
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

University of Technology Sydney 
Faculty of Engineering and Information Technology 
 
January 2025 

Precise Indoor Positioning With 
Sensor Fusion of Ultra-Wideband 
and Odometer 

 
by Ang Liu 
 
Thesis submitted in fulfilment of the requirements for  
the degree of  
 
Doctor of Philosophy 
 
under the supervision of Dr Jianguo Wang and Dr Xiaoying  
Kong 



i 

Certificate of Original Authorship 

I, Ang Liu, declare that this thesis is submitted in fulfilment of the 

requirements for the award of Doctor of Philosophy, in the School of Civil 

and Environmental Engineering, Faculty of Engineering and IT, at the 

University of Technology Sydney. 

This thesis is wholly my own work unless otherwise referenced or 

acknowledged. In addition, I certify that all information sources and 

literature used are indicated in the thesis. 

This document has not been submitted for qualifications at any other 

academic institution. 

This research is supported by the Australian Government Research 

Training Program. 

Signature: 

Date:  16/1/2025 

Production Note:
Signature removed prior to publication.



 

ii 

Dedication 

For my family, who have always fully supported and loved me. 

  



 

iii 

Acknowledgements 
 

During my PhD journey, I have received countless kindnesses and help. First of 

all, I would like to thank my supervisor, Dr. Janguo Wang, who has been a very 

responsible supervisor in giving me valuable advice on my academic research. His 

academic rigour and seriousness will always be an example for me. I would also 

like to thank my co-supervisor, Dr Xiaoying Kong, whose support has allowed me 

to start my academic journey. Her wise advice and invaluable assistance at many 

turning points in my life have enabled me to make the right choices at critical 

moments. I am deeply grateful to my supervisory panel for their generosity and 

patience in guiding me in my growth and development. I would also like to thank 

my research collaborator, Dr Shiwei Lin, for her smart advice, which often 

inspired me when I hit a bottleneck in my research. Thanks to Professional editor 

Dr John McAndrew for copyediting and proofreading services. 

 

I would like to thank the love of my life, Ms. Yu Zhang, for being with me all the 

way. Her love was like a warm light that supported me through the dark moments. 

No matter the challenges, she was always by my side, giving me strength and 

courage. Her understanding and encouragement are the pillars of my 

perseverance, and I am deeply grateful for her selfless dedication and consistent 

love.  

 

My sincerest thanks go to my parents, Mr. Yongsheng Liu and Mrs. Jing Zhang, 

who never gave up on me and supported me unreservedly. They have taught me 

responsibility, optimism, and strength. Their selfless love and endless 

encouragement allow me to move forward steadfastly in the face of challenges. 

Also, thanks to Mrs Tingting Liu for taking so much external pressure off me so 

that I could concentrate on my research. Mr Loki, you made me realise the purest 

trust and beauty in the world.  



 

iv 

List of Publications 

 

Related to the Thesis: 

1. A. Liu, S. Lin, X. Kong, J. Wang, G. Fang, and Y. Han, "Development of low-

cost indoor positioning using mobile-UWB-anchor-configuration approach," 

in Parallel Architectures, Algorithms and Programming (PAAP 2020), 

Shenzhen, China: Singapore: Springer, 2021, pp. 34-46. 

 

2. A. Liu, S. Lin, J. Wang, and X. Kong, "A method for non-line of sight 

identification and delay correction for UWB indoor positioning," in The 17th 

IEEE Conference on Industrial Electronics and Applications (ICIEA 2022), 

Chengdu, China: IEEE, 2022. 

 

3. A. Liu, S. Lin, J. Wang, and X. Kong, "A succinct method for non-line-of-

sight mitigation for ultra wideband indoor positioning system," Sensors, vol. 

22, no. 21, 2022, DOI: 10.3390/s22218247. 

 

4. A. Liu, S. Lin, J. Wang, and X. Kong, "A novel loosely coupling fusion 

approach of ultra-wideband and wheel odometry for indoor localisation," 

Electronics, vol. 12, no. 21, p. 4499, 2023.DOI:10.3390/electronics12214499. 

 

5. A. Liu, S. Lin, J. Wang, and X. Kong, " A tightly coupled UWB and wheel 

odometry based on a dynamic UKF for Indoor Localisation," Electronics, vol. 

13 Issue 8 p. 1518, 2024. DOI: 10.3390/electronics13081518 

 

Others: 

6. S. Lin, A. Liu, J. Wang, and X. Kong, "A review of path-planning approaches 

for multiple mobile robots," Machines, vol. 10, no. 9, p. 773, 2022. [Online]. 

Available: https://www.mdpi.com/2075-1702/10/9/773. 

https://www.mdpi.com/2075-1702/10/9/773


 

v 

 

7. S. Lin, X. Kong, J. Wang, A. Liu, G. Fang, and Y. Han, "Development of a UAV 

path planning approach for multi-building inspection with minimal cost," in 

Parallel and Distributed Computing, Applications and Technologies (PDCAT 

2020), Shenzhen, China, Springer International Publishing, 2021, pp. 82-93. 

 

8. S. Lin, X. Kong, J. Wang, and A. Liu, "Helix-HPSO approach for UAV path 

planning in a multi-building environment," Journal of Reliable Intelligent 

Environments, vol. 9, no. 4, p. 371, Nov. 2022, DOI: 10.1007/s40860-022-

00196-z. 

 

9. S. Lin, A. Liu, J. Wang, and X. Kong, "An intelligence-based hybrid PSO-SA 

for mobile robot path planning in warehouse," Journal of Computational 

Science, vol. 67, p. 101938, Mar. 2023, DOI: https://doi.org/10.1016/j.jocs. 

2022.101938. 

 

10. S. Lin, A. Liu, X. Kong, and J. Wang, "Development of swarm intelligence 

leader-Vicsek-model for multi-AGV path planning," in 2021 20th 

International Symposium on Communications and Information 

Technologies (ISCIT), Tottori, Japan, IEEE, 2021, pp. 49-54, DOI: 

10.1109/ISCIT52804.2021.9590578. 

 

11. S. Lin, A. Liu, and J. Wang, "A dual-layer weight-leader-Vicsek model for 

multi-AGV path planning in warehouse," Biomimetics, vol. 8, no. 7, p. 549, 

2023. 

 

12.  J. Wang, S. Lin, and A. Liu, "Bioinspired perception and navigation of 

service robots in indoor environments: A review," Biomimetics, vol. 8, no. 4, 

p. 350, 2023. 

 



 

vi 

13. S. Lin, A. Liu, J. Wang, and X. Kong, "An improved fault-tolerant cultural-

PSO with probability for multi-AGV path planning," Expert Systems with 

Applications, vol. 237, p. 121510, 2024. 

  



 

vii 

Table of Contents 
 

Certificate of Original Authorship ..................................................................................... i 

Dedication ......................................................................................................................... ii 

Acknowledgements .......................................................................................................... iii 

List of Publications ........................................................................................................... iv 

Related to the Thesis: ............................................................................................... iv 

Others: ...................................................................................................................... iv 

Table of Contents ............................................................................................................ vii 

List of Figures.................................................................................................................... x 

List of Tables ................................................................................................................... xii 

Glossary .......................................................................................................................... xiii 

Abstract ........................................................................................................................... xv 

Chapter 1 Introduction ...................................................................................................... 1 

1.1 Research Background and Objectives ............................................................ 1 

1.2 Thesis Structure .............................................................................................. 3 

1.2.1 Overview: Chapter 2 Literature Review .............................................. 5 

1.2.2 Overview: Chapter 3 Improved UWB-Only IPS .................................. 5 

1.2.3 Overview: Chapter 4 Loosely-Coupling Algorithms for UWB and 

Wheeled Odometers ........................................................................................... 6 

1.2.4 Overview: Chapter 5 Tightly-Coupling Algorithms for UWB and 

Wheeled Odometers ........................................................................................... 7 

1.2.5 Overview: Chapter 6 Conclusion and Future Work ............................ 8 

1.3 Contributions and Publications ...................................................................... 8 

1.3.1 Main Contributions and Publications ................................................. 8 

1.3.2 Additional Research Contributions ..................................................... 9 

Chapter 2 Literature Review ............................................................................................ 11 

2.1 Introduction ................................................................................................... 11 

2.2 UWB Ranging Principle ................................................................................ 14 

2.2.1 Single-Sided Two-Way Ranging ........................................................ 15 

2.2.2 Double-Sided Two-Way Ranging ...................................................... 16 

2.3 Positioning Algorithms ................................................................................. 17 

2.3.1 TOA .................................................................................................... 17 

2.3.2 TDOA ................................................................................................. 19 

2.3.3 AOA .................................................................................................... 20 

2.4 NLOS Identification and Mitigation ............................................................. 22 

2.5 Multi-Sensor Fusion for UWB ...................................................................... 25 



 

viii 

2.5.1 Sensors Fused with UWB .................................................................. 25 

2.5.2 Overview of Sensor Fusion Algorithms ............................................. 30 

2.6 Conclusion .................................................................................................... 35 

Chapter 3 Improved UWB-Only System ......................................................................... 38 

3.1 NLOS Identification Algorithm by Sliding Window and an NLOS Mitigation 

Algorithm for A 2D Wall Error Model ..................................................................... 38 

3.1.1 Introduction ....................................................................................... 38 

3.1.2 Proposed Method for NLOS Identification ....................................... 41 

3.1.3 NLOS Error Correction Model .......................................................... 50 

3.1.4 Position Experiment Result ............................................................... 55 

3.1.5 Conclusion and Future Work............................................................. 59 

3.2 3D NLOS error model and Weighted Least-Squares method ...................... 60 

3.2.1 Introduction ....................................................................................... 60 

3.2.2 Algorithms and Modeling .................................................................. 63 

3.2.3 Experiment and Results .................................................................... 70 

3.2.4 Discussion .......................................................................................... 87 

3.2.5 Conclusion .........................................................................................88 

3.3 Mobile-UWB-Anchor-Configuration Approach ........................................... 89 

3.3.1 Introduction ....................................................................................... 89 

3.3.2 Mobile-UWB-Anchor-Network Configuration Approach ................. 90 

3.3.3 Experiment ........................................................................................ 93 

Chapter 4 A Loosely Coupling Approach for UWB and Wheel Odometry ..................... 98 

4.1 Introduction .................................................................................................. 98 

4.2 Method ........................................................................................................ 103 

4.2.1 UWB ................................................................................................. 103 

4.2.2 Odometer ......................................................................................... 104 

4.2.3 Fusion Methodology ........................................................................ 105 

4.3 Experiment and Results ............................................................................. 109 

4.3.1 Experimental Environments and Equipment ................................. 109 

4.3.2 Experimental Results ....................................................................... 110 

4.4 Discussion .................................................................................................... 115 

4.5 Conclusion ................................................................................................... 117 

Chapter 5 A Tightly coupled UWB and Wheel Odometry Based on a Dynamic UKF ... 118 

5.1 Introduction ................................................................................................. 118 

5.2 Methods ...................................................................................................... 122 

5.2.1 NLOS Identification and Mitigation ................................................ 124 

5.2.2 HDOP ............................................................................................... 125 

5.2.3 UKF .................................................................................................. 126 

5.3 Experimental Design and Results .............................................................. 128 



 

ix 

5.3.1 Experimental Equipment and Environment ................................... 128 

5.3.2 Experiment Results ......................................................................... 130 

5.4 Discussion ................................................................................................... 135 

5.5 Conclusion and Future Planning ................................................................ 137 

Chapter 6 Conclusions and Future Work ..................................................................... 139 

6.1 UWB-Only IPS ............................................................................................ 139 

6.2 Multi-Sensor Fusion Method for UWB and Wheeled odometers ............... 141 

6.3 Future Work and Applications ................................................................... 142 

References ..................................................................................................................... 144 

 

  



 

x 

 

List of Figures 

 
FIGURE 1.1 THESIS STRUCTURE ............................................................................................................................ 4 

FIGURE 2.1 SS-TWR [37] .................................................................................................................................... 15 

FIGURE 2.2 DS-TWR WITH FOUR MESSAGES [37] ....................................................................................... 16 

FIGURE 2.3 DS-TWR WITH THREE MESSAGES [37]..................................................................................... 16 

FIGURE 2.4 TOA .................................................................................................................................................... 18 

FIGURE 2.5 TDOA ................................................................................................................................................. 19 

FIGURE 2.6 AOA [47] ........................................................................................................................................... 21 

FIGURE 2.7 KALMAN FILTER (KF) [93] ........................................................................................................... 30 

FIGURE 2.8 EKF [94] ........................................................................................................................................... 31 

FIGURE 2.9 PARTICLE FILTER (PF) [100] ....................................................................................................... 34 

FIGURE 3.1 NLOS ERROR CAUSED BY THE HUMAN BODY ........................................................................... 41 

FIGURE 3.2 UWB MODULE ................................................................................................................................. 44 

FIGURE 3.3 THE EXPERIMENT SITE AND ICHNOGRAPHY ............................................................................. 44 

FIGURE 3.4 TAG POSITION WITH NLOS (EXPERIMENT 1) .......................................................................... 46 

FIGURE 3.5 TAG POSITION WITH NLOS (EXPERIMENT 2) ......................................................................... 49 

FIGURE 3.6 GEOMETRIC MODEL OF UWB SIGNAL PASSING THROUGH A WALL. .................................. 51 

FIGURE 3.7 TAG POSITION WITH CORRECTION (EXPERIMENT 1) .............................................................. 56 

FIGURE 3.8 TAG POSITION WITH CORRECTION (EXPERIMENT 2) ............................................................. 57 

FIGURE 3.9 FLOWCHART FOR THE PROPOSED METHOD .............................................................................. 62 

FIGURE 3.10 SLIDING WINDOW METHOD FOR NLOS IDENTIFICATION .................................................. 66 

FIGURE 3.11 DELAY MODEL FOR A WALL ......................................................................................................... 67 

FIGURE 3.12 PROJECTIVE IMAGE ....................................................................................................................... 67 

FIGURE 3.13 EXPERIMENT DESIGN: A) MAP OF EXPERIMENT 1, B) MAP OF EXPERIMENT 2, C) 

ANCHOR 0 & 1, D) ANCHOR 2, E) ANCHOR 3, F) OVERALL EXPERIMENT ENVIRONMENT ........ 72 

FIGURE 3.14 NLOS IDENTIFICATION RESULT (EXPERIMENT 1): A) ANCHOR 0, B) ANCHOR 1, C) 

ANCHOR 2, D) ANCHOR 3 ........................................................................................................................... 75 

FIGURE 3.15 NLOS IDENTIFICATION RESULT (EXPERIMENT 2): A) ANCHOR 0, B) ANCHOR 1, C) 

ANCHOR 2, D) ANCHOR 3 ........................................................................................................................... 77 

FIGURE 3.16 TAG POSITION AFTER MITIGATING BY DELAY MODEL WITH OLS ..................................... 79 

FIGURE 3.17 RELATIONSHIP BETWEEN Θ AND THE WΘ ............................................................................ 83 

FIGURE 3.18 EXPERIMENT 1 RESULTS FOR THE DELAY MODEL WITH WLS ........................................... 83 

FIGURE 3.19 EXPERIMENT 2 RESULTS FOR THE DELAY MODEL WITH WLS .......................................... 85 

FIGURE 3.20 CONVENTIONAL UWB ANCHOR NETWORK USING FIXED ANCHORS ............................... 90 



 

xi 

FIGURE 3.21 MOBILE-ANCHOR-NETWORK APPROACH ................................................................................ 91 

FIGURE 3.22 MOBILE ANCHOR SYSTEM EXPERIMENTAL FLOWCHART .................................................... 92 

FIGURE 3.23 DWM1001-DEV DEVELOPMENT BOARDS ............................................................................. 94 

FIGURE 3.24 MOBILE-ANCHOR UWB SYSTEM .............................................................................................. 95 

FIGURE 3.25 COORDINATE OF ANCHORS ......................................................................................................... 95 

FIGURE 3.26 TRAJECTORY DESIGN ................................................................................................................... 95 

FIGURE 3.27 TRAJECTORY OF THE SYSTEM ..................................................................................................... 96 

FIGURE 3.28 POSITION ERROR DURING THE SYSTEM MOVES ALONG THE X-AXIS............................... 96 

FIGURE 3.29 POSITION ERROR DURING THE SYSTEM MOVES ALONG THE Y-AXIS. .............................. 97 

FIGURE 4.1 FLOWCHART OF THE ALGORITHM FOR THE 2 LOS RANGING VALUES ............................ 103 

FIGURE 4.2 TWO-WHEEL DIFFERENTIAL MOTION MODEL ...................................................................... 104 

FIGURE 4.3 FLOWCHART OF THE FUSION METHODOLOGY ...................................................................... 106 

FIGURE 4.4 EXPERIMENT DESIGN: (A) MAPS AND REFERENCE PATH; (B) UWB; AND (C) 

TURTLEBOT2 ............................................................................................................................................... 110 

FIGURE 4.5 UWB POSITIONING RESULTS UNDER THE INFLUENCE OF NLOS .................................... 111 

FIGURE 4.6 UWB POSITIONING RESULTS AFTER THE ADAPTIVE POSITION ALGORITHM ................ 112 

FIGURE 4.7 POSITION RESULTS OF UKF (A) AND DDF (B)...................................................................... 114 

FIGURE 5.1 FLOWCHART OF THE DUKF ....................................................................................................... 123 

FIGURE 5.2 EXPERIMENT DESIGN: (A) UWB, (B) TURTLEBOT2, (C) EXPERIMENTAL SITE, AND D) 

MAP AND REFERENCE PATH .................................................................................................................... 130 

FIGURE 5.3 UWB AND ODOMETER RAW TRAJECTORIES .......................................................................... 131 

FIGURE 5.4 UWB RANGING VALUES (BLUE), THE DISTANCE BETWEEN THE ANCHOR POINT AND 

ODOMETER (GREEN), THE DIFFERENCE BETWEEN THE RANGE AND THE DISTANCE (ORANGE) 

AND THE ROBOT IS STOPPED BY HUMAN INTERFERENCE (RED BOX), (A) ANCHOR 0, (B) 

ANCHOR 1, (C) ANCHOR 2, (D) ANCHOR 3 .......................................................................................... 132 

FIGURE 5.5 TRAJECTORY OF DUKF ............................................................................................................... 134 

 

  



 

xii 

List of Tables 

 
TABLE 2.1 COMPARING DIFFERENT FUSION SOLUTIONS WITH UWB ...................................................... 35 

TABLE 3.1 THE SUCCESS RATE OF NLOS IDENTIFICATIONS (TEST 1) ...................................................... 47 

TABLE 3.2 THE SUCCESS RATE OF NLOS IDENTIFICATIONS (TEST 2) ..................................................... 50 

TABLE 3.3 DATA FOR FITTING EQUATION (D_WALL = 26CM) ................................................................... 53 

TABLE 3.4 DATA FOR FITTING EQUATION (D_WALL = 16CM) ................................................................... 53 

TABLE 3.5 POSITIONING ANALYSIS (EXPERIMENT 1) ................................................................................... 56 

TABLE 3.6 POSITIONING ANALYSIS (EXPERIMENT 2) .................................................................................. 58 

TABLE 3.7 ANCHORS IN NLOS IN DIFFERENT AREAS ................................................................................... 73 

TABLE 3.8 THE ACCURACY RATE OF NLOS IDENTIFICATION (EXPERIMENT 1) .................................... 75 

TABLE 3.9 THE ACCURACY RATE OF NLOS IDENTIFICATION (EXPERIMENT 1) .................................... 78 

TABLE 3.10 POSITION ACCURACY ANALYSIS FOR DELAY MODEL ............................................................... 79 

TABLE 3.11 POSITION ACCURACY ANALYSIS FOR DELAY MODEL WITH WLS (EXPERIMENT 1) ......... 84 

TABLE 3.12 POSITION ACCURACY ANALYSIS FOR DELAY MODEL WITH WLS (EXPERIMENT 2) ........ 85 

TABLE 3.13 POSITION ERROR .............................................................................................................................. 97 

TABLE 4.1 POSITION ERRORS ........................................................................................................................... 114 

TABLE 4.2 COMPARISON WITH OTHER METHODS ...................................................................................... 115 

TABLE 5.1 LOS ANCHORS IN DIFFERENT AREAS ......................................................................................... 130 

TABLE 5.2 POSITION ERROR ............................................................................................................................. 134 

TABLE 5.3 COMPARISON WITH OTHER METHODS ...................................................................................... 136 

 

  



 

xiii 

Glossary 
 

AGV Automatic guided vehicle 

AOA Angle-of-arrival 

BLE Bluetooth low energy 

CIR Channel impulse response 

DDF Dynamic dimension fusion 

DS-TWR Double-sided two-way ranging 

EKF Extended Kalman filter 

FCC Federal Communications Commission 

GNSS Global navigation satellite system 

GPS Global positioning system 

HDOP Horizontal dilution of precision 

IMU Inertial measurement unit 

IoT Internet of Thing 

IPS Indoor positioning system 

IVMs Imported vector machines 

KF Kalman filter 

KNN K-nearest neighbour 

LOS Line-of-sight 

LSTM Long and short-term memory 

MB-OFDM Multi-band orthogonal frequency 

division multiplexing 

MEMS Micro-electromechanical system 

MIL Multiple-input learning 

ML Maximum likelihood 

NLOS Non-line-of-sight 

OLS Ordinary least squares 

PF Particle filter 



 

xiv 

RF Radio frequency 

RHA Relative heading angle 

RMSE Root mean square error 

RNN Recurrent neural networks 

RSSI Received signal strength indicator 

SS-TWR Single-sided two-way ranging 

SVM Support vector machine 

TDOA Time difference of arrival 

TOA Time-of-arrival 

TOF Time-of-flight 

TWR Two-way ranging 

UKF Unscented Kalman filter 

UWB Ultra-wideband 

VR  Virtual reality 

WLLS Weighted linear least squares 

WLS Weighted least squares 

  



 

xv 

Abstract 
 

Ultra-wideband (UWB) is a promising indoor positioning technology with high 

accuracy and low energy consumption. The current research uses UWB, assisted 

by wheeled odometers, to develop a stable centimetre-level indoor positioning 

system (IPS) to address smart industry needs. 

 

The research initially investigates the limitations of UWB-only IPS and identifies 

non-line-of-sight (NLOS) errors caused by signal occlusion as the primary factor 

affecting positioning accuracy. The main goal of this research phase is to identify 

and reduce NLOS errors accurately. We propose a sliding window algorithm that 

can identify about 90% of NLOS errors by this very simple algorithm in a very 

harsh experimental environment. This algorithm can accurately identify NLOS 

by analyzing only the variation of ranging values within a sampling window 

without analysing parameters such as signal strength or channel impulse 

response (CIR). The algorithm is simple and can be applied to most UWB devices. 

Additionally, we present a method for modelling NLOS errors induced by walls 

based on wall thickness, material properties, and UWB signal incidence angle to 

mitigate such errors effectively within room structures. Experimental verification 

demonstrates that accurate identification and modelling of NLOS errors can 

significantly improve UWB-only IPS accuracy under NLOS conditions close to 

line-of-sight (LOS) levels. Furthermore, our research explores strategies to 

reduce the cost of UWB hardware in large-area scenario applications by 

proposing a method to convert fixed anchors into moving ones. 

 

In flexible, variable, and complex indoor environments, achieving accurate 

positioning with UWB alone is difficult. This research combines low-cost wheeled 

odometers and UWB to form a multi-sensor fusion localisation system. We 

proposed a loosely coupled method that fuses UWB and odometry. The first step 



 

xvi 

is to identify the NLOS using the sliding window method and then optimise the 

positioning of the UWB system by deleting ranges that contain NLOS errors. 

Finally, the absolute position of the optimised UWB is selected to correct the 

cumulative error in the direction and displacement of the odometer for precise 

positioning. The fused system can achieve a positioning accuracy of less than 10 

cm RMSE in complex environments. Loose coupling requires subsystems to 

realise localisation independently, which may not be possible for UWB systems 

in harsh NLOS environments, affecting the fused system's accuracy. The final 

phase of the research proposes a tight coupling method based on the dynamic 

Unscented Kalman filter (UKF), which assists the UWB in identifying and 

mitigating the NLOS errors and calculates the Horizontal dilution of precision 

(HDOP) value through the position information provided by the odometer. The 

parameters and inputs of the UKF are dynamically adjusted according to the 

NLOS state, HDOP value, and motion state to achieve stable and accurate 

positioning with RMSE less than 10 cm in strong NLOS environments. 



 

1 

1. Chapter 1 Introduction 

 

1.1 Research Background and Objectives 

Eighty per cent of human work and life occurs in indoor environments [1]. With 

the development of science and technology in recent decades, smart devices, 

including wearable devices [2], autonomous mobile robots, virtual reality (VR), 

and other technologies have greatly facilitated people's lives. At the same time, 

applying robots in smart factories and smart warehouses in the industry can 

improve production efficiency and reduce production costs. Using unmanned 

equipment in other dangerous scenarios, such as indoor fire rescue and mine 

rescue, can also improve the rescue efficiency and reduce the risk [3-5]. These 

technologies and scenarios are realised based on high-precision indoor 

positioning systems (IPSs). 

 

An outdoor environment global navigation satellite system (GNSS) can provide 

the target location information. For example, the commonly used global 

positioning system (GPS) has a wide range of applications in the military, for 

agricultural use, vehicle positioning, and other fields [6]. However, GNSS is not 

suitable for indoor environments. In indoor environments, which often require 

high accuracy, the obstruction of buildings to the communication between the 

satellite and the terminal equipment leads to a large positioning error. 

Researchers are exploring new techniques and algorithms to achieve centimetre-

level positioning accuracy in indoor environments. 

 

A review paper [7] defines an indoor position system (IPS) as a system that 

achieves accuracy within 3 metres at a range of 20 metres. An IPS is usually 

judged by accuracy, robustness, cost, energy consumption, and coverage. 
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Common IPS solutions are classified into non-radio frequency and radio 

frequency (RF) technologies, depending on the sensors used. Non-radio 

frequency includes IMU, LiDAR, ultrasonic sensors, and cameras. RF 

technologies use wireless communication technologies, such as UWB, Wi-Fi, 

Bluetooth, and RFID [8]. The advantages of LiDAR or Camera are that it can 

realise map building, obstacle identification, and path planning, but its 

positioning accuracy is highly related to hardware costs. At the same time, WiFi, 

Bluetooth, and RFID accuracy is difficult to achieve at the centimetre level. The 

main purpose of this study is to realise a low-cost centimetre-level positioning 

system, so UWB becomes the preferred sensor in this study. The odometer has 

the advantages of low cost, simple structure and high short-term accuracy, which 

makes it very suitable as the auxiliary sensor of UWB. 

