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Abstract
Quantum Neural Networks (QNNs) are promising machine learning models with potential

quantum advantages over classical neural networks. This thesis focuses on their architecture
design, training methodologies, and certain applications, addressing three challenges in QNN
research: overcoming barren plateaus in training, designing problem-specific QNN models, and
tackling state-of-the-art classical machine learning models. The thesis is divided into three main
parts, each targeting a specific challenge. The first part proposes quantum-optimization-powered
training methods that exploit hidden structures in the QNN optimization problem to mitigate
the barren plateau issue. The second part designs problem-tailored QNNs for graph-structured
data, incorporating inductive biases into their architectures to enhance trainability and gen-
eralization. The third part explores the quantum implementation of Generative Pre-trained
Transformers (GPT) — the original version of ChatGPT. By addressing these challenges, this
thesis contributes to advancing the field of Quantum Machine Learning, offering new insights
and methodologies for designing and training QNNs.
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amplitudes of the optimal parameter configurations are amplified significantly(the
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2.2 Quantum circuit schematic of the operations in the original QAOA. The state is ini-
tialized by applying Hadamard gates on each qubit, represented as H⊗n. This results
in the equal superposition state of all possible solutions. QAOA consists of alternat-
ing time evolution under the two Hamiltonians HC and HM for p rounds, where the
duration in round j is specified by the parameters γj and βj , respectively. In the origi-
nal QAOA, the mixing Hamiltonian HM is chosen as to be HM =∑n

j=1Xj , After all p
rounds, the state becomes |βββ,γγγ⟩ = e−iβpHMe−iγpHC . . . e−iβ2HMe−iγ2HCe−iβ1HMe−iγ1HC |s⟩ . 11

2.3 Quantum circuit schematic of the operations in LH-QAOA. The overall process of
LH-QAOA is similar to that of the original QAOA in Fig. 2.2, where the difference
is that the mixer of LH-QAOA contains entangling an mixer Hamiltonian on two
qubits. These are represented by the HM,i blocks with various colors in the figure.
Note that in order to avoid an excessive amount of hyper-parameters, Hadfield et al.
[2] choose the βj for each HM,i to be the same in every layer. . . . . . . . . . . . . . 12

2.4 Quantum circuit schematic of QDD. QDD solves optimization problems of continuous
variable. In this figure, θi are the continuous variables to be optimized in the training,
where each θi is digitized into binary form and stored in an independent register.
The overall process of QDD is similar to that of the original QAOA, where the
difference is that the mixer of QDD with Hamiltonian S is acting on the registers of
θi (rather than single qubits as in the original QAOA). The effect of the mixer in
QDD is to shift the value for each θi. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Quantum circuit schematic of ADAPT-QAOA. The overall process of LH-QAOA
is similar to that of the original QAOA in Fig. 2.2, where the difference is that
the mixer of LH-QAOA contains variable mixers taken from a mixers pool. Define
Q to be the set of qubits. The mixer pool of ADAPT-QAOA is PADAPT-QAOA =
∪i∈Q

{
Xi,Yi,

∑
i∈QXi,

∑
i∈QYi

}
∪i,j∈Q×Q {BiCj |Bi,Cj ∈ {X,Y,Z}}. . . . . . . . . . 13
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2.6 Comparison of original QAOA and ADAPT-QAOA. In the left and right panels of
this figure, we depict the state change in the Hilbert space of the parameters to be
optimized, for the original QAOA and ADAPT-QAOA respectively. The starting
state ∑θ |θ⟩ (omitting the normalization factor), represented by the rounded dot at
the bottom of each space, is the even superposition state of all possible solutions.
The arrows represent the state evolution generated by the cost Hamiltonian and
mixer Hamiltonian, and the color and direction of the arrows indicate the nature of
the evolution. Blue arrows represent the evolution by the cost Hamiltonian. Arrows
of other colors represent the evolution by different mixer Hamiltonians. In the
original QAOA, there is only one mixer (shown in pink) available. Whereas, in
ADAPT-QAOA there are more alternative mixers to chose from the mixers pool.
The two algorithm try to reach the target state |θ∗⟩ (represented by the blue star)
by stacking these arrows, which represent the alternating operations of two QAOAs.
For reference we sketched the relevant paths — adiabatic path for the original QAOA
and counter-diabatic path for ADAPT-QAOA — along the state evolution of the
two QAOAs. As can be seen, the ADAPT-QAOA takes much fewer iterations to
reach a closer point to the target state. This illustrates that compared to the original
QAOA, allowing alternative mixers enables ADAPT-QAOA to dramatically improve
algorithmic performance while achieving rapid convergence. . . . . . . . . . . . . . 14

2.7 Quantum circuit schematic of AC-QAOA. AC-QAOA is a variant of QAOA we
designed for solving optimisation of continuous variables with the short-depth advan-
tage of QAOA layers. In this figure, θi are the continuous variables to be optimized
in the training. Each θi is digitized into binary form and stored in an independent
register. The overall process of AC-QAOA is similar to that of the original QAOA,
with the difference being as follows. 1. The mixers of AC-QAOA with Hamiltonians
Si and Ti are acting on the registers of θi (rather than single qubits as in the original
QAOA). 2. The mixers of AC-QAOA contain alternative mixers taken from a mixers
pool and can vary from layer to layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Circuit diagram of Swap test. Here we present an alternative form of swap test:
instead of applying the swap operation on two quantum states, the circuit in this
figure simulate the “swap” effect by applying two unitaries Pj ,T on two registers in
different order controlled by an ancilla qubit. The “anti-control” symbol is defined
as: when the control qubit is in state |0⟩, the unitary being controlled is executed;
when the control qubit is in state |1⟩, the unitary being controlled is not executed. . 16

2.9 Quantum circuit to implement unitary C = I⊗(2n+1) −2|0⟩⊗(2n+1)⟨0|⊗(2n+1). . . . . 18
2.10 Quantum circuit to implement Gj . Gj is defined as Gj := UjCU

†
j (Z⊗ I⊗2n). . . . . 18

2.11 Circuit diagram of Hadamard Test. The circuit is used to estimate ⟨0|P †
j TPj |0⟩, for

two unitary Pj and T . The Hadamard test will be used the phase encoding of QNN
cost function which is a crucial component of the quantum training. . . . . . . . . 18
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2.12 Block-encoding U , the Block-encoding of a matrix A, can be considered as a
probabilistic implementation of A: applying the unitary U to a given input state
|0⟩⊗a|b⟩, measuring the first a-qubit register and post-selecting on the outcome |0⟩⊗a,
we get state proportional to A|b⟩ in the second register. . . . . . . . . . . . . . . . . 20

2.13 Quantum circuit for Quantum Singular Value Transformation (QSVT) Given access
to a multi-qubit unitary U(A) as a block-encoding of A, using unitary U(A) and it’s
inverse, plus some phase gates extended onto an additional ancillary qubit, QSVT
realizes a new unitary that is the block-encoding of P (A). . . . . . . . . . . . . . . 21

3.1 QAOA-like training protocol for QNN, proposed in Ref. [3]. The quantum training
protocol consists of two alternating operations in a QAOA fashion — the first opera-
tion acts on both the parameter register and QNN register to encode the cost function
of QNN onto a relative phase of the parameter state. This operation is represented
by the blue blocks in the figure. The second operation acts only on the parameter
register and it is a variant of the original QAOA Mixers, tailored for the case that the
parameters in the QNN are continuous variables. This operation is represented by
the pink blocks in the figure. These two operation can be mathematically expressed
as e−iγiC(θθθ) and e−iβiHM , where θθθ are the parameters of QNN, C(θθθ) is the cost
function of the QNN, and γi and βi are tunable hyperparameters,HM is the Mixer
Hamiltonian. The width of each block represents the hyperparameters γi and βi —
the wider the block, the larger the value of the hyperparameters. The phase encoding
operation e−iγiHC act as e−iγiC(θθθ). . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Schematic of our framework for quantum training of QNN. Our quantum training
for QNN takes advantage of the well-established parts in Refs. [3] and [4], while
eliminating their shortcomings. We replace the phase encoding operations in QAOA-
like protocol of Ref. [3](as depicted in Fig 3.1) by the phase oracle in Ref. [4]. For
the mixers in the QAOA-like routine, we allow different mixers for each layer, similar
to Ref. [5]. In this figure, the colour of each block represents the nature of the
corresponding Hamiltonian: different colour corresponds to different Hamiltonian
(One can see that the Cost Hamiltonian is the same throughout the training whereas
the mixer varies from layer to layer). The mixers pool contains the proper mixers
tailored to our QNN training problem. These rules also apply to the other circuit
schematic in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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3.3 Action of the controlled unitary P . In this figure, the upper register is the parameter
register and the lower register is the QNN register. θθθ = (θ1, . . . , θM ) is the set
of trainable parameters in the QNN and U(θθθ) is the unitary of the QNN with
corresponding parameters. The qubits in the parameter register act as control qubits
on the rotation gates in the QNN. The controlled operations (in the dotted blue
box) is denoted as P . When P acts on a superposition state of parameters ∑θθθωθθθ |θθθ⟩,
the output state is ∑θθθωθθθ |θθθ⟩⊗U(θθθ) |0⟩ . in which the parameter register and QNN
register are entangled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 An example of the construction of P for one rotation gate Rz(θ). In this exam-
ple, the parameter register consists of three qubits, each qubit controls a “partial”
rotation on the fourth qubit. The “partial” rotation are the binary segments
Rz(θ̄/2),Rz(θ̄/4),Rz(θ̄/8) in which θ̄ is the maximum value that angle θ can take. . 30

