
Advanced Machine Learning for
Privacy-Preserving Intrusion Detection

in IoT Networks

Duc Manh Bui

Thesis submitted in fulfilment of the requirements for the degree of
Master of Science (Research) in Computing Science

under the supervision of

A/Prof. Hoang Dinh

A/Prof. Diep N. Nguyen

School of Electrical and Data Engineering
Faculty of Engineering and Information Technology

University of Technology Sydney

February 2025

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Duc Manh Bui, declare that this thesis is submitted in fulfilment of the requirements for the
degree of Master of Science (Research) in Computing Science at the Faculty of Engineering
and Information Technology, University of Technology Sydney.
This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,
I certify that all information sources and literature used are indicated in the thesis This
document has not been submitted for qualifications at any other academic institution.
This research is supported by the Australian Government Research Training Program.

Duc Manh Bui
February 2025

Acknowledgements

First and foremost, I would like to extend my deepest gratitude to my supervisor, Assoc.
Professor Hoang Dinh, whose encouragement to embark on this journey and invaluable
insights have been instrumental to the completion of this work. Without his guidance
and support, reaching this milestone would not have been possible. I am also profoundly
grateful to my co-supervisor, Assoc. Professor Diep Nguyen, for his critical and constructive
feedback, which has greatly improved my research skills and enhanced the quality of this
thesis. I am also grateful to my family, my beloved partner My-Linh Ho, and my friends at
UTS for their love and support.

Abstract

Advanced Machine Learning for Privacy-Preserving
Intrusion Detection in IoT Networks

The Internet of Things (IoT) is a groundbreaking technology that integrates smart devices
into communication networks, reducing human intervention and fueling innovation across
various applications, from smart cities to intelligent transportation. However, its heteroge-
neous and highly interconnected nature introduces significant vulnerabilities, expanding
attack surfaces that are increasingly targeted by sophisticated cyber threats. To address this,
machine learning (ML), especially deep learning (DL) has shown the potential to equip IoT
components with intelligent cyberattack detection modules, enabling IoT components to
detect and respond to cyberattacks by analyzing vast data streams. However, traditional
approaches that transmit vast amounts of user data to centralized models for processing
pose significant data privacy risks, exposing sensitive information to potential misuse by the
model’s owner. This highlights the need for advanced distributed ML/DL methods that can
accurately detect cyberattacks and preserve user data privacy.

Additionally, IoT network data often contains highly sensitive user information (e.g.,
location details and biometric data) making it susceptible to privacy breaches when being
analyzed for cyberattack detection using ML models. To tackle this problem, homomorphic
encryption (HE) offers a powerful technique to integrate with ML/DL models, enabling
innovative privacy-preserving ML (PPML) approaches that safeguard the confidentiality of
user data. By employing this cryptographic technique, ML/DL models can compute directly
on ciphertext without the need for decryption. However, PPML using HE is still an emerging
field, and designing HE-based learning algorithms remains a significant challenge due to
the high computational overhead of HE and the complexity of ML/DL models. Therefore,
the design of HE-based PPML algorithms to balance security, accuracy, and performance is
crucial for practical deployment in real-world IoT systems.

In this thesis, we contribute to addressing both security and privacy concerns in two
emerging IoT ecosystems: (1) developing a novel framework that integrates federated learn-
ing (FL) and HE for privacy-preserving intrusion detection in resource-constrained Internet

v

of Vehicle (IoV) networks, and (2) designing a privacy-preserving cyberattack detection in
blockchain-based IoT networks using our proposed deep neural network (DNN) training
algorithm for HE-encrypted data and our novel privacy-preserving distributed-cloud native
learning algorithm. Following the Single-Instruction-Multiple-Data (SIMD) manner, our
proposed packing algorithms enable an efficient privacy-preserving learning/inference for
encrypted data, achieving results nearly identical to the non-encrypted approach, approxi-
mately from 0.01 to 0.8%. These contributions demonstrate the effectiveness and potential
of our research in leveraging advanced ML to tackle security challenges and ensure data
confidentiality within real-world IoT ecosystems.

List of Publications

Journal Papers

J-1. B. D. Manh, C. H. Nguyen, D. T. Hoang, D. N. Nguyen, M. Zheng and Q. V. Pham,
“Privacy-Preserving Cyberattack Detection in Blockchain-Based IoT Systems Using
AI and Homomorphic Encryption," IEEE Internet of Things Journal, Jan. 2025, doi:
10.1109/JIOT.2025.3535792.

J-2. M. A. Hassan, B. D. Manh, C. T. Nguyen, C. H. Nguyen, D. T. Hoang, D. N. Nguyen,
N. V. Huynh and D. Niyato, “SBW 3.0: A Blockchain-Enabled Framework for Secure
and Efficient Information Management in Web 3.0," IEEE Transactions on Network
and Service Management (major revision).

J-3. M. A. Hassan, M. B. Jamshidi, B. D. Manh, N. H. Chu, C. -H. Nguyen, N. Q. Hieu,
C. T. Nguyen, D. T. Hoang, D. N. Nguyen, N. V. Huynh, M. A. Alsheikh and E.
Dutkiewicz, “ Enabling Technologies for Web 3.0: A Comprehensive Survey,” Elsevier
Computer Networks (major revision).

J-4. B. D. Manh, C. H. Nguyen, D. T. Hoang and D. N. Nguyen, “Towards Zero-Trust in
IoT Networks: A Homomorphic Encryption-Enabled Federated Learning Approach,"
IEEE Internet of Things Journal (on going).

Conference Papers

C-1. B. D. Manh, C. H. Nguyen, D. T. Hoang and D. N. Nguyen, “Homomorphic Encryption-
Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-
Constrained IoV Networks," IEEE Vehicular Technology Conference, October 2024,
Washington DC (accepted).

C-2. C. H. Nguyen, B. D. Manh, D. T. Hoang and D. N. Nguyen, “Towards Secure AI-
empowered Vehicular Networks: A Federated Learning Approach using Homomorphic
Encryption," IEEE Vehicular Technology Conference, October 2024, Washington DC
(accepted).

vii

C-3. D. H. Son, B. D. Manh, T. V. Khoa, N. L. Trung, D. T. Hoang, H. T. Minh, Y. Alem and
L. Q. Minh, “Semi-Supervised Learning for Anomaly Detection in Blockchain-based
Supply Chains," IEEE International Symposium on Communications and Information
Technologies, September 2024, Bangkok (accepted).

Book Chapters

B-1. B. D. Manh, N. Q. Hieu, D. T. Hoang and D. N. Nguyen, “Machine Learning for Cy-
berattack Detection in Internet of Things Networks: An Overview,” Elsevier Advanced
Machine Learning for Cyber-Attack Detection in IoT Networks (accepted)

B-2. N. Q. Hieu, B. D. Manh, D. T. Hoang and D. N. Nguyen, “Challenges and Poten-
tial Research Directions for Machine Learning-based Cyberattack Detection in IoT
Networks,” Elsevier Advanced Machine Learning for Cyber-Attack Detection in IoT
Networks (accepted)

Table of contents

List of Publications vi

List of figures x

Abbreviation xii

1 Motivation, Background and Literature Review 1
1.1 Motivation . 1
1.2 Background . 5

1.2.1 Machine Learning and Deep Learning 5
1.2.2 Federated Learning . 12
1.2.3 Homomorphic Encryption . 14

1.3 Literature Review and Contribution . 16
1.3.1 Privacy-Aware Federated Learning for Intrusion Detection in IoV

Networks . 16
1.3.2 Privacy-Preserving Machine Learning for Cyberattack Detection in

Blockchain-based IoT Networks 19
1.4 Thesis Organization . 23

2 Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving
Intrusion Detection in Resource-Constrained IoV Networks 25
2.1 System Model . 26
2.2 The Deep Neural Network for Encrypted Data 27
2.3 The Proposed FL Implementation . 28
2.4 Performance Evaluation . 31

2.4.1 Simulation Setup . 31
2.4.2 Evaluation Metrics . 32
2.4.3 Simulation Results . 33

2.5 Summary . 35

Table of contents ix

3 Privacy-Preserving Cyberattack Detection in Blockchain-Based IoT Systems
Using AI and Homomorphic Encryption 36
3.1 System Model . 37

3.1.1 Overview of Blockchain-based IoT System 37
3.1.2 Privacy-Preserving Cyberattack Detection in Blockchain Networks 38

3.2 The Privacy-Preserving Distributed Learning 39
3.2.1 The Proposed Training Process of Deep Neural Network for HE-

Encrypted Data . 40
3.2.2 Implementation of Distributed Cloud-Native Learning 49

3.3 Performance Evaluation . 50
3.3.1 Simulation Setup and Evaluation Metrics 50
3.3.2 Simulation Results . 52
3.3.3 Blockchain Nodes-enabled HE Computational Evaluation 56
3.3.4 Encrypted Inference Time Analysis 59

3.4 Summary . 60

4 Conclusion and Future Research Directions 62
4.1 Conclusion . 62
4.2 Future Research Directions . 63

4.2.1 Current Research Limitations . 63
4.2.2 Future Directions . 64

References 66

List of figures

1.1 The integration of ML into IDS. 4
1.2 The workflow of ML methods. Basically, ML algorithms obtain knowledge

through the learning phase by training with the dataset to produce the trained
module. This trained module is then applied to solve real-world problems,
generating output from the incoming input data. 5

1.3 Deep neural network architecture. 8
1.4 Deep autoencoder architecture. 9
1.5 Convolutional neural network architecture. 10
1.6 Recurrent neural network architecture. 11
1.7 Generative adversarial network architecture. 12
1.8 Illustration of federated learning process. 13
1.9 The structure of the thesis. 23

2.1 The proposed privacy-preserving intrusion detection framework including
pre-learning and privacy-preserving learning. 26

2.2 Encrypt process of a 3x3 matrix W. 28
2.3 The general flow of converting the weight and activation functions of neural

network to HE dimension. 30
2.4 Convergence of privacy-preserving learning with different number of VUs.

Regardless of the amount of offloaded encrypted data, the proposed EncFL
consistently achieves accuracy comparable to scenarios without decryption. 32

2.5 Classification results of 2 VUs. The accuracy of all the attacks remains
consistent with non-encrypted benchmarks. 34

2.6 Classification results of 3 VUs. The same trend is observed with “Reconnais-
sance” attack, even with the increased offloading data. 35

List of figures xi

3.1 The proposed privacy-preserving cyberattack detection framework includes
three phases: data encryption and offloading, encrypted data training, and
real-time detection. The CSP operates as a network security service to ensure
the security of N blockchain nodes (BNs). 39

3.2 Illustration of the proposed alternative packing method, including (a) 1D
packing and (b) 2D packing. The proposed methods are the pre-processing
of HE, which fits the elements of data (i.e., vector and matrix) into the slots
of a ciphertext in both normal (axis=0) and transpose (axis=1) manners.
Therefore, this enables efficient encrypted matrix/vector multiplications
during the training task. 41

3.3 Illustration of SumCols(.) and SumRows(.) algorithms on a ciphertext with
multiple segments, each having S slots size where each slot represents a
distinct element xi [1]. 44

3.4 Implementation of encrypted feed-forward in a neural network with two
layers. The weight matrix of the neural network layer is packed and en-
crypted based on the k-th order of the considered layer, regarding normal
processing (axis=0) or transpose processing (axis=1). Therefore, through the
HE multiplication described in (3.9), the input ciphertext, initially packed
along axis=0, can alternatively fit into the encrypted neural network layers. 45

3.5 The experiment setup of CSP environment. 51
3.6 Convergence of the considered learning algorithms. 52
3.7 Execution time of offline training phase. 53
3.8 Classification results of the non-encrypted detection within the proposed

HE-encrypted deep neural network. 57
3.9 Evaluation of the Geth blockchain node-enabled HE in different consensus

mechanisms: PoW, PoA, PoS, and no mining. 58
3.10 The inference time of the detection model with encrypted samples. 60

Abbreviation

IoT The Internet of Things
IoV The Internet of Vehicles
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
HE Homomorphic Encryption
PPML Privacy-Preserving Machine Learning
SSRF Server-Side Request Forgery
DDoS Distributed Denial of Service
IDS Intrusion Detection System
NIDS Network Intrusion Detection System
KNN K-Nearest Neighbour
MLP Multilayer Perceptron
DT Decision Tree
SVM Support Vector Machine
PCA Principal Component Analysis
t-SNE t-Distributed Stochastic Neighbor Embedding
AE Autoencoder
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
DAE Deep Autoencoder
DBN Deep Belief Network
GAN Generative Adversarial Network
TL Transfer Learning
FL Federated Learning
CKKS Cheon-Kim-Kim-Seon
RLWE Ring Learning With Errors

xiii

SIMD Single Instruction Multiple Data
RSUs Roadside Units
VUs Vehicle Users
CSP Cloud Service Provider

Chapter 1

Motivation, Background and Literature
Review

In this chapter, we first introduce the motivation of this thesis. We then present an in-depth
background of machine learning, deep learning, federated learning, and homomorphic encryp-
tion. After that, we conduct a comprehensive review of existing studies on machine learning
for intrusion detection in IoT networks and privacy-preserving machine learning, highlighting
the advantages and limitations of current approaches. Finally, the main contributions and the
structure of the thesis are presented.

1.1 Motivation

Over the past few years, the Internet of Things (IoT) has undergone remarkable developments,
significantly improving the quality of our daily lives. This emerging technology has enabled
the development of various intelligent applications spanning diverse sectors, from smart
transportation and smart healthcare to smart city and industrial automation [2]. Following
this trend, it is recorded that around 15 billion IoT devices were deployed in 2023, and it is
projected to double by 2030, reflecting the accelerating pace of IoT adoption [3]. In general,
the IoT system is defined as the interconnection between a massive number of heterogeneous
devices and cloud computing systems to provide intelligent services for human benefit.

However, despite the benefits of IoT, its wide range nature also introduces various
cybersecurity risks. Accordingly, maintaining the security requirements across large-scale
IoT environments, which operate based on the connectivity between multiple layers within
diverse areas, is still challenging. In the IoT network, each layer has its own vulnerabilities
that the intruders can exploit via different types of cyberattacks [4] [5]. For instance, in 2016,

1.1 Motivation 2

Mirai exploited a massive amount of IoT devices to form a huge distributed Botnets network,
which was then used to launch a massive DDoS attack against Dyn, a major DNS provider,
thereby disrupting Internet access for numerous websites and services, including Twitter,
Netflix, and Spotify [6]. Additionally, in 2019, AWS, a famous cloud service which manages
various IoT components, faced a data breach incident caused by a Server-Side Request
Forgery (SSRF) injection, exposing the personal information of approximately 100 million
customers in the United States, 6 million in Canada, and 80,000 bank account numbers [7].
Moreover, in 2020, Mozi malware showed its capability to exploit weak telnet passwords and
nearly a dozen unpatched vulnerabilities of various IoT devices manufactured by Netgear,
Huawei, and ZTE [8].

To minimize the security concerns of IoT networks, both industry and academia are
increasingly adopting Blockchain technology, widely acknowledged as a promising solution
to significantly enhance the security and resilience of IoT architectures. Blockchain tech-
nology plays a crucial role in enhancing the security, transparency, and reliability of IoT
systems, addressing several of the inherent challenges associated with these networks [9].
Blockchain’s decentralized ledger technology ensures that data transmitted across IoT devices
is immutable, meaning that once data is recorded, it cannot be altered or deleted without
consensus from the network [9], [10]. This significantly reduces the risk of unauthorized
data manipulation and cyberattacks. Moreover, blockchain enables secure and transparent
transactions between IoT devices by providing a trusted, tamper-proof record of all activities
[4]. This is particularly important for maintaining data integrity and trust in applications like
smart homes, supply chain management, and industrial IoT. By eliminating the reliance on a
central authority, blockchain also helps prevent single points of failure, thereby enhancing the
resilience and robustness of IoT systems against network failures and malicious attacks [9].
Due to the above benefits, various industries have been actively leveraging blockchain to
securely maintain IoT applications, such as IBM blockchain for supply chain applications
and IOTA blockchain for healthcare data management [11],[12].

Although the integration of blockchain with IoT fosters a more secure and efficient
environment for the widespread adoption of IoT technologies, it is still vulnerable to multiple
cyber threats. Statistics show that from 2011 to 2023, blockchain ecosystems have endured
over 1,600 cyberattacks, resulting in financial losses totally exceeding $32 billion [13]. For
instance, in August 2021, Poly Network, a cross-chain protocol for blockchain applications,
reported that their system had been hacked, causing over $611 million to be stolen [14].
Additionally, in March 2022, Ronin Network, an EVM-based blockchain game application,
revealed that a hacker had successfully stolen multiple private keys, resulting in a loss of
$614 million [14]. In terms of network security, there are also various network attacks on

1.1 Motivation 3

the blockchain environments. For example, in April 2021, the Hotbit wallet, a blockchain
cryptocurrency wallet, reported that the database of the Hotbit wallet was deleted by network
attacks from hackers [13]. Besides, in September 2021, the Solana chain also reported
that the system faced a network outage due to distributed denial of service (DDoS) attacks,
leading to the offline of the chain for 12 hours [13]. Most recently, in June 2024, BtcTurk,
a Turkish cryptocurrency exchange, suffered a network attack that impacted ten wallets
containing various cryptocurrencies, resulting in a $5.3 million freeze [13], [15]. These
problems reveal persistent vulnerabilities within blockchain systems that could cause serious
concerns about the security and reliability of IoT-based blockchain networks.

To address the security issues caused by cyberattacks, various security measures have
been explored within IoT ecosystems, with Intrusion Detection Systems (IDS) standing
out as a prominent method [16]. Following that, since IoT operates mainly based on the
network layer within various interconnected components, the network intrusion detection
system (NIDS) is recognized as the efficient approach to safeguard the IoT network, which
performs the cyberattack detection regarding network layer [5], [16], [17]. Signature-based
NIDS is the most frequent cyberattack detection approach, which has been further analyzed
in IoT systems. Despite its advantage in reducing the false alarm rate during cyberattack
detection, the database update to deal with new attack vectors remains challenging. Be-
sides, anomaly-based detection is also a well-known approach in NIDS. While this approach
demonstrates effectiveness in identifying novel attack types, it maintains a low false posi-
tive rate in detecting each known type of attack. Specification-based detection is another
frequently used method in NIDS. This approach detects intrusion based on the specific defi-
nition of components’ behaviour, which is manually defined by the experts [16]. Although
specification-based cyberattack detection allows fast deployment, it lacks adaptation to a
different environment and efficient time. As observed, traditional NIDS face limitations in
handling the dynamic and large-scale nature of IoT networks, often resulting in increased
latency and reduced detection efficiency. Moreover, their reliance on predefined rules and
patterns makes them less effective against sophisticated and evolving cyber threats. As a
result, the diverse and heterogeneous nature of IoT systems presents substantial challenges to
the effective deployment of conventional security methods for network attack detection in
real-world IoT scenarios.

Recently, machine learning (ML) and deep learning (DL) have emerged as an effective
approach to developing intelligent and adaptive intrusion detection systems (IDS), improving
performance by learning patterns from both normal and attack data [18], [19]. As illustrated in
Figure 1.1, the ML model can operate as a smart filter to detect various attack types, including
previously unknown threats, making them well-suited for heterogeneous environments (e.g.,

1.1 Motivation 4

Users

Machine
learning
module

Defence
mechanism

Suspicious
request

Computing resources

Requests
Normal
request

Fig. 1.1 The integration of ML into IDS.