 

According to the analysis in a review paper [9], UWB is a low-cost, sub-metre 

accuracy, and multipath-resistant sensor, compared with other methods, which 

is well suited for constructing high-precision IPS. The complexity of indoor 

environments causes IPS to face greater challenges than outdoor positioning [10]. 

Walls, tables, chairs, and even human bodies can be obstacles, and the relative 

positions of these obstacles and the target to be localised often change, increasing 

the randomness of the errors. The disadvantages of UWB IPS in such complex 

indoor environments are also obvious. The principle of UWB IPS is similar to that 

of GPS, which is based on measuring the distance between a target tag and several 

fixed anchors to achieve the tag's localisation. The range information is calculated 

by measuring the time-of-flight (TOF) of the signal between the tag and the 

anchor points [11]. When an obstacle between a tag and a fixed anchor point in a 

UWB system obscures the line of sight (LOS) communication, the measured 

range value contains a non-line of sight (NLOS) error. This NLOS error results in 

the measured range value being tens of centimetres or even metres larger than 

the real distance, greatly affecting the positioning accuracy. Therefore, how to 
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identify and mitigate the effect of NLOS error on positioning accuracy is an 

important and current research topic in UWB IPS. 

 

This research project aims to construct a low-cost, high-precision IPS based on 

UWB that can stably achieve centimetre-level positioning in complex indoor 

environments, especially when affected by NLOS. The specific objectives of this 

research are as follows: 

1. Develop a UWB IPS deployment scheme to reduce hardware costs. 

2. Propose a simple, fast and accurate algorithm to identify which ranges are 

affected by NLOS errors in UWB-only IPS systems. 

3. Propose modelling of NLOS errors caused by walls and achieve centimetre-level 

positioning accuracy in UWB-only IPS without sufficient LOS measurements.  

4. Propose a loose-coupling approach to fuse UWB and a wheeled odometer to 

improve the positioning accuracy and robustness of the system when UWB is 

affected by NLOS. 

5. Propose a dynamic UKF tight-coupling approach to fuse UWB and wheeled 

odometers to achieve stable centimetre-level positioning under strong NLOS 

errors. 

 

1.2 Thesis Structure  

Figure 1.1 shows the structure of the research. Chapter 2 is a literature review of 

UWB IPS, including the advantages and disadvantages of UWB IPS, localisation 

algorithms, and the fusion of UWB with other sensors proposed by other 

researchers. Chapter 3 is an improvement scheme for UWB-only IPS, including 

the identification algorithm for NLOS error, the mitigation of NLOS error using 

the wall error model to improve the positioning accuracy and a UWB IPS 

positioning system with movable anchors. In Chapter 4, a loosely coupled 
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algorithm is proposed to improve the positioning accuracy of IPS by fusing 

wheeled odometers under the influence of strong NLOS errors in UWB. In 

Chapter 5, based on the previous work, a dynamic UKF tight-cornering algorithm 

is proposed to identify and correct the NLOS of the UWB system by the odometer. 

At the same time, the cumulative error of the odometer is corrected by using the 

range information of the UWB. The proposed system can provide centimetre-

level positioning accuracy even in a strong NLOS environment with only one LOS 

anchor point. Chapter 6 summarises the project and gives directions for future 

research. The following is a detailed overview of the chapters. 

 

Figure 1.1 Thesis structure 
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1.2.1 Overview: Chapter 2 Literature Review 

With the rapid development of the Internet of Things (IoT), robotics and 

wearable devices, researchers have been working to improve the accuracy and 

robustness of indoor IPSs. UWB has the advantages of high accuracy, low energy 

consumption, and high multipath resolution. It is considered one of the 

important future development directions of indoor positioning. This chapter 

firstly introduces the advantages and disadvantages of UWB IPS, including the 

identification and mitigation of NLOS errors; secondly, it introduces the 

commonly used positioning algorithms of UWB IPS, including time-of-arrival 

(TOA), time difference of arrival (TDOA) and angle-of-arrival (AOA); thirdly, it 

introduces the algorithms for combining UWB with other sensors and accuracy 

comparison; finally, it proposes that the identification and mitigation of NLOS 

errors are crucial to improve the positioning accuracy of UWB IPS, and this 

problem can be solved effectively by multi-sensor fusion. 

 

1.2.2 Overview: Chapter 3 Improved UWB-Only IPS 

This chapter on the study of UWB-only IPS is divided into three parts: 

 

1. UWB has a centimetre-level positioning accuracy for indoor use and is one of 

the most promoted indoor positioning technologies. However, when a wall or 

other objects block UWB signals, NLOS happens, which reduces the signal-

noise ratio and causes signal transmission delay. As NLOS introduces large 

distance measurement errors, UWB positioning accuracy is dramatically 

degraded. Because the appearance of NLOS causes abrupt changes in the 

ranging values, this section proposes a simple and accurate algorithm for 

identifying NLOS. The NLOS between a UWB anchor and a moving tag is 

identified by analysing the variance of the change of UWB measured distance 

in adjacent samples. 
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A 2D delay estimation model corrects the NLOS distance error caused by walls. 

Experimental results show that UWB NLOS identification accuracy can reach 

more than 90%, and the delay estimation model can effectively correct 

distance measurement errors and make positioning accuracy with NLOS 

appearance comparable to the LOS situation. 

 

2. Building on the previous part of the study, in this part, the wall model is 

further upgraded to 3D, and a weight calculation model is proposed to give 

different weights to the ranging values in different cases by NLOS 

identification. All the distance measurements, including LOS and NLOS, are 

used to calculate the mobile UWB tag position with ordinary least squares 

(OLS) or weighted least squares (WLS). Experimental results show that with 

correct NLOS indentation and the delay model, the proposed method can 

achieve positioning accuracy in NLOS environments close to the level of LOS. 

Compared with OLS, WLS can further optimise the positioning results. 

Correct NLOS indentation, accurate delay model, and proper weights in the 

WLS are the keys to accurate UWB positioning in NLOS environments. 

3. UWB communication distance is limited, and obstacles easily block the signal. 

When UWB IPS is used in large indoor environments, such as factories and 

airports, it must be installed with many fixed anchors to ensure positioning 

accuracy. In this section, a mobile-UWB-anchor-network approach is 

proposed for the first time. We change the fixed anchors in the UWB system 

into moving anchors to reduce the number of anchors in the area and the cost 

of the system. This new approach is verified using experiments. 

 

1.2.3 Overview: Chapter 4 Loosely-Coupling Algorithms for UWB 

and Wheeled Odometers 

As mentioned, UWB systems promise centimetre-level accuracy for indoor 

positioning, yet they remain susceptible to NLOS errors due to complex indoor 

environments. A fusion mechanism that integrates the UWB with an odometer 
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sensor is introduced to address this challenge and achieve a high positioning 

accuracy. A sliding window method is applied to identify NLOS anchors 

effectively. The modified UWB-only positioning has an average error under 13 cm 

with an RMSE of 16 cm. Then, a loosely coupled approach named dynamic 

dimension fusion (DDF) is designed to mitigate the odometer's cumulative errors, 

achieving a remarkable average error and RMSE of around 7 cm, notably superior 

to established unscented Kalman filter (UKF) fusion techniques. DDF utilises 

UWB data to correct the one-dimensional heading error of the odometer when 

the robot moves in a straight line and to correct both heading and distance 

travelled in two dimensions when the robot is turning. Comprehensive real-world 

experimental evaluations underscore the efficacy and robustness of this novel 

approach. 

 

1.2.4 Overview: Chapter 5 Tightly-Coupling Algorithms for UWB 

and Wheeled Odometers 

UWB has attracted significant attention among the various technologies in IPSs 

due to its centimetre-level accuracy. However, the precision of UWB positioning 

is severely compromised by NLOS conditions arising from complex indoor 

environments. Conversely, wheel odometry exhibits a simple structure and has 

witnessed substantial improvements in accuracy and sampling frequency with 

advancements in optoelectronic technology, rendering it widely applicable to 

indoor wheeled robots. This study proposes a tightly coupled and dynamic UKF 

fusion method that utilises odometry to assist in identifying and mitigating NLOS 

effects on UWB systems while introducing horizontal dilution of precision 

(HDOP) as a measure for assessing the impact of geometric distribution between 

robots and UWB anchors on accuracy. The proposed method dynamically adjusts 

UKF parameters based on NLOS identification, HDOP values, and robot motion 

status to achieve optimal positioning results. By employing this fusion method, 

effective mitigation of NLOS impact on UWB systems can be achieved along with 
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reduced cumulative errors in odometry measurements. Remarkably, high-

precision positioning can be attained even when only one LOS anchor point is 

available within the UWB system. Experimental verification conducted under 

severe NLOS conditions demonstrates that the fused system's RMSE reaches 

approximately 7cm. Furthermore, robustness and accuracy are maintained even 

when LOS anchor points continuously change within the UWB system. 

 

1.2.5 Overview: Chapter 6 Conclusion and Future Work 

This chapter focuses on summarising this research project and suggesting future 

research directions. 

 

1.3 Contributions and Publications 

1.3.1 Main Contributions and Publications 

Chapter 3 presents a variety of algorithms, including a mobile anchor point 

method to reduce hardware costs, an NLOS recognition algorithm, a wall error 

correction model in 2D and 3D, and a weighted positioning algorithm. Related 

publications are as follows. 

• A. Liu, S. Lin, X. Kong, J. Wang, G. Fang, and Y. Han, "Development of 

low-cost indoor positioning using mobile-UWB-anchor-configuration 

approach," in Parallel Architectures, Algorithms and Programming, 

(PAAP 2020), Shenzhen, China, Singapore: Springer, 2021, pp. 34-46. 

• A. Liu, S. Lin, J. Wang, and X. Kong, "A method for non-line of sight 

identification and delay correction for UWB indoor positioning," in The 17th 

IEEE Conference on Industrial Electronics and Applications (ICIEA 2022), 

Chengdu, China: IEEE, 2022, pp. 9-14. 

• A. Liu, S. Lin, J. Wang, and X. Kong, "A succinct method for non-line-of-

sight mitigation for ultra wideband indoor positioning system," Sensors, 

vol. 22, no. 21, 2022, DOI: 10.3390/s22218247. 
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Chapter 4 proposes a new DDF algorithm to fuse wheel odometry and UWB in a 

loose-coupling method to improve the positioning accuracy and robustness of the 

system in real and variable indoor environments. Relevant publications are as 

follows: 

• Liu, S. Lin, J. Wang, and X. Kong, "A novel loosely coupling fusion approach 

of ultra-wideband and wheel odometry for indoor localisation," Electronics, 

vol. 12, no. 21, p. 4499, 2023. 

Based on the research problems in the previous section, Chapter 5 proposes a 

method of fusion of UWB and a wheeled odometer through dynamic UKF so that 

the system can provide accurate positioning even when there is only one LOS 

anchor point, and the algorithm dynamically adjusts the UKF through the 

different states of the ranging value so that the system can achieve centimetre-

level positioning accuracy.  

• Liu, S. Lin, J. Wang, and X. Kong, " A tightly coupled UWB and wheel 

odometry based on a dynamic UKF for Indoor Localisation," Electronics, 

vol. 13 Issue 8 p. 1518, 2024. 

 

1.3.2 Additional Research Contributions 

The research contributions in this section are mainly as a team member in path 

planning for single and multiple robots in indoor environments, providing 

accurate localisation support during experiments, and as a co-author in reviewing 

and revising relevant publications. The publications are as follows: 

• S. Lin, X. Kong, J. Wang, A. Liu, G. Fang, and Y. Han, "Development of a 

UAV path planning approach for multi-building inspection with minimal 

cost," in Parallel and Distributed Computing, Applications and 

Technologies (PDCAT 2020), Shenzhen, China, Singapore: Springer 

International Publishing, 2021, pp. 82-93. 

 



 

10 

• S. Lin, X. Kong, J. Wang, and A. Liu, "Helix-HPSO approach for UAV path 

planning in a multi-building environment," Journal of Reliable Intelligent 

Environments, vol. 9, no. 4, p. 371, Nov. 2022, DOI: 10.1007/s40860-022-

00196-z. 

 

• S. Lin, A. Liu, J. Wang, and X. Kong, "An intelligence-based hybrid PSO-SA 

for mobile robot path planning in warehouse," Journal of Computational 

Science, vol. 67, p. 101938, Mar. 2023, DOI: https://doi.org/10.1016/j.jocs. 

2022.101938. 

 

• S. Lin, A. Liu, X. Kong, and J. Wang, "Development of swarm intelligence 

leader-Vicsek-model for multi-AGV path planning," in 2021 20th 

International Symposium on Communications and Information 

Technologies (ISCIT), Tottori, Japan, IEEE, 2021, pp. 49-54, DOI: 

10.1109/ISCIT52804.2021.9590578. 

 

• S. Lin, A. Liu, and J. Wang, "A dual-layer weight-leader-Vicsek model for 

multi-AGV path planning in warehouse," Biomimetics, vol. 8, no. 7, p. 549, 

2023. 

 

•  J. Wang, S. Lin, and A. Liu, "Bioinspired perception and navigation of 

service robots in indoor environments: A review," Biomimetics, vol. 8, no. 4, 

p. 350, 2023. 

 

• S. Lin, A. Liu, J. Wang, and X. Kong, "An improved fault-tolerant cultural-

PSO with probability for multi-AGV path planning," Expert Systems with 

Applications, vol. 237, p. 121510, 2024. 
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2. Chapter 2 Literature Review 

2.1 Introduction 

The widespread adoption of smart devices in recent years has brought both 

convenience and challenges in terms of technology. The emergence of the IoT 

and robotics has significantly increased the number of devices that can be 

accessed indoors. These devices include personal smartphones, wearable 

devices [2], floor-cleaning robots, AGVs, and location tags used in various 

industrial contexts, such as intelligent warehousing, smart grids, and smart 

hospitals. These devices are used to manage people in complex indoor 

environments. Accurate location tracking is crucial for safely operating these 

devices within a room [12]. The significance of indoor positioning is evident in 

various applications. Firstly, it can aid in navigation within complex indoor 

environments, like airports, hospitals, and shopping malls, providing 

convenience to people's lives. Secondly, it can be helpful in emergency and 

safety applications [3], such as locating people in building fires [4] and mines 

[5], resulting in shorter rescue response times. In addition, IPSs are crucial for 

intelligent management systems, such as smart warehouses [13], that can track 

the location of parcels and AGV [14]. Providing real-time location information 

not only increases efficiency but also reduces costs. Furthermore, accurate 

location information is essential for emerging wearables, virtual reality, and 

augmented reality markets, as it enhances user interaction. However, providing 

stable centimetre-level positioning in complex indoor environments remains a 

significant challenge and a research goal at this stage.  

 

The GNSS has been refined over decades to provide accurate positioning in 

most outdoor environments, typically within a margin of error of a few meters. 

However, buildings can obstruct satellite signals in complex indoor 

environments, leading to signal fading, multipath, and NLOS errors. As a result, 
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the accuracy of GNSS positioning is seriously degraded, and it is impossible to 

achieve high positioning accuracy in indoor environments using GNSS [15]. 

Therefore, researchers are actively exploring the use of other sensors to achieve 

stable centimetre-level positioning accuracy in indoor environments. 

 

Indoor positioning technologies utilise sensors to determine a device's or user's 

location within indoor spaces [16]. As mentioned, these technologies can be 

categorised into two groups based on the type of sensors used. The first group 

includes non-radio frequency technologies, such as IMU, LiDAR, ultrasonic 

sensors, and cameras. The second group includes wireless communication 

technologies, such as UWB, Wi-Fi, and Bluetooth [8].  

 

Both different sensors have their advantages and disadvantages. For example, 

the IMU can output position information without relying on external 

information. However, while the positioning accuracy of IMU is high in the 

short term, the measurement error accumulates over time, causing the IMU to 

drift over a long period [17, 18]. LiDAR technology can produce a 

comprehensive map of the surrounding environment and accurately locate the 

carrier [19]. However, harsh weather conditions, such as rain, snow, fog, and 

dust, can cause scattering or absorption of laser pulses, thus reducing accuracy 

in outdoor environments [20-23]. Although indoor environments reduce the 

interference of these factors, it is essential to note that glass in indoor 

environments can severely affect the accuracy of LiDAR. 

 

RF-based indoor positioning techniques tend to provide greater coverage and 

lower cost. For example, Wi-Fi and Bluetooth hardware costs are very low, and 

fingerprint-based algorithms can also provide target location information, but 

accuracy is difficult to reach at the centimetre level [24-27]. RFID is cheaper 

but is usually used in situations that only need to identify the target object's 
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presence and do not require high positioning accuracy, such as people and 

object management. Achieving centimetre-level accuracy in RFID positioning 

is still a challenge [28]. 

 

UWB technology was initially developed for military use in radar, imaging, and 

high-speed communications. In 2002, the U.S. Federal Communications 

Commission (FCC) approved the limited commercial use of UWB [29]. As 

semiconductor technology evolved over the same period, UWB transceiver 

designs were improved, resulting in reduced size, lower power consumption, 

and improved ranging accuracy, enhancing the applicability of UWB for precise 

indoor positioning. Mainstream companies in different industries have begun 

to apply UWB technology in their latest products. Apple, Samsung [30] and 

other companies use UWB for spatial sensing and positioning in their smart 

terminals, and BMW and other automobile manufacturers use digital keys 

installed with UWB chips [31]. 

 

UWB operates over a wide frequency range, typically between 3.1 GHz and 10.6 

GHz, so the data transmission rate of UWB will also be very high [32, 33]. Based 

on MB-OFDM (multi-band orthogonal frequency division multiplexing) 

communication technology, the UWB communication rate is expected to reach 

480 Mbit/s [34].  

 

UWB technology employs sporadic pulse signalling for data transmission, 

characterised by notably brief pulse durations typically ranging from 0.2 to 1.5 

nanoseconds. This attribute significantly contributes to the minimisation of 

system power consumption. In comparison to conventional wireless devices, 

the power requirements of civilian UWB devices are markedly lower, 

approximating merely 1% of that of mobile phones and around 5% of Bluetooth 

devices. In a seminal study conducted by Zhao [35], a UWB transmitter was 
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developed, exhibiting both low power consumption and high data transmission 

rates. The findings from Zhao's experimental research indicated that the 

maximum power consumption of this UWB transmitter, when operating at a 

transmission rate of 250 Mbps, was a mere two milliwatts, with the energy 

expenditure per pulse recorded at only eight picojoules. Consequently, UWB 

devices demonstrate substantial superiority over other wireless technologies in 

terms of battery longevity and reduced electromagnetic radiation emissions. 

 

At the same time, this wide bandwidth provides high resolution in time-domain 

measurements, enabling UWB systems to resolve multipath components 

efficiently and accurately determine the TOF of signals [36]. The commonly 

used ranging-based positioning algorithms are TOA, TDOA, and AOA. 

Although UWB can also calculate position information by fingerprinting 

algorithms, the positioning accuracy will be degraded to a similar level to Wi-

Fi Bluetooth, so fingerprinting algorithms are not usually used [36]. 

 

Based on the review and analysis of recent literature, this chapter is structured 

as follows. Section 2.2 discusses the fundamentals of UWB ranging algorithms. 

Section 2.3 discusses positioning algorithms typically used in UWB systems. 

Section 2.4 focuses on identifying and mitigating the effects of NLOS errors. 

Section 2.5 discusses the multi-sensor systems in which UWB is fused with 

other sensors. 

 

2.2 UWB Ranging Principle 

Accurate measurement of the distance between a tag and a fixed anchor point 

is the foundation of UWB IPS, and this section introduces several well-known 

algorithms for UWB ranging. The fundamental principle underlying UWB 

ranging involves determining distance by measuring the TOF of the signal 
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between the anchor and tag, which is then multiplied by the speed of light, as 

articulated in Equation 2.1. 

𝒅𝒏 = 𝒕𝑻𝑶𝑭 ∗ 𝑪 (𝟐. 𝟏) 

where 𝒕𝑻𝑶𝑭 is the TOF of the signal, 𝑪 is the speed of light, and 𝒅𝒏 is the 

distance between the anchor and tag.  

 

2.2.1 Single-Sided Two-Way Ranging 

Single-sided two-way ranging (SS-TWR) is a simple ranging method that 

calculates the distance by counting the time of flight of the signal for one round 

trip between the tag and the anchor point. This is shown in Figure 2.1.  

 
Figure 2.1 SS-TWR [37] 

 

The following equation calculates the TOF of the signal. 

𝒕𝑻𝒐𝑭 =
𝒕round − 𝒕reply 

𝟐
 (𝟐. 𝟐) 

where 𝒕round is the time needed for this round of communication, 𝒕reply  is the 

time interval between receiving the message and replying on the receiving end. 

 

This method uses the local clocks of the tags and anchors when calculating the 

time difference by subtraction, so it requires strict clock synchronisation of all 

anchors and tags within the system. However, the clock offsets of each device 

are different, which can greatly affect the accuracy of the distance measurement. 

Even a time error of 1 ns can result in a range error of 30 cm when multiplied 

by the speed of light [38]. Therefore, this method is difficult to use in practice. 
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2.2.2 Double-Sided Two-Way Ranging 

In order to solve the problem of SS-TWR, which is difficult to achieve clock 

synchronisation, the algorithm of double-sided two-way ranging (DS-TWR) 

has been proposed, which calculates the time of flight by measuring the back 

and forth of the two rounds of signals at the tag and anchor points. Figure 2.2 

demonstrates DS-TWR using four messages. 

 
Figure 2.2 DS-TWR with four messages [37] 

 

DS-TWR requires that both the tag and the anchor point act as the sender and 

the receiver of the signal for one complete round of communication, and this 

method reduces the requirement of clock synchronisation between different 

devices. Based on the above method, the communication steps can be further 

simplified. As shown in Fig. 2.3, the reply of the first communication is sent as 

the start of the second communication so that only three messages are needed 

to complete the DS-TWR.  

 
Figure 2.3 DS-TWR with three messages [37] 
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Regardless of whether three or four messages are used, there are two complete 

communications between the tag and the anchor point, and the time of flight of 

the signals can be calculated using Equation 2.2 below. 

𝒕ToF =
(𝒕round 𝟏 × 𝒕round 𝟐 − 𝒕reply 𝟏 × 𝒕reply 𝟐)

(𝒕round 𝟏 + 𝒕round 𝟐 + 𝒕reply 𝟏 + 𝒕reply 𝟐)
(𝟐. 𝟑) 

Through this calculation method, strict time synchronisation between the tag 

and the anchor point is no longer required, greatly improving the UWB's 

practicality and significantly reducing the distance measurement error. In 

Decawave's description of its DW1000 chip, it is claimed that even if the clock 

difference between the two devices is 20 ppm, the range error calculated by the 

DS-TWR method is only 2.2 mm at a distance of 100 m [37].  

 

2.3 Positioning Algorithms 

This section introduces several positioning algorithms commonly used in 

indoor positioning, including triangulation based on the range principle, 

including TOA, TDOA, and AOA. And the fingerprint algorithm.  

 

2.3.1 TOA 

As illustrated in Figure 2.4, the TOA algorithm entails the tag communicating 

with multiple base stations and measuring the signal's TOF. At least three anchor 

ranges are required to determine the tag's position in a two-dimensional (2D) 

plane. However, an additional set of ranges is necessary to ascertain the vertical 

dimension or height of the tag. 
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Figure 2.4 TOA 

 

Equation 2.4 describes the relationship between the range, base station 

coordinates, and tag coordinates [39]. 

 

𝒅𝒊 = √(𝒙𝒊 − 𝒙)𝟐 + (𝒚𝒊 − 𝒚)𝟐 + (𝒛𝒊 − 𝒛)𝟐 + 𝜺 (𝟐. 𝟒) 

 

where 𝒙𝒊 = [𝒙𝒊, 𝒚𝒊, 𝒛𝒊]
𝑻  represents the known base station coordinates, 𝒅𝒊 

represents the corresponding range value, 𝒙 = [𝒙, 𝒚, 𝒛]𝑻 represents the tag 

coordinates to be calculated, and 𝜺 is the distance measurement error. 

 

In an ideal state where the ranging error is equal to zero, these circles will 

intersect at a point that is the exact position of the tag. However, in the real 

state, due to the presence of ranging error, these circles will intersect in a region 

[40, 41]. The algorithms used to find the most probable position of the tag from 

the intersecting region are least squares (LS), maximum likelihood (ML) and 

weighted linear least squares (WLLS). Krishnaveni et al. [42] pointed out that 

ML and WLLS are the two algorithms with higher localisation accuracy by 
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comparing experimental results. The TOA algorithm requires all tags and 

anchors to be time synchronised, which requires more costly hardware and 

higher energy consumption [43, 44]. 

 

2.3.2 TDOA 

TDOA calculates the target coordinates by using the time difference of the 

signal arriving at different receiving ends [45]. It is mainly based on the 

hyperbolic principle. The distance difference between the target and anchor 

points can be calculated by the time difference between the UWB signal 

reaching different anchor points. According to the distance difference, a 

hyperbola with these anchor points as the focus and the distance difference as 

the long axis can be drawn. When there are four known anchor points, three 

sets of hyperbola can be drawn, and the intersection of the three sets of 

hyperbola is the position of the target point. The principle of TDOA is shown in 

Figure 2.5 below. 

 
Figure 2.5 TDOA 

 

The UWB anchor coordinates are  Anchor 𝟏(𝒙𝟏, 𝒚𝟏) ,  Anchor 𝟐(𝒙𝟐, 𝒚𝟐) , 

 Anchor 𝟑(𝒙𝟑, 𝒚𝟑),  Anchor 𝟒(𝒙𝟒, 𝒚𝟒). t1, t2, t3, and t4, respectively, represent 

the time when the UWB signal sent by the tag reaches the four anchor points; 
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C represents the speed of light. The following three sets of equations can be 

obtained from the hyperbola properties. The coordinates of the target point 

(𝒙𝟎, 𝒚𝟎) can be calculated by the following equations. 