3.5 An example of the effect of P defined in Fig. 3.4. Each bit string of the parameter
register can be seen as a binary representation of the rotation angle and the associated
basis state of the register is entangled with the rotation gate of the corresponding
angle. For instance, in the example above, the bit string 111 corresponds to the
angle 7θ̄/8 and |111⟩ is associated with Rz(7θ̄/8). . . . . . . . . . . . . . . . . . . . 30

3.6 Example of the construction of P for QNN consisting of two rotation gates. In this
example, the QNN consist of two rotation gates Rz(θ1), Rz(θ2) on the lower two qubits.
The upper 6 qubits are divided into two parameter registers for the two rotation
angles θ1, θ2 respectively. Each qubit controls a "partial" rotation. For instance, the
"partial" rotations of Rz(θ1) are the binary segments Rz(θ̄1/2),Rz(θ̄1/4),Rz(θ̄1/8) in
which θ̄1 is the maximum value that angle θ1 can take. . . . . . . . . . . . . . . . . 31
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4.1 Amplitude Encoding by Swap test. This circuit can perform the swap test depicted
in Fig. 2.8 in parallel for multiple Pj . Here, Pj represents QNN with specific (the
“jth”) parameter configuration. To achieve swap test in parallel, we add an extra
register– the parameter register— as the control of Pj : each computational basis j
of the parameter register corresponds to a specific parameter configuration in Pj .
As illustrated in Fig. 3.3, once the parameter register is in superposition state(by
the Hadamard gates H⊗dr), the corresponding Pj are in superposition. We refer
to the control operation on QNN as “controlled-QNN”. Compared with the normal
swap test depicted in Fig. 2.8, the difference here is that the Swap ancilla qubit is
anti-controlling /controlling the "controlled-QNN" together with the Unitary T (as
gathered together in the dotted blue/orange box). It can be proven that the entire
circuit in dotted the green box (denoted as U) can be expressed as U =∑

j |j ⟩⟨j|⊗Uj

where Uj is the swap test unitary for Pj defined in Fig. 2.8. This indicates that U
effectively perform the swap test in parallel for multiple Pj . Recall the fact that the
normal swap test Uj encode |⟨pj |t⟩|2 in the amplitude of the output state (Eq. 2.8
and Eq. 2.7), here the "parallel swap test" U encodes the QNN cost function |⟨pj |t⟩|2
in the amplitude of a superposition of Pj(QNN) with different parameters. . . . . . 35

4.2 Amplitude encoding by Hadamard Test This circuit can perform the Hadamard test
depicted in Fig. 2.11 in parallel for multiple Pj . Here, Pj represents QNN with specific
(the “jth”) parameter configuration. To achieve Hadamard test in parallel, we add
an extra register– the parameter register— as the control of Pj : each computational
basis j of the parameter register corresponds to a specific parameter configuration
in Pj . As illustrated in Fig. 3.3, once the parameter register is in superposition
state(by the Hadamard gates H⊗dr), the corresponding Pj are in superposition. It
can be proven that the entire circuit in dotted the green box (denoted as U) can
be expressed as U ′ =∑

j |j ⟩⟨j|⊗U ′
j where U ′

j is the Hadamard test unitary for Pj

defined in Fig. 2.11. This indicates that U ′ effectively perform the swap test in
parallel for multiple Pj . Recall the fact that the normal Hadamard test U ′

j encode
⟨0|P †

j TPj |0⟩ in the amplitude of the output state (Eq. 2.15 and Eq. 2.16), here
the “parallel Hadamard test” U ′ encodes the QNN cost function ⟨0|P †

j TPj |0⟩ in the
amplitude of a superposition of Pj(QNN) with different parameters. . . . . . . . . 36
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4.3 Major steps in the Construction of the Grover Oracle. Step 0: We initialize
the system by applying Hadamard gates on the parameter register, leading to
the state |Ψ0⟩ = |0⟩s ⊗ (∑j |j⟩) ⊗ |0⟩n

QNN1 |0⟩n
QNN2 . Step 1(dotted green box): Am-

plitude encoding of the cost function, as illustrated in Fig. 4.1 (refer the cap-
tion of Fig. 4.1 for the meaning of each symbol), resulting in the state |Ψ1⟩ =
∑

j |j⟩( sinθj |uj⟩ |0⟩+cosθj |vj⟩ |1⟩), in which θi contains the cost function. Step
2(dotted pink box): Amplitude estimation to extract and store the cost function into
an additional register which we call the “amplitude register”, resulting in the state
|Ψ2⟩ =∑

j
−i
2
(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
. Step 3(dotted yellow box):

Threshold Oracle to encode the cost function into relative phase by using a Phase an-
cilla qubit, resulting in the state |Ψ3⟩ =∑

j
−i
2 (−1)g(θj−θ∗)

(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Pipeline of the construction of the phase oracle. Here we summarise the two ap-
proaches by amplitude estimation and by LCU for the Phase encoding of the cost func-
tion. Step 0: Creating superposition for QNN with different parameters, which is im-
plemented by "controlled-QNN" (see Fig. 2.8), denoted by P =∑

j |j ⟩⟨j|⊗Pj . Step 1:
Amplitude encoding of the cost function, by the unitary operation U =∑

j |j ⟩⟨j|⊗Uj .
Step 2: Constructing the "Grover Operator" upon the amplitude encoding unitary. In
the approach using amplitude estimation, the Grover Operator G is constructed as
G= UC2U−1C1. In the approach using LCU, the Grover Operator G∗ is constructed
as G∗ = C2U−1C1U . Step 3: Phase encoding of the cost function, by amplitude
estimation(upper path) or by LCU(lower path). In the upper path, the Phase Oracle
is achieved by phase estimation on G, threshold oracle U ′

O, and uncomputation. In
the lower path, LCU on G∗ (together with the subsequent "Oblivious Amplitude
Amplification") [6] realizes e−iC′(θθθ) which is then converted to the Phase Oracle with
arbitrary γ —eiγC′(θθθ) using the method in Ref. [7]. C ′(θθθ) := 1

2 (C(θθθ)−1) is a new
cost function, optimizing C ′(θθθ) is equivalent to optimizing C(θθθ). . . . . . . . . . . 43
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5.2 Schematic diagram of applying AC-QAOA to QNN training. AC-QAOA is a variant
of QAOA we designed for solving optimisation of continuous variables with the
short-depth advantage of QAOA layers, see Fig. 2.7. This figure illustrates applying
AC-QAOA to QNN training, following the scheme in Fig. 3.2. The quantum training
protocol consists of alternating operations in a QAOA fashion — the first operation
acts on both the parameter register and QNN register to encode the cost function of
QNN onto a relative phase of the parameter state. This operation is represented
by the blue blocks in the figure. The other operations are the Mixers (green and
pink boxes) which act only on the parameter register. In the parameter register, θi

are the continuous variables to be optimized in the training, each θi is digitized into
binary form and stored in an independent register. The overall process of AC-QAOA
is similar to that of the original QAOA, with the difference being as follows. 1. The
mixers of AC-QAOA with Hamiltonians Si and Ti are acting on the registers of θi

(rather than single qubits as in the original QAOA). 2. The mixers of AC-QAOA
contain alternative mixers taken from a mixers pool and can vary from layer to layer. 46

5.3 Schematic of VQE for ground state estimation. The QNN (a parameterized circuit
ansatz) is applied to an initial state (e.g. the zero state) over multiple qubits to
generate the ground state of a given Hamiltonian H. The parameters in the QNN,
i.e. the rotation angles of the parametrized gates (here for simplicity we use the same
symbol θ for all the angles of different gates), are optimized so that the generated
state of the QNN possess the lowest expectation value of the given Hamiltonian. . 48

5.4 Circuit for the amplitude encoding of the cost function for VQE. Here we use the
Hadamard Test Circuit for the amplitude encoding of the cost function, as detailed in
4.1.1. We use a technique "Linear Combinations of Unitaries"(LCU) [8] to implement
the given Hamiltonian H = ∑

iaiUi. The unitary oracles W,HLCU are defined as
W |0⟩ =∑

i
√
ai |i⟩ ,HLCU =∑

i ii⊗Ui. . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Schematic of using QNN to generate a pure state. In our scenario, the target state is

generated by a given Unitary T , i.e. |Ψtarget⟩ = T |0⟩), the QNN (denoted as U(θ))
serves as another generator circuit for the target state. The parameters in QNN are
optimized such that the generated state of QNN

∣∣∣ΨQNN

〉
matches the target state.