IoT and blockchain) that frequently encounter novel cyber threats [17], [19]. Nevertheless, in
IoT ecosystems, including both traditional and blockchain-based IoT, applying ML to detect
cyberattacks raises substantial privacy concerns for users [20], [21]. In practice, ML-based
systems typically rely on third-party services, such as cloud providers, to access the extensive
computational resources required for high-demand tasks like training and inference [21].
This reliance necessitates data transfer to these third-party services, leading to potential
privacy risks. While analyzing attack data, users’ sensitive data, including personal details,
biometric data, and healthcare records, could be extracted and accessed by these third-party
providers, compromising data confidentiality [22]. Although various distributed techniques
like federated learning and collaborative learning have been developed to reduce dependency
on centralized training services [21], [23], they require IoT data owners to train their own
data before sharing their trained models to improve overall detection performance. This
approach is limited, as many IoT components (e.g., IoT gateways, IoT sensors, smartphones
and wearable devices) often lack the hardware capabilities to fully train their data.

To overcome the aforementioned problems, Homomorphic Encryption (HE) offers a
compelling solution, facilitating the integration with ML models to establish a robust and
efficient privacy-preserving machine learning approach. By employing this lattice-based
cryptographic method, data can be encrypted before being sent to third-party services,
enabling ML models to perform computations directly on the encrypted data without the need
for decryption [24]. This ensures that user privacy is preserved throughout the entire process.
As a result, HE stands out as a highly effective enhancement for ML models, providing robust
protection for users’ privacy. Therefore, this thesis delves into the integration of advanced
ML/DL techniques with HE to develop efficient PPML solutions tailored for IDS in two
cutting-edge IoT ecosystems: the Internet of Vehicles and Blockchain-based IoT.

1.2 Background 5

Learning phase

ML module

Training data

Trained module

Trained module

Inference phase

Trained module

Input data

Output

Fig. 1.2 The workflow of ML methods. Basically, ML algorithms obtain knowledge through
the learning phase by training with the dataset to produce the trained module. This trained
module is then applied to solve real-world problems, generating output from the incoming
input data.

1.2 Background

1.2.1 Machine Learning and Deep Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that empowers machines
to learn particular tasks (i.e., text classifications, image classifications, automatic robot
control, speech recognition, and medical diagnosis) and improve their performance based on
the learnt experience [25]. In general, Machine Learning (ML) operates by automatically
processing inputs and generating accurate outputs based on learned knowledge, solving
decision-making problems that cannot be addressed through conventional programming
written and designed by human beings. Specifically, as illustrated in Figure 1.2, the basic
workflow of ML approaches is divided into two independent phases: the learning phase and
the inference phase. During the learning phase, also known as the training process, the ML
module acquires knowledge from the training dataset. This phase is crucial for optimizing the
ML model using the training data, resulting in a trained module that is primed for deployment
in the subsequent phase. Once the trained module is obtained, it is deployed to determine or
predict the output based on the input data. As the training process often takes a long time to
obtain the optimized ML module, it can be performed in the background while the inference
phase is applied for real-time processing.

ML techniques can be broadly categorized into three main types: supervised learning,
unsupervised learning, and reinforcement learning.

• Supervised learning: In the case of supervised learning, the ML module accesses the
training phase using dataset D consisting of input-output pairs, where each input is

1.2 Background 6

associated with a respective correct output or a label. Accordingly, the dataset can
be denoted as D = {(x(1),y(1)),(x(2),y(2)), . . . ,(x(i),y(i))} ⊆ Rn×C, in which x(i) is
i-th input data sample, y(i) is label of i-th data sample, Rn is n-dimensional feature
space of x(i) and C is the label space of y(i). The supervised learning algorithm
aims to learn the mapping from x(i) to y(i) by minimizing the difference between its
predictions and actual labels during training. Hence, supervised learning is often
applied to solve the classification task, in which its inference phase can identify the
new input to the correct label. Regarding the binary classification (e.g., spam filtering),
the label is defined as C = {0,1} or C = {−1,1}. For the multiclass classification
(e.g., text classification), each label is represented by an integer, with the set of
possible labels being C = {0,1, . . . ,K}, where K denotes the total number of classes.
Additionally, supervised learning is widely utilized to process regression tasks (e.g.,
weather prediction), where C ∈ R.

In the training process, the dataset D is divided into three sets: training data Dtrain,
validation data Dvalid , and testing data Dtest . The supervised ML module strives to map
the data pairs from x(i) to y(i) (x(i),y(i)) ∈Dtrain via the training function σ , which aims
to generate σ(x) = y,

(
or σ(x) ≈ y

)
. Hence, a loss function, such as mean squared

error or cross-entropy loss, calculates the error between the predicted probability
σ(x) and label y. Subsequently, the function σ(.) is evaluated via the validation set
Dvalid by ML metrics (e.g., accuracy, recall, precision). To minimize the loss, ML
algorithms iteratively refine σ(.) until the ML model converges with a low error. After
achieving convergence, the trained model is tested on the test set Dtest to assess its
overall performance and generalization capability. Regarding the supervised learning
module, some well-known algorithms can be listed as follows: logistic regression,
K-nearest neighbour (KNN), Bayesian classification, multilayer-perceptron (MLP),
decision tree (DT), and support vector machine (SVM).

• Unsupervised learning: Unlike supervised approaches, unsupervised learning is a
machine learning approach where models are trained on data without predefined
labelled outputs, with the primary goal being to explore the hidden patterns and
distribution within data. Basically, unsupervised learning uncovers relationships within
the input data, primarily focusing on two tasks: clustering and dimensionality reduction.
Clustering involves dividing the input data into distinct groups based on similarities
among data points. On the other hand, dimensionality reduction aims to reduce the
number of features in the data while preserving essential information. Some of the
well-known unsupervised learning algorithms are K-means clustering, hierarchical
clustering, principal component analysis (PCA), t-Distributed Stochastic Neighbor

1.2 Background 7

Embedding (t-SNE), and autoencoder (AE). Due to its nature, unsupervised learning
is applied in several applications, especially anomaly detection, which significantly
improves the security of modern networks.

• Reinforcement learning: In the case of reinforcement learning, the ML module func-
tions based on the idea of learning from consequences through trial and error without
the prior dataset. Specifically, reinforcement learning enables the agent to learn by
interacting and making decisions in an external environment [26]. By utilizing the
reward function, the agent optimizes its actions within the environment to achieve
a specific goal. This type of learning has been widely adopted in areas that require
automation, such as robotics, wireless communications, and vehicles.

Despite the benefits of the aforementioned learning techniques, utilizing them with
traditional ML algorithms reveals several limitations. Therefore, deep learning (DL) has
been introduced as a significant solution that empowers the deep neural network (DNN)
for learning and inference. DL enables the ML model to operate with a deeper network,
incorporating multiple layers to enhance its performance within complex tasks. Following
that, several learning approaches (e.g., semi-supervised learning, self-supervised learning
and deep reinforcement learning) have been developed and seamlessly integrated with neural
networks. These approaches significantly enhance the model’s ability to autonomously learn
complex features, reduce reliance on labelled data, and improve generalization across diverse
tasks. By leveraging unlabeled or partially labelled data, self-supervised and semi-supervised
learning enables more efficient representation learning, while deep reinforcement learning
empowers models to make sequential decisions and adapt to dynamic environments. Accord-
ingly, natural language processing and computer vision are two popular AI applications that
leverage DL models to solve various problems (e.g., face recognition and text translation).
Compared to traditional ML algorithms, DL provides several advantages, which are described
as follows [25]:

• No need to extract features manually: To obtain the optimal solution in traditional ML
algorithms, the knowledge must be well-modelled with effective feature extraction.
However, it is difficult to identify the features in some specific scenarios. For instance,
regarding face recognition in computer vision tasks, it is hard to generalize the human
face by manually extracting each image pixel in many situations (e.g., face in shadow
or glare environment, face with different emotions, etc) [25]. Therefore, DL can
efficiently solve these problems by automatically learning the features from raw data
and processing complex data, such as images, voice, and video.

1.2 Background 8

...

...

Input Output

Input layer

Hidden layers

Output layer

Fig. 1.3 Deep neural network architecture.

• Ability to process big data: In ML tasks, the more data resources that the algorithm
learns, the more optimized and accurate performance it achieves. DL provides the
ability to learn not only complex but also massive amounts of data, which is often
limited in traditional ML. Instead of training large datasets on a single computing
hardware (e.g., CPU and GPU), DL leverages parallel processing that utilizes the
computing power of multiple computers for effective training. There are two types
of parallel computing: model parallelism and data parallelism. Regarding the model,
different layers of the DL model can be processed under multiple devices. Meanwhile,
data parallelism allows a single DL model to learn different partitions of datasets in
multiple devices.

• Reusable: Based on the effectiveness of the DL model in data generalization, the trained
model can be reused for different purposes in several tasks. By using the pre-trained
model built by experts, the costs for learning tasks can be significantly minimized
with a few configurations. For instance, BERT, a famous pre-trained language model,
can be applied to various domains (e.g., code analysis, medical-related documents
analysis or social network analysis) without training from scratch for each task [27].
Furthermore, the trained DL model can be formed as a module where its components
can be reused for different tasks within a complex system.

There are several types of DL models, including deep neural networks (DNN), convolu-
tional neural networks (CNN), recurrent neural networks (RNN), deep autoencoders (DAE),
and generative adversarial networks (GAN) [25], [28]. Although such DL models operate for
different purposes, they basically consist of the same components: neuron layers, weights,

1.2 Background 9

Encoder DecoderLatent
Space

Input Output

Fig. 1.4 Deep autoencoder architecture.

biases, activation functions, loss functions, and optimizers. Generally, the activation function
calculates output based on the input from the neuron layer. The weight and bias of the neuron
layer are then updated using the predefined loss function and optimizer to gain the optimal
model.

Deep Neural Network

The DNN is a typical DL model type, also known as the artificial neural network [25]. In
particular, DNN is a feed-forward neural network characterised by multiple layers: an input
layer, hidden layers, and an output layer, as described in Figure 1.3. Each linear layer consists
of neurons that transform input data through weights, biases, and activation functions. This
input is passed through multiple hidden layers to the output layer to produce the final result
(e.g., classification label, predicted value), which is often called the forward process. In this
process, the activation function at each layer provides non-linearity to the DNN, allowing it
to learn complex patterns and features from the input data. Three widely adopted activation
functions in DL models are Sigmoid, Tanh, and ReLU, each contributing to the network’s
ability to generalize intricate data relationships effectively [25] [26]. To optimize the output
of a DNN during the learning process, backpropagation is employed to minimize the error
between predicted results and actual labels. This key training task optimizes the weights and
biases by leveraging gradient updates guided by an optimizer. Through this iterative process,
the model continually improves its accuracy and performance. As a result, DNN is widely
adopted in DL applications due to its effectiveness for advanced learning algorithms.

Deep Autoencoder

The DAE is a type of DNN used primarily for unsupervised learning aimed at discovering
efficient data representations, typically for dimensionality reduction or feature learning [25].

1.2 Background 10

C
on

vo
lu

tio
n

R
el

u

Po
ol

in
g

C
on

vo
lu

tio
n

R
el

u

Po
ol

in
g

...

C
on

vo
lu

tio
n

R
el

u

Po
ol

in
g

Fl
at

te
n

Fu
lly

C
on

ne
ct

ed
La

ye
r

...

...
Flatten DNN

Convolution + Relu

Pooling

Fig. 1.5 Convolutional neural network architecture.

It leverages the "deep" nature of DL to improve the performance of the traditional autoencoder,
which lacks robustness and accurate data reconstruction. As described in Figure 1.4, DAE
contains two main parts: the encoder and the decoder. The encoder compresses the input data
into a lower-dimensional latent space, capturing the most important features of the data. The
decoder then reconstructs the original data from this compressed representation. By utilizing
multiple neuron layers from DL in both the encoder and decoder, DAE can learn more
complex and hierarchical features. In particular, DAE is highly effective for unsupervised
anomaly detection, making them well-suited for NIDS to identify new cyberattacks.

Convolutional Neural Network

The CNN is an advanced DNN mainly designed for handling visual data (e.g., image and
video) [29]. Therefore, besides the well-known neural network, the architecture of CNN
consists of two new layers: the convolutional layer and the pooling layer, as illustrated in
Figure 1.5.

• Convolutional layer: specialises in feature extraction by using filters that slide over the
input image, performing element-wise multiplications and summing the results [29].
This layer generates a feature map which contains the specific features obtained by the
filters across different spatial locations within the input.

• Relu activation function: is employed to ensure the non-linearity of the CNN after
extracting features from the convolutional layer. Specifically, it converts the negative

1.2 Background 11

RNN
...

Fig. 1.6 Recurrent neural network architecture.

values to zero and maintains the positive ones during learning tasks, enabling CNN to
train more efficiently.

• Pooling layer: aims to reduce the spatial dimensions of the feature map by utilizing the
scanning window to process each value (e.g., pixel). Thus, it minimizes the parameters
the network needs to learn, enabling more efficient computation and maintaining
important features within less information.

After processing via the convolutional layer and pooling layer, CNN flattened the feature
map into a vector to feed into fully connected layers, which is a neural network, to perform
the classification tasks. Traditional ML algorithms and DNNs often struggle with image data
because they require raw images to be converted into vectors before processing, leading to
a loss of spatial information. In contrast, CNNs overcome those limitations by leveraging
convolutional layers that automatically extract and learn complex features directly from the
raw images [29]. This allows CNNs to outperform traditional models by preserving spatial
relationships and capturing intricate patterns within the data. Regarding the NIDS, CNN is a
potential technique for analyzing network data such as traffic flow and bytecode to identify
cyberattacks.

Recurrent Neural Network

The RNN is another type of DL model that enables sequential data processing (e.g., sensor
signal, brain signal, weather data, audio data, etc.) [30]. Unlike the traditional feed-forward
model (e.g., DNN and CNN), RNN leverages the previous information to improve the
learning process of sequential data. As presented in Figure 1.6, the RNN is built upon
directed cycle connections between nodes, enabling the retention of past information in the
hidden state, which is then combined with new input data to inform the current step [30].
Particularly, the output of RNN in step t −1 is retained in hidden state ht and then used to
improve the learning of new input at step t [30]. Based on the architecture of RNN, several

1.2 Background 12

...

...
Discriminator network

...

...
Generator network

Random
Noise

Fake
Sample

Real
Sample

Improve

Fig. 1.7 Generative adversarial network architecture.

variants have been developed to solve the "gradient vanishing" challenge, including the long
short-term memory (LSTM) and gradient recurrent unit (GRU) [30], [31]. As a result, RNN
and its variants have shown the potential to analyze network data since network traffic is
considered sequential.

Generative Adversarial Network

GAN is an advanced ML framework that employs the idea of adversarial learning to train
the DL model [28]. As described in Figure 1.7, GAN consists of two neural networks,
the generator and the discriminator network, aiming to generate new data with the same
distribution as the training data. Specifically, the generator network takes the random noise
as input and converts it into a synthetic sample, which is indistinguishable from the real
sample [28]. The discriminator network then identifies the generated data and real data to
accurately classify whether the input data is real or fake [28]. In this regard, the generator
network tries to fool the discriminator by producing realistic data, while the discriminator
tries to classify real and fake data. This adversarial learning strategy enables accurate
synthetic data generation, thereby improving the learning of normal distribution in NIDS to
detect abnormal activities in IoT networks.

1.2.2 Federated Learning

Federated learning (FL) is a decentralized ML method that enables multiple devices or
entities to collaboratively train a shared model while keeping their data localized [32]. Unlike
traditional methods that require centralized data collection, federated learning allows data
to remain on individual devices, ensuring better data privacy and reducing communication

1.2 Background 13

Local model 1

Local model 2

Local model M

Global model

...

Local
data 1

Local
data 2

Local
data M

Fig. 1.8 Illustration of federated learning process.

overhead. As described in Figure 1.8, the FL system consists of a centralized FL server and
M FL users. In particular, each FL user m ∈ M , M = {1, . . . ,M}, that participate to FL
system has its private dataset Dm. The FL process commences with the centralized server
transmitting its initial global model wg to M users. Upon receiving the global model, each
user starts the training process by using their private dataset Dm to produce the local gradient
gm and update their local model wm [32]:

wl
m ← wl

g −µ ·gl
m, (1.1)

where l and µ are the learning round and learning rate, respectively. Subsequently, the users
transmit their updated local model to the server for aggregation. During this stage, the server
combines the received local models using the Federated Averaging (FedAvg) algorithm to
update the global model effectively [32]:

wl+1
g =

M

∑
i=1

ni

n
·wl

i. (1.2)

where M is the total number of participating users, ni is the number of samples of user i, and
n is the total number of samples. The aggregated global model is subsequently sent back to
the users for the next FL training round. This process continues either until the global model
reaches convergence or until a specified number of training rounds has been completed. This
weighted averaging ensures that client contributions reflect the size of their datasets, enabling

1.2 Background 14

Table 1.1 Comparison of Different Enabling Cryptographic Methods for PPML

Methods Interactivity Encrypted
Computa-
tion

Privacy
Guarantee

Computation
Overhead

Communication
Overhead

SMPC [21] Non-
Interactive

No Strong Medium High

DP [34] Interactive No Statistical Low Low
HE [33] Interactive Yes Strong High High

federated learning to harness distributed data efficiently. At the same time, it facilitates
decentralized knowledge sharing, allowing participants to collaboratively improve the global
model while preserving the privacy of their local information.

1.2.3 Homomorphic Encryption

Privacy-Preserving Machine Learning (PPML) leverages various cryptographic techniques,
including Differential Privacy (DP), Secure Multi-Party Computation (SMPC), and Ho-
momorphic Encryption (HE) [21]. Among these, HE stands out as a promising approach
in which this cryptography method allows direct mathematical operation over encrypted
data without decryption [33]. Unlike SMPC, which requires interactive communication
overhead among multiple parties, HE operates efficiently in a non-interactive manner due
to its ability in encrypted computation [21]. While DP protects privacy by adding noise to
the data, this often leads to a trade-off between privacy and accuracy, potentially degrading
model performance. In contrast, as a quantum-resistant scheme, HE guarantees both strong
privacy and exact computations, preserving data integrity without any statistical distortions.
Generally, Table 1.1 illustrates a comparison of current cryptographic methods regarding
PPML applications.

Since first introduced, various HE schemes have been developed, including Brakerski-
Gentry-Vaikuntanathan (BGV), Brakerski-Fan-Vercauteren (BFV), Fast Bootstrapping-Torus
FHE (TFHE), and Cheon-Kim-Kim-Song (CKKS). However, due to the complexity in
performing computation directly on HE-ciphertext, each scheme offers different trade-offs
in terms of supported operations, computational precision, and efficiency, as illustrated in
Table 1.2. As can be seen, in order to integrate HE with the neural network, we propose to
use the Cheon-Kim-Kim-Song (CKKS) scheme, which enables approximate calculations on
floating-point numbers [35]. Additionally, the CKKS allows for the encoding of multiple
data segments into a single ciphertext, which is subsequently encrypted into a ciphertext,
facilitating parallel computation on encrypted vector in a SIMD manner [35]. Since the CKKS

1.2 Background 15

Table 1.2 Comparison of Different HE Schemes

Scheme Supported
Opera-
tions

Supported
Number

Precision Multiplicative
Depth

Efficiency

CKKS [35] Addition &
Multiplica-
tion

Floating-
point

Approximate Supports deep
computation

High

BFV [36] Addition &
Multiplica-
tion

Integer Exact Integer
Arithmetic

Integer only Moderate

BGV [37] Addition &
Multiplica-
tion

Integer Exact Integer
Arithmetic

Optimized for
structured data

Moderate

TFHE [38] Boolean
Operations

Binary High Boolean logic Low

scheme is based on the ring learning with errors (RLWE), it requires the ring dimension R

(a power-of-two integer) to ensure the security level and multiplicative depth [33]. Following
that, the size of ciphertext (i.e., the maximum number of plaintexts it can contain) is denoted
as B, in which B =R/2. To be more specific, the CKKS scheme includes the key generation,
encryption, decryption, and basic homomorphic operations as follows:

• SKGen(n): generate random secret key skn for user n.