 

√(𝒙𝟎 − 𝒙𝟏)𝟐 + (𝒚𝟎 − 𝒚𝟏)𝟐 − √(𝒙𝟎 − 𝒙𝟒)𝟐 + (𝒚𝟎 − 𝒚𝟒)𝟐 = 𝑪(𝒕𝟏 − 𝒕𝟒)

√(𝒙𝟎 − 𝒙𝟐)𝟐 + (𝒚𝟎 − 𝒚𝟐)𝟐 − √(𝒙𝟎 − 𝒙𝟒)𝟐 + (𝒚𝟎 − 𝒚𝟒)𝟐 = 𝑪(𝒕𝟐 − 𝒕𝟒)

√(𝒙𝟎 − 𝒙𝟑)𝟐 + (𝒚𝟎 − 𝒚𝟑)𝟐 − √(𝒙𝟎 − 𝒙𝟒)𝟐 + (𝒚𝟎 − 𝒚𝟒)𝟐 = 𝑪(𝒕𝟑 − 𝒕𝟒)

(𝟐. 𝟓) 

 

The most significant advantage of TDOA is that there is no need for reciprocating 

communication between the tag and the anchor point. The tag only needs to 

transmit a UWB signal to each anchor point. In this way, the number of 

communications for one positioning is significantly reduced, and energy 

consumption is also reduced. Moreover, TOA requires synchronisation between 

the transmitter and receiver, whereas TDOA only requires synchronisation 

between the receivers, making TDOA easier to implement and more accurate [46]. 

 

2.3.3 AOA 

The core of the AOA system is the antenna array, which usually consists of two 

or more antenna arrays distributed at different locations. When applied to 

UWB IPS, the UWB signals from the tag to different anchor points will have 

different times or phases. These differences can be used to calculate the angle 

of arrival of the signal, and after obtaining multiple angles of arrival, the 

geometric relationship can be used to calculate the position of the tag. Figure 

2.6 shows a simplified AOA algorithm in 2D space. 
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Figure 2.6 AOA [47] 

 

In Equations 2.6 and 2.7, 𝝋𝑨 and 𝝋𝑩 are the calibration angles between the 

abscissa or horizontal axis, O (𝒙𝟎, 𝒚𝟎) is the calibration point, and A and B 

represent two fixed-position antennas. 

 

𝝋𝑨 = 𝐭𝐚𝐧−𝟏
𝒚𝑨 − 𝒚𝟎

𝒙𝑨 − 𝒙𝟎

(𝟐. 𝟔) 

𝝋𝑩 = 𝐭𝐚𝐧−𝟏
𝒚𝑩 − 𝒚𝟎

𝒙𝑩 − 𝒙𝟎

(𝟐. 𝟕) 

 

Each antenna array will provide the angle of arrival of the signal (𝜶𝑨 𝒂𝒏𝒅 𝜶𝑩), 

the tag coordinates can be calculated using Equation 2.8 [48]. 

 

[
𝒙𝒊

𝒚𝒊
] = [

𝐭𝐚𝐧(𝜶𝑨 + 𝝋𝑨) −𝟏

𝐭𝐚𝐧(𝜶𝑩 + 𝝋𝑩) −𝟏
]

−𝟏

[
𝒙𝑨 ⋅ 𝐭𝐚𝐧(𝜶𝑨 + 𝝋𝑨) − 𝒚𝑨

𝒙𝑩 ⋅ 𝐭𝐚𝐧(𝜶𝑩 + 𝝋𝑩) − 𝒚𝑩
] (𝟐. 𝟖) 

 

Establishing a positioning system using the AOA algorithm usually requires 

multiple antennas that can provide the signal's angle of arrival, increasing the 

hardware cost. Accurate antenna array calibration is important for an AOA 

system and requires regular maintenance, as minor timing differences can 

seriously affect positioning accuracy. Most importantly, in complex indoor 
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environments, NLOS and multipath effects can significantly impact the angle of 

arrival of the signals, resulting in large errors in positioning [49]. The 

experimental results of Xinning et al. [50] show that the root square error is still 

21cm with the proposed three-dimensional (3D) LS positioning technique. For 

some precise indoor positioning needs, this error is still unacceptable. 

 

2.4 NLOS Identification and Mitigation 

In UWB IPS, regardless of whether the positioning algorithms are based on 

ranging or the signal's angle of arrival, the error caused by NLOS is an 

important factor affecting positioning accuracy. The difficulty of the indoor 

environment is caused by the complexity of the objects in the positioning space, 

including fixed walls and movable people, tables, and chairs [51]. Moreover, the 

occlusion of the signal by these objects can lead to different degrees of error. In 

our experimental measurements, the NLOS caused by the human body usually 

increases the measurement distance by several tens of centimetres, while the 

error caused by a concrete wall or an iron gate can even exceed 1 m. The 

identification and mitigation of NLOS errors are essential for high-precision 

UWB IPS. 

 

Identifying NLOS errors and mitigating the effects of such errors are often two 

consecutive steps. The methods summarised in the literature can be broadly 

classified into three categories: channel impulse response (CIR), ranging, and 

other sensor-assisted approaches. 

 

The first method involves analysing the CIR of UWB signals. The principle of 

the technique is that NLOS conditions significantly change the characteristics 

of the CIR compared to LOS conditions. In LOS conditions, the energy of the 

first path is much larger than the delay path, but when NLOS is present and 
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most of the paths are delayed, this difference is reduced. NLOS and LOS 

scenarios can be distinguished by examining parameters such as amplitude, 

delay, and signal shape. Recent advances have seen the combination of various 

machine learning algorithms to improve the effectiveness of this approach. For 

example, as reviewed in the literature [52], deep learning techniques can 

recognise complex patterns indicative of NLOS conditions in CIR data. 

 

Similarly, K-nearest neighbours (KNNs), support vector machines (SVMs) [53], 
and imported vector machines (IVMs) [54] provide powerful frameworks for 

the classification of signal features to more accurately identify NLOS situations. 

However, these methods require a large workforce and time for feature 

extraction and parameter adjustment [55]. Moreover, CNN [52] is known for 

sophisticated proficiency in handling spatial data and does not need to 

manually extract and adjust the feature parameters [56, 57]. Literature [58] 

proposed an NLOS recognition method based on a multiple-input learning 

(MIL) neural network model. Through experiments, it is verified that the 

recognition accuracy of NLOS errors caused by five kinds of objects, including 

wooden doors, concrete walls, metal plates, the human body, and glass 

windows, is about 90%, while the positioning accuracy of 7.35cm is obtained by 

using the WLS method.  

The second method for identifying NLOS is based on distance measurement. 

Under NLOS conditions, the propagation path of UWB signals changes due to 

signal reflection and diffraction, resulting in an increased flight time and 

distance measurement. Effective identification of NLOS can be achieved by 

employing statistical techniques, such as outlier detection algorithms and 

probability models. For instance, Dwek [59] successfully selected distance 

measurements with less than 50cm error in 70% of cases using an outlier 

detection algorithm based on confidence intervals and threshold values. 
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Literature [60] proposed a methodology for NLOS identification by analysing 

the residuals of distance measurements and constructing a weighted matrix to 

enhance accuracy under NLOS conditions. 

Furthermore, advancements in artificial intelligence algorithms have 

facilitated the recognition of abnormal distance data. SVM, for example, can 

handle high-dimensional data and perform classification tasks effectively. SVM 

can be trained to extract features from distance data, such as signal strength, 

arrival time, and signal-to-noise ratio, to identify NLOS errors. Reference [61] 

achieved a 94% probability of correctly identifying NLOS using SVM while 

reducing distance measurement errors by 10%. In reference [62], a 

combination approach involving SVM and CNN analysis was employed to 

recognise and mitigate NLOS signals through parameter analysis, including 

distance measurements, noise levels, and measurement errors. CNN can 

continuously improve its detection capabilities through continuous learning in 

new NLOS scenarios, enhancing its classification accuracy and flexibility. 

 

The final approach involves utilising assisted sensors to identify and mitigate 

NLOS, leveraging the benefits of various sensing technologies to compensate 

for UWB system limitations in NLOS scenarios. IMUs, optical sensors, or 

LiDAR can provide a more comprehensive understanding of the surrounding 

environment and motion, enabling more accurate recognition of NLOS. Sensor 

fusion algorithms can integrate these different data sources to produce more 

precise position estimates and correct UWB measurement errors caused by 

NLOS. In reference [63], SVM analyses acceleration and velocity information 

from IMU and ranging information from UWB to detect NLOS, and improved 

EKF and LS algorithms achieve positioning accuracy up to 9 cm. Additionally, 

SLAM technology (especially optical or LIDAR data) enhances the system's 

real-time environment mapping. In reference [64], combining LIDAR-SLAM 

with UWB through tight coupling forms an IPS that identifies NLOS using point 
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cloud maps from LIDAR; then, the position is computed by a localisation model, 

achieving positioning accuracy as high as 0.094m while improving the 

robustness of the system. Multi-sensor fusion systems offer better accuracy and 

stability; fusing different kinds of sensors enables UWB to overcome challenges 

posed by NLOS for a versatile IPS. 

 

2.5 Multi-Sensor Fusion for UWB 

Each type of sensor possesses its inherent advantages and disadvantages, and the 

approach of multi-sensor fusion capitalises on the complementary strengths of 

diverse sensing technologies to establish a more robust positioning system. This 

section is divided into two parts: the first introduces some commonly employed 

sensors for forming a fusion system with UWB, and the second describes widely 

used sensor fusion algorithms. 

 

2.5.1 Sensors Fused with UWB 

IMU 

With the emergence of MEMS (micro-electromechanical system) technology, 

integrating mechanical components, sensors, and electronics on a single 

microchip has significantly reduced in size and weight. This miniaturisation, 

combined with streamlined manufacturing processes, has substantially 

decreased the cost of IMUs, enabling their utilisation in a broader range of 

applications. MEMS IMUs' compactness and ability to continuously provide 

carrier pose data have rendered them indispensable for indoor navigation 

systems, particularly in scenarios involving small carriers like robotic platforms, 

AGVs (automatic guided vehicles), and personal wearable devices. Both 

traditional and MEMS-based IMUs rely on the fundamental principle of 

combining orthogonally arranged accelerometers and gyroscopes. 

Accelerometers measure 3D linear acceleration, while gyroscopes track angular 
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velocity to offer information about carrier direction and speed. Although IMU 

boasts advantages, such as high sampling frequency and short-term positioning 

accuracy, it is prone to drift errors if left uncorrected over time, leading to 

degradation in positioning accuracy. 

 

Due to its self-sustained nature, the IMU is widely preferred as a complementary 

sensor in multi-sensor fusion systems. Consequently, numerous researchers have 

utilised IMUs and UWBs to establish an IPS. In reference [65], a complementary 

Kalman filter fusion method is proposed, which enhances positioning accuracy 

by adaptively adjusting the weights of measurements from UWBs, 

magnetometers, and accelerometers through adaptive algorithms. The 

experiments are conducted in both LOS and mild NLOS environments, 

demonstrating improved accuracy and trajectory smoothness. Following this 

algorithm, the residuals of the four UWB anchor points range between 10 to 20 

cm. Literature [66] presents an adaptive extended Kalman filter based on the 

dynamic weight function (DWF-MAEFF) strategy for fusing IMUs and UWBs to 

locate UGVs; experiments simulate NLOS conditions through occasional 

occlusion of UWB anchor points. Results indicate that although the accuracy is 

60% higher than that achieved with the adaptive extended Kalman filter approach, 

errors persist at approximately 15-20cm in both east and north directions. In 

reference [67], the error-state Kalman filter (ESKF) is employed to enhance the 

accuracy of an IMU/UWB IPS system within a real mine environment; 

positioning accuracy within 10cm is achieved despite slight NLOS interference. 

 

Odometer 

Common odometers include wheeled, inertial, visual, and laser odometers [68]. 

Wheeled odometers are extensively utilised in UGVs and small-wheeled robots. 

They consist of a code disc with evenly spaced cutouts flanked by optical and 

electrical signal sensors. The disc is coaxially mounted with the wheel and rotates 
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along with it, enabling the optical sensors to detect variations in light passing 

through the cutouts on the disc. These variations are then converted into 

electrical signals represented as pulses associated with wheel rotation [69, 70]. 

This mechanism facilitates precise tracking of the wheel's motion, which is crucial 

for accurate indoor navigation and localisation.  

 

Wheeled odometers have received limited attention from researchers compared 

to other methods due to hardware limitations and challenges, such as wheel 

slippage and surface texture variations, which can affect measurement accuracy. 

The literature proposes the dynamic window-based PF (DWBPF) algorithm [68] 

to mitigate cumulative error in odometers and the impact of NLOS on UWB, 

claiming a positioning accuracy of 0.06m. To address difficulties in identifying 

errors, like skidding in wheeled odometers, researchers often incorporate 

additional sensors, such as the fusion of three sensors: odometer, UWB, and IMU. 

Odometers offer more direct and prompt speed information compared to inertial 

measurement units (IMUs), reducing integration errors caused by IMUs. The 

fusion system achieves localisation accuracies of 0.13m and 0.26m in 3D space 

using TOA and AOA algorithms for UWB, respectively [71]. Another study 

employing these three sensors utilises an extended Kalman filter (EKF) for fusion, 

claiming a high accuracy with root mean square error (RMSE) equal to 3.29cm 

[72]. However, this accuracy is based on full LOS conditions for UWB mentioned 

in the literature; even when only UWB is present under similar circumstances, 

the accuracy achieves 4.66cm. 

 

Cameras 

Cameras for indoor positioning have attracted significant attention in recent 

years. Compared to conventional sensors, such as IMU and odometry, cameras 

provide a more comprehensive perception of the surrounding environment. 
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Various camera types, including monocular, stereo, RGB-D, and fisheye, are 

available based on precision and cost requirements [73].  

 

Visual SLAM maps the surrounding environment and locates the carrier using 

feature points, corners, or edges. However, it offers a lower sensor cost than 

LiDAR [74]. The camera provides the system with more detailed image 

information, which can be combined with artificial intelligence technology to 

recognise the surrounding environment better. CNNs [75-78] have demonstrated 

significant potential in enhancing the accuracy and reliability of feature point 

extraction. Moreover, R-CNNs or recurrent neural networks (RNNs) [79, 80] can 

better understand the surrounding scene, improving system localisation accuracy 

and enabling more reliable map optimisation during closed-loop detection. In 

visual odometry, RNNs, long and short-term memory (LSTM) networks, or 

transformer-based models can be effectively employed for modelling camera 

motion over time, resulting in more precise motion estimation [80, 81]. Deep 

learning models hold promise for facilitating semantic mapping creation by 

generating context-aware maps with richer information [82, 83]. 

 

IMUs are also usually needed when forming an IPS with a camera and a UWB. 

Reference [84] combines a monocular camera, six IMUs and only one uwb anchor 

to form an IPS by tight coupling, which has achieved 10 to 20 cm positioning 

accuracy in several experimental validations. The literature [85] uses a resilient 

tightly coupling approach combining three sensors: stereo camera, IMU, and 

UWB, and experimentally validates it in a flat and an office scenario, both of 

which achieve a positioning error of about 10 cm. The experiments show that the 

absolute position provided by the UWB is instrumental in vision system failures, 

closed-loop detection and suppression of drift errors. 

 

Wi-Fi and Bluetooth 
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Wi-Fi and Bluetooth are both RF-based positioning. Wi-Fi employs the IEEE 

802.11 wireless local area network standard for data transmission in indoor 

environments [86]. Wi-Fi operates in the 2.4GHz and 5GHz bands, each with 

distinct characteristics. Bluetooth technology was initially designed to enable 

personal local area networks with low power consumption and data 

communication rates [87] using the IEEE 802.15.1 standard, operating within the 

frequency range of 2.402GHz to 2.480GHz. Bluetooth low energy (BLE) 

possesses several advantages, such as low power consumption, cost-effectiveness, 

extended communication range, prolonged lifespan, compact size, and a 

simplified communication protocol [88], making it suitable for deployment in 

small-scale carriers. Additionally, Bluetooth supports mesh network topologies 

that facilitate collaboration among multiple devices to expand coverage, 

rendering it an ideal choice for large-scale implementation in extensive indoor 

environments [89]. 

 

There are also many research findings on using Wi-Fi or Bluetooth with UWB to 

form a fused positioning system. Reference [90] utilises the ML approach for 

fused positioning based on RSS features for both Wi-Fi and UWB, which has an 

RMSE of 94cm for positioning in realistic experiments. Reference [91] uses a 

fingerprinting algorithm, UWB and BLE integrated by EKF, to locate people in a 

real flat environment, with an average localisation error of around 0.6m. 

Literature [92] demonstrates a hybrid UWB and Wi-Fi positioning system, and 

four base stations are used in the experiment. Under the premise that the total 

number of base stations remains unchanged, the number of UWB base stations 

is gradually increased, and from the results of the comparison experiments, it can 

be seen that the system's positioning accuracy increases with the increase of the 

number of UWB base stations. So, in the LOS environment, UWB can help Wi-Fi 

or BLE IPS to improve the positioning accuracy, but if UWB is the subject of 

research, Wi-Fi and BLE will be counterproductive and reduce the accuracy. 
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2.5.2 Overview of Sensor Fusion Algorithms 

Due to different sensors' inherent strengths and weaknesses, relying solely on a 

single sensor to obtain accurate data is not recommended. Sensor fusion 

algorithms are commonly employed to overcome this limitation, and they will be 

introduced in this section. 

 

Kalman Filter (KF) 

The Kalman filter is a recursive algorithm that employs a state model to estimate 

the state of a linear system by manipulating input and measurement data. It 

effectively suppresses sensor noise for individual sensors and is a widely adopted 

approach for multi-sensor fusion.  

 

The KF only applies to linear systems, and the following two equations describe 

the system's process model and observation equation. 

𝑥𝑛 = 𝐹𝑥𝑛−1 + 𝐺𝑢𝑛−1 + 𝑤𝑛−1 (2.9) 

𝑧𝑘 = 𝐻𝑥𝑛 + 𝑣𝑛 (2.10) 

 

Figure 2.7 Kalman filter (KF) [93] 

 

The KF consists of two components comprising five fundamental equations. The 

first component is the time update equation, also called prediction, and the 
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second is the measurement update equation, also known as correction. Figure 2.7 

visually depicts this iterative process, wherein upon inputting the system's initial 

state, the KF estimates the subsequent moment. 

 

Extended Kalman Filter (EKF) 

The KF is restricted to linear systems; thus, its application to non-linear systems 

may yield scattered prediction results. However, object motion states are often 

described non-linearly in IPSs, necessitating a filter specifically designed for non-

linear systems. The EKF addresses this issue by linearising the non-linear system 

through a first-order Taylor expansion and iteratively updating predicted values 

using a predicted and correct approach similar to the KF. This process is 

illustrated in Figure 2.8. 

 

The following two equations can describe the state transition model and 

observation model for a non-linear system. 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘) + 𝒘𝑘 (2.11) 

 

𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 (2.12) 

 

Figure 2.8 EKF [94] 

 

While the EKF serves as a valuable tool for addressing non-linear systems, it is 

crucial to acknowledge that its utilisation entails linearisation errors arising from 
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neglecting higher-order terms in the Taylor expansion. In scenarios characterised 

by high nonlinearity, employing EKF may lead to imprecise state estimation and 

even divergence [95]. 

 

Unscented Kalman Filter (UKF) 

The UKF method uses an unscented transformation to represent the probability 

distribution of a non-linear system's state through a set of sigma points without 

linearising the system [96]. Compared to the EKF, the UKF is more accurate and 

robust in handling strongly non-linear systems [97]. The computation of the UKF 

can be described using the following equation. 

Step 1: Set the initial value of UKF: 

�̂�0 = 𝐸(𝑋0) (2.13) 

𝑃0 = 𝐸[(𝑋 − 𝑋0)(𝑋 − 𝑋0)𝑇] (2.14) 

The �̂�0 is the initial state estimation vector, 𝑃0 is the initial covariance matrix. 

Step 2: Calculate sigma points: 

𝑋𝑘
(0)

=  �̂�𝑘 (2.15) 

𝑋𝑘
(𝑖)

=  �̂�𝑘 + (−1)𝑖√(𝑛 + 𝜆)𝑃𝑘𝑖
 𝑓𝑜𝑟 𝑖 = 1,2, … ,2𝑛 (2.16) 

The corresponding weights are 

𝑊0
(𝑚)

=
𝜆

𝑛 + 𝜆
(2.17) 

𝑊0
(𝑐)

=
𝜆

𝑛 + 𝜆
+ (1 − 𝛼2 + 𝛽) (2.18) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
1

2(𝑛 + 𝜆)
 𝑓𝑜𝑟 𝑖 = 1, … ,2𝑛 (2.19) 

𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 (2.20) 

where n is the dimension of the state vector, and α and κ are used to adjust the 

distribution of sigma points. 

Step 3: Sigma point propagation: 

𝑋𝑘
(𝑖)

= 𝑓(𝑋𝑘−1
(𝑖)

, 𝑢𝑘) (2.21) 
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Sigma points spread through the state transition function 𝑓, 𝑢𝑘 is the control 

input. 

Step 4: Predictions: 

The predicted values of the state vector (�̂�𝑘
−) and covariance matrix (𝑃𝑘

−) can be 

calculated using sigma points: 

�̂�𝑘
− = ∑  

2𝑛

𝑖=0

𝑤𝑚
(𝑖)

𝑋𝑘
(𝑖) (2.22) 

𝑃𝑘
− = ∑  

2𝑛

𝑖=0

𝑤𝑐
(𝑖)

[𝑋𝑘
(𝑖)

− �̂�𝑘
−][𝑋𝑘

(𝑖)
− �̂�𝑘

−]
𝑇

+ 𝑄 (2.23) 

where 𝑤𝑚
(𝑖)

 represents the weight of the mean, 𝑤𝑐
(𝑖)

represents the weight of 

covariance, and 𝑄 is the covariance of process noise. 

Step 5: Update: 

• Sigma points propagate through observational models 

𝑍𝑘
(𝑖)

= ℎ(𝑋𝑘
(𝑖)

) (2.24) 

h is the observational model. 

• Calculate the prediction and covariance of the observations. 

�̂�𝑘 = ∑  

2𝑛

𝑖=0

𝑤𝑚
(𝑖)

𝑍𝑘
(𝑖) (2.25) 

𝑆𝑘 = ∑  

2𝑛

𝑖=0

𝑤𝑐
(𝑖)

[𝑍𝑘
(𝑖)

− �̂�𝑘][𝑍𝑘
(𝑖)

− �̂�𝑘]
𝑇

+ 𝑅 (2.26) 

R is the observed noise covariance. 

• Kalman gain 

𝐾𝑘 = 𝑃𝑥𝑦𝑆𝑘
−1 (2.27) 

𝑃𝑥𝑦 = ∑  

2𝑛

𝑖=0

𝑤𝑐
(𝑖)

[𝑋𝑘
(𝑖)

− �̂�𝑘
−][𝑍𝑘

(𝑖)
− �̂�𝑘]

𝑇
(2.28) 

• Update state vector and covariance. 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑦𝑘 − �̂�𝑘) (2.29) 

𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝑆𝑘𝐾𝑘

𝑇 (2.30) 
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Various studies have demonstrated that the UKF and EKF exhibit comparable 

performance in systems with weak nonlinearities [97, 98], and Alfonso et al. [99] 

claimed that in the case of solid nonlinearities, the estimates of the EKF and 

covariance are accurate to the first order. In contrast, the estimates of the UKF 

can reach the third order, and the covariance can be estimated to the second order. 

 

Particle Filter (PF) 

The PF is a recursive Bayesian filter that offers valuable assistance in the state 

estimation of non-linear or non-Gaussian systems. It effectively represents the 

probability density function of a system by employing a discrete set of particles, 

each encapsulating a hypothesis regarding the current system state and assigning 

distinct weights to reflect their correctness throughout the recursive process. 

These weights are updated via resampling, leading to an enhanced and more 

accurate state estimate. The specific algorithm employed is illustrated in Figure 

2.9 below. 

 

Figure 2.9 Particle filter (PF) [100] 
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While RF may be less computationally intensive than EKF and UKF [96], it still 

requires significant computational resources to maintain a large number of 

particles when dealing with high-dimensional systems. Additionally, the particle 

set may degrade over time, resulting in the loss of many particles with small 

weights and a subsequent decrease in estimation accuracy. 

 

2.6 Conclusion 

This part focuses on studying IPS with UWB as the main body, including the 

principle of UWB ranging, positioning algorithms, and the fusion trend with 

other sensors and algorithms. The following three main conclusions can be 

made based on reviewing the existing literature and comparing different 

technologies. Firstly, the accuracy of UWB is better than that of WIFI and BLE 

in RF-based positioning systems; secondly, IMU is still an indispensable 

component in many sensor fusion systems; and thirdly, AI is increasingly 

recognised for its powerful data processing capability in sensor fusion. Table 

2.1 below lists the technical details and positioning accuracy of UWB with 

different sensor fusion systems 

 

Table 2.1 Comparing different fusion solutions with UWB 

Reference Sensors Fusion 

Algorithm 

LOS 

Or NLOS 

Accuracy (cm) 

[65] IMU, UWB CKF Weak NLOS  UWB ranging: 10-20 

[101] IMU, UWB KF Hard NLOS  RMSE : 30–40 

[66] IMU, UWB DWF-

MAEFF 

Weak NLOS  East: 19.8 

North:.15.6 
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[102] IMU, UWB KF Weak NLOS  Average error: 

7.58 

[67] IMU, UWB ESKF Weak NLOS  <10 

[3] IMU, UWB Adaptive KF Weak NLOS  <10 

[103] IMU, UWB Cascaded KF Weak NLOS  < 13 

[104] IMU, UWB UKF LOS UWB only: 5 

UWB+IMU:1.5 

[63] IMU, UWB EKF Weak NLOS Mean error< 50 

[68] UWB,Odometer DWBPF Weak NLOS 6.1 

[105] UWB, IMU, 

LiDAR 

Error state 

KF (ESKF) 

Weak NLOS  RMSE 

X: 10 Y: 10 Z:30 

[71] IMU, UWB, 

Odometer 

ESKF LOS TOA: 13 

AOA: 26 

[72] IMU, UWB, 

Odometer 

EKF LOS RMSE:3.29 

[106] UWB, binocular 

VO  

KF LOS Mean error 

X: 39.93 

Y: 27.69 

[84] UWB, IMU, 

monocular 

Tightly 

coupling 

LOS 10-20 

[85] Stereo camera, 

IMU , UWB 

Resilient 

tightly 

coupling 

LOS Around 10 

[90] Wi-Fi, UWB ML Weak NLOS RMSE: 94 

[107] Wi-Fi, UWB None LOS Mean error: 109 
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[91] BLE, UWB EKF LOS Average error:60 

[108] UWB, INS, Map EKF Weak NLOS RMSE: 0.27m 

 

The table shows that the accuracy of UWB in LOS environments is mostly 

within 10 cm, but even slight NLOS can seriously degrade the positioning 

accuracy of UWB IPS. Moreover, most literature does not address UWB-only 

positioning systems in depth. Multi-sensor fusion is an effective method to 

improve the positioning accuracy of UWB IPS under NLOS conditions. 

Therefore, in this study, the UWB-only IPS is first thoroughly investigated so 

that the UWB system itself can provide more accurate positioning accuracy 

under severe NLOS conditions. Then, the robustness and accuracy of the 

system can be further improved through the fusion with wheeled odometers. 

This study aims for a low-cost centimetre-level IPS based on UWB in harsh 

NLOS environments. 
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3. Chapter 3 Improved UWB-Only 

System 

The main objective of the research in this chapter is to explore the problems and 

identify research directions for UWB-Only IPSs. The first part describes the 

algorithm for UWB NLOS identification via sliding windows and proposes a 

simple 2D NLOS error modelling algorithm for walls when the anchor point and 

tag are in the same plane. Based on the previous research, the tag is placed in a 

different plane from the anchor point to construct a complex 3D NLOS error 

model in the second part. That is more in line with practical use, and to further 

improve the positioning accuracy by proposing a weighted least-squares method 

that adjusts the weights of the measured values according to the angle of 

incidence of the UWB signals. The final section proposes a mobile anchor 

deployment scenario to explore ways to reduce hardware costs when deploying 

UWB IPS. 

 

3.1 NLOS Identification Algorithm by Sliding 

Window and an NLOS Mitigation Algorithm for 

A 2D Wall Error Model 

3.1.1 Introduction 

UWB is a new wireless communication technology that uses a narrow nanosecond 

pulse to transmit data. It has good anti-interference performance, high data 

transmission rate, low energy consumption, high positioning accuracy and 

multipath robustness [109]. Therefore, UWB is considered the most promising 

indoor positioning technology. Some major smartphone manufacturers, such as 

Apple and Samsung, have launched models supporting UWB positioning. It can 

be predicted that indoor positioning using UWB technology will be widely used 
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in wearable equipment, intelligent homes, extended reality and mobile robots 

[110]. At the same time, UWB's positioning also has a wide range of industrial 

applications, such as intelligent manufacturing and warehouse. A UWB IPS 

consists of fixed anchor points and mobile tags that need to be located.  

 

UWB positioning often uses TOA [111] or TDOA [112] algorithms, which have 

higher positioning accuracy than fingerprint positioning based on the received 

signal strength indicator (RSSI). However, those algorithms estimate a UWB tag's 

position by measuring the distance between the anchor points and the tag. The 

distance is measured by counting the time of UWB signal transmission. In the 

case of NLOS, the UWB signal can only reach a tag by penetrating obstacles or 

reflection, so compared to LOS, there is a transmission delay [113]. In indoor 

environments, obstacles such as walls and the human body often appear, leading 

to NLOS. If the distance error caused by NLOS is not corrected, the positioning 

accuracy of UWB in an indoor environment will be heavily degraded [51]. 

Therefore, identifying NLOS and reducing the ranging error caused by it is a 

major focus in UWB positioning research. 

 

Many researchers have proposed methods to identify NLOS and correct its errors. 

NLOS identification methods can be classified into three categories [51]. The first 

category is based on statistical channel characteristics. Jiang et al. [51] proposed 

an NLOS recognition algorithm that combines CNN and LSTM, which extracts 

channel impulse response features of UWB signals through CNN recognition and 

outputs them to LSTM for classification. The recognition accuracy of NLOS error 

can reach 81.56%. Cui et al. [114] proposed a method to identify NLOS based on 

Morlet wavelet transform and CNN. Its identification accuracy can reach 95% in 

different environments. Kai et al. [115] proposed a method that uses signal 

characteristic analysis for NLOS identification and fuzzy theory for error 

mitigation. It can reduce the measurements' RMSE from 0.77 to 0.33 meters. 
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The second category is based on the analysis of ranging measurements. The basic 

principle of this method is to analyse the ranging information in both LOS and 

NLOS and correct the meandering in the NLOS environment to improve 

positioning accuracy. For example, Dong [116] uses the Fresnel zone and simple 

prior knowledge to identify NLOS and has a recognition accuracy of 96.41%. 

However, there is still a critical problem with this method. When verifying 

whether the tag is in the NLOS environment through this method, the tag position 

must be in the first Fresnel zone of the two fixed anchors. This leads to a severe 

limitation of the range of the tag movement. Therefore, this method cannot be 

applied to most indoor positioning scenarios.  

 

The third category is to identify NLOS by combining other measurement data. 

For example, Tiwari et al. [117] and Zuo et al. [118] proposed successfully 

identifying LOS/NLOS paths by combining RSS and TOA with an accuracy of 

NLOS determination of over 75%. 

 

A new method to identify NLOS in UWB indoor positioning, based on analysing 

the variance of distance variation at two adjacent moments, is proposed here. The 

UWB ranging variations from a tag to the same anchor at two adjacent moments 

should be similar when the tag moves smoothly. However, due to NLOS delay, 

the distance measurement has a sharp jump from LOS to NLOS and a sharp drop 

from NLOS to LOS. The variance of the distance difference can be used to detect 

whether a ranging measurement contains NLOS error.  

 

After identifying which measurements have NLOS errors, there are a few ways to 

process these measurements. If an NLOS delay estimation model is available to 

correct the error, the corrected measurements can be used for UWB indoor 

positioning. If there is no proper delay estimation model to correct the NLOS 
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errors, the NLOS measurements’ weight is lighter than the LOS measurements 

during the position calculation. The results of UWB indoor positioning tests show 

that the proposed method can effectively identify and mitigate NLOS errors and 

dramatically improve UWB positioning accuracy in instances involving NLOS. 

 

The rest of this section is structured as follows. The second section introduces the 

proposed method to identify NLOS. The third section discusses the NLOS delay 

correcting model for walls. The fourth section shows the indoor positioning 

results with corrected NLOS measurements. The last section offers a conclusion 

and briefly considers potential future research. 

 

3.1.2 Proposed Method for NLOS Identification 

 

The Method to Identify NLOS 

The principle of the proposed method to identify NLOS is based on the fact that 

when there is a switch between NLOS and LOS cases for a tag and an anchor point, 

the ranging measurement of this anchor point will change abruptly.  

 

Figure 3.1 NLOS error caused by the human body 

A preliminary verification test is shown in Figure 3.1. The left figure shows the 

experimental scene setting. The red dot in the figure is the position of the fixed 

anchor point, and the black dots are the mobile tag’s positions. In the test, a tag 
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moves in a circle at a constant speed from position 1 to 3 and then back to position 

1 from 3. A human body blocks the signal when the tag passes through position 2, 

and NLOS occurs. The distance measurements are shown in the right figure. The 

X-axis represents time, and the Y-axis represents the distance measurements 

between the tag and the anchor. The distance measurement suddenly changed 

when the tag was in position 2, which is NLOS. The NLOS error caused by the 

human body is about 20cm.  

 

The proposed NLOS identification method is designed as Algorithm 1.  

The distance between the tag and anchor measured at the moment n is 𝑑𝑛, and 

at the previous moment is 𝑑𝑛−1 . Then, the distance change in the adjacent 

sampling times is shown in Equation 3.1. 

Δ𝑑𝑛 = |𝑑𝑛 − 𝑑𝑛−1| ⋯ (n ⋅=⋅ 2,3 … ) (3.1) 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑉𝑎𝑟(∆𝑑𝑛(𝐿𝑂𝑆)) (3.2) 

Var(Δ𝑑𝑛) {
⋯ >  threshold ⋯ →  NLOS 

≤  threshold →  LOS 
(3.3) 

AGVs operating in an indoor environment have a consistent moving speed of 

around 1m/s during operation. When an AGV moves in the LOS environment, a 
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UWB tag continuously measures the distance to anchor points, the distance 

variation. ∆𝑑𝑛 is small and relatively stable. But when NLOS occurs, ∆𝑑𝑛 will 

shake violently. Based on these characteristics, a method to identify NLOS errors 

is designed, as shown in Equations 3.1 to 3.3. Using the variance of ∆𝑑𝑛 in the 

LOS as the threshold when the variance of ∆𝑑𝑛  in real-time measurement 

exceeds this threshold, NLOS occurs. This method is simple but can accurately 

identify whether a ranging data contains NLOS error. 

 

Experimental design 

Figure 3.2 shows the UWB module used in our experiment, which uses the 

DW1000 UWB chip. The UWB sampling rate is 3Hz, and its average positioning 

error is less than 10cm in an LOS environment. The experimental scene and the 

floor plan are shown in Figure 3.3. Two experiments were conducted. The first 

experiment used three fixed anchor points, and the second experiment used four 

fixed anchor points. 

 

According to the algorithm proposed in the previous section, a segment of Tag's 

LOS data in the experimental environment will be collected first to calculate the 

threshold value. In further experiments, Tag will move according to a certain path, 

and from the map, it can be seen that multiple walls in the experimental 

environment will block the communication between Tag and different anchors. 

In this process, the NLOS/LOS status of different anchors is unknown, and 

according to the algorithm in the previous section, the variance of the difference 

between the ranging values of all the anchors is continuously monitored, and 

when there is an outlier larger than the threshold, it can be assumed that this 

outlier contains the NLOS error.  
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Figure 3.2 UWB module 

 

Figure 3.3 The experiment site and ichnography 

 

Experiment 1 

Figure 3.4 shows the anchor's setting, the tag’s real trajectory and measured 

position, and the NLOS appearance of each anchor. Yellow squares represent the 

three anchor points. The UWB tag moves from Area 3 along the red track and 

passes through Areas 1 and 4 to the endpoint in Area 5. The purple trajectory is 

calculated using the TOA algorithm and the distance measurements to the three 

anchor points. It is observed that within Area 3, all Anchor 2 ranging 

measurements and most Anchor 0 ranging measurements contain NLOS errors. 

In Area 1, all anchors are in a LOS environment. After entering Area 4, Anchors 

0 and 1 are still in the LOS environment, but Anchor 2 has NLOS errors. When in 

Area 5, all three anchor points are NLOS. From the purple trajectory, it can be 
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found that the NLOS error dramatically influences the accuracy of the UWB 

positioning. 

 

The NLOS identification method proposed in this chapter can accurately identify 

which data of the three anchor points have NLOS errors. Figure 3.4 a) – c) shows 

the positioning corresponding to the three anchor points affected by NLOS. The 

blue dot indicates that the ranging measurement of the current position is 

affected by NLOS. 

 

a) Anchor 0 NLOS 
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b) Anchor 1 NLOS 

 

 

c) Anchor 2 NLOS 

Figure 3.4 Tag position with NLOS (Experiment 1) 

 

In the experimental environment, the NLOS identification rate is shown in Table 

3.1. In this experimental environment, the identification of NLOS error is 
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accurate. The accuracy of Anchor 1 and Anchor 2 is greater than 95%, and the 

accuracy of Anchor 0 is close to 90% 

Table 3.1 The success rate of NLOS identifications (Test 1) 

Anchor 0 1 2 

Identification rate 89.41% 100% 95.29% 

 

Experiment 2 

Experiment 2 uses four fixed anchor points, making the tag’s trajectory more 

complex. It is designed to verify further the applicability of the method proposed 

in this part. 

 

 

a) Anchor 0 NLOS 
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b) Anchor 1 NLOS 

 

c) Anchor 2 NLOS 
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d) Anchor 3 NLOS 

Figure 3.5 Tag position with NLOS (Experiment 2) 

 

As shown in Figure 3.5, Anchor 3 is added in this experiment. The red dash line 

shows the actual trajectory of the mobile UWB tag. The tag starts from Area 2, 

passes through Area 1 to the marked point of Area 3, then starts from the marked 

point of Area 3 and follows the red trajectory through Areas 1, 4 and 5 to reach 

the endpoint in Area 6. The purple trajectory is calculated based on the ranging 

measurement of the anchor point without NLOS correction.  

 

There are at least three anchor points in the LOS situation in Area 1, and the UWB 

positioning accuracy is very high. In other areas, at least two anchor points have 

NLOS, and the positioning accuracy without NLOS error correction is much 

worse than LOS in Area 1. In Area 6, all four anchor points are in an NLOS state, 

and only the signal from Anchor 3 penetrating one wall has a ranging 

measurement. Multiple walls block the UWB signals from the other three anchor 
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points, and the tag-received signals are too weak to measure the distances. 

Therefore, the tag's position cannot be obtained in Area 6. 

 

Like Experiment 1, the test data is processed to identify if the distance 

measurements contain NLOS errors. Figure 3.5 a) to d) shows the calculated 

locations where the ranging measurement of the four anchor points are affected 

by NLOS. A few positions have unexpected or undetected NLOS, possibly due to 

undesired settings in the experiment. In the current Experiment 2 environment, 

the NLOS identification success rate is shown in Table 3.2. 

 

Table 3.2 The success rate of NLOS identifications (Test 2) 

Anchor 0 1 2 3 

Identification rate 91.22% 95.27% 89.19% 85.46% 

 

As can be seen from Table 3.2, the UWB tag’s trajectory becomes more complex 

and covers more areas. The success rate of NLOS identification in Experiment 2 

is slightly lower than in Experiment 1. Nevertheless, most NLOS cases can be 

correctly identified, with the overall success rate around 90%. Unexpected factors 

in the experiment caused some incorrect identification cases. 

 

3.1.3 NLOS Error Correction Model 

Geometric Model of UWB Signal Through a Wall 

In UWB indoor positioning, NLOS is mainly caused by the occlusion of walls. A 

geometric model can estimate the UWB signal transmission delay caused by 

passing through walls, dramatically reducing positioning errors in the NLOS 

environment. The specific model is shown in Figure 3.6. A is a fixed anchor point, 

B is the tag position, and the grey area represents the wall causing NLOS. ACDB 

is the actual path of the signal from A to B. 
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Figure 3.6 Geometric model of UWB signal passing through a wall. 

 

𝑑𝑟𝑒𝑎𝑙 = 𝑑𝐴𝐶 + 𝑑𝐶𝐷 + 𝑑𝐷𝐵 (3.4) 

where 𝑑𝑟𝑒𝑎𝑙 represents the actual distance the signal travels, 

𝑑𝐴𝐶 + 𝑑𝐷𝐵 =
𝛥𝑦 − 𝑑𝑤𝑎𝑙𝑙  

𝑐𝑜𝑠𝜃1

(3.5) 

𝛥𝑦 =  𝑑𝐴𝐵 ∗  𝑐𝑜𝑠𝜃 (3.6) 

where 𝑑𝑤𝑎𝑙𝑙 represent the wall thickness, 𝜃1 is the incline angle of the signal to 

the wall, 𝜃2 is the angle of emergence, 𝛥𝑦 is the distance difference along the Y-

axis between points A and B, 𝜃 is the complementary angle between the line AB 

and the wall, and 𝑑𝐴𝐵 is the actual distance between A and B. 

𝑑𝐶𝐷 =  
𝑑𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃2

(3.7) 

Because of the permittivity of the wall 𝜀𝑤𝑎𝑙𝑙 is different from the air, the signal 

travels in the wall slower than in the air, resulting in additional time delay. The 

measured CD distance in practice should be the time of flight through the wall 

𝑡𝑤𝑎𝑙𝑙 multiplied by the speed of light 𝑐, as calculated in the following formula. 
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𝑑𝐶𝐷 = 𝑡𝑤𝑎𝑙𝑙 ∗ 𝑐 =  
𝑑𝑤𝑎𝑙𝑙 ∗ √𝜀𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃2

(3.8) 

So, the ranging delay is: 

𝑑𝑒𝑙𝑎𝑦 =  𝑑𝑟𝑒𝑎𝑙 − 𝑑𝐴𝐵 (3.9) 

𝑑𝑒𝑙𝑎𝑦 = 𝑑𝐴𝐵 (
𝑐𝑜𝑠𝜃

𝑐𝑜𝑠𝜃1
− 1) + 𝑑𝑤𝑎𝑙𝑙 (

√𝜀𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃2
−  

1

𝑐𝑜𝑠𝜃1
) (3.10) 

where 𝑠𝑖𝑛𝜃2/𝑠𝑖𝑛𝜃1 =  √𝜀𝑤𝑎𝑙𝑙 as the Snell's Law. 

Equation 3.10 has two key elements: 𝑒1 = 𝑑𝐴𝐵(𝑐𝑜𝑠𝜃/𝑐𝑜𝑠𝜃1 − 1)  and 𝑒2 =

𝑑𝑤𝑎𝑙𝑙 (
√𝜀𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃2
− 1/𝑐𝑜𝑠𝜃1). In general, 𝑑𝑤𝑎𝑙𝑙 ≪ 𝑑𝐴𝐵 and 𝜃1 ≈ 𝜃, so 𝑒1 is too small 

to affect NLOS delay. Therefore 𝑒2 is the main factor affecting the NLOS delay. 

Then, the ranging delay can be approximately expressed by the following 

equation, Equation 3.11. 

𝐷𝑒𝑙𝑎𝑦 ≈ 𝑑𝑤𝑎𝑙𝑙 (
𝜀𝑤𝑎𝑙𝑙

3
2

√𝜀𝑤𝑎𝑙𝑙 − 1 + 𝑐𝑜𝑠2𝜃1

−
1

𝑐𝑜𝑠𝜃1
) (3.11) 

According to Equation 3.11, the transmission delay is affected by the thickness 

and material of the wall and the incline angle. Therefore, an empirical model can 

be established for the wall-caused transmission delay. 

𝐷𝑒𝑙𝑎𝑦 = 𝐾1 ∗
𝑑𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃1
+ 𝐾2 (3.12) 

K1 and K2 can be determined by conducting a test for a wall, as shown in Tables 

3.3 and 3.4, by measuring the actual and UWB measured distances at different 

incline angles.  

 

The wall thickness between Areas 2 and 3 is 26 cm, and between Areas 5 and 1 is 

16 cm. The fitting equation for K1 and K2 was calculated based on UWB-

measured distances through a wall with NLOS delay, the real distance and the 

incline angle measurements are shown in Tables 3.3 and 3.4. The coefficients K1 

and K2 for each wall are then fit into (15) to calculate the NLOS delay of each wall 

at different angles. 
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Table 3.3 Data for fitting equation (D_wall = 26cm) 

d-uwb (m) d-real (m) Delay (m) θ (°) Modelling 

Delay(m) 

Difference 

(m) 

1.965 1.788 0.177 0° 0.352 0.175 

1.545 1.322 0.223 8.52° 0.355 0.132 

2.21 1.716 0.494 30° 0.384 0.110 

3.378 3.042 0.336 54° 0.497 0.161 

3.65 2.972 0.678 60° 0.559 0.119 

7.18 5.983 1.197 70.16° 0.754 0.443 

 

Table 3.4 Data for fitting equation (D_wall = 16cm) 

d-uwb (m) d-real (m) Delay (m) θ (°) Modelling 

Delay(m) 

Difference 

(m) 

3.87 3.587 0.283 13.37° 0.213 0.060 

4.01 3.823 0.187 31.1° 0.225 0.038 

3.67 3.526 0.144 42.2° 0.240 0.096 

4.34 3.99 0.35 57.01° 0.280 0.069 

5.07 4.748 0.322 61.57° 0.303 0.019 

5.07 4.419 0.651 80.597° 0.577 0.074 

 

The K1 and K2 obtained from Tables 3.3 and 3.4 for the 26cm wall are K1= 0.7943 

and K2 = 0.1459; for the 16cm wall, K1= 0.5934 and K2 = 0.128. These 

parameters can be applied in Equation 3.12 to calculate NLOS delay. The 

difference between the modelling delay and the actual delay is shown in the last 

column of Tables 3.3 and 3.4. It can be seen that only one data set has a large 

difference (0.443m), which may be due to unexpected factors; the rest of the 

difference is about 10cm. The results show that model Equation 3.12 can 

effectively predict the transmission delay of walls. 
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For a mobile UWB tag, the incline angle at a particular moment is calculated 

according to the tag position at the last moment and the motion state using 

Equation 3.13. 

𝜃1𝑛 =  𝑡𝑎𝑛−1 (
𝑎𝑏𝑠(𝑦𝑛−1 + 𝑣𝑦 ∗ ∆𝑡 − 𝑋𝑁)

𝑎𝑏𝑠(𝑥𝑛−1 + 𝑣𝑥 ∗ ∆𝑡 − 𝑌𝑁)
) (3.13) 

where (𝑥𝑛−1, 𝑦𝑛−1) are the coordinates of the tag at time n-1, (𝑋𝑁, 𝑌𝑁 ) are the 

coordinates of the anchor N, ∆t is the sampling time, and 𝑣𝑥 ,𝑣𝑦  are the tag's 

velocity components along the X and Y axes during the sampling time.  

If the ranging measurement of an anchor has NLOS delay, it can be corrected 

according to Equation 3.14. 

𝑑𝑟𝑒𝑎𝑙 = 𝑑𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑑𝑒𝑙𝑎𝑦 (3.14) 

This error modelling algorithm simplifies the NLOS error caused by a wall to be 

calculated by four quantities: K1, K2, wall thickness, and the angle of incidence of 

the signal. Although the algorithm needs to calculate two coefficients (K1, K2) for 

different obstructions, it is not very computationally intensive for relatively fixed 

indoor environments. Moreover, this algorithm proposes a general error model 

that can be generalized to the NLOS errors caused by different types of 

obstructions. The following sections' experiments verify whether this model can 

accurately calculate the NLOS error and improve the localisation accuracy under 

different wall thicknesses and incidence angles in a continuously changing 

movement process. Algorithm 2 demonstrates the proposed NLOS error 

correction model. 
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3.1.4 Position Experiment Result 

Experiment 1 

Figure 3.7 shows the positioning results in experiment 1. The green trajectory in 

the figure is calculated using the NLOS correction data. The golden dots in the 

trajectory before correction and the golden lines in the real trajectory represent 

one NLOS at these positions, orange for two, and red for three NLOS. The 

positioning results before and after the correction are shown in Table 3.5. The 

data in Area 1 has three anchor points in the LOS environment as the control 

group. 
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Figure 3.7 Tag position with correction (Experiment 1) 

 

Table 3.5 Positioning analysis (Experiment 1) 

Positioning 

Error (m) 

Area 1  Area 3 (2 NLOS) Area 5 (3 NLOS) 

LOS Before  After  Before  After  

Max (m) 0.235 2.541 0.338 1.694 0.300 

Min (m) 0.007 0.518 0.004 0.144 0.009 

Average (m) 0.060 1.701 0.122 0.653 0.118 

RMSE (m) 0.080 1.759 0.157 0.824 0.156 

 

Test results in Table 3.5 show that the accuracy of the UWB IPS in the LOS 

environment is relatively high. The average error is only 0.06m, with a RMSE of 

0.08m. As a comparison, in the NLOS environment in Area 3 with 2 NLOS 

anchors, the average error before the correction reaches 1.7m, with an RMSE of 

1.759m. After the correction, the average error is reduced to 0.122m and RMSE 

to 0.157m. A similar result is presented for Area 5 with 3 NLOS anchors, with 

dramatic positioning improvement after the proposed NLOS error correction. 

These results show that NLOS error can cause a large error for the UWB indoor 
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positioning. The proposed NLOS error correction method can significantly 

reduce the error in the NLOS environment. Its positioning accuracy is close to 

that in the LOS environment. 

 

Experiment 2 

 

Figure 3.8 Tag position with correction (Experiment 2) 

 

Figure 3.8 shows UWB positioning results for Experiment 2. The green trajectory 

is the calculated position using the measurements after the correction. The 

trajectory is much more accurate than the one before the correction, specifically 

in the NLOS areas. The yellow line for the actual tag trajectory means that one 

anchor point is affected by NLOS, the orange line for two NLOS anchor points, 

and the red line means all anchor points are in the NLOS environment. The cyan 

triangle in Area 6 indicates insufficient ranging information available for the 

position calculation. Table 3.6 shows the positioning results of experiment 2. 
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Table 3.6 Positioning analysis (Experiment 2) 

Positioning 

Error 

 Area 1 

(3 LOS)  

Area 2 

(2 NLOS) 

Area 3  

(2 NLOS) 

Area 5  

(4 NLOS) 

 Before After Before After Before After 

Max (m) 0.177 0.606 0.133 4.513 0.247 1.302 0.454 

Min (m) 0.002 0.009 0.102 0.016 0.003 0.002 0.003 

Average (m) 0.063 0.232 0.082 1.780 0.080 0.443 0.142 

RMSE (m) 0.081 0.299 0.090 2.173 0.111 0.578 0.181 

 

The UWB IPS can provide accurate and stable location information of the moving 

tag in the LOS environment, with an average error of 0.063m. However, the 

positioning accuracy in the NLOS environment is inferior before correction. The 

most significant average positioning error is in Area 3 at 1.78m due to a large 

incline angle of the wall, causing a large NLOS delay. In Areas 2 and 5, the NLOS 

delay is relatively small due to small incline angles. The positioning accuracy after 

the delay correction has been dramatically improved. The average positioning 

errors in the three NLOS areas are 0.082m, 0.08m, and 0.14m, respectively. 

Moreover, the corresponding RMSEs are 0.09m, 0.111m, and 0.181m, 

respectively. 

 

It can be concluded that the accuracy of UWB positioning after NLOS error 

correction is close to the accuracy of positioning in the LOS environment. The 

proposed method can accurately identify NLOS errors and mitigate them by 

applying a correction model for wall-caused NLOS delays. 

 

A problem is shown in Figure 3.8. When the tag moves to Area 6, the UWB system 

can no longer obtain the location information of the tag, so the tag trajectory in 

Area 6 is missing, as indicated by the blue triangle trace in Figure 3.8. This 
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problem occurs when the tag is in Area 6, apart from the UWB signal of Anchor 

3, which reaches the tag through one wall. The signals of the other anchors, 

Anchor 0, 1, and 2, must pass through at least two walls to reach the tag. After the 

actual measurement, anchors 0, 1, and 2 could not obtain the ranging information 

of the tag, so only the ranging information of Anchor 3 could be used to calculate 

the position information of the tag through the TOA algorithm. 

 

3.1.5 Conclusion and Future Work 

The NLOS identification uses the variance of the difference between the tags 

ranging from the adjacent sampling times. The transmission delay correction for 

walls in the NLOS environment uses the geometric signal propagation model. The 

performance of the proposed method for NLOS identification and correction is 

evaluated using two experiments. Results of the experiments show that the 

method can effectively identify NLOS and dramatically improve UWB positioning 

accuracy in an NLOS environment. The accuracy of NLOS identification can 

reach more than 90%. For NLOS caused by walls, the proposed correction model 

can correct the UWB signal transmission delay. Test results show that the UWB 

positioning accuracy with the correction in the NLOS environment is close to the 

accuracy in the LOS environment. The proposed method can effectively improve 

UWB positioning accuracy in an NLOS environment. 

 

Our experiments found a few potential ways to improve UWB positioning 

accuracy in a complex indoor environment with NLOS. Other objects than walls 

cause some NLOS, and their transmission delay correction model can be 

investigated. Their precision is lower for UWB measurements with NLOS errors 

than LOS. The position calculation with both LOS and NLOS measurements 

should count the precision difference between LOS and NLOS measurements. 

However, the UWB tag cannot get enough ranging measurements for its position 

in some locations. UWB needs to be combined with other positioning 
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technologies, such as odometer or IMU, to make indoor positioning more robust 

and reliable 

 

3.2 3D NLOS error model and Weighted Least-

Squares method 

 

3.2.1 Introduction 

Due to its properties, UWB is a feasible localisation and target-tracking 

technology. For instance, the UWB uses an extensive baseband to communicate 

between tags and anchors. The baseband pulse duration is nanoseconds, so the 

UWB has a high time resolution to tackle the problem of multipath and through-

wall propagation [118]. UWB has the same virtues of low power consumption and 

hardware costs as Bluetooth and Wi-Fi but with greater accuracy.  

 

TOA [119, 120], TDOA [121], AOA [120], and TWR [122] are the commonly used 

algorithms for UWB IPSs. The range measurements are derived from the signal’s 

TOF between fixed anchors and mobile tags. So, any factors that affect the TOF 

measurement will impact the accuracy of the measured distance and the position, 

such as multipath, NLOS, rugged to synchronise between tags and anchors, and 

interference by other radio waves [123]. The range error caused by NLOS appears 

when the direct path of the signal between tags and anchors is blocked, and the 

measured TOF includes the extra time delay. The range error of NLOS is always 

an enlargement and can reach a few meters, which is the most significant factor 

harming the accuracy of UWB IPS. In addition, NLOS is unavoidable in real 

scenarios, so the reduction of NLOS error is of great importance. 

 

Improving the performance of UWB IPS in the NLOS environment can be done 

in two steps: identification and mitigation. Many approaches have been proposed 
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to identify the NLOS and mitigate its error, which can be grouped into three 

categories which include analysing channel characteristics[124], using external 

constraints and a range error model to identify and mitigate NLOS errors and 

enhancing accuracy with auxiliary sensors like IMU [125], V-SLAM [126], and 

Lidar SLAM [64].  

 

All the methodologies above have some inherent problems. For the first category, 

simulation results in [52] show the accuracy of identifying NLOS by different ML 

methods: 86.94% for CNN, 78.51% for stacked long short-term memory (stacked-

LSTM), and 84% for combined CNN and LSTM. Some machine learning methods 

claim they can reach 90% accuracy, which positively correlates with the amount 

of the database. To get the above result in [52], analysing 126,000 channel 

impulse responses cost CNN 21.84s, stacked-LSTM over 200s and CNN+ LSTM 

over 15s. Due to the large amount of data and the high time cost, those methods 

are hard to apply to real-time locations and require fast reaction time. The second 

category has a better response time but still has some limitations. The experiment 

results in [116] show that over 90% of NLOS cases can be recognised by the 

Fresnel zone and threshold from prior knowledge. Still, the Fresnel zone has strict 

restrictions on the application that cannot be widely used in real scenarios. A 

consensus is that multisensor fusion can improve IPSs’ accuracy, availability, and 

reliability [127], which will be the future research plan for this project. 

 

The following sections propose a novel, succinct method to identify and mitigate 

the NLOS error in real-time. The identification step is based on the principle that 

the measured distance changes rapidly when a switch between NLOS and LOS 

happens for a moving tag. The variance of the difference of ranges observed from 

the same anchor between two adjacent time slots is relatively constant in LOS, 

and it will bump up when a range contains an NLOS error. By this method, NLOS 

can be distinguished. For NLOS error mitigation, a delay model to correct the 
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NLOS range error caused by a wall is proposed, which includes the factors of 

incident angle, wall thickness, and material used to calculate the delay. The delay 

model is derived from a significant amount of experimental data. The corrected 

range data by this model is then used to compute the coordinates of the mobile 

tag using OLS and WLS. Figure 3.9 shows a flowchart of the proposed method. 

 

 

Figure 3.9 Flowchart for the proposed method 

 

This flowchart illustrates the strategy proposed in this chapter to deal with NLOS. 

The first step is setting a threshold from prior experience to estimate whether 

NLOS occurs. If no measurement is affected by NLOS, the tag’s position can be 

computed directly using the OLS range measurements. If UWB IPS has more 

than three fixed anchors, even if NLOS happens for some anchors, the OLS 

algorithm can still accurately position the tag when at least three anchors are in 

LOS. If the system cannot receive enough LOS range measurements, the delay 

estimation model will process the NLOS data. The delay model will correct those 

NOLS errors and estimate the uncertainty of the corrected ranges. Then, WLS is 

applied to calculate the position of the UWB tags.  
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The rest of this section is organised as follows. Section 2 presents the algorithms 

used in this part, including the sliding window method to identify NLOS, the 

delay model, and position algorithms. Section 3 gives the experiment design and 

results, which verify to what degree the delay model and WLS can improve the 

position accuracy. Section 4 discusses the limitation of IPS with only UWB and 

the future research plan. The last section offers a conclusion. 

 

3.2.2 Algorithms and Modeling 

 

OLS 

OLS is the most common approach for mathematical optimisation. The core of 

this algorithm is minimising the residual to realise the optimal solution. 

Algorithm 3 demonstrates the OLS method. 

 

Equation 3.15 describes the relationship between the anchors and tag coordinates 

and the distance between them when using the matrix.  
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[
−2𝑥1 −2𝑦1 1

⋯ ⋯ ⋯
−2𝑥𝑛 −2𝑦𝑛 1

] [
𝑥
𝑦
𝑟

] = [
𝑑1

2 − 𝑟1

⋯
𝑑𝑛

2 − 𝑟𝑛

] (3.15) 

(𝑥𝑛, 𝑦𝑛) 𝑛 = 1,2,3 … 𝑛 are the coordinates of the corresponding anchor points. 

𝑑1, 𝑑2, 𝑑3  represent the respective range measurements between the 

corresponding anchor points and the tag. The coordinate of the tag is (x,y) 

𝑟 = 𝑥2 + 𝑦2 (3.16) 

𝐴𝑋 = 𝐵 (3.17) 

The tag coordinates can be obtained by the LS method: 

𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐵 (3.18) 

The OLS algorithm treats all measurement values equally and can perform well 

in LOS environments due to the nearly identical noise level. The measurement 

noise in NLOS environments will interfere with the range value. Thus, the OLS 

may not perform well in NLOS. Contrapose that phenomenon, the WLS 

algorithm may be more suitable for UWB IPSs in NLOS environments. 

 

WLS 

This part uses WLS to calculate the tag’s coordinate for further improvement in 

the NLOS scene. In the NLOS environment, the range value may contain a very 

high measurement error that cannot be directly used for position. Giving 

corresponding weight to different anchors’ range values can improve the position 

accuracy. The method of determining the weights for each measurement will be 

explained in detail in Section 3.3.4. 

 

The weight matrix for the measured ranges from anchors can be represented by 

Equation 3.19. 

𝑊 = 𝑑𝑖𝑎𝑔[𝑊1, 𝑊2, 𝑊3 … 𝑊𝑛] (3.19) 

Based on the OLS, the partial derivative equation of WLS is 

𝜕𝑒2

𝜕𝑋
W = 2𝐴𝑇𝑊𝐴𝑋 − 2𝐴𝑇𝑊𝐵 = 0 (3.20) 

The following equation calculates the tag’s coordinates: 
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𝑋 = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊𝐵 (3.21) 

The premise of applying the WLS algorithm is to identify the NLOS accurately 

because the weights for range values in LOS and NLOS are significantly different. 

 

Method to Identify NLOS 

The proposed method to identify NLOS is based on the variance of the difference 

in measured distance between two adjacent sample times. The measured distance 

between anchor and tag at the time n can be modelled as �̂�𝑛 which is equal to the 

actual distance (𝑑𝑛) plus measurement noise (ε) in the LOS environment. The 

measured distance in NLOS ( �̂�𝑛 ) is equal to the actual distance ( 𝑑𝑛 ) plus 

measurement noise (ε) superadd delay caused by NLOS (𝜀𝑁𝐿𝑂𝑆). So, the difference 

in measured distance between two adjacent time slots can be computed as 

∆�̂�𝑛 = |�̂�𝑛 − �̂�𝑛−1| = {
𝑑𝑛 −  𝑑𝑛−1                 𝐿𝑂𝑆 (𝑛 − 1) → 𝐿𝑂𝑆 (𝑛)

𝑑𝑛 − 𝑑𝑛−1 + 𝜀𝑁𝐿𝑂𝑆      𝐿𝑂𝑆(𝑛 − 1) → 𝑁𝐿𝑂𝑆 (𝑛)
(3.22) 

 

The UWB module used in this chapter is DecaWave DW1000, which is compliant 

with IEEE 802.15.4-2011 UWB standard [123]. The sampling frequency is 3Hz, 

and the highest indoor robot speed is less than 1m/s, so 𝑑𝑛 −  𝑑𝑛−1 should be a 

tiny number, around a few centimetres, but 𝜀𝑁𝐿𝑂𝑆 is around decimetres to a few 

meters, which is much greater than 𝑑𝑛 −  𝑑𝑛−1. The method of the sliding window 

of variance of ∆�̂�𝑛  was proposed in this chapter to identify NLOS, which is 

illustrated in Figure 3.10. The threshold used to estimate the NLOS is the variance 

of ∆�̂�𝑛 measured in a LOS environment (Var(∆�̂�𝑛 (LOS))) 
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Figure 3.10 Sliding window method for NLOS identification 

 

For further annotation of this method, shown in Figure 3.10, when a tag was not 

in NLOS until time slot n, the Var(∆�̂�𝑛 ) ) will suddenly increase due to the 

measured distance 𝑑𝑛, adding a huge NLOS error. Indeed, the value of Var(∆�̂�𝑛) 

will be significantly greater than the threshold. Detecting that the Var(∆�̂�𝑛) is 

bigger than the threshold, which means this measured data would most probably 

be affected by NLOS. Due to the high measurement noise in NLOS, the 

measurement range will keep jittering over an extensive range, leading to the 

value of Var(∆�̂�) being still greater than the threshold in this situation. If the tag 

is back to LOS from NLOS at time slot k, the value of Var(∆�̂�𝑘+3) will have a 

significant drop and be smaller than the threshold. The experiment will verify this 

strategy to identify the NLOS. 

 

Delay Model for NLOS Mitigation 

This part mainly focuses on the NLOS caused by walls. The strategy to 

compensate for the NLOS delay is to derive a delay model from the measured 

distance in the NLOS condition. The following Figure 3.11 illustrates the 

geometric model. 
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Figure 3.11 Delay model for a wall 

 

Figure 3.12 Projective image 

Figures 3.11 and 3.12 show a universal model for all kinds of NLOS caused by a 

wall. In this model, the wall has an angle 𝜃3 between the positive x-axis, anchors 

and tags are at different heights, where A and T represent the anchor and tag 

points, respectively. Line 𝑇𝑇′ is perpendicular to the wall and 𝐴𝑇′ is 

perpendicular to 𝑇𝑇′, 𝐴′ is the projection point of 𝐴 on plan 𝑦 = 𝑡𝑧, 𝜃1 is the 
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angle between line 𝐴𝑇 and 𝐴𝑇′, 𝜃2 is the angle between line 𝐴𝑇′ and positive 

y-axis, 𝜃4 is the angle between the normal of the wall and 𝐴′𝑇, 𝜃5 is the angle 

between the normal of the wall and 𝐴𝑇, 𝑑𝑤𝑎𝑙𝑙 is the thickness of the wall, and 

𝑑𝑁𝐿𝑂𝑆 is the actual distance of UWB signal propagation in the wall.  

 

The primary factors leading to NLOS errors are the electrical permittivities and 

the thickness of a material when the UWB signal propagates through this obstacle. 

The electrical permittivity for a wall is a constant number in this experiment, and 

the relative thickness of the wall is increased with the incident angle increasing 

when the UWB signal penetrates the wall. The NLOS delay model is defined in 

Equation 3.23. 

∆𝑑𝑁𝐿𝑂𝑆 = 𝐴 ∗ 𝑑𝑁𝐿𝑂𝑆 ∗ (√𝜖𝑤𝑎𝑙𝑙 − 1) + 𝐵 (3.23) 

where ∆𝑑𝑁𝐿𝑂𝑆 is the NLOS delay caused by a wall, and 𝜖𝑤𝑎𝑙𝑙 is the permittivity 

of the wall. 

𝑑𝑁𝐿𝑂𝑆 =  
𝑑𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃4 ∗ 𝑐𝑜𝑠𝜃1
=

𝑑𝑤𝑎𝑙𝑙

𝑐𝑜𝑠𝜃5

(3.24) 

𝜃1 = arcsin (
|𝑎𝑧 − 𝑡𝑧|

√(𝑎𝑥 − 𝑡𝑥)2 + (𝑎𝑦 − 𝑡𝑦)2 + (𝑎𝑧 − 𝑡𝑧)2
) (3.25) 

𝜃2 = arctan (
|𝑎𝑥 − 𝑡𝑥|

|𝑎𝑦 − 𝑡𝑦|
) (3.26) 

The relationship between 𝜃4, 𝜃2 and 𝜃3 showing in Equation 3.27  

𝜃4 = {
𝜃2 − 𝜃3    𝑖𝑓 𝜃2 > 𝜃4

𝜃2 + 𝜃3    𝑖𝑓 𝜃2 ≤ 𝜃4
(3.27)  

The delay model is defined as follows: 

∆𝑑𝑁𝐿𝑂𝑆 = 𝐴 ∗
𝑑𝑤𝑎𝑙𝑙 ∗ (√𝜖𝑤𝑎𝑙𝑙 − 1)

𝑐𝑜𝑠𝜃5
+ 𝐵 (3.28) 

The measured data were used to ascertain the coefficients A and B in Equation 

3.28. A tag was placed in 45 different positions with various incident angles 

covering the range from 0° to 80°, and the LOS path was blocked by different wall 

thicknesses (0.16m and 0.26m) with permittivity setting to 5.5. At least 60 
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samples were taken at each position. By computing the fitting equation from 

those more than 2,700 data, the coefficients of A equals 0.3459 and B equals 

0.2722 were determined. Consequently, the corrected distance can be calculated 

by subtracting the NLOS delay from the measurement ranges. Algorithm 4 below 

describes how to model the NLOS error for a wall. 

 

Since the anchors and tags are likely to be at different heights in practical 

applications, this part of the algorithm is based on the previous 2D algorithm and 

proposes a more general 3D NLOS error model. This model can calculate the 

NLOS error from the constants and variables A and B, wall thickness, dielectric 

constant, and angle of incidence. The present error model has great potential to 

be applied to other types of obstructions when sufficient experimental data are 

available for modelling obstructions to determine the corresponding coefficients. 

In the following experiments, the Tag communicates with different anchor points 

during its movement along the reference path, and the NLOS error occurs due to 

wall obscuration. The A, B, dielectric constant and wall thickness are changed 
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according to different walls, and the signal's angle of incidence changes with the 

Tag's movement. The following experiments can fully verify whether the 

proposed error model can accurately calculate the NLOS error. 

 

3.2.3 Experiment and Results 

 

Experimental Environments and Equipment 

 

 

a) Map of Experiment 1 
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b) Map of Experiment 2 

  

c) Anchor 0 & 1 d) Anchor 2 
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Figure 3.13 Experiment design: a) Map of Experiment 1, b) Map of Experiment 

2, c) Anchor 0 & 1, d) Anchor 2, e) Anchor 3, f) Overall experiment environment 

 

This experiment is conducted in an apartment (Fig. 3.23 (e)) with the following 

dimensions: 7.8m wide and 5.848m long, as shown in Figures 3.13 a) and b). Four 

fixed anchors (Fig. 3.23 c,d and e) are mounted in different positions, represented 

by the yellow square in Figure 3.13 a) and b). The coordinates of Anchors 0, 1, 2, 

and 3 for experiment 1 are (1.19, 5.75, 1.5), (0.41, 3.95, 1.5), (4.27, 4.95, 1.5), ( 5.41, 

1.75, 1.5), respectively. In Experiment 2, the coordinate of Anchor 1 changes to 

(0.49, 2.65, 1.5), leading to only one LOS anchor in Area 3. These two experiments 

cover all conditions of NLOS anchor numbers in UWB IPS, shown in Table 3.7. 

The purple lines in Fig. 3.23 a) and b) are the reference paths, which start from 

Area 2 to Area 3 through Area 1 and then go back to the endpoint at Area 5 

through Area 1 and 4 when reaching the stop point in Area 3. The height of the 

tag is 1.1m, which is a 0.4m height difference from fixed anchors. 

 

 

  

e) Anchor 3 f) Experiment site 
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Table 3.7 Anchors in NLOS in different areas 

 Area 1 Area 2 Area 3 Area 4 Area 5 

Anchor  

(NLOS-Experiment 1) 

3 3 0 & 2 2 & 3 0, 1, 2 & 3 

Anchor 

 (NLOS-Experiment 2) 

3 3 0, 1 & 2 2 & 3 0, 1, 2 & 3 

 

Experimental Results for Identifying NLOS 

The abovementioned method was used in two experiments to identify the NLOS 

for all anchors when a tag moves along the reference path. The results are 

presented in the following two sections. 

 

Experiment 1 

 

a) Identification result for Anchor 0 
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b) Identification result for Anchor 1 

 

c) Identification result for Anchor 2 
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d) Identification result for Anchor 3 

Figure 3.14 NLOS identification result (Experiment 1): a) Anchor 0, b) Anchor 1, 

c) Anchor 2, d) Anchor 3 

 

Figure 3.14 shows the result of NLOS identification for four anchors, and the 

accuracy of identification is shown in the following table, Table 3.8: 

 

Table 3.8 The accuracy rate of NLOS identification (Experiment 1) 

Anchor Anchor 0 Anchor 1 Anchor 2 Anchor 3 

Identification rate 94.47% 95.71% 92.64% 90.18% 
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Experimental 2 

 

a) Identification result for Anchor 0 

 

b)  Identification result for Anchor 1 
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c)  Identification result for Anchor 2 

 

d) Identification result for Anchor 3 

Figure 3.15 NLOS identification result (Experiment 2): a) Anchor 0, b) Anchor 1, 

c) Anchor 2, d) Anchor 3 
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Table 3.9 The accuracy rate of NLOS identification (Experiment 1) 

Anchor Anchor 0 Anchor 1 Anchor 2 Anchor 3 

Identification rate 90.71% 90.71% 90% 88.65% 

 

Figures 3.14 and 3.15, Tables 3.8 and 3.9 show that the method proposed in this 

chapter is relatively accurate. The worst accuracy of the NLOS identification case 

is the Anchor 3 in both experiments, which is 90.18% and 88.65%, respectively. 

The accuracy of other anchors is all over 90% in both experiments.  

 

The misidentified case includes cases in NLOS that were not recognised and in 

LOS but misjudged into NLOS, which named unidentified points and unexpected 

points in Figures 3.14 and 3.15, respectively. The complex experiment 

environment, containing computers, desks, chairs and other factors, will increase 

the impact of multipath, which may lead to some unexpected points. The velocity 

of the tag is small during the turning, which is the possible reason for the 

unidentified point. Considering the impact of the factors above, this accuracy rate 

of NLOS identification is quite acceptable. 

 

Mitigation Results for Delay Model (Experiment 1) 

The experiment applies different position algorithms based on the number of 

NLOS in the corresponding areas. According to the reference path and anchors’ 

position in Experiment 1, Area 1 has three anchors in LOS (Anchors 0, 1 and 2), 

which are enough to locate the tag accurately. For Area 2, the delay model was 

used to correct the range measured by Anchor 3. When the tag moves in Area 3, 

a 0.26m concrete wall will block the UWB signal from Anchors 0 and 2, and the 

delay model is also applied to those measured data containing NLOS errors. In 

Area 4, using the range data from Anchors 0 and 1, which are in LOS, two 

coordinates for the tag can be computed, and then the range data of Anchor 2 or 
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Anchor 3 can be used to select the tag’s actual coordinate. The worst scenario is 

in Area 5; the delay model must correct all four anchors in NLOS since a 0.16m 

concrete wall blocked all the UWB signals. Figure 3.16 and Table 3.10 show the 

experiment’s results. 

 

Figure 3.16 Tag position after mitigating by delay model with OLS 

 

Table 3.10 Position accuracy analysis for delay model 

Position 

error 

Area 1 

(3 LOS 

Anchors) 

Area 2 

(3 LOS 

Anchors) 

Area 3 

(2 LOS 

Anchors) 

Area 5 

(0 LOS 

Anchors) 

OLS OLS 

(LOS 

only) 

OLS Delay 

model

& OLS 

OLS Delay 

model

& OLS 

OLS Delay 

model

& OLS 

Max (m) 0.849 0.361 0.616 0.257 1.313 0.603 0.692 0.521 



 

80 

Min (m) 0.048 0.004 0.212 0.003 0.153 0.016 0.033 0.013 

Average 

(m) 

0.499 0.075 0.349 0.094 0.786 0.201 0.339 0.213 

RMSE (m) 0.555 0.106 0.364 0.126 0.853 0.244 0.398 0.276 

 

Figure 3.16 visually illustrates the effectiveness of the delay model proposed in 

this section. The green line with the dot in Figure 3.16 shows the tag position and 

trajectory computed by the measured distance after the delay model correction. 

It explicitly shows that the position accuracy of the tag was improved in Areas 2, 

3, and 5, which applies the delay model to correct data with NLOS delay. Table 

3.10 is a detailed analysis of the experiment’s results. The first column of Area 1 

is the position error using raw data from three LOS anchors (Anchors 0, 1 and 2) 

and one NLOS anchor (Anchor 3). The second column in Area 1 is the position 

error only using the range data from those three LOS anchors, and this group data 

can be used as the control group. It can be found that the NLOS error has a 

massive impact on position accuracy. With Anchor 3’s NLOS error in Area 1, the 

maximum position error is over 0.8m, and RMSE is 0.555m. The UWB IPS 

performed better position accuracy after abandoning the range data from Anchor 

3, and the maximum error and RMSE were reduced to 0.361m and 0.106m, 

respectively. The delay model minimises the affection of NLOS for areas that do 

not have enough LOS data to locate the tag. From Table 3.10, RMSE was reduced 

from 0.364m to 0.126m in Area 2, from 0.853m to 0.244m in Area 3, and from 

0.398m to 0.276m in Area 5. A similar phenomenon of decreasing error occurs 

in average and maximum errors, too. The position accuracy of UWB IPSs in NLOS 

after correction by the delay model is approaching the accuracy in LOS. Another 

phenomenon that can be found in Figure 3.16 is the location point of the tag in 

Area 3, which disperses more widely with the growth of the incident angle. So, 

the WLS was used in the next step to eliminate the effection of heteroscedasticity. 
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Mitigation Results for Delay Model with WLS (Experiment 1) 

The crucial part of WLS is to determine the exact weight for measured distance 

at different incident angles. The tag position kept jittering due to the 

measurement range affected by the noise, even though the tag was motionless. 

The jitter margin of range measurement positively correlates with the incident 

angle in NLOS caused by a wall. Thus, the variance of the range measurements in 

a position can be the weight’s reference.  

 

In this experiment, the weight for measured distance from the fixed Anchors 0, 1, 

2 and 3 can be represented as 

𝑊 = 𝑑𝑖𝑎𝑔[𝑊0, 𝑊1, 𝑊2, 𝑊3] (3.29) 

Setting the variance of measured distance in LOS as the criterion, the weight can 

be computed by the following equation when the tag in NLOS with the incident 

angle θ: 

𝑊𝜃 =  
𝑉𝑎𝑟(𝑑𝐿𝑂𝑆)

𝑉𝑎𝑟(𝑑𝜃)
(3.30) 

where 𝑉𝑎𝑟(𝑑𝐿𝑂𝑆) is the variance of measured distance in LOS, 𝑉𝑎𝑟(𝑑𝜃) is the 

variance of measured distance in NLOS with the incident angle 𝜃, and 𝑊𝜃 is the 

weight for this NLOS measurement range.  

Algorithm 5 below describes the WLS algorithm that assigns corresponding 

weights to different ranging values based on the incidence angle. 
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In order to find the relationship between weight and incident angle, 30 groups of 

data were gathered, which covered incident angles from 0° to 70°. Each group of 

data contains at least 60 samples, so 𝑉𝑎𝑟(𝑑𝜃) can be computed for each angle 

group, and the weight for different incident angles can be drawn from Equation 

3.30. The following figure, Figure 3.17, illustrates the relationship between the 

incident angle and the weight. 
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Figure 3.17 Relationship between θ and the 𝑊𝜃 

 

The experiment in this part uses the same measured range data from the previous 

section. According to the relationships between θ and the 𝑊𝜃 , corresponding 

weight to the measured range was assigned. The measured range with weight can 

calculate the tag’s position by Equation 3.21. Figure 3.18 and Table 3.11 show the 

position results of the delay model with the WLS algorithm. 

 

Figure 3.18 Experiment 1 results for the delay model with WLS 
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Table 3.11 Position accuracy analysis for delay model with WLS (Experiment 1) 

Position 

error 

Area 2 

(3 LOS Anchors) 

Area 3 

(2 LOS Anchors) 

Area 5 

(0 LOS Anchors) 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Max (m) 0.257 0.259 0.603 0.319 0.521 0.547 

Min (m) 0.003 0.003 0.016 0.002 0.013 0.019 

Average (m) 0.094 0.083 0.201 0.112 0.213 0.207 

RMSE (m) 0.126 0.111 0.244 0.132 0.276 0.265 

 

The blue line with the dot in Figure 3.18 is the tag position calculated by the WLS 

algorithm. Compared with the green line (OLS algorithm), the position accuracy 

of WLS shows significant improvements in Areas 2 and 3; also, the detailed data 

analysis in Table 3.11 attests to this. In Area 3, the WLS significantly enhances the 

position precision, the maximum position error has a nearly 0.3 m reduction 

(0.603m to 0.319m), and the RMSE reduces from 0.244m (OLS) to 0.132m 

(WLS). The maximum position errors were almost equal in Areas 2 and 5, and 

the average errors and RMSEs slightly decreased using the WLS algorithm. Even 

the WLS algorithm did not contribute generously to the maximum error, but from 

average error and RMSE, the position accuracy was improved overall. Hence, 

applying WLS further enhances the accuracy and precision of the UWB IPSs in 

NLOS environments. 

 

Mitigation Results for Delay Model with WLS (Experiment 2) 

To further verify the affection of the delay model and WLS algorithm, an 

improved experiment was designed in which the coordinates of Anchor 1 were 

changed to (0.49, 2.65, 1.5), resulting in only one LOS anchor in Area 3. That 

means the condition for UWB IPSs in Area 3 will be harsher than in Experiment 
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1. Figure 3.19 illustrates the coordinates of anchors (yellow square), reference 

path (purple dot line), and experiment results (red, green, and blue line). 

 

Figure 3.19 Experiment 2 results for the delay model with WLS 

 

Table 3.12 Position accuracy analysis for delay model with WLS (Experiment 2) 

Position 

error 

Area 2 

(3 LOS Anchors) 

Area 3 

(2 LOS Anchors) 

Area 5 

(0 LOS Anchors) 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Delay 

model& 

OLS 

Delay 

model& 

WLS 

Max (m) 0.257 0.259 0.603 0.319 0.521 0.547 

Min (m) 0.003 0.003 0.016 0.002 0.013 0.019 

Average (m) 0.094 0.083 0.201 0.112 0.213 0.207 

RMSE (m) 0.126 0.111 0.244 0.132 0.276 0.265 

 

In Figure 3.19, the red line represents the tag’s position and trajectory computed 

by OLS using raw range data, which uses the same strategies as in experiment 1. 
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The green and blue lines represent the position and trajectory of the tag, for which 

the delay model corrected the range data but used OLS and WLS to compute the 

position, respectively. The main difference between this experiment and 

Experiment 1 is in Area 3. By changing the coordinate of Anchor 1, the tag in Area 

3 can only receive one LOS UWB signal. Even so, the delay model and the WLS 

can mitigate the NLOS error well, which can be observed from the contrast of the 

three trajectories. Detailed data can be found in Table 3.12. The second column 

data in Area 1 is data analysis for the tag’s position using only three LOS anchors’ 

range information, which can be the evaluation criteria for other groups. In Area 

2, there is only Anchor 3 in NLOS, but this NLOS delay still leads to a maximum 

0.416 m position error, the average error and RMSE all being over 0.2 m. After 

using the delay model to correct the range data of Anchor 3, the maximum error 

is reduced to 0.247m; the average error and RMSE are around 0.1m, following 

the OLS algorithm. Changing the position algorithm to WLS can further improve 

the accuracy of the tag; the maximum error is only 0.195m, and the average error 

and RMSE can reach the control group’s performance in Area 1 in LOS.  

 

In Area 3, despite moving Anchor 1 to the NLOS environment, the position 

accuracy remains largely untouched by this change compared to Experiment 1. 

The reason may be that two walls entirely block the direct path between the tag 

and Anchor 1, but by multipath, the tag and Anchor 1 still have regular 

communication. Accordingly, the measurement error of Anchor 1 should be 

stable, not leading to a vast negative impact on position accuracy.  

 

For other areas, the order of the performance of those position algorithms is that 

the delay model with WLS is the best, and then the delay model with OLS is better 

than OLS only. However, in Area 5, there is one exception: the maximum error of 

the delay model with WLS is 0.359m, which is bigger than the 0.284m of the delay 

model with OLS. The inappropriate weight of some points may cause this 
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exception due to the complex indoor environments. In summary, the delay model 

with WLS algorithms can enhance the overall accuracy and precision of the UWB 

IPS in the NLOS environment. 

 

3.2.4 Discussion 

Even though the performance of the delay model with the WLS algorithm is close 

to the LOS level, the RMSEs in Tables 3.11 and 3.12 are all over 0.1m in Areas 2, 

3 and 5. Moreover, the jitter margin of the tag’s position in those NLOS areas is 

still more significant than in the LOS environment. So, some inherent defects 

have restricted the application of IPS to only using UWB technology. For instance, 

in the experiment environment, if the tag in Area 5 moves forward to the far right 

of the map, the communication between the tag and some anchors will be severed 

by more than one wall or some metals (e.g., refrigerator, metal cabinet, rebar in 

the load-bearing wall). Therefore, the UWB IPS can not provide the tag position 

because of the lack of measured range data in the hash indoor environment. 

 

The same situation happened in Area 4; two walls blocked the signal from 

Anchors 2 and 3. The delay model and WLS algorithms cannot handle the data 

like this. Therefore, in Area 4, we use a different strategy to calculate the tag 

position. In Area 4, the tag can receive two LOS signals from Anchors 0 and 1. 

These two measurement ranges in the LOS environments can obtain two 

coordinates. Range data from Anchor 2 or 3 can select the accurate coordinate for 

the tag from Anchor 2 or 3. The positioning result using this method in Area 4 

can be observed in Figures 3.18 and 3.29, and the accuracy was indeed improved 

compared to using raw data with OLS. Especially as shown in Figure 3.19, the 

accuracy and precision of the tag’s position in Area 4 are all the better. This result 

was predictable because the correct range information calculated the tag’s 

position, so the position result should be as good as in Area 1. Only using range 
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information from LOS anchors can improve the position accuracy if the system 

has more than one LOS anchor. 

The geometric position of the anchors is another factor affecting the position 

accuracy of UWB IPS [128]. In Experiments 1 and 2, the tag, Anchors 0 and 2, 

were almost in a line when the tag was moving along the reference path in Area 

2. According to the literature [129], these bad anchor placement positions will 

significantly reduce the position accuracy of the tag. Therefore, the tag in Area 2 

can communicate with three LOS anchors, but the position accuracy is still not 

satisfying.  

 

In summary, even though the methodology used in this chapter can improve the 

position accuracy and precision of UWB IPSs, it is impossible to settle all issues 

for indoor position systems that only rely on one method or sensor. Future 

research will consider multisensor fusion to enhance position accuracy and 

system robustness. In the differential drive kinematics model, a two-wheel 

odometer can offer the distance and yaw of the system. A further plan is to 

combine UWB and an odometer so that this system can operate well in harsh 

indoor environments. 

 

3.2.5 Conclusion 

This section proposed a novel, simple method to identify and mitigate NLOS for 

UWB IPSs. The strategy to correct the NLOS error is first to identify the NLOS 

delay by the sliding window, then update the measured range containing the 

NLOS error by the delay model, using the WLS algorithm to calculate the tag’s 

position. The experiment results for the accuracy of NLOS identification is 

approximately 90% in a harsh environment and mostly over 90% in a standard 

indoor environment. The performance of the NLOS delay model was impressive. 

According to the data in Tables 3.10, 3.11, and 3.12, the accuracy of tag location 

in NLOS, which was corrected by the 3D delay model, has been improved to a 
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certain extent. Although the delay model revised the measured range and 

improved position accuracy, the location precision is still low. As the green lines 

in Figures 3.18 and 3.19 indicate, the large jitter margin of the position result 

remains problematic. The solution is to use WLS algorithms to give different 

weights according to the UWB signal propagation incidence angle through the 

wall. The test results showed that the delay model with the WLS algorithm could 

improve the accuracy and precision of UWB IPSs close to the LOS level. 

3.3 Mobile-UWB-Anchor-Configuration Approach 

3.3.1 Introduction 

With the development of IoT technology, supply chain changes, and intelligent 

cities, people's activities are increasingly concentrated indoors. Traditional 

positioning technology in the outdoor environment, such as GPS, can no longer 

meet the positioning requirements in a complex indoor environment. In addition, 

the actual requirements of the intelligent warehouse, logistics monitoring, and 

human capital monitoring also make the research of indoor positioning 

technology an important and current area. 

 

There are many research directions and methods of indoor positioning 

technology, such as Bluetooth positioning technology, Wi-Fi positioning 

technology, and UWB positioning technology, all of which have advantages and 

disadvantages. Kong et al. summarised that a navigation system needs to consider 

quality attributes, which include accuracy, availability, reliability, robustness, 

safety, security, and response time. On the other hand, development constraints 

also need to be considered, which include maintainability, usability, development 

complexity, cost constraints, time constraints, and client and supplier 

collaboration capacity [130]. One of the difficulties in developing indoor 

positioning technology is measuring the positioning accuracy and system costs. 
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The deployment cost is low for some positioning technologies, such as Bluetooth 

and Wi-Fi. Positioning accuracy is also relatively low and can only reach 2 meters. 

Although high-accuracy technology, such as UWB, can meet the centimetre-level 

positioning accuracy, the hardware cost is remarkably high, making it unsuitable 

for large-scale applications. 

 

This chapter focuses on the following research question: How can a more 

reasonable hardware configuration reduce the system cost without affecting the 

accuracy of UWB indoor positioning? This research presents a new indoor 

positioning approach to change the fixed anchor point in a conventional UWB 

positioning system into a mobile anchor-point configuration to reduce the 

number of anchor points required in a large-area indoor environment, thereby 

reducing system cost. This approach is verified using the design and experiments 

at the positioning accuracy level of the mobile anchor point system. 

 

3.3.2 Mobile-UWB-Anchor-Network Configuration Approach 

In the conventional UWB positioning approach, many fixed position anchors are 

deployed. Figure 3.20 illustrates this positioning approach. 

 

Figure 3.20 Conventional UWB anchor network using fixed anchors 

 

If tags are moving from Time t1 to Time t2 and leave the space where these tags 

were in Time t1 without tags, the anchors in the Time t1 area are not used for 
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positioning. We propose a new approach to reduce the deployment of such a large 

number of fixed anchors, as shown in Figure 3.21. 

 

Figure 3.21 Mobile-anchor-network approach 

 

This section discusses a novel approach to transform the previously stationary 

anchor into a mobile platform, establishing a mobile anchor point system. This 

system continuously moves along a predetermined track within a specific area. 

Upon detecting tags in the vicinity, the mobile platform uses displacement time, 

velocity, and direction to determine its position accurately. By ensuring 

communication with at least three anchor points, we can employ the TOA method 

to calculate the tag's precise location, thus effectively positioning our mobile 

anchor system. The experimental flowchart is presented in Figure 3.22. 

 



 

92 

 

Figure 3.22 Mobile anchor system experimental flowchart 

 

For the positioning algorithm TOA, the actual experimental state signal will be 

interfered with by noise, which will cause the measurement distance error. So, 

the ranging error 𝜀𝑖 is added to the experimental simulation. The true distance is 

shown in Equation 3.31 below: 

𝑑𝑖 = 𝑟𝑖 − 𝜀𝑖 (3.31) 

where i is the number of anchors ( i = 1，2，3，4), 𝑑𝑖 is an actual range between 

anchor i and tag, 𝑟𝑖  is measuring range between anchor i and tag, and 𝜀𝑖  is 

ranging error. 

Assuming: 

𝐾𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 (3.32) 

where ( 𝑥𝑖  𝑦𝑖 𝑧𝑖) is the coordinate of anchor i (i = 1, 2, 3, 4). 

In the TOA algorithm, the relationship between the position of the tag, fixed 

anchor points, and range can be expressed by Equation 3.33: 

𝑑1
2 = (𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 + (𝑧 − 𝑧1)2

𝑑2
2 = (𝑥 − 𝑥2)2 + (𝑦 − 𝑦2)2 + (𝑧 − 𝑧2)2

𝑑3
2 = (𝑥 − 𝑥3)2 + (𝑦 − 𝑦3)2 + (𝑧 − 𝑧3)2

𝑑4
2 = (𝑥 − 𝑥4)2 + (𝑦 − 𝑦4)2 + (𝑧 − 𝑧4)2

(3.33) 
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where the coordinates of the tag is 𝑇 = (𝑥, 𝑦, 𝑧), anchors coordinates are 𝐴𝑖 =

(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) i=1,2,3...N, and id  is the distance between Anchor i and tag. 

Assuming: 

𝐷 = [

(𝑥1 − 𝑥2) (𝑦1 − 𝑦2) (𝑧1 − 𝑧2)

(𝑥1 − 𝑥3) (𝑦1 − 𝑦3) (𝑧1 − 𝑧3)

(𝑥1 − 𝑥4) (𝑦1 − 𝑦4) (𝑧1 − 𝑧4)
] (3.34) 

𝑋 =  [
𝑥
𝑦
𝑧

] (3.35) 

𝑐 = [

𝑟2
2 − 𝑟1

2 + 𝐾1 − 𝐾2

𝑟3
2 − 𝑟1

2 + 𝐾1 − 𝐾3

𝑟4
2 − 𝑟1

2 + 𝐾1 − 𝐾4

] (3.36) 

∆ =  [

𝜀2
2 + 2𝑟1𝜀1 − 2𝑟2𝜀2 − 𝜀1

2

𝜀3
2 + 2𝑟1𝜀1 − 2𝑟3𝜀3 − 𝜀1

2

𝜀4
2 + 2𝑟1𝜀1 − 2𝑟4𝜀4 − 𝜀1

2

] (3.37) 

The tag coordinate is shown in Equation 3.38 from the LS. 

𝑋 =  
1

2
(𝐷𝑇𝐷)−1𝐷𝑇(𝑐 + ∆) (3.38) 

 

3.3.3 Experiment 

The main purpose of this experiment is to verify whether the moving anchor 

points can accurately locate the tag after the fixed anchor points are turned into 

mobile anchor points. 

Experiment Hardware 

Experiments are set up using DWM1001 UWB, as shown in Figure 3.23. 
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Figure 3.23 DWM1001-DEV development boards 

 

In the context of an IPS, positioning accuracy and system cost are the factors of 

utmost importance. To evaluate these aspects, we conducted tests utilising the 

DWM1001 board by deploying four fixed anchors and a mobile tag to compare 

collected data against actual positions. Our findings confirm that the UWB 

system achieves centimetre-level precision within its effective communication 

range. However, one major challenge associated with employing UWB for indoor 

positioning is its high-cost implications. Given that UWB's effective 

communication range is typically around 10m, large-scale indoor environments, 

such as airports or warehouses, would necessitate installing hundreds or even 

thousands of fixed anchors, significantly escalating overall system costs. 

Consequently, our experiments focus on strategies to mitigate expenses while 

achieving highly accurate positioning in UWB-based IPS. 

 

Experimental Results 

The primary objective of this experiment is to optimise the number of anchors by 

transforming the fixed anchor into a mobile anchor, thereby reducing system 

costs. Figure 3.24 depicts four UWB anchors affixed to the corners of a single 

enclosure with a tag securely attached to a robot. Data acquisition from the tag is 
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facilitated through its connection with a computer. Consequently, the box and 

robot establish an interconnected mobile UWB positioning system. 

 

Figure 3.24 Mobile-anchor UWB system 

The coordinate information of the anchor is shown in Figure 3.25. 

 

Figure 3.25 Coordinate of anchors 

 

Figure 3.26 Trajectory design 

 

Figure 3.26 illustrates the experimental site and the trajectory of the UWB system. 

The experiment was conducted in a common area on level 12 of Building 11 at 

UTS, and the figure depicts the movement path of the entire system from point A 

to point B and then to point C, where AB represents the X-axis and BC represents 

the Y-axis. The following figure, Figure 3.27, shows the trajectory of the system. 
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Figure 3.27 Trajectory of the system 

 

The red line in Figure 3.27 depicts the reference path, and the blue and yellow 

points represent the trajectory of the tag. The mobile UWB anchor positioning 

system moves along the X-axis and Y-axis for a distance of 5 meters. From the 

figure above, it is evident that the system can accurately determine the position 

of the tag during movement. The specific positioning error is illustrated in Figures 

3.28 and 3.29. 

 

 

Figure 3.28 Position error during the system moves along the X-axis. 
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Figure 3.29 Position error during the system moves along the Y-axis. 

 

Table 3.13 Position error 

 AVG (m) MAX (m) RMSE (m) 

X-Error 0.033193 0.07 0.039183 

Y-Error 0.039596 0.08 0.045534 

 

The results of tag positioning during the movement of the mobile UWB anchor 

positioning system along the X-axis and Y-axis are depicted in Figure 3.28 and 

Figure 3.29, respectively. Based on these figures and the accompanying Table 3.13, 

it can be observed that when the system moves along the X-axis, the maximum 

positioning error of the tag is 7cm with an RMSE of 3.39cm. Similarly, when 

moving along the Y-axis, the tag's maximum positioning error is measured at 8cm 

with an RMSE of 4.55cm. Consequently, these findings demonstrate that the 

mobile UWB anchor positioning system effectively locates tags while operating 

on a fixed track and further validates the feasibility of transforming fixed UWB 

anchor points into mobile ones as a cost-saving measure. However, this 

experiment is only an exploratory experiment to verify the feasibility in a simple 

experimental environment, and the specific application still needs further 

research. 
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4. Chapter 4 A Loosely Coupling 

Approach for UWB and Wheel 

Odometry 

 

In the previous chapter, the UWB-only IPS was optimised to a large extent. This 

chapter introduces a loosely coupled method of UWB and odometry to further 

improve the positioning accuracy and stability of the system. This chapter is 

organised as follows. The first section is the study's introduction; the second 

section is methods, which include the positioning algorithm and the fusion 

algorithm; the third section is the experimental design and results; the fourth 

section is the discussion; and the fifth section is the conclusion. 

 

4.1 Introduction 

 

In the previous chapter, it is evident that while UWB positioning accuracy can 

achieve centimetre-level precision in LOS environments, complex indoor 

settings pose a significant challenge for UWB-based IPS relying solely on LOS 

conditions. NLOS errors caused by obstructions can degrade the accuracy of 

UWB positioning systems to the meter level. Numerous researchers have 

contributed to addressing this issue in UWB-based IPS.  

 

Cui et al. [114] proposed a method known as Morlet wave transform and 

convolutional neural networks (MWT-CNN), demonstrating an accuracy 

exceeding 90% in identifying LOS/NLOS conditions within UWB systems. 

Accurate identification of LOS/NLOS is crucial for further enhancing 

positioning accuracy. Zhu et al.'s [131] research described an adapted error 

map-based particle filter (AEMBPF) method to improve the precision of 
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localisation in UWB systems. They claimed that this approach could reduce the 

number of observation points per square meter on the error map by 50% 

compared to traditional methods, resulting in faster convergence and higher 

accuracy. However, when applied to more complex or larger map environments, 

this method encounters computational challenges due to the requirement of 

constructing an error map. In the experimental investigations conducted by 

Hao et al. [132], NLOS discrepancies induced by a 0.7-m-thick concrete pillar 

could exceed 3 m. The study posits the viability of redressal for NLOS errors by 

developing an error model for diffracted waves, potentially increasing accuracy 

by up to 80%.  

 

The discernment and amelioration of NLOS errors constitute a central thrust 

within UWB-based IPS research. In recent years, various scholars have 

embarked upon various methodologies to grapple with this challenge. Some 

have advocated residual-based approaches, as elucidated by Jingwang et al. 

[133], which entail the identification of NLOS instances predicated upon 

variations in the standard deviation of ranging values, followed by employing 

Kalman filtering for error rectification. Others have pursued avenues 

predicated upon scrutinising CIR attributes, as expounded by Chunxue et al. 

[134], who advocate for selecting higher-fidelity anchor point data through CIR 

analysis, leading to a discernible 40% abatement in the RMSE associated with 

positioning. Further inquiries have been directed towards modelling specific 

obstacles through statistical descriptors, as evidenced by [135-137], which 

principally concentrate on NLOS errors engendered by human presence. 

Concurrently, the advent of ML methodologies, including SVM [114, 138, 139] 

and LSTM [140], has demonstrably catalysed the in-depth scrutiny of CIR and 

RSS attributes, affording a vantage point for the formulation of error models. 

Different AI algorithms have their drawbacks; for instance, SVM’s drawback is 

that it requires longer training time and cannot handle noisy data well [141], 
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and LSTM requires a lot of computation and memory, which is not friendly to 

the miniaturisation of the carrier. 

 

These methods somewhat mitigate the impact of NLOS errors on positioning 

accuracy. However, providing consistent and accurate positioning data in 

complex and changing indoor environments using only one type of sensor is 

difficult. Consequently, the integration of multiple sensors represents an 

inexorable progression. Through multi-sensor fusion, the system not only aids 

UWB technology in identifying and mitigating NLOS errors to enhance 

positioning precision but also augments the system’s resilience in demanding 

environmental conditions. Commonly integrated sensors with UWB 

encompass IMU [3, 63], visual [142], odometers [143], and LiDAR [144]. 

Among these, wheeled odometers have historically received less attention from 

researchers, primarily due to their constrained applicability, typically limited 

to 2D vehicular movement in scenarios involving wheeled AGVs. Nonetheless, 

wheeled odometers are uncomplicated, cost-effective sensors immune to 

extraneous electromagnetic interference. This makes them suitable for low-cost 

robotic platforms or those functioning in intricate electromagnetic 

environments. The advancement of optoelectronic technology has led to 

notable enhancements in the sampling frequency and precision of wheeled 

odometers, rendering them highly suitable for integration within a UWB-based 

fusion positioning system. 

 

The KF is a fundamental algorithm in multi-sensor fusion. Originally developed 

as a recursive filter for linear systems, the KF's significance remains 

undiminished despite its long-standing introduction. For instance, in the study 

by Kim et al. [101], the KF was employed to integrate data from UWB and IMU. 

The resulting fused system achieved a positioning precision of approximately 

0.4 m, even in challenging NLOS conditions. 
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The evolution of the KF led to the development of the EKF and the UKF, both 

tailored to address nonlinear system requirements. The EKF achieves this by 

linearising the nonlinear system through the Jacobian matrix and subsequently 

applying the KF. However, the EKF’s primary limitation arises from its 

linearisation process, which can introduce inaccuracies. Moreover, the EKF 

may prove unstable in contexts of intense nonlinearity. 

 

In contrast, the UKF mitigates linearisation issues by employing sigma points 

for unscented transformation, yielding more accurate state estimates. A 

comparative study by Krishnaveni et al. [145] examined the EKF and UKF 

localisation outcomes when fused with UWB and IMU under identical 

conditions. Their findings underscored the UKF’s superior performance over 

the EKF. 

 

Particle filtering, on the other hand, employs a particle cloud to represent the 

system’s state, updating weights iteratively. While capable of addressing 

strongly nonlinear systems, its computational demands escalate with an 

increase in particle count. In a study by Jia et al. [146], particle filtering was 

used to merge UWB, LiDAR, and odometry data, achieving an RMSE of 5 cm 

in environments with weak NLOS interference from natural elements like 

foliage. 

 

Given the demonstrated superiority of the UKF over the EKF and its more 

manageable computational demands compared to PF, this chapter selects the 

UKF for further comparative analysis. 

 

Compared to other studies, the algorithm presented in this chapter possesses 

several advantages. Firstly, within the context of the loosely coupled framework, 
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our experimental setup has reached the application limits of UWB systems. 

Many current studies have simpler path designs and NLOS environments in 

their experimental setups. Some integrated positioning system studies do not 

consider the impact of NLOS on UWB [71, 147], and others only account for 

NLOS interference over very short motion paths [148]. In contrast, the UWB 

system designed in this study encounters NLOS interference over extended 

durations and distances, making the experimental setting more challenging. 

The loosely coupled algorithm is relatively straightforward and requires 

minimal computational resources. Lastly, the system’s overall localisation 

accuracy remains high even under stringent conditions. 

 

The primary contributions of this chapter can be summarised as follows: 

• This chapter introduces a straightforward adaptive localisation algorithm that 

first identifies NLOS through a previous sliding window approach. The ranging 

values of the optimal localisation anchors are then actively selected for 

localisation in complex indoor environments to effectively mitigate the effects 

of NLOS.   

• This chapter introduces a novel algorithm loosely integrating UWB and 

wheeled odometers. This integration facilitates 1D and 2D fusion, adapting to 

varying motion states. Through comparative analysis with the UKF algorithm, 

the proposed approach outperforms the UKF algorithm in terms of localisation 

precision. 

• This chapter substantiates the accuracy and effectiveness of the proposed 

algorithm through comprehensive data collection in a real-world indoor 

environment. 

 

The chapter is structured as follows: Section 2 describes the localisation 

principles of UWB and wheeled odometers and the fusion strategy of UWB and 

wheeled odometers. Section 3 is dedicated to the experimental environment, 
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equipment, and corresponding results. Section 4 is a discussion of the results. 

Finally, Section 5 encapsulates the findings and implications of the proposed 

algorithm. 

 

4.2 Method 

4.2.1 UWB 

The positioning algorithm of UWB remains unchanged from the LS algorithm 

introduced in Chapter 3, which calculates the distance between the tag and 

fixed anchors by measuring the time of flight (TOF) of signals. In ideal 

conditions, the tag's position can be calculated using at least three distance 

measurements from fixed anchors. However, due to the complexity of this 

chapter's experimental environment, it is challenging to establish an accurate 

mathematical model for NLOS errors, as discussed in Chapter 3. Based on the 

experimental data presented in Chapter 3, it can be observed that UWB systems 

exhibit a ranging error below 10cm in LOS environments. Therefore, this 

chapter proposes a dynamic adjustment method for the positioning algorithm: 

employing the LS algorithm when at least three LOS ranging measurements are 

available and utilizing a combined judgment-based positioning algorithm when 

two LOS measurements are available, as illustrated in Figure 4.1. 

 

Figure 4.1 Flowchart of the algorithm for the 2 LOS ranging values 

 

In the presence of highly accurate UWB ranging, the distances measured by 

these two LOS anchor points can be utilised to calculate the coordinates of two 

points. Although the distance measurements from other anchor points affected 

by NLOS errors cannot be directly employed for computing the tag coordinates, 
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they can still serve as a foundation for determining the actual tag coordinates 

among the two potential coordinate points. Since this chapter adopts a loosely 

coupled approach that necessitates independent calculation of tag coordinates 

using UWB and odometry, this UWB positioning strategy already represents an 

optimal choice and has significant potential to enhance UWB positioning 

accuracy in NLOS environments. 

 

4.2.2 Odometer 

This research employs the two-wheel differential model [149] to identify the 

robot's locomotion in the context of odometer-based positioning. Within this 

model, effective control over the robot's motion can be achieved by regulating the 

speeds of the robot's left and right driving wheels. 

 

In Figure 4.2, vl and vr denote the linear velocities of the left and right driving 

wheels, respectively. l represents the distance between the two wheels, r 

represents the turning radius, and θ signifies the turning angle. Based on this 

model, the ensuing equation can be derived: 

 

Figure 4.2 Two-wheel differential motion model 
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Linear velocity v and angular velocity w at the centre of the robot: 

𝑣 =  
𝑣𝑙 + 𝑣𝑟

2
(4.1) 

𝑤 =  
𝑣𝑙 − 𝑣𝑟

𝑙
(4.2) 

 

Turning radius: 

𝑟 =  
𝑣

𝑤
(4.3) 

When the sampling frequency is ∆t, the odometer data can be converted to the 

robot coordinates by the differential method (Equations (4.4)–(4.6)): 

𝑥𝑛 = 𝑥𝑛−1 +   𝑣 ∗ cos(𝜃𝑛−1) ∗ ∆𝑡 (4.4) 

𝑦𝑛 = 𝑦𝑛−1 +   𝑣 ∗ sin(𝜃𝑛−1) ∗ ∆𝑡 (4.5) 

𝜃𝑛 =  𝜃𝑛−1 + 𝑤 ∗ ∆𝑡 (4.6) 

 

Wang et al. [150] categorised wheeled odometer errors into two primary classes. 

The first category encompasses systematic errors from hardware characteristics 

such as wheel diameter, wheelbase, and drive motor. These errors accumulate 

over time and contribute to positioning drift. The second category encompasses 

random errors, such as wheel slip and uneven terrain. Experimental design 

measures were taken to minimise these random errors as much as possible. 

 

4.2.3 Fusion Methodology 

This section explains an indoor localisation method based on the fusion of 

odometry and UWB technology, as shown in Figure 4.3. 
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Figure 4.3 Flowchart of the fusion methodology 

 

The UWB system includes four fixed anchors with known coordinates and a tag 

with no predetermined coordinates. The system employs the TWR technique, 

eliminating the need for synchronised clocks between the anchors and the tag. 

This approach effectively reduces the influence of clock-drift error on the range 

measurements obtained [151]. 

 

After measuring the distances between the four anchors and the tag, this section 

applies the sliding window method, previously introduced in our earlier research, 

to determine the potential effects of NLOS conditions on the ranging values. Once 

the range values affected by NLOS are identified, the positioning results of UWB 

can be optimized using the conditional dynamic positioning algorithm proposed 

in the previous section. 

 

The fusion system uses a loosely coupled approach. Firstly, a sliding sampling 

window with a size of 120 is employed to sample the odometry data. Once all the 

sampled data within the window exhibit linear velocities exceeding the threshold 

(0.17m/s), it can be inferred that the robot maintains a stable motion state during 
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this interval. This state implies an absence of unknown obstacles impeding the 

robot's movement and consequently ensures relatively consistent UWB data 

readings. Subsequently, by synchronizing with time, we acquire optimized UWB 

positioning results corresponding to this period and perform linear fitting on the 

UWB positioning points within this timeframe to determine both the direction 

and distance of robot displacement. Finally, utilizing both direction and distance 

information obtained from UWB measurements within the window, we rectify 

those derived from odometry readings. It should be emphasized that only one set 

of sampled data is used each time to correct the last odometry data in the window. 

Such an approach is adopted due to the higher short-term accuracy offered by 

odometry while avoiding excessive frequency of corrections and ensuring better 

alignment between our trajectory estimation and actual motion. The proposed 

fusion technique facilitates the calibration of the robot in both motion direction 

and distance, thus earning it the designation of the dynamic dimension fusion 

(DDF) method.  

Based on the above characterization of the algorithm, the experimental design 

needs to expose the inherent problems of UWB and odometer and verify whether 

the proposed algorithm can effectively fuse the two systems and improve the 

positioning accuracy. The biggest problem with the odometer is the cumulative 

error over a long distance, so this part of the experiment will be conducted at a 

large test site, and the odometer will be run continuously over a long distance to 

increase the cumulative error. The biggest problem of the UWB system is the 

NLOS error, so some anchors in the motion path will be designed to be blocked 

by the wall, causing the NLOS error. At the same time, the algorithm proposed in 

this part corrects the system localisation in two motion states: uniform steady 

motion and turning, so the path contains a long straight line and turning. This 

experimental design can be used to verify whether the algorithm proposed in this 

section can improve the accuracy of the system localisation. 

Algorithm 6 below clearly represents the entire loosely coupled algorithm. 
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4.3 Experiment and Results 

 

4.3.1 Experimental Environments and Equipment 

The experiment occurred on the 6th floor of Building 11 at the University of 

Technology Sydney. The layout of the test area is depicted in Figure 4.4 (a), with 

the map scaled in meters. The four UWB anchors are marked as yellow squares 

on the map. The specific coordinates for Anchors 0, 1, 2, and 3 are (8.7, 5.1, 1.87), 

(8.91, 7.4, 1.87), (24.8, 6.13, 1.87), and (24.8, 8.99, 1.87), respectively. The 

experimental zone is located on the right side of the map, within a 15-meter-long 

corridor. The reference path for the robot is indicated by a solid orange line in 

Figure 4.4(a). The start and end points of the robot's journey are marked with red 

dots, and the turning point is shown with green dots. In the experiment, the 

turtlebot2 starts at the initial point, follows the set path to the turning point, and 

then returns to the endpoint. The UWB tag is attached to the turtlebot2, moving 

in tandem with it. It is important to note that environmental obstacles, such as 

walls and cabinets, significantly impact the UWB system, often causing 

pronounced NLOS errors during its operation. 

 

(a) 
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(b) (c) 

Figure 4.4 Experiment design: (a) maps and reference path; (b) UWB; and (c) 

turtlebot2 

 

In the experiments illustrated in Figure 4.4 (b), the UWB anchors and tags utilise 

the DW1000 chips manufactured by DECAWAVE. This chip stands out due to its 

small size, accurate distance measurement capabilities, and cost efficiency [3]. It 

has become popular in both industrial and research settings, as referenced in 

sources [152-154]. Under LOS conditions, the UWB system demonstrates a range 

error of less than 10 cm, operating at a sampling frequency of 3 Hz. 

 

The odometer used in the experiment is a wheel-type odometer from the 

turtlebot2 platform, shown in Figure 4.4 (c), and it functions at a sampling 

frequency of 20 Hz. The experimental area features a flat, carpeted surface with 

a high friction coefficient, effectively reducing the impact of wheel slippage and 

uneven terrain on the odometer's performance. While occasional slippage may 

affect the odometer's accuracy, the UWB system remains unaffected. The 

absolute position data provided by the UWB can still be utilised to correct the 

odometer, thereby ensuring the accuracy of the overall system. 

 

4.3.2 Experimental Results 

This section analyses the experiment's outcomes, covering three main aspects. 

The first aspect involves comparing and evaluating the positioning results 
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obtained from the UWB system before and after its optimization. The second 

aspect examines the use of two distinct algorithms, DDF and UKF, to fuse the 

optimized UWB results with the positioning data from the odometer. Lastly, the 

section validates the positioning results derived from the improved algorithms. 

The positioning accuracy attained through these fusion methods will be 

thoroughly compared and detailed in presenting the findings. 

 

Figure 4.5 illustrates trajectories, represented in red, which were calculated using 

uncorrected UWB ranging values that include all NLOS errors and related noise. 

These trajectories clearly highlight the substantial negative impact of NLOS 

errors on the UWB system's positioning accuracy. Particularly noticeable on the 

left and right sides of the trajectory, the UWB signals are obstructed and cannot 

penetrate through multi-layer walls, resulting in significant NLOS errors due to 

multipath effects. The maximum positioning error observed exceeds 6.64 meters, 

with a RMSE of 0.845 meters. Such high levels of inaccuracy demonstrate that 

these results are unsuitable for IPS. 

 

Figure 4.5 UWB positioning results under the influence of NLOS 
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The implementation of the adaptive positioning algorithm, as shown by the green 

trajectories in Figure 4.6, leads to significant improvements in accuracy despite 

some positioning points still showing notable deviations. This inconsistency is 

likely due to the inherent challenges in achieving absolute accuracy in identifying 

NLOS conditions. In the trajectory, it is observed that the tag maintains 

communication with three LOS anchors near the left and right turning points, 

ensuring positioning accuracy that aligns with the reference path. However, when 

the tag moves through the central corridor, it can only connect with two LOS 

anchors. The extended length of the corridor contributes to a certain level of 

multipath effect, which results in fluctuations in the calculated positioning points. 

The optimized UWB positioning system achieves a maximum positioning error 

of 2.968 meters, with mean and RMSE values of 0.127 meters and 0.16 meters, 

respectively. 

 

Figure 4.6 UWB positioning results after the adaptive position algorithm 

 

The blue trajectory in Figure 4.6 is derived from the raw data collected from the 

odometer. Comparing and analysing this trajectory with the reference path shows 

that the accuracy of the odometer in the initial phase is highly satisfactory. 

However, as the duration of operation extends, there is a noticeable gradual 

accumulation of errors, which leads to a progressive divergence in the direction 
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of motion. This deviation is most pronounced at the rightmost inflexion point of 

the trajectory. Furthermore, the distance measured by the odometer at this point 

exceeds the actual distance travelled. This discrepancy is attributed to the 

accumulation of systematic errors in the odometer's measurements. 

 

The position data from these two sensors are fused using the proposed DDF 

method and the traditional UKF, with the following results. Figure 4.7 compares 

the localisation results of the UKF approach (a), represented by a magenta line 

and the DDF method (b), shown as a black line. 

 

(a) 
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(b) 

Figure 4.7 Position results of UKF (a) and DDF (b) 

 

Table 4.1 Position errors 

Position 

Error 

UWB 

(Original) 

UWB 

(Adaptive) 

Odometer 

(Original) 

UKF DDF 

Max (m) 6.639 2.968 1.191 0.677 0.238 

Mean (m) 1.448 0.127 0.259 0.119 0.073 

RMSE (m) 0.845 0.160 0.304 0.117 0.068 

 

The trajectories are illustrated in Figure 4.7, and the data is tabulated in Table 4.1. 

The UKF method significantly improves positioning accuracy, reducing the 

maximum positioning error to just 0.677 meters. Moreover, the mean error and 

the RMSE are substantially reduced to approximately 12 centimetres. This 

improvement signifies a notable enhancement in accuracy compared to the initial 

input from the odometer and the results from the optimized UWB system. The 

DDF yields a trajectory that closely aligns with the reference path. The data in 

Table 1 corroborate the efficacy of this approach, showcasing that the maximal 

error post-DDF fusion is reduced to 0.238 m. Both the mean error and RMSE 
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have been reduced to around 7 cm. Consequently, the proposed DDF method 

surpasses UKF in terms of positioning accuracy. 

 

4.4 Discussion 

Table 4.2 summarises the comparison of the positioning accuracy of different 

sensors and UWB fusion, from which it can be seen that the best positioning 

accuracy is obtained from the literature [155]. However, the experimental 

environment is in the ideal LOS environment. The literature [155] shows that in 

the LOS environment, only using UWB can achieve high positioning accuracy 

with an RMSE equal to 4.66 cm. However, once the UWB has NLOS errors, even 

in a weak NLOS environment, the overall positioning accuracy of the fused 

system will be seriously affected, such as in the literature [142], where the RMSE 

exceeds 20 cm. The result of [146] achieves an RMSE of 5 cm in a weak NLOS 

environment but uses three more sensors, including the expensive LiDAR. 

 

Therefore, in comparison with these papers, our proposed method uses only two 

sensors, UWB and odometer, and achieves an accuracy of NLOS equal to 0.068 

m in a harsh NLOS environment, which is an excellent performance. 

 

Table 4.2 Comparison with other methods 

Reference Fusion 

Algorithm 

Sensors LOS/NLOS Accuracy(cm) 

[101] KF UWB and IMU Hard NLOS RMSE = 30–40 

[72] EKF UWB, IMU, odometer LOS 
Fusion-RMSE = 3.29 

UWB-only RMSE = 4.66 

[145] 
EKF 

UKF 

UWB and IMU LOS 
MSE-EKF = 143 

MSE-UKF= 94 

[146] PF UWB, LiDAR, 

odometer 

Weak NLOS RMSE = 5 
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[142] Federated 

KF 

UWB, Visual Weak NLOS Mean error of fusion: <30 

[155] EKF UWB, IMU, mmWave 

radar 

LOS 
RMSE-UWB-IMU: 18.4 

RMSE-UWB-mmWave: 

32.3 

This 

chapter 

DDF UWB , odometer Hard NLOS RMSE = 6.8 

 

In the initial experimental findings, as depicted in Figure 4.5, it becomes evident 

that the precision of the UWB system’s positioning capability experiences a 

substantial decline when subjected to NLOS errors. This renders the system 

incapable of furnishing accurate positional information. While many approaches 

have been postulated to alleviate these NLOS errors, our experiments indicate 

that the most favourable positioning accuracy is achieved when ranges containing 

NLOS errors are straightforwardly omitted. This optimization arises from 

imperfections in the algorithms designed to detect and mitigate NLOS errors 

exclusively within the UWB system.  

 

Recognizing the limitations of the approach presented in this chapter is crucial. 

First and foremost, the effectiveness of this method relies on having at least two 

LOS ranges. When only a single LOS anchor point is available, the UWB system 

struggles to calculate tag coordinates independently, making it unsuitable for the 

strategy described in this document. Additionally, this chapter’s methodology 

primarily focuses on accurately determining the 2D coordinates of the tag. 

Comprehensive measurements for the tag’s 3D coordinates will be a subject of 

future research. Lastly, due to the constraints of our testing environment, the 

placement of UWB anchor points was not optimal, affecting the precision of the 

UWB system’s positioning data. Furthermore, this research employs a loosely 

coupled fusion method that requires both the UWB and odometer systems to 

provide the location information of the tag. If the UWB system encounters errors 
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that are difficult to recognise and ameliorate, especially in harsh environmental 

conditions, or if the odometer experiences slippage and large cumulative errors, 

the inability of the two subsystems to provide a system position can result in a 

significant loss of positional accuracy for the fused system. Consequently, 

Chapter 5 investigates the use of a tightly coupled integration method. The system 

can function normally with only one LOS range through this tightly coupled 

method, thereby enhancing its robustness and applicability. 

 

4.5 Conclusion 

This chapter introduces a fusion scheme for loosely coupling the UWB 

positioning system and the odometer, particularly in environments strongly 

influenced by NLOS conditions. The UWB system’s performance is notably 

compromised in such challenging conditions, and the odometer’s accuracy 

gradually diminishes over prolonged operation due to cumulative errors. This 

chapter applies an optimised UWB localisation approach to address these 

challenges, leveraging previously studied NLOS identification techniques based 

on sliding windows. Furthermore, a novel DDF method was proposed for 

integrating the optimised UWB localisation data with odometry, employing a 

loose-coupling fusion strategy. Notably, this method obviates the need for the 

robot to be actively or passively stationary for odometer calibration, and the 

calibration process exerts no influence on the robot’s motion. This enhancement 

significantly bolsters system efficiency and renders it more conducive for 

practical applications. The feasibility and accuracy of this fusion scheme are 

confirmed by experiments conducted in a real environment. The experimental 

results manifest an impressive RMSE and average error of around 7 cm for robot 

positioning. This performance surpasses the positioning accuracy of the 

odometer and the optimised UWB system and outperforms the fusion accuracy 

achieved through the UKF. 
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5. Chapter 5 A Tightly Coupled 

UWB and Wheel Odometry 

Based on a Dynamic UKF 

 

The previous chapter introduced a loosely coupled fusion scheme for UWB and 

odometry, demonstrating good accuracy through experiments. However, due to 

the limitations of the loosely coupled approach, we observed that when only one 

anchor point is in LOS with the UWB system, the positioning information 

provided by UWB becomes highly inaccurate, further compromising the accuracy 

of the fused positioning. To address this issue comprehensively, this chapter will 

adopt a tightly coupled approach and construct a fusion IPS using a dynamic UKF 

algorithm. 

 

5.1 Introduction 

As previously discussed, various industries increasingly demand higher accuracy 

indoor positioning with the advancement of technologies such as smart devices 

or the IoT. The GNSS, represented by the GPS, faces significant challenges due to 

signal blockage caused by buildings, rendering it unsuitable for indoor 

positioning. In recent years, research on IPS has primarily been categorised into 

two domains: RF-based technologies, such as UWB [156], Wi-Fi [157], and 

Bluetooth [158-160], and non-RF technologies, such as IMU[161], Camera[162], 

and LiDAR [163]. 

 

RF-based IPS strikes a balance when considering cost and positioning accuracy. 

While Wi-Fi and Bluetooth offer low costs, these methods often rely on RSS 

fingerprinting algorithms or path loss models for positioning purposes, resulting 

in accuracy typically at the meter level [164, 165]. Even with convolutional CNN-
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assisted Wi-Fi fingerprinting algorithms, as described in [166], the final 

localisation error reaches 7.6 m. Some researchers have also adopted other 

algorithms for accuracy improvement. For example, the literature [167] claims to 

have achieved decimetre-level positioning accuracy through the RSSI-assisted 

TDOA method. On the other hand, UWB provides higher accuracy at decimetres 

or even centimetres at a comparable cost.  

 

RF-based IPS generally offers a wider coverage range since signals can penetrate 

obstacles or utilise multipath propagation under NLOS conditions indoors, 

enabling the fulfilment of large-scale localisation requirements as demonstrated 

by wall-penetrating human tracking using Wi-Fi [168]. However, RF-based IPS 

may experience significant positioning errors in complex indoor environments 

due to NLOS effects. The NLOS errors caused by walls are discussed in the 

literature [169], with experimental data showing that factors that the UWB signal 

passes through, such as the number of walls and the material of the walls, can 

lead to several decimetre errors in the UWB range. Even after the mitigation 

algorithm in this chapter, the NLOS error is still more than ten centimetres. 

 

Due to its wide bandwidth, UWB technology exhibits a high data transmission 

rate. It commonly employs nanosecond-level pulse signals for communication, 

ensuring low energy consumption and providing centimetre-level accuracy with 

high multipath resolution [170]. Consequently, UWB has emerged as a prominent 

research focus for future endeavours in achieving precise indoor positioning. The 

prevailing positioning algorithms employed in UWB encompass TOA, TDOA, and 

AOA. These algorithms primarily measure the signal’s TOF to determine the 

distance between the tag and fixed anchor points [171]. However, it is crucial to 

acknowledge that even a minute error as small as one nanosecond can result in 

an amplified ranging error of up to 30 cm due to multiplying TOF by the speed of 

light [38]. Moreover, obstacles like walls, furniture, or moving individuals in 
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indoor environments may impede LOS communication within UWB systems, 

leading to NLOS errors. The NLOS ranging error due to human shading is around 

30 cm, and the NLOS error due to concrete walls can be more than 1 m. Ranging 

values with NLOS errors lead to larger positioning errors when calculating the 

coordinate points. Therefore, identifying and mitigating NLOS errors represents 

a significant area of interest within UWB IPS research. 

 

Previous literature has generally categorised the handling of this issue into three 

categories. The first category involves identifying and mitigating NLOS effects by 

analysing variations in distance measurements. In reference [113], equality-

constrained Taylor series robust LS suppress NLOS residuals, achieving 

positioning accuracy of around 30 centimetres in complex environments. The 

second category focuses on CIR, where the main principle is that under LOS 

conditions, the energy of the first path arrival signal is significantly higher than 

that of other paths, and this difference decreases under NLOS conditions. AI 

algorithms have significantly assisted feature extraction and classification for 

LOS/NLOS scenarios. Reference [172] utilises an SVM to achieve a recognition 

accuracy rate of 92% for NLOS identification based on hundreds of real training 

data sets. Similarly, reference [173] demonstrates that CNN algorithms can 

achieve over 90% accuracy in directly processing CIR data for NLOS 

identification. Deep learning techniques [51] are also suitable for classifying UWB 

channel conditions, as they automatically extract features from raw data without 

requiring manual feature extraction [174, 175]. The final category involves 

utilising other sensors to identify and mitigate NLOS effects. Previous researchers 

have conducted extensive studies on integrating IMU [65, 176], camera [142], and 

LiDAR [64, 144] with UWB technology for IPSs. Those studies have some 

drawbacks. Either the algorithms are complicated and computationally expensive, 

or the hardware costs are high. Therefore, this chapter aims to achieve 
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centimetre-level positioning through a simple, low-cost algorithm for fusing 

UWB and wheeled odometers. 

 

Wheeled odometers are widely used in indoor AGVs, enabling independent 

calculation of the robot’s coordinates and motion status. It has a low cost and a 

simple structure, making it easy to maintain. With the development of 

optoelectronic technology, the accuracy of wheeled odometers has been greatly 

improved. Based on the advantages of high accuracy in a short time, low cost, and 

wide application of odometers, this chapter identifies and mitigates UWB NLOS 

errors by fusion with wheel odometry. The most prevalent fusion algorithms in 

multi-sensor systems encompass the KF [177], the EKF [108, 178], the UKF [145, 

179], and the PF [127]. KF is a fundamental fusion technique typically suitable for 

linear systems but exhibits subpar performance in nonlinear systems. Extended 

algorithms such as EKF and UKF have been proposed to address nonlinear 

systems. EKF approximates nonlinear systems using Taylor series expansion, 

which introduces errors due to linearisation. UKF approximates nonlinear 

systems through UT by sigma points. When dealing with highly nonlinear 

problems, UKF outperforms EKF. PF has a broader range of applications as it 

simulates the probability distribution of a system utilising a set of random 

particles and can handle both linear and nonlinear systems. However, given that 

the system’s complexity increases along with the number of particles involved, PF 

necessitates significant computational resources and may be limited in its 

application on small, low-cost devices. Considering all factors, we adopt UKF for 

fusing UWB and wheel odometry in this chapter. 

 

The traditional NLOS identification methods, especially the algorithms for CIR 

analysis, are usually complicated and computationally intensive. However, the 

algorithm proposed in this chapter only needs to analyse the outliers of the 

ranging values to achieve the identification of NLOS, which is a simple and 
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reliable algorithm. In the research on mitigating NLOS errors, many previous 

studies, such as experiments in literature [180, 181], were conducted in a milder 

NLOS environment. At the same time, the method proposed in this chapter is 

validated in a more demanding NLOS environment, and better centimetre-level 

positioning can be obtained. The main contributions of this chapter are as follows: 

• Proposes a simple method to identify and mitigate the NLOS effects on UWB 

ranging values, assisted by odometry data. 

• Proposes a DUKF fusion method that dynamically adjusts the UKF based on 

NLOS, HDOP, and robot motion states to achieve more accurate localisation. 

• Compared with previous studies, the experimental environment designed in 

this chapter is harsher for the fusion system of UWB and the odometer, which 

is better for verifying the accuracy and robustness of the system. 

 

The organisation of this chapter is as follows. The second section introduces 

algorithms, encompassing fusion algorithms and tightly coupled frameworks. 

The third section presents the experimental design and result analysis. The fourth 

section entails a discussion. Finally, a conclusion of this chapter, along with 

future research plans. 

 

5.2 Methods 

Some studies have used simpler, loosely coupled algorithms for the fusion of 

UWB and other sensors, but such algorithms require each subsystem to compute 

the robot’s position independently [177]. In a strong NLOS environment, accurate 

positioning information becomes challenging due to limited LOS distance 

measurements from the UWB system. The accuracy of IPS based on loose 

coupling will also be significantly affected by inaccurate UWB positioning. 

Conversely, tightly coupled integration utilises raw measurement data from both 

subsystems as inputs and employs fusion algorithms to calculate the system’s 

coordinates and pose. Tightly coupled integration processes data early, 
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improving complexity and accuracy compared to loose coupling. In complex 

environments, tight coupling accuracy is better than loose coupling [180]. The 

tight coupling algorithm adopted in this chapter is shown in Figure 5.1. 

 

 

Figure 5.1 Flowchart of the DUKF 

 

The UWB system provides distance measurements from the robot to the four 

anchor points, and the wheeled odometer calculates information about the 

robot’s motion and position. The odometer position can be used to assist in 

calculating the HDOP value of the UWB system and the distance to the four UWB 

anchor points. Specifically, HDOP is a ratio factor that reflects the effect of the 

geometrical relationship between the position of the anchor point and the tag in 

the UWB system and its accuracy. The final positioning error is obtained by 

multiplying the base positioning error with the HDOP value. Ideally, the HDOP 

value is small, but if the HDOP value is large, the UWB system is not well placed, 

increasing the error and reducing the accuracy. The distances calculated from the 

UWB ranging values and the odometer positions can be used to identify and 

mitigate the NLOS errors of the UWB. Finally, the DUKF algorithm proposed in 

this chapter can obtain optimised positioning information. The algorithm 
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illustrated in Figure 5.1 consists of three main parts: NLOS identification and 

mitigation, computation of HDOP values, and DUKF fusion of all data to output 

robot coordinates. These three parts are explained separately below. 

 

5.2.1 NLOS Identification and Mitigation 

When UWB is affected by NLOS, a positive error in the corresponding distance 

measurement is introduced. Wheel odometry can provide high-frequency 

outputs of the robot’s speed and direction, which can be used to determine the 

robot’s position. Identification and mitigation of NLOS can be achieved by 

comparing the distance of the odometer coordinates to the UWB anchor point 

and the corresponding measured distance of the UWB. 

𝑎𝑏𝑠(∆𝑒) =  𝑎𝑏𝑠(𝑑𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟 − 𝑑𝑈𝑊𝐵) {
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 →  𝐿𝑂𝑆

≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 → 𝑁𝐿𝑂𝑆
(5.1) 

 

In Equation 5.1, the difference (∆𝑒) between the distance between the odometry 

provided position information and the fixed anchor points of UWB (𝑑𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟) 

and the UWB measured range(𝑑𝑈𝑊𝐵) can be used to identify NLOS. Ideally, ∆𝑒 

should be equal to zero, but cumulative errors in odometry cause ∆𝑒 changes over 

time. Nevertheless, ranging errors caused by NLOS can be several tens of 

centimetres or even meters, ∆𝑒 can still serve as an effective basis for identifying 

NLOS. 

 

Relying solely on this method for NLOS identification is not accurate enough; 

therefore, we apply the sliding window algorithm proposed in previous research 

[182] to ∆𝑒. If sudden changes or outliers occur within ∆𝑒, it indicates that the 

current UWB distance measurement is affected by NLOS. When the window size 

is k, NLOS can be determined by Equation 5.2. 

𝑉𝑎𝑟(𝛥𝑒𝑛−𝑘, 𝛥𝑒𝑛−𝑘+1 … 𝛥𝑒𝑛) {
< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 →  𝐿𝑂𝑆

≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 → 𝑁𝐿𝑂𝑆
(5.2) 

If the UWB range value at a particular time is identified as containing NLOS by 

two judgment conditions, then the range value is judged to have suffered from 
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the effect of NLOS error. By combining these two criteria for judgment, NLOS can 

be identified more accurately. The impact of the NLOS error is much larger than 

the cumulative error of the odometer. Thereby, identified range values from an 

anchor point containing NLOS errors are replaced directly with distances 

between odometer positions and this anchor point. This method improves 

accuracy in updating measurement values using UKF. 

 

5.2.2 HDOP 

Similar to GPS, the accuracy of UWB systems is influenced by the distribution of 

anchor points and their geometric relationship with the tag. In this chapter, which 

focuses on 2D plane positioning using a wheeled robot, HDOP can be utilised to 

quantify measurement accuracy at specific locations. 

 

If there are n fixed anchors in the UWB system, the anchor point coordinates are 

(𝑥𝑖, 𝑦𝑖)𝑖 ∈ (1,2,3 ⋯ 𝑛 − 1), and the tag coordinates are (𝑥, 𝑦), with a distance of 𝑑𝑖 

between them. The unit LOS vector (𝑎𝑖, 𝑏𝑖) for anchor point i can be obtained 

from Equation 5.3 below. 

𝑎𝑖 =  
𝑥𝑖 − 𝑥

𝑑𝑖
, 𝑏𝑖 =  

𝑦𝑖 − 𝑦

𝑑𝑖

(5.3) 

𝐻 = [

𝑎0 𝑏0

𝑎1 𝑏1… …
𝑎𝑛−1 𝑏𝑛−1

] (5.4) 

The unit LOS vectors of all anchors can form the observation matrix H (Equation 

5.4), and the covariance matrix Q is represented by Equation 5.5. As HDOP is the 

horizontal component of the Q matrix, it can be expressed by Equation 5.6. 

𝑄 = (𝐻𝑇𝐻)−1 (5.5) 

𝐻𝐷𝑂𝑃 =  √𝑄11 + 𝑄22 (5.6) 

In order to prevent UWB NLOS errors from affecting the accuracy of HDOP, the 

robot's position calculated by the odometer is used instead of the tag position 

when calculating HDOP. 
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5.2.3 UKF 

UKF is an extension of KF, mainly used to deal with nonlinear systems. Unlike 

EKF’s method of linearising nonlinear systems, UKF is an approximate nonlinear 

system based on the UT of sigma points, avoiding complex Jacobian matrix 

calculations [1] and the errors introduced by linearisation. According to the 

literature [145], the accuracy of EKF can reach the first order of the Taylor series, 

while the accuracy of UKF can reach the third order of the Taylor series. 

Equations 2.13-2.30 in Chapter 2 describe the standard UKF calculation process. 

 

Following the iterative process, UKF can effectively handle systems with strong 

nonlinear characteristics. The parameters α, κ, β, Q, and R in the given equations 

play a crucial role in determining the performance of UKF. Among these 

parameters, α controls the diffusion level of sigma points and is typically assigned 

a small value such as 1×10^(-3). κ is used to adjust the weight distribution of 

sigma points and is usually set to 0 in practical experiments. Additionally, a 

parameter β influences the characteristics of state distribution when calculating 

the mean weight; for Gaussian distributed states, β is commonly set to 2.  

 

In the fusion IPS of the UWB and odometer, Q and R affect the degree of 

dependence of the fusion system on the two subsystems. Especially in practical 

applications, the two subsystems will change due to environmental factors or 

changes in the robot’s state. Setting Q and R to a fixed value will seriously affect 

the performance of UKF. In this chapter, the Q and R of UKF were dynamically 

adjusted by considering the NLOS and HDOP values of UWB and the motion state 

of the robot.  

Algorithm 7 below demonstrates the tightly coupled algorithmic process 

proposed in this chapter. 
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5.3 Experimental Design and Results 

5.3.1 Experimental Equipment and Environment 

Based on the algorithm proposed above, this part will design a harsh experiment 

to verify the stability and accuracy of the algorithm. The cumulative error of the 

odometer will gradually increase with time and distance, so the experiment will 

be conducted in a large site so that the odometer will increase the error level by 

moving for a long time and over a long distance. The NLOS error is the most 

important factor affecting the UWB system, and since the algorithm proposed in 

this chapter adopts a tightly coupled approach, the experiments are designed to 

include the stringent situation of having only one LOS anchor point. Meanwhile, 

this part of the experimental path design takes into account the influence of the 

geometric layout of the UWB anchor points on the positioning accuracy and 

introduces the parameter HDOP to assist in adjusting the UKF. The following is 

the specific experimental procedure designed according to the above ideas. 

 

The UWB experiment employs the DW1000 chips (Figure 5.2a) module from 

Decawave, which utilises the two-way ranging (TWR) method to measure the 

distance between the tag and anchor. Based on real measurements, it has been 

determined that this module operates at a sampling frequency of 3 Hz, providing 

a ranging accuracy within 10 cm under LOS conditions. The wheel odometry 

relies on turtlebot2's built-in odometer (Figure 5.2b), operating at a sampling 

frequency of 20 Hz. Systematic and random errors are two primary sources of 

error in wheel odometry. Systematic errors arising from slight differences in 

wheel diameter and friction coefficient variations led to accumulated drift during 

positioning experiments. The random error resulted from wheel slippage and 

uneven surfaces during movement. The experimental trials were conducted on 

the sixth floor of UTS Building 11, as shown in Figure 5.2c. The test site featured 

rough and even carpeting on the ground surface, effectively mitigating random 
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errors associated with motion for the wheel odometry system. The UWB system 

is running on a Windows computer, and the odometer is running on Ubuntu on 

another computer. The two sets of data are time synchronised by the system time 

to validate the fusion algorithm proposed in this chapter. 

 

  

(a) (b) 

 

(c) 

 

(d) 
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Figure 5.2 Experiment design: (a) UWB, (b) turtlebot2, (c) experimental site, 

and d) map and reference path 

 

The experimental map and robot trajectory are depicted in Figure 5.2d. The four 

yellow boxes in this figure correspond to the positions of UWB anchors (Anchor 

0, 1, 2, 3) with coordinates (8.7, 5.1), (8.91, 7.4), (24.8, 6.13), and (24.8, 8.99), 

respectively, and the height of the anchors are all 1.87m. The orange solid line 

represents the reference path of the robot’s movement, and the red dots indicate 

its initial and final position. The robot starts from its initial position and moves 

to a U-turn point represented by a purple dot before returning to its starting point 

again. A UWB tag is installed on the robot; however, due to obstructions caused 

by walls during robot motion, some anchor measurements may experience NLOS 

errors. Within the region outlined by red dashed lines in the figure, the signal 

from Anchor 1 is obstructed by a cabinet, whereas walls block signals from 

Anchors 2 and 3. As such, only Anchor 0 remains within the LOS state in this area. 

Three LOS anchors exist at both corridor ends, indicated by green dashed lines. 

In the middle corridor enclosed within the blue dashed lines region, Anchors 0 

and 2 remain within the LOS state, while walls block signals from Anchors 1 and 

3. The UWB system necessitates adaptive switching between environments with 

one, two, and three LOS anchors in this experimental setup. This environment 

significantly challenges the accuracy and stability of the proposed DUKF. The 

different LOS regions are numbered from left to right, as shown in Figure 5.2d. 

Table 5.1 below clearly shows which anchors are in LOS in different areas. 

 

Table 5.1 LOS anchors in different areas 

Area 1 2 3 4 5 6 

LOS Anchors 0 and 1 0 0 and 1 0, 1, and 2 0 and 2 0, 2, and 3 

 

5.3.2 Experiment Results 
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Figure 5.3 below shows the trajectory plot using raw data from UWB and 

odometry. The red dots represent the coordinates of the tags calculated using the 

LS method from the raw UWB data containing the NLOS errors. It shows the 

significant impact of NLOS errors on the UWB system. Due to NLOS errors, the 

overall trajectory deviates from the reference path. The NLOS also increases 

measurement noise, resulting in more dispersed localisation points. In this 

scenario, the accuracy and precision of the UWB system are poor. The maximum 

error exceeds 6 m, and the RMSE surpasses 80 cm, making it difficult to meet 

indoor positioning requirements. 

 

 

Figure 5.3 UWB and odometer raw trajectories 

 

On the other hand, the green trajectory represents the original path plotted using 

odometry data. It can be observed that initially, at the early stages of motion, the 

green trajectory closely aligns with the reference path. However, as the distance 

travelled and the number of turns increases for odometry measurements, there is 

a gradual deviation from the reference path. This deviation reaches a maximum 
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value of 1.093m when it reaches the U-turn point. The average error and RMSE 

for odometry are slightly over 20 cm. Although odometry also suffers from 

cumulative errors, it can still serve as an auxiliary means to identify which anchor 

point's ranging value in the UWB system has encountered NLOS errors, as shown 

in Figure 5.4. 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.4 UWB ranging values (blue), the distance between the anchor point and 

odometer (green), the difference between the range and the distance (orange) and 

the robot is stopped by human interference (red box), (a) Anchor 0, (b) Anchor 1, 

(c) Anchor 2, (d) Anchor 3 

 

The original ranging values (𝑑𝑛_𝑈𝑊𝐵, n=0, 1, 2, 3) of the four UWB anchors are 

depicted in Figure 5.4 with four blue lines. It can be observed that the ranging 

value of Anchor 0 remains smooth and mostly unaffected by NLOS conditions. 

However, the remaining three anchors experience varying degrees of influence 

from NLOS during robot movement, leading to significant fluctuations in 

measured distances. Both Anchor 1 and Anchor 3 even lose data when multiple 
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walls block the signal. The data enclosed within the red box corresponds to 

situations where sudden pedestrian presence pauses robot movement 

temporarily. Furthermore, when the robot resumes its motion, NLOS occurs as 

pedestrians pass through Anchors 0 and 1; this can also be observed from the 

fluctuating data in Figure 5.4. 

 

The green line in the diagram represents the distance between the anchor point 

and the robot coordinates provided by the odometer (𝑑𝑛_𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟, n = 0, 1, 2, 

3). The orange line in the figure represents the difference ( 𝑒𝑛 ) between 

𝑑𝑛_𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟 and 𝑑𝑛_𝑈𝑊𝐵. It can be observed from the graph that when UWB 

is affected by NLOS, 𝑒𝑛  exhibits a significant increase with pronounced 

fluctuations. By considering the absolute value of 𝑒𝑛  and employing the 

previously studied sliding window method, NLOS can be accurately identified. 

Under NLOS conditions, 𝑒𝑛 is much smaller than NLOS errors. Therefore, this 

study mitigates NLOS effects by substituting 𝑑𝑛_𝑈𝑊𝐵  contains NLOS errors 

with corresponding 𝑑𝑛_𝑂𝑑𝑜𝑚𝑒𝑡𝑒𝑟 values. 

 

According to the robot’s position provided by the odometry, the HDOP value of 

the UWB system can be calculated. The UWB data after NLOS mitigation is used 

as observation input for UKF, with a noise covariance matrix R = diag[𝑟0, 𝑟1, 𝑟2, 

𝑟3]. According to the values of 𝑒𝑛 and HDOP dynamically adjusts R in UKF, the 

corresponding 𝑟𝑛 for range measurements with NLOS errors can be calculated 

by Equation 5.25.  

𝑟𝑛 =
𝑎𝑏𝑠(𝑒𝑛)

𝑣𝑎𝑟
∗ 𝐻𝐷𝑂𝑃 (5.25) 

where 𝑣𝑎𝑟 is the threshold in the sliding window identification NLOS algorithm, 

which changes according to different environments.  

 

The state vector of the UKF system is 𝑋 = [𝑥,𝑦,𝜃], where (x,y) represents the 

coordinates of the robot and 𝜃 is the heading angle. For this experiment, different 
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Q values are set based on the robot’s motion state. The robot’s coordinates and 

heading angle remain constant when stationary, so the Q = diag [0, 0, 0]. During 

straight-line movement, the odometer coordinates are affected by more noise, 

and the heading angle is not affected as significantly. It is better to increase the 

values of x and y in Q and keep the values of 𝜃 at a small number, so set Q = diag 

[0.01, 0.01, 0.0001]. On the contrary, if the robot is turning, Q is set to diag 

[0.0001, 0.0001, 0.01]. Employing this fusion algorithm called DUKF, the fused 

trajectory of the system is shown in Figure 5.5. 

 

 

Figure 5.5 Trajectory of DUKF 

 

The magenta line in Figure 5.5 represents the robot trajectory output through the 

DUKF algorithm, demonstrating its proximity to the reference path. Fusion with 

DUKF has significantly enhanced positioning accuracy compared to UWB and 

odometry, as evidenced by specific data in Table 5.2. 

 

Table 5.2 Position error 

 UWB-only Odometer DUKF 

Max(m) 6.708 1.093 0.342 

Mean(m) 1.484 0.221 0.085 
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RMSE(m) 0.835 0.296 0.075 

 

Figure 5.5 demonstrates the effective mitigation of harsh NLOS interference on 

the UWB system by the DUKF algorithm, resulting in optimised positioning 

accuracy and precision. A comparison with the odometer raw trajectory in Figure 

5.3 shows a notable reduction in cumulative errors related to total mileage and 

direction of motion. The data presented in Table 5.2 indicates that under strong 

NLOS conditions, UWB positioning accuracy has degraded to unacceptable levels. 

The overall accuracy of the odometers exceeds expectations and can achieve an 

RMSE of around 0.3 m over long run times. 

 

The DUKF algorithm significantly improved positioning accuracy, with an RMSE 

of 0.075 m and a mean error of 0.085 m, achieving the UWB system’s claim for a 

10 cm positioning error under LOS conditions. The result demonstrated that the 

DUKF algorithm can achieve robust and highly accurate positioning in complex 

indoor environments. 

 

5.4 Discussion 

The data in Table 5.2 also reveals that DUKF still exhibits a maximum positioning 

error of 30 cm on the left side of the trajectory when the robot makes a right-angle 

turn to return to the ending point. In this area, there is only one valid LOS anchor 

point for UWB, and the odometry system also experiences a significant decrease 

in motion accuracy over long distances. Consequently, both subsystems’ 

observations and predictions contain substantial errors, indicating reduced 

accuracy in the final segment of the trajectory as the robot moves along the Y-axis 

during its return journey. The red boxes marked trajectory in Figure 5.5 represent 

a scenario explained in Figure 5.4 where the sudden appearance of pedestrians 

caused robot stoppage, and NLOS occurred for Anchors 0 and 1. Only Anchor2 

remained in the LOS state for the UWB system during this time. It can be 
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observed that the position result of DUKF was a brief deviation from the reference 

path at this moment, but as soon as the pedestrian obstruction disappeared, it 

gradually approached closer to the reference path again. Based on these two 

scenarios above, it can be concluded that even when applying the DUKF 

algorithm, at least one LOS UWB anchor point is necessary to ensure the system’s 

positioning accuracy. 

 

Table 5.3 below summarises recent research on combining UWB with other 

sensors to form an IPS. The comparison reveals the advantages of the fusion 

system in this research. 

 

Table 5.3 Comparison with other methods 

Reference Sensors Hardware Cost LOS/NLOS Accuracy(cm) 

[183] Visual, Inertial 

and UWB 

High Moderate 

NLOS 

RMSE: Over 20 

[102] UWB, IMU Low Mild NLOS RMSE: 7.58 

[184] UWB, IMU Low LOS RMSE: 4 

[181] UWB, IMU, 

Odometer, 

LIDAR 

High Mild NLOS RMSE: 7-9 

[185] LiDAR, UWB High LOS RMSE: 14 

[54] UWB, IMU Low Mild NLOS Mean error: 12 

[186] Visual, UWB High LOS RMSE: 20 

This research UWB, 

Odometer 

Low Harsh NLOS RMSE: 7.5 
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In Table 5.3, it is evident that certain studies have achieved high positioning 

accuracy in UWB fusion systems, as demonstrated by references [102, 181, 184], 

all of which have accomplished positioning accuracy within 10 cm. However, 

these experiments were conducted primarily in LOS or mildly NLOS 

environments. For example, in literature [181], the NLOS of the UWB system is 

generated by the occlusion of the sparse plants in the greenhouse, and from the 

experimental results, it can also be seen that the system can achieve a positioning 

accuracy of about 15 cm when only using UWB, which also proves that UWB has 

a relatively mild effect on NLOS. Conversely, alternative sensors such as vision 

and LiDAR escalate hardware costs and fail to provide higher positioning 

accuracy comparable to UWB-only IPS. Consequently, some studies indicate 

decreased positioning accuracy when these sensors are integrated. For instance, 

references [183, 186] reveal that a UWB system fused with visual sensors achieves 

an approximate positioning accuracy of 20 cm. The strength of the current study 

lies in utilising cost-effective sensors to achieve centimetre-level positioning 

accuracy even under harsh NLOS conditions. 

 

5.5 Conclusion and Future Planning 

 

The present research proposes a tightly coupled architecture-based DUKF 

algorithm fusion of UWB and wheel odometry to form an IPS. This method offers 

the advantages of cost-effectiveness, high accuracy, and robustness without 

analysing UWB’s CIR characteristics or establishing error models, making it 

suitable for diverse indoor environments. The design of this validation 

experiment is highly rigorous, considering not only the NLOS state of some UWB 

anchors caused by wall obstructions but also interferences from a sudden human 

presence on both the odometry and UWB systems. The experimental scenarios 

meticulously consider real-life environmental factors, including a scenario with 

only one LOS anchor point. In this intricate and dynamic experimental setting, 



 

138 

the proposed DUKF system achieved an impressive RMSE of only 0.075 m and 

an average error of 0.085 m, achieving stable robot localisation at centimetre-

level accuracy. Future research plans will integrate sensors such as cameras or 

LiDAR into the system to enable mapping, obstacle recognition, collision 

avoidance, and path planning while concurrently maintaining precise positioning 

accuracy at the centimetre level. 
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6. Chapter 6 Conclusions and 

Future Work 

 

The advancement of intelligent devices and IoT technology has stimulated the 

demand for IPSs. Conventional methods like Wi-Fi and Bluetooth exhibit 

positioning errors ranging from several centimetres to over a meter, limiting their 

utility to only presence detection and rough positioning purposes. Emerging 

applications such as AR, VR, and smart warehouses necessitate more precise 

determination of coordinates and postures for individuals or robots. Researchers 

are actively working towards enhancing indoor positioning accuracy to the 

centimetre level, with UWB technology being a promising choice. UWB's ability 

to transmit extremely short pulses enables more accurate measurement of signal 

flight time, thereby achieving centimetre-level ranging precision. However, this 

characteristic also renders UWB highly susceptible to NLOS errors caused by 

environmental obstructions in complex indoor settings that constantly change. 

In UWB IPS deployments, obstacles can easily obstruct LOS signals, leading to 

NLOS errors. Our empirical measurements demonstrate that NLOS ranging 

errors induced by human bodies fall within several tens of centimetres; materials 

possessing strong signal shielding capabilities, like concrete walls or iron doors, 

can cause ranging errors on the scale of meters. Consequently, NLOS errors 

significantly impact the accuracy and stability of UWB IPS solutions. The primary 

objective of this thesis is to achieve cost-effective centimetre-level positioning 

accuracy while accounting for NLOS effects in UWB systems. 

 

6.1 UWB-Only IPS 

The primary objective of Chapter 3 is to investigate UWB-only IPS. Section 3.1 

proposes a method for identifying and mitigating NLOS. The basic principle of 
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NLOS identification is the sudden increase in range measurements caused by 

NLOS errors. This study focuses on AGVs, which typically have a movement 

speed of less than 1m/s. If there is a significant difference in range measurements 

between two adjacent time points for a certain UWB anchor, it is considered to 

be affected by NLOS. Additionally, under NLOS conditions, measurement noise 

increases. If the variance of range measurement differences noticeably increases 

in a period, it can also be considered as being influenced by NLOS. The NLOS can 

accurately be identified using this section's proposed sliding window method. 

Furthermore, this section introduces a 2D error model specifically for wall-

induced NLOS effects. Combining these two algorithms can effectively identify 

and mitigate the impacts caused by NLOS. 

 

In Section 3.2, a WLS algorithm based on NLOS errors is proposed. This 

algorithm assigns different weights to distance measurements according to the 

anchor's state, including LOS/NLOS and the degree of NLOS influence. It 

effectively utilises distance measurements affected by NLOS errors. Additionally, 

the error model of walls is improved from 2D to 3D, further enhancing the 

accuracy of NLOS error correction. Experimental results demonstrate that this 

method can achieve positioning accuracy similar to LOS under severe NLOS 

effects caused by walls. 

 

However, utilising the UWB module in our experiments incurs a substantial 

hardware cost. In scenarios like airports or shopping malls, which encompass 

large areas, more UWB anchors are required, further escalating the hardware 

expenses associated with UWB technology. To address this concern, Section 3.3 

proposes a transformation of fixed anchors utilised in UWB IPS into mobile 

anchors. By relocating idle anchors to areas with positioning requirements, we 

can effectively reduce the number of UWB IPS anchors and associated hardware 

costs without compromising system accuracy. Experimental results validate that 
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precise tag positioning can still be achieved even when anchor systems are in 

motion. 

6.2 Multi-Sensor Fusion Method for UWB and 

Wheeled odometers 

Although UWB-only IPS research has partially mitigated the impact of NLOS 

errors, it falls short in addressing the complexities of real-world scenarios 

compared to controlled experimental environments. A low-cost and highly 

accurate multi-sensor fusion approach is proposed to overcome this limitation by 

integrating UWB and odometry systems. By leveraging their respective strengths, 

these sensors synergistically enhance the accuracy and robustness of the system. 

 

The fourth chapter presents a loosely coupled framework introducing a fusion 

algorithm for UWB and odometry. Firstly, the sliding window method proposed 

earlier is utilised to detect NLOS, followed by dynamic adjustments of the UWB 

positioning algorithm based on the number of LOS anchor points to optimize the 

UWB system. While wheel odometry is subject to long-term positioning 

inaccuracies due to systematic and random errors, the optimized UWB system 

provides absolute coordinates regardless of operating time. Utilizing stable 

motion coordinates from UWB makes it possible to rectify deviations in total 

mileage and direction caused by odometry, smoothing out UWB coordinates 

fluctuations resulting from measurement noise. Experimental results 

demonstrate that this algorithm can maintain accurate system positioning even 

under strong interference affecting UWB. 

 

The fifth chapter presents a tightly coupled approach for integrating UWB and 

wheel odometry. In contrast to the loosely coupled method discussed in Chapter 

4, which relies on both subsystems providing coordinate information, this 

approach addresses the challenges faced in more complex environments where 

UWB has only one LOS anchor, making it difficult to ensure accurate positioning 
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with loose coupling. To solve this problem, a dynamic UKF algorithm that tightly 

couples UWB with wheel odometry is proposed in this chapter. This algorithm 

leverages odometry measurements to assist UWB in identifying and correcting 

NLOS conditions and calculates the HDOP of the UWB system using coordinates 

obtained from the odometry system. Precise fusion-based localisation can be 

achieved by dynamically adjusting UKF parameters and measurements based on 

the NLOS status of UWB, HDOP values, and robot motion states measured by the 

odometry system. Rigorous experimental scenarios are designed to evaluate the 

performance of the proposed method under various UWB operation scenarios (1, 

2 or 3 LOS anchors) while also considering potential disruptions caused by 

human presence that impact normal operations of both UWB and wheel 

odometry systems. Under such demanding and realistic conditions, the proposed 

system autonomously identifies NLOS conditions and dynamically adjusts UKF 

parameters to achieve centimetre-level positioning accuracy consistently. 

 

6.3 Future Work and Applications 

A fusion positioning system combining UWB and odometry has been gradually 

developed through the research above, demonstrating universal applicability 

even in harsh NLOS environments while maintaining accuracy. However, the 

system lacks mapping, obstacle recognition, and path planning abilities. Future 

research will primarily incorporate visual sensors to enhance UWB IPS's 

perception of the surrounding environment. It should be noted that visual 

sensors still exhibit significant localisation errors compared to UWB systems' 

centimetre-level precision. Based on the findings of other researchers at this stage, 

it is challenging for these two sensor types to achieve centimetre-level positioning 

when fused. Therefore, future research directions will combine vision and UWB 

technologies to achieve centimetre-level accuracy. 
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The development of precise indoor positioning technology has a great impact on 

many industries. In this research, UWB-only indoor positioning systems can be 

applied to the management of people and goods, such as the management of 

patients and medical devices in hospitals, the location of people and real-time 

navigation in shopping malls, the real-time tracking of baggage in airports and 

the location of goods in smart warehouses, and the localisation of people in 

emergency rescue. Some major cell phone manufacturers have already added 

UWB to their phones, and in the future, it is expected that these smart terminals 

will be able to provide more accurate real-time positioning for people through 

indoor UWB positioning systems. The fusion of UWB and odometry is aimed at 

the developing robotics industry. Many robots have already been applied in real 

life, including daily use of sweeping robots, intelligent forklifts and sorting robots 

in smart warehouses, and robots in shopping malls and hospitals to deliver goods 

in buildings. 

 

The centimetre-level positioning accuracy achieved in this research could 

facilitate innovation and development in these industries. For example, it can 

help audiences find their seats quickly for theatres and concerts. For smart 

warehousing and logistics it can improve the efficiency and accuracy of goods in 

and out of the warehouse and reduce costs, and for robots, accurate positioning 

can assist in more precise path planning and obstacle avoidance. With future 

research, the application of accurate indoor localisation will be even more 

extensive, bringing more value to the industry and consumers. 
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