The cost function is the fidelity between the target state and the generated state by
QNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Schematic of a quantum classifier. For a training data point (xi,yi), the quantum
classifier first embeds xi into the state of a n-qubit quantum system via a data
embedding circuit Sxi (purple box) such that Sxi |0⟩ = |φ(xi)⟩, and subsequently uses
a learnable quantum circuit U(θθθ) (QNN) as a predictive model to make inference
(here for simplicity we use the same symbol θ for all the angles of different gates).
The predicted class label y(i) = f(xi, θθθ) is retrieved by measuring a designated qubit
in the state U(θθθ) |φ(x)⟩. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
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5.7 Amplitude encoding of the cost function for the quantum classifier. For a training
data point (xi,yi), the quantum classifier first embeds xi into the state of a n-
qubit quantum system via a data embedding circuit Sxi (purple box) such that
Sxi |0⟩ = |φ(xi)⟩, and subsequently uses a learnable quantum circuit U(θθθ) (QNN) as
a predictive model to make inference (here for simplicity we use the same symbol
θ for all the angles of different gates). The predicted class label y(i) = f(xi, θθθ) is
retrieved by measuring a designated qubit in the state U(θθθ) |φ(x)⟩. Denote p(λ) as
the probability of the measurement result on the designated qubit being λ (λ∈ {0,1}).
The cost function of each training data point Li(θθθ), as a function of yi and y(i)

and hence a function of yi,xi, θθθ which we denote as L(xi,yi, θθθ), is chosen to be the
probability of the measurement result on the designated qubit being identical to the
given label, namely: Li(θθθ) = L(xi,yi, θθθ) := p(yi). We can see that the cost of each
data sample is naturally encoded in the amplitude of the output state of QNN. . . . 52

5.8 Phase encoding of the total cost function of quantum classifier. The total cost
function of the whole training set can be defined as: C(θθθ) =∑

iL(xi,yi, θθθ). It follows
immediately e−iγC(θθθ) = Πie

−iγL(xi,yi,θθθ). Therefore the phase encoding of the total
cost function (the overall yellow box) can be implemented by accumulating individual
phase encoding for each training sample(blue boxes). In this figure, we omit θθθ in
L(xi,yi, θθθ) for simplicity. The inner boxes in the blue boxes represent different data
embedding unitaries for the training data points. . . . . . . . . . . . . . . . . . . . 52

5.9 Schematic of our quantum training protocol for the quantum classifier. The full
quantum training protocol consists of the alternation of the Phase Oracle that
achieves coherent phase encoding of the cost function and the Adaptive Mixers
chosen from a Mixers pool. The phase encoding of the total cost function for the
quantum classifier is detailed in Fig. 5.8. The total cost function of the whole training
set can be defined as C(θθθ) =∑

iL(xi,yi, θθθ). It follows that e−iγC(θθθ) = Πie
−iγL(xi,yi,θθθ).

Therefore the Phase Oracle for the total cost function (the yellow boxes in the
upper part of this figure) can be implemented by accumulating individual phase
encoding for each training sample(blue boxes). In this figure, we omit θθθ in L(xi,yi, θθθ)
for simplicity. The colourful boxes with white borders represent different data
embedding unitary for the training data points. The colourful boxes with a black
border (excluding the blue ones for the Phase encoding) represent different Mixers
chosen from a Mixers Pool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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6.1 GNN pipeline and three "flavours" of GNN layers[1] GNN architectures are permu-
tation equivariant functions F(X,A) constructed by applying shared permutation
invariant functions ϕ over local neighbourhoods. This local function ϕ is sometimes
referred to as "diffusion", "propagation", or "message passing", and the overall compu-
tation of such F is known as a "GNN layer". The design and study of GNN layers is a
rapidly expanding area of deep learning, and the literature can be divided into three
"flavours" (of GNN layers): convolutional, attentional, and message-passing. These
flavours determine the extent to which ϕ transforms the neighbourhood features,
allowing for varying levels of complexity when modelling interactions across the graph. 58

6.2 Overview of our approach for Graph Convolutional Networks We start with the sce-
nario where neural networks (classical and quantum) process data without inductive
bias, depicted as the lower part of this figure. In this scenario, the classical and
quantum neural networks process each data point individually without acknowledging
the connections between them. Here for a classical neural network, we depicted
a linear layer represented as a matrix acting on a single data point as a vector.
For the quantum neural network, we depicted a parametrized quantum circuit for
implementing the linear layer as described in Section 2.1. In the upper part of this
figure, we illustrate the scenario where classical and quantum GNNs process data
with inductive bias of graph-structured data. In this scenario, the classical and
quantum GNN process all the data points for every node on a graph, with cross-node
connections between them. Here for classical GNN, we depicted the layer-wise linear
transformation for multi-channel Graph Convolutional Networks (Section 7.2 pro-
vides the details): the trainable weight matrix(for node-wise transformation) and the
renormalized adjacency matrix(for Graph diffusion) multiplied on the node feature
matrix. In our Quantum GNN Architecture, this layer-wise linear transformation is
implemented by applying the block-encoding of the renormalized adjacency matrix
and a parameterized quantum circuit following a data encoding procedure(Section
7.2 provides the details). By incorporating graph inductive bias(here, the graph
diffusion)into the architecture, our Quantum GNN can potentially operate with
fewer parameters than its problem-agnostic counterpart. This can potentially lead
to more efficient training and less overfitting, improving the conventional QNNs. . . 61

7.1 Quantum implementation of the layer-wise linear transformation for Single-Channel
GCN The node features x ∈ RN (after normalization) are encoded in the amplitudes
of a n-qubit quantum state |ψx⟩ as |ψx⟩ =∑N

i=1xi|i⟩ via a quantum state preparation
process[9]. The main operation of GCN – graph convolution – is achieved by Quantum
Singular Value Transformation (QSVT): applying a block encoding of the polynomial
of the Laplacian on the state in which data is encoded in. . . . . . . . . . . . . . . . 67
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7.2 Graph Convolution by QSVT Graph Convolution is parametrized by the coefficients
in the polynomial function of the graph Laplacian. In our quantum implementa-
tion of Graph Convolution by QSVT, the coefficients are determined by the Pauli
angles(phases) in the QSVT circuit. Hence parametrization of the polynomial is
equivalent to parametrization of the Pauli angles(phases) in the QSVT circuit, that
is, the phases are the tunable weights to be trained in our Quantum implementation
of Graph convolutional networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Overall procedure of "Nonlinear transformation of complex amplitudes(NTCA)"[10]
The overall procedure of NTCA is taking a unitary that produces the initial state
∑N

i=1xi|i⟩ as components, to build a new (larger) unitary that generate the desired
state ∑N

i=1 f(xi)|i⟩ whose amplitudes are transformed by certain nonlinear function
f(x). Note that the transformed state ∑N

i=1 f(xi)|i⟩ does not sit on the original
register where the initial state ∑N

i=1xi|i⟩ exist on, instead it sits at the exit of some
other register introduced when constructing the larger unitary(NTCA operations). . 69

7.4 Example of the full quantum circuit for a GNN layer (C = 1, single channel). Utilising
NTCA in our Quantum GCN to implement a non-linear activation function, we
take the unitary of data encoding and graph convolution as components to build a
new unitary that generates the desired state whose amplitudes are transformed by
certain nonlinear functions. Note that the schematics in this figure are for illustration
purposes only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.5 The linear layer-wise transformation for a Multi-Channel GCN For a multi-channel
GCN, each node has multiple features such that the Node representations at the
l-th layer H(l) ∈ RN×F is a matrix whose F columns corresponds to F feature
maps of each node. In addition to the graph convolution in the layer-wise linear
transformation of a single-channel GCN, an extra layer-specific trainable weight
matrix is applied to that of a multi-channel GCN. Here for brevity, we present
the architecture proposed in Ref.[11] — the graph convolution is chosen to be a
localized first-order approximation of spectral graph convolutions, yielding the linear
layer-wise transformation for a Multi-Channel GCN to be the layer-specific trainable
weight matrix W (l) and renormalized adjacency matrix Â multiplied on the node
feature matrix H(l). Note that the trainable weight matrix W (l) does not have to be
a square matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
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7.6 GCN Pipeline. A GCN consists of a series of layers in which graph convolution
and non-linear activation functions are applied to the node features. (Note that
the schematics in this figure are for illustration purposes only, e.g. the normalized
adjacency matrix depicted here does not include the added self-connections) At
the output of the last layer, softmax activation function, defined as softmax(xi) =
1
Z exp(xi) with Z = ∑

i exp(xi), is applied row-wise to the node feature matrix,
producing the final output of the network: Z = softmax(ÂH(K−1)W (K−1)). For
semi-supervised multi-class classification, the cost function is defined by the cross-
entropy error over all labelled examples [11]:L= −∑s∈YL

∑FK
f=1Ysf lnZsf , where YL

is the set of node indices that have labels, Y ∈ BN×FK denotes the one-hot encoding
of the labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.7 Quantum implementation of linear layer-wise transformation for multi-channel GCN
The linear layer-wise transformation for multi-channel GCN (i.e. the layer-specific
trainable weight matrix and the normalized adjacency matrix multiplied on the node
feature matrix), can be implemented by applying the block-encoding of the normalized
adjacency matrix and a parametrized quantum circuit on the two quantum registers
Reg(i) and Reg(k) respectively. Here we depicted the first layer of GCN — the linear
layer-wise transformation is applied on the state prepared by the data encoding
procedure (the blue box) described in Section 7.2.1. Note that the schematics in
this figure are for illustration purposes only, e.g. 1) the normalized adjacency matrix
depicted here does not include the added self-connections; 2) the ancillary qubits
used in the quantum state preparation for the data encoding is not depicted in this
figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.8 Proof of our Quantum implementation of linear layer-wise transformation for multi-
channel GCN The linear layer-wise transformation for multi-channel GCN (i.e.
the layer-specific trainable weight matrix and adjacency matrix multiplied on the
node feature matrix), can be implemented by applying the block-encoding of the
renormalized adjacency matrix and a parametrized quantum circuit on the two
quantum registers Reg(i) and Reg(k) respectively. The figure summarises the proof
from Eqn.7.8 to 7.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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8.1 Quantum Attention Mechanism The Attention score a(xi,xj) in our Quantum Atten-
tion Mechanism can take the form of the inner product of the linearly transformed
feature vectors of each pair of nodes a(xi,xj) = xT

i W
T
KWQxj , in which WK ,WQ are

trainable linear transformations. In terms of Dirac notation, this can be written as:
a(xi,xj) = ⟨xi|U †

KUQ |xj⟩, in which UK ,UQ are trainable unitaries. In our Quantum
Attention Mechanism, this attention score can be evaluated in superposition on
quantum circuit by parallel Swap Test(mentioned in Chapter 4), depicted as the left
side of this figure. On the left side of this figure, we illustrate an alternative form of
the Attention score, which can be evaluated by parallel Hadamard Test (mentioned
in Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.2 Quantum attention oracle Oattention The quantum attention mechanism aims to
coherently evaluate and store attention score a(xi,xj) for each pair of the nodes,
which can be defined as a quantum oracle Oattention such that Oattention |i⟩ |j⟩ |0⟩ →
|i⟩ |j⟩ |a(xi,xj)⟩. The construction of the quantum attention oracle, depicted in this
figure, is detailed in section 8.1.1 and 8.1.2. . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. The initial data state

∣∣∣ψ3
X0
〉

=∑
i |i⟩⊗3 |xi⟩ is prepared by the blue box

on the left. The QNN module, denoted as Uw, transform the state to
∣∣∣ψ3

X

〉
=

∑
i |i⟩⊗3Uw |xi⟩. The pale green box together with the three red boxes which achieve

M ′
l =∑

jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+ ..., are then applied to the transformed initial
data state, resulting ∑jAc(j,l),j |j⟩⊗3Uw

∣∣∣xc(j,l)
〉

|0⟩. The pale green box consists of
the following Modules: Module 1(the first pink box). O

diagonal
l Module 2. the

“Conditional Rotation” (Theorem 3.5 in Ref. [12]) Module 3 (the second pink box) is
the uncomputation of Module 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4 Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. This figure provides a small example of the corresponding states and
matrices in Fig. 8.3. The panels perpendicular to the circuit plane represent the quan-
tum states, while the panels parallel to the circuit plane represent the corresponding
matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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8.5 Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. The initial data state

∣∣∣ψ3
X0
〉

= ∑
i |i⟩⊗3 |xi⟩ is prepared by the blue

box on the left. The QNN module, denoted as Uw, transforms the state to
∣∣∣ψ3

X

〉
=

∑
i |i⟩⊗3Uw |xi⟩. The transparent box which achievesM ′

l =∑
jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+

..., consist of four Modules: Module 1(the first pink box) O
diagonal
l . Module 2 the

Conditional Rotation (Theorem 3.5 in Ref. [13]), represented as the controlled-R
gate between the two pink boxes. Module 3 (the second pink box) Uncomputation
of Module 1. Module 4(the three red boxes on the left of module 1) Permutation
of basis. An overall LCU is then applied to the four modules, depicted in as the
add-on register Reg(l) controlling the transparent box, to achieve the addition over
index l: M =∑

lM
′
l =∑

l
∑

jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+ .... M is then applied on∣∣∣ψ3
X

〉
=∑

i |i⟩⊗3Uw |xi⟩, producing the outcome state ∑j |j⟩⊗3∑
lAc(j,l),jUw

∣∣∣xc(j,l)
〉

|0⟩. 87

8.6 Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. This figure provides a 3D state-circuit view for Fig. 8.5. The panels perpen-
dicular to the circuit plane represent the quantum states generated by corresponding
circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.1 Quantum Algorithm for Message-Passing GNN. Our Quantum Message-Passing GNN
aims to evaluate and store the updated node features hj = ϕ

(
xj ,

⊕
i∈Nj

ψ (xj ,xi)
)
into

a quantum state as ∑j |j⟩⊗3 |hj⟩+ ... This can be achieved via the following steps:
Step 1: Data Loading of linearly transformed node features xk; Step 2: Selective LCU;
Step 3: Permutation of basis; Gathering all steps above, the Quantum Message-
Passing GNN loads and transforms the node features as: ∑i

∑
j
∑

k |i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →
∑

j |j⟩⊗3 ∣∣∣ϕ(xj ,ψ(xc(j,l),xj))
〉

+ ... Step 4: Overall LCU, we then apply the overall
LCU module (depicted as the top add-on register Reg(l) with the controlled unitaries
in fainted blue box), to achieve the aggregation over different neighbours, obtaining
the following state:∑j |j⟩⊗3 ∣∣∣ϕ(xj ,

∑
lψ(xc(j,l),xj))

〉
+ ..., which can also be written

as ∑j |j⟩⊗3 ∣∣∣ϕ(xj ,
⊕

v∈Nj
ψ(xv,xj))

〉
+ ... . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.2 Quantum Algorithm for Message-Passing GNN This figure provide a 3D state-circuit
view for Fig.9.1. The panels perpendicular to the circuit plane represent the quantum
states generated by corresponding circuits. . . . . . . . . . . . . . . . . . . . . . . . 93
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10.1 GPT’s Architecture, adapted from [14]. GPT’s architecture is a multi-layer decoder-
only Transformer (a variant of the Transformer[15]). The primary part of the
architecture is a stack of transformer blocks [14], each of which is composed of
two main components: a (masked) multi-head self-attention mechanism followed
by a position-wise fully connected feed-forward network. Layer Normalization and
Residual Connections are placed around these two main components. The transformer
blocks are stacked on top of each other, with each layer processing the output of
the previous one. Prior to the input embedding entering the transformer blocks,
positional encoding is added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.2 Tokenization, one-hot encoding and word embedding. . . . . . . . . . . . . . . . . . 104

10.3 Next token prediction process of GPT. In the inference stage, a language model (here,
GPT) takes in a sequence of one-hot encoded tokens, and generates predictions for the
next token in a sequence. The sequence of one-hot encoded tokens is first transformed
through word embedding, as described in the above section. These embeddings,
after the positional encodings are added, are then input into the transformer blocks.
Then, a final linear layer is applied to map the outputs from the transformer blocks
back into the vocabulary space, generating a sequence of transformed vectors. The
last transformed vector in the sequence is referred as "logits". The logits are passed
through a softmax activation function, yielding a probability distribution across the
vocabulary, indicating the likelihood of each token as the next sequence component. 105

11.1 Quantum circuit for positional encoding Build upon the two registers Reg(i) and
Reg(k) hosting the index i and k respectively (illustrated in Fig. 11.3), we set up
a register Reg(j) hosting the index j below Reg(i) and an ancillary qubit above
Reg(i). The blue boxes that group the series of controlled RY gates implement the
following unitaries: Pj =∑

i |i⟩⟨i| ⊗Ry(−2iwj), each of which is controlled by the
qubits in Reg(j) and the entire controlled sequences grouped in the transparent box
implement the unitary Uc =∑

j |j⟩⟨j|⊗Pj =∑
j |j⟩⟨j|⊗∑

i |i⟩⟨i|⊗Ry(−2iwj). The
whole circuit implements UPPP . Note that in this figure, N = −n. . . . . . . . . . . . 109
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11.2 The Classical Self-Attention(modified version that we aim to implement on quantum
circuit) As described in Ref.[12], an attention function can be described as mapping
query, keys, values to an output, where the query, keys, values, and output are all
vectors. The query qqqi, key kkki, and value vvvi are p-dimensional, p-dimensional, and
r-dimensional vectors defined as: Rp ∋ qqqi =WWW⊤

Qxxxi,Rp ∋ kkki =WWW⊤
Kxxxi,Rr ∋ vvvi =WWW⊤

V xxxi,
where WWWQ ∈Rd×p,WWWK ∈Rd×p, and WWW V ∈ Rd×r are the projection matrices. Similar
to vectors

{
xxxi ∈ Rd

}n

i=1
being stacked as a matrix XXX := [xxx1, . . . ,xxxn] ∈ Rd×n, we

define QQQ := [qqq1, . . . , qqqn] ∈ Rp×n, KKK := [kkk1, . . . ,kkkn] ∈ Rp×n, and VVV := [vvv1, . . . ,vvvn] ∈
Rr×n, respectively.The "Scaled Dot-Product Attention" defined in [15] can be written
in matrix form as:ZZZ := attention(QQQ,KKK,VVV ) = VVV softmax

(
1√
p QQQ

⊤KKK
)
, where ZZZ =

[zzz1, . . . , zzzn] ∈ Rr×n. Note that for each i, the queries, keys, and values are all
from the same vector xxxi in the sequence, this type of attention is referred to as
the "self-attention"[16].Denote softmax

(
1√
p QQQ

⊤KKK
)

≡ AAA0, plugging in VVV = WWW⊤
V XXX

we have ZZZ = WWW⊤
V XXXAAA0. Considering it’s not straightforward to implement the

softmax function using quantum circuit and the scaling will be taken care of in
block-encoding procedure, we aim to implement an alternative version of AAA0 denoted
as AAA≡QQQ⊤KKK, that is, we aim to design quantum circuit implementing the following
computation:ZZZ =WWW⊤

V XXXAAA .Note that the matrix elements of AAA are AAAuv = qqq⊤
u kkkv =

xxx⊤
uWWWQWWW

⊤
Kxxxv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

11.3 Self-Attention on Quantum Computer The right side of the figure describes classical
attention (the modified version that we aim to implement on quantum circuit), and
the left side of the figure depicts its quantum implementation. On the quantum
circuit, the input encoding is represented by the blue box, as described in 11.1(here
in this subsection and the following subsection 11.3.2, for simplicity we omit the
positional encoding described in 11.2 in the presentation). The attention function
can be implemented by applying the block-encoding of AAA⊤ and a parameterized
quantum circuit for WWW⊤

V on the two quantum registers Reg(i) and Reg(k) respectively.113
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11.4 Multihead-Attention on Quantum Computer The upper part of the figure provides
the illustration of classical Multihead-Attention, and the lower part of the figure
depicts its quantum implementation. In the multihead attention module, We have H
set of queries, values, and keys as:Rp×n ∋QQQh =WWW⊤

Q,hXXX, ∀h ∈ {1, . . . ,H},Rp×n ∋
VVV h =WWW⊤

V,hXXX, ∀h ∈ {1, . . . ,H},Rr×n ∋KKKh =WWW⊤
K,hXXX, ∀h ∈ {1, . . . ,H} Then, the

scaled dot product attention are applied to generate the H output {ZZZh}H
h=1 and

ZZZh =
[
zzz1,h, . . . , zzzn,h

]
∈ Rr×n. The outputs are concatenated over different heads

asZZZMulti-heads =
[
∥H

h=1 zzz1,h,∥H
h=1 zzz2,h, . . . ,∥H

h=1 zzzn,h,
]

∈RrH×n, where ∥ represents con-
catenation [17]. Then, by a linear projection WWW⊤

O, the total attention value is obtained:
zzzTotal

i := WWW⊤
O ∥H

h=1 zzzi,h,ZZZTotal := WWW⊤
OZZZMulti-heads and ZZZTotal =

[
zzzTotal

1 , . . . , zzzTotal
n

]
∈

RrH×n. On the quantum circuit, the input encoding is represented by the blue box,
as described in 11.1(here in this subsection and the following subsection 11.3.2, for
simplicity we omit the positional encoding described in 11.2 in the presentation).
The attention function can be implemented by applying the block-encoding of AAA⊤

and a parameterized quantum circuit for WWW⊤
V on the two quantum registers Reg(i)

and Reg(k) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.5 Residual-connection on Quantum computer The upper part of the figure provides
the illustration of classical Multihead-Attention followed by Residual-connection, the
lower part of the figure depicts their quantum implementation. After the multihead
attention module, the data (containing positional encoding) xxx′′′

i and the total attention
value zzzTotal

i are added (often referred as "residual-connection" introduced by ResNet
[18]):zzz′

i := zzzTotal
i + concat(xxx′′′

i,xxx
′′′
i, ...xxx

′′′
i) ∈ RrH . The quantum circuit in this figure

generates the following quantum state
∣∣∣ψZZZ′′′

〉
:= ∑n

i=1 |i⟩ ⊗ |zzz′′′
i⟩ where |zzz′′′

i⟩ is the
amplitude encoding of the vector zzz′′′

i. The circuit implements Linear Combination of
Unitaries of two operators grouped in the two transparent boxes controlled by the
top ancillary qubit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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11.6 Feed-Forward Network on Quantum computer 1 The upper part of the figure provides
the illustration of classical Multihead-Attention followed by Residual-connection
and Feed-Forward Network, and the lower part of the figure depicts their quantum
implementation. After the multihead attention module and residual connection,
a position-wise Feed-Forward Network(FFN) is applied. The FFN is a fully con-
nected feed-forward module that operates separately and identically on each zzz′

i:
W2⊤ ReLU

(
W1⊤zzz′

i +b1
)

+ b2, we can write W1 :=
[
www1, . . . ,wwwm, . . . ,wwwdff

]
where

wwwm ∈ RrH ,dff is the intermediate dimension dff of the FFN. Denote yyyi := W1⊤zzz′
i,

we have its elements as yyy
(m)
i = zzz′

i ·wwwm. Recall we created state on registered
Reg(i),Reg(k),Reg(h) and ancillas:

∣∣∣ψZZZ′′′
〉

=∑n
i=1 |i⟩⊗ |zzz′

i⟩⊗ |0⟩+ ..., by the unitary
circled in the overall transparent box in this figure, denoted as UZZZ′′′ , which act as UZZZ′′′ :
|i⟩ |0⟩k,h |0⟩other → |i⟩ |zzz′′′

i⟩ |0⟩other + ...,∀i∈ {1, · · ·n}. For implementing W1, we can cre-
ate a trainable unitary UW111 : |m⟩ |0⟩k,h |0⟩other → |m⟩ |wwwm⟩ |0⟩other ,∀m∈ {1, . . . ,dff }.
with |wwwm⟩ on Reg(k),Reg(h) and |m⟩ on an additional registered Reg(m). UW111 , de-
picted as the blue box with a green centre in this figure, can be implemented as a series
of controlled parameterised quantum circuits as UW111 =∑

m |m⟩⟨m|Um where each
Um, acting as Um : |0⟩k,h → |wwwm⟩, is a parameterised quantum circuit.yyy(m)

i = ⟨zzz′
i|wwwm⟩

can be evaluated using Parallel Swap test for each zzz′
i and wwwm, via the quantum

circuit depicted in this figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.7 Feed-Forward Network on Quantum computer 2 The figure illustrates the description

from Eqn.11.63 to 11.83.The pink box in this figure, denoted as U , is meant to be
the circuit in Fig.11.6, but for simplicity, we omitted the Residual-connection as in
Fig.11.6, however the derivation follows the same. . . . . . . . . . . . . . . . . . . 124
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Chapter 1

Introduction

The emergence of Machine Learning (ML) marks one of the most significant scientific break-
throughs of the 20th century. Unlike traditional computing methods where tasks are accom-
plished through explicit programming by users, resulting in code that processes input to yield
specific outputs, ML adopts a distinctly different methodology. In this paradigm, a computer
system is trained to interpret and learn from data, aiming to effectively address problems when
faced with new and unfamiliar scenarios [22]. Presently, ML finds extensive application across
various scientific fields, including but not limited to the advancement of autonomous vehicles,
drug discovery, and exploration of new materials [23].

The advancement of quantum computing has sparked significant interest in its application
to ML, leading to the development of a new field called Quantum Machine Learning (QML)
[24]. The primary objective of QML is to utilize quantum phenomena such as entanglement
and superposition to solve ML problems more efficiently than classical algorithms executed
on classical computers, gaining a quantum advantage. A QML model typically involves a
data embedding process followed by a parameterized quantum circuit, frequently referred to
as a Quantum Neural Network (QNN). Training this model involves the optimization of the
parameters within the QNN [25].

Despite some promising results (e.g.[26, 25, 27]), QML is still in its infancy and facing many
challenges [28]. In this thesis, we aim to address the following challenges of QML:

• Challenge 1: Barren plateaus in training Training quantum neural networks (QNNs)
using gradient-based or gradient-free classical optimisation approaches is severely impacted
by the presence of barren plateaus in the cost landscapes.[29]

• Challenge 2: Designing problem-specific QNN model Recent research [30] has
indicated that employing problem-agnostic QNN architectures can result in significant

1
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issues that negatively affect the performance of the QML models, Therefore, there is a
need for designing problem-tailored QNN model.

• Challenge 3: Addressing state-of-the-art classical ML models Current QML are
still far from state-of-the-art classical ML for real world applications[31], efforts need to
be made towards tackling state-of-the-art classical ML models.

The thesis consists of three parts, each addressing one of the above challenges:

• Thesis Part 1: Quantum Training of QNNs consists of Chapter 3 4 5 In this part of
the thesis, we devise a framework for utilising quantum-optimisation powered training
methods to find optimal parameters of QNNs for certain tasks. Our quantum training
methods of QNNs exploits hidden structure in the QNN optimisation problem and is
expected to mitigate the barren plateau issue.

• Thesis Part 2: QNN Architecture for graph-structured data consists of Chapter
6 7 8 9 In this part of the thesis, we design problem-tailored QNNs for graph-structured
data by incorporating the inductive biases into their architectures.

• Thesis Part 3: GPT on Quantum Computer consists of Chapter 10 11 In this part
of the thesis, we explore the quantum implementation of GPT — the original version of
the state-of-the-art language models such as ChatGPT.

We outline each part of the thesis in the rest of this chapter.

1.1 Quantum Training of QNNs
A QNN consists of a set of parameterized quantum gates within a predefined circuit ansatz. The
design of the ansatz together with the value of the gate parameters determine the outcome of
the QNN. In order to successfully perform certain tasks, QNNs must be trained to find optimal
parameters for generating desired outcomes.

In the majority of QNN research, the training is carried out by employing variational hybrid
quantum-classical algorithms [32], in which the parameters are optimized by a classical optimizer
using gradient-based or gradient-free approaches. Though an ever increasing amount of effort is
being put into QNN research, there is evidence that they will be difficult to train due to flat
optimisation landscapes called barren plateaus [29].

In the first part of the thesis, we devise a framework for leveraging quantum optimisation
algorithms to find optimal parameters of QNNs for certain tasks. To cast the optimisation
problem of training QNN into the context of quantum optimisation, the parameters in QNN
are quantised — moved from being classical to being stored in quantum registers which are
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in addition to those upon which the QNN is performing its computation. We then coherently
encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert
space of the QNN parameters. The parameters are tuned with an iterative quantum optimisation
structure using adaptively selected Hamiltonians. The quantum mechanism of this framework
could exploit hidden structure in QNN optimisation problem, hence are expected to provide
beyond-Grover speed up and mitigate the Barren Plateau issues for training QNN.

The applications of our framework include the training of Variational Quantum Eigen-
solvers (VQE) and data-driven quantum machine learning models such as Variational Quantum
Classifier. As an example, we present the circuit construction of our quantum training for
VQE in Figure 1.1. An animation of the circuit construction from scratch is available at
https://youtu.be/c4JRVza0AAw
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Figure 1.1: Schematic of Our quantum training algorithm for VQE. Here we use the train-
ing of VQE as an example, to present the schematic circuit construction of our quantum
training algorithm for QNN. A video animation of the circuit construction is available at
https://youtu.be/RVWkJZY6GNY. (This is vector image and best view with the zoom feature
in standard PDF viewers.) Note: 1. In all figures of this Paper, we omit the minus signs in
all time-evolution-like terms (i.e. exponential of a Hamiltonian e−iHt) for sake of brevity and
space. 2. Some quantum registers are not depicted in this figure due to the limitation of space.

1.2 QNN Architectures for graph-structured data
Most conventional problem-agnostic QNN architectures do not exploit the underlying structure
of data for specific problems, which leads to issues on trainability and generalization [30]. In

https://youtu.be/c4JRVza0AAw
https://youtu.be/RVWkJZY6GNY
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the second part of the thesis, we design problem-tailored QNNs for graph-structured data
by incorporating the inductive biases into their architectures. Specifically, we devise QNN
architectures in accordance with three major types of classical Graph Neural Networks(GNNs):
Graph Convolutional Neural Networks, Graph Attention Neural Networks, and Message-Passing
GNNs. A brief introduction of the three classical GNNs is given in section 6.1. Fig.1.2 shows
the illustration of the overall circuit construction for the three Quantum GNN architectures
along with the three fundamental types of classical GNNs [1].

Figure 1.2: Overall circuit construction for the three Quantum GNN architectures along with
the three fundamental types of classical GNNs [1].

Potential advantages of our QNNs can be viewed from two perspectives: (1) Compared to
conventional QNNs, the number of parameters in our QNNs could be significantly reduced,
improving trainability of the model. (2) Compared to the classical GNNs, our QNNs for
graph-structured data could have better scalability and expressivity.

1.3 GPT on Quantum Computer

Large Language Models (LLMs) have rapidly gained prominence and made a profound impact
worldwide, transforming how we interact with and understand the capabilities of artificial
intelligence. The success of models like GPT-4 has showcased the immense potential of LLMs
in various applications across different domains. In the domain of natural language processing
(NLP), LLMs are adept at various tasks including machine translation, sentiment analysis,
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question answering, and text summarization, among others. They have demonstrated a high
level of effectiveness in identifying complex patterns in language, comprehending the context,
and producing text that is both coherent and contextually appropriate.

Despite rapid evolution and notable progress in the field of Quantum Machine Learning,
research connecting QML advancements to these state-of-the-art language models is still in its
infancy. Recent studies (e.g., Ref. [33, 34, 35, 36, 37]) highlight a growing interest in leveraging
quantum computing to elevate the capabilities of language models. In the third part of the thesis,
we explore the quantum implementation of GPT — the original version of ChatGPT. Fig.1.3
provides a preview/summary of this part of the thesis: the overall quantum implementation of
GPT.
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The above steps, as gathered in the grey box in Fig. 11.7, implements an oracle OFFN such
that:

OFFN : |iÍ |mÍ |0Ík,h |0Íother |0Í |0ÍReLU æ |iÍ |mÍ |0Ík,h |0Íother |0Í
----ReLU(yyy

(m)
i )

>
(11.80)

Which produces the state

ÿ

i

ÿ

m
|iÍ |mÍ

---yyyÕÕÕ
i
(m)

f
|0Ík,h |0Íother |0Í (11.81)

where we denote yyyÕÕÕ
i
(m) =ReLU(yyy(m)

i )
Next, the "controlled-rotation" and uncomputation of OFFN are applied, obtaining

ÿ

i

ÿ

m
|iÍyyyÕÕÕ

i
(m) |mÍ =

ÿ

i

|iÍ
ÿ

m
yyyÕÕÕ
i
(m) |mÍ =

ÿ

i

|iÍ
---yyyÕÕÕ

i

f
(11.82)

where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ

i

f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.

ReLU

Reg(h)

∑
i

| i⟩

∑
m

|m⟩
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|(|zzzÕÕÕ
iÍ |0Íother+ ...)≠ |wwwmÍ |0Íother) respectively. Then there is a real number ◊im such that

|ÂimÍ = |iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)
¸ ˚˙ ˝

|„imÍ

= |iÍ|mÍ |„imÍ (11.61)

◊im satisfies cos◊im =
Ò
1≠ÈzzzÕ

i|wwwmÍ /
Ô
2 , sin◊im =

Ò
1+ ÈzzzÕ

i|wwwmÍ /
Ô
2 , and we have:

ÈzzzÕ
i|wwwmÍ = ≠cos2◊j . (11.62)

To summarize, the quantum circuit depicted in Fig.11.6 , denoted as U , acts as

U : |iÍ|mÍ |0Ík,h |0Íother |0Í æ |iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)
¸ ˚˙ ˝

|„imÍ

= |iÍ|mÍ |„imÍ , (11.63)

where yyy
(m)
i = ÈzzzÕ

i|wwwmÍ are encoded as:

ÈzzzÕ
i|wwwmÍ = ≠cos2◊im.(11.64)

When acting on the input state to the circuit |�0Í =
q

i
q

m |iÍ|mÍ |0Ík,h |0Íother |0Í, U , also
depicted as the pink box in Fig.11.7, produces the following state

|�1Í =
ÿ

i

ÿ

m
|iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)

¸ ˚˙ ˝
|„imÍ

=
ÿ

i

ÿ

m
|iÍ|mÍ |„imÍ (11.65)

Next use amplitude estimation [?] to extract and store yyy
(m)
i = ÈzzzÕ

i|wwwmÍ into an additional
register which we call the “amplitude register” |0Ítamplitude and the output state |�1Í (using the
same notation) becomes

|�3Í =
ÿ

i

ÿ

m
|iÍ|mÍ |„imÍ |0Ítamplitude , (11.66)

where |„imÍ can be decomposed as

|„imÍ = ≠iÔ
2

1
ei◊im |Ê+Íim ≠ ei(≠◊im) |Ê≠Íim

2
. (11.67)

where |w±Íim = 1Ô
2 (|0Í|uimÍ± iii|1Í|vimÍ).

Hence, we have

|�1Í =
ÿ

i

ÿ

m

≠iÔ
2

1
ei◊im|iÍ |mÍ |Ê+Íim ≠ ei(≠◊im)|iÍ |mÍ |Ê≠Íim

2
|0Ítamplitude . (11.68)

The overall Grover operator G is defined as

G := UC2U
≠1C1, (11.69)

where C1 is the Z gate on the bottom ancilla qubit in the pink box, and C2 = (I ≠2|0ÍÈ0|)¢Ii,m

is the “flip zero state” on registers other than Reg(i),Reg(m).
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Using 11.63, it can be shown that G can be expressed as

G=
ÿ

i

ÿ

m
|iÍ |mÍÈm|Èi|¢Gim, (11.70)

where Gim is defined as

Gim = (I ≠2|„imÍÈ„im|))(Z ¢ I) (11.71)

It is easy to check that |w±Íim are the eigenstates of Gim, that is,

Gim|w±Íim = e±iii2◊im|w±Íim. (11.72)

Therefore overall Grover operator G possess the following eigen-relation:

G |iÍ |mÍ |Ê±Íim = ei(±2◊im) |iÍ |mÍ |Ê±Íim . (11.73)

Next we apply phase estimation of the overall Grover operator G on the input state |�1Í.
The resulting state |�2Í can be written as

|�2Í =
ÿ

i

ÿ

m

≠iÔ
2

1
ei◊im |iÍ |mÍ |Ê+Íim |2◊imÍ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |≠2◊imÍ

2
. (11.74)

Note here in Eq. 11.74, |±2◊imÍ denotes the eigenvalues ±2◊im being stored in the amplitude
register with some finite precision.

Next we apply an oracle UO on the amplitude register and an extra ancilla register, which
acts as

UO |0ÍReLU |±2◊imÍ =
----ReLU(yyy

(m)
i )

>
|±2◊imÍ , (11.75)

The state after the oracle can be written as

|�3Í =
ÿ

i

ÿ

m

≠iÔ
2

----ReLU(yyy
(m)
i )

>1
ei◊im |iÍ |mÍ |Ê+Íim |2◊imÍ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |≠2◊imÍ

2
.

(11.76)
Then we perform the uncomputation of Phase estimation, the resulting state is

|�4Í =
ÿ

i

ÿ

m

≠iÔ
2

----ReLU(yyy
(m)
i )

>1
ei◊im |iÍ |mÍ |Ê+Íim |0Ítamplitude ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |0Ítamplitude

2

(11.77)

=
ÿ

i

ÿ

m

----ReLU(yyy
(m)
i )

>
|iÍ|mÍ |„imÍ |0Ítamplitude

(11.78)

Finally, we perform U † and the resulting state is

|�5Í =
ÿ

i

ÿ

m

----ReLU(yyy
(m)
i )

>
|iÍ|mÍ |0Ík,h |0Íother |0Í |0Ítamplitude . (11.79)

114
CHAPTER 11. TRANSFORMER ON QUANTUM COMPUTER 2: ARCHITECTURE

IMPLEMENTATION

11.5 Feed-Forward Network on Quantum computer

After the multihead attention module and Residual-connection, a position-wise Feed-Forward
Networ(FFN) is applied. The FFN is a fully connected feed-forward module that operates
separately and identically on each zzzÕ

i:

FFN
1
zzzÕ
i

2
=W2€ReLU

1
W1€zzzÕ

i+b1
2
+b2,

where W1 œ RrH◊dff ,W2 œ Rdff◊rH ,b1 œ Rdff ,b2 œ RrH are trainable parameters, dff is the
intermediate dimension of the FFN. For simplicity we omit b1,b2 in the following discussion.
Similar to we defined XXX := [xxx1, . . . ,xxxn] before, we can write W1 :=

Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
where

wwwm œ RrH .

Denote yyyi :=W1€zzzÕ
i œ Rdff , we have its elements as

yyy
(m)
i = zzzÕ

i ·wwwm,’m œ {1, . . . ,dff} (11.54)
---ÂZZZÕÕÕ

f
= qn

i=1 |iÍ¢ |zzzÕ
iÍ¢ |0Í+ ...

by the unitary circled in the overall transparent box in Fig.11.5, denoted as UZZZÕÕÕ , which act
as

UZZZÕÕÕ : |iÍ |0Ík,h |0Íother æ |iÍ
---zzzÕÕÕ

i

f
|0Íother+ ...,’i œ {1, · · ·n}. (11.55)

For implementing W1 :=
Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
, we can create a trainable unitary

UW111 : |mÍ |0Ík,h |0Íother æ |mÍ |wwwmÍ |0Íother ,’m œ {1, . . . ,dff}. (11.56)

with |wwwmÍ on Reg(k),Reg(h) and |mÍ on an additional registered Reg(m).
This trainable unitary UW111 can be implemented as a series of controlled parameterised

quantum circuits as UW111 =
q

m |mÍÈm|Um where each Um, acting as Um : |0Ík,h æ |wwwmÍ, is a
parameterised quantum circuit.

Notice that
yyy
(m)
i = ÈzzzÕ

i|wwwmÍ,’m œ {1, . . . ,dff} (11.57)

This can be evaluated using Parallel Swap test for each zzzÕ
i œ RrH and wwwm œ RrH , via the

quantum circuit depicted in Fig.11.6.
The input state to the circuit is

|�0Í =
ÿ

i

ÿ

m
|iÍ|mÍ |0Ík,h |0Íother |0Í (11.58)

For each branch |iÍ|mÍ |0Ík,h |0Íother |0Í, applying a Hadamard gate on the bottom ancillary
qubit, and controlled UZZZÕÕÕ , UW111 we obtain

|iÍ|mÍ(
---zzzÕÕÕ

i

f
|0Íother+ ...) |0Í+ |iÍ|mÍ |wwwmÍ |0Íother |1Í (11.59)
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The above steps, as gathered in the grey box in Fig. 11.7, implements an oracle OFFN such
that:

OFFN : |iÍ |mÍ |0Ík,h |0Íother |0Í |0ÍReLU æ |iÍ |mÍ |0Ík,h |0Íother |0Í
----ReLU(yyy

(m)
i )

>
(11.80)

Which produces the state

ÿ

i

ÿ

m
|iÍ |mÍ

---yyyÕÕÕ
i
(m)

f
|0Ík,h |0Íother |0Í (11.81)

where we denote yyyÕÕÕ
i
(m) =ReLU(yyy(m)

i )
Next, the "controlled-rotation" and uncomputation of OFFN are applied, obtaining

ÿ

i

ÿ

m
|iÍyyyÕÕÕ

i
(m) |mÍ =

ÿ

i

|iÍ
ÿ

m
yyyÕÕÕ
i
(m) |mÍ =

ÿ

i

|iÍ
---yyyÕÕÕ

i

f
(11.82)

where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ

i

f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.
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Figure 1.3: Preview/summary of the third part of the thesis: overall quantum implementation
of GPT





Chapter 2

Preliminary

2.1 Quantum Neural Networks

Classical neural networks are fundamentally built on the structure of multi-layer perceptrons
which involve layers of trainable linear transformations and element-wise non-linear transforma-
tions (activation functions such as ReLU, sigmoid, or tanh).1 On the other hand, Quantum
Neural Networks (QNNs), which are often defined as parametrized quantum circuits with a
predefined circuit ansatz, do not naturally exhibit this kind of structure. In QML literature, a
QNN, denoted as U(θ⃗), often have a has an L-layered structure of the form [38]

U(θ⃗) =
L∏

l=1
Ul(θ⃗l) , Ul(θ⃗l) =

K∏

k=1
e−iθlkHk , (2.1)

where the index l represents the layer, and the index k covers the Hermitian operators Hk that
generates the unitaries in the circuit ansatz, θ⃗l = (θl1, . . . θlK) represents the parameters in a
single layer, and θ⃗ = {θ⃗1, . . . , θ⃗L} represents the collection of adjustable parameters in the QNN.
Examples of circuit ansatz represented by Eq. 2.1 include: the hardware-efficient ansatz [39],
quantum alternating operator ansatz [2], and quantum optimal control Ansatz [40], among others.

The emulation of classical perceptrons with non-linearities in quantum circuits is an area of
active research. There are several proposals for how this might be achieved [41, 42, 43], but they
often involve intricate methods of encoding information into quantum states and performing
measurements. The difficulty arises from the need to replicate the non-linear characteristics of
classical neural networks within the linear framework of quantum mechanics. Nevertheless, it
is still not clear what benefits these somewhat cumbersome quantum implementations could
provide compared to the straightforward classical perception.

1we assume the readers of this thesis are familiar with classical neural networks. For reference of classical
neural networks, see e.g. [22]

7
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In the second and third parts of this thesis, we utilize the conventional QNN as in Eq. 2.1 for
implementing some trainable linear transformations in classical neural networks(often referred
as "linear layer", or "fully connected layer"), and we extend the conventional notion of a QNN
to "a broad structured quantum circuit contains parameterized quantum circuits (represented
by Eq. 2.1) as its components", that is, parameterized quantum circuits (which contain only
parameterized gates) sit within a broader non-parameterized quantum circuit.

Parametrized quantum circuit for implementing trainable linear layer

In machine learning, a linear layer[22] is a fundamental component of neural networks architec-
tures that maps input vectors to output vectors through affine transformation: Given an input
vector x ∈ Rn, the linear layer transforms it to an output vector y ∈ Rm using a weight matrix
W ∈ Rm×n and an optional bias vector b ∈ Rm as y =Wx + b, and W , b contain the trainable
parameters.

In quantum case, the input vector x can be encoded in the amplitudes of a quantum state
|ψx⟩ as

|ψx⟩ =
n∑

i=1
xi|i⟩

where xi is the i-th element of x, and |i⟩ is the i-th computational basis state. Applying a
parameterized quantum circuit U(θ⃗) ∈ Cn×n on |ψx⟩ be interpreted as a special linear trans-
formation (represented as a square matrix) on x. By omitting the optional bias vector b and
setting m= n, we can utilize parameterized quantum circuit as in Eq. 2.1 to implement a special
type of the trainable linear layers y =Wx+b. For the case where the weight matrix W ∈ Rm×n

is rectangular, e.g. m< n2, we can adjust the dimension of the output vector to be the same
as the input vector in the neural network architecture, or we can consider the output of the
parameterized quantum circuit U(θ⃗) |ψx⟩ as the concatenation of y ∈ Rm and another vector
and W ∈ Rm×n being a part of the unitary U(θ⃗) ∈ Cm×m.

In the second and third parts of this thesis, we utilize parameterized quantum circuits as
in Eq. 2.1 for implementing some of the trainable linear layers. Note that in case where the
weight matrix W ∈ Rm×n is rectangular (m ̸= n), by default we adjust the dimension of the
output vector to be the same as the input vector in our QNN architecture, without specifying
the adjustment in the prior description of the classical architecture.

It should be emphasized that the trainable circuit parameters θ⃗ are not equivalent to the
weights in the weight matrix, but rather they are parameterized by them, as in W (θ⃗). Ref [38]
contains a discussion of the parametrization.

2for case where m > n, see an example in section 11.6
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2.2 Quantum Optimisation Algorithms

Zoo of Quantum Optimisation Algorithms

For completeness, we list some typical quantum optimisation algorithms in Table. 2.1, including
the primitive ones (adiabatic, quantum walks, QAOA, Grover adaptive search), their hybridiza-
tions [19] [44, 45, 46, 47], and their variants [48, 49] [50] [5, 20] [21, 3] [51]. In this paper, for
the training of QNNs, we focus on utilising QAOA and its variants as well as Grover adaptive
search, which we will review in the following subsections.

Primitives Adiabatic Quantum
Walk

QAOA Grover
adaptive
search

Hybridization
of Primitives

Hybrid adiabatic–quantum-walk algorithms, others

Variants of
Primitives

Shortcut to
adiabaticity

Quantum
stochastic walk

Adaptive
QAOAs,
Others

Quantum
basin hopping

Table 2.1: Zoo of Quantum Optimisation Algorithms. The first row contains the four primitive
quantum optimisation algorithms by adiabatic quantum evolution, quantum walks, QAOA and
Grover adaptive search. The second row contains the hybridization among these four primitives,
e.g. hybrid adiabatic–quantum-walk algorithms [19]. The third row contains the variants of the
primitives, e.g. variants of QAOA include Adaptive QAOAs [5, 20], and others [21, 3].

QAOA and its variants

In this section, we review the original quantum approximation optimization algorithm (QAOA)
proposed in Ref. [52] and its variants. Consider an unconstrained optimization problem on n-bit
strings z = (z1, z2, z3, ....zn) where zi ∈ {0,1} We seek the optimal bit string z that maximizes
(or minimizes) a cost function C(z). Given the cost function C(z) of a problem instance, the
algorithm is characterized by two Hamiltonians: the cost Hamiltonian HC and the Mixing
Hamiltonian HM. The cost Hamiltonian HC encodes the cost function C(z) to be optimized,
and acts on n-qubit computational basis states as

HC |z⟩ = C(z) |z⟩ .

The mixing Hamiltonian HM is chosen as to be

HM =
n∑

j=1
Xj ,

where Xj is the Pauli X operator acting on the jth qubit. The initial state is the even
superposition state of all possible solutions: |s⟩ = 1√

2n

∑
z |z⟩ . The QAOA algorithm consists of
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∑
θ

|θ⟩

∑
θ

eiC(θ) |θ⟩

∑
θ

ΨC(θ) |θ⟩

eiγ1HC

eiβ1HM

eiγ1HC

eiβ1HM

∑
θ

eiC(θ)ΨC(θ) |θ⟩

eiβ1HM

eiγ1HC

…

…
…

…

C(θ)

θ

QAOA  

Figure 2.1: Interference process of QAOA. QAOA is an interference-based algorithm such that
non-target states interfere destructively while the target states interfere constructively. Here
we illustrate this interference process by presenting the evolution of the quantum state of the
parameters(black bar graphs on the yellow plane) alongside with the QAOA operations(blue
and pink boxes on circuit lines, representing the Phase encoding and Mixers respectively).
The starting state ∑θ |θ⟩ (omitting the normalization factor) is the even superposition state
of all possible parameter configurations. After the first Phase encoding operation, the state
becomes ∑θ e

−iC(θθθ) |θ⟩ for which we use the opacity of the bars to indicate the value of the
phase, the magnitudes of the amplitudes in the state remains unchanged. After the first Mixer,
the state becomes ∑θ ΨC(θθθ) |θ⟩ in which the magnitudes of the amplitudes in the state has
changed. A similar process happens to the following operations, until the amplitudes of the
optimal parameter configurations are amplified significantly(the furthest bar graph). The grey
bar graph in the right corner is the cost function being optimized by QAOA.

alternating time evolution under the two Hamiltonians HC and HM for p rounds, where the
duration in round j is specified by the parameters γj and βj , respectively. After all p rounds,
the state becomes

|βββ,γγγ⟩ = e−iβpHMe−iγpHC . . . e−iβ2HMe−iγ2HCe−iβ1HMe−iγ1HC |s⟩ .

The alternating operations can be illustrated as in Fig. 2.2. Finally, a measurement in the
computational basis is performed on the state. Repeating the above state preparation and
measurement, the expected value of the cost function,

⟨C⟩ = ⟨βββ,γγγ|HC |βββ,γγγ⟩ ,

can be estimated from the samples produced from the measurements.

The above steps are then repeated altogether, with updated sets of time parameters
γ1, . . . ,γp,β1, . . . ,βp. Typically a classical optimization loop (such as gradient descent) is used
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Figure 2.2: Quantum circuit schematic of the operations in the original QAOA. The state
is initialized by applying Hadamard gates on each qubit, represented as H⊗n. This results
in the equal superposition state of all possible solutions. QAOA consists of alternating time
evolution under the two Hamiltonians HC and HM for p rounds, where the duration in round
j is specified by the parameters γj and βj , respectively. In the original QAOA, the mixing
Hamiltonian HM is chosen as to be HM = ∑n

j=1Xj , After all p rounds, the state becomes
|βββ,γγγ⟩ = e−iβpHMe−iγpHC . . . e−iβ2HMe−iγ2HCe−iβ1HMe−iγ1HC |s⟩ .

to find the optimal parameters that maximize(or minimize) the the expected value of the
cost function ⟨C⟩. Then measuring the resulting state of the optimal parameters provide an
approximate solution to the optimization problem.

Here we present some remarks on the fundamental differences of the adiabatic and QAOA
protocols. QAOA can be seen as a “trotterized” version of adiabatic evolution: the mixer
Hamiltonians being the initial Hamiltonian in the analogous adiabatic algorithm, and the cost
Hamiltonians being the final Hamiltonian. However short-depth QAOA is not really the digitized
version of the adiabatic problem, but rather an ad hoc ansatz. In Ref. [53] it is shown that QAOA
is able to deterministically find the solution of specially constructed optimization problems
in cases where quantum annealing fail. We emphasise that QAOA is an interference-based
algorithm such that non-target states interfere destructively while the target states interfere
constructively. In Fig.2.1 we depict this interference process of QAOA.

There has been a lot of progress on QAOA recently on both the experimental and theoretical
fronts. There is evidence suggesting that QAOA may provide a significant quantum advantage
over classical algorithms [54, 55], and that it is computationally universal [56, 57]. Despite these
advances, there are limitations of QAOA. The performance improves with circuit depth, but
circuit depth is still limited in near-term quantum processors. Moreover, deeper circuits translate
into more variational parameters, which introduces challenges for the classical optimizer in
minimizing the objective function. Ref. [58] show that the locality and symmetry of QAOA
can limit its performance. These issues can be attributed to the form of the QAOA ansatz. A
short-depth ansatz that is further tailored to a given combinatorial problem could therefore
address the issues with the standard QAOA ansatz. However, identifying such an alternative is
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a highly non-trivial problem given the vast space of possible ansatzes. Farhi et al. [59] allowed
the mixer to rotate each qubit by a different angle about the x-axis and modified the cost
Hamiltonian based on hardware connectivity. This modification was made primarily out of
hardware capability concerns with the hope that superior-than-classical performance can be
experimentally verified.

LH-QAOA. In Ref. [2] Hadfield et al. considered alternative mixers including entangling
ones on two qubits. The selection of mixers is based on the criteria of preserving the relevant
subspace for the given combinatorial problem, for which they entitled it Local Hamiltonian-
QAOA (LH-QAOA). Here we depict the quantum circuit schematic of LH-QAOA in Fig. 2.3.
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γ2

eiβ1HM,1

β1
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eiγpHC…

LH-QAOA  

eiβ1HM,2

β1eiβ1HM,k
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β1eiβ1HM,k+2

|0⟩
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eiβ2HM,1

β1eiβ2HM,2

β1eiβ2HM,k

β2
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β1eiβ2HM,k+2
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β1eiβpHM,2

β1eiβpHM,k

βp

eiβpHM,k+1

β1eiβpHM,k+2

H⊗n…

…

Figure 2.3: Quantum circuit schematic of the operations in LH-QAOA. The overall process
of LH-QAOA is similar to that of the original QAOA in Fig. 2.2, where the difference is that
the mixer of LH-QAOA contains entangling an mixer Hamiltonian on two qubits. These are
represented by the HM,i blocks with various colors in the figure. Note that in order to avoid an
excessive amount of hyper-parameters, Hadfield et al. [2] choose the βj for each HM,i to be the
same in every layer.

QDD. In Refs. [60, 3] Verdon et al. adjusted the mixers for continuous optimization problem
in which the parameters to be optimized are continuous variables. In the original QAOA ansatz,
the mixer is chosen to be single-qubit X rotations applied on all qubits. These constitute an
uncoupled sum of generators of shifts in the computational basis. Similarly, the appropriate
mixers in the continuous case should shift the value for each digitized continuous variables
stored in independent registers. They entitled it Quantum Dynamical Descent (QDD). Here we
depict the quantum circuit schematic of QDD in Fig. 2.4.

ADAPT-QAOA. LH-QAOA and QDD showcase the potential of problem-tailored mixers,
but do not provide a general strategy for choosing mixers for different optimization problems.
In Ref. [5] Zhu et al. replaced the fixed mixer HM by a set of different mixers Ak that change
from layer to layer. They entitled this variation of QAOA as ADAPT-QAOA. This adaptive
approach would dramatically shorten the depth of QAOA layers while significantly improving
the quality of the solution. Here we depict the quantum circuit schematic of ADAPT-QAOA in
Fig. 2.5.
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Figure 2.4: Quantum circuit schematic of QDD. QDD solves optimization problems of continuous
variable. In this figure, θi are the continuous variables to be optimized in the training, where
each θi is digitized into binary form and stored in an independent register. The overall process
of QDD is similar to that of the original QAOA, where the difference is that the mixer of QDD
with Hamiltonian S is acting on the registers of θi (rather than single qubits as in the original
QAOA). The effect of the mixer in QDD is to shift the value for each θi.
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Figure 2.5: Quantum circuit schematic of ADAPT-QAOA. The overall process of LH-QAOA
is similar to that of the original QAOA in Fig. 2.2, where the difference is that the mixer of
LH-QAOA contains variable mixers taken from a mixers pool. Define Q to be the set of qubits.
The mixer pool of ADAPT-QAOA is PADAPT-QAOA = ∪i∈Q

{
Xi,Yi,

∑
i∈QXi,

∑
i∈QYi

}
∪i,j∈Q×Q

{BiCj |Bi,Cj ∈ {X,Y,Z}}.

Compared to the original QAOA, allowing Y mixers and entangling mixers enables ADAPT-
QAOA to dramatically improve algorithmic performance while achieving rapid convergence for
problems with complex structures. This effect of the adaptive mechanism is illustrated in Fig. 2.6.
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Figure 2.6: Comparison of original QAOA and ADAPT-QAOA. In the left and right panels of
this figure, we depict the state change in the Hilbert space of the parameters to be optimized,
for the original QAOA and ADAPT-QAOA respectively. The starting state ∑θ |θ⟩ (omitting the
normalization factor), represented by the rounded dot at the bottom of each space, is the even
superposition state of all possible solutions. The arrows represent the state evolution generated
by the cost Hamiltonian and mixer Hamiltonian, and the color and direction of the arrows
indicate the nature of the evolution. Blue arrows represent the evolution by the cost Hamiltonian.
Arrows of other colors represent the evolution by different mixer Hamiltonians. In the original
QAOA, there is only one mixer (shown in pink) available. Whereas, in ADAPT-QAOA there
are more alternative mixers to chose from the mixers pool. The two algorithm try to reach
the target state |θ∗⟩ (represented by the blue star) by stacking these arrows, which represent
the alternating operations of two QAOAs. For reference we sketched the relevant paths —
adiabatic path for the original QAOA and counter-diabatic path for ADAPT-QAOA — along
the state evolution of the two QAOAs. As can be seen, the ADAPT-QAOA takes much fewer
iterations to reach a closer point to the target state. This illustrates that compared to the
original QAOA, allowing alternative mixers enables ADAPT-QAOA to dramatically improve
algorithmic performance while achieving rapid convergence.

The advantage of the adaptive ansatz may come from the counter-diabatic (CD) driving
mechanism. Numerical evidence shows that the adaptive mixer sequence chosen by the algorithm
coincides with that of “shortcut to adiabaticity” by CD driving [5]. Inspired by the CD driving
procedure, another variant of QAOA, CD-QAOA [20], also uses an adaptive ansatz to achieve
similar advantages. CD-QAOA is designed for preparing the ground state of quantum-chaotic
many-body spin chains. By using terms occurring in the adiabatic gauge potential as additional
control unitaries, CD-QAOA can achieve fast high-fidelity many-body control.

AC-QAOA Inspired by above variants of QAOA, we design a new variant of QAOA
tailored for our QNN training problem. In our case, for QNN training, the parameters we are
optimizing (the angles of rotation gates) are continuous (real) values. