult for data owners to discern a model

owner’s true capabilities, leading to adverse selection. ”Hidden actions” ob-

scure the model owner’s work ethic, creating moral hazard. Data owners can

combat moral hazard by breaking federated learning into stages, each with its

reward. We focus on this moral hazard: how model owners might shirk their

responsibilities and how data owners can use staged incentives to promote

diligence. This research is crucial for successful federated learning outcomes.

We analyse the interplay between data and model owners when the latter’s

efforts cannot be directly observed. Our multi-stage game model assumes a

contract established at the start, in contrast to repeated or single-stage inter-

action models commonly used in federated learning frameworks. This captures

the ’pay-it-after’ nature of instalment-based incentives. The critical insight of

this contribution is that, within a federated learning scenario led by the data

owner, the optimal incentive scheme is one where as much of the incremental
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value of the model created by the model owner as possible is paid back to it

in the later stages. This ensures that success in later training stages depends

on success in earlier ones, incentivising effort throughout. (Chapter 3)

• Secure Two-Party Clearing for Multi-Stage Federated Learning: This

thesis also introduces a novel, efficient blockchain-based clearing protocol that

leverages smart contracts to implement the proposed multi-stage incentive

model. A key challenge for fair settlement in multi-stage federate learning is

to ensure consensus on the choice of test dataset for model performance vali-

dation and to ensure that validation results on this dataset are acceptable to

both parties at each stage. Considering privacy protection issues, finding a

trusted third-party verifier to run the trained federated learning model on the

verification data set and settle the rewards and the ownership of the model

is costly and sometimes impossible. This protocol addresses these challenges

by enabling efficient two-party verification (data owner and model owner). It

strategically combines smart contracts and cryptographic techniques to pro-

tect the trained model’s confidentiality until fair payment is confirmed. The

protocol minimizes the computational load on the blockchain by offloading

validation to the model and data owners. In the absence of complaints, the

blockchain stores minimal information; in the presence of disputes, only the

necessary components are recalculated. This design makes deployment on

public blockchains (like Ethereum) cost-effective for diverse federated learning

scenarios. A complete security analysis demonstrates the protocol’s robustness

against potential adversarial behavior. (Chapter 4)

• Reciprocal Federated Learning Framework (RFLF) and Equitable

Contribution Valuation: This thesis introduces the Reciprocal Federated

Learning Framework (RFLF), a pioneering approach to address the challenges

of fair compensation and continued motivation in collaborative federated learn-

ing projects. It is particularly well-suited for scenarios where privacy concerns

necessitate federated learning and where participants have varying levels of re-

sources and expertise, such as in healthcare collaborations. The RFLF tackles

information asymmetry and the risk-averse nature of certain domains by dy-

namically aligning incentives with contributions throughout the project. Crit-
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ically, it incorporates both data contributions and financial investments, pro-

moting balanced participation and recognising the value of diverse resource

types. The RFLF includes a unique compensation mechanism that promotes

both equitable reward distribution and enhanced project outcomes. If a data

owner discovers their data is underperforming, they can opt-out to avoid fur-

ther expenses. Their pre-deposited buy-back funds then compensate other

data owners who increase their contributions. This creates positive feedback

where capital offsets data shortfalls, ensuring fair pay for all participants while

maintaining overall project incentives. By fostering trust in the fairness of the

system, the RFLF encourages honest data quality assessment and maximal

effort, ultimately improving the federated learning process’s social utility to-

wards the goals of privacy, reduced data silos, and overall model robustness.

(Chapter 5)

1.4 Publications

This thesis builds upon and expands the research presented in the following publi-

cations, where I am listed as the author:

1. H. Xu et al., “Designing incentive mechanisms for fair participation in feder-

ated learning,” in 2023 IEEE International Conference on High Performance

Computing and Communications, IEEE, 2023, pp. 357–373 (Chapter 2)

2. H. Xu et al., “The force of compensation, a multi-stage incentive mechanism

model for federated learning,” in International Conference on Network and

System Security, Springer, 2022, pp. 357–373 (Chapter 3)

3. H. Xu et al., “Fch, an incentive framework for data-owner dominated fed-

erated learning,” Journal of Information Security and Applications, vol. 76,

p. 103 521, 2023 (Chapter 4)

4. H. Xu et al., “Reciprocal federated learning framework: Balancing incentives

for model and data owners,” Future Generation Computer Systems, vol. 161,

pp. 146–161, 2024 (Chapter 5)

8



1.5 Thesis Outline

This thesis investigates the design of effective incentive mechanisms to address key

challenges in federated learning. It is structured as follows:

• Chapter 1: This chapter sets the stage by exploring the evolution of machine

learning and the increasing need for privacy-preserving approaches to leverage

large, diverse datasets. It introduces federated learning as a solution but

highlights its unique challenges in designing fair and effective incentives. The

chapter presents the thesis’s research questions, exemplifies the limitations

of current incentive mechanisms through a case study, and outlines the core

research contributions with their corresponding publications.

• Chapter 2: This chapter establishes a strong theoretical foundation for the sub-

sequent contributions. It introduces core federated learning concepts and ex-

amines how blockchain technology facilitates secure reward distribution within

collaborative projects. The chapter then critically reviews existing incentive

mechanisms in federated learning, identifying limitations in addressing sce-

narios with multi-stage interactions, strategic contributions, and the need for

fairness and transparency.

• Chapter 3: This chapter addresses the crucial issue of incentivising the model

owner’s often unquantifiable contributions in federated learning scenarios. The

ethical risks of information asymmetry between data and model owners are

highlighted, as these can lead to opportunistic behaviour that undermines

project outcomes. To tackle this, a novel multi-stage incentive mechanism

is proposed. Inspired by the Stackelberg game framework, the chapter es-

tablishes a multi-stage contract-theoretic model focused on quantifying and

mitigating the impact of implicit efforts. Theoretical analysis demonstrates

that strategically delaying most of the model owner’s compensation until later

project stages effectively promotes fairness and optimal effort from all par-

ticipants. This chapter begins by defining the problem and highlighting the

importance of ethical incentives within federated learning. It then introduces

the theoretical model that underpins the proposed multi-stage incentive mech-

anism. Mathematical analysis and simulation examples are used to validate
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the framework’s effectiveness and ability to promote fair outcomes. The chap-

ter concludes with a summary of key contributions and insights.

• Chapter 4: This chapter addresses the critical need for fair and transparent

settlement processes within federated learning, where participants’ contribu-

tions can be difficult to quantify. A significant risk is the lack of guarantees

that rewards will be distributed as promised. To tackle this, the chapter in-

troduces a novel framework integrating a blockchain-based two-party clearing

protocol within the multi-stage incentive structure established in Chapter 3.

This protocol leverages smart contracts to create a secure and auditable set-

tlement system. Trust is increased as the model owner gains assurance of pay-

ment upon completing milestones, while the data owner is guaranteed a model

that meets the agreed-upon standards. The chapter begins by outlining es-

sential background concepts and terminology necessary for understanding the

proposed framework. It then presents the novel clearing protocol, its design,

and an in-depth analysis of its security and fairness properties. Subsequently,

the chapter focuses on integrating this protocol within a federated learning

architecture. Finally, it demonstrates the framework’s effectiveness through

rigorous implementation and performance evaluation, showcasing its practical

applications.

• Chapter 5: This chapter addresses the challenges of designing fair and ef-

fective incentives in federated learning scenarios where multiple data owners

contribute varying quality and quantity datasets. It introduces the Recipro-

cal Federated Learning Framework (RFLF), designed to balance the power

between data and model owners while mitigating the risks of unpredictable

data-model compatibility. The RFLF features a unique self-correcting mech-

anism, providing flexibility for data owners experiencing dataset underper-

formance while maintaining overall project fairness. Theoretical models are

used to analyse the framework’s incentive design, with empirical evaluations

demonstrating its effectiveness in improving model quality and promoting eq-

uitable participation. The chapter begins by highlighting the core concepts

and terminology relevant to the RFLF. It then dives into the framework’s spe-

cific challenges, providing theoretical analysis to support its design principles.
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The practicality of the RFLF is demonstrated through its contractual frame-

work, followed by an in-depth analysis of the contract optimality. To prove its

efficacy, rigorous empirical evaluations on established datasets showcase the

framework’s benefits. The chapter concludes with a summary of key insights,

the significance of the research, and potential avenues for future exploration.

• Chapter 6: summarises the main contents and contributions of this work and

provides recommended directions for the continuation of this work in the fu-

ture.
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Chapter 2

Literature Review

2.1 Introduction

Federated learning has emerged as a powerful paradigm for privacy-preserving col-

laborative machine learning. By enabling model training on decentralised data

sources, federated learning addresses the critical challenges of data privacy and

sensitivity that often hinder traditional centralised approaches. However, ensuring

fair incentives for all participants, including the model and data owners, remains a

core challenge for unlocking the full potential of federated learning. These mech-

anisms are even more critical in long-term multi-stage federated learning scenarios

with multiple data owners, where dynamic data quality and quantity changes during

the cooperation can introduce additional complexities. To address these challenges,

robust mechanisms focused on designing fair and effective incentives are essential.

This chapter provides a comprehensive literature review of the core concepts, tech-

niques, and research advances that form the basis of our work. We begin by intro-

ducing the fundamental principles of federated learning in Chapter 2.2. Chapter 2.3

explores the potential of integrating federated learning with blockchain technology

to enhance security and transparency. In Chapter 2.4, we shift focus to the latest

developments in federated learning incentive mechanisms. Chapter 2.5, through a

critical analysis of existing approaches, outlines their strengths and limitations. This

chapter highlights the challenges our research aims to address, setting the stage for

the novel contributions proposed in subsequent chapters.

12



2.2 Federated Learning Foundations

2.2.1 Basic Introduction of Federated Learning

In traditional machine learning, model training often requires collecting and central-

ising data from different sources. Assuming N data owners, let’s denote the dataset

held by data owner i as Di = {(x(j)
i , y

(j)
i ) | j = 1, 2, ..., ni}. Here, x

(j)
i represents

the j-th data sample (often referred to as a feature vector), and y
(j)
i represents the

corresponding label (or target value) in data owner i’s dataset Di. The size of this

local dataset is denoted by ni. The notation n =
∑N

i=1 ni refers to the total number

of data samples across all data owners. The centralised dataset is then the aggrega-

tion of these individual datasets: D =
⋃N

i=1 Di. The server aims to minimise a loss

function L(θ,D) with respect to the model parameters θ, updating them iteratively.

While efficient, this approach raises privacy concerns with sensitive data.

To address these privacy concerns, federated learning was developed[3], [4]. This ap-

proach enables collaborative model training without the need to centralise sensitive

data. When data is distributed across multiple owners, federated learning protects

privacy by allowing each owner to train a model locally on their private dataset and

only share updated model parameters with the model owner (Server).

In the federated learning framework, the key roles are the data owners (also known

as clients), who possess the training data and the model owner (also known as the

federated learning server), who owns and controls the model updates. The feder-

ated learning training process typically involves several rounds (iterations), up to a

maximum of T rounds. The training can terminate before reaching T rounds if the

model meets predefined performance metrics (e.g., accuracy). Here’s a breakdown

of a typical federated learning round: The key roles in federated learning are the

data owners (clients), who possess the training data and local computation and net-

work resources, and the model owner (federated learning server), who is responsible

for model updates. Training typically involves several rounds (iterations), up to a

maximum of T rounds or until predefined performance metrics are met. Similar

to traditional machine learning algorithms, the federated learning participants first

work together to define the problem to solve. then, the model owner defines the
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global model type W (θ0), and θ0 represents the initial model parameters. The typ-

ical federated learning training process includes several steps as showed in Figure

2.1:

Figure 2.1: Federated Learning Process Overview

1. Objective Setting: The model owner defines the global model type W (θ0),

where θ0 represents the initial model parameters. and specifies the overall

learning objectives, such as the target accuracy or loss function.

2. Model Distribution: The model owner distributes the current global model

parameters θt−1 to all participating data owners.

3. Local Training: Each data owner i uses their private dataset Di to train the

model locally. This involves minimising a loss function L(θ,Di) with respect to

the model parameters, using techniques like gradient descent: θt,i ← θt−1,i −

η∇L(θt−1,i, Di) where η is the learning rate. This process ensures private

information is not leaked.

4. Model Aggregation: Each data owner sends their local model updates (∆θ
(i)
t =

θt,i − θt−1,i) to the model owner. The model owner aggregates these updates,

often using a weighted average based on dataset size: θt ← θt−1 +
∑N

i=1
ni

n
∆θ

(i)
t

Where N is the number of data owners, ni is the size of data owner i ’s

dataset, and n is the total number of data samples across all data owners (i.e.,
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n =
∑N

i=1 ni).

5. Model Update: The aggregated global model W (θt) is updated based on the

aggregated parameters. The model owner evaluates the updated model to

ensure progress toward the predefined training objectives. If the objectives

are not yet met, the updated global model is prepared for another iteration.

6. Iterative Training: If the training objectives are unmet, Steps 2 through 5

are repeated iteratively until a stopping criterion is satisfied (e.g., reaching a

target accuracy or completing a fixed number of iterations).

We’ve explored the steps involved in a typical federated learning round. However,

for this collaborative training process to function effectively, certain underlying con-

ditions are generally assumed about the federated learning environment:

• Multi-party Participation: Two or more parties collaborate to train a federated

model. Each party makes decisions based on their own interests.

• Data Locality: All parties value their own data privacy and security. During

the collaborative training process, no participant’s original data leaves their

local environment, in whole or in part.

• Trusted Transmission: Information such as gradients and parameters must

be transmitted securely during the federated learning process. The federated

learning server is considered trustworthy and will complete the training tasks

according to the requirements of federated learning without stealing any partic-

ipant’s data; meanwhile, the participants are considered semi-honest, meaning

they will upload genuine gradient updates based on their own data but re-

main curious about other participants’ private information. This assumption

underscores the need for privacy-preserving techniques within the federated

learning framework, as it prevents complete trust between parties[10].

By enabling collaborative model training on decentralised data sources, federated

learning offers several advantages compared to traditional centralised machine learn-

ing approaches:

• Enhanced Data Privacy: By keeping data local to the owner, federated learning

minimizes the risk of data exposure or breaches. This is crucial for applications
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involving sensitive personal or proprietary information, as it ensures that raw

data is not transmitted to a central server.

• Improved Scalability: By keeping data local to the owner, federated learning

minimizes the risk of data exposure or breaches. This is crucial for applications

involving sensitive personal or proprietary information, as it ensures that raw

data is not transmitted to a central server.

• Reduced Communication Overhead: By keeping data local to the owner, fed-

erated learning minimizes the risk of data exposure or breaches. This is crucial

for applications involving sensitive personal or proprietary information, as it

ensures that raw data is not transmitted to a central server.

• Regulatory Compliance: By ensuring that data never leaves its original loca-

tion, federated learning helps organizations adhere to stringent data privacy

regulations. This approach enables companies to derive insights from data

while maintaining compliance with applicable privacy laws and standards.

2.2.2 Federated Learning Methods and Frameworks

Our exploration begins with the core methods used in federated learning. Notably,

the flexibility of federated extends beyond theoretical concepts. Its processes readily

adapt to diverse machine learning models driven by the Stochastic Gradient Descent

(SGD) method. This adaptability makes federated learning a practical solution for

scenarios involving Support Vector Machines (SVMs) [11], neural networks, or even

linear regression [12].

A core component of federated learning is the global model aggregation algorithm.

This algorithm determines how model updates received from multiple devices are

combined to update the shared global model. Three widely used algorithms are

FedAvg[13], FedProx[14], and FedOpt[15].

FedAvg is a foundational algorithm that calculates a weighted average of model up-

dates from participating devices. Weights are often determined by the size of each

device’s local dataset. Due to its simplicity, robustness, and broad applicability,

FedAvg is a popular choice for federated learning, and we will utilise it in our subse-
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quent experiments. FedProx extends FedAvg by introducing a proximal term to the

local update calculation, aiming to improve convergence, especially with heteroge-

neous data. For greater flexibility, FedOpt offers a framework that accommodates a

variety of server-side and client-side optimisers, extending beyond simple averaging

methods.

We’ve explored the core methods used in federated learning, providing a founda-

tional understanding of how model updates are aggregated across participating de-

vices. Now, let’s delve into the practical side of federated learning by examining

several powerful open-source frameworks that facilitate the development and imple-

mentation of these methods:

• TensorFlow Federated (TFF)[16] : Developed by Google, TFF builds upon

TensorFlow, offering specialised functionalities for federated learning environ-

ments. It provides flexibility for defining computations and simulations and

includes tools for training models on diverse devices, including mobile and em-

bedded systems. TFF’s compatibility with the familiar TensorFlow ecosystem

makes it a natural choice for researchers and developers already in that space.

We will leverage TensorFlow Federated as the foundation for our subsequent

experiments.

• PySyft[17] : Created by OpenMined, PySyft strongly emphasises privacy prese-

rvation within its federated learning framework. It seamlessly integrates tech-

niques like secure multi-party computation (SMPC), differential privacy, and

homomorphic encryption to safeguard sensitive data. PySyft’s Pythonic syn-

tax makes it relatively user-friendly and particularly well-suited for use cases

where data confidentiality is of paramount importance.

• FedML[18] : FedML is a comprehensive and versatile open-source library for

federated learning. It supports various federated learning algorithms, model

architectures, and training processes across diverse device types. FedML pri-

oritises ease of use, modularity, and the ability to handle real-world deploy-

ment challenges. Its features make it suitable for both research and production

environments.

• FATE[19] : Developed by AI specialists at WeBank, FATE (Federated AI Tech-
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nology Enabler) is an industrial-grade federated learning platform. Designed

for production-level environments, it boasts a scalable architecture, supports

various secure computation protocols, and offers a range of machine-learning

algorithms. Organisations aiming to deploy privacy-sensitive federated learn-

ing applications at scale would find FATE a suitable choice.

2.2.3 Categorizations of Federated Learning

Federated learning offers a powerful paradigm for collaborative machine learning,

enabling entities to train models on distributed datasets without directly sharing

sensitive information. This approach is particularly valuable when data privacy is

paramount or when data is geographically dispersed across multiple devices or insti-

tutions. To best leverage federated learning, it’s crucial to understand how it can be

categorised based on the datasets’ characteristics and the nature of the participating

entities. In this section, we’ll explore two key ways to categorise federated learn-

ing: by the data distribution among participants and by the type of participants

themselves.

Based on the datasets involved in training clients, federated learning can be classified

into the following categories [20].

• Horizontal Federated Learning: In horizontal federated learning, participants

have different data samples (rows) but share the same feature space (columns).

Think of multiple banks operating with the same data models: each bank has

information on different customers, but the data collection type (features)

remains consistent. A typical application is the next-word prediction model

trained on smartphone user input data. Various mobile phone users contribute

unique data samples, but the underlying feature space is the same. HFL

allows training a shared global model across millions of devices while preserving

individual privacy. Figure 2.2[20]: A diagram illustrating horizontal federated

learning, where each participant has a subset of data with the same feature

set.

• Vertical Federated Learning: In vertical federated learning, participants share

the same sample space (e.g., customers) but possess different feature sets (data
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Figure 2.2: Horizontal Federated Learning

columns). Consider the collaboration between a bank and an e-commerce plat-

form in the same region. The bank holds financial data on customers, whereas

the e-commerce company has their purchase behaviour data. VFL enables

these entities to combine their different insights on the same customers for

tasks like credit risk assessment or personalised services without directly ex-

changing sensitive data. Figure 2.3[20]: A diagram illustrating vertical feder-

ated learning, where each participant has different features for the same set of

data samples.

• Federated Transfer Learning: Federated transfer learning tackles situations

where the participants’ feature spaces and sample spaces differ. A prime use

case is when a hospital wants to enhance its medical image analysis model

by leveraging a pre-trained model from a different domain, like natural im-

ages. Federated transfer learning helps adapt this existing knowledge to the

hospital’s specific task despite the need for the data to be a better match.

Figure 2.4[20]: A diagram illustrating federated transfer learning, emphasizing

the transfer of knowledge between domains with differing feature and sample

spaces.

Federated learning scenarios are further classified based on the nature of the partici-

19



Figure 2.3: Vertical Federated Learning

pants. This distinction is crucial because it influences the scale of the collaboration,

the typical data characteristics, and the primary motivations of the involved entities.

Here, we’ll delve into these two primary categories of federated learning[21]:

• Cross-Device Federated Learning (B2C FL): In this type, individual users

with personal devices (e.g., smartphones, IoT devices) collaborate in the fed-

erated learning process. The focus is often on consumer-oriented applications

like next-word prediction models. Cross-device federated learning typically in-

volves large numbers of participants, each with limited data and computational

resources and a potential need for incentives to encourage participation.

• Cross-Institutional Federated Learning (B2B FL): Here, the participants are

organisations or institutions, such as banks, hospitals, or companies. Partici-

pants might leverage specialized platforms like the FATE[19] federated learning

solution, designed for secure collaboration in industries like finance. Cross-

institutional federated learning often has fewer participants but with more

data per participant. Primary goals might include enhancing model perfor-

mance through collaboration or obtaining monetary rewards based on data

contributions. Security and fairness in assessing contributions become crucial

in this scenario.

20



Figure 2.4: Federated Transfer Learning

Our research specifically focuses on Cross-Institutional Federated Learning (B2B

FL). This focus is driven by the importance of promoting fairness and robust security

in collaborations involving sensitive institutional data. As B2B scenarios commonly

involve specialised model owners, our work aims to design incentive mechanisms

that motivate these owners to drive federated learning initiatives while ensuring fair

distribution of benefits among participants.

2.3 Blockchain in Federated Learning

Federated learning establishes a compelling framework for privacy-preserving col-

laborative model training in modern, data-driven environments. Inter-institutional

data alliances could leverage federated learning to create powerful analytical models

as we envision the Internet of Everything. However, ensuring robust participation

and trust within such alliances poses challenges. Without effective incentive mech-

anisms, attracting sufficient high-quality training data becomes difficult. Addition-

ally, traditional federated learning needs a mechanism to establish client reputation,

potentially hindering the selection of reliable participants and subsequently impact-

ing model accuracy.

Researchers have explored integrating blockchain technology to address these fed-
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erated learning challenges. Blockchain, the distributed ledger underpinning Bit-

coin[22], offers a secure, immutable, and auditable platform for addressing data

storage and trust concerns. By leveraging blockchain within a federated learning

framework, model updates can be recorded transparently, enhancing accountability

and resilience against tampering. Moreover, blockchain’s inherent incentive mech-

anisms can reward clients based on their contributions to the model, encouraging

active and valuable participation[23].

We will now discuss two types of blockchain-enhanced federated learning systems,

classified according to their level of interdependence with the federated learning

process[24].

2.3.1 Loosely Coupled Paradigm

The core federated learning process maintains the traditional server-client architec-

ture in this paradigm. The blockchain’s primary role focuses on managing client

reputation and providing an auditable record of contributions. The loosely coupled

paradigm incentivises honest participation and helps mitigate malicious behaviour

by verifying model updates and tracking reputation.

Data owners begin by training models on their local datasets. They then upload

local model updates to the blockchain for verification. Miners on the blockchain

verify these updates and evaluate client reputations based on their contributions.

Miners then compete to generate new blocks containing validated model updates

and reputation-related data, adding these newly created blocks to the distributed

ledger. The federated learning aggregator (model owner) collects verified updates

and executes the global model aggregation algorithm. Finally, rewards and penalties

are distributed to clients based on their reputation information recorded on the

blockchain.

Several research efforts have explored the design and implementation of loosely cou-

pled blockchain federated learning. Bao et al. propose a reputation and payment-

based incentive mechanism within the Flchain framework[25]. Clients establish their

reputation based on the quality of their model updates and earn rewards based on

their contributions. The blockchain facilitates secure information storage and en-
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ables clients to evaluate model quality, enhancing trust and incentivising participa-

tion.

Building upon the concept of reputation-driven incentives, Toyoda et al. present

a model where federated learning tasks and participants are coordinated on the

blockchain[26]. Smart contracts facilitate task selection, client voting, and reward

distribution based on model performance. This system introduces transparency and

a degree of decentralisation to the participant selection process.

Kang et al. employ a multi-weight subjective logic model and contract-based ap-

proach for client reputation management to mitigate gradient poisoning attacks[27].

The blockchain provides a platform to track reputation, which influences client se-

lection and reward distribution. This system prioritises reliable clients with high-

quality data but lacks privacy protection mechanisms for client gradient updates.

Additionally, it does not explicitly address the fairness of consistent client perfor-

mance over time.

Lo et al. shift the focus to fairness and accountability[28]. They propose a scheme

where data and model versions are hashed and registered on the blockchain. Data

sampling weights are adjusted to address imbalances, aiming to improve the fairness

of the training data distribution and enhance overall model performance.

Finally, Rückel et al. address privacy concerns while promoting fairness and in-

tegrity[29]. Their work combines zero-knowledge proofs and local differential pri-

vacy. Zero-knowledge proofs allow clients to verify compliance without revealing

private data, and differential privacy adds noise to model updates. Rewards are

allocated based on actual model contributions, measured on a public test dataset.

These works demonstrate the ongoing development of sophisticated reputation man-

agement, secure verification, and incentive optimisation techniques within the loosely

coupled blockchain federated learning paradigm.

This loosely coupled approach offers several advantages. Firstly, it maintains a

degree of separation between blockchain operations and core federated learning pro-

cesses, preserving essential privacy features. Secondly, the reputation mechanism

promotes honest participation and facilitates the identification and exclusion of ma-
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licious actors, fostering trust and improving model accuracy.

However, there are also disadvantages to consider. The blockchain’s role in this

paradigm primarily focuses on verification and reputation management, leaving the

federated learning process vulnerable to centralisation risks and data leakage. Main-

taining separate systems for federated learning and the blockchain can also result

in less efficient resource utilisation. Despite these challenges, the loosely coupled

paradigm offers valuable advancements in reputation management and incentive

mechanisms within federated learning environments.

2.3.2 Tightly Coupled Paradigm

The tightly coupled blockchain federated learning paradigm addresses several chal-

lenges traditional federated learning faces by integrating blockchain technology di-

rectly into the learning processes:

1. The blockchain’s decentralised nature removes the reliance on a central ag-

gregator, replacing it with a peer-to-peer system. Global model aggregation

can occur through distributed blockchain nodes, mitigating the single-point-

of-failure risk.

2. The blockchain provides a mechanism for verifying model updates and remov-

ing unqualified or malicious updates before aggregation.

3. The blockchain enables effective reward distribution, encouraging active and

honest participation by clients.

Two main approaches exist for global model aggregation in this paradigm:

• Selected Clients: Chosen clients (nodes) collect verified updates and execute

the aggregation algorithm.

• All Clients: Every client participates in global model aggregation.

Within this paradigm, the distributed ledger plays a crucial role by storing verified

local and global model updates and other essential data generated throughout the

training process. The general workflow proceeds: clients first train models on their

local datasets. Subsequently, designated clients (nodes) are responsible for verifying
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these updates. Following verification, selected clients execute the aggregation algo-

rithm, generating a new global model. New blocks containing the verified updates

are then added to the distributed ledger. Finally, rewards are distributed to partici-

pating clients based on the incentive mechanism implemented within the blockchain

framework.

Several research efforts have explored the tightly coupled paradigm. Kuo et al.

proposed GloreChain, where clients take turns aggregating the global model using a

Proof of Equity (PoE) consensus mechanism[30]. Unfortunately, GloreChain lacks

malicious attack defence mechanisms and model update privacy protection.

Weng et al. introduced DeepChain[31], where clients transmit gradient updates, and

miners execute model parameter aggregation. The fastest miner becomes the leader,

updates the model with aggregated gradients, and receives token rewards. DepChain

uses the Paillier homomorphic encryption algorithm for privacy. Although its in-

centive mechanism enhances the robustness and collaborative fairness of federated

learning, ensuring consistent client model performance fairness and dealing with the

fairness of sensitive attributes is challenging.

Gao et al. proposed FGFL[32], employing a multi-center federated learning network

structure for client coordination. Partially reliable clients handle local training and

aggregation, while unreliable clients only train local models. FGFL uses digital

signatures and blockchain-managed smart contracts to track reputation and contri-

bution and distribute rewards through five core modules. This approach enhances

privacy and robustness, but focusing on indirect reward distribution may only par-

tially optimise client model performance.

This paradigm offers several advantages. Firstly, its decentralised nature eliminates

single points of failure. Secondly, removing the need for a central server enhances pri-

vacy and potentially reduces communication costs. However, this paradigm also has

disadvantages. Clients manage local training and global model integration, demand-

ing greater computing power. Additionally, the limited bandwidth of blockchain

networks may create challenges for the tightly coupled paradigm’s deployment[33].

Despite these challenges, the tightly coupled paradigm represents a significant step

towards decentralised, secure, and incentivised federated learning, offering the po-
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tential to overcome limitations within traditional federated learning frameworks.

2.4 Fair Incentive Mechanisms in Federated Learn-

ing

In federated learning, where participants collaborate while their data remains pri-

vate, designing fair and effective incentive mechanisms is crucial for fostering trust,

continuous participation, and the system’s overall success. Federated fairness, a

well-established concept in the literature, underscores the need for equitable treat-

ment of all contributors, whether in data, computational resources, or other forms of

participation[20]. Imbalances in contributions or rewards could deter participation

and undermine the entire federated learning process[34].

To design effective incentive mechanisms, it’s essential to understand the key moti-

vations driving collaboration in federated learning. Here, we explore three primary

drivers:

1. Sustained Development and Participant Enthusiasm: A key consider-

ation for long-term success is sustainability. Mechanisms that equitably recog-

nise and incentivise the ongoing and multifaceted contributions of both data

owners and the model owner are crucial for the evolution and effectiveness of

the learning process. Data owners contribute valuable data, computational

resources for local training, and the network resources necessary for model

exchange. The model owner provides the initial model, computational power

for model aggregation, expertise in model design, tuning, knowledge sharing,

and overall project guidance. These complementary contributions form the

foundation for sustained model improvement and the federation’s success.

2. Incentives for Self-Interested Participants: Most participants in fed-

erated learning act out of self-interest, participating in the hope of reaping

specific benefits. These might range from improved performance of their local

models, access to cutting-edge predictive models, or direct capital rewards for

joining the training process. Recognising and offering clear advantages to these

participants can foster more active and consistent engagement. Furthermore,
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incentives beyond purely monetary rewards can be powerful motivators, such

as the ability to leverage the expertise of other participants or gain access to

valuable anonymised datasets for internal research.

3. Ethical Considerations: With federated learning pooling resources from

many contributors, ensuring nondiscrimination is imperative. Equity and so-

cial ethics dictate that all participants perceive the learning process as fair

and that no resultant model unduly disadvantages any participant. Beyond

individual benefits, fair incentive mechanisms are crucial for building public

trust in federated learning as a technology.

The motivations above highlight the emergence of two distinct incentive paradigms

within federated learning:

• Contribution Fairness: Incentive mechanisms grounded in contribution

fairness seek to assess each participant’s value and reward them proportion-

ally accurately. This might involve using marginal contribution calculations to

quantify value, resource allocation mechanisms to track computational costs,

or reputation systems to acknowledge past contributions and reliability. (We’ll

explore these mechanisms in detail in the section2.4.1.)

• Equilibrium Fairness: Incentive mechanisms based on equilibrium fairness

aim to ensure all participants feel they benefit from the collaboration re-

gardless of the size of their contributions. These mechanisms could involve

fair participant selection to ensure diverse representation, weight redistribu-

tion to balance outcomes, or personalisation strategies to tailor benefits to

individual needs. (We’ll delve deeper into these specific approaches in the

subsection2.4.2.)

A harmonious balance between technical viability, ethical standards, and participant

preferences is essential to crafting effective incentives for federated learning. While

achieving perfect equilibrium and contribution-based fairness simultaneously can be

exceedingly difficult, we can promote an environment ripe for active collaboration

by accounting for these factors. This, in turn, leads to more precise and resilient

federated models.
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Based on the motivations and fairness paradigms discussed, we propose a taxonomy

for fairness in federated learning collaborations, depicted in Figure 2.5. This taxon-

omy serves as a framework to guide our subsequent analysis of existing fair incentive

mechanisms.

Figure 2.5: Proposed Taxonomy for Federated Learning Fairness

2.4.1 Incentives for Contribution Fairness

While equilibrium fairness, demanded by vulnerable participants, focuses on achiev-

ing consistent outcomes across various devices in the final model and avoids in-

equitable distribution, it is noteworthy that different contributors eventually receive

the same federated learning model. This equitability can result in dissatisfaction

among higher contributors, potentially leading to a ”free-riding” problem. Such

problems can considerably hamper the sustainable development of federated learn-

ing. Therefore, incentive methods based on contribution fairness will be more widely

adopted in scenarios where participants are evenly matched, or the model’s effec-

tiveness heavily relies on key contributors. Central to contribution fairness is the

equitable assessment of each participant’s contribution to the global model while

safeguarding their sensitive data.

Various techniques for measuring participant contributions exist[35], such as Shapley

values, blockchain, contract mechanisms, reputation systems, game theory, auction

28



mechanisms, and advanced technologies like reinforcement learning. This section

delves into marginal contribution, resource allocation, and reputation mechanisms.

Marginal contribution

The prevailing method to measure participants’ marginal impact in federated learn-

ing is through Shapley values. Introduced in 1953, Shapley values aim to solve co-

operative game problems[36] and have been extensively employed to evaluate each

participant’s contribution to a game.

ϕi = Eπ ∈ Π[ν(Siπ ∪ {i})− ν(Si
π)]

=
1

n!

∑
π∈Π

[ν(Si
π ∪ {i})− ν(Si

π)]
(2.1)

In this context, π ∈ Π represents permutations of all participants, Si
π signifies the

collection of participants ranked prior to i in the permutation π, and ν denotes a

value function, often associated with the market value of the machine learning model.

The Shapley value of participant i can be interpreted as the anticipated incremental

contribution of i across all possible joining sequences in federated learning. To

calculate Shapley values, one can simplify the process by listing all potential joining

sequences that exclude participant i, determining the anticipated value increase

introduced by participant i, and then averaging these incremental contributions,

considering the likelihood of occurrence for these sub-combinations.

Shapley values satisfy the following properties: Group Rationality, Symmetry, Zero

Contribution and Additivity. Group rationality ensures that the assessment of con-

tributions effectively reflects the proportion of each participant’s contribution to the

federation’s value metric, such as the test accuracy in federated learning. The com-

bination of symmetry and zero contribution properties ensures that the assessment

of contributions is objectively based on value metrics and does not differentiate

between participants. Additivity guarantees that there is no need to recompute

the value metrics for completed evaluations in a linear combination of multiple ob-

jectives in subsequent multi-objective optimisation scenarios. By considering all

possible joining orders for federated learning participants, Shapley values satisfy

fairness in evaluating contributions among participants.
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Early adopters of Shapley values for fair evaluation in this context were Jia et

al.[37]. However, the inherent computational demands of Shapley values, with its

O(N2) complexity, can be prohibitive in real-world settings. Addressing this, Jia et

al. proposed an approximate computation that reduces model training volume but

maintains a strong correlation between the approximations and actual values.

Ghorbani et al. tackled data quality concerns, such as label errors[38]. By applying

Shapley values to ascertain individual dataset contributions, they presented a Monte

Carlo sampling method as an efficient approximation for Shapley values. Their

technique effectively flagged low-quality training data with limited model retraining.

Further innovations include the Contribution Index (CI) by Song et al.[39] and a

multi-dimensional contribution method based on stepwise computation by Nishio et

al.[40].

Resource allocation

While Shapley values consider the contribution differences among participants from

different federated alliances, they assume equal initial contributions from all par-

ticipants before evaluating marginal contributions. However, this assumption can

lead to unequal initial contributions among participants for specific learning tasks

such as classification or regression, potentially resulting in imbalanced rewards or

incentives.

To address this issue, Zhang et al. introduced the Hierarchically Fair Federated

Learning (HFFL) framework, which utilises publicly verifiable factors like data qual-

ity, quantity, and collection cost, to classify participating clients into various tiers

[41]. Participants within the same level are considered equal contributions, with

higher contributions corresponding to higher levels. Participants of different levels

will converge to different models. During the training of a lower-level model, Par-

ticipants at higher tiers provide an equivalent volume of data as their counterparts

at lower tiers. Conversely, when engaged in training higher-level federated learning

models, Participants at lower tiers are required to contribute all their local data.

In contrast to HFFL, which trains models for each level, Lyu et al. presented

a Fair and Privacy-Preserving Deep Learning (FPPDL) framework to encourage
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participants to earn points by sharing their information with others, which they

can then exchange for information from other participants[42]. Participants earn

more points by uploading more gradient information, which they can use to obtain

more information from other participants. All transaction records are transparently

recorded on the blockchain, and a three-tier onion encryption scheme is proposed to

protect gradient privacy. Every participant’s contribution results in variant models

of different levels of the global model.

Various other methods have also been proposed, with each offering distinct ad-

vantages. For instance, Kang et al. introduced an incentive mechanism based on

contract theory[27]. Higher-quality local data lead to faster training of local models,

allowing participants to receive greater rewards. Similarly, Sarikaya et al. proposed

a Stackelberg game model between devices and models[43]. In this model, model

owners motivate workers with devices to allocate more CPU computational resources

for local training to achieve faster convergence. Le et al. presented an auction game

between base stations and multiple mobile users[44]. In this scheme, mobile users

act as sellers, making optimal decisions based on their resources and local accuracy

to minimise energy consumption. Based on users ’ bidding information, base sta-

tions select the most suitable candidates to maximise social welfare. A primal-dual

greedy algorithm is proposed to solve such NP problems.

Furthermore, Zeng et al. introduced the FMore incentive mechanism, which is

grounded in the concept of a multi-dimensional auction [45]. This approach involves

the aggregator transmitting bidding requests to participants. Upon receiving these

requests, participants evaluate their resources and projected budgets to determine

whether to submit a bid. Subsequently, the aggregator identifies K winners using

scoring mechanisms. FMore is a lightweight and compatible framework with minimal

computational and communication overhead.

In addition, Deng et al. devised a quality-aware auction technique [46]. This method

frames the problem of selecting winners as an NP-hard task of maximising learning

quality. The proposal involves the creation of a greedy algorithm based on Myer-

son’s theorem, serving the purpose of real-time task allocation and equitable reward

distribution.
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In conclusion, resource allocation in Federated Learning is an active research area

with many methodologies being proposed. The choice of method often depends on

the specific requirements and constraints of the federated learning setup.

Reputation mechanisms

Reputation mechanisms have gained traction to evaluate a participant’s contribu-

tion to federated learning, ensuring fairness and promoting trustworthy collabora-

tion. This assessment is typically based on a participant’s historical reliability and

engagement in federated learning tasks. Two primary categories emerge in this

context: direct and indirect reputation.

Direct Reputation: This metric evaluates participants based on their trained

local models’ quality and activity level. Direct reputation provides a real-time as-

sessment, considering recent contributions and engagements. Lyu et al. introduced

the Collaborative Fairness in Federated Learning (CFFL) framework[47]. Within

this framework, the server evaluates the accuracy of gradients uploaded by partic-

ipants and calculates their reputations for each round through normalisation. The

reputation of each participant undergoes iterative updates based on both the repu-

tation from the current round and their historical reputation. This iterative process

results in participants converging towards different models through reputation ad-

justments, thereby promoting fairness. While CFFL demonstrates a noteworthy

level of fairness, it does not explicitly address considerations related to the system’s

robustness.

Indirect Reputation: This metric takes a longer view, assessing a participant’s

reputation across multiple federated learning tasks. It offers a safeguard against

malicious activities by cross-referencing consistency in reputation feedback. Zhao et

al. presented a reputation-based system that leverages blockchain technology[48].

Initially, all clients possess identical reputation values. As clients successfully con-

tribute models, their reputation values increase. However, uploading malicious pa-

rameters results in a reduction of reputation values. The server employs these rep-

utation values to select dependable clients, favouring those with higher reputations

that are more likely to be chosen and rewarded. Rehman et al. proposed a reputation

system based on blockchain[49]. It establishes a collaborative framework involving
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three tiers: edge devices, fog nodes acting as data arbitrators, and cloud servers

owned by model creators. The cloud server updates models to fog nodes, distribut-

ing updated local models to edge devices. Smart contracts facilitate the aggregation,

computation, and recording of participant reputations in federated learning. This

system ensures privacy and security, assuring the authenticity of users’ provided

data. However, it also involves trade-offs such as heightened model complexity,

increased computational costs, and more significant communication expenses.

However, many reputation scoring mechanisms are subjective and require compre-

hensive quality assessment schemes. It leaves the door open for malicious rating ma-

nipulation. Kang et al. introduced a multi-weight subjective logic model to address

this issue[50]. This model calculates reputation based on a participant’s historical

performance and recommendations from other participants. This approach aims

to design a blockchain-based system that manages and records data owners’ repu-

tations. The individual participant’s reputation calculation method uses a multi-

weight subjective logic model to balance various reputation assessments comprehen-

sively. It ensures a holistic evaluation of participants’ contributions to federated

learning.

In conclusion, while reputation mechanisms offer a promising avenue for evaluating

contributions in federated learning, they are full of challenges. Striking a balance

between objective evaluation and preventing manipulations remains a pertinent con-

cern.

2.4.2 Incentives for Equilibrium Fairness

As we navigate the complex landscape of federated learning, data heterogeneity

emerges as a pivotal challenge. With participating clients demonstrating diverse

data distributions, ensuring optimal performance across the board becomes intricate,

especially in real-world scenarios, where dominant parties armed with substantial

data can overshadow the contributions of more vulnerable entities.

Central to this challenge is the concept of equilibrium fairness, a beacon guiding

us towards more balanced outcomes. Under this paradigm, an intuitive way to ap-

proach this model is to have the server adopt a random selection strategy during
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the federated learning training process, choosing participants solely for local up-

dates and model uploads. This server-centric model aggregation, which emphasises

assigned weights, marks a step towards inclusivity. However, championing fairness

goes beyond this; it requires addressing under-representations by actively engag-

ing vulnerable parties and ensuring impartiality in weight distribution or a more

personalised approach, a crucial step to prevent inadvertent biases.

Different metrics, such as Standard Deviation, Gini Coefficient, and Jain’s fair-

ness index, are employed for measuring fairness. By implementing these measures,

participants can engage in federated learning more equitably, receiving fair weight

allocations and contributing based on their unique characteristics. This approach

facilitates the achievement of genuinely balanced fairness.

Fair Participant Selection

Federated learning organisers often favour selecting participants with high data qual-

ity and abundant resources when orchestrating the training process. This tendency

results in the stronger data factions being more likely to be chosen, which subse-

quently influences the final globally trained model to exhibit characteristics of the

dominant factions. While this approach aids in maximising overall gains, it may

disregard participants with limited resources, leading to unfairness.

To mitigate biases faced by participants with lower computational capabilities or

smaller datasets in federated learning, the solution proposed by Yang et al. intro-

duces the concept of participation frequency[51]. It allows less frequently selected

participants to engage in training more often. Furthermore, Huang et al. presented

the RBCS-F algorithm, which requires that a participant’s selection probability

stays within a threshold in the long term to ensure fairness[52].

However, here is a conundrum: How do we factor in disparities in resources and

capabilities? Nishio et al. proposed the FedCS approach to address the selection

challenge of resource-constrained participants[53]. This approach mandates partici-

pants to disclose their resource information during the selection phase, followed by

selecting based on it to encompass a diverse range of participants. This strategy

aims to balance participant opportunity fairness and outcome fairness.

34



Furthermore, considering that participants with slower internet speeds might fre-

quently encounter data retransmissions, leading to additional training delays in the

federated learning model, Zhou et al. highlight another dimension - introducing a re-

silient framework called ”Throw Right Away” (TRA)[54]. This framework suggests

that discarding some data packets in suitable scenarios is only sometimes detri-

mental. By reporting network conditions during participant selection, intentionally

disregarding some lost data packets becomes possible. It facilitates the acceptance

of data uploads from devices with lower bandwidth, thus expediting the federated

learning training process. However, this hinges on accurate assessment and truthful

reporting of resource conditions by the participants.

An alternative to undersampling participants with insufficient contributions is to

employ a local compensation approach. In this regard, Wang et al. proposed an

innovative Pulling Reduction with Local Compensation (PRLC) method[55]. This

method enables end-to-end communication in federated learning. Participants not

selected are empowered to perform local updates through PRLC to reduce the gap

between their local and global models. This method’s participant selection aims

to maximise utility and primarily hinges on optimising dynamic resource allocation

issues among diverse participants.

Hu et al. also employed game theory to model the utility maximisation problem for

servers and users in federated learning as a two-stage Stackelberg game[56]. Through

this approach, utility maximisation for servers and users is considered separately.

Solving for Stackelberg equilibrium yields the optimal strategies for servers and

users, facilitating selection of users most likely to provide reliable privacy data for

compensation.

While each method above has its unique appeal, they collectively guide us towards

fairness in participant selection and ensure balanced outcomes in real-world appli-

cations.

Weight Redistribution

Various notable approaches have emerged in the realm of blending fairness with

model optimisation. Mohri et al. delved into the challenges posed by worst-
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performing devices, crafting an Agnostic Federated Learning (AFL) approach based

on the min-max loss function, which acts as a deterrent to model overfitting to spe-

cific customers[57]. However, this approach best fits smaller customer scales due to

its concentrated focus on underperforming ones.

Similarly, with a lens on the underachievers, Hu et al. formulated the FedMGDA+

strategy to balance fairness with robustness harmoniously[58]. Their approach re-

fines the fairness of federated models by adjusting participant gradient merging

weights. They employed Pareto-stable solutions, emphasising on universally benefi-

cial model outcomes.

In contrast, Cui et al. took a broader perspective with their Fair and Consistent

Federated Learning (FCFL) technique. By leveraging gradient-constrained multi-

objective optimization, they sought to iron out disparities and inconsistencies that

arose due to varying preference directions[59]. Their approach is inclusive, consider-

ing the objectives of all participants and fostering uniform participant performance.

Drawing inspiration from AFL, Li et al. developed the q-Fair Federated Learning (q-

FFL) method. This method intriguingly utilises q-parameterized weights, pivoting

attention to devices grappling with higher losses, thus ensuring fair distribution[60].

The dynamic nature of the q parameter offers a versatile solution, but determining

its optimal value in diverse data environments remains a hurdle.

Recognizing the constraints posed by q-FFL, Tian et al. introduced the innovative

α-FedAvg algorithm. This approach elegantly weaves in Jain’s index to balance

fairness and utility, with the α parameter fine-tuned by the algorithm even before

training begins[61].

Meanwhile, Zhao et al. presented an alternative to the q-FFL’s loss amplifica-

tion mechanism by proposing a direct weight redistribution methodology[62]. This

strategy emphasizes penalizing higher-loss clients with more significant weight al-

locations. On a similar thread, Li et al. ventured into modifying device weights

with empirical risk minimisation to facilitate a fluid balance between fairness and

accuracy[63].

However, all of the approaches above assume that participants are honest. If partic-
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ipants maliciously exaggerate their losses, this can degrade the overall performance

of the global model. To address this concern, some scholars have introduced the

concept of blockchain to mitigate the potential malicious actions of dishonest users.

Ur et al. proposed employing blockchain as a decentralised training entity in the

network, presenting TrustFed, a fully decentralised cross-device federate learning

system[64].

Personalization

The data heterogeneity significantly impacts the performance distribution of the

global model, rendering it arduous to maintain consistent performance across di-

verse clients. This variance can sometimes lead to discriminatory behaviour by the

federated learning model towards specific attributes within the sample population.

To tackle the challenge, the personalisation federated learning approach becomes

imperative to optimise the global model for each client[65].

Data-based personalization approaches aim to address the uneven distribution of

client data, often characterized by statistical heterogeneity in federated learning

environments. To ensure a comprehensive representation of the overall data, feder-

ated learning setups may require data-sharing strategies or the acquisition of virtual

datasets. Zhao et al. proposed a data-sharing approach that equitably allocates a

small portion of global data to individual clients based on categorical balance[66].

Empirical results from these studies demonstrate that even minimal data addition

can significantly improve model accuracy. Jeong et al., on the other hand, developed

a federated augmentation technique (FAug) that utilizes generative adversarial net-

works (GANs) trained on a federated learning server[67]. This method uploads data

samples from underrepresented groups to the server for GAN training. The trained

GAN models are then distributed to clients, allowing them to generate additional

data to supplement their local datasets and create a more balanced distribution.