• PKGen(skn): create the public key pkn for user n based on the secret key skn.

• Enc(pkn,c): encrypt a raw vector c into a ciphertext ĉcc by using the public key pkn.

• Dec(skn, ĉcc): decrypt encrypted vector ĉcc into its plain form c by using the secret key skn

• Add(ĉcc111, ĉcc222): the addition between two ciphertexts ĉcc111 and ĉcc222, in which
Dec(skn,Add(ĉcc111, ĉcc222))≈ c1 + c2.

• Sub(ĉcc111, ĉcc222): the subtraction between two ciphertexts ĉcc111 and ĉcc222, in which
Dec(skn,Sub(ĉcc111, ĉcc222))≈ c1− c2.

• Mult(ĉcc111, ĉcc222): the multiplication between two ciphertexts ĉcc111 and ĉcc222, in which
Dec(skn,Mult(ĉcc111, ĉcc222))≈ c1× c2.

It is worth noting that the aforementioned homomorphic evaluations (i.e., addition, sub-
traction, and multiplication) perform element-wise operations between ciphertexts to produce

1.3 Literature Review and Contribution 16

the encrypted outputs. However, the more homomorphic evaluations on ciphertext, the more
noises are added, which causes the error in decryption [33]. To solve that problem, the
bootstrapping mechanism denoted as Bootstrap(ĉcc) can be applied to reduce the magnitude of
noise in ciphertext ĉcc by re-encrypting it [33]. This capability enables additional computation
on ciphertext, making it suitable for deep learning tasks, including training and inference.

1.3 Literature Review and Contribution

1.3.1 Privacy-Aware Federated Learning for Intrusion Detection in IoV
Networks

Literature Review

In the literature, several works have explored ML-based intrusion detection systems tailored
for IoT and IoV networks. Particularly, ML and DL models serve as intelligent filters which
analyze network traffic to effectively detect and classify incoming cyberattacks [39]. In [40],
the authors built an IoT environment in their laboratory and produced a dataset called N-
BaIoT, which contains network traffic from various benign IoT devices and malicious IoT
botnets (e.g., Mirai and BASHLITE botnets). Then, a deep autoencoder (DAE) is developed
and trained with the N-BaIoT dataset for anomaly detection. The simulation results indicated
that the DAE can obtain 100% accuracy regarding True Positive Rate (TPR). Additionally, the
authors in [41] also deployed a small-scale IoT system and conducted experiments to generate
the ToN-IoT dataset. This dataset extends the capabilities of N-BaIoT by incorporating a
broader range of attack scenarios, such as Man-in-the-Middle, Injection, Ransomware, and
Scanning, while also providing telemetry data from IoT sensors under normal conditions. The
authors then used the DNN and other traditional ML methods (e.g., Naive Bayes, Logistic
Regression, Decision Tree) to evaluate the considered dataset. The experiment results showed
that all ML models achieve the performance with Area Under the Curve (AUC) around 90%.
Moreover, the authors in [42] proposed a novel generative model called Constrained Twin
Variational Auto-Encoder (CTVAE), which can enhance representation learning in intrusion
detection systems of IoT networks. By constructing a twin neural network to improve the
latent space of the Variational Auto-Encoder (VAE), the reconstruction can be more separated
due to different kinds of attacks. The simulation results clarify that the proposed approach
can detect network attacks on IoT devices with accuracy from nearly 90% to 96% with the
evaluation of real-world IoT datasets. Regarding IoV networks, the authors in [43] propose
a Convolutional Long Short Term Memory Network (ConvLSTM) to detect anomalies in
IoT sensors integrated CAVs. The simulation results show that the deep learning model

1.3 Literature Review and Contribution 17

can detect various anomalies in sensor data with an F1-score of 97%. Moreover, in [44],
the authors evaluate various deep learning techniques to detect attacks in vehicular network
traffic, which achieve accuracy from 92% to nearly 99%. However, the aforementioned
works primarily focus on centralized DL models for cyberattack detection, which rely heavily
on accessing large datasets. These datasets are typically stored locally on user devices (e.g.,
IoT sensors, gateways, smartphones and vehicles), making them challenging to collect and
aggregate. This reliance on a centralized framework not only increases privacy risks but
also adds significant communication overhead, limiting the practicality and effectiveness of
ML-based intrusion detection systems in IoT/IoV networks.

Regarding distributed processing for ML, numerous research works have explored the
application of FL to cyberattack detection, particularly in environments with a vast number of
devices, such as IoT ecosystems. In [45], the authors propose a collaborative framework that
utilizes FL for intrusion detection in IoT networks. In this framework, DL models deployed
on various IoT gateways utilize data collected from their respective subnetworks for local
training. The locally trained models are then transmitted to a central server, where they are
aggregated, enabling knowledge sharing and collaboration across diverse IoT infrastructures.
Experiment results using Deep Belief Network (DBN) and Deep Autoencoder (DAE) show
the accuracy of detection from 93% to 98%. Besides, the authors in [46] employ both
Transfer Learning (TL) and FL to create the advanced DL model, which can learn different
features from different IoT networks. In the considerer framework, each IoT network may
have different extracted features and labels of the input data. Therefore, the integration of TL
and FL is used to transfer the knowledge between various IoT subnetworks. The proposed
framework can help the learning models transfer the knowledge of labelled and unlabeled data
to classify different attacks. The proposed Federated Transfer Learning (FTL) shows that the
FTL can detect network attacks on IoT devices with accuracy from 85% to 99%. Moreover,
the authors in [47] also showed the potential of FL for IDS in vehicular networks. The
authors designed a blockchain-based FL where the Roadside Units (RSUs) can effectively
collect traffic data from the vehicle and subsequently use it to train the considered local DL
model. The simulation results showed that with different numbers of vehicles and portions
of local data, the proposed framework can achieve consistent results of approximately 95%
regarding accuracy, precision, and recall.

Despite the advantage of FL in IDSs, there are still some major challenges when deploying
it in practical IoV networks. Specifically, in FL-based IDS in IoV networks, vehicles or
RSUs often serve as workers to store and process all the learning tasks (e.g., training and
classification) [48]. However, in practice, both RSUs and vehicles usually have limited
computing and storage resources, and thus, storing and processing learning tasks at RSUs

1.3 Literature Review and Contribution 18

and vehicles are ineffective. It is important to note that in conventional FL processes, a delay
from one computing node can cause a delay for the whole system [49]. Therefore, several
works propose solutions to upload data from RSUs and vehicle users (VUs) to powerful
servers (e.g., centralized servers) for processing [50] [51]. The authors in [50] propose a
hybrid FL framework (HybridFL) in which users can choose to offload their full data to
the server. The experiment results reveal that HybridFL can slightly improve the accuracy
of the DL model with 1% of data-uploading clients. In addition, the work in [51] design
the offloading framework, which assists edge FL in wireless networks. In the considered
framework, the client (e.g., mobile users) can freely choose the amount of data they want to
share with the server to employ such high computing power of the server. These approaches
can be very effective in deploying ML algorithms as all the data is collected and processed at
the centralized servers. However, it also raises a serious concern regarding the data privacy
of VUs, as all the data is now stored and processed externally [52].

Contributions

To overcome the above challenges, we propose a novel privacy-preserving FL framework
for intrusion detection in IoV networks. The proposed framework can effectively protect
VUs’ privacy and detect cyberattacks, given VUs’ limited computational resources. Our
main contributions can be summarized as follows.

• We design a novel framework for efficient computational resources in FL. Based on
the current computing and storage resource capabilities, VUs can decide the amount of
data they need to upload to the server for processing. Therefore, the users can locally
process the data with the resource-constrained IoV devices.

• We then introduce the approach to effectively protect users’ privacy during the of-
floading process. Specifically, the offloading data will be encrypted by employing
Homomorphic Encryption (HE) before being uploaded to the server.

• While this encryption method enhances data privacy, it presents significant challenges
for the centralized server, which is tasked with training on the encrypted data offloaded
from the VUs. To tackle this issue, we develop a robust training algorithm leveraging
the Single Instruction Multiple Data (SIMD) and the bootstrapping capabilities of the
underlying HE scheme. This enables direct computation on the quantum-secure en-
crypted ciphertexts without the need for decryption. This approach not only maintains
the confidentiality of data during the offloading process from VUs to the centralized
server but also boosts the efficiency of using FL for IDSs within IoV networks.

1.3 Literature Review and Contribution 19

• We carry out extensive simulation results to evaluate the proposed framework on real-
world IoT datasets. In particular, our proposed framework achieves not only a high
accuracy (approximately 91%) in detecting attacks but also exhibits great performance,
closely approaching the benchmark without using encryption (with a gap of less than
0.8%)

1.3.2 Privacy-Preserving Machine Learning for Cyberattack Detection
in Blockchain-based IoT Networks

Literature Review

As described in Section 1.1, with the increasing reliance of IoT systems on blockchain
technology for security and data integrity, cyberattacks targeting blockchain networks pose
significant risks to the stability and functionality of IoT infrastructures. To protect the
blockchain networks, numerous studies have explored the application of intrusion detection
methods to detect and prevent specific blockchain network attacks. The authors in [53]
analyzed the flooding of transactions (FoT) attack on the Moreno blockchain in terms of
the network capacity, block size, etc., to evaluate the attacker’s benefits. The simulation
indicates that the attacker can potentially retrieve the users’ data in nearly 41% of all
transactions. In [54], besides analyzing the cyberattacks (i.e., DDoS, brute passwords) on
the Ethereum nodes, the authors also implemented the detection of cyberattacks based on
scanning techniques. The authors showed that they can detect cyberattacks based on CPU
consumption and high memory on various devices (e.g., Macbook, Mobile devices, and
Raspberry Pi). However, the above approaches can only detect several specific types of
attacks and often detect threats only after significant damage has already been incurred.

Unlike the conventional methods, ML enhances the cyberattack detection performance
by allowing the model to learn from the distribution patterns of both normal and attack
data, enabling it to identify multiple types of attacks [18]. In addition, the ML model is
capable of detecting new, previously unreported attacks, making it particularly effective for
blockchain environments that frequently encounter novel cyber threats [19], [55]. In [56], the
authors proposed a federated learning approach to improve the IDS in IoT-based blockchain
applications for Metaverse. Specifically, a semi-supervised learning model is designed to
detect network attacks in IoT environments. The evaluation of multiple IoT attack detection
datasets shows that the considered learning model can detect attacks with accuracy from
82% to nearly 98%. In addition, the authors in [57] proposed a deep learning (DL) model
which combines the contractive sparse autoencoder (CSAE) and Long Short-Term Memory
(LSTM) to detect cyberattacks on IoT-based blockchain systems. The simulation results on

1.3 Literature Review and Contribution 20

two well-known ToN-IoT and Edge-IIoT datasets show that the considered DL model can
achieve accuracy from 90% to nearly 99% in different scenarios. However, the application
of ML to detect cyberattacks in blockchain network traffic is still in its infancy since it has
only been explored in a few studies. In [58], the authors analyzed the Bitcoin traffic data and
experimented with DoS and Eclipse attacks to collect network attack data. The authors then
designed an autoencoder (AE) to detect the considered attacks on the Bitcoin traffic in which
the accuracy of the considered AE reached nearly 99%. Besides, the work in [59] utilized
the Recurrent Neural Network (RNN) to detect various DDoS attacks on Ethereum networks.
The authors designed a simulated Ethereum network and collected the normal and attack
behaviours in terms of network records. The results showed that the considered approach
can detect attacks with 99% accuracy. Regarding the blockchain-based IoT networks, the
authors in [60] developed a private blockchain-based IoT for supply chain management and
experimented with various network attacks to collect the dataset. After that, the authors
proposed to integrate DAE with DNN, forming an effective semi-supervised DL model
for anomaly detection. The simulation results indicated that the proposed DL model can
detect anomalies with an accuracy of around 96%. Moreover, the authors in [61] designed a
private Ethereum network to process data transmission from IoT devices. The benign and
attack traffic collected from IoT devices and Ethereum nodes was used to train a Deep Belief
Network (DBN), achieving 98% accuracy in detecting cyberattacks.

Nevertheless, as described in Section 1.1, in blockchain-based IoT systems, applying ML
for cyberattack detection raises significant privacy concerns due to reliance on third-party
services like cloud providers, which require transferring sensitive user data for processing.
While distributed techniques such as federated learning reduce dependency on centralized
training, they are limited by the hardware constraints of IoT gateways, which must balance
the demanding tasks of blockchain mining and FL local model training. Therefore, privacy-
preserving ML using HE emerges as an innovative solution to ensure data confidentiality
throughout the computation process. Although differential privacy is a widely recognized
technique in privacy-preserving ML, especially when integrated with FL, it faces limitations
in ensuring user data privacy as this remains an essential concern in blockchain-based IoT
systems.

To preserve the privacy of users, various works have successfully integrated HE into
ML models. In [62], the authors proposed a neural network integrated with HE utilizing
non-linear activation functions. By evaluating the considered neural network on the MNIST
dataset, the authors showed that the HE-encrypted neural network can achieve an accuracy
of 99% and high throughput in the encryption and decryption process. Additionally, the
authors in [63] introduced Doren, a DL-based HE method that allows the processing of a

1.3 Literature Review and Contribution 21

Deep Convolutional Neural Network (CNN) over HE-encrypted data. By employing the
SIMD packing and bootstrapping techniques, the authors enable the HE computation on
multiple famous CNN models (i.e., VGG7, ResNet20). The simulation results indicated that
the proposed approach could achieve accuracy from 73.85% to 92.32% within multiple HE
schemes and DL models. Besides, in [64], the authors proposed a CNN-integrated HE method
to recognize human activities in a privacy-preserved manner. The authors also based on
the SIMD packing method to design effective HE-encrypted matrix multiplication, forming
an effective encrypted CNN with high throughput during inference. The results showed
that the proposed approach could have a high throughput of 0.4 to 0.8 seconds per sample
and accuracy from 86% to nearly 89% within multiple datasets and CNN configurations.
However, it is worth noting that while these studies successfully handle the inference process
in ML-integrated HE, they do not address the complexities of the training process, which is
arguably the most critical phase in machine learning.

In [65], the authors proposed CryptoDL, which considered both training and inference on
the HE-encrypted data. However, the proposed CryptoDL requires frequent communication
between ML owners and users to refresh the encrypted parameters, preventing the overload
of HE noise during the training process. Alternatively, the proposed approach costs massive
training time, resulting in around 1,456.7 seconds to train over one iteration with a 5-layer
neural network. The authors in [66] also considered the training task of neural network-
integrated HE with a multi-threading approach. The results showed that the training task
of a 3-layer neural network requires intensive training time. Specifically, it takes over 9
hours with a single thread and 40 minutes with 30 threads to process a mini-batch of 60
samples. In [67], the authors developed a training algorithm for an encrypted neural network
that achieves nearly 88% accuracy in recognizing human activities, yet they did not take the
training time into consideration.

As discussed above, relying on ML to enhance blockchain-based IoT security raises
notable privacy concerns. Given HE’s proven effectiveness in safeguarding privacy when
combined with ML, training DL models on HE data presents two significant challenges, i.e.,
computational overhead and limited efficient operations. Generally, HE enables computations
on encrypted data without needing to decrypt it, which is crucial for privacy-preserving
ML [21]. However, it comes at the cost of extensive computational overhead, as operations
on ciphertext require much more resources than on plaintext. Therefore, the extensive
computational requirement for training tasks of ML-integrated HE leads to prohibitively long
training time, making it challenging to scale DL models to large datasets when preserving
users’ privacy by HE. Moreover, since HE schemes only efficiently support a limited set of
mathematical operations (i.e., addition and multiplication), effectively implementing ML

1.3 Literature Review and Contribution 22

training tasks for HE-encrypted data (matrix multiplication, back-propagation, non-linear
functions, etc.) is particularly challenging.

Contributions

To address all the above challenges, we propose a novel privacy-preserving cyberattack
detection framework for blockchain-based IoT systems. In the proposed system, AI-based
smart cyberattack detection modules are deployed at the mining nodes in the blockchain
network to detect attacks on the mining nodes in a real-time manner. To improve the
efficiency in detecting attacks in real-time (i.e., with high accuracy and low delay), the
training process is performed in advance at a cloud service provider (CSP). In particular, the
mining nodes send their training data to the CSP for a comprehensive training process. To
protect data privacy, before sending the training data to the CSP, the mining nodes encrypt
their data using the HE technique. This technique allows the CSP to perform global model
training on encrypted data without the need to decrypt it, thereby protecting data privacy.
To address the problem of handling a huge amount of encrypted data at the CSP, we first
develop an innovative packing algorithm to pack the data in an SIMD manner, thereby
effectively enabling the training process for HE-encrypted data. After that, we design an
innovative training algorithm for the deep neural network with HE-encrypted data based
on our proposed packing methods. While applying HE to ML/DL models can effectively
enhance data privacy, it presents significant challenges for the CSP regarding computation
time during the training task. To tackle this, we propose a privacy-preserving distributed
learning for HE-encrypted data. Our proposed approach allows the learning model to be
trained in parallel across multiple workers, thereby improving computation time. Once the
training process is completed, the CSP will share the trained model with the mining nodes
for real-time detection. Our main contributions are summarized as follows:

• We develop innovative packing methods for 1D vector and 2D matrix, which allow
the encrypted matrix multiplication in an SIMD manner. Following that, we design a
robust training algorithm for encrypted data based on the proposed packing algorithm
mentioned above.

• We propose a privacy-preserving distributed learning algorithm that significantly opti-
mizes the training time over the encrypted data. By leveraging the FedAvg algorithm,
computing resources from multiple parties can be utilized to form an effective learning
approach. The experiments show that the proposed learning algorithm reduces training
time significantly as more workers participate.

1.4 Thesis Organization 23

Advanced Machine Learning for Privacy-Preserving Intrusion
Detection in IoT Networks

Internet of Vehicles
Networks

Blockchain-based
IoT Networks

Secure computation of HE-based
DL for cyberattack detection in

blockchain networks

A novel privacy-preserving FL for
resource-constrained IoV

networks
Chapter 2

Chapter 3

Fig. 1.9 The structure of the thesis.

• We conduct comprehensive evaluations on the detection performance with the real-
world blockchain network attack dataset. The results show that our approach not only
delivers highly accurate cyberattack detection for both encrypted and non-encrypted in-
ference but also achieves consistency in performance comparable to the non-encrypted
baseline method. This validates the robustness and reliability of our solution in main-
taining privacy without compromising detection accuracy.

• We perform real experiments to evaluate our proposed framework across various
consensus mechanisms and hardware configurations. The results indicate that our
framework is highly adaptable to practical applications, delivering impressive efficiency
in resource utilization, low latency, and high throughput. These findings underscore
the framework’s potential for seamless integration into real-world systems, meeting
the demands of modern decentralized environments.

1.4 Thesis Organization

As illustrated in Figure 1.9, this thesis significantly contributes to two distinct IoT systems.
Specifically, chapter 2 focuses on advancements in FL and HE for IDS in IoV networks,
while chapter 3 provides a deeper exploration of time-efficient HE-based DL computations
for cyberattack detection in blockchain-based IoT networks. The structure of this thesis is
outlined as follows.

• Chapter 2: This chapter presents our study that enables homomorphic encryption in
federated learning (FL) to provide a privacy-preserving approach for IDS in resource-
constrained IoV networks. Specifically, Section 2.1 describes our system model. Then,
Section 2.2 introduces our proposed DNN for encrypted data. Based on that, our pro-

1.4 Thesis Organization 24

posed privacy-preserving FL is described in Section 2.3. In Section 2.4, performance
evaluations are discussed. Finally, Section 2.5 provides the conclusion of this work.

• Chapter 3: This chapter introduces a novel privacy-preserving cyberattack detection
framework for blockchain-based Internet-of-Things (IoT) systems. Particularly, Sec-
tion 3.1 demonstrates a brief overview of blockchain-based IoT systems and the system
model. In Section 3.2, the proposed training algorithm of DNN for HE-encrypted
data and distributed cloud-native learning are presented. Then, simulation results and
real experiment results are discussed in Section 3.3. Finally, we conclude our work in
Section 3.4.

• Chapter 4: This chapter summarizes the conclusions and outlines potential directions
for future research.

Chapter 2

Homomorphic Encryption-Enabled
Federated Learning for
Privacy-Preserving Intrusion Detection in
Resource-Constrained IoV Networks

This chapter aims to develop an innovative approach to ensure both security and privacy for
IoV networks, which is an emerging IoT-based application. Particularly, we aim to propose
a novel framework to address the data privacy issue for Federated Learning (FL)-based
Intrusion Detection Systems (IDSs) in Internet-of-Vehicles (IoVs) with limited computational
resources. In particular, in conventional FL systems, it is usually assumed that the computing
nodes have sufficient computational resources to process the training tasks. However, in
practical IoV systems, vehicles usually have limited computational resources to process
intensive training tasks, compromising the effectiveness of deploying FL in IDSs. While
offloading data from vehicles to the cloud can mitigate this issue, it introduces significant
privacy concerns for vehicle users (VUs). To resolve this issue, we first propose a highly-
effective framework using homomorphic encryption to secure data that requires offloading to
a centralized server for processing. Furthermore, we develop an effective training algorithm
tailored to handle the challenges of FL-based systems with encrypted data. This algorithm
allows the centralized server to directly compute on quantum-secure encrypted ciphertexts
without needing decryption. This approach not only safeguards data privacy during the
offloading process from VUs to the centralized server but also enhances the efficiency of
utilizing FL for IDSs in IoV systems. Our simulation results show that our proposed approach
can achieve a performance that is as close to that of the solution without encryption, with a
gap of less than 0.8%.

2.1 System Model 26

Pre-learning link

...

Centralized Server

RSU-1

VU-1 VU-2 VU-N

...

RSU-M

VU-2 VU-N

Local Model

Encrypted data

Non-encrypted data

...

Server Model

Global Model

(a) Pre-learning process

...

...

1. Privacy learning

...

2. Aggregate model

Centralized Server

RSU-1

VU-1

...

RSU-M

Encrypted
Server Model

Learning link

VU-2 VU-N

...

Encrypted
Local Model

Encrypted
Global Model

(b) Privacy-preserving learning process

Fig. 2.1 The proposed privacy-preserving intrusion detection framework including pre-
learning and privacy-preserving learning.

2.1 System Model

The proposed system model is illustrated in Fig. 2.1. The system consists of a centralized
server (CS), M RSUs and N VUs. Initially, the VUs enter the pre-learning phase by assessing
their computational resources and determining the optimal amount of data that can be
processed locally. The rest of the data will be offloaded to the centralized server for processing.
However, before offloading the data to the centralized servers, VUs will generate HE key
pairs and use them to encrypt uploading data. The encrypted data will then be offloaded to
the centralized server via RSUs, as illustrated in Fig. 2.1(a). Upon receiving the offloaded
encrypted data, the centralized server will compile it into an encrypted dataset. Using this
dataset, two learning models will be developed: the server model and the global model, each
serving distinct purposes. The server model will be utilized to train the encrypted dataset
within the centralized server, whereas the global model will be distributed to the VUs for
local training. Once the global model is sent to the VUs, the privacy-preserving learning
process will commence.

The privacy-preserving learning process will be divided into different learning periods.
During each learning period, each VU will use the global model to train on its local data.
After completing the training, the VU will encrypt its trained model before sending it to the
centralized server. Concurrently, the centralized server will train its encrypted data using our
proposed CKKS scheme, detailed in Section 2.2. Upon receiving all the encrypted trained
models from the VUs, the centralized server will aggregate them to create a new global
model (the aggregation method is detailed in Section 2.3). This updated global model is then

2.2 The Deep Neural Network for Encrypted Data 27

sent back to the VUs, and the next learning period begins. This process repeats until the
global model converges or until a predefined number of learning periods has been completed.

2.2 The Deep Neural Network for Encrypted Data

To integrate HE with deep neural networks, we propose to use the Cheon-Kim-Kim-Song
(CKKS) scheme. The reason is that it allows the encryption and calculation of real numbers,
which is suitable for deep learning [35].

As described in Section 1.2.3, HE schemes require a ring dimension R, which maintains
the security level, multiplication depth, and noise level [33], thereby allowing accurate
computations over encrypted data. Following that, to design a deep neural network for
encrypted data, we employ the single instruction multiple data (SIMD) from the CKKS
scheme, which packs multiple plaintexts into a single ciphertext. The size of ciphertext is
denoted as B, where B = R/2. Alternatively, the CKKS can encode and encrypt a square
matrix of size at most µ×µ , where µ = ⌊

√
B⌋ by initially flattening it into a vector. This

thus enables element-wise operation on the plaintext slots concurrently. For clarity, Fig. 2.2
describes the implementation of the weight matrix encryption method. Let φi denote the
parameter of i linear layer which φi = (Wi,bi). The weight matrix W u×v

i with u and v as the
input and output dimensions of the layer is applied to the encoding process:

Encode(Wi) = Flatten
(
Pad(Wi,0,µ)

)
, (2.1)

where the matrix W u×v
i is first zero-padded to W µ×µ

i with the size of (µ , µ) to fit within
B size. The weight matrix is then flattened to form an encoded vector. After that, this
encoded vector is padded to ensure its length equals half of the ring dimension [33]. After
that, the encoded vector is encrypted using the encryption function of CKKS described in
Section 1.2.3, which can be defined by:

Ŵi = Enc(spk,Encode(Wi)), (2.2)

where spk is the public key generated by the users. As a result, Ŵi is the encrypted weight of
layer i, which can be used to operate with encrypted training data. Therefore, the output of
the forward propagation over the i-th layer can be calculated as:

x̂i+1 = σ̂
(
Add(Mult(x̂i,Ŵi), b̂i)

)
, (2.3)

2.3 The Proposed FL Implementation 28

W1,1

W3,1 W3,2 W3,3

W1,2 W1,3

W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,30...0

slots

0...0 0...0 ...W2,1 W2,2 W2,3

Weight W(3x3) Homomorphic encryption ofW(3x3)

W1,1

W3,1 W3,2 W3,3

W1,2 W1,3

W2,1 W2,2 W2,3

0...0

0...0

0...0

0...00...00...0 0...0

Padding

size

Fig. 2.2 Encrypt process of a 3x3 matrix W.

where Ŵi and b̂i are the encrypted weight and bias at layer i. Particularly, σ̂ illustrates the
polynomial approximation of the activation function σ using the Chebyshev polynomial [68].
In the considered deep neural network, the Swish (SiLU) activation function is chosen due
to its advantage in solving the “dying ReLU” problems [69]. Subsequently, the encrypted
output vectors consist of the distribution of the classes for classification tasks. It is noted that
the Softmax function is not applied in this work due to the exponential and inverse functions
contained, which are non-homomorphic [67].

In the backpropagation process, we apply the Stochastic Gradient Descent (SGD) for
mini-batch regarding the optimization. After calculating the encrypted gradients for each
layer, the SGD update of the encrypted weight can be formulated as:

Ŵi ← BootStrap
(
Sub

(
Ŵi,Mult

(
η ,

∂ L̂
∂Ŵi

)))
. (2.4)

where ∂ L̂
∂Ŵi

is the calculated encrypted gradient of Ŵi, which is computed via the derivative of

encrypted loss function L̂. After the SGD update, the encrypted weight Ŵi is applied to the
BootStrap method, which renews the ciphertext, allowing additional computation on Ŵi and
reduces the magnitude of accumulated noise [33]. Generally, the conversion of the neural
network (e.g., weights and non-linear activation functions) is illustrated in Fig. 2.3.

2.3 The Proposed FL Implementation

In the pre-learning phase, each VU-n evaluates its computing resources and chooses pn% of
data to offload. After that, they generate a key pair, including a secret key ssk

n and a public key
spk

n . In particular, the VU-n divide its collected dataset Dn into the local dataset DRn and
offloaded dataset DS n based on effective computing resources of the vehicles. The DS n is
then encrypted to ˆDS n to protect the user data. The encrypted data is sent to the CS and

2.3 The Proposed FL Implementation 29

Algorithm 1 Proposed Privacy-Preserving FL Framework
1: for ∀n ∈ N do
2: Calculate pn% for offloading
3: Generate a secret key and a public key: ssk

n = SKGen(n) and spk
n =

PKGen(ssk
n)

4: Split the dataset Dn into DRn and DS n where DS n = Dn× pn and
DRn = Dn−DS n

5: Generate the encrypted data ˆDS n = Enc(spk
n ,DS n)

6: Send encrypted data ˆDS n to the CS
7: end for
8: CS combines the received encrypted data ˆDS n into ˆDS
9: CS initializes the Mg and Ms = Mg

10: Transmit Mn to N VUs which Mn = Mg

11: Generate encrypted model M̂s and M̂g via spk
n where φn = Dec(φ̂n)

12: while τ ≤ Tmax or training process does not converge do
13: M̂s learns the encrypted data ˆDS
14: M̂s produces encrypted parameters φ̂ τ

s
15: for n ∈ N do
16: Mn learns the local data DRn
17: Calculate local parameters φ n

τ

18: Encrypt local parameters φ̂ n
τ = Enc(spk

n ,φ n
τ)

19: Send local encrypted parameters to the CS.
20: end for
21: The CS calculates and produces the encrypted global model φ̂

(τ+1)
g .

22: Send the updated global model φ̂
(τ+1)
g back to N VUs

23: for ∀n ∈ N do
24: Decrypt the model φ

(τ+1)
g = Dec(ssk

n , φ̂
(τ+1)
g)

25: end for
26: end while
27: Predict Ŷn based on the encrypted training data X̂n at each VU-n and optimal global

model φ∗.

2.3 The Proposed FL Implementation 30

0...0

Sample (axis = 0)

0...0 ...

0...0 0...0 ...

0...0 0...0 ...

0...0 0...0 ...

0...0 ...0...0

matrix (axis = 0)

matrix (axis = 1)

Sample (axis = 1)

Plain Output (axis = 0)

Raw Form HE Plain Form

Plain Output

Non-linear Activation Function

Non-linear Activation Function

Approximated Polynomial

Approximated Polynomial

Encoding

Chebyshev Approximation

1st Layer Weight Ciphertext

Input Ciphertext

Approximated Polynomial

2nd Layer Weight Ciphertext

Output Ciphertext after 1st Layer

Approximated Polynomial

Output Ciphertext

Encoding

Encryption

Encryption

Chebyshev Approximation

HE Ciphertext Form

Fig. 2.3 The general flow of converting the weight and activation functions of neural network
to HE dimension.

combined to form an encrypted dataset ˆDS . After that, the CS initializes the non-encrypt
global model Mg and non-encrypt server model Ms, then distributes Mg to each VU for
local training. Subsequently, the public key is used to initialize the encrypted learning model
M̂s and encrypted global model M̂g on the server.

Regarding the privacy-preserving learning phase, we consider T learning rounds. At
each round τ , privacy is maintained by the non-encrypted training from the local learning
model of VU-n and encrypted training from the privacy-preserving learning model. After
finishing the τ th local training round, VU-n encrypts the trained parameters φ̂ n

τ and sends
them to the CS. The CS retrieves the encrypted parameters from M̂s along with the local
encrypted parameters and aggregates by the FedAvg algorithm for encrypted data, which can
be defined by:

φ̂ (τ+1)
g = Mul

(1
N +1

,Add
(N

∑
n=1

φ̂ τ
n , φ̂

τ
s

))
. (2.5)

The global parameters φ̂ (τ+1)
g are then updated to the encrypted global model M̂g and

sent back to the VUs, which is then decrypted by the VUs for the next learning round.
The learning process continues until the global model converges and obtains the optimized
parameters.

In summary, the learning process of the privacy-preserving intrusion detection framework
for IoV is described in Algorithm 1.

2.4 Performance Evaluation 31

Table 2.1 The distribution of classes of the dataset

Class Number of samples
Normal 5,320
DDoS 5,472
MitM 4,000

Injection 5,589
Malware 5,504

Reconnaissance 5,515
Total 31,400

Table 2.2 Parameters configuration of the neural network

Layer Number of Neurons Activation Function
Input 32 None

Hidden Layer 1 16 Chebyshev SiLU
Hidden Layer 2 16 Chebyshev SiLU

Output 6 Chebyshev SiLU

2.4 Performance Evaluation

2.4.1 Simulation Setup

In this section, the proposed privacy-preserving model is validated on the real-world dataset
of network traffic attacks on IoT devices, named Edge-IIoT dataset [70]. As shown
in [70], [71], [72], the Edge-IIoT dataset covers various potential threats to IoT compo-
nents (sensors, gateways and operation systems), which are commonly embedded to vehicles
and RSUs in IoV systems. It includes 20 million raw normal traffic and attack traffic collected
from 13 IoT devices. Attacks can be grouped into the five most common types, including
Distributed Denial of Service (DDoS), Injection, Man-in-the-Middle (MitM), Malware, and
Reconnaissance. After applying downsample and oversample to overcome the imbalance,
the dataset includes 31,400 samples with details presented in Table 2.1. Subsequently, the
dataset is divided into training and testing sets (80%-20%). The training and testing sets are
then nominalized and scaled within the range of (0,1). Regarding the neural network, we
design a fully connected network consisting of an input layer, 2 hidden layers, and an output
layer. The respective layers contain 32, 16, 16, and 6 neurons. Apart from the input layer,
each layer is attached to the SiLU activation function, as shown in Table 2.2.

During the experimental evaluation, we assume that the collected dataset of each VU
has the same class distribution. Similar to [51], we consider the approach to offload partial
data to the server as the benchmark for our proposed framework. Nevertheless, it is noted

2.4 Performance Evaluation 32

90

80

70

60

50

40

30

20

10

0 25 50 75 100 125 150 175 200
Iteration

A
cc

ur
ac

y
(%

)

CFL 2 VUs
N-EncFL 2 VUs 10%
EncFL 2 VUs 10%

(a) 2 VUs with 10% offload data

90

80

70

60

50

40

30

20

10

0 25 50 75 100 125 150 175 200
Iteration

A
cc

ur
ac

y
(%

)

CFL 2 VUs
N-EncFL 2 VUs 20%
EncFL 2 VUs 20%

(b) 2 VUs with 20% offload data

90

80

70

60

50

40

30

20

10

0 25 50 75 100 125 150 175 200
Iteration

A
cc

ur
ac

y
(%

)

CFL 3 VUs
N-EncFL 3 VUs 10%
EncFL 3 VUs 10%

(c) 3 VUs with 10% offload data

90

80

70

60

50

40

30

20

10

0 25 50 75 100 125 150 175 200
Iteration

A
cc

ur
ac

y
(%

)

CFL 3 VUs
N-EncFL 3 VUs 20%
EncFL 3 VUs 20%

(d) 3 VUs with 20% offload data

Fig. 2.4 Convergence of privacy-preserving learning with different number of VUs. Regard-
less of the amount of offloaded encrypted data, the proposed EncFL consistently achieves
accuracy comparable to scenarios without decryption.

that in such a benchmark, the FL framework does not consider the privacy of the VUs. In
this scenario, following [51], [67], we train the non-encrypted data using the non-encrypted
model at both CS and VUs. Consequently, the trained global model is employed to evaluate
the accuracy of our proposed framework and other benchmarks [67]. In our experiment setup,
the proposed framework consists of 2 VUs and 3 VUs, which can send 10% and 20% of their
local data.

2.4.2 Evaluation Metrics

To evaluate the performance of the detection model, the confusion matrix is utilized, which is
suitable for a machine learning-based classification system [73]. We denote TP, TN, FP, and

2.4 Performance Evaluation 33

FN as “True Positive”, “True Negative”, “False Positive”, and “False Negative”. Assuming
the system consists of C classes, which include normal and attack traffic, the accuracy can be
calculated as:

Accuracy =
1
C

C

∑
c=1

T Pc +T Nc

T Pc +T Nc +FPc +FNc
. (2.6)

The macro-average precision and recall are utilized in this term. Given K as the number
of classes in the system, the macro-average precision is:

Precision =
1
K

K

∑
k=1

T Pk

T Pk +FPk
. (2.7)

The macro-average recall is calculated as follows:

Recall =
1
K

K

∑
k=1

T Pk

T Pk +FNk
. (2.8)

2.4.3 Simulation Results

Convergence Analysis

Fig. 2.4 illustrates the convergence of learning processes from three approaches, including
conventional FL (CFL) [32], FL with non-encrypted offloaded data (N-EncFL) [51] and the
proposed privacy-preserving learning (EncFL). As observed in Fig. 2.4(a) and Fig. 2.4(b)
with 2 VUs, the CFL converges after 70 iterations, while the N-EncFL and EncFL require
nearly 100 iterations to reach the convergence. Specifically, due to the different amounts of
data handled by the VU, the CFL demonstrates a slightly better convergence rate compared
to other approaches. Despite the trivial difference in convergence, the accuracy during the
learning process of the three approaches remains nearly identical, stabilizing at approximately
92%. Additionally, Fig. 2.4(c) and Fig. 2.4(d) describe the convergences in the scenarios
with 3 VUs. Although the N-EncFL and traditional methods converge at nearly the same
time, the EncFL require over 100 iterations to reach the convergence, which is slightly longer
than other approaches. However, the gap in learning rate, which is about 15 to 20 iterations,
is trivial. It is worth noting that the accuracy of EncFL remains consistent with that of the
N-EncFL and CFL, regardless of whether the amount of offloaded data is different. As
a result, the proposed framework, which operates on encrypted data, achieves the same
accuracy as those of the other benchmarks, i.e., N-EncFL and CFL.

2.4 Performance Evaluation 34

Table 2.3 Simulation results

Model 2 Vehicle Users 3 Vehicle Users
N-EncFL EncFL N-EncFL EncFL

10% 20% 10% 20% 10% 20% 10% 20%
Accuracy 91.728 91.806 91.173 91.142 91.806 91.744 90.926 91.049
Precision 92.767 92.868 92.319 92.254 92.787 92.730 91.992 92.161
Recall 91.875 91.930 91.360 91.322 91.931 91.870 91.118 91.234

(a) Offloading with 10% non-encrypt data. (b) Offloading with 10% encrypted data.

Fig. 2.5 Classification results of 2 VUs. The accuracy of all the attacks remains consistent
with non-encrypted benchmarks.

Performance Evaluation

Table 3.4 describes the performance in detecting attacks of two and three VUs in the IoV
network. Overall, the accuracy, precision and recall of the two scenarios remain nearly
identical. Regarding the different amounts of offloaded data, the results for N-EncFL and
EncFL are close to those of other methods. Specifically, even when the data sent is 10% or
20%, the N-EncFL with two or three VUs achieves an accuracy of approximately 91.8%. A
similar trend is observed with EncFL, where the accuracy remains consistent regardless of
the varying amounts of data offloaded. When comparing the results of EncFL and N-EncFL,
we can observe that the accuracy, precision and recall of EncFL are slightly lower than those
of the N-EncFL. In detail, the gap between N-EncFL and EncFL with two VUs is from 0.5%
to 0.6%. For instance, with 10% offloaded data, EncFL achieves an accuracy of 91.173%,
which is 0.55% less than N-EncFL’s 91.728%. Additionally, the results of the three VUs
show a similar pattern, with EncFL performing 0.6% to 0.8% less than RawFL. However,
as observed in Fig. 2.5 and Fig. 2.6, the overall accuracy of 6 classes is nearly the same.
The differences primarily lie in the detection of “Injection” and “Reconnaissance”, which

2.5 Summary 35

(a) Offloading with 20% non-encrypt data. (b) Offloading with 20% encrypted data.

Fig. 2.6 Classification results of 3 VUs. The same trend is observed with “Reconnaissance”
attack, even with the increased offloading data.

accounts for the small gap between N-EncFL and EncFL. Although the accuracy of the
“Injection” class of EncFL is less than N-EncFL, EncFL still achieves an 88% detection rate
accuracy for the “Injection" attack. As a result, the small gap between N-EncFL and EncFL
is acceptable, demonstrating that EncFL can classify each class with a high detection rate.

2.5 Summary

In this chapter, we have proposed a novel privacy-preserving FL framework for intrusion
detection in IoVs with limited computing resources. The proposed framework enables users
to offload data to a centralized server, addressing the computational challenges during local
training of the vehicles. To ensure user privacy, homomorphic encryption (HE) is applied
to the data before offloading it to the server. The encrypted data is then processed by the
training algorithm-based HE, which allows the server to learn from the encrypted data
without knowing its content. The proposed framework can protect the privacy of users during
the learning process, facilitating the efficient deployment of FL for IDSs in practical IoV
networks. The simulation results show that our proposed framework can accurately detect
cyberattacks in IoV networks. Although the accuracy of the encrypted neural network is
slightly less than that of the raw ones, the gap is acceptable and can be optimized in future
works.

Chapter 3

Privacy-Preserving Cyberattack
Detection in Blockchain-Based IoT
Systems Using AI and Homomorphic
Encryption

This chapter introduces a novel privacy-preserving cyberattack detection framework for
blockchain-based Internet-of-Things (IoT) networks, an emerging approach for future IoT
systems. In our approach, artificial intelligence (AI)-driven detection modules are strate-
gically deployed at blockchain nodes to identify real-time attacks, ensuring high accuracy
and minimal delay. To achieve this efficiency, the model training is conducted by a cloud
service provider (CSP). Accordingly, blockchain nodes send their data to the CSP for training,
but to safeguard privacy, the data is encrypted using homomorphic encryption (HE) before
transmission. This encryption method allows the CSP to perform computations directly on
encrypted data without the need for decryption, preserving data privacy throughout the learn-
ing process. To handle the substantial volume of encrypted data, we introduce an innovative
packing algorithm in a Single-Instruction-Multiple-Data (SIMD) manner, enabling efficient
training on HE-encrypted data. Building on this, we develop a novel deep neural network
training algorithm optimized for encrypted data. We further propose a privacy-preserving
distributed learning approach based on the FedAvg algorithm, which parallelizes the train-
ing across multiple workers, significantly improving computation time. Upon completion,
the CSP distributes the trained model to the blockchain nodes, enabling them to perform
real-time, privacy-preserved detection. Our simulation results demonstrate that our proposed
method can not only mitigate the training time but also achieve detection accuracy that is
approximately identical to the approach without encryption, with a gap of around 0.01%.

3.1 System Model 37

Additionally, our real implementations on various blockchain consensus algorithms and
hardware configurations show that our proposed framework can also be effectively adapted
to real-world systems.

3.1 System Model

3.1.1 Overview of Blockchain-based IoT System

Blockchain is an innovative digital distributed ledger that provides a decentralized, transparent
and secure way of storing and managing data across multiple parties. By utilizing the
decentralized feature of peer-to-peer networks, each participant can maintain a copy of the
ledger, therefore eliminating the need for centralized authority. However, when integrating
blockchain to IoT systems, many devices are constrained by limited resources, which makes
it challenging for them to hold a copy of the ledger or engage in the mining process, such
as validating or publishing new blocks [9]. These resource limitations necessitate tailored
approaches for integrating IoT devices (e.g., gateways and sensors) into blockchain networks,
ensuring that they can participate effectively without being overburdened. In such scenarios,
IoT devices may focus on transmitting data to more powerful nodes in the network (e.g.
blockchain mining nodes), which handle the extensive computational tasks associated with
blockchain operations [9]. This approach allows IoT systems to function based on blockchain,
harnessing its decentralization, security, and transparency in IoT data management while
maintaining efficiency and scalability despite the constraints of individual devices.

There are several types of blockchain networks, each tailored to meet the specific needs of
different IoT applications, including Public Blockchain, Private Blockchain, and Consortium
Blockchain [9]. The public blockchain permits any user to participate in the network, in
which the users are required to pay an incentive fee to send transactions. In contrast, private
and consortium blockchains restrict access to only authorized nodes while removing the
need for transaction fees, enabling the deployment of applications for confidential purposes.
Although the type of employed blockchain depends on the purposes of IoT applications,
blockchain-based IoT systems still operate using the same approach. In general, the IoT
devices send the transactions consisting of IoT data to the blockchain nodes for the mining
process. Based on different consensus mechanisms (e.g. PoW, PoS, PBFT), the validators
(miners) will store transactions into a block and compete to become the block leaders [74].
Once the new block is verified on the chain, it is linked to the previous block via the hash
value of the block’s header, making it nearly impossible to alter the recorded information
in the block and thereby ensuring the security and immutability of the blockchain [10]. In

3.1 System Model 38

summary, the ability of IoT devices to participate in the blockchain enables IoT systems to
achieve a more secure, immutable, and decentralized network.

3.1.2 Privacy-Preserving Cyberattack Detection in Blockchain Net-
works

The proposed privacy-preserving cyberattack detection system is illustrated in Fig. 3.1. The
system consists of a CSP consisting of a master node (MN) along with M worker nodes
(WNs), and N blockchain nodes (BNs). In our framework, we consider an IoT network
operated by an IoT Service Provider (IoTSP). Similar to [75], the IoTSP deploys a private
blockchain network to manage the IoT service and transactions, thereby maintaining trust
between blockchain nodes and IoT endpoints. In this regard, cyberattacks on blockchain
nodes can potentially take control of the transactions in blockchain networks, and thus
Cyberattack Detection Modules (CDMs) can be deployed at the blockchain nodes to detect
and prevent cyberattacks. Nevertheless, deploying the CDMs on the blockchain nodes for
real-time detection is challenging. As mentioned in Section 3.1.1, since the blockchain
nodes must perform various functions to maintain the blockchain (e.g., mining, validating,
verifying, and storing blocks), training the CDMs on these nodes is inefficient due to extensive
computational demand of training task. Although the CSP with extensive cloud computing
resources is an effective solution to support the IoTSP within the training and deployment
of the CDM, processing the CDMs externally on a cloud server raises significant concerns
regarding user data privacy. To address this, our proposed framework employs the HE to
protect user privacy while ensuring accurate deployment of CDMs on blockchain nodes.
Specifically, our privacy-preserving cyberattack detection framework includes three phases:
data offloading phase, encrypted data training phase, and real-time detection phase, as
illustrated in Fig. 3.1.

In particular, as shown in Fig. 3.1, in the offloading phase, the local dataset of each BN will
be offloaded to the CSP for further processing. However, before transmitting data to the CSP,
BNs will generate HE key pairs and use them to encrypt the uploading data. Once the CSP
receives the encrypted data from blockchain nodes, it will assemble it into a large encrypted
dataset and then initialize a learning model specifically designed for cyberattack detection
to prepare for the next phase. The CSP starts the training phase by initially evaluating the
number of available WNs within the cloud environment. Based on this assessment, the MN
strategically partitions the full encrypted dataset into multiple segments and then distributes
each across the predefined WNs. In this way, the computing resources of the active WNs
are leveraged to maximize the training efficiency of the large encrypted dataset, reducing

3.2 The Privacy-Preserving Distributed Learning 39

MN

...

WN-1

...

Aggregate data

Cloud Service Provider

BN-1

WN-M

Initialize model

HE

BN-2

HE

BN-N

HE...

MN

...

WN-1

Dataset

Incoming Traffic

...

Aggregate models

WN-2

WN-M

Cloud Service Provider

Cloud Service Provider

BN-1 BN-N

WN-3...

BN-2

Optimized
CDM

...

Data encryption & Offloading Encrypted Data Training Process Transmit Optimized Module for real-time detection

Raw
data

Encrypted
trained model

Encrypted
data

Encrypted
initialized model

Detection
phase

Offline
phase

Raw trained
model

Real-time
Detection Module

Fig. 3.1 The proposed privacy-preserving cyberattack detection framework includes three
phases: data encryption and offloading, encrypted data training, and real-time detection. The
CSP operates as a network security service to ensure the security of N blockchain nodes
(BNs).

the computational overhead challenge of HE-encrypted data training. Upon receiving the
corresponding encrypted partition, each WN will use the initialized learning model to train
its assigned segment using our proposed training algorithm for encrypted data, detailed in
Section 3.2.1. After completing each learning round, the WNs will send the encrypted trained
models to the MN, which aggregates them into an updated encrypted model (the aggregation
of the encrypted models is detailed in Section 3.2.2). This updated model is then transmitted
back to WNs to begin the next learning round. The CSP maintain this iterative process until
the considered learning model converges or the predetermined number of learning rounds
is reached, ensuring the model is fully optimized for the next phase. During the real-time
cyberattack detection phase, the CSP sends the optimized encrypted model back to the BNs
for local deployment. Once the BNs receive the model, they will decrypt the model to form
a real-time detection module which can detect and prevent incoming attack traffic to the
blockchain network.

3.2 The Privacy-Preserving Distributed Learning

As we described in Section 3.1, the CSP is responsible for training the learning model-based
HE with a large encrypted dataset collected from blockchain nodes. However, as discussed
in Section 1.3.2, training deep learning models on HE-encrypted data presents two major
challenges: the lack of optimized training algorithms specifically designed for encrypted
data and the significant computational overhead that results in extensive training time. To

3.2 The Privacy-Preserving Distributed Learning 40

Algorithm 2 Pack1D for packing 1D vector

1: Input: x,S,B, x̄axis, with x = [x1,x2, . . . ,xn] and x̄axis ∈ {0,1}
2: Output: x̄
3: Initialize step = B

S
4: if x̄axis = 0 then
5: x = ZeroPad(x,S)
6: x̄ = Replicate(x,step) which x̄i+ j·n = xi, i ∈ {1,2, . . . ,n} and j ∈

{0,1, . . . ,step−1}
7: else
8: x̄ = Repeat(x,S) which x̄(i−1)·S+ j = xi, i ∈ {1,2, . . . ,n} and j ∈

{1,2, . . . ,S}
9: end if

10: x̄ = ZeroPad(x̄,B) S
11: return x̄

address these problems, we initially propose an effective training algorithm for the deep
neural network with HE-encrypted data. Following that, we design the distributed training
approach to optimize the processing time of our training algorithm.

3.2.1 The Proposed Training Process of Deep Neural Network for HE-
Encrypted Data

The Proposed Packing Methods

For efficient homomorphic evaluation during the training task, we first develop two alternative
packing approaches called Pack1D and Pack2D. To be more specific, Pack1D is applied to
process one-dimensional (1D) data and then produce the output in corresponding x̄axis, in
which x̄axis is the predefined axis of the output (e.g., x̄axis = 0 for horizontal axis and x̄axis = 1
for vertical axis). It is worth noting that in HE, a plaintext contains multiple segments, with
the number of slots S in each segment, and each slot holds an individual value. As illustrated
in Algorithm 2, Pack1D takes the input consisting of a 1D array, slot size of a segment, size
of ciphertext, and the considered axis of output, which are respectively defined as x, S, B,
and x̄axis. As described in Fig. 3.2(a), the axis for encryption (i.e., horizontal or vertical) is
first determined. Regarding the horizontal axis, the sample is zero-padded to match with a
plaintext slot size S, where S = ⌊

√
B⌋ and S = F +Z, with F being the number of values

in the sample and Z being the number of added zeros. Notably, F is typically less than S as
network traffic data, the focus of this paper, often has a limited number of features. Then,
it is replicated B/S times to fit with the size of the ciphertext. Otherwise, if the axis is

3.2 The Privacy-Preserving Distributed Learning 41

0...0

slots

...

F

0...0 0...0

...

Z

F Z

axis = 0

axis = 1

Horizontal Packing

Vertical Packingslots

(a) 1D packing for a vector

W1,1

W3,1 W3,2 W3,3

W1,2 W1,3

W2,1 W2,2 W2,3

Weight W(3x3)

Flattening ofW(3x3)

W1,1

W3,1 W3,2 W3,3

W1,2 W1,3

W2,1 W2,2 W2,3

0...0

0...0

0...0

0...00...00...0 0...0

Zero Padding

W1,1 W1,2 W1,3 W2,1 W2,2 W2,3 W3,1 W3,2 W3,30...0

slots

0...0 0...0 ...

Zero Padding

size

W1,1 W3,1

W3,2

W3,3

W1,2

W1,3

W2,1

W2,2

W2,3

0...0

0...0

0...0

Flattening ofW(3x3)

W1,1 W2,1 W3,1 0...0

slots

0...0 0...0 ...

size

W1,2 W2,2 W3,2 W1,3 W2,3 W3,3

axis = 0

axis = 1

0...0 0...00...0 0...0

(b) 2D packing for a matrix

Fig. 3.2 Illustration of the proposed alternative packing method, including (a) 1D packing
and (b) 2D packing. The proposed methods are the pre-processing of HE, which fits the
elements of data (i.e., vector and matrix) into the slots of a ciphertext in both normal (axis=0)
and transpose (axis=1) manners. Therefore, this enables efficient encrypted matrix/vector
multiplications during the training task.

vertical, each element of the sample is repeated S times, forming a new array, which is then
zero-padded to fit with the size of the ciphertext.

The proposed Pack2D algorithm is described in Algorithm 3, which is applied to pack
a two-dimensional (2D) matrix into a 1D vector. Similar to Pack1D, Pack2D initially
determines the axis for encryption. If the axis is vertical, the matrix is transposed; otherwise,
it remains unchanged. Subsequently, the matrix is zero-padded to a square matrix with
the size of S× S. This square matrix is then flattened by concatenating its rows to form
a 1D vector. For more clarity, the implementation of our 2D packing method is shown in
Fig. 3.2(b).

To perform encryption based on our proposed packing methods, we consider a dataset
D = (xi,yi) consisting of I samples where i ∈ {1, . . . , I}. Here, xi and yi are, respectively, the
training samples and labels, in which xi is a feature vector of i-th sample attached with a one-

3.2 The Privacy-Preserving Distributed Learning 42

Algorithm 3 Pack2D for packing 2D matrix

1: Input: X,S,B, x̄axis, with X ∈ Rm×n and x̄axis ∈ {0,1}
2: Output: x̄
3: if x̄axis = 1 then
4: X̄ = Transpose(X)
5: else
6: X̄ = X
7: end if
8: X̄ = ZeroPad(X̄ ,S) which m×n = S2

9: x̄ = Flatten(X̄)
10: return x̄

hot encoded label yi. Based on the aforementioned HE operations, the key pair, including
the public key and secret key, are used to generate the encrypted dataset D̂ . Before the
encryption of the dataset, we apply the 1D packing algorithm, described in Algorithm 2
as the preprocessing step for each sample. Therefore, the encryption process of encrypted
feature vectors and encrypted labels can be denoted as:

x̂xxi = Enc
(
Pack1D(xi, x̄axis,S,B),pk

)
, (3.1)

ŷyyi = Enc
(
Pack1D(yi, ȳaxis,S,B),pk

)
, (3.2)

where x̂xxi and ŷyyi (∀i ∈ {1, . . . , I}) are the encrypted feature vector and its attached encrypted
label of the dataset D̂ , respectively. This encrypted dataset will be the input for a deep neural
network consisting of K layers, in which its plain form can be represented as:

h(k) = σ(W (k) ·h(k−1)+b(k)), k ∈ {1, . . . ,K}, (3.3)

where W (k), h(k), b(k), σ are parameters of the neural network consisting of weights, the
output of layer k, biases, and activation function, respectively. Here, h(0) is the input
feature vector xin while h(K) is the output of the neural network xout . In conventional deep
learning, these parameters will be applied to produce the optimized output xout via the training
process. Here, to process HE-encrypted data, the weights and biases are also encrypted to
homomorphic form. Before performing encryption, the weights will be preprocessed by
our proposed 2D packing algorithm, which is illustrated in Algorithm 3. In particular, the
encryption process is denoted as:

ŴWW
(k)

= Enc
(
Pack2D(W (k),W̄ (k)

axis,S,B),pk
)
, (3.4)

3.2 The Privacy-Preserving Distributed Learning 43

where ŴWW
(k)

is the encrypted weight matrix of layer k. To allow the multiplication of the
weight matrix in encrypted form, the axis of ŴWW

(k)
is varied based on k-th layer. In particular,

the value of W̄axis can be defined as:

W̄ (k)
axis =

0, if k mod 2 = 1,

1, if k mod 2 = 0,
(3.5)

An axis value of 0 enables the computation along the row-based axis, whereas the axis value
of 1 facilitates the column-based processing, as depicted in Fig. 3.2. Following that, the
biases will be processed by applying the 1D packing algorithm before the encryption, which
is denoted as:

b̂bb
(k)

= Enc
(
Pack1D(b(k), b̄(k)axis,S,B),pk

)
, (3.6)

where b̂bb
(k)

is the encrypted bias vector of layer k. Thus, the output of the ŴWW
(k)

is the ciphertext
on the orthogonal axis of its encrypted weight. For instance, the encrypted weight matrix
packed on a row-based axis will generate output on a column-based axis. Hence, the axis of
encrypted bias is calculated as:

b̄(k)axis = 1−W̄ (k)
axis. (3.7)

By leveraging our proposed packing methods to process the encrypted input and encrypted
parameters of the neural network in an alternative row-column approach, it is feasible to
perform the training task on HE-encrypted data in a SIMD manner, which will be described
in the following subsection.

The Proposed Training Process

During the training task, while performing the homomorphic evaluation of the encrypted
parameters, we utilize the SumCols and SumRows algorithms in [1]. These algorithms take
input as an encrypted vector and S slot size to allow the sum operation of multiple segments
on a different axis (i.e., rows or columns) of the encrypted vector, which is further described
in Fig 3.3. After finishing generating the encrypted parameters of the neural network, the
training process starts by initially forwarding the encrypted data through the encrypted
parameters. In the feed-forward process, the output at layer k of the neural network, denoted
as ĥhh

(k)
, can be calculated as:

ĥhh
(k)

= σ̂
(k)

(
ŴWW

(k) ⊗̂ ĥhh
(k−1) ⊕̂ b̂bb

(k)
)
, (3.8)

3.2 The Privacy-Preserving Distributed Learning 44

...

...

S slots S slots

S slots

Ciphertext

S slots

(a) Illustration of SumCols(.) algorithm. It first performs summation on all elements within each
segment of the ciphertext. Then, the summation result is fit into each slot of the considered segment.

...

S slots S slots
Ciphertext

...

S slots S slots

(b) Illustration of SumRows(.) algorithm. It first performs element-wise summation from different
segments. This results in new segments with the same data where each slot of the segments is the
combined sum of element xi from the original segments.

Fig. 3.3 Illustration of SumCols(.) and SumRows(.) algorithms on a ciphertext with multiple
segments, each having S slots size where each slot represents a distinct element xi [1].

where ŴWW
(k)

and b̂bb
(k)

represent the encrypted weight matrix and encrypted bias vector of layer
k, as explained in (3.4) and (3.6), respectively. ⊗̂ and ⊕̂ are, respectively, the homomorphic
multiplication and addition for encrypted parameters of the neural network, which can be
defined as:

ŴWW ⊗̂ x̂xx =

SumCols
(
Mult(ŴWW , x̂xx),S

)
, if ŴWW axis = 0

SumRows
(
Mult(ŴWW , x̂xx),S

)
, if ŴWW axis = 1

(3.9)

ŴWW ⊕̂ x̂xx = Add(ŴWW , b̂bb), (3.10)

where ⊕̂ and ⊗̂ are basically based on the Add(.), Mult(.), SumCols(.), and SumRows
algorithms. To be more specific, after multiplying the input ciphertext x̂xx with ŴWW , the
⊗̂ proceeds summation based on the axis of ŴWW , which is illustrated in (3.9). The sum
ciphertext is then applied Add(.) with b̂bb to form the final output ciphertext. Subsequently,
this ciphertext is passed through σ̂ , which illustrates the polynomial approximation of
the activation function. As HE only supports homomorphic evaluations (e.g., addition,
multiplication), the conventional activation function, such as ReLU or Tanh, may not be

3.2 The Privacy-Preserving Distributed Learning 45

0...0

Sample (axis = 0)

0...0 ...

0...0 0...0 ...

0...0 0...0 ...

0...0 0...0 ...

0...0 ...0...0

matrix (axis = 0)

matrix (axis = 1)

Sample (axis = 1)

Encrypted Output (axis = 0)

Plain Feed-Foward Encrypted Feed-Foward

Plain Output

HE operations of
even-numbered

layer

HE operations of
odd-numbered

layer

Fig. 3.4 Implementation of encrypted feed-forward in a neural network with two layers. The
weight matrix of the neural network layer is packed and encrypted based on the k-th order of
the considered layer, regarding normal processing (axis=0) or transpose processing (axis=1).
Therefore, through the HE multiplication described in (3.9), the input ciphertext, initially
packed along axis=0, can alternatively fit into the encrypted neural network layers.

efficient for HE operations [68]. Accordingly, in this paper, we employ the Chebyshev
polynomial method [68] to approximate the Swish (SiLU) function [69]. The SiLU is chosen
for its advantage in mitigating the “dying ReLU" problem. To be more specific, the general
forward process of our proposed training algorithm is described in Fig. 3.4.

In the backpropagation process, we leverage the Stochastic Gradient Descent (SGD) for
mini-batch and the Mean Squared Error (MSE) loss to enable the back-propagation of the
encrypted data. Given a batch with B pairs of predicted label âaai and true label ŷyyi, the MSE
loss for optimizing encrypted model parameters during training can be defined as:

L̂MSE = Mult
(B

∑
i=1

Square
(
Sub(ŷyyi, âaai)

)
,

1
B

)
, (3.11)

in which Square(ĉcc) = Mult(ĉcc, ĉcc). Following that, the gradient of the encrypted MSE loss
can be denoted as:

∇L̂MSE,i =
∂L̂MSE

∂ âaai
= Mult

(
Sub(ŷyyi, âaai),

2
B

)
. (3.12)

3.2 The Privacy-Preserving Distributed Learning 46

Algorithm 4 Iterative Training Algorithm for HE-Encrypted Data

1: Input: Initialize the encrypted data D̂ = (x̂xxi, ŷyyi) based on (3.1), (3.2); i ∈ I

2: Initialize the encrypted parameters θ̂ = (ŴWW
(k)
, b̂bb

(k)
) based on (3.4), (3.6); k ∈ K

3: Initialize T training rounds, learning rate η , and the HE parameters including (pk,sk), S,
R

4: for t = 0→ T −1 do
5: Compute the output âaa(k) over layer k using (3.9), (3.10):

âaa(k)t = σ̂ (k)
(

ŴWW
(k)
t ⊗̂ x̂(k−1) ⊕̂ b̂bb

(k)
t

)
6: Compute gradient L̂ t

MSE,i for all mini-batch of B samples in D̂ :

∇L̂ t
MSE,i = Mult

(
Sub(ŷyyi, âaai,t),

2
B

)
7: Compute gradient of layer K:

∇ĝgg(K)
i,t = Mult

(
∇L̂ t

MSE,i,
∂ σ̂ (K)

∂ x̂xx(K−1)
i

)
8: Backward the gradient for k layers:

∇ĝgg(k)i,t = Mult(∇ĝgg(k+1)
i,t ,ŴWW

(k+1)
t)

9: Produce final gradient ∇ĝgg(k)i,t using (3.15)
10: Compute:

∇ŴWW
(k)
t = ∑

B
i=1 Mult(x̂xx(k−1)

i ,∇ĝgg(k)i,t)

11: and:
∇b̂bb

k
t = ∑

B
i=1 ∇ĝgg(k)i,t

12: Update the θ̂ by SGD for encrypted data:

ŴWW
(k)
t ← Sub

(
ŴWW

(k)
t ,Mult

(
η ,∇ŴWW

(k)
t
))

13: and:

b̂bb
(k)
t ← Sub

(
b̂bb
(k)
t ,Mult

(
η ,∇b̂bb

(k)
t
))

14: Bootstrap the encrypted weights and biases:

ŴWW
(k)
t = Bootstrap(ŴWW

(k)
t)

15: and:

b̂bb
(k)
t = Bootstrap(b̂bb

(k)
t)

16: end for

3.2 The Privacy-Preserving Distributed Learning 47

The calculated gradient ∇L̂MSE,i is then utilized to calculate the gradients for k encrypted
layers. Given that K is the latest layer of the neural network, the backward process starts by
initially calculating the encrypted gradient of layer K:

∇ĝgg(K)
i = Mult

(
∇L̂MSE,i,

∂ σ̂ (K)

∂ ĥhh
(K−1)
i

)
. (3.13)

Regarding the plain back-propagation, the gradient backward process requires the trans-
pose matrix multiplication, which is challenging for the current HE-based neural networks.
However, by employing our packing methods described in Algorithm 2 and Algorithm 3,
we can alternatively perform transpose multiplication between ciphertexts. Accordingly, the
∇ĝgg(K)

i obtained from (3.13) is then backward to the previous K−1 layers. In particular, the
backward of ∇ĝgg(K)

i can be defined as:

∇ĝgg(k)i = Mult(∇ĝgg(k+1)
i ,ŴWW

(k+1)
), (3.14)

in which ∇ĝgg(k)i is then applied to the summation algorithms to produce the final gradient for
layer k:

∇ĝgg(k)i =

SumRows
(
∇ĝgg(k)i ,S

)
, if W̄ (k+1)

axis = 0,

SumCols
(
∇ĝgg(k)i ,S

)
, if W̄ (k+1)

axis = 1.
(3.15)

Subsequently, the ∇ĝgg(k) is used to generate the ∇ŴWW
(k)

and ∇b̂bb
(k)

of layer k which is calculated
as:

∇ŴWW
(k)

=
B

∑
i=1

Mult(ĥhh
(k−1)
i ,∇ĝgg(k)i), (3.16)

∇b̂bb
(k)

=
B

∑
i=1

∇ĝgg(k)i , (3.17)

After generating the gradient for weight and bias, the SGD momentum is employed to update
the parameters during the training process. The SGD update for encrypted parameters can be
defined as:

ŴWW
(k)← BootStrap

(
Sub

(
ŴWW

(k)
,Mult

(
η ,∇ŴWW

(k))))
, (3.18)

b̂bb
(k)← BootStrap

(
Sub

(
b̂bb
(k)
,Mult

(
η ,∇b̂bb

(k))))
. (3.19)

3.2 The Privacy-Preserving Distributed Learning 48

Algorithm 5 Privacy-Preserving Distributed Learning-Enabled Cyberattack Detection Frame-
work

1: for ∀n ∈ N do
2: N Blockchain nodes generate the keypairs: skn = SKGen(n) and pkn =

PKGen(skn)
3: Extract Dn and process it by using Algorithm 2
4: Generate the encrypted data D̂n = Enc(pkn,Dn)
5: Send the encrypted data D̂n to the CSP
6: end for
7: CSP combines received data into an encrypted dataset D̂
8: CSP initializes the deep learning model Θ and training parameters T , B
9: Pack Θ by using Algorithm 3 and generate the encrypted model Θ̂ where Θ̂ =

Enc(pkn,Θ)
10: Distribute Θ̂, B, and T to M WNs
11: Split the encrypted dataset D̂ to M partitions D̂m and assign each to respective WN-m
12: while t ≤ T or training process does not converge do
13: for ∀m ∈M do
14: WN-m calculates the trained parameters Θ̂t

m using Algorithm 4
15: WN-m send their Θ̂t

m to the MN
16: end for
17: MN produces the encrypted aggregated model Θ̂

(t+1)
a

18: Send the updated model Θ̂
(t+1)
a back to M WNs

19: end while
20: CSP transmits the optimized model Θ̂ = Θ̂(T) to N BNs
21: for n≤ N do
22: Decrypt the model Θ = Dec(Θ̂,skn)
23: Predict incoming data based on the optimized model Θ in real-time
24: end for

in which the SGD optimizer for encrypted data uses the basic HE operations mentioned
in 1.2.3 with learning rate η to update the weights and biases of the HE-based neural network
iteratively. In addition, the bootstrapping mechanism is applied to the encrypted parameters
to reduce the noise of ciphertext, allowing additional operations on encrypted data across
multiple training rounds. To summarize, the proposed training algorithm for HE-encrypted
data is described in Algorithm 4. This iterative training method will be employed in our
proposed privacy-preserving distributed learning for cyberattack detection, which is described
as follows.

3.2 The Privacy-Preserving Distributed Learning 49

3.2.2 Implementation of Distributed Cloud-Native Learning

As mentioned in Section 3.1.2, the BNs enter the offloading phase by initially generating the
HE key pairs, which consist of the secret key skn and the public key pkn. The secret key is
securely stored within the respective BNs, while the public key is broadcasted to the CSP
and other nodes in the blockchain network. Besides validating transactions, BN-n encrypt its
local dataset Dn to D̂n by employing mechanisms in (3.1) (3.2). Subsequently, the encrypted
data is transmitted to the CSP, where it is combined to create a large encrypted dataset D̂ .
After that, the CSP generates the deep-learning model with parameters θ and encrypts it to θ̂

by using equations (3.4) and (3.6).
To start the encrypted data training phase, the CSP apply our proposed privacy-preserving

distributed learning (PPDiL) by first determining the training parameters, including T training
rounds and batch size B. Concurrently, it leverages the MN and M WNs within its cluster
environment, which employs the computation from multiple workers while maintaining the
MN as an aggregate point. Accordingly, the MN distributes the training parameters and
encrypted model to each WN-m, with the local batch size

⌊ B
M

⌋
. The MN then divides the

encrypted dataset D̂ into M encrypted partitions D̂m and assigns each partition to respective
WN-m. At training each round t, WN-m employs the proposed training algorithm described
in Algorithm 4 to perform encrypted training on the corresponding D̂m and produce the
encrypted trained model Θ̂t

m. Afterwards, the workers transmit the Θ̂t
m to the MN, which

then starts the aggregation by utilizing the FedAvg algorithm [32], which is modified for
encrypted data. In particular, it can be defined by:

Θ̂
(t+1)
a = Mult

(1
M
,

M

∑
m=1

Θ̂
t
m

)
. (3.20)

At this point, the aggregated parameters Θ̂
(t+1)
a are sent back to the WNs, which are

subsequently updated to the workers’ encrypted model for the next training round. This
training process is iteratively maintained until the aggregated model converges and the CSP
obtains the optimal parameters.

After retrieving the optimized encrypted model Θ̂ = Θ̂(T), the real-time cyberattack
detection phase will commence. In this stage, the CSP transmit the encrypted model Θ̂ to the
BNs for local deployment. After receiving Θ̂, BN-n decrypt Θ̂ to Θ using its skn and operate
Θ as a cyberattack detection module to classify the incoming network traffic in real-time.
Generally, the implementation of our proposed distributed learning algorithm is detailed in
Algorithm 5.

3.3 Performance Evaluation 50

3.3 Performance Evaluation

3.3.1 Simulation Setup and Evaluation Metrics

Dataset and PPDiL Parameters

To evaluate our proposed framework, we use the Blockchain network traffic data from the
BNAT dataset [61], which is designed for cyberattack detection in blockchain-based IoT
networks. The dataset is collected via the IoT gateways and the blockchain nodes, with
IoT gateways transmitting IoT transactions to the blockchain nodes, thereby making it ideal
for our considered system. The BNAT dataset contains normal traffic and four types of
Blockchain network attacks, including Denial of Services (DoS), Brute Password (BP),
Flooding of Transaction (FoT), and Man-in-the-Middle (MitM). During the preprocessing,
we downsampled the dataset into 10,000 samples, with 2,000 samples for each class. The
dataset is then nominalized and min-max scaled within the range of (0,1). After that, we
divide the dataset into training and testing sets with a ratio of 80:20, in which the training set
is HE-encrypted, and the testing set is configured for two scenarios: non-encrypted inference
and encrypted inference. Regarding the learning model configuration, we design a deep
neural network containing an input layer, 2 hidden layers and an output layer. The number of
neurons in the layers is 21, 32, 16, and 5, respectively. Apart from the input layer, each layer
is connected to the polynomial approximation of the SiLU activation function. Following
that, we utilize the OpenFHE library [76] for HE and the Pytorch library for designing neural
networks.

Due to the privacy-preserving distributed learning (PPDiL) setup, we select the Flower
open-source [77] for the experiment. We configure the CSP to have one master node and a
maximum of five worker nodes operating by six different workstations within a local cluster
environment. Three of these workstations are equipped with Intel Xeon E-2288G @3.7GHz
processors with 8 cores. The remaining three workstations are powered by Intel Xeon Gold
6238R @2.2GHz processors with 28 cores (26 cores enabled). As described in Fig. 3.5,
the MN and WNs are deployed by the Google Remote Procedure Call (gRPC) server-client
model, and their connections are maintained by TCP protocol with a connection timeout set
at 4600 seconds. This cluster environment is employed to apply our proposed PPDiL for
HE-encrypted data with the parameters illustrated in Table 3.1.

During the simulation, we evaluate our proposed distributed learning framework with
different numbers of workers (i.e., two workers to five workers) and a centralized approach
regarding processing time. Similar to [24], we consider the training with non-encrypted

3.3 Performance Evaluation 51

Master Node
Worker 1 ...

TCP

Local Cluster
(gRPC)

(gRPC)

Worker M

TCP

(gRPC)

Fig. 3.5 The experiment setup of CSP environment.

Table 3.1 Parameters setting

HE-Training
Parameters Values

Training rounds T = 30
Initial batch size B = 128

Learning rate η = 0.9
HE-Ring dimension R = 211

HE-ciphertext size B = 210

HE-plain slot size S = 32

data as the benchmark to analyze the effectiveness of the detection model after applying the
proposed PPDiL.

Evaluation Metrics

To evaluate the performance of the detection model, the confusion matrix is utilized, which is
suitable for a machine learning-based classification system [73]. We denote TP, TN, FP, and
FN as, respectively, “True Positive”, “True Negative”, “False Positive”, and “False Negative”.
Assuming the system consists of C classes, which include normal and attack traffic, the
accuracy can be calculated as:

Accuracy =
1
C

C

∑
c=1

TPc +TNc

TPc +TNc +FPc +FNc
. (3.21)

The macro-average precision and recall are utilized in this term. The macro-average
precision is:

Precision =
1
C

C

∑
c=1

TPc

TPc +FPc
. (3.22)

3.3 Performance Evaluation 52

Fig. 3.6 Convergence of the considered learning algorithms.

The macro-average recall is calculated as follows:

Recall =
1
C

C

∑
c=1

TPc

TPc +FNc
. (3.23)

3.3.2 Simulation Results

Convergence Analysis

In this subsection, we examine the convergence rate of our proposed PPDiL. Fig. 3.6
demonstrates the HE-encrypted training process of the centralized approach (PPCeL) and our
proposed distributed approach (PPDiL), where the scenario of three workers and five workers
are considered. Accordingly, the PPCeL reaches convergence after around 75 iterations due
to the processing of a large dataset at a centralized point. In contrast, the PPDiL exhibits
a slower convergence rate than PPCeL, with the convergence speed decreasing as more
workers join the process. In detail, the PPDiL with five workers requires nearly 90 iterations
to achieve stable accuracy, while the PPDiL with three workers is nearly equivalent to the
PPCeL, reaching convergence after 75 iterations. However, despite the gap in convergence
speed, the accuracy of PPDiL and PPCeL remains consistent, regardless of whether the
number of workers increases. To be more specific, both the accuracy of PPCeL and PPDiL

3.3 Performance Evaluation 53

CeL 2…Wo 3…Wo 4…Wo 5…Wo
Number…of…Workers

0

10

20

30

40

50

Ti
m
e…

(H
ou
rs
)

52.75

33.97

27.11
23.81 21.64

Computation…Time
Communication…Overhead

(a) Total runtime during training process

CeL 2…Wo 3…Wo 4…Wo 5…Wo
Number…of…Workers

0

2525

50

75

100

Ti
m
e…

(S
ec
on
ds
)

98.65

62.00

48.15
42.75 39.03

Bootstrap
Forward
Backward
Update

(b) Training time in one iteration

Fig. 3.7 Execution time of offline training phase.

remains the same after 200 iterations, stabilizing at around 91%. As a result, moving from
PPCeL to PPDiL training can still achieve effective accuracy during the learning process.

Training Time Evaluation

As described in Fig. 3.7, we comprehensively analyze the improvement of our proposed
PPDiL compared to the CeL approach. In Fig. 3.7(a), we first provide the total training time
of CeL and PPDiL in which distributing the training tasks to multiple workers shows an
improvement in processing time. While the CeL requires 52.75 hours to finish the training,
the proposed PPDiL can decrease the computation time significantly to 33.97, 27.11, 23.81,
and 21.64 hours by distributing the learning tasks to two workers, three workers, four workers,
and five workers, respectively. However, dividing the learning tasks among multiple workers
leads to a delay in connection, which is described as the communication overhead. As can be
seen from Fig. 3.7(a), the PPDiL with two workers has low communication overhead because
the PPDiL only need to maintain the connection between a given master node and two worker
nodes. Meanwhile, scenarios involving more workers incur larger communication overhead
due to the varying hardware capabilities of the different participants. This discrepancy results
in faster workers having to wait for slower ones to complete their rounds, leading to delays
in the synchronization time during the training phase.

Additionally, Fig. 3.7(b) provide a comprehensive analysis of the computation time
over different stages during training (i.e., forward, backward, update, and bootstrap) in one
training iteration. As the bootstrap mechanism is only applied to the neural networks’ layers,
its processing time remains consistent across CeL and other PPDiL scenarios, averaging

3.3 Performance Evaluation 54

around 25 seconds. For other training tasks, the PPDiL demonstrates a significant advantage
by linearly reducing computation time, from 98.65 seconds with CeL down to 62 seconds
with 2 workers and 39.03 seconds with 5 workers. It is worth noting that aside from the
bootstrap time, the processing time for other tasks in PPDiL decreases exponentially as the
number of distributed workers increases, particularly in comparison to CeL.

To be more specific, Table 3.2 illustrates a more detailed analysis of Fig. 3.7(b) regarding
computational over each layer. Considering the forward process of CeL and PPDiL with 2
workers, the computation times for CeL over the input layer, hidden layer, and output layer
are 10.376 seconds, 5.145 seconds, and 8.074 seconds, respectively. In contrast, the forward
process time for PPDiL with 2 workers over the corresponding neural network layers is
significantly reduced to 5.14 seconds, 2.478 seconds, and 3.885 seconds, respectively, which
represent half of the computation times for CeL. Following the same trend of PPDiL with
2 workers, the 5-worker scenario illustrates one-fifth of computation time compared with
CeL, which respectively remains at 1.923 seconds, 0.936 seconds, and 1.485 seconds in the
considered layers. However, the bootstrapping during the update process remains identical
to both CeL and DL (i.e., with 2 to 5 workers) approaches, maintained from around 8 to 9
seconds. Therefore, this leads to a non-exponential decrease in training time. As a result,
based on our real implementation of the proposed PPDiL framework, despite the impact of
the bootstrapping time and the communication overhead, the training time is still improved.
The participation of additional workers in the training process leads to significantly faster
learning time compared to the centralized learning approach.

Cyberattack Detection Ability Evaluation

In this subsection, we further demonstrate the accuracy of the proposed PPDiL with the
classification results of non-encrypted and encrypted data. Table 3.3 compares the non-
encrypted data detection performance of the normal training and the privacy-preserving
training regarding both centralized and distributed approaches. In general, the accuracy,
precision, and recall of the learning model trained with non-encrypted data (i.e., CeL and
DiL) and the ones trained with encrypted data (i.e., PPCel and PPDiL) remain nearly identical.
Due to the centralized approach, PPCeL achieves an accuracy of 91.45%, which is only
marginally lower than CeL’s 91.487%, with a negligible difference of approximately 0.04%.
This slight gap underscores that both methods consistently deliver around 91.4% accuracy,
demonstrating the effectiveness of HE-encrypted training. A similar trend is observed
regarding our proposed distributed approaches, where the results are consistent in different
scenarios compared to non-encrypted training benchmarks. Notably, the results of PPDiL
maintain the same accuracy level as DiL, with the gap nearly from 0.01 to 0.02%. For

3.3 Performance Evaluation 55

Table 3.2 Processing time over one training iteration

Process Layer Time (seconds)
CeL 2 Wo 3 Wo 4 Wo 5 Wo

Forward

Input Layer 10.376 5.140 3.394 2.416 1.923
SiLU 1 6.954 3.487 2.223 1.698 1.455

Hidden Layer 5.145 2.478 1.643 1.174 0.936
SiLU 2 8.451 4.222 2.752 1.965 1.561

Output Layer 8.074 3.885 2.695 1.852 1.485
SiLU 3 4.164 2.102 1.357 1.062 0.867

Backward
Output Layer 6.993 3.521 2.228 1.726 1.384
Hidden Layer 12.325 6.209 4.060 2.845 2.329
Input Layer 7.497 3.713 2.417 1.876 1.526

Update

Input Layer 0.695 0.324 0.171 0.116 0.095
Bootstrap 1 8.874 8.591 8.623 8.547 8.472

Hidden Layer 0.727 0.394 0.201 0.150 0.125
Bootstrap 2 8.778 8.713 8.619 8.676 8.429

Output Layer 0.589 0.341 0.189 0.145 0.119
Bootstrap 3 9.008 8.877 8.637 8.502 8.327

Table 3.3 Performance comparisons of CeL/DiL and PPCeL/PPDiL with non-encrypted
detection

Model
Centralized Distributed

CeL PPCeL 2 Wo 3 Wo 4 Wo 5 Wo
DiL PPDiL DiL PPDiL DiL PPDiL DiL PPDiL

Accu-
racy

91.487 91.450 91.483 91.375 91.475 91.350 91.016 90.875 91.024 90.925

Preci-
sion

91.796 91.749 91.921 92.092 92.071 91.610 91.505 91.343 91.431 91.433

Recall 91.507 91.465 91.441 91.339 91.476 91.435 91.036 90.941 91.086 90.931

instance, in terms of distributed learning with three workers, the DiL achieves an accuracy of
91.475%, which is slightly higher than the accuracy of 91.35% from PPDiL. As a result, this
minor gap is acceptable, demonstrating the reliability of our proposed PPDiL. Additionally,
the results from Table 3.3 also indicate the comparison between centralized and distributed
approaches. We can observe that the PPDiL achieves an accuracy level nearly identical
to PPCeL, in which the gap across different scenarios (i.e., two Wo to five Wo) ranges
from approximately 0.1 to 0.5. However, the classification results in Fig. 3.8 show that
the detection performance of PPDiL for each attack type with five workers is still accurate
compared to the PPCeL.

3.3 Performance Evaluation 56

Table 3.4 Detection result of PPDiL with encrypted data

Model PPCeL PPDiL
2 Wo 3 Wo 4 Wo 5 Wo

Accuracy 91.725 91.450 90.301 90.875 90.805
Precision 92.002 92.293 91.550 91.369 91.337

Recall 91.729 91.382 91.378 90.944 90.828

Moreover, Table 3.4 shows the detection performance of PPDiL over the encrypted
data. As can be seen, the accuracy of the encrypted detection is nearly the same as its
non-encrypted counterparts, remaining around 91% in different scenarios. Hence, the trivial
gap in the aforementioned results is due to the HE evaluation, as the noise is added during
the homomorphic computation over encrypted data. Despite the added noise during HE
computation, the detection results of our learning model still consistently maintain between
91% and 92%. Consequently, our proposed method enables accurate detection for both raw
data and encrypted data, offering the versatility needed for real-world applications where
encrypted input classification is required.

3.3.3 Blockchain Nodes-enabled HE Computational Evaluation

Experiment Setup

To evaluate the reliability of our proposed cyberattack detection framework, we perform the
experiment on a blockchain node (BN) with multiple consensus mechanisms regarding the
network data encryption process while mining the IoT data. In the experiment, we consider
the different batch sizes of the local network data, including 50, 500, 1000, and 2000 samples.
The implementation consists of a blockchain node and an IoT transaction issuer in which the
configuration of the devices and software for the implementation is described as follows:

• The BN operates on processor Intel® Core i9-13900K (24 cores, 32 threads). The IoT
transaction issuer is run on the processor Intel® Core i7 with 16GB RAM.

• The BN with PoW and PoA mechanisms is launched by Go-Ethereum v1.10.14
(Geth) [78] - an official open-source implementation of the Ethereum protocol.

• The BN with PoS mechanism is launched by Geth v1.14.6 and Prysm v5.0.3 [79] - an
official implementation of the PoS consensus mechanism in Ethereum 2.0. It is worth
noting that in the PoS node, Geth operates as the chain execution and Prysm provides
the PoS configuration as a third-party software.

3.3 Performance Evaluation 57

(a) Confusion matrix of PPCeL

(b) Confusion matrix of PPDiL with five workers

Fig. 3.8 Classification results of the non-encrypted detection within the proposed HE-
encrypted deep neural network.

3.3 Performance Evaluation 58

50 500 1000 2000
Number…of…samples

0

1

3

5

8

R
es
ou
rc
es
…
(G
B
)

1.40

3.17

5.07

8.87

1.25

3.01

4.94

8.77

1.26

2.98

4.85

8.75

1.26

2.98

4.84

8.73PoW
PoA
PoS
No…Mining

(a) Computing resources of encryption with different batches
size

50 500 1000 2000
Number…of…samples

10 1

101

102

E
nc
ry
pt
io
n…
Ti
m
e…

(S
ec
on
ds
)

5.28

53.12

109.63

218.17

0.65

6.95
11.19

20.68

0.68

7.26

13.18

25.67

0.62

6.79
9.92

18.99

PoW
PoA
PoS
No…Mining

(b) Latency of encryption within different batches size

Fig. 3.9 Evaluation of the Geth blockchain node-enabled HE in different consensus mecha-
nisms: PoW, PoA, PoS, and no mining.

Experiment Results

In Fig. 3.9, we examine our proposed framework with different mining algorithms in terms
of computational resources and the latency time during the encryption process. As illustrated
in Fig. 3.9(a), the PoW blockchain node slightly costs higher resources during the encryption,
with around 0.15 GB higher than other counterparts. Despite varying batch sizes, the
encryption processes for PoA and PoS nodes consistently require computing resources nearly
identical to those in scenarios without mining. Known for their lightweight nature, PoA and
PoS maintain stable resource usage for encryption across 50, 500, 1000, and 2000 samples,
holding steady at approximately 1.26 GB, 2.98 GB, 4.85 GB, and 8.75 GB, respectively. As
a result, the mining process does not affect the resources of the BN during the HE-based
encryption.

3.3 Performance Evaluation 59

To further demonstrate the scalability of our proposed framework, we analyze the latency
time of the encryption during various scenarios. As observed in Fig. 3.9(b), due to the
intensive computational demands of PoW, the encryption process of the PoW-based BN
incurs the highest latency, spanning from 5.28 seconds for 50 samples to 218.17 seconds
for 2,000 samples. This results in latency that is approximately 8 to 12 times greater than
that of a node operating without a mining process. In contrast to the trend in resources
analysis, PoA and PoS incur slightly longer encryption times compared to nodes without
a mining mechanism. In particular, the PoS node experiences delays ranging from 0.07 to
nearly 7 seconds, primarily due to the reliance on third-party software to maintain the PoS
algorithm, which reduces the resources available for data encryption. On the other hand,
although PoA maintains lower latency than PoS, it still experiences slightly higher latency
than the no-mining scenario, with minimal delays ranging from 0.06 to 1.69 seconds across
different batch sizes. Consequently, while HE latency does increase across the three mining
mechanisms, the slight latency difference in the lightweight algorithms (i.e., PoS and PoA)
is minimal, suggesting that our proposed framework remains a viable option for various
blockchain-based IoT networks.

3.3.4 Encrypted Inference Time Analysis

Hardware Configuration

In this section, we perform the experiment to examine the adaptability of real-time detection
with incoming encrypted data within our framework. During the implementation, we deploy
the trained model, optimized through the proposed PPDiL, to detect the encrypted samples
across various hardware configurations, which are described as follows:

• Device-1: Intel Xeon E-2288G @3.7GHz processors with 8 processor cores.

• Device-2: Intel Xeon Gold 6238R @2.2GHz processors with 28cores (26 cores en-
abled).

• Device-3: AMD EPYC 9354P 3.25GHz processors with 32 cores 256MB L3 Cache.

Similar to the approach in [61], we consider the incoming network traffic data to be
extracted in data frames, with each containing 400 samples for our experiment.

Experiment Results

To analyze the effectiveness of our proposed cyberattack detection framework, we consider
the processing time of the detection with encrypted samples. As observed in Fig. 3.10, the

3.4 Summary 60

0 400 800 1200 1600 2000
Number…of…samples

5

10

15

20

In
fe

re
nc

e…
tim

e…
(m

in
ut

es
)

Device-1
Device-2
Device-3

Fig. 3.10 The inference time of the detection model with encrypted samples.

trained model employing our proposed PPDiL requires a maximum of nearly 5 minutes to
predict the considered encrypted data frame with the deployment in Device-2 and Device-3.
Meanwhile, regarding the utilization of Device-1 with more powerful hardware configura-
tions, the inference time of the trained detection model shows significant improvement. Here,
the trained model deployed on Device-1 can effectively detect the 400 encrypted samples
in around 2.5 minutes, resulting in a throughput of approximately 2.4 samples per second.
Therefore, the analysis indicates that our proposed cyberattack detection framework can be
effectively adapted to real-world systems, especially with the enhanced computing power
offered by modern edge servers1.

3.4 Summary

In this chapter, we have proposed a novel privacy-preserving cyberattack detection frame-
work for IoT-based blockchain networks, addressing computational challenges by allowing
blockchain nodes to share IoT data with a cloud service provider (CSP) for training machine
learning models. The framework leverages our proposed SIMD packing algorithms and

1https://aws.amazon.com/edge/

https://aws.amazon.com/edge/

3.4 Summary 61

CKKS encryption scheme to securely process and transmit data, enabling encrypted training
on the CSP. We have introduced two complementary learning methods, including a deep
neural network training algorithm and a distributed learning algorithm, both designed for
efficiency and privacy. Our simulations and experiments have demonstrated that the pro-
posed approach achieves 91% accuracy with minimal processing time, closely matching the
non-encrypted baseline, proving its potential for real-world application.

Chapter 4

Conclusion and Future Research
Directions

4.1 Conclusion

In this thesis, we have presented our contributions to safeguarding both security and privacy
in IoT systems by effectively combining deep learning with homomorphic encryption. The
thesis provides a comprehensive exploration of privacy-preserving deep learning for cyberat-
tack detection across diverse IoT applications, focusing on two key domains: (i) Internet of
Vehicles and (ii) Blockchain-based Internet of Things. The key findings from the research
works can be summarized as follows. Firstly, the network data from IoT participants can
be analyzed by machine learning (ML) and deep learning (DL) models to efficiently detect
incoming cyberattacks, thus enabling IoT systems to proactively counter potential threats,
including zero-day attacks. Secondly, applying ML/DL models in IoT systems leads to
privacy issues since IoT users’ private data is readable by the models’ owners (e.g., cloud
providers). To preserve data privacy, homomorphic encryption (HE) can be leveraged to
integrate with learning models. This cryptographic method allows direct computations on
ciphertext without needing to decrypt, thereby maintaining data confidentiality during the
learning process.

In the first study, detailed in Chapter 2, we introduced an innovative privacy-preserving
federated learning (FL) framework tailored for intrusion detection in the Internet of Vehicles
(IoVs) with constrained computational resources. Our framework addresses the challenge of
local training on resource-limited vehicles by enabling them to offload data to a centralized
server. To safeguard user privacy, homomorphic encryption (HE) is applied to the data
prior to transmission. This encryption allows the server to process the data using our

4.2 Future Research Directions 63

proposed HE-based training algorithm, enabling it to learn from the encrypted information
without accessing its raw content. This ensures user privacy throughout the learning process
while paving the way for efficient FL deployment in practical IoV networks. Simulation
results demonstrate that the proposed framework effectively detects cyberattacks in IoV
environments. While the accuracy of the encrypted neural network is marginally lower than
that of its unencrypted counterpart, the trade-off is acceptable and presents opportunities for
further optimization in future research.

In the second study, presented in Chapter 3, we proposed an advanced privacy-preserving
framework for detecting cyberattacks in IoT-based blockchain networks. This framework
addresses the computational limitations of blockchain nodes by enabling them to offload
IoT data to a cloud service provider (CSP) for machine learning model training. To ensure
secure data transmission and processing, we integrated our novel SIMD packing algorithms
with the CKKS encryption scheme, facilitating encrypted training directly on the CSP. The
framework introduces two complementary learning approaches: a deep neural network
training algorithm and a distributed learning algorithm, both optimized for efficiency and
privacy. Simulation results and experiments reveal that the proposed solution achieves a
remarkable 91% accuracy with minimal processing overhead, closely aligning with the
performance of unencrypted baselines. These results underscore the framework’s practicality
and effectiveness for real-world applications.

4.2 Future Research Directions

4.2.1 Current Research Limitations

While our proposed approach demonstrates promising results, several challenges should
be addressed. Below, we outline key challenges that could guide future improvements and
refinements:

• Given the decentralized nature of blockchain networks, collecting real-world attack
samples is challenging. To further strengthen the adaptability of AI-driven security
solutions, future research should not only expand the scope of attack types and datasets
but also explore more advanced learning approaches that enable models to detect
emerging threats with minimal labelled data. This could enhance the model’s ability to
generalize across diverse attack scenarios while maintaining high detection accuracy.

• Collecting attack data across different blockchain consensus mechanisms is both
challenging and crucial, as each mechanism introduces unique vulnerabilities and

4.2 Future Research Directions 64

attack vectors. Currently, the study in Chapter 3 focuses only on attacks targeting
PoW-based blockchain networks. To improve adaptability, it is essential to assess the
stability of different consensus mechanisms under various attack scenarios.

4.2.2 Future Directions

Future research works can potentially consider improving not only the adaptability and
scalability but also the HE-enabled privacy-preserving ML framework with more DL ap-
proaches, e.g., convolutional neural network, transformer, and advanced federated learning.
Particularly, various research directions can be considered:

• The combination of HE with IoT applications can be potentially explored through a
multi-layer edge computing architecture, where computational tasks are dynamically
distributed across cloud and edge nodes. With the ongoing advancements in edge de-
vices and the initial integration of HE with GPU acceleration, a more effective balance
between security and computational efficiency can be achieved by leveraging shared
computing capabilities between cloud infrastructure and IoT edge nodes. Nevertheless,
a major challenge is ensuring low-latency processing while maintaining security in a
multi-layer edge computing architecture, which can be addressed by optimizing HE
schemes and employing adaptive workload distribution strategies.

• The scalability of our approach can be further explored by extending experiments
to a large-scale private blockchain network or an IoT environment with multiple
interconnected nodes. Investigating the transmission of different amounts of encrypted
data to the server in real-time would provide deeper insights into system efficiency
under dynamic conditions. Furthermore, the development of an application demo
would enable the optimization of critical performance metrics such as throughput and
communication efficiency, paving the way for practical deployment in next-generation
secure systems. Although managing large-scale encrypted data transmission can cause
communication bottlenecks and latency, efficient encrypted compression techniques
and communication-aware scheduling can potentially solve the problem.

• The integration of knowledge distillation (KD) with the proposed privacy-preserving
FL framework. This approach would allow both the generalization feature and person-
alization to the FL system, enabling the processing of non-independent and identically
distributed (non-iid) data of heterogeneous users. By combining with KD, the frame-
work can transfer knowledge from a global model to local models effectively, enhancing
the system’s ability to handle diverse user-specific data distributions while maintaining

4.2 Future Research Directions 65

robust performance and data privacy. However, a major challenge is ensuring that
knowledge transfer does not degrade model performance due to the limitations of
encrypted training data. A potential solution is to design adaptive KD mechanisms that
can effectively distil useful representations while preserving privacy.

• The potential of HE-enabled FL can be explored across a range of FL architectures.
For instance, the development of multi-modal FL with HE-encrypted data offers a
pathway to privacy-preserving ML that processes data spanning multiple layers of
communication and networking systems. This approach significantly reduces the risk
of data leakage, thereby enhancing the security and privacy of next-generation wireless
systems. Nevertheless, the high computational cost of HE in FL training could hinder
real-time processing. In this regard, leveraging model quantization techniques can help
to optimize performance without compromising privacy.

• Future research could investigate the potential of the proposed FL framework within
zero-trust networking environments. By leveraging the training algorithm with en-
crypted data, privacy-preserving anomaly detection algorithms can be developed,
ensuring users can actively participate in a zero-trust network without compromising
their sensitive data. This approach not only enhances security and privacy but also
fosters trust in zero-trust systems where users’ data is continuously managed and
processed. A key challenge is the computational overhead of encrypted anomaly
detection, which can be mitigated by optimizing hybrid encryption approaches and
using lightweight/tiny AI detection models.

• Enhancing the integration of homomorphic encryption (HE) with deep learning (DL)
can be achieved by developing advanced training and inference algorithms using state-
of-the-art DL models. For example, implementing the training of convolutional neural
networks (CNNs) or recurrent neural networks (RNNs) on HE-encrypted data with
reduced processing time and high throughput holds significant potential. This approach
not only advances the field of privacy-preserving machine learning for cyberattack
detection but also opens new possibilities for its application in broader domains of
artificial intelligence. A key challenge lies in the inefficiency of HE when handling
deep models, especially in scenarios requiring high throughput, which can lead to
significant computational overhead and increased latency. Employing polynomial
approximations of non-linear functions and optimizing encrypted matrix operations to
improve inference throughput could be a promising solution in this direction.

References

[1] K. Han, S. Hong, J. H. Cheon, and D. Park, “Efficient logistic regression
on large encrypted data,” Cryptology ePrint Archive, 2018. [Online]. Available:
https://eprint.iacr.org/2018/662

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
of things: A survey on enabling technologies, protocols, and applications,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[3] L. S. Vailshery, “Number of iot connections worldwide 2022-2033, with forecasts to
2030,” https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.

[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet of
things: Architecture, enabling technologies, security and privacy, and applications,”
IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[5] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey
of machine and deep learning methods for internet of things (iot) security,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[6] M. Antonakakis, T. April, M. Bailey et al., “Understanding the mirai botnet,” in 26th
USENIX Security Symposium (USENIX Security 17). USENIX Association, 2017, pp.
1093–1110.

[7] Zscaler, “Anatomy of a cloud breach: How 100 million credit card numbers were ex-
posed.” https://www.zscaler.com/resources/white-papers/capital-one-data-breach.pdf/.

[8] G. R. David Atch and R. Bevington, “Microsoft defender: How to proactively defend
against mozi iot botnet,” https://www.microsoft.com/en-us/security/blog/2021/08/19/
how-to-proactively-defend-against-mozi-iot-botnet.

[9] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani,
“Applications of blockchains in the internet of things: A comprehensive survey,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1676–1717, 2019.

[10] S. Nakatomo, “Bitcoin: A peer-to-peer electronic cash system.” [Online]. Available:
https://bitcoin.org/bitcoin.pdf

[11] IBM, “What is IoT with blockchain?” Accessed: August. 13, 2024. [Online]. Available:
https://www.ibm.com/topics/blockchain-iot

[12] IOTA, “Enabling privacy and control of healthcare data,” Accessed: August. 13, 2024.
[Online]. Available: https://www.iota.org/solutions/ehealth

https://eprint.iacr.org/2018/662
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.zscaler.com/resources/white-papers/capital-one-data-breach.pdf/
https://www.microsoft.com/en-us/security/blog/2021/08/19/how-to-proactively-defend-against-mozi-iot-botnet
https://www.microsoft.com/en-us/security/blog/2021/08/19/how-to-proactively-defend-against-mozi-iot-botnet
https://bitcoin.org/bitcoin.pdf
https://www.ibm.com/topics/blockchain-iot
https://www.iota.org/solutions/ehealth

References 67

[13] Slowmist, “Slowmist hacked statistical,” Accessed: July. 16, 2024. [Online]. Available:
https://hacked.slowmist.io/statistics/?c=all&d=all

[14] TechMonitor, “The biggest cryptocurrency hacks of all time,” Ac-
cessed: July. 16, 2024. [Online]. Available: https://techmonitor.ai/technology/
cybersecurity/biggest-cryptocurrency-hacks-of-all-time

[15] NewsDesk, “Btc turk hack: Exchange reports cyber attack with C51 million stolen,”
Accessed: July. 16, 2024. [Online]. Available: https://www.unlock-bc.com/124941/
btc-turk-hack-exchange-reports-cyber-attack/

[16] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. De Alvarenga, “A survey of in-
trusion detection in internet of things,” Journal of Network and Computer Applications,
vol. 84, pp. 25–37, 2017.

[17] N. Chaabouni, M. Mosbah, A. Zemmari, C. Sauvignac, and P. Faruki, “Network
intrusion detection for iot security based on learning techniques,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 3, pp. 2671–2701, 2019.

[18] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A survey
of machine and deep learning methods for internet of things (IoT) security,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[19] M. Ul Hassan, M. H. Rehmani, and J. Chen, “Anomaly detection in blockchain networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1,
pp. 289–318, 2023.

[20] M. Keshk, E. Sitnikova, N. Moustafa, J. Hu, and I. Khalil, “An integrated framework
for privacy-preserving based anomaly detection for cyber-physical systems,” IEEE
Transactions on Sustainable Computing, vol. 6, no. 1, pp. 66–79, 2021.

[21] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, “When machine
learning meets privacy: A survey and outlook,” ACM Computing Survey, vol. 54, no. 2,
2021.

[22] S. Hui, Z. Wang, X. Hou, X. Wang, H. Wang, Y. Li, and D. Jin, “Systematically
quantifying IoT privacy leakage in mobile networks,” IEEE Internet of Things Journal,
vol. 8, no. 9, pp. 7115–7125, 2021.

[23] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato,
and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[24] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based on
homomorphic encryption: Design and evaluation,” JMIR Med Inform, vol. 6, no. 2, p.
e19, Apr. 2018.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[26] D. T. Hoang, N. Van Huynh, D. N. Nguyen, E. Hossain, and D. Niyato, Deep Reinforce-
ment Learning for Wireless Communications and Networking: Theory, Applications
and Implementation. John Wiley & Sons, 2023.

https://hacked.slowmist.io/statistics/?c=all&d=all
https://techmonitor.ai/technology/cybersecurity/biggest-cryptocurrency-hacks-of-all-time
https://techmonitor.ai/technology/cybersecurity/biggest-cryptocurrency-hacks-of-all-time
https://www.unlock-bc.com/124941/btc-turk-hack-exchange-reports-cyber-attack/
https://www.unlock-bc.com/124941/btc-turk-hack-exchange-reports-cyber-attack/

References 68

[27] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pre-trained language models for
text generation: A survey,” ACM Comput. Surv., vol. 56, no. 9, 2024.

[28] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63,
no. 11, p. 139–144, 2020.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems,
vol. 25, 2012.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[31] S. Hochreiter, “Long short-term memory,” Neural Computation MIT-Press, 1997.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, vol. 54. PMLR, Apr.
2017, pp. 1273–1282.

[33] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.

[34] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. Springer,
2006, pp. 265–284.

[35] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic
of approximate numbers,” in Advances in Cryptology–ASIACRYPT, Switzerland, Nov.
2017, pp. 409–437.

[36] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical
gapsvp,” in Advances in Cryptology – CRYPTO 2012. Springer Berlin Heidelberg,
2012, pp. 868–886.

[37] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic en-
cryption without bootstrapping,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. Association for Computing Machinery, 2012, p.
309–325.

[38] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: fast fully homomorphic
encryption over the torus,” Journal of Cryptology, vol. 33, no. 1, pp. 34–91, 2020.

[39] B. D. Manh, C.-H. Nguyen, D. T. Hoang, and D. N. Nguyen, “Homomorphic encryption-
enabled federated learning for privacy-preserving intrusion detection in resource-
constrained iov networks,” in 2024 IEEE 100th Vehicular Technology Conference
(VTC2024-Fall), 2024, pp. 1–6.

References 69

[40] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and
Y. Elovici, “N-baiot—network-based detection of iot botnet attacks using deep autoen-
coders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.

[41] N. Moustafa, “A new distributed architecture for evaluating ai-based security systems
at the edge: Network Ton_IoT datasets,” Sustainable Cities and Society, vol. 72, p.
102994, 2021.

[42] P. V. Dinh, Q. U. Nguyen, D. T. Hoang, D. N. Nguyen, S. P. Bao, and E. Dutkiewicz,
“Constrained twin variational auto-encoder for intrusion detection in iot systems,” IEEE
Internet of Things Journal, vol. 11, no. 8, pp. 14 789–14 803, 2024.

[43] A. Zekry, A. Sayed, M. Moussa, and M. Elhabiby, “Anomaly detection using iot
sensor-assisted ConvLSTM models for connected vehicles,” in IEEE 93rd Vehicular
Technology Conference, 2021, pp. 1–6.

[44] T. Alladi, V. Kohli, V. Chamola, F. R. Yu, and M. Guizani, “Artificial intelligence
(AI)-empowered intrusion detection architecture for the internet of vehicles,” IEEE
Wireless Communications, vol. 28, no. 3, pp. 144–149, 2021.

[45] T. V. Khoa, Y. M. Saputra, D. T. Hoang, N. L. Trung, D. Nguyen, N. V. Ha, and
E. Dutkiewicz, “Collaborative learning model for cyberattack detection systems in iot
industry 4.0,” in IEEE Wireless Communications and Networking Conference, 2020, pp.
1–6.

[46] T. V. Khoa, D. T. Hoang, N. L. Trung, C. T. Nguyen, T. T. T. Quynh, D. N. Nguyen,
N. V. Ha, and E. Dutkiewicz, “Deep transfer learning: A novel collaborative learning
model for cyberattack detection systems in iot networks,” IEEE Internet of Things
Journal, vol. 10, no. 10, pp. 8578–8589, 2023.

[47] H. Liu, S. Zhang, P. Zhang, X. Zhou, X. Shao, G. Pu, and Y. Zhang, “Blockchain and
federated learning for collaborative intrusion detection in vehicular edge computing,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 6073–6084, 2021.

[48] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, “Survey on the
internet of vehicles: Network architectures and applications,” IEEE Communications
Standards Magazine, vol. 4, no. 1, pp. 34–41, 2020.

[49] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato,
and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,”
IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[50] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani, “Hybrid-fl for
wireless networks: Cooperative learning mechanism using non-iid data,” in IEEE
International Conference on Communications, 2020, pp. 1–7.

[51] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation offloading for
edge-assisted federated learning,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 9, pp. 9330–9344, 2021.

References 70

[52] C.-H. Nguyen, B. D. Manh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz, “To-
wards secure ai-empowered vehicular networks: A federated learning approach using
homomorphic encryption,” in 2024 IEEE 100th Vehicular Technology Conference
(VTC2024-Fall), 2024, pp. 1–6.

[53] J. Otávio Chervinski, D. Kreutz, and J. Yu, “Analysis of transaction flooding attacks
against monero,” in 2021 IEEE International Conference on Blockchain and Cryptocur-
rency, 2021, pp. 1–8.

[54] X. Wang, X. Zha, G. Yu, W. Ni, R. P. Liu, Y. J. Guo, X. Niu, and K. Zheng, “Attack and
defence of ethereum remote apis,” in 2018 IEEE Globecom Workshops, 2018, pp. 1–6.

[55] B. D. Manh, C.-H. Nguyen, D. T. Hoang, D. N. Nguyen, M. Zeng, and Q.-V. Pham,
“Privacy-preserving cyberattack detection in blockchain-based iot systems using ai and
homomorphic encryption,” IEEE Internet of Things Journal, pp. 1–1, 2025.

[56] V. T. Truong and L. B. Le, “Metacids: Privacy-preserving collaborative intrusion
detection for metaverse based on blockchain and online federated learning,” IEEE Open
Journal of the Computer Society, vol. 4, pp. 253–266, 2023.

[57] A. Aljuhani, P. Kumar, R. Alanazi, T. Albalawi, O. Taouali, A. K. M. N. Islam,
N. Kumar, and M. Alazab, “A deep-learning-integrated blockchain framework for
securing industrial iot,” IEEE Internet of Things Journal, vol. 11, no. 5, pp. 7817–7827,
2024.

[58] J. Kim, M. Nakashima, W. Fan, S. Wuthier, X. Zhou, I. Kim, and S.-Y. Chang, “Anomaly
detection based on traffic monitoring for secure blockchain networking,” in IEEE
International Conference on Blockchain and Cryptocurrency (ICBC), 2021, pp. 1–9.

[59] W. Cao, Y. Huang, D. Li, F. Yang, X. Jiang, and J. Yang, “A blockchain based link-
flooding attack detection scheme,” in IEEE 4th Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), vol. 4, 2021,
pp. 1665–1669.

[60] D. H. Son, B. D. Manh, T. V. Khoa, N. L. Trung, D. T. Hoang, H. T. Minh, Y. Alem,
and L. Q. Minh, “Semi-supervised learning for anomaly detection in blockchain-based
supply chains,” arXiv preprint arXiv:2407.15603, 2024.

[61] T. V. Khoa, D. H. Son, D. T. Hoang, N. L. Trung, T. T. T. Quynh, D. N. Nguyen, N. V.
Ha, and E. Dutkiewicz, “Collaborative learning for cyberattack detection in blockchain
networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54,
no. 7, pp. 3920–3933, 2024.

[62] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy,” in Proceedings of The 33rd International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 48. PMLR, 20–22 Jun 2016, pp.
201–210.

References 71

[63] S. Meftah, B. H. M. Tan, C. F. Mun, K. M. M. Aung, B. Veeravalli, and V. Chan-
drasekhar, “Doren: Toward efficient deep convolutional neural networks with fully
homomorphic encryption,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 3740–3752, 2021.

[64] M. Kim, X. Jiang, K. Lauter, E. Ismayilzada, and S. Shams, “Secure human action
recognition by encrypted neural network inference,” Nature Communications, vol. 13,
no. 1, p. 4799, 2022.

[65] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-preserving machine
learning as a service,” Proceedings on Privacy Enhancing Technologies, no. 3, pp.
123–142, 2018.

[66] K. Nandakumar, N. Ratha, S. Pankanti, and S. Halevi, “Towards deep neural network
training on encrypted data,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2019.

[67] C.-H. Nguyen, Y. M. Saputra, D. T. Hoang, D. N. Nguyen, V.-D. Nguyen, Y. Xiao, and
E. Dutkiewicz, “Encrypted data caching and learning framework for robust federated
learning-based mobile edge computing,” IEEE/ACM Transactions on Networking,
vol. 32, no. 3, pp. 2705–2720, 2024.

[68] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee, D. Yoo,
Y.-S. Kim, and J.-S. No, “Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network,” IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

[69] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning,” Neural Networks, vol. 107, pp.
3–11, 2018.

[70] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IIoTset:
A new comprehensive realistic cyber security dataset of iot and iiot applications for
centralized and federated learning,” IEEE Access, vol. 10, pp. 40 281–40 306, 2022.

[71] X. Zhang, L. Hao, G. Gui, Y. Wang, B. Adebisi, and H. Sari, “An automatic and efficient
malware traffic classification method for secure internet of things,” IEEE Internet of
Things Journal, vol. 11, no. 5, pp. 8448–8458, 2024.

[72] H. Jahangir, S. Lakshminarayana, C. Maple, and G. Epiphaniou, “A deep-learning-
based solution for securing the power grid against load altering threats by iot-enabled
devices,” IEEE Internet of Things Journal, vol. 10, no. 12, pp. 10 687–10 697, 2023.

[73] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recognit. Lett., vol. 27, no. 8,
pp. 861–874, June. 2006.

[74] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and E. Dutkiewicz,
“Proof-of-stake consensus mechanisms for future blockchain networks: Fundamentals,
applications and opportunities,” IEEE Access, vol. 7, pp. 85 727–85 745, 2019.

[75] IBM, “Ibm blockchain platform technical overview.” [Online]. Available: https:
//www.ibm.com/downloads/cas/Q9DGBLV7

https://www.ibm.com/downloads/cas/Q9DGBLV7
https://www.ibm.com/downloads/cas/Q9DGBLV7

References 72

[76] A. Al Badawi et al., “Openfhe: Open-source fully homomorphic encryption library,” in
Proceedings of the 10th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, 2022, pp. 53–63.

[77] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. H. Li, T. Parcollet, P. P. B. de Gusmão et al., “Flower: A friendly federated learning
research framework,” arXiv preprint arXiv:2007.14390, 2020.

[78] Go-Ethereum, “Official go implementation of the ethereum protocol,” Accessed: Au-
gust. 13, 2024. [Online]. Available: https://github.com/ethereum/go-ethereum

[79] Prysmatic-Lab, “Prysm: An ethereum consensus implementation written in go,”
Accessed: August. 13, 2024. [Online]. Available: https://github.com/prysmaticlabs/
prysm

https://github.com/ethereum/go-ethereum
https://github.com/prysmaticlabs/prysm
https://github.com/prysmaticlabs/prysm

	List of Publications
	Table of contents
	List of figures
	Abbreviation
	1 Motivation, Background and Literature Review
	1.1 Motivation
	1.2 Background
	1.2.1 Machine Learning and Deep Learning
	1.2.2 Federated Learning
	1.2.3 Homomorphic Encryption

	1.3 Literature Review and Contribution
	1.3.1 Privacy-Aware Federated Learning for Intrusion Detection in IoV Networks
	1.3.2 Privacy-Preserving Machine Learning for Cyberattack Detection in Blockchain-based IoT Networks

	1.4 Thesis Organization

	2 Homomorphic Encryption-Enabled Federated Learning for Privacy-Preserving Intrusion Detection in Resource-Constrained IoV Networks
	2.1 System Model
	2.2 The Deep Neural Network for Encrypted Data
	2.3 The Proposed FL Implementation
	2.4 Performance Evaluation
	2.4.1 Simulation Setup
	2.4.2 Evaluation Metrics
	2.4.3 Simulation Results

	2.5 Summary

	3 Privacy-Preserving Cyberattack Detection in Blockchain-Based IoT Systems Using AI and Homomorphic Encryption
	3.1 System Model
	3.1.1 Overview of Blockchain-based IoT System
	3.1.2 Privacy-Preserving Cyberattack Detection in Blockchain Networks

	3.2 The Privacy-Preserving Distributed Learning
	3.2.1 The Proposed Training Process of Deep Neural Network for HE-Encrypted Data
	3.2.2 Implementation of Distributed Cloud-Native Learning

	3.3 Performance Evaluation
	3.3.1 Simulation Setup and Evaluation Metrics
	3.3.2 Simulation Results
	3.3.3 Blockchain Nodes-enabled HE Computational Evaluation
	3.3.4 Encrypted Inference Time Analysis

	3.4 Summary

	4 Conclusion and Future Research Directions
	4.1 Conclusion
	4.2 Future Research Directions
	4.2.1 Current Research Limitations
	4.2.2 Future Directions

	References