However, while data-based approaches enhance the global federated learning model’s

convergence by mitigating client data drift, they often necessitate certain refinements

in the local data distribution. Such adjustments might lead to the loss of crucial

information related to the diversity of client behaviours, which is instrumental in

constructing personalised global models. Another model-based approach to global
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model personalisation aims to cultivate a robust global federated learning model

adaptable to each customer’s needs in the future or to enhance the local model’s

adaptability. Li et al. proposed FedProx, enabling each client to perform par-

tial training based on available resources[14]. It introduces a regularisation term

composed of the squared distance between the local and global models. This term

encourages local updates to align with the global model, leading to higher-quality

local updates and enhancing training stability. Conversely, Li et al. introduced

FedMD, an federated learning framework that employs Transfer Learning (TL) and

Knowledge Distillation (KD), allowing clients to develop autonomous models utilis-

ing their private data[68]. Before federated training and KD phases, the TL phase

employs a pre-trained model on a public dataset, which is subsequently fine-tuned

by each client using their private data.

Using a personalised approach fully integrates each customer’s local data, making

the global model better suited to address different customers’ unique data charac-

teristics and needs. This method promotes not only a more balanced and effective

optimisation of the global model but also ensures data privacy and security.

2.5 Conclusion and Chapter Discussion

This chapter provides a tutorial on federated learning, followed by an exploration of

blockchain’s role in enhancing federated learning collaborations, and concludes with

a comprehensive survey of associated incentive mechanisms. This review lays the

groundwork for my thesis, which seeks to enhance fairness and trust in federated

learning by developing novel incentive mechanisms tailored to the complexities of

real-world collaborations. The concept of fairness is integral to widespread partic-

ipation and overall success. A lack of fairness jeopardises the long-term viability

of federated learning systems. However, current research faces several challenges

hindering the realisation of a truly fair and equitable federated learning landscape.

Key Challenges and My Thesis Contributions:

• Comprehensive Fairness Definitions: While metrics like the Gini Coeffi-

cient and Jain’s Fairness index provide valuable tools, there is no universally
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accepted standard for measuring fairness in federated learning. Often, fairness

is defined narrowly within a technical context, disregarding its broader legal,

regulatory, and social implications. This underscores the need for a robust un-

derstanding of fairness that accounts for such nuances, enabling the evaluation

of incentive mechanisms beyond simple metrics. My thesis will contribute to

this by developing a theoretical framework for valuing diverse contributions

under information asymmetry, promoting context-aware definitions of fairness.

• Realistic Application Scenarios: Current research often assumes a dom-

inant model owner who dictates the parameters of the incentive mechanism.

However, open and competitive markets necessitate the exploration of sce-

narios where power dynamics are more balanced. My thesis addresses this

challenge by introducing a novel Reciprocal Federated Learning Framework

(RFLF) and a secure multi-stage clearing protocol. These innovations specif-

ically empower data owners and promote competition between model owners,

fostering a fairer distribution of influence in model aggregation and reward

allocation processes.

• Adapting to Dynamic Environments: Fairness is not a static concept;

definitions should evolve alongside the project, its outcomes, and changes in

the broader technological landscape. Existing mechanisms often need more

adaptability to respond to real-time feedback or changing circumstances. My

thesis addresses this need through the RFLF, incorporating dynamic incen-

tive mechanisms guided by verifiable data quality and contribution assess-

ments. This approach ensures that rewards remain equitable and aligned with

demonstrated effort throughout the project, fostering fairness even in the face

of evolving conditions.

• Interpretability of Fairness: Participants are likelier to engage in a system

where fairness principles are transparent. Explainable metrics and transpar-

ent decision-making processes are crucial for building trust. These should

elucidate how decisions impact each participant’s interests while respecting

individual privacy and maintaining model confidentiality. My thesis research

contributes towards this effort by utilising transparent data valuation methods
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and incorporating fairness assessments throughout project milestones.

• Robust Fairness in Adversarial Settings: Current methods often presup-

pose a level of trust between participants. However, participants might possess

diverse and sometimes conflicting motives in real-world situations. Safeguard-

ing fairness amidst adversarial behaviours is paramount. This includes a spe-

cific need to consider potential privacy attacks, fraudulent contributions, and

their impact on equitable outcomes. My thesis research, using cryptographic

techniques and leveraging secure, intelligent contracts, contributes towards

this goal through the proposed multi-stage clearing protocol and integrated

dispute resolution mechanisms.

This review’s challenges and research directions underscore the need for innovative

incentive mechanisms that promote fairness while addressing scalability, privacy

concerns, and dynamic model environments. My thesis explores these issues and

provides related solutions throughout subsequent chapters.
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Chapter 3

Dynamic Multi-Stage Incentives

for The Model Owner

3.1 Introduction

In recent years, advances in wearable devices, medical sensors, and pervasive com-

munication technologies have fueled the growth of the Internet of Medical Things

(IoMT). It enables applications in patient monitoring, disease diagnosis, and per-

sonalised treatment. The vast amount of data IoT devices collect offers immense

potential for AI-driven models to transform healthcare delivery. For example, remote

sensors can monitor vital signs, collect physiological data, and provide image-based

diagnostics. This information can improve disease management, facilitate early in-

terventions, and ultimately enhance patient health outcomes.

While representation-learning models like Deep Learning offer groundbreaking po-

tential in healthcare, they often require vast amounts of data to excel. A single

healthcare provider may need help collecting enough diverse cases to build a high-

accuracy and generalizability model. Likewise, even research institutions specialising

in machine learning may need more access to the breadth of real-world medical data

necessary to develop robust models. For instance, building a robust image clas-

sifier to detect rare diseases might require a much larger dataset than any single

hospital or research institute possesses. Collaboration and data sharing are logical

solutions, but healthcare organisations are understandably hesitant to disclose raw
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patient data due to privacy regulations and concerns about competitive advantage.

It is where Federated Learning can play a transformative role, enabling collabora-

tive model training without compromising the confidentiality of sensitive patient

information.

As illustrated in Figure 3.1, such a federated learning system could involve a group

of data owners and a single model owner. In this scenario, participants are health-

care organisations and research institutions. The model owner is a research institute

specialising in machine learning. The data owners are the healthcare organisations

that begin by collecting healthcare data through various means, such as wearable

sensors or electronic health records. This data stays on-device or within the par-

ticipants’ local infrastructure. When the research institute initiates model training,

they transmit a request and a starting set of model parameters to the participants.

Participants then leverage their local datasets to train the model locally, updating

only the model parameters, not the raw data. These updated parameters are then

securely transmitted to the research institute for aggregation. This iterative process

of local training and parameter aggregation continues until the model achieves the

desired accuracy. The research institute’s payoff is tied to achieving preset per-

formance targets in this unique collaboration. Upon reaching those targets, they

receive rewards, while the data owners gain ownership of the trained model for their

applications.

Our research topic has significant implications for the widespread adoption of fed-

erated learning beyond its current experimental stage. The success of federated

learning depends on a foundation of trust and equitable compensation for all par-

ticipants. However, the inherent information asymmetry within the process creates

ethical risks for data and model owners. For example, a data owner might provide

low-quality data, or a model owner might exert minimal effort in refining the ag-

gregated model. If left unchecked, these risks can lead to opportunistic behaviour,

undermining collaboration and jeopardising the project’s overall outcome. This lack

of trust poses a significant barrier to the widespread adoption of federated learning,

especially in sensitive domains like healthcare, where data integrity and model re-

liability are paramount. Our research aims to pave the way for broader federated

learning use in these sensitive domains by designing incentive mechanisms that di-
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Figure 3.1: Federated Learning Structure

rectly address these ethical considerations. It can unlock advancements in medical

diagnostics, financial fraud detection, and other areas where privacy and accuracy

are equally crucial. To effectively address these challenges, we employ a Stackelberg

game framework, where data owners act as leaders.

This chapter introduces an incentive mechanism that directly tackles this dual ethi-

cal risk, focusing on quantifying implicit efforts and mitigating their impact through

multi-stage game theory. We examine the interaction between data and model own-

ers where efforts are unobservable, designing a multi-stage incentive contract estab-

lished before training.

This approach allows for the design of a pre-training incentive contract that pro-

motes fairness and transparency. Using a multi-stage approach, we can tailor the

incentives to the evolving project dynamics. This structure ensures that compen-

sation and effort remain aligned, mitigating opportunistic behaviour and fostering

optimal outcomes.

This research directly confronts the ’double ethical risk’ inherent in federated learn-

ing, where both data and model owners face uncertainty about each other’s efforts.

Our contribution provides a mechanism for designing multi-stage incentive contracts

that mitigate this risk and promote optimal effort. Our analysis reveals that optimal
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incentive contracts from the data owner’s perspective prioritize late-stage rewards

for the model owner, strongly linking compensation to the model’s increasing value

throughout the collaboration. This fosters sustained high-quality model develop-

ment efforts.

The remainder of this chapter is structured as follows. Section 3.2 presents the

incentive mechanism model used in our research and the results, and Section 3.3

provides a simulation example to validate the model. Finally, conclusions and future

work are drawn in Section 3.4.

3.2 The Multi-stage Incentive Mechanism Model

To ensure the success in federated learning and allow for the best training result, it is

crucial to implement an effective incentive mechanism that minimises the possibility

of dual ethical risk. Based on the discussion in the previous section, no existing

incentive mechanism has suitably addressed this issue. This section introduces a

multi-stage incentive mechanism model based on contract theory. It addresses the

dual ethical risks associated with federated learning while incentivising both parties

to cooperate successfully. Note that, for simplicity, the game assumes one data

owner and one model owner. A contract-theoretic solution for federated learning

scenarios with more than one data owner is left to future work.

3.2.1 The Model

The two participants in our model, the data owner and the model owner, are risk-

neutral. Both parties agree that the entire training process will be conducted in

K stages, with both parties jointly checking the training results at the end of each

stage to confirm that the training was successful. Additionally, both parties agree

that the contract cannot be ended earlier than these K stages unless the training

fails. We assume that the effort value committed by the data owner at stage k is

Dek, and the effort value committed by the model owner at stage k is Mek. Dek

and Mek are both uncorrelated variables. Furthermore, Dek ≥ 0,Mek ≥ 0.

Table 3.1 lists the key notations commonly used in this chapter for ease of reference.
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Notation Description

k Training stages, k = 1, · · ·K.

Mek The effort committed by the model owner at stage k

Dek The effort committed by the data owner at stage k

Pk(Mek, Dek) The probability of successful training at stage k

C(Mek) The effort cost of the model owner at stage k

C(Dek) The effort cost of the data owner at stage k

Vk The incremental value of the model after stage k

Mk The market value of the model at stage k

Ik The data owner’s costs at stage k

DRk Total expected revenue of the data owner from stage k to K

MRk Total expected revenue of the model owner from stage k to K

Rk The reward for model owner if training success at stage k

Xk(Mek, Dek) The model’s performance at stage k

ϕ, ν The weight parameters of the model at stage k

Table 3.1: Glossary of Key Mathematical Notations (Chapter 3)
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Figure 3.2: Federated Learning Performance

Naturally, the performance of a model, e.g., the accuracy of its inferences, will

be higher if the data owner contributes more effort to providing more and higher

quality data. Similarly, if the model owner puts in more effort, such as improving

the algorithm, model performance will also increase. The model’s performance is

assumed to be

Xk(Mek, Dek) = 1− e−ϕ(Mek,Dek)
ν

,

where ϕ and ν are the weight parameters.

Fig. 3.2 shows the relationship between the performance of a typical federation

learning model and the effort values Me and De of the training participants.

The following assumptions are made over the probability that training at stage k

will be successful:

Pk(Mek, Dek),
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and

1 ≥ Pk(Mek, Dek) ≥ 0,
∂Pk(Mek, Dek)

∂Mek
> 0,

∂Pk(Mek, Dek)

∂Dek
> 0,

∂2Pk(Mek, Dek)

∂Mek
2 < 0,

∂2Pk(Mek, Dek)

∂Dek
2 < 0, (k = 1, · · · , K).

Thus, there is a positive correlation between the probability of successful training

and the efforts contributed by the data and model owners. The probability of success

increases as Mek and Dek increase with diminishing marginal returns.

The cost of inputting effort by the two parties in the training stage k are C(Mek) and

C(Dek). Obviously, these costs increase as the effort increases, i.e., C ′(Mek) > 0,

C ′(Dek) > 0. Similarly, the marginal cost of effort increases as well, i.e., C ′′(Mek) >

0, C ′′(Dek) > 0.

Suppose that federated learning is successful in stage k. In that case, the data owner

receives the incremental value of the upgraded model as Vk (Vk is a constant agreed

upon by both participants before the contract), and the training continues into stage

k + 1. Assuming that the model’s market value at the end of stage k is Mk and

the data owner’s cost at stage k is Ik, we have Vk = Mk − Ik. After all K stages of

training have been completed, the data owner receives the final value of the model

as
∑K

k=1 Vk =
∑K

k=1(Mk − Ik).

DRk and MRk are defined as the total expected revenues of the data owner and

model owner from stage k to K. Logically, the data owner will only participate in

training if they believe that the total expected revenue will be positive. If the total

expected revenue in stages k to K turns out to be a loss, the data owner will drop

out at any stage from k + 1 to K and terminate the contract. Therefor, we can

assume that Vk + DRk+1 > 0 and DRk ≥ 0. This assumption is reasonable because

it assumes that the parties have some opportunity to argue success or failure at each

stage. If the data owner expects a negative payoff, they will claim failure to get out

of the contract. It is assumed that before a particular point in the training Vk < 0,

i.e., the data owner’s contribution is more significant than the benefit. After that

point, the data owner’s payoff becomes positive. This assumption ensures that the
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Figure 3.3: Federated Learning Contract Execution Stages

data owner agrees to cooperate with the model owner for the purposes of training

the model. Rk represents the reward given by the data owner to the model owner

if the training is successful at stage k. The event sequence in the contract is shown

in Fig. 3.3.

Before entering the federated learning scheme, the data owner and the model owner

need to agree on the reward Rk > 0 (k = 1, · · · , K) and set up the contract.

The model owner receives Rk from the data owner after training is confirmed to

be successful in stage k. According to the contract, the model owner commits the

optimal level of effort Mek
∗ to maximise their expected return MRk. At the same

time, the data owner also to commit the optimal level of effort Dek
∗ to maximise

DRk. If the training result is successful at the end of stage k, the value of the updated

model held by the data owner increases by Vk, and the model owner receives the

reward Rk from the data owner. Training then proceeds to the next stage. If stage k

training fails, both the model owner and the data owner gain nothing for that stage.

Note that the optimal strategy for the Stackelberg game leader is to not reward the

follower for failure at each stage of the game [69], [70]. Both parties will pay C(Mek)

and C(Dek) regardless of success or failure. Thus, the following recursive equation

describes the profit of the data owner and the model owner,
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MRk = Pk(Mek, Dek)[Rk + MRk+1]− C(Mek) (3.1)

and

DRk = Pk(Mek, Dek)[Vk −Rk + DRk+1]− C(Dek), k = 1, · · · , K. (3.2)

In our model, the contract is set before the first phase. The relevant payoffs in the

first phase are DR1 for the data owner and MR1 for the model owner. Note that

the payoff for stage k is directly effected by the payoffs for stage k + 1. Expanding

the above recursive equations, we have:

MRm =
K∑

k=m

{
k∏

j=m

Pj(Mej, Dej)Rk

}

−
K∑

k=m

{
k−1∏
j=m

Pj(Mej, Dej)C(Mek)

} (3.3)

and

DRm =
K∑

k=m

{
k∏

j=m

Pj(Mej, Dej)(Vk −Rk)

}

−
K∑

k=m

{
k−1∏
j=m

Pj(Mej, Dej)C(Dek)

}
.

(3.4)

3.2.2 Research Findings

In this section, we outline the findings of the above model, beginning with the

optimal effort Dek
∗ of the data owner.

The derivative of the data owner’s payoff with respect to their effort Dek from

Equation 3.2 is

dDRk

dDek
=
dPk(Mek, Dek)

dDek
(Vk −Rk + DRk+1)−

dC(Dek)

dDek

=0 (k = 1, · · · , K),

(3.5)
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where

dPk(Mek, Dek)

dDek
(Vk −Rk + DRk+1) =

dC(Dek)

dDek
(k = 1, · · · , K). (3.6)

Thus, the optimal effort Dek
∗ of the data owner is:

Dek
∗ = Dek

∗(Vk −Rk + DRk+1). (3.7)

Corollary 1. The optimal effort of the data owner is a function of the incremental

value of the model, the reward to the model owner, and the data owner’s expectation

of future payoffs. Reducing the reward to the model owner and increasing the incre-

mental value of the model and the data owner’s expectations for the future should

motivate the data owner to put in more effort and reduce their ethical risk.

In the same way, we can solve the optimal effort Mek
∗ of the model owner. The

derivative of the model owner’s payoff with respect to it’s effort Mek from equation

3.1 is

dMRk

dMek
=
dPk(Mek, Dek

∗)

dMek
(Rk + MRk+1)−

dC(Mek)

dMek

=0 (k = 1, · · · , K).

(3.8)

Thus, the optimal effort Mek
∗ of the model owner is:

Mek
∗ = Mek

∗(Rk + MRk+1). (3.9)

Corollary 2. The optimal effort level of the model owner is positively correlated with

the reward and their expected future payoff. Higher rewards from the data owner and

increasing the model owner’s future expectations should motivate the model owner

to work harder and reduce any ethical risks.

Based on Corollaries 1 and 2, we have the following conditions:


dPk(Mek,Dek)

dDek
(Vk −Rk + DRk+1) = dC(Dek)

dDek
;

dPk(Mek,Dek)
dMek

(Rk + MRk+1) = dC(Mek)
dMek

(k = 1, · · · , K).
(3.10)
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Corollary 3. An optimal incentive mechanism should be such that the marginal

benefit of each participant’s effort equals their marginal cost.

Given the optimal level of effort Mek
∗ and Dek

∗ for the model owner and data

owner, MRm in Equation 3.3 satisfies the following conditions:

∂MRm

∂Rk

=
k∏

j=m

Pj(Mej
∗, Dej

∗) (k = 1, · · · , K;m ≤ k). (3.11)

From Equation 3.11,

∂MR1

∂Rk

∂MR1

∂Rk+1

=

∏k
j=1 Pj(Mej

∗, Dej
∗)∏k+1

j=1 Pj(Mej
∗, Dej

∗)
=

1

Pk+1(Mek+1
∗, Dek+1

∗)
> 1

(k = 1, · · · , K − 1).

(3.12)

Then
∂MR1

∂Rk

∣∣∣∣
Mej

∗,Dej
∗
>

∂MR1

∂Rk+1

∣∣∣∣
Mej

∗,Dej
∗

(k = 1, · · · , K − 1). (3.13)

Corollary 4. The marginal utility of the rewards diminishes for the model owner

over time. Therefore, to encourage the model owner to increase their effort, the re-

wards for the model owner in the incentive mechanism should be gradually increased

as training continues. This should mean the incentive mechanism stays effective in

motivating the model owner to work hard.

The optimal incentive Rk
∗ > 0 (k = 1, · · · , K) for the model owner is determined

before starting the first stage of training. Therefore, the optimal payoff Rk
∗ of the

data owner can also be solved. The first-order condition of data owner with respect

to payoff Rk from Equation 3.2 is

∂DR1

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=

[
P1

′(Me1
∗, De1

∗)Me1
∗′∂MR2

∂Rk

+P1
′(Me1

∗, De1
∗)De1

∗′∂DR2

∂Rk

]
(V1 −R1 + DR2)

+ P1(Me1
∗, De1

∗)
∂DR2

∂Rk

− C ′(De∗1)De∗1
′∂DR2

∂Rk

= 0.

(3.14)

From Corollary 4, we can derive ∂MR2

∂Rk
=
∏k

j=2 Pj(Mej
∗, Dej

∗) and from Corollary

1, we can derive P ′
1(Me1

∗, De1
∗)(V1−R1+DR2)−C ′(De1

∗) = 0, V1−R1+DR2 > 0.

Substituting both of these into Equation 3.14 and rearranging the terms yield:

51



{
De1

∗′[P1
′(Me1

∗, De1
∗)(V1 −R1 + DR2)− C ′(De1

∗)] + P1(Me1
∗, De1

∗)
}

∂DR2

∂Rk

+ P1
′(Me1

∗, De1
∗)Me1

∗

[
k∏

j=2

Pj(Mej
∗, Dej

∗)

]
(V1 −R1 + DR2) = 0.

(3.15)

Then,

∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=− 1

P1(Me1
∗, De1

∗)
P1

′(Me1
∗, De1

∗)Me1
∗′

[
k∏

j=2

Pj(Mej
∗, Dej

∗)

]
(V1 −R1 + DR2) < 0.

(3.16)

Thus, if Rk
∗ > 0 and Rj

∗ > 0,j > k, then

∂DR2

∂Rj

∣∣∣∣
Ri

∗,i=1,··· ,K
=

(
j∏

i=k+1

Pi(Mei
∗, Dei

∗)

)
∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K

>
∂DR2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
.

(3.17)

Corollary 5. The expected payoff to the model owner increases marginal utility for

the data owner over time. Intuitively, the data owner always wants to delay the

reward to the model owner, while the model owner wants to receive the reward as

early as possible. For the data owner, the later the reward is given to the model

owner, the more likely it is for ethical risk to be avoided.

From Corollary 5, for k > 1,

∂DR1

∂Rk

=

[
P1(Me1

∗, De1∗)′Me1
∗′∂MR2

∂Rk

+ P1(Me1
∗, De1∗)′De1

∗′∂DR2

∂Rk

]
(V1 −R1 + DR2) + P1(Me1

∗, De1∗)
∂DR2

∂Rk

− C(De1
∗)′De1

∗′∂DR2

∂Rk

.

(3.18)

For every m < k,

∂DRm

∂Rk

=

[
Pm(Mem

∗, Dem∗)′Mem
∗′∂MRm+1

∂Rk

+ Pm(Mem
∗, Dem∗)′Dem

∗′∂DRm+1

∂Rk

]
(Vm −Rm + DRm+1)

+ Pm(Mem
∗, Dem∗)

∂DRm+1

∂Rk

− C(Dem
∗)′Dem

∗′∂DRm+1

∂Rk

,

(3.19)

and for every k,
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∂DRk

∂Rk

=[Pk(Mek
∗, Dek∗)′Me∗k

′ − Pk(Mek
∗, Dek∗)′De∗k

′](Vk −Rk + DRk+1)

− Pk(Mek
∗, Dek∗) + C(Dem

∗)′De∗k
′. (3.20)

From Corollary 1, we can derive Pk(Mek
∗, Dek∗)′(Vk−Rk +DRk+1)−C(Dek)∗

′
= 0,

and substituting this into the three equations above, we have

∂DR1

∂Rk

=

(
k∏

j=1

Pj(Mej
∗, Dej

∗)

)
k∑

i=1

1

Pi(Mei
∗, Dei

∗)

Pi
′(Mei

∗, Dei
∗)Mei

∗[Vi −Ri + DRi+1]−
k∏

j=1

Pj(Mej
∗, Dej

∗),

(3.21)

and

∂DR1

∂Rk+1

=
∂DR1

∂Rk

Pk+1(Mek+1
∗, Dek+1

∗)

+

(
k∏

j=1

Pj(Mej
∗, Dej

∗)

)
Pk+1

′(Mek+1
∗, Dek+1

∗)

Me∗k+1
′[Vk+1 −Rk+1 + DRk+2] = 0 (k = 1, · · · , K − 1).

(3.22)

Since ∂DR1

∂Rk

∣∣∣
Ri

∗,i=1,··· ,K
= 0, from Equation 3.22, we can derive Vk+1−Rk+1+DRk+2 =

0. It is known that DRK+1 = 0, so it follows that RK
∗ = VK , so DRK = 0. Similarly,

for any δ, there is 1 ≤ δ ≤ K − 1. If Meδ
∗ > 0 and Rδ

∗ > 0, then:

 Rk
∗ = Vk (k = δ + 1, · · · , K).

DRk = 0 (k = δ + 1, · · · , K).
(3.23)

Then,

DR1 =
δ−1∑
j=1

(
j∏

i=1

Pi(Mei
∗, Dei

∗)(Vj − C(Dei
∗))

)

+

(
δ−1∏
i=1

Pi(Mei
∗, Dei

∗)

)
Pδ(Meδ

∗, Deδ
∗)[Vδ −Rδ].

(3.24)
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theorem 1. The data owner can receive their optimal payoff at point δ during

training such that  Rk
∗ = 0 (k < δ),

Rk
∗ = Vk

∗, DRk
∗ = 0 (k > δ),

(3.25)

and

 DR1 ≥
∑δ−1

j=1

(∏j
i=1 Pi(Mei

∗, Dei
∗)
(
Vj − C(Dej

∗)
))

,

DR1 ≤
∑δ

j=1

(∏j
i=1 Pi(Mei

∗, Dei
∗)
(
Vj − C(Dej

∗)
))

.
(3.26)

Theorem 1 shows an optimal payoff point for the data owner, where the data owner

receives the total payoff from the federated learning process and the reward given

to the model owner is zero in phases 1 − δ. However, after that point, the data

owner does not have any profit, the expected future payoffs are zero, and the benefit

goes entirely to the model owner. Thus, point δ is the optimal payoff point for the

data owner. Essentially, what Theorem 1 indicates is that, for a federated learning

scenario initiated by the data owner, the optimal incentive scheme is one where as

much of the incremental value of the model as possible is paid to the model owner.

Therefore, success in the later stages of training is based on the success in the earlier

stages and, in turn, rewards in the later stages incentivise effort in the earlier stages.

Overall, giving back as much of the value created by the model owner’s efforts as

possible in the later stages is the least costly incentive scheme for the data owner.

3.3 Experimental Evaluation

To complement the analytical findings and evaluate the performance of our incentive

mechanism for federated learning, we create a multi-stage contract simulator for the

data and model owners. The simulator evaluates the impact of different reward

settings on the level of effort contributed by each participant and gives the total

payoff for both parties.

3.3.1 Experiment Settings

Assume that the incremental model values are V1 = 1, V2 = 2 and V3 = 3, where

federated learning is carried out in 3 stages (i.e., K = 3) and the functional expres-
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sion for the probability of success at each stage is Pk(Mek, Dek) = MIN(0.6(Mek +

Dek), 1). As we will see later, the equilibrium effort satisfies 0.6(Mek
∗ +Dek

∗) < 1,

so we can count Pk(Mek, Dek) = 0.6(Mek + Dek). We also assume that the effort

cost of the model owner’s function is C(Mek) = Mek
2, and the effort cost of the

data owner’s function is C(Dek) = Dek
2, such that the utility function of the model

owner is

mrk = 0.6(Mek + Dek)(Rk + mrk+1)−Mek
2, k = 1, 2, 3,

mr4 = 0.

Taking the utility function for each stage and deriving it to its effort level determines

the optimal effort yield for the model owner:

Mek
∗ =

∂mrk
∂Mek

= 0.3(Rk + mrk+1) k = 1, 2, 3.

Repeating the same approach, and its based on Equation 3.24, we can derive the

utility function of the data owner and their optimal effort:

drk = 0.6(Mek + Dek)(Vk −Rk + drk+1)−Dek
2, k = 1, 2, 3,

dr3 = 0, dr4 = 0.

Dek
∗ =

∂drk
∂Dek

= 0.3(Vk −Rk + drk+1) k = 1, 2, 3,

De3 = 0.

The utility functions and the optimal efforts of the two parties in different stages

are listed in Table 3.2.

3.3.2 Experimental Result and Discussion

Fig. 3.4 shows the optimal rewards yielded for the model owner, calculated by

recurring the above equations in Table 3.2 and the derivative of the data owner’s

payoff dr1 with respect to the reward R2
∗:

R1
∗ = 0, R2

∗ = 0.4085, R3
∗ = 3,
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K Data Owner Model Owner

1
dr1 = 0.6(Me1 + De1)(V1 −R1 + dr2)−De1

2

De1 = 0.3(V1 −R1 + dr2)

mr1 = 0.6(Me1 + De1)(R1 + mr2)

Me1 = 0.3(R1 + mr2)

2
dr2 = 0.6(Me2 + De2)(V2 −R2 + dr3)−De2

2

De2 = 0.3(V2 −R2 + dr3)

mr2 = 0.6(Me2 + De2)(R2 + mr3)

Me2 = 0.3(R2 + mr2)

3
dr3 = 0

De3 = 0

mr3 = 0.6(Me3 + De3)(R3 + mr4)

mr4 = 0,Me3 = 0.3(R3 + mr3)

Table 3.2: Optimal Efforts and Corresponding Utility Functions for Model and Data

Owners

Figure 3.4: Optimal Rewards Yielded for Model Owner
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where the probabilities of successes are P1(Me1
∗, De1

∗) = 0.3707, P2(Me2
∗, De2

∗)

= 0.5058, P3(Me3
∗, De3

∗) = 0.54. As predicted by Theorem 1, the optimal payoff

point for the data owner is δ = 2, and R1
∗ = 0, R3∗ = V3, and 0 < R2 < V2. The

data owner’s expected payoff is dr1 = 0.3608, which is consistent with Theorem 1,

 dr1 ≥ P1(Me1
∗, De1

∗)(V1 −De1
2) = 0.2878,

dr1 ≤ P1(Me1
∗, De1

∗)(V1 −De1
2) + P2(Me2

∗, De2
∗)(V2 −De2

2) = 1.1841.

Reward settings
DO expected

payoff dr1

Stg1 BEs

Me1 + De1

Stg2 BEs

Me2 + De2

Stg3 BEs

Me3 + De3

R1 = 0, R2 = 0.2, R3 = 3 0.3508 0.6114 0.843 0.9

R1
∗ = 0, R2

∗ = 0.4085, R3
∗ = 3 0.3608 0.6179 0.843 0.9

R1 = 0, R2 = 1, R3 = 3 0.3386 0.6109 0.843 0.9

R1 = 0.5, R2 = 0.4085, R3 = 3 0.2949 0.6179 0.843 0.9

Table 3.3: Optimal Efforts at Each Stage Under Varying Reward Settings

We have taken some relevant data from the simulator to make it easier to understand,

as shown in Table 3.3. This table shows the effects of the reward value settings at

different stages on the efforts of the participants and the expected payoff for the

data owner in the incentive contract. Some settings around the optimal one have

been selected as comparisons: R1
∗ = 0, R2

∗ = 0.4085, R3
∗ = 3. From the results, we

can see that:

1. Any deviation from the optimal value of R2
∗ = 0.4085 negatively impacts

the efforts of both participants and the expected training payoff for the data

owner. This means that any reward setting that deviates from the optimal

value R2
∗ will increase the ethical risk of the participants.

2. If the data owner keeps R2 = R2
∗ and increases the reward R1 for stage 1,

this scenario is identical to the optimal incentive scenario in terms of the effort

values at each stage. However, the data owner’s expected training payoffs will

be significantly lower. From a self-interested perspective by the data owner,

as the leader of the incentive contract, there is no incentive to increase the

reward given to the model owner at Stage 1.
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Thus, we can conclude that our model is able to reduce the dual ethical risk of

federated learning due to information asymmetry. It can motivate the participants

to exert an optimized effort to training, confirming the intuition behind our model

that the success in the later stages is based on success in the earlier stages. Thus,

rewards in the later stages incentivise efforts in the earlier stages. Moreover, giving

back as much of the value created by the model owner’s efforts in the later stages is

the least costly incentive scheme for the data owner.

3.4 Conclusion and Chapter Discussion

In this chapter, we have used the framework of a dynamic game to investigate

the dual ethical risk problem between model owners and data owners in federated

learning. The model used is novel, and it has derived optimal incentive payoff

contracts for the data and model owners through two sets of analyses: one for a

multi-stage incentive payoff game and the other for the dual ethical risk affecting

the contract design. The output is an optimal payoff point for the data owners. Our

approach has provided insights into the characteristics of optimal incentive contracts

between data owners and model owners in federated learning schemes, including their

endogenous optimality. Specifically, our study has shown that, within a data owner-

initiated federated learning scenario, a significant portion of the model’s incremental

value can be optimally allocated to the model owner in the later stages, fostering

participation and collaboration.

This research can influence how federated learning incentive mechanisms are de-

signed in real-world applications, particularly in sensitive domains where trust and

equitable compensation are paramount. This chapter focused on the dual ethical

risk problem in a data owner-led federated learning scenario utilising a multi-stage

incentive model. To further advance this research, subsequent chapters will explore

the integration of this model into federated learning frameworks and its implications.

Chapter 4 will delve into the model’s adaptation to various scenarios, providing a

comprehensive comparison with existing state-of-the-art frameworks. Chapter 5 will

expand this research to address the complexities introduced by multiple data owners

joining the federated learning collaboration, building upon the foundational model
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presented in this chapter.
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Chapter 4

Fair Clearing House Framework

for Secure and Trustworthy

Federated Learning

4.1 Introduction

The Industrial Internet of Things (IIoT) proliferation has ushered in a new era

of data-driven insights that have transformed traditional sectors such as agricul-

ture[71], supply chain management[72], and logistics[73]. By deploying a network of

interconnected sensors and devices, IIoT systems gather a wealth of data that can

be harnessed to develop powerful AI-based models[74], unlocking the potential for

increased efficiency and productivity.

In smart agriculture[75], for instance, IIoT devices strategically placed in crop fields

can capture valuable environmental data and images[76]. This information can then

be used to train sophisticated machine-learning models capable of rapidly identifying

pest infestations[77], optimising resource allocation, and enhancing crop yields.

However, the efficacy of these models often hinges on the availability of extensive

and diverse training datasets. An IIoT network deployed by a single farm may not

encompass the breadth and depth of data required to train models that generalize

well across various scenarios. For example, an individual farm may lack sufficient
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Figure 4.1: Federated Learning for Smart Agricultural

samples of diseased crop images to train a model that can reliably detect and diag-

nose a wide range of plant pathologies[78].

To address this data scarcity challenge, agricultural cooperatives, also known as

farmers’ co-ops, emerge as a viable solution for collaborative model development.

By pooling the data from multiple farms, these cooperatives can aggregate a much

larger and more diverse dataset, enabling the training of more robust and accurate

models. However, direct sharing of sensitive raw data within the cooperative still

raises concerns regarding data privacy and potential misuse. Federated learning

presents a promising paradigm to overcome these concerns.

In our proposed federated learning system (Figure 4.1), multiple farmers, repre-

sented by an agricultural cooperative, collaborate with a model owner, such as a

company specializing in smart agriculture applications. Farmers collect and store

data through their IIoT devices on their respective servers. When the model owner

initiates a training request, a set of model parameters is directly distributed to each

farmer. Subsequently, farmers leverage their local data to train the model and send

only the updated parameters back to the model owner for aggregation. This it-

erative process of local training and global aggregation continues until the desired

model accuracy is achieved.
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By adopting this federated learning approach, multiple data owners can collabora-

tively train a robust and accurate model for their innovative industrial activities

while safeguarding sensitive data. Moreover, the model owner can receive the train-

ing reward after the cooperation, fostering innovation and knowledge sharing within

the IIoT ecosystem and opening new avenues for addressing challenges and optimiz-

ing processes in various industrial sectors.

However, despite its potential, federated learning in the IIoT domain faces critical

challenges in incentive alignment and trust-building. Due to differing knowledge

structures and priorities, data and model owners often encounter divergent interests,

a phenomenon known as information asymmetry. This asymmetry and the inherent

uncertainties of machine learning outcomes can lead to suboptimal scenarios. Data

owners may hesitate to invest in federated learning projects and dedicate resources

to data collection due to concerns about fair compensation for their investment and

potential exploitation of their data. Conversely, model owners may prioritise their

gains, potentially neglecting the collective benefit of the collaboration.

Additionally, the data owner-led nature of this type of federated learning, where the

data owners ultimately own the final model, further complicates the establishment

of trust and equity. Traditional model owner-led mechanisms, in which the model

owner retains ownership of the final model, are ill-suited for this environment. It

necessitates the development of innovative frameworks to ensure fair model-reward

settlements between the model and data owners based on their agreements.

In this chapter, we introduce the Fair Clearing House (FCH) framework to address

these challenges. Leveraging the immutable and transparent nature of blockchain

technology and the self-executing capabilities of smart contracts, the FCH creates

a decentralised and trustless platform for federated learning collaborations. By

incorporating a multi-stage incentive mechanism and a secure two-party clearing

protocol, the FCH framework aims to foster trust, fairness, and cooperation while

mitigating the risks associated with data sharing and reward distribution. we make

several significant contributions to the field of federated learning:

• We present a secure and efficient clearing protocol designed explicitly for two-

party federated learning transactions. This protocol offers strong privacy guar-
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antees, reduces reliance on third parties, and utilises a lightweight smart con-

tract.

• Our framework demonstrates how the two-party clearing protocol can seam-

lessly integrate within a federated learning architecture built upon the multi-

stage incentive mechanisms from Chapter 3. This integration fosters trust,

transparency, and adaptability and significantly reduces real-world settlement

risks.

• We empirically demonstrate that our framework outperforms conventional fed-

erated learning frameworks in various metrics.

The remainder of the chapter is structured as follows. In Section 4.2, we highlight

the preliminaries of our work. Section 4.3 describes our framework and analysis,

and Section 4.4 presents our implementation and performance evaluation. We will

conclude with future work in Section 4.5.

4.2 Preliminaries

This section introduces the notations, cryptographic building blocks and smart con-

tracts used in this chapter.

Cryptographic building blocks The FCH framework leverages cryptographic h-

ash functions and Merkle trees as its primary cryptographic primitives. A

hash function, denoted as H : {0, 1}∗ → {0, 1}µ, is a one-way mathematical

algorithm that maps data of arbitrary size to a fixed-length binary string (a

hash value) of length µ. To ensure the security and integrity of the FCH

framework, the hash function must satisfy specific properties:

• Collision Resistance: It should be computationally infeasible to find

two different inputs that produce the same hash value. This property is

essential to prevent tampering and ensure data authenticity within the

FCH framework. Specifically, it ensures that the data owner cannot forge

a fake dataset with the same hash value as the validation dataset locked

by the model owner, thereby guaranteeing the integrity of the model

validation process.
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• Hiding: The hash value should not reveal any information about the

original input data, protecting the confidentiality of sensitive information.

In the context of the FCH, this property ensures that the models and

validation datasets shared between the data owner and the model owner

remain private and cannot be inferred from the hash value. This means

that even if an attacker obtains the hash value, they cannot determine

the original data used to generate it.

• Binding: Once a hash value of a message is committed, it should be com-

putationally infeasible to find a different message that produces the same

hash value. This property guarantees the integrity of the commitments

made in the FCH framework. For example, if a data owner commits to

a training dataset using its hash value, they cannot later deny or change

their commitment. This ensures that all parties in the federated learning

process can trust the integrity of the data and the model.

In practice, these security requirements are typically met by well-established

hash functions such as SHA-256 or SHA-3 [79]. Our security analysis assumes

that the hash function H is modelled as a global random oracle H [80]. Let H

be a family of (t, ε), collision-resistant hash functions. A binding commitment

scheme is then constructed to input messages x. The algorithm to return

h ←−
µ

H is set as a public parameter. So, to submit x, h(x) needs to be

returned as the digest, and x needs to be returned as the decryption string. If

h(x) = c, the message x is a valid opening for c. A cryptographically secure

commitment scheme must satisfy the hiding and binding properties. Hiding

guarantees that c and c′ in any two messages x, x′ and c = Commit(x) and

c′ = Commit(x′) are computationally indistinguishable. The binding property

requires that it is computationally hard to find a c such that Open(c, x) = 1,

Open(c, x′) = 1, and x ̸= x′[81].

A Merkle tree[82], also known as a hash tree, is a fundamental cryptographic

building block in the FCH framework. It enables efficient and secure verifica-

tion of data integrity and consistency. A Merkle tree is a binary tree where

each leaf node is labelled with the cryptographic hash of a data block, and
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each non-leaf node is labelled with the cryptographic hash of its child nodes’

labels. This structure verifies the integrity of the entire dataset by checking

only a small portion of it. We utilise three key algorithms related to Merkle

trees in this chapter:

• Merkle Tree Hash (Algorithm 1): This algorithm recursively com-

putes the hash values of data blocks, ultimately producing a single root

hash representing the entire dataset.

Algorithm 1 Merkle Tree Hash MerkleTreeHash

1: function MerkleTreeHash(dataBlocks)

2: leafNodes ← [hash(block) for block in dataBlocks ]

3: while len(leafNodes) > 1 do

4: if len(leafNodes) % 2 == 1 then

5: leafNodes.append(leafNodes[-1]) ▷ Duplicate last node if

odd number

6: end if

7: intermediateNodes ← []

8: for i in range(0, len(leafNodes), 2) do

9: intermediateNodes.append(hash(leafNodes[i] + leafNodes[i

+ 1]))

10: end for

11: leafNodes ← intermediateNodes

12: end while

13: return leafNodes[0] ▷ Merkle root

14: end function

• Merkle Tree Proof (Algorithm 2): This algorithm generates a se-

quence of hash values (a Merkle proof) that can be used to verify the

presence and integrity of a specific data block within the tree.

Algorithm 2 Merkle Tree Proof MerkleTreeProof

1: function MerkleTreeProof(dataBlocks, blockIndex)
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2: proof ← []

3: currentIndex ← blockIndex

4: leafNodes ← [hash(block) for block in dataBlocks ]

5: while len(leafNodes) > 1 do

6: if len(leafNodes) % 2 == 1 then

7: leafNodes.append(leafNodes[-1]) ▷ Duplicate last node if

odd number

8: end if

9: if currentIndex % 2 == 1 then

10: proof.append(leafNodes[currentIndex - 1])

11: else

12: if currentIndex + 1 < len(leafNodes) then

13: proof.append(leafNodes[currentIndex + 1])

14: end if

15: end if

16: currentIndex ← currentIndex // 2

17: leafNodes ← [hash(leafNodes[i] + leafNodes[i + 1]) for i in

range(0, len(leafNodes), 2)]

18: end while

19: return proof

20: end function

• Merkle Tree Proof Verification (Algorithm 3): This algorithm

takes a root hash, a data block, and its corresponding Merkle proof to

ascertain whether the data block is indeed part of the dataset represented

by the root hash.

Algorithm 3 Merkle Tree Proof Verification MerkleTreeProofVerify

1: functionMerkleTreeProofVerify(rootHash, dataBlock, proof)

2: blockHash ← hash(dataBlock)

3: for siblingHash in proof do

4: if blockHash < siblingHash then

5: blockHash ← hash(blockHash + siblingHash)
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6: else

7: blockHash ← hash(siblingHash + blockHash)

8: end if

9: end for

10: return blockHash == rootHash

11: end function

By leveraging Merkle trees and their associated algorithms, the FCH frame-

work ensures the integrity and authenticity of data throughout the federated

learning process, strengthening trust and fairness within the system.

Smart contracts Smart contracts are self-executing programs stored on a block-

chain that automatically enforce the terms of an agreement when predeter-

mined conditions are met. In the FCH framework, smart contracts play a

pivotal role in facilitating secure and transparent transactions between data

owners and model owners. These contracts automate the settlement process,

ensuring that rewards are disbursed only when the agreed-upon performance

criteria are met. By leveraging smart contracts, the FCH framework minimises

the need for intermediaries, reduces transaction costs, and enhances federated

learning collaborations’ overall efficiency and trustworthiness.

Ethereum[83], a prominent public blockchain ecosystem, supports smart con-

tracts. It provides a robust infrastructure for deploying and executing smart

contracts. Ethereum’s Solidity programming language enables the develop-

ment of flexible and secure smart contracts tailored to the specific require-

ments of the FCH framework. Executing smart contracts on the Ethereum

network requires the payment of transaction fees, also known as ”gas.” This

gas compensates the miners the miners who validate and add transactions to

the blockchain. Each operation within a smart contract consumes a certain

amount of gas, and the total gas cost of a transaction depends on the complex-

ity of the contract’s logic and the current network congestion. The exchange

rate between Ether (ETH), the native cryptocurrency of Ethereum, and gas

fluctuates based on market demand.

By leveraging the decentralized and trustless nature of the Ethereum block-
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Notation Description

k Training stages, k = 1, · · ·K.

Mek The effort committed by the model owner at stage k

Dek The effort committed by the data owner at stage k

Pk(Mek, Dek) The probability of successful training at stage k

C(Mek) The effort cost of the model owner at stage k

C(Dek) The effort cost of the data owner at stage k

Vk The incremental value of the model after stage k

Mk The market value of the model at stage k

Ik The data owner’s costs at stage k

DRk Total expected revenue of the data owner from stage k to K

MRk Total expected revenue of the model owner from stage k to K

Rk The reward received by the model owner if training success at stage k

Ok The training objects at stage k

Table 4.1: Glossary of Key Mathematical Notations (Chapter 4)

chain and the flexibility of smart contracts, the FCH framework ensures the

secure and transparent execution of federated learning collaborations, mitigat-

ing the risks associated with traditional centralized systems.

Notation. Table 4.1 lists the notations commonly used in this chapter for ease of

reference.

4.3 The Fair Clearing House Framework

Our proposed framework introduces a multi-stage federated learning scheme incor-

porating a secure two-party reward-clearing protocol. This approach diverges from

existing methods by dynamically allocating training incentives to federated learning

participants at different stages. These incentives, defined in the training contract,

serve to minimize unethical behaviour and optimize training results. Simultaneously,

based on a smart contract, the secure two-party reward-clearing protocol ensures fair

settlements between the model and data owners upon training completion. In this

68



context, we define Fair Clearing for federated learning as follows:

Definition Fair Clearing refers to an incentive mechanism that discourages un-

ethical behaviour among participants in a federated system. Predetermined rewards

motivate participants to contribute their best efforts and achieve optimal training

results. At the same time, participants can settle for optimized rewards based on

their contributions and efforts within the program.

Our framework must ensure the following security properties to meet this fair clear-

ing definition:

i Data owner fairness Honest data owners must be confident that rewards are

issued only for models that meet the agreed-upon performance criteria at each

stage of the process.

ii Model owner fairness Honest model owners must be assured that they will

receive the agreed-upon rewards for models that successfully meet the perfor-

mance criteria at each stage.

iii Termination If at least one party is honest, the contract can be terminated

after a limited number of rounds, ensuring the release of any remaining funds

locked in the smart contract.

To achieve fair clearing in federated learning, our FCH framework leverages a smart

contract as a neutral arbitrator. This arbitrator oversees the settlement process

to determine whether the trained model satisfies the contract metrics. The proto-

col operates as follows: if the trained model passes a test on a random validation

dataset, the model owner receives the contract rewards, and the data owner obtains

the trained model. If not, the data owner does not receive the updated model, but

they recover the unallocated rewards, and the federated learning contract automat-

ically terminates. We do not perform the validation process to minimise the cost

of executing the smart contract on the blockchain. Instead, we delegate the task

of validating the model’s results on the validation dataset to the model and data

owners. The arbitrator only needs to compare the test result provided by the model

owner with the true value provided by the data owner to determine the outcome.

The workings of our framework are illustrated in Figure 4.2.
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Figure 4.2: FCH Framework Workings

Before collaborating, the data and model owners must agree on critical initialisation

information for the training contract. This information includes the number of

training stages K, rewards for each stage Rk, model performance goals Ok, and the

validation dataset Datak used for model acceptance.

The above parameters are stored in the arbitrator contract during the initialisation

stage. The arbitrator also locks the
∑K

1 Rk coins in the data owner’s account.

The data owner and the model owner then start the federated learning process. At

the end of each stage, both participants complete a fair settlement of the latest

model, where rewards are issued for a successful training stage via a lightweight

two-party clearing protocol. This clearing protocol, managed by the arbitrator, will

exit after K loops or a failed training stage.

4.3.1 The Multi-stage Incentive Mechanism

The foundation of the FCH framework rests upon a multi-stage incentive mecha-

nism introduced and analyzed in Chapter 3. This mechanism addresses the critical

challenge of aligning incentives between data owners and model owners to foster a

fair and trustworthy collaborative environment in federated learning.

In this context, the data owner acts as the principal, seeking to leverage the expertise

of the model owner (the agent) for model training. However, information asymmetry,
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where the data owner cannot directly observe the model owner’s effort levels, creates

opportunities for the model owner to shirk responsibility or submit subpar models.

To counteract this risk, the mechanism strategically divides the federated learning

process into distinct stages. Each stage is associated with specific, verifiable train-

ing objectives and corresponding rewards. By tying compensation to the successful

achievement of these objectives, the mechanism incentivizes the model owner to

invest optimal effort throughout the entire training process. This dynamic reward

structure aligns the interests of both parties, promoting collaboration and discour-

aging opportunistic behavior.

Moreover, the mechanism incorporates verifiable contribution measurements, allow-

ing for the objective assessment of the model owner’s contributions at each stage.

This ensures fair and equitable reward allocation, mitigating the risk of free-riding

and bolstering trust between participants.

The analysis conducted in Chapter 3 reveals a key insight: in a federated learning

scenario led by the data owner, the optimal incentive scheme involves allocating a

significant portion of the incremental value generated by the model to the model

owner. This front-loading of rewards not only incentivizes the model owner to exert

greater effort in the earlier stages but also ensures the success of subsequent stages,

ultimately leading to a higher-quality final model for the data owner. By prioritizing

the return on investment for the model owner in later stages, the data owner min-

imizes the overall cost of incentivization while maximizing the value derived from

the collaboration.

To formalize this mechanism, we model the interaction between the data owner and

the model owner as a multi-stage federated learning game. The data owner acts as

the buyer of the trained model, and the model owner is the seller. Both participants

agree to K training stages, with the understanding that the contract concludes if

training fails at any stage.

At each stage k, the data owner and model owner invest efforts Dek and Mek

respectively. The success of the training at each stage, represented by the probability

Pk(Mek, Dek). And the probability of success increases with higher effort from both

parties but exhibits diminishing returns. The cost of efforts C(Mek) and C(Dek)
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increases as the effort levels rise.

In the event of a successful training outcome at stage k, the data owner receives an

improved model with an incremental value of Vk (a pre-agreed constant), and the

process continues to the next stage. The total expected profit for the data owner

and model owner from stage k to K is denoted as DRk and MRk respectively. A

successful training at stage k results in a reward Rk paid by the data owner to the

model owner.

Prior to training, the data owner and model owner agree on key parameters like

the number of stages K, stage objectives Ok, and rewards Rk. At the end of each

stage, they jointly verify the training outcome. If the outcome meets or exceeds the

objective Ok, the data owner rewards the model owner with Rk and receives the

updated model. Otherwise, neither party gains for that stage.

Under the contract, the model owner seeks to maximize their expected payoff MRkby

selecting the optimal effort Mek
∗, while the data owner aims to maximize their gain

DRk by choosing the optimal effort Dek
∗. These efforts incur costs C(Mek) and

C(Dek), regardless of training success.

The profit of the data owner and the model owner can be formulated as follows:

DRk = Pk(Mek, Dek)[Vk −Rk + DRk+1]− C(Dek), k = 1, · · · , K (4.1)

MRk = Pk(Mek, Dek)[Rk + MRk+1]− C(Mek), k = 1, · · · , K (4.2)

For a comprehensive understanding of the mathematical model underpinning this

mechanism and its intricate details, including contract feasibility analysis and opti-

mality conditions, please refer to Chapter 3.

The Two-party Clearing Protocol

To facilitate the fair and secure settlement of rewards and model exchange within the

FCH framework, we introduce a novel two-party clearing protocol that leverages the

underlying blockchain infrastructure and smart contracts. This protocol, illustrated
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in Figure 4.3, is executed at the end of each training stage to clear the updated model

and reward. The arbitrator assesses the information from both participants against

the pre-defined contract conditions and finalizes the clearing process as agreed.

The protocol comprises the following rounds, which either loop K times or end if

the training fails:

Round 1: The model owner encrypts the model using secret key zi and sends the

ciphertext to the data owner. Simultaneously, the model owner sends the

commitments of key zi to the arbitrator.

Round 2: The data owner transmits the validation dataset Di to the model owner

and the true labels of Di to the arbitrator.

Round 3: The model owner checks the integrity of Di. If valid, the model owner

runs the latest model on the validation dataset, obtains the validation labels

of Di, and sends them to the arbitrator. Otherwise, a ”Complain” message is

sent to the arbitrator.

Round 4: The arbitrator compares the true and validation labels to verify the

cooperation results. If successful, the arbitrator sends reward Ri to the model

owner. If not, the arbitrator unfreezes the unallocated rewards and terminates

the contract.

Round 5: Upon receiving the Ri coins, the model owner reveals key zi to the data

owner, completing the model clearing and reward distribution for the current

stage.

Additional rounds are included to handle exceptions within the protocol. Suppose

a participant aborts during the protocol’s execution. In that case, the counterparty

can submit a ”finalize” request to the arbitrator, who will either unfreeze the data

owner’s unallocated rewards or allocate compensation to the model owner, depend-

ing on the exit point of the departing participant. The arbitrator can also address

complaints about incorrect data by comparing the proof of misbehaviour provided

by the model owner with the data owner’s data integrity commitments.
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Figure 4.3: Outline of Two-party Clearing Protocol
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Figure 4.4: Validation Datasets Selection

The Validation Datasets

A fair clearing process requires the model and data owners to reach a consensus

on the test datasets used to validate the model’s performance. Two conditions are

vital: the datasets must be ’known but fresh’ to the model owner, who must trust

the datasets but only access them during the validation phase. Additionally, the

datasets must be ’read-only’ to the data owner, who knows the details of the test

datasets but cannot modify them or decide which datasets are used in the model

acceptance phase.

Figure 4.4 provides a high-level design for selecting the validation datasets, with the

protocol specifications below:

The protocol describes the behaviour of the honest model owner (MO) and data

owner (DO).

Initialise

DO: The data owner randomly divides the training data into m groups,

removing the actual labels. Each group consists of an un-
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labelled training dataset Datam and a corresponding label set

TrueLabelm. The data owner then creates an array D =

{Commit(Datai) ∥ Commit(TrueLabeli), i ∈ (1, 2, ...,m)} containing all

dataset commitments and proceeds to the Consensus phase.

Consensus

DO: The data owner sends array D to the model owner and proceeds to the

Finalisation phase.

MO: Upon receiving array D, the model owner randomly selects

K commitment sets to create a commitment array V Di =

{Commit(Di) ∥ Commit(TDi), i ∈ (1, 2, ..., K)} of validation datasets.

The model owner sends array V D to the data owner and proceeds to the

Finalisation phase.

Finalisation

DO: Upon receiving array V D, the data owner removes the selected test data

from the training data, ensuring the model owner is not exposed to the

test data in early training phases.

MO: The model owner posts array V D to the blockchain.

The method establishes test datasets that both the data owner and model owner can

accept. The data owner can trust the validation results since they initially provided

the datasets. The method also ensures that the model owner cannot access the

data until the validation period. The model owner is comfortable since the test

datasets come from the original training datasets and contain the same categories.

Upon receipt, both parties can verify dataset integrity by comparing them to the

pre-existing commitment information in the smart contract. If the model owner can

prove the received test datasets are incorrect, they can use the complaint process to

obtain compensation.
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4.3.2 Security Analysis

In the beginning of this section, we defined the security properties of the framework.

Analyzing this security protocol provides insight into why neither party should be

able to break the other’s fairness properties.

Model owner fairness: Fairness for the model owner means that the data owner

should only be able to access the latest model after rewarding an honest model

owner. From the secrecy property of the encoding scheme and the hiding

property of the hash commitment, it is clear that the data owner cannot

decrypt the latest model from the ciphertext until the model owner reveals

the decryption key. When the model owner publishes the decryption key, the

reward coins R will be frozen for clearing by the arbitrator. At this point,

the contract’s settlement process has been initiated. An honest model owner

is guaranteed to be rewarded if the training is successful, even if the data

owner aborts. Furthermore, we need to show that the data owner cannot

forge commitments so that the data owner’s sending of the wrong verification

dataset appears honest and that the forged commitments are acceptable to

the arbitrator. Informally, forging such a hash commitment on an erroneous

validation dataset is impossible unless the data owner finds a collision in the

hash function H.

Data owner fairness: After the data owner activates the training contract, the

reward coins are frozen for further reward allocation. To prove the Fairness

of an honest data owner, we must show that the model owner cannot send a

forged set of verification labels to satisfy the contract conditions. To success-

fully execute such an attack, the model owner must know the contents of real

labels from the hash commitments. The probability that the model owner can

forge the validation labels that match the real ones is negligible, as it would re-

quire the model owner to break the collision resistance of the underlying hash

function. Thus, the data owner can be guaranteed that, once the validation

process is underway, they will either receive a successfully trained model or be

able to retrieve the unallocated rewards.

Termination The clearing protocol will terminate after four or five rounds per

77



stage, depending on whether the training succeeds or fails. With an active

arbitrator contract and at least one honest participant, we can get an overview

of the protocol termination by analyzing the following cases:

No abort: This case occurs when both participants are acting in good faith.

In this case, if the training is successful in every stage, the clearing pro-

tocol ends after the fifth round of stage K when the model owner sends

the key ZK to the data owner. Otherwise, the protocol ends after the

fourth round of the failed stage and unfreezes the data owner’s unallo-

cated reward coins. Additionally, if the model owner complains about the

integrity of the validated datasets, the protocol allows the model owner

to complain in the third round. Suppose the arbitrator contract confirms

that the complaint is valid based on proof provided by both participants.

In that case, the data owner’s frozen reward coins will be allocated to

the model owner as compensation, and the protocol will then be termi-

nated. Otherwise, the complaint is rejected, and the settlement process

continues.

The model owner aborts: After the previous clearing stage has been com-

pleted, or the data owner has sent out the validation datasets for the

current stage, the model owner has no further response. The data owner

can send a ”Finalise” message to the arbitrator contract. If the contract

status is confirmed to meet the termination conditions, the data owner’s

undistributed reward coins will be unfrozen, and the protocol will be

terminated.

The data owner aborts: If the data owner fails to respond after the model

owner sends the encrypted model for validation, the model owner has the

option to send a ”Complain” message to the arbitrator contract. Once

the arbitrator verifies that the conditions for the complaint are satisfied,

the frozen reward coins belonging to the data owner will be released to

the model owner as compensation. Following this, the protocol will be

terminated.
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4.4 Implementation and Performance

In this section, we evaluate our framework and compare its performance to other

existing frameworks.

4.4.1 Contract Optimality and Baseline

Suppose a data owner and a model owner engage in a federated learning task

after an initial negotiation where they anticipate implementing the entire learn-

ing goal in 3 stages (i.e. K = 3). If successful, each stage assumes that the

model’s incremental value to be V1 = 1, V2 = 2 and V3 = 3. It is also as-

sumed that the functional expression for the probability of success in each stage is

Pk(Mek, Dek) = MIN(0.6(Mek +Dek), 1). As we will see later, the equilibrium ef-

fort satisfies 0.6(Mek
∗+Dek

∗) < 1, so we can count Pk(Mek, Dek) = 0.6(Mek+Dek).

We also assume that the effort cost of the model owner’s function is C(Mek) = Mek
2

and the effort cost of the data owner’s function is C(Dek) = Dek
2.

In considering contract optimality, we must first derive the utility function for the

model owner:

mrk = 0.6(Mek + Dek)(Rk + mrk+1)−Mek
2, k = 1, 2, 3,

mr4 = 0.

Taking the utility function for each stage and deriving it to its effort level determines

the optimal effort yield for the model owner:

Mek
∗ =

∂mrk
∂Mek

= 0.3(Rk + mrk+1) k = 1, 2, 3.

Repeating the same approach, we can derive the utility function of the data owner

and their optimal effort:

drk = 0.6(Mek + Dek)(Vk −Rk + drk+1)−Dek
2, k = 1, 2, 3,

dr3 = 0, dr4 = 0.

Dek
∗ =

∂drk
∂Dek

= 0.3(Vk −Rk + drk+1) k = 1, 2, 3,
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De3 = 0.

We can get the optimal rewards yielded for the model owner, calculated by recurring

the above equations and the derivative of the data owner’s payoff dr1 with respect

to the reward R2
∗:

R1
∗ = 0, R2

∗ = 0.41, R3
∗ = 3,

Here, the probabilities of success are

P1(Me1
∗, De1

∗) = 0.37, P2(Me2
∗, De2

∗) = 0.51, P3(Me3
∗, De3

∗) = 0.54.

The total incentive the data owner pays to the model owner is
∑3

k=1 Rk
∗ = 3.41.

We set this is the baseline for comparison with existing frameworks.

4.4.2 Comparison with Existing Frameworks

We take the optimal incentive value discussed in the previous section as a pre-

condition and observe the differences in the value of the model owner’s effort, the

probability of a successful federated learning process, and the expected payoff of the

data owner between the frameworks, conditional on the data owner paying the same

total incentive.

Offer Rewards framework In this framework, the data owner rewards the model

owner prior to training, and the reward has no relationship to the success of

the training. In this simulation, we set the rewards the model owner receives

before the training stages to 11, 1.205, and 1.205.

Share Profits framework In this framework, the data owner shares the incremen-

tal value of the trained model with the model owner after successful training.

The total reward the data owner provides, i.e., 3.41, is assumed to be ex-

changed for the model with a total increment value of 6. In other words, the

total reward the model owner receives is 57% of the total increment model

value. Hence, we set the rewards received by the model owner after each

successful training stage to 0.57, 1.14, and 1.71.

1Since the stage 1 added model value is 1, it is logical that the maximum reward offered by the

data owner is 1 before the first stage.
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Figure 4.5: Comparison of Model Owner Effort Value Across Frameworks

Sharply Value framework A Shapley value is a utility assessment method based

on marginal contributions, where the rewards are distributed purely based on

the contributions provided by the participants. Since our scenario simplifies

the participants to two parties, the model owner and the data owner each

receive the same Shapley value. In other words, the data owner rewards half

of the increment value of the model to the model owner. In the simulation,

we set the model owner to receive the rewards of 0.5, 1, and 1.5 after each

successful training stage.

We obtained the following results from our simulations:

1. Figure 4.5 displays the variation in unobservable effort values of model owners

affected by rewards in different frameworks. The distribution of effort values

across stages demonstrates that the FCH framework has the advantage of

reducing the impact of unethical behaviour on an incentivized objector. The

model owner’s effort continues to grow despite the gradual increase in training

difficulty stage by stage. Most importantly, in the third stage, which is the

most challenging and where the model’s value increases the most, the model

owners’ effort far exceeds those of the other frameworks. It has a crucial impact

81



Figure 4.6: Comparative Analysis of Training Success Probabilities Across Different

Frameworks

Figure 4.7: Comparative Analysis of Expected Payoffs for Data Owners Across

Different Frameworks
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on ensuring that the federated learning scheme produces optimal results.

2. Figure 4.6 presents the reward influenced success probability for different

frameworks. The FCH framework outperforms the other frameworks regard-

ing success probability in each stage, especially in the most challenging third

stage. This result directly relates to the model owners’ strong efforts in the

final training stage. We observe that the Offer Rewards framework flattens in

the final stage. We believe this is because the model owner receives all her

rewards before that stage. Thus, a self-interested and opportunistic model

owner will no longer invest much effort, which may prevent an optimal result

from the scheme.

3. Figure 4.7 illustrates the expected payoffs for the data owner in different frame-

works. The FCH framework yields the highest return for the data owner.

The potential return to the data owner is the lowest in the Offer Rewards

framework. Federated learning is a high-risk collaboration. Paying rewards

in advance weakens the model owner’s contributions and can lead to failed

training.

Our framework mitigates unethical behaviour associated with information asymme-

tries, such as opportunism and self-interested acts, within federated learning sys-

tems. Moreover, it motivates participants to invest optimal efforts into training,

confirming the intuition behind our model: success in later stages relies on success

in earlier stages. Thus, rewards in the later stages motivate efforts in the earlier

stages. Additionally, our experimental data demonstrate that the data owner needs

to return as much value created by the model owner’s effort in the later stages. It

is the least costly incentive scheme.

4.4.3 Potential Applications of The FCH Framework

The rise of federated learning techniques has enabled more small and medium-sized

organizations to collaborate on modelling through an open federated learning mar-

ketplace, which was once the prerogative of mega-companies with vast amounts of

data. This marketplace fosters collaboration between data and model owners, al-

lowing them to work on machine-learning projects while preserving data privacy. In
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this marketplace, data owners and model owners exchange rewards and trained mod-

els under the FCH framework via smart contract technology, ensuring secure and

transparent transactions. In manufacturing and financial sector case studies, mul-

tiple companies and financial institutions partner with specialized firms to develop

predictive maintenance and fraud detection models. Organizations can leverage

shared expertise, maintain data privacy and intellectual property protection, and

receive rewards through secure and automated smart contracts by participating in

the federated learning market.

4.5 Conclusion and Chapter Discussion

This chapter has presented the Fair Clearing House (FCH) framework, a novel ap-

proach designed to address the challenges of incentive alignment and trust-building

in data-owner-led federated learning scenarios. Our framework builds upon the

multi-stage incentive mechanism introduced in Chapter 3, which leverages contract

theory to analyze unethical behavior and derive optimal incentive contracts. This

mechanism, characterized by allocating the incremental value of the model primarily

to the model owner in later stages, fosters collaboration and minimizes costs for the

data owner.

In addition to incorporating this incentive mechanism, the FCH framework intro-

duces a secure two-party clearing protocol built on a smart blockchain contract.

This protocol ensures fair and transparent settlement between the model and data

owners, guaranteeing the secure exchange of models and rewards. Through exten-

sive experimental evaluation, we demonstrated the superior performance of the FCH

framework compared to conventional federated learning approaches, such as ”Offer-

Rewards,” ”Share-Profits,” and ”Shapley-Value” frameworks. Our results highlight

the effectiveness of the FCH in optimizing participant efforts and reducing unethical

behavior in data-owner-led federated learning systems.

While this chapter presents a significant advancement in addressing challenges in

federated learning, several avenues for future research remain. Our current work

assumes that all participants act honestly. However, in real-world scenarios, mali-

cious actors may attempt to exploit the system for their own gain. Future research
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should investigate strategies to detect and mitigate malicious behavior in federated

learning environments, ensuring the robustness and security of the FCH framework

even in the presence of adversarial participants.

Additionally, our focus has been on data-owner-led federated learning. It would

be valuable to explore the performance and characteristics of the FCH framework

in model-owner-led scenarios. Comparing the effectiveness of different leadership

structures in federated learning could lead to a deeper understanding of optimal

strategies for various applications.

In conclusion, the Fair Clearing House (FCH) framework offers a promising solution

for addressing the challenges of incentive design and unethical behavior in data-

owner-led federated learning scenarios. By leveraging contract theory and blockchain

technology, our proposed framework provides a robust, secure, and fair solution for

optimizing participant efforts and reducing unethical behavior. Future research

efforts should build upon this foundation to explore the aforementioned extensions,

ultimately advancing the field of federated learning and its real-world applications.
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Chapter 5

Reciprocal Federated Learning:

Balanced Incentives for Model &

Data Owners

5.1 Introduction

In an era increasingly dominated by artificial intelligence, machine learning has

emerged as a transformative force across various domains, including the rapidly ad-

vancing fields of Web 3.0 and digitalized industrial applications within the 5G/6G

communication landscape. While these next-generation technologies offer enhanced

security, decentralized data management, and seamless connectivity, they create a

unique paradox. These technologies often demand vast amounts of data to fuel the

potential of artificial intelligence and machine learning. However, Web 3.0’s decen-

tralized architecture, coupled with the high-speed, low-latency communication of

5G/6G, fosters an environment where data is produced at unprecedented volumes

and distributed across many devices and networks. This landscape complicates

traditional data collection approaches for centralized machine learning and raises

significant privacy concerns. This clashes with the heightened privacy concerns and

decentralized data ownership paradigms that characterize Web 3.0’s ethos[84]. To

fully harness machine learning’s transformative potential within this new technolog-

ical paradigm while respecting privacy, federated learning[85] provides a compelling
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solution. It allows models to be trained collaboratively on distributed data without

compromising individual data ownership.

The key to the success of federated learning is to ensure the active participation of

all parties, including data owners who provide training data and model owners who

develop and refine models. Despite extensive research on incentives in federated

learning, a significant gap remains in developing a system that fairly and effectively

incentivizes both model and data owners. Traditionally, incentives were primarily

designed by the model owner, who possesses extensive modelling experience and ca-

pabilities, focusing on their perspectives and interests. While these incentives have

effectively promoted contributions, performance, and privacy preservation from data

owners, their crucial perspectives are often overlooked. Such approaches struggle to

quantify the model owner’s value-added in refining the model, especially in scenar-

ios where data owners significantly influence incentive allocation and have strong

bargaining power over the terms of the process and potential capital investment.

Furthermore, these frameworks fail to properly address the alignment between par-

ticipants’ expected and actual returns, leading to potential disparities in incentive

distribution and participation equity.

In Chapter 1, we presented a scenario where healthcare providers, often lacking deep

machine learning expertise, formed a data owners alliance. This alliance collaborated

with specialized machine learning entities, or model owners, to develop advanced

predictive analytics for personalized care. The alliance contributed funds to reward

model owners and also bore the cost of collecting and processing vast amounts

of data. In exchange, model owners provided expertise to create powerful models

capable of processing diverse data streams and detecting health patterns.

Due to the cautious nature of healthcare, a federated learning approach with care-

fully structured incentives was necessary to mitigate the uncertainty of achieving

optimal model outcomes. Given the limited technical expertise among data owners,

fair incentives for model owners were crucial, even though their efforts might not

be immediately apparent. Data owners also faced the challenge of proving that the

value of their data matched their expected contributions.

Addressing these multifaceted challenges, This chapter introduces the Reciprocal
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Federated Learning Framework (RFLF), a groundbreaking approach designed to

motivate model and data owners equitably within federated learning environments.

This framework, the centrepiece of our contribution, pioneers a novel reciprocal in-

centive design that dynamically aligns contributions with rewards, designed to moti-

vate contributions across the collaborative process. It tackles information asymme-

try and directly integrates financial investments into the dynamic rewards structure.

Critically, the RFLF accommodates the reality of heterogeneous data contribution

among collaborating data owners, recognizing that capital can play a vital role in

ensuring equity and participation. The contribution of this chapter is as follows.

• Pioneering Equitable Incentives: Introduced RFLF to fundamentally re-

shape incentive structures in collaborative machine learning. This ground-

breaking framework balances rewards and contributions, motivating the model

and data owners within the federated learning paradigm.

• Unraveling Incentive Complexity: Employed analytical models to dissect

the complexities of optimizing incentives within the RFLF. This analysis deep-

ened the understanding of the relationships between data quality, quantity, and

the balance of power between model and data owners.

• Empirical Validation: Proved the RFLF’s effectiveness through rigorous

evaluations with the MNIST and CIFAR-10 datasets. This practical demon-

stration shows the framework’s ability to enhance model performance and

foster strong, equitable participation in real-world federated learning scenar-

ios.

This chapter offers a comprehensive exploration of our contributions and findings.

Section 5.2 provides the necessary background and terminology for understanding

our framework. Section 5.3 clearly defines the problems our solution tackles. Section

5.4 demonstrates the real-world practicality of our contractual framework. Section

5.5 analyzes the optimality of our proposed contracts in RFLF. In Section 5.6,

empirical evaluations rigorously test our framework’s performance on established

datasets. Finally, Section 5.7 summarizes key takeaways, discusses the significance

of our work, and suggests areas for future investigation.
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5.2 Preliminaries and Notations

5.2.1 Definitions of Key Notations

The table 5.1 below outlines key notations used in this chapter, crucial for under-

standing the mathematical modelling and subsequent analysis of the RFLF.

5.2.2 Proposed Framework

Our framework adopts a structured, multi-stage federated learning approach, thor-

oughly evaluating outcomes at each stage to allow for efficient resource allocation.

This design addresses challenges commonly associated with large-scale machine

learning projects, such as misalignment of objectives and resource inefficiencies,

and distributes the associated risks among all participants.

Given the prevalent privacy considerations in federated learning, involving a direct

third-party mediator for settlements may be costly or impractical. Therefore, the

smart contract is employed within the RFLF as a decentralized, transparent, and

automated solution for secure and fair transactions. This contract eliminates the

need for a third-party intermediary by directly managing settlements and dispute

resolutions within the framework, ensuring that all transactions and interactions are

conducted equitably and in compliance with the privacy needs inherent to federated

learning. The operational role of the smart contract, including its facilitation of

settlements and the resolution of disputes, will be detailed in subsequent sections of

this chapter.

To illustrate the operational mechanics of the RFLF, Figure 5.1 highlights the pivotal

role of a smart contract within the framework’s workflow.

• Training Contract Initialization: The alliance of data owners, represented by

D and consisting of N members, collaborates with the model owner M , a fed-

erated machine learning expert. They establish a smart contract to orchestrate

the K -stage federated learning. This contract outlines key training aspects,

including the predefined number of collaboration stages K, the performance

benchmarks for each stage, and the set reward for the model owner at each

stage Rk. When activated, the smart contract secures the funds deposited by
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Symbol Description

N Total data owners in the alliance.

i Index for individual data owners, i ∈ N .

K Total planned stages in federated learning.

k Specific stage in the process, 1 ≤ k ≤ K.

UD,k Data owners’ alliance utility projection from stage k to

K.

UM,k Model owner’s cumulative utility forecase from stage k

to K.

Ui,k Expected utility for data owner i at stage k.

Pk(Mek) Probability of successful training at stage k, based on

model owner’s effort Mek.

Rk Reward for model owner upon successfully completing

stage k.

C(Mek) Operational costs for model owner at stage k.

Vk Additional value generated for the model after successful

training at stage k.

bi Data owner i’s stake in the collective model.

Sk
i Data contribution of data owner i during stage k on

model improvement.

BBFk Allocated funds for buying back data contributions at

stage k.

c(ski ) Incurred cost by data owner i for data contribution at

stage k.

wi Weight parameter representing the relative importance

of data owner i.

Table 5.1: Glossary of Key Mathematical Notations (Chapter 5)

the data owners. These funds are reserved to remunerate the model owner and

buy back the data contributions from each data owner at every stage. The

proportion of the deposited funds each data owner provides aligns with their

respective shares in the trained model.
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Figure 5.1: Reciprocal Federated Learning Framework

• Initial Model Distribution: As each stage commences, the model owner dis-

seminates the foundational model to all participating data owners, ensuring a

consistent starting point.

• Local Training: Leveraging their individual data sets, data owners enhance

the given model on their respective local systems. This distributed approach

ensures data confidentiality.

• Model Parameters Upload: Data owners forward their refined model parame-

ters to a central repository after local training. The model owner consolidates

these submissions to achieve an integrated model perspective.

• Model Update and Contribution Analysis: The model owner updates the model

using the combined parameters. Concurrently, the contributions of each data

owner are assessed, highlighting their specific contributions.

• Model Redeployment: Ready for the next rounds, the model owner dissemi-

nates the augmented model to all data owners. This repetitive methodology

promotes consistent model improvement.

• Stage Settlement: The stage is declared complete upon completing the desig-

nated objectives. The smart contract facilitates the settlement between the
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collaborating parties: the data owners’ alliance and the model owner. The

updated model, enriched with the added value Vk, is transferred to the al-

liance, while the model owner receives the previously agreed-upon rewards

Rk. Additionally, compensation for data contributions BBFk is distributed to

the alliance members based on a buy-back mechanism that is proportional to

the extent of their individual contributions Sk
i , as outlined in the contribution

analysis. If the established criteria are met, and the current stage does not

represent the final phase, the process is designed to return to the initial steps

for a new cycle. However, if the criteria are not satisfied or the final stage has

been reached, the collaborative effort is concluded, any remaining deposits are

refunded, and the smart contract is subsequently terminated.

5.2.3 Assumptions

The proposed framework is guided by several fundamental assumptions designed to

simplify the understanding of its key components. These assumptions facilitate a

straightforward analysis of the framework’s performance by delineating clear condi-

tions and behaviours expected from participants. By establishing these assumptions,

we aim to clarify the operational dynamics of the RFLF and highlight the mecha-

nisms that drive reciprocal benefits among participants:

1. Risk Neutrality and Non-malicious Behavior:

It is assumed that all participants, both data owners and the model owner,

are risk-neutral and act without malicious intent. This simplification allows

the analysis to focus on the strategic decisions and interactions that underpin

the framework without the need to model complex behaviours related to risk

aversion or malicious actions. This assumption ensures a focused exploration

of how incentives and cooperative dynamics contribute to the framework’s

goals.

2. Stage-Based Training with Success Criteria:

The training process is structured into Kstages, with each stage’s completion

being contingent on meeting predefined success criteria. This structured ap-

proach ensures that the model’s development progresses systematically and
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that specific performance benchmarks are achieved at each stage.

3. Model Owner’s Effort and Impact:

The effort exerted by the model owner in stage k is represented as Mek. As-

suming this effort is an independent and non-negative variable indicates that

any increase in the model owner’s algorithmic refinement is expected to im-

pact the model’s performance positively. This assumption highlights the direct

correlation between the model owner’s effort and the model’s improvement.

4. Success Probability and Diminishing Marginal Returns:

The probability of successful training in stage k is represented as Pk(Mek),

which is bounded between 0 and 1. The success probability function satisfies

1 ≥ Pk(Mek) ≥ 0, with a positive first derivative ∂Pk(Mek)
∂Mek

> 0 and a negative

second derivative ∂2Pk(Mek)
∂2Mek

< 0. This implies that while increased effort Mek

enhances the likelihood of success, it offers diminishing returns.

5. Effort-Related Costs and Marginal Costs for Model and Data Own-

ers:

• The Model Owner: Costs incurred due to the model owner’s efforts are

represented by C(Mek). We assume:

– Increasing Marginal Costs: ∂C(Mek)
∂Mek

> 0, meaning the cost increases

with higher levels of effort.

– Diminishing Returns on Effort: ∂2C(Mek)
∂2Mek

< 0, indicating that the

rate of cost increase slows down as effort increases. This captures the

intuition that initial effort may have a large impact, but subsequent

increases in effort yield smaller gains.

• Data Owner i: We consider a broad notion of effort for data owners,

encompassing costs associated with data collection, preparation, and po-

tentially transmission. For data owner i, these costs are represented by

c(Sk
i ). We assume:

– Increasing Marginal Costs:
∂c(Sk

i )

∂Sk
i

> 0, meaning cost increases with

greater contributions.

93



– Diminishing Returns on Contributions:
∂2c(Sk

i )

∂2Sk
i

< 0, indicating that

the rate of cost increase slows down as contributions increase. This

can reflect scenarios like acquiring initial data being easier than ob-

taining increasingly rare or specialized data.

6. Stage Completion and Model Value Increment:

Assuming successful completion of the kth stage of federated learning, the

market value increment of the model post-training is indicated by Vk. This

assumption captures the financial gains associated with successful model de-

velopment, highlighting the economic incentives driving the federated learning

process.

7. Pre-defined Rewards and Buy-Back Funding:

The reward Rk and the buy-back funding BBFk for each stage k are predeter-

mined at the project’s onset. This assumption ensures financial predictability

and stability within the framework, allowing for consistent planning and bud-

geting throughout the project.

By elucidating these assumptions, the framework’s foundational principles are made

accessible, supporting an intuitive grasp of the RFLF’s design and its intended ben-

efits. This approach ensures that the innovative aspects of the framework, particu-

larly those related to fostering equitable and reciprocal collaborations, are commu-

nicated and understood.

5.2.4 Reciprocal Relationship between Model and Data Own-

ers

The RFLF fosters a ’reciprocal’ relationship between data and model owners, wherein

both parties are incentivized to improve model performance Xk in stage k through

their respective contributions. This performance is mathematically represented as a

function of data owner contribution Dk and model owner contribution Mk[20], [86]:

Xk = 1− e−ϕ(Dk,Mk)
ν

Here, Parameters ϕ and ν regulate the impact of the participant’s contribution on
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model performance, reflecting the diminishing returns of additional contributions.

Improved performance directly translates to higher added economic value Vk, calcu-

lated as:

Vk = θ × (Xk −Xk−1)

where θ is the scaling parameter converting model performance into economic value.

Thus, the contributes of both parties synergistically enhance the model’s perfor-

mance and value, fostering a mutually beneficial environment.

Within the RFLF framework, data owners obtain the total economic value of the

final model through the model ownership transfer mechanism, directly benefiting

from the value created by the federated learning process. Therefore, the model

owner’s effort, which directly impacts model performance, indirectly influences the

economic value added to the model and, consequently, the data owners’ payoff.

The model owner’s reward (Rk) in the RFLF framework is contingent on achiev-

ing the pre-defined performance goal for each stage. Optimized data contribution

efforts by data owners aid the model owner in improving the model’s performance,

thus increasing the likelihood of reaching the stage goal. Furthermore, the model

owner’s reward (Rk) within the RFLF framework is closely related to the increase

in the model’s economic value (Vk)1. This strong incentive encourages model own-

ers to exert optimal efforts, reinforcing the mutual dependence between data owner

contributions and model owner rewards.

The subsequent sections elaborate on this inherent ’reciprocity’ in the RFLF frame-

work through mathematical modelling and quantitative demonstration of the rela-

tionship between the contributions of all participants in federated learning, the eco-

nomic returns of the model, and training incentives. This reciprocal environment

fosters collaboration, trust, and equitable distribution of benefits in the federated

learning process.

1This relationship is formally established in Theorem 3, Section 6.
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5.3 Problem Formulation

5.3.1 Description of the RFLF Process

Within the established federated learning framework, the formation of a data own-

ers’ alliance serves as the fulcrum for not only enhancing the contribution of training

data but also encouraging the model owner to offer optimal effort during training.

This alliance, comprising data owners, assumes all financial responsibilities, includ-

ing the payment of stage rewards Rk to the model owner and the provisioning of

stage-specific data contribution buy-back funds BBFk to incentivize high-quality

data contributions. Through consensus, the data owners agree upon their capi-

tal contribution ratios bi, which align with their financial input and ensure that

their share in the post-training model corresponds to their investments. Operating

autonomously, the alliance internally manages cost-sharing and profit allocation,

effectively mitigating free-riding issues and the uncertainties associated with the

heterogeneous value of data contributions. This autonomy in managing financial

and data contributions ensures that data owners are more inclined to fully engage

in the training regimen, confident that their investments are equitably managed and

that their contributions are meaningfully valued. At the same time, the model owner

can concentrate on optimizing the training process, ensuring that the data owners’

alliance is committed to providing high-quality data without influencing the model

owner’s strategic decisions.

As delineated in Figure 5.2, a multi-level Stackelberg game model encapsulates the

strategic interactions within this framework. In the initial phase, the RFLF estab-

lishes two pivotal contracts: a training rewards contract between the data owners’

alliance and the model owner, and a data contribution buy-back contract among

the data owners themselves. These contracts lay the foundation for the framework’s

operation by defining the terms of engagement and compensation for the training

stages. The terms are formalized through a smart contract, referred to as the arbi-

trator contract within our framework, which serves as an impartial enforcer of the

agreed-upon conditions. By securing capital commitments through these contracts,

the framework ensures that all participants, including data and model owners, have

vested interests aligned with the successful outcomes of the federated learning pro-
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cess.

Figure 5.2: RFLF Events Sequence

In the subsequent stages of this iterative process, a cyclical exchange is established
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between the data owners and the model owner. Data owners locally enhance the

model with their datasets, while the model owner integrates these improvements into

a centralized model. Following each stage, the data owners’ alliance assesses and

validates the model’s enhanced performance. Upon validation, the alliance commu-

nicates with the arbitrator contract, responsible for managing the settlements. The

arbitrator contract then releases the stage-specific training rewards to the model

owner and allocates the data contribution buy-back coins to individual data owners

based on their contributions.

This process is intended to persist until either the stage targets are not met or the

maximum number of stages K is reached. The arbitrator contract stands as the

mechanism for resolution in disruptions or disputes. If the model owner withdraws

or a staging target is not achieved, data owners have the right to approach the arbi-

trator contract to seek termination of the engagement and the release of funds. On

the other hand, if the data owners’ alliance fails to meet their obligations or sub-

mits performance verification data that does not meet the agreed-upon standards,

the model owner is entitled to call upon the arbitrator contract for suitable com-

pensation. This mechanism ensures a fair and impartial verification of the model’s

performance, upholding the integrity of the training process. Such a structured and

methodical approach ensures a harmonious, secure, and equitable training process,

bolstering collective cooperation and guaranteeing fair compensation for all partici-

pants.

5.3.2 Formulation of the Utility Functions

The strategic interactions and decision-making processes within the RFLF are fun-

damentally driven by the utility functions of the involved parties. These functions

articulate the economic motivations and constraints that guide the behaviour of the

model owner, the data owners’ alliance, and individual data owners. By formal-

izing these utility functions, we can analyze how each stakeholder balances their

contributions, investments, and expected returns throughout the federated learning

process. This subsection introduces and defines the utility functions of each key par-

ticipant, laying the groundwork for a deeper exploration of their strategic equilibria

and the mechanisms that foster collaboration and ensure the equitable distribution
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of benefits across the RFLF.

Definition 1 (Utility Function of the Model Owner M): The utility function UM,k

represents the model owner’s expected net benefit throughout the federated learning

stages, from k to K. We assume a zero interest rate (i.e., no discounting of future

returns), a simplification justified by the added complexity and lack of additional

insights gained from incorporating a positive interest rate, as demonstrated in Sec-

tion 5.5. It incorporates the probability of successful training Pk(Mek), the rewards

Rk received, future anticipated payoffs UM,k+1, and operational costs C(Mek), cap-

turing the balance model owners seek between their efforts and the rewards of their

participation:

UM,k = Pk(Mek)× [Rk + UM,k+1]− C(Mek), k = 1, · · · , K. (5.1)

The utility function for the model owner reflects their primary motivation to maxi-

mize net benefit across all stages of the federated learning process. It balances the

probability of success, potential rewards, future returns, and the costs of their effort.

This captures the economic trade-offs the model owner must consider when deciding

how much effort to invest in improving the model.

Definition 2 (Utility Function of the Data Owners’ Alliance D): The data own-

ers’ alliance plays a pivotal role in the RFLF by acting as the intermediary that

facilitates collaboration between individual data owners and the model owner. The

alliance’s utility function, UD,k, represents the collective interests of the data own-

ers and is primarily focused on maximizing the long-term benefits derived from the

cooperation.

While the utility function is expressed in terms of revenue, this serves as a proxy

for the overall value accruing to the data owners. The alliance’s revenue is directly

tied to the value of the trained model, which ultimately becomes the property of

the data owners upon successful project completion. Therefore, maximizing the

alliance’s revenue through strategic decision-making aligns with the ultimate goal

of maximizing benefits for the individual data owners.

Formally, the utility function takes into account the probability of successful training
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Pk(Mek), the incremental value Vk added to the model, anticipated future benefits

UD,k+1, and the rewards paid to the model owner Rk. This interplay of factors is

encapsulated as follows:

UD,k = Pk(Mek)× [Vk −Rk + UD,k+1] , k = 1, · · · , K. (5.2)

This formula delineates the economic dynamics of the alliance, emphasizing its in-

strumental role in negotiating and managing the contributions and rewards that

drive the federated learning effort. It reflects the alliance’s strategy to enhance

the model’s value while ensuring fair compensation for the model owner’s efforts,

ultimately benefiting the individual data owners.

Definition 3 (Utility Function of Individual Data Owner i): The utility function,

denoted as Ui,k, assesses the expected payoff for individual data owner i at each

stage k, incorporating the interplay between their stake in the model, their data

contributions, the associated costs, and their relative importance within the system.

Specifically, bi represents the stake or share percentage held by data owner i in

the collective model, determined by their capital contribution. Sk
i quantifies the

contribution of data owner i during stage k, reflecting their input’s impact on model

improvement. BBFk denotes the allocated funds for buying back data contributions

from data owners at stage k, and c(Sk
i ) accounts for the costs incurred by data owner

i for contributing data at stage k, including collection and processing expenses. To

account for potential asymmetries between different data owners, a weight parameter

wi is introduced, representing data owner i’s relative importance or contribution

potential. The utility function is thus defined as:

Ui,k = bi × UD,k + wi ×

(
Sk
i∑N

j=1 S
k
j

)
× BBFk − c(Sk

i ),

k = 1, · · · , K i = 1, · · · , N. (5.3)

This equation elegantly incorporates the consideration of each data owner’s signifi-

cance within the federated learning process, particularly acknowledging the potential

for unequal contributions among participants. It emphasizes the balance between
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their contributions, the financial incentives received, the costs undertaken, and their

relative value within the collaborative environment, further enhancing the RFLF’s

capacity to incentivize and reward engagement equitably.

The subsequent analysis, leveraging the backward induction method, will explore

the equilibrium strategies that emerge from these interactions, shedding light on the

optimal paths for collaboration and benefit sharing within the RFLF.

5.4 Contracts Feasibility

This section comprehensively analyses the factors governing the practicability and

efficacy of contractual agreements binding the model and individual data owners

within the RFLF. A cornerstone of this analysis involves assessing the contracts’

feasibility through the lens of Individual Rationality (IR) and Incentive Compati-

bility (IC). These economic principles ensure that the contracts not only motivate

participation but also align the interests of all parties towards the collective success

of the federated learning process.

• Individual Rationality (IR) ensures that participating in the contract ben-

efits all parties, guaranteeing that the expected utility or payoff from par-

ticipating is at least as good as not participating. For the RFLF, IR must

satisfy the model and data owners, ensuring that the rewards and buy-back

mechanisms sufficiently cover their costs and incentivize their contributions.

• Incentive Compatibility (IC) guarantees that the optimal strategy for all

parties, according to the contract, aligns with the overall objectives of the

federated learning process. This means that following the contract’s terms

will naturally lead participants to behaviors that maximize their utility, which

in coherence, maximizes the collective outcome of the RFLF.

Understanding the necessity of IR and IC in the contractual framework facilitates a

detailed exploration of the model owner’s incentive feasibility and the data owner’s

buy-back mechanism’s feasibility. These conditions provide the theoretical under-

pinning for sustainable and effective collaboration within the RFLF, ensuring that

contracts are not only theoretically sound but also practically viable.

101



5.4.1 Model Owner Incentive Feasibility

In the context of RFLF, the efficacy of the learning process is heavily reliant on the

contributions of the model owner. As such, it is imperative to establish a reward

system that not only encourages but also ensures the model owner is adequately

compensated for their efforts. The following definitions outline the foundational

conditions for a feasible reward system within the RFLF, where the data own-

ers’ alliance provides rewards to incentivize the model owner’s contribution. These

conditions focus on individual rationality and incentive compatibility, ensuring that

both the model owner and the data owners’ alliance engage in the federated learning

process under mutually beneficial terms.

Definition 4 (IR for the Model Owner and Data Owners’ Alliance): Individual

rationality within the RFLF is met when the expected utility of the model owner, as

well as that of the data owners’ alliance, across all K stages, remains non-negative.

This consideration accounts for potential payoffs and costs associated with each

stage, as expressed mathematically in Eq. 5.4:

Pk(Mek)× [Rk + UM,k+1]− C(Mek) ≥ 0

Pk(Mek)× [Vk −Rk + UD,k+1] ≥ 0,
k = 1, · · · , K. (5.4)

These conditions require that the utilities of federated learning participants, factor-

ing in success rates Pk(Mek), rewards Rk, anticipated future benefits UM,k+1, UD,k+1,

and costs C(Mek), must remain non-negative for rational participation across all

stages.

Definition 5 (IC for the Model Owner and Data Owners’ Alliance): Incentive

compatibility within the RFLF is achieved when the contract maximizes the utility

of both the model and the data owners’ alliance by adhering to the specified effort

levels, Me∗k, for all stages, as shown in Eq. 5.5:

UM,k(Me∗k) ≥ UM,k(Mek)

UD,k(Me∗k) ≥ UD,k(Mek)
subject to Mek ̸= Me∗k, ∀k. (5.5)

Here, UM,k and UD,k represent the utilities of the model owner and data owners’
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alliance at stage k, which are functions of the effort level Mek exerted by the model

owner. Me∗k denotes the optimal effort level prescribed by the contract for stage k,

and the maximization is performed over the choice of effort levels Mek across all

stages.

A contract achieves incentive compatibility when the utility of both the model owner

and data owners’ alliance is maximized by conforming to the specified effort levels

Me∗k, ensuring no incentive to deviate from these levels that would result in a higher

utility. It underpins the commitment of both parties to adhere to the contract terms,

contributing optimally to the success of federated learning.

These feasibility conditions provide theoretical foundations and are essential in prac-

tice for the sustainable operation of RFLF. They align the interests of both the model

owner and data owners’ alliance with the objectives of the learning process, thus

fostering a cooperative and productive environment for all stakeholders involved.

5.4.2 Data Owner Buy-Back Feasibility

When considering the feasibility conditions for an individual data owner in the

RFLF, it is crucial to define the conditions under which data owners find participa-

tion beneficial and are incentivized to act according to the contract terms. Here are

the definitions of individual rationality and incentive compatibility in this context:

Definition 6 (IR for Data Owner i): Individual rationality is met for data owner i

if their expected utility from participating in the federated learning process across

all K stages is greater than or equal to their utility from not participating, which is

their reservation utility. Mathematically, this can be expressed as:

Ui,k ≥ bi × UD,k ∀k, (5.6)

where Ui,k is the utility of data owner i at stage k, and according to Eq. 5.3, bi×UD,k

is the reservation utility of data owner i.

Definition 7 (IC for Data Owner i): Incentive compatibility for data owner i is

satisfied when the contract is structured so that the data owner maximizes their

utility by truthfully revealing their data quality and quantity, aligning with the
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optimal data contribution specified by the contract. This ensures that the data

owner has no incentive to misreport their capability or contribution. The incentive

compatibility condition for data owner i is given by:

Ui,k(Sk
i

∗
) ≥ Ui,k(Sk

i ) for all Sk
i ̸= Sk

i

∗ ∀k. (5.7)

Here, Sk
i
∗

is the optimal data contribution level for data owner i at stage k, and Sk
i

represents any other level of data contribution. The utility function Ui,k should be

structured such that it maximizes at Sk
i
∗
, ensuring that the data owner is best off

when they contribute the level of data as per the contract terms.

These feasibility conditions ensure that each data owner’s participation in the fed-

erated learning process is rational from an individual perspective and that their

contributions are aligned with the collective objectives of the learning framework.

These conditions motivate data owners to provide high-quality data in the required

quantity.

5.4.3 Feasibility of Integrated Contracts

Establishing a successful federated learning project within the RFLF necessitates

ensuring that contractual agreements for the model and individual data owners har-

moniously coexist. This synergy is crucial to mitigate common challenges, such as

misalignment of incentives and conflicts of interest, which can derail project objec-

tives. This section explores the joint feasibility of these contracts, elucidating how

they are designed to synergize, thereby incentivizing and compensating participants

equitably. Central to this analysis are two pivotal theorems: Budget Balance and

Fair Reward Allocation, which anchor the equilibrium between individual interests

and collective goals.

Theorem 1: Budget Balance. The RFLF ensures financial sustainability by

maintaining that the total rewards to the model owner and the buy-back funds for

data owners across all stages do not exceed the overall budget allocated by the data

owners’ alliance for the federated learning project.
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To formalize the Budget Balance condition, we have:

K∑
k=1

(Rk + BBFk) ≤ B, (5.8)

where B represents the total budget allocated for the project, Rk is the reward

for the model owner, and BBFk is the buy-back funding used to compensate data

owners’ data contribution at each stage k.

Proof: To establish this condition, we consider the strategic design of the reward

and buy-back contracts, ensuring that their cumulative allocations over all stages

do not exceed B. The budget allocation for each component is
∑K

k=1 Rk ≤ BR and∑K
k=1 BBFk ≤ BBBF .

Here, BR and BBBF designate the budget portions for the model owner’s rewards

and the data owners’ buy-back payoffs, respectively, with BR + BBBF = B.

By summing these allocations, we get:
∑K

k=1 Rk +
∑K

k=1 BBFk ≤ BR +BBBF . Since

BR + BBBF = B, the Eq. 5.8 can be concluded.

This demonstrates that the budget is balanced, ensuring that total expenditures

remain within the confines of the allocated budget B. The theorem thus confirms

the financial feasibility of the reward and buy-back contracts and emphasizes the

prudent financial planning by the data owners’ alliance to keep the project within

its financial parameters.

Theorem 2: Fair Reward Allocation. The RFLF ensures that rewards are

allocated equitably within the framework. The model owner receives compensation

proportional to their effort, while data owners are rewarded based on their contri-

butions, with their relative importance within the system taken into account. This

fosters a fair and motivating environment for all participants.

Proof: To establish the theorem’s claim of fair reward allocation, we demonstrate

that
∂UM,k

∂Mek
> 0 and

∂Ui,k

∂Sk
i

> 0. Recall from Section 5.2 the assumptions related to

success probability and cost functions that are essential for establishing this theorem.

Model Owner: The derivative of the utility function for the model owner, UM,k

(as defined in Eq. 5.1), with respect to the effort variable Mek is:
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∂UM,k

∂Mek
=

∂Pk(Mek)

∂Mek
× [Rk + UM,k+1]−

∂C(Mek)

∂Mek
. (5.9)

Evaluating
∂UM,k

∂Mek
for Mek < Me∗k reveals:

1. Positive Derivative of Success Probability: An increase in effort Mek leads to

a higher success probability, as indicated by ∂Pk(Mek)
∂Mek

> 0.

2. Diminishing Marginal Returns: The rate of increase in success probability

diminishes with escalating effort Mek , denoted by ∂2Pk(Mek)
∂2Mek

< 0, up to the

optimal effort level Me∗k.

3. Increasing Marginal Cost: Each additional unit of effort incurs higher costs,

as evidenced by ∂C(Mek)
∂Mek

> 0.

4. Optimal Effort Level Me∗k: At Me∗k, the marginal benefit and cost balance

each other. For Mek < Me∗k, the marginal benefit surpasses the marginal

cost.

Consequently, for Mek < Me∗k, it is reasonable to infer
∂UM,k

∂Mek
≥ 0 based on these

assumptions, indicating the fairness in reward allocation for the model owner under

the stipulated conditions.

Data Owner: Differentiating Ui,k for data owner i (as defined in Eq. 5.3) with

respect to Sk
i yields:

∂Ui,k

∂Sk
i

=
∂

∂Sk
i

(
bi × UD,k + wi ×

K∑
m=k

(
Sk
i∑N

j=1 S
k
j

)
× BBFk

−c(Sk
i )
)

(5.10)

Simplifying, we find:

∂Ui,k

∂Sk
i

= wi ×
K∑

m=k

BBFk∑N
j=1 S

k
j

− ∂c(Sk
i )

∂Sk
i

. (5.11)

Evaluating
∂Ui,k

∂Sk
i

for Sk
i < Sk

i
∗

reveals:
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1. Increasing Marginal Cost: Each additional unit of effort incurs higher costs,

as evidenced by
∂c(Sk

i )

∂Sk
i

> 0.

2. Optimal Effort Level Sk
i
∗
: At Sk

i
∗
, the marginal benefit and cost balance each

other. For Sk
i < Sk

i
∗
, the marginal benefit surpasses the marginal cost.

Given the positivity of BBFk and the sum
∑N

j=1 S
k
j , consequently, for Sk

i < Sk
i
∗
, it is

reasonable to infer
∂Ui,k

∂Sk
i

> 0 based on these assumptions. This result substantiates

the assertion that an incremental increase in the data owner’s contribution Sk
i leads

to an increase in their utility Ui,k, affirming the fairness of the reward allocation for

the data owner i within the established utility framework.

5.5 Contract Optimality

5.5.1 Reward Contract Optimization

Central to the RFLF is resolving the optimization problem inherent in the model

owner’s reward contract. This requires a model encompassing the owner’s effort lev-

els and reward mechanisms to ensure they’re incentivized for optimal contributions

at each stage. This is crucial for project success, economic viability, and fairness.

The RFLF establishes the contract at the first stage k = 1, with stage-specific pay-

offs defined as UD,1 for the data owners’ alliance and UM,1 for the model owner.

Payoffs are cumulative, with each stage incorporating the value generated in sub-

sequent stages. This dynamic reflects the evolving nature of federated learning,

where model owner effort and strategic decisions by both parties are impacted by

stage rewards and the growing value of the model. The data owners’ alliance D acts

as a Stackelberg leader, carefully structuring the training rewards Rk across time,

anticipating the model owner’s self-interested actions.

Given the constraints and the previously delineated equations, the optimization

problem for the data owners’ alliance D can be reformulated as follows:

107



max
Rk

UD,1 = P1(Me1)[V1 −R1]

+
K∑
k=2

{
k−1∏
j=1

Pj(Mej)

}
Pk(Mek)[Vk −Rk],

k = 2, · · · , K. (5.12)

Conversely, the model owner engages in the following recursive optimization process:

max
Mek

UM,k = Pk(Mek)[Rk + UM,k+1]− C(Mek) k = 1, · · · , K. (5.13)

To maximize the value generated through the RFLF, we must carefully analyze

the interplay of factors impacting model owner motivation and the corresponding

optimization problem faced by the data owners’ alliance.

Proposition 1: Reward, Future Prospect Incentivization, and Optimal

Effort. An increase in the rewards offered by the data owners, coupled with an en-

hancement in the model owner’s prospects, is expected to motivate them to elevate

their level of effort. To maximize this motivation, the model owner’s marginal benefit

from effort must equal their marginal cost. Striking this balance at each stage en-

sures optimal contribution, balancing immediate rewards, long-term gains, and costs

incurred. This interplay of factors is pivotal in ensuring the model owner engages

in diligent and ethical work practices.

Proof: To analyze the model owner’s optimal effort under RFLF, we consider the

partial derivative of the model owner’s utility function (Equ. 5.2) with respect to

their effort level Mek. This analysis helps identify the effort level that maximizes

the model owner’s utility at each stage k.

Recalling the utility function of the model owner, the optimal effort is derived by

setting the partial derivative of UM,k with respect to Mek to 0. Considering the

relaxed constraints discussed in Section 5.4, we arrive at a crucial condition that

signifies the peak of utility, corresponding to the optimal effort level:

Me∗k = Me∗k(Rk + UM,k+1) k = 1, · · · , K. (5.14)
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This equation demonstrates the direct influence of both current reward Rk and

future expected model utility UM,k+1 on the model owner’s optimal effort Me∗k.

To ensure maximal impact from this relationship, the model owner’s marginal benefit

from effort must equal their marginal cost:

∂Pk(Mek)

∂Mek
(Rk + UM,k+1) =

∂C(Mek)

∂Mek
k = 1, · · · , K. (5.15)

This condition ensures the model owner optimally balances immediate and future

incentives against the cost of their effort.

Building upon the principles in Proposition 1, which demonstrated the importance

of combining immediate and future facing rewards to maximize model owner effort,

we now focus on a critical aspect of reward allocation: the temporal dynamics.

This framework aspect is intuitive and has been rigorously determined through

mathematical analysis.

Proposition 2: Divergence in Reward Timing Preferences between Model

and Data Owners. Within the RFLF, a mathematically demonstrable disparity

exists in the temporal preferences regarding the timing of rewards between the model

owner and the data owners. The model owner’s marginal utility of rewards dimin-

ishes over time, indicating a preference for receiving rewards earlier. In contrast, the

dynamic reward mechanism enhances the data owner’s marginal utility over time,

leading to their preference for delaying rewards to the model owner.

The mathematical expression of this temporal dynamic is as follows:


∂UM,1

∂Rk

∣∣∣
Mej

∗
>

∂UM,1

∂Rk+1

∣∣∣
Mej

∗
(k = 1, · · · , K − 1).

∂UD,2

∂Rj

∣∣∣
Ri

∗,i=1,··· ,K
>

∂UD,2

∂Rk

∣∣∣
Ri

∗,i=1,··· ,K
, Rk

∗ > 0, Rj
∗ > 0, j > k.

(5.16)

Proof: Given the optimal level of effort Mek
∗ for the model owner, UM,k in Equ.

5.3 satisfies the following conditions:

∂UM,k

∂Rk

=
k∏

j=m

Pj(Mej
∗). (5.17)
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From Equ. 5.17,

∂UM,1

∂Rk

∂UM,1

∂Rk+1

=

∏k
j=1 Pj(Mej

∗)∏k+1
j=1 Pj(Mej

∗)
=

1

Pk+1(Mek+1
∗)

> 1

(k = 1, · · · , K − 1).

(5.18)

Then
∂UM,1

∂Rk

∣∣∣∣
Mej

∗
>

∂UM,1

∂Rk+1

∣∣∣∣
Mej

∗
(k = 1, · · · , K − 1). (5.19)

This inequality states that the change in the model owner’s utility due to a reward

in stage k is greater than the change from the same size reward in stage k + 1. In

simpler terms, a reward received today has a stronger positive impact on the model

owner’s utility than one received later.

The optimal incentive Rk
∗ > 0 (k = 1, · · · , K) for the model owner is determined

before starting the first stage of training. Therefore, the optimal utility UD,k
∗ of the

data owners’ alliance can also be solved. The first-order condition of the utility of

data owners’ alliance with respect to rewards Rk from Eq. 5.1 is

∂UD,1

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=P1

′(Me1
∗)Me1

∗′∂UM,2

∂Rk

(V1 −R1 + UD,2)

+ P1(Me1
∗)
∂UD,2

∂Rk

= 0.

(5.20)

From eq.5.19, we can derive
∂UM,2

∂Rk
=
∏k

j=2 Pj(Mej
∗) and rearranging the terms yield:

∂UD,2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
=− 1

P1(Me1
∗)
P1

′(Me1
∗)Me1

∗′

[
k∏

j=2

Pj(Mej
∗)

]
(V1 −R1 + UD,2) < 0.

(5.21)

Thus, if Rk
∗ > 0 and Rj

∗ > 0, j > k, then

∂UD,2

∂Rj

∣∣∣∣
Ri

∗,i=1,··· ,K
=

(
j∏

i=k+1

Pi(Mei
∗)

)
∂UD,2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K

>
∂UD,2

∂Rk

∣∣∣∣
Ri

∗,i=1,··· ,K
.

(5.22)
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This means that later-stage rewards (at stage j, when j > k) have a stronger positive

impact on the data owners’ utility than earlier rewards (at stage k).

This proposition is a testament to the analytical depth of the RFLF, highlighting

the necessity for strategic planning and execution in the temporal allocation of

rewards. It underscores the importance of achieving an equilibrium that satisfies

the model’s and data owners’ distinct utility maximisation strategies. Furthermore,

it mathematically substantiates that this divergence points to an optimal payoff

point within the framework, effectively balancing these contrasting preferences.

Theorem 3: Optimal Payoff Point for the Model Owner in RFLF. Within

a feasible multi-stage federated learning contract, there often comes a point where

the model’s value has increased so substantially that the most efficient strategy is to

allocate all subsequent profits to the model owner. The RFLF framework allows us

to identify this optimal payoff point, denoted as δ , through rigorous mathematical

analysis. It is defined as follows:

 Rk
∗ = 0 (k < δ),

Rk
∗ = Vk

∗, UD,k
∗ = 0 (k > δ).

(5.23)

Proof : Proposition 2 established that the data owners’ preference is to delay re-

wards to the model owner. To determine when this delay is no longer advantageous,

we must analyze how their utility changes across training stages. Let’s begin with

the first-order condition of their utility with respect to rewards:

∂UD,1

∂Rk

=P1
′(Me1

∗)Me1
∗′∂UM,2

∂Rk

(V1 −R1 + UD,2)

+P1(Me1
∗)
∂UD,2

∂Rk

(5.24)

For every m and k such that k > m,

∂UD,m

∂Rk

=Pm
′(Mem

∗)Mem
∗′∂UM,m+1

∂Rk

(Vm −Rm + UD,m+1)

+Pm(Mem
∗)
∂UD,m+1

∂Rk

(5.25)
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and for every k,

∂UD,k

∂Rk

= Pk
′(Mek

∗)Mek
∗′(Vk −Rk + UD,k+1)− Pk(Mek

∗) (5.26)

The derivative of the model owner’s utility with respect to their effort is

∂UM,k

∂Mek
= Pk

′(Mek)(Rk + UM,k+1)− C ′(Mek) = 0, K = 1, · · · , K (5.27)

To see how the utility of data owners’ alliance changes with respect to rewards across

stages, we derive the following expression:

Substituting Equ. 5.24 into the above three equations, we have

∂UD,1

∂Rk

=

(
k∏

j=1

Pj(Mej
∗)

)
k∑

i=1

1

Pi(Mei
∗)

Pi
′(Mei

∗)Mei
∗[Vi −Ri + UD,i+1]−

k∏
j=1

Pj(Mej
∗),

(5.28)

and

∂UD,1

∂Rk+1

=
∂UD,1

∂Rk

Pk+1(Mek+1
∗) +

(
k∏

j=1

Pj(Mej
∗)

)

Pk+1
′(Mek+1

∗)Mek+1
∗[Vk+1 −Rk+1 + UD,k+2] = 0

(5.29)

Since
∂UD,1

∂Rk

∣∣∣
Ri

∗,i=1,··· ,K
= 0, from Equ. 5.20, we can derive Vk+1−Rk+1 +UD,k+2 = 0.

It is known that UD,K+1 = 0, so it follows that RK
∗ = VK , so UD,K = 0. Similarly,

for any δ, there is 1 ≤ δ ≤ K − 1. If Meδ
∗ > 0 and Rδ

∗ > 0, then the Equ. 5.23 is

proofed.

Theorem 3 plays a crucial role in the strategic design of the RFLF. It delineates a

clear demarcation point in the reward structure, beyond which the incentive system

is wholly skewed in favour of the model owner. This determination of δ is vital

for ensuring fairness and motivation, particularly in sustaining the model owner’s

engagement and contribution throughout the federated learning project.

Essentially, theorem 3, as presented within the RFLF, elucidates a critical aspect

of the incentive structure. It posits that the most efficient incentive scheme is one
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where the incremental value generated by the model owner’s efforts is predominantly

returned to them, particularly in the later stages of the training process. This

theorem underscores a foundational principle of the RFLF: the success achieved in

the latter stages of training is inherently contingent upon the accomplishments of the

earlier stages. Consequently, the reward system is designed such that the incentives

provided in the later stages act as a driving force for exerting effort in the earlier

stages.

This structure of incentive allocation is not only strategic but also economically pru-

dent. By aligning the rewards more significantly with the later stages—where the

model’s value has presumably been enhanced due to the cumulative efforts of the

model owner—the framework ensures that the model owner is adequately compen-

sated for their contributions. This approach minimizes the cost of incentivization

while maximizing the model owner’s motivation throughout the project lifecycle.

5.5.2 Data Contribution Buy-back Contract Optimization

The RFLF prioritises optimizing both the reward contract for model owners and

the buy-back contract for data owners. This buy-back mechanism governs compen-

sation for data contributions and is carefully designed to incentivize substantial,

consistent contributions that directly correlate with the expected financial rewards

for each participant. As data can hold multifaceted value, the contract is adaptable

to various valuation techniques. Achieving the ideal balance within this contract

involves fostering continuous, high-volume contributions while remaining equitable

throughout the federated learning process to address varying types and amounts of

data.

During the initial formation of the collaborative project, data owners contribute

capital proportional to their nominal share value bi. This forms the backbone of

the project’s financial structure. This investment underpins the data contribution

buy-back fund pool BBFk, k = 1, . . . , K while financing the stage rewards awarded

to the model owner. This upfront financial commitment helps create clear responsi-

bilities and incentives from the outset, fostering a balanced and effective federated

learning environment. Dynamically allocating buy-back funds across different train-
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ing stages allows for incentivizing high-quality data and fair compensation for all

contributors. While returns across data owners are consistent, each participant’s

cost will naturally vary according to the amount of data they contribute. Aligning

returns with contributions while considering these cost differences promotes overall

fairness.

The optimization problem for data owner contributions under the buy-back contract

incorporates the utility Ui,k for each data owner i at stage k. It is formulated as

follows:

max
Sk
i

Ui,k = bi × UD,k +

(
Sk
i∑N

j=1 S
k
j

)
× BBFk − c(ski ),

k = 1, · · · , K i = 1, · · · , N.

(5.30)

The guiding principle for optimizing data owner contributions under the buy-back

contract is captured in a fundamental theorem. It establishes the conditions that

encourage individual data owners to contribute their data optimally to the federated

learning project. This theorem highlights the effectiveness of the buy-back contract

and how it aligns participant incentives and rewards with individual data contributor

needs and overall project goals for data diversity and abundance.

Theorem 4: Optimal Data Contribution under Buy back Contract. Within

the RFLF, the buy-back contract is designed to incentivize each individual data owner

to maximize their data contribution Sk
i by ensuring that the marginal benefits from

additional data contributions, in terms of buy-back funding, are aligned with the

overarching goals of the federated learning process. This alignment encourages data

owners to actively participate by contributing the maximum high-quality data.

Proof: Consider the utility function for an individual data owner i at stage k, as

defined in Eq. 5.3

To maximize Ui,k, we examine the condition where the marginal increase in utility

from contributing additional data is at least as great as any marginal costs associated

with such contributions. This condition is met when the derivative of Ui,k with

respect to Sk
i suggests that increasing Sk

i continues to provide net positive utility to

the data owner:
∂Ui,k

∂Sk
i
≥ 0.
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This derivative condition ensures that the buy-back contract must be structured such

that the incremental utility from additional data contributions (Sk
i )—accounting for

both the compensation from BBFk and any associated costs—is maximized, thus

incentivizing the data owner to contribute as much data as possible.

Theorem 4 demonstrates the effectiveness of the buy-back contract in aligning data

owners’ incentives with the federated learning process’s objectives. By ensuring that

data owners are compensated in a manner that reflects the true value of their contri-

butions, the RFLF promotes a cooperative and productive environment conducive

to the success of federated learning initiatives.

5.6 Performance Evaluation

To rigorously assess the RFLF’s efficacy in incentivizing the model and data own-

ers, we conducted a series of experiments simulating a federated learning environ-

ment. These experiments incorporated variations in data distribution and rewards

across different stages. In this section, we describe the experimental setup, includ-

ing datasets, comparison baselines, and evaluation metrics. We then present and

analyze the RFLF’s experimental results.

5.6.1 Experiment Setup

All experiments were conducted using a system equipped with 2 × Intel(R) Xeon(R)

CPUs @ 2.30GHz, 12GB memory, and one Tesla T4 GPU, utilizing Python 3.11 and

TensorFlow 2.15 for implementation.

Table 5.2 provides a comprehensive overview of the experimental setup, including

the numerical simulation parameters, the federated learning environment and hy-

perparameters for the datasets used.

Datasets: We selected the MNIST 2 and CIFAR-10 3 data-sets due to their wide-

2MNIST[89] consists of 70,000 grayscale images of handwritten digits (0-9), divided into a

training set of 60,000 images and a test set of 10,000 images. Each image is a 28x28 pixel square

centred around a single digit.
3CIFA-10[90] contains 60,000 32x32 colour images in 10 classes, with 6,000 images per class.

The dataset is split into a training set of 50,000 images and a test set of 10,000 images featuring
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Parameter/Function Value/Formula

Numerical Simulation Parameters:

K 3

N 4

Vk [1, 2, 3]

Pk(Mek) min(0.8×Mek, 1)

C(Mek) Mek
2

c(ski ) sample number× data unit cost

Data Unit Cost

(per 100 units)

0.06 for MNIST

0.006 for CIFAR-10

BBFk [1, 2, 3]

wi [1, 1, 1, 1]

Federated Learning Hyperparameters/Setting:

MNIST CIFAR-10

Local Epochs 2 2

Local learning Rate 0.15 - (Adam

optimizer

used)

Local Batch Size 16

Learning Rate Decay 0.977

Communication Rounds

per Trainning Stage
30 30

Optimizer SGD[87] Adam[88]

Algorithm FedAvg [13]

Table 5.2: RFLF Simulation Setup and Configurations

spread use in federated learning benchmarking.

We simulated real-world data heterogeneity and potential fluctuations in data con-

tributions by using structured random assignment with fixed ratios to allocate vary-

ing dataset sizes to each data owner (Table 5.3). This approach captured realistic

data distribution disparities and potential under-contributions, and pre-allocated

buy-back funding was included to address under-contributions, reflecting practical

various objects and animals.
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commercial considerations.

Equal Reward

Framework

Share Profit

Framework
RFLF

Standalone

Framwork

Stage 1 2 3 1 2 3 1 2 3 N/A

Data

Owner 1

MNIST 150 150 150 150 150 150 150 150 150 150

Cifar10 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500

Data

Owner 2

MNIST 150 300 300 150 300 300 150 300 300 300

Cifar10 1500 3000 3000 1500 3000 3000 1500 3000 3000 3000

Data

Owner 3

MNIST 150 300 600 150 375 800 150 375 800 800

Cifar10 1500 3000 6000 1500 3750 8000 1500 3750 8000 8000

Data

Owner 4

MNIST 150 300 600 150 375 1150 150 375 1150 1150

Cifar10 1500 3000 6000 1500 3750 11500 1500 3750 11500 11500

Table 5.3: Datasets Assignment for Performance Evaluation

Before experimentation, both datasets underwent standard preprocessing steps, in-

cluding normalization and augmentation, to ensure a fair and consistent input for

all models. Furthermore, 10% of the training examples were randomly selected to

form a validation set, facilitating periodic assessment of model performance during

the training phase.

Evaluation Metrics: The performance of the RFLF was measured using several

metrics: Firstly, cooperation performance metrics will include the model owner’s

effort, probabilities of success, and model accuracies. Secondly, we’ll examine par-

ticipants’ utility, evaluating data owner and model owner utilities. Finally, we’ll

focus on social utility metrics, specifically the framework’s ability to prevent free-

riding behaviour and analyze its inherent compensation mechanisms for data owners.

Results across these metrics will be compared for the RFLF, a ’Standalone’ frame-

work (where no rewards are shared), an ’Equal Reward’ framework[91] , and a ’Share

Profit’ framework[92].

The following sections detail the results of these experiments, providing insights into

the framework’s capability to foster an equitable and efficient learning environment.
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Figure 5.3: Impact of Reward Structures on Utilities in Model Owner-Data Owner

Alliances

5.6.2 Contract Optimality

Based on the aforementioned settings, we first delve into the optimality of the incen-

tive contract under RFLF, with an initial focus on the contract for the model owner.

This approach is rooted in the framework’s dynamics, where data owners, forming

a collective interest group, engage in an incentive game with the model owner. It’s

important to note that how data owners divide rewards internally among themselves

takes place after the settlement with the model owner is reached. Since this internal

distribution is based on control rights over the delivered model, it ensures our anal-

ysis can focus on finding a model owner reward structure optimal for the project as

a whole.

Fig.5.3 reveals steadily increasing variations in the model owner’s utility for differ-

ent reward settings. This trend indicates a positive correlation between the model

owner’s utility and the reward structure offered by the data owners’ alliance. Con-

sequently, the data owners’ alliance achieved peak utility at R1 = 0, R2 = 1.648,

and R3 = 3, signifying an optimized status at these reward levels. This optimized

status aligns perfectly with the Incentive Compatibility (IC) constraint, confirming

the reward mechanism’s effectiveness in motivating the model owner’s contributions

(Fig.5.4).

Fig.5.5 demonstrates that all participants, including the model owner and the data

owners’ alliance, enjoy positive utilities, satisfying the Individual Rationality (IR)
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Figure 5.4: Optimal Rewards Setting

constraint. This ensures that participation in the federated learning process is ra-

tional and beneficial for everyone involved.

These observations collectively demonstrate our RFLF contract’s efficacy in leading

to an incentive structure consistent with a Nash Equilibrium - meaning neither

the model owner nor the data owners are incentivized to unilaterally change their

behaviours based on this reward framework.

5.6.3 Baselines

To comprehensively assess the performance of the RFLF, we compare its outcomes

against three baseline frameworks, each representing a distinct approach to model

training and incentive mechanisms within federated learning environments:

Standalone: In this approach, individual standalone models are trained on each

data owner’s local dataset without collaboration or data sharing. This baseline

highlights the potential limitations of non-collaborative work, potentially harming
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Figure 5.5: Evolution of Utilities in Model Owner-Data Owner Alliances Across

Different Stages

model performance due to limited data volume and variety for each owner.

Equal Reward Framework[91]: Rewards given to participants are prearranged at

the start of training, independent of the model’s value and success. Specifically,

we set the rewards received by model owners at the first stage to 1 (representing

the complete stage 1 model value) and 1.824 for subsequent stages, totalling 4.648.

This upfront approach incentivizes participation but doesn’t link rewards to evolving

model quality. The first stage value constraint ensures the Individual Rationality

(IR) constraint is met for the data owners’ alliance - awarding higher rewards at

this early stage would make participation infeasible for them.

Share Profit Framework[92]: This framework links a model owner’s incentives to the

quality of the model delivered to the data owners, with benefits similarly distributed
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amongst data owners in proportion to their contribution. Given that the total

reward discussed in the previous section is 4.648 (representing 77.5% of the total

incremental value of the model), we set the rewards received by model owners after

each successful training phase to 0.775, 1.55 and 2.325, respectively. Data owners

first pre-deposit the same proportion of the project margin as they expect to earn

and then receive a proportionate payoff based on the actual contribution at the end

of each phase, including contribution buyback allowance and model ownership.

By comparing these baselines, we aim to demonstrate the advantages of the RFLF

in fostering a more equitable, efficient, and effective federated learning environment.

We’ll next examine results concerning cooperation performance, followed by partic-

ipant utilities and social utility within each framework.

5.6.4 Experimental Results

Experimental evaluation of the RFLF demonstrates significant improvements in co-

operation, predictability of returns, and overall model performance compared to

baseline federated learning frameworks. Our analysis delves into several key metrics

to comprehensively assess RFLF’s effectiveness in addressing the challenges identi-

fied in existing incentive frameworks.

Cooperation Performance

RFLF notably increases the model owner’s effort, particularly in later stages of

the federated learning process. In both Stage 2 and 3, the effort exerted under

RFLF surpassed that observed in the Equal Reward and Share Profit frameworks.

Specifically, compared to Share framework, model owner effort increased by 28.47%

and 29.03% in Stage 2 and 3, respectively. This increase was even more pronounced

when compared to the Equal Reward framework, with increases of 92.19% and

93.55% (Figure 5.6). This significant boost in effort directly addresses the research

gap of incentivizing active model owner participation, demonstrating the efficacy of

RFLF’s reward structure in motivating sustained contribution.

Success probabilities further highlight the effectiveness of RFLF’s incentivization

strategy. Under RFLF, Stage 2 and 3 probabilities reached 98.8% and 96%, respec-
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Figure 5.6: Model Owners’ Effort Across Different Frameworks

tively, showcasing significant improvements over both the Share Profit (21.66% in

Stage 2, 47% in Stage 3) and Equal Reward frameworks (47.67% in Stage 2, 46.43%

in Stage 3) (Figure 5.7). These results underscore the importance of aligning re-

wards with both performance and contribution, a key feature of RFLF that sets it

apart from existing models.

Additionally, we compared the final model accuracy achieved under different frame-

works. While all federated learning approaches outperformed standalone models,

RFLF and Share Profit framework achieved the highest accuracy, surpassing the

Equal Reward framework (Table 5.4). This result further reinforces the effective-

ness of incentive structures that link rewards to both performance and contribution,

a principle that RFLF uniquely extends by considering the evolving nature of con-

tributions throughout the federated learning process.

RFLF’s emphasis on strategically allocating the majority of incentives in the final

stages proves highly effective in driving collaboration. This incentivization approach
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Figure 5.7: Probabilities of Success Training Across Different Frameworks

MNIST CIFAR-10

Stages 1 2 3 1 2 3

Standalone

Framework

Data Owner 1 N/A N/A 81.87% N/A N/A 43.44%

Data Owner 2 N/A N/A 86.90% N/A N/A 51.41%

Data Owner 3 N/A N/A 90.81% N/A N/A 59.65%

Data Owner 4 N/A N/A 93.28% N/A N/A 61.81%

Equal Reward Framework 93.89% 94.72% 96.15% 55.24% 58.22% 62.43%

Share Profit Framework 93.99% 95.27% 96.94% 55.31% 60.14% 64.40%

RFLF 93.90% 95.30% 97.06% 56.09% 61.27% 64.67%

Table 5.4: Model Accuracies within Different Frameworks

significantly improves success rates and model accuracy compared to the Share Profit

and Equal Reward frameworks.
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Participants’ Utility

Examining data owner and model owner utilities across Equal Rewards, Share Profit,

and RFLF frameworks reveals how different incentive mechanisms impact outcomes.

Framework Data Owner Individual Utility Total Utility Data Contribution Share of the Model

Equal Reward

1 0.92

3.04

10% 25%

2 0.83 18% 25%

3 0.65 36% 25%

4 0.65 36% 25%

Share Profit

1 0.08

3.40

6% 6%

2 0.41 13% 13%

3 1.20 33% 33%

4 1.72 48% 48%

RFLF

1 0.20

4.56

6% 25%

2 0.60 13% 25%

3 1.57 33% 25%

4 2.20 48% 25%

Table 5.5: Utilities of Data Owners within Different Frameworks

First, we provide a comprehensive analysis of the utilities of data owners within

each framework (see Table 5.5). Under Equal Rewards, the total utility for all data

owners is 3.04. Despite contribution levels ranging from 9% to 36%, each data

owner receives an equal 25% model share. While simple, this distribution disregards

individual effort, potentially lowering efficiency.

The Share Profit framework, yielding a total data owners’ utility of 3.40, improves

motivation with a direct link between utilities, model ownership, and contributions.

For example, data owner 4, with a higher contribution of 48%, has the greatest

utility of 1.72 and the largest model share of 48%. This incentivizes more effort, as

rewards depend on success - though note that final model shares may differ from

the pre-agreed distribution depending on individual contributions throughout the

training process.

RFLF stands apart with the highest total data owners’ utility of 4.56, suggesting

significant cumulative benefit. While model shares remain consistent with the pre-

agreed distribution, the individual data owner’s utility distribution within RFLF

mirrors the Share Profit framework, rewarding proportionally to contribution.
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Figure 5.8: Model Owner’s Utility Across Different Frameworks and Stages

Second, the model owner’s utility showcases RFLF’s strategic incentives. Starting

low in stage 1, the model owner’s utility rises significantly in stages 2 and 3 - a pattern

made clear in Figure 5.8. This outpaces both the Share Profit and Equal Rewards

frameworks. Backloading incentives align with evolving model value, promoting

optimal, continuous effort from the model owner.

RFLF’s model excels because it sustains motivation on all sides. Equal Rewards

framework, while simple, may under-motivate; Share Profit framework addresses

this by linking rewards to success. However, RFLF’s strategic timing fosters a more

cooperative and productive federated learning environment with the potential for

high engagement from both data owners and model owner.

Social Utility

A crucial component of social utility in federated learning is preventing free-riding,

where participants gain unduly without proportional contribution. In Equal Re-

wards, this poses a serious threat. Despite contribution levels ranging from 9%

to 36.5%, data owner utilities were tightly clustered (0.92, 0.83, 0.65, 0.65). These

near-equal rewards discourage high effort for two reasons: minimal additional return

regardless of input and contributors potentially subsidizing low-effort peers due to
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differing data costs.

By contrast, both Share Profit framework and RFLF incorporate features mitigating

free-riding risk. In Share Profit framework, the final model share directly tracks data

contribution size. RFLF addresses contribution differences through its compensation

mechanism balancing capital and data inputs. This ensures larger contributors

aren’t inadvertently exploited for their efforts, aligning with equity and motivation

principles.

Comparing Share Profit framework and RFLF further, we find similar utility distri-

butions but divergent final model shares . While Share Profit framework’s propor-

tional payout may encourage larger contributions, it raises the spectre of imbalance

if one participant dominates; this imbalance is counteracted by RFLF’s pre-agreed,

equal split of the final model. Beyond direct payouts, the RFLF offers an interest-

ing additional feature: Should a data owner discover their data is underperforming,

they can opt-out to avoid further expense. Their pre-deposited buy-back funds then

compensate other data owners for stepping up contributions. This creates positive

feedback: capital offsets any data shortfalls, ensuring both fair pay and that the

project as a whole remains incentivized.

This unique compensation mechanism within RFLF goes beyond curbing free-riding

to promote equitable reward distribution. Participants trust they’ll be fairly com-

pensated, encouraging honest data quality assessment and maximal effort. Ulti-

mately, this enhances the federated learning process’s social utility, furthering goals

of privacy, reduced data silos, and overall model robustness.

Comparision of Different Incentive Frameworks

Table 5.6 summarizes the comparisons between RFLF, Equal Reward, and Share

Profit frameworks across various metrics, highlighting the distinct advantages of

each model.

The Equal Reward framework, while providing high predictability of returns, suffers

from low model owner effort and is vulnerable to free-riding. The Share Profit

framework improves upon this by incentivizing higher effort and partially mitigating

free-riding, but it can lead to unequal distribution of the final model among data
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Metric Equal Reward Share Profit RFLF

Cooperation

Performance

Model Owner Effort Low Medium High

Success Probability Low Medium High

Model Accuracy Medium High High

Participants’

Utility

Total Data Owner Utility Low Medium High

Individual Data Owner Utility Distribution Equal Proportional Proportional

Social

Utility

Mitigates Free-riding No Partial Yes

Adapts to Dynamic Contributions No Partial Yes

Predictability of Returns High Medium High

Table 5.6: Comparison of Incentive Frameworks

owners.

RFLF, by contrast, achieves the best overall performance across most metrics. It

incentivizes active model owner participation throughout the entire federated learn-

ing process, particularly in later stages where effort is crucial. Additionally, RFLF’s

multi-stage incentives and unique model ownership transfer mechanism effectively

reduce free-riding and ensure equitable distribution of both rewards and the final

model.

Importantly, RFLF maintains the high predictability of returns offered by Equal

Reward, providing a more reliable and secure collaborative environment for all par-

ticipants. This highlights the framework’s potential to foster trust and encourage

long-term participation in federated learning projects.

5.6.5 Potential Applications in Web 3.0 and 5G/6G Com-

munication Domains

The RFLF framework is well-suited for the decentralized and privacy-conscious en-

vironments of Web 3.0 and 5G/6G technologies, where data is increasingly decen-

tralized and held by smaller entities. It pioneers a unique approach by actively

incentivizing both data and model owners within a unified federated learning envi-

ronment. Its critical technological innovation lies in its multi-stage incentive align-

ment mechanism, which actively engages all participants throughout the federated

learning process, lowering barriers to entry for individual machine learning experts

and small to medium-sized enterprises (SMEs).
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As the scenario described in Section 5.1 illustrates, in healthcare, the RFLF frame-

work is particularly significant for small to medium-sized enterprises (SMEs) health-

care providers, who often possess valuable patient data but lack the machine learning

expertise to develop sophisticated models. Under the RFLF, healthcare providers,

acting as data owners, can collaborate with specialized machine learning expert-

s/researchers (model owners) to leverage their respective strengths The RFLF’s

multi-stage incentive mechanism encourages both parties to contribute optimally

throughout the project lifecycle. For instance, the model owner is motivated to

invest significant effort in refining the model, as their rewards are directly tied to

the model’s incremental performance improvements at each stage. This alignment

is crucial in healthcare, where the model’s accuracy and reliability directly impact

patient care. Simultaneously, RFLF’s data contribution buy-back mechanism ad-

dresses data heterogeneity in healthcare settings, where data sources can vary sig-

nificantly in quality and quantity. It incentivizes healthcare providers to contribute

high-quality data by allowing them to opt out while retaining their expected revenue

from their locked initial capital investment if their data underperforms. The remain-

ing data contribution buy-back funds are then used to incentivize other providers

to cover the contribution gap. The weight parameter also ensures fair compensa-

tion based on each provider’s relative contribution. This dual approach benefits

the overall data contribution and ensures equitable compensation for the healthcare

providers.

Beyond healthcare, RFLF can be applied to various industries like smart agricul-

ture, supply chain management, and logistics. In these sectors, which are also rapidly

adopting Web 3.0 and 5G/6G technologies, RFLF’s ability to incentivize collabora-

tion and leverage decentralized data sources can lead to significant advancements in

areas such as pest control, demand forecasting, inventory optimization, and route

planning.

5.7 Conclusion and Chapter Discussion

This chapter addressed the crucial challenge of designing a unified incentive frame-

work for model and data owners in dynamic contribution-driven federated learning
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cooperation. We introduced the Reciprocal Federated Learning Framework (RFLF),

a novel approach that fosters fairness, accountability, and sustainable collaboration.

RFLF uniquely advances the field of federated learning incentive mechanisms in

several vital ways.

Firstly, RFLF builds a mutually beneficial payoff structure through a dynamic, re-

ciprocal approach that considers the evolving contributions of both data and model

owners. This approach incentivizes both parties to exert optimal effort through-

out the federated learning process. Secondly, RFLF employs multi-stage incentives,

which ensure rewards and trained models are settled based on verifiable metrics at

each stage. It mitigates investment and payoff risks for data and model owners, fos-

tering a more secure, controlled and sustainable collaborative environment. Thirdly,

integrating cryptographic and blockchain technologies allows RFLF to guarantee

the secure, transparent, and automated execution of incentive contracts and model

ownership transfer. It fosters trust and accountability among participants, essential

for long-term collaborative success. Finally, empirical evaluations on established

datasets (MNIST, CIFAR-10) demonstrated RFLF’s effectiveness in real-world set-

tings. These evaluations demonstrated that RFLF incentivizes cooperation, mit-

igates free-riding tendencies, and significantly enhances the overall efficacy of the

federated learning process.

Building upon the promising foundation of RFLF, several avenues hold great po-

tential for future research. Firstly, a crucial line of inquiry is evaluating RFLF’s

behaviour and impact within large-scale federated learning networks across diverse

real-world application domains. It would involve analyzing its influence on model

precision, training efficiency, and overall system sustainability in complex settings.

Secondly, identifying potential limitations of RFLF under specific conditions (e.g.,

highly heterogeneous data distributions, complex model architectures, churn in data

or model ownership) is vital. Such exploration paves the way for developing adap-

tation strategies to optimize RFLF’s robustness and effectiveness across various use

cases. Finally, examining how RFLF can be tailored and optimized for specific

application areas within the target technologies mentioned (Web 3.0, 5G/6G, and

digitalized industries) is paramount. It could involve exploring integration with

blockchain technologies for enhanced security and trust in incentive management
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or investigating its suitability for privacy-preserving federated learning in sensitive

domains such as healthcare and finance.
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Chapter 6

Conclusions and Future Works

In this chapter, we summarise the contributions of this thesis and propose potential

future research directions for further exploration.

6.1 Conclusion

This thesis commences with a comprehensive overview of existing incentives for fed-

erated learning, presented in Chapter 2. In this chapter, we provide a foundational

understanding of federated learning and the integration of blockchain and survey ex-

isting incentives for federated learning. After that, we discuss the shortcomings and

limitations of existing incentives. In particular, the challenges of under-researched

evaluation and incentives for model owners’ contributions in federated learning sce-

narios, inappropriate incentive allocation, and insufficient incentives due to potential

mismatches between data and models in federated learning implementations must

be addressed before a scalable implementation of federated learning.

Given the breadth of these pressing challenges, we begin Chapter 3 with a discussion

of technical work that addresses the design of incentives for model owners in feder-

ated learning. In contrast to existing works in the literature, we propose a dynamic

multi-stage incentive mechanism that strategically allocates rewards to model own-

ers based on their contributions and the resulting incremental value generated by

the model. The mechanism is rigorously analysed using a mathematical model based

on contract theory, revealing its ability to mitigate unethical behaviour, optimise
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participant effort and promote fairness in federated learning scenarios.

Chapter 4 introduces an incentive framework for data owner-led federated learning

scenarios, the Fair Clearing House (FCH) framework, based on the multi-stage in-

centive mechanism we introduced in Chapter 2. In particular, the data owner-led

multi-stage incentive mechanism necessitates clearing updated models and rewards

at the conclusion of each stage. However, the decentralised and transparent clear-

ing of the blockchain provides a solution to this problem. To this end, we have

constructed an efficient and secure two-party clearing protocol by combining cryp-

tography and smart contracts for fair reward settlement. The empirical evaluation

demonstrates that FCH outperforms traditional federated learning frameworks on

various metrics, including participant effort optimisation and unethical behaviour

mitigation.

However, the work presented in Chapters 3 and 4 does not fully capture the self-

organising and dynamic aspects of multiple data owners in federated learning. The

work presented in these two chapters still assumes the existence of a data owner or a

group of data owners with aligned interests. It is a limitation, as the data and model

fit of data owners can change dynamically as federated learning proceeds. This data

and model mismatch can result in shifts in the returns to data owners, potentially

leading to an inequitable distribution of returns among data owners. We propose

a multi-stage data contribution buyback mechanism in Chapter 5 to address this.

We introduce the Reciprocal Federated Learning Framework (RFLF), which further

advances incentive design in federated learning. The framework supports a dynamic

and reciprocal incentive structure that promotes fairness and accountability among

data and model owners. The integration of blockchain technology ensures secure

and transparent transactions, and empirical evaluations based on existing datasets

demonstrate the effectiveness of the RFLF in facilitating collaboration, mitigating

free-riding behaviours, and improving the overall effectiveness of federated learning.

6.2 Broader Implications

The research presented in this thesis has significant implications for the widespread

adoption and democratization of federated learning across various domains. By
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addressing the crucial challenges of incentive alignment, trust-building, and fairness,

our work paves the way for a more collaborative and equitable approach to model

development, especially within the dynamic landscape of the Industrial Internet of

Things (IIoT) and beyond.

In the realm of smart agriculture, our contributions have the potential to revo-

lutionize the way farmers and agricultural stakeholders participate in data-driven

innovation. The collaborative nature of federated learning is crucial for addressing

complex agricultural challenges such as pest detection, disease diagnosis, and re-

source optimization. However, the reluctance to share data due to concerns about

fair compensation and potential misuse has often hindered progress. Our research

directly addresses this barrier by introducing incentive mechanisms that reward

farmers for their valuable data contributions, fostering trust and encouraging active

participation in federated learning initiatives. Moreover, the incentive framework

we designed has the potential to attract a wide range of stakeholders, including not

only farmers but also machine learning specialists, researchers, government agencies,

and capital investors.

Machine learning specialists and researchers, motivated by the prospect of financial

rewards and access to valuable agricultural data, are incentivized to develop cutting-

edge algorithms and applications. These innovations can lead to more efficient crop

health monitoring systems, precision fertilizer and water management tools, and

accurate yield prediction models, ultimately benefiting farmers and contributing

to the overall sustainability of the agricultural sector. Government agencies and

agricultural organizations can also leverage our frameworks to facilitate data sharing

among farmers, leading to more informed policy decisions and the development of

sustainable agricultural practices. Meanwhile, capital investors are attracted to the

potential for high social and economic impact, injecting much-needed resources into

the development and deployment of these innovative solutions.

Our research findings extend beyond agriculture, offering transformative potential

for other IIoT domains, notably the Internet of Medical Things (IoMT). In health-

care, where data sharing is often hampered by stringent privacy regulations and

concerns about patient data security, our incentive mechanisms can facilitate the
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formation of secure and equitable collaborations. By ensuring fair compensation

for data contributors, such as hospitals and research institutions, and incentivizing

the development of high-quality models, our frameworks can catalyze the creation of

innovative healthcare solutions, including personalized medicine, early disease detec-

tion, and improved treatment outcomes. Moreover, the transparent and trustworthy

nature of our approach can attract a wider range of stakeholders to the healthcare

sector. Machine learning experts and medical researchers, motivated by the oppor-

tunity to make a real-world impact and contribute to the advancement of medical

knowledge, are drawn to federated learning projects facilitated by our frameworks.

Capital investors, recognizing the immense potential for both financial returns and

positive societal impact, are also more likely to invest in these collaborative ven-

tures. This convergence of expertise, data, and resources can significantly accelerate

the pace of medical innovation and improve patient care.

The impact of our research also extends to supply chain management, logistics, and

other traditional industries where data-driven decision-making is crucial. By inte-

grating federated learning with our incentive mechanisms, we enable businesses to

leverage decentralized data sources while maintaining confidentiality. This collabo-

rative approach fosters the development of predictive models for demand forecast-

ing, inventory optimization, and route planning, leading to increased operational

efficiency and a more equitable distribution of benefits among supply chain part-

ners. The transparent and fair nature of our frameworks can also attract capital

investors seeking to support innovative projects with the potential for high social

and economic impact, further fueling the growth and development of the federated

learning ecosystem.

By democratizing machine learning through innovative incentives, our research has

the potential to transform the landscape of collaborative model development. The

ability to harness the power of decentralized data while maintaining privacy and

ensuring equitable outcomes is poised to revolutionize various fields. As federated

learning becomes more accessible and inclusive, we anticipate a surge in data-driven

innovation, with a broader range of stakeholders, including farmers, healthcare

providers, researchers, investors, and machine learning specialists, actively partic-

ipating in the development of solutions that address critical challenges and drive
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progress across industries.

6.3 Future Works

While this thesis has made significant strides in addressing the challenges of incentive

alignment and trust-building in federated learning, there are several avenues for

further exploration and refinement.

• Dealing with Malicious Participants: A fundamental assumption of our cur-

rent work is that all federated learning participants are semi-honest partic-

ipants who will honestly adhere to the protocol but may attempt to collect

unauthorised information, but real-world federated learning is not immune to

the presence of malicious participants who may deliberately deviate from the

protocol to gain an unfair advantage, or even sabotage the entire federated

learning process. These malicious participants may attack federated learning

through, for example, data poisoning (i.e., a malicious participant injects false

or misleading data into the training set) or model poisoning (i.e., a malicious

participant manipulates model updates to introduce backdoors or vulnerabil-

ities)[93]. In addition, malicious participants may attempt to infer sensitive

information about other participants’ data through model inversion attacks

or other privacy breaches [94]. In order to safeguard the integrity and relia-

bility of federated learning systems, future research should delve deeper and

introduce robust mechanisms capable of detecting and mitigating such mali-

cious behaviour. This may involve employing reputation systems to track the

historical behaviour of participants [27], anomaly detection algorithms to iden-

tify anomalous patterns in model updates or data contributions [95], or even

sophisticated cryptographic techniques (e.g., Secure Multi-Party Computing)

to validate the authenticity of shared information and the integrity without

revealing its content [96].

• Scalability and Complex Federated Learning Networks: While our framework

has demonstrated promising results in relatively controlled environments, their

scalability to larger and more complex federated learning networks remains an

open question. Future research should investigate strategies for efficient incen-
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tive distribution, model aggregation, and conflict resolution in such large-scale

collaborations. For instance, exploring decentralized consensus mechanisms

[97], such as those used in blockchain networks, or sharding techniques [98]

could help address the computational and communication bottlenecks that

may arise as the number of participants increases. Additionally, investigating

novel incentive allocation algorithms that consider the heterogeneous contribu-

tions of diverse participants [99], and the dynamic nature of their involvement

[100], could further enhance the fairness and efficiency of large-scale federated

learning systems.

• Addressing Unlabeled Data in Federated Learning: A significant limitation of

our research is its primary focus on scenarios where data is labeled. While this

reflects the current state of most federated learning approaches, it’s important

to acknowledge that real-world IIoT applications often involve a substantial

amount of unlabeled or mislabeled data [101]. This poses challenges for the

server to identify participants with suitable data for model training, and it

may require addressing issues of scalability, heterogeneity, and privacy within

federated learning systems. Future research could explore techniques for en-

abling devices to learn labels from each other or investigate semi-supervised

learning-inspired methods to tackle the unlabeled data problem in federated

learning [102]. Such advancements could significantly expand the applicabil-

ity and effectiveness of our proposed frameworks in real-world scenarios where

labeled data is scarce or costly to obtain.

• Integrating Capital Investors and Expanding the Incentive Ecosystem: While

our research has expanded the incentive framework to accommodate data-

owner-led federated learning scenarios, it is crucial to acknowledge that in real-

world applications, especially those involving high-risk innovative projects,

specialized capital investors like venture capitalists (VCs) or government fund-

ing agencies often play a primary role in providing financial resources [103].

This necessitates a deeper exploration of how to integrate these external in-

vestors into the federated learning ecosystem. Future research could inves-

tigate mechanisms to fairly distribute rewards among data owners, model

owners, and capital investors, taking into account their respective contribu-
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tions and risk tolerances [27]. Additionally, it would be valuable to explore

novel governance structures that balance the interests of all stakeholders while

ensuring transparency, accountability, and efficient decision-making in these

complex collaborations [103].
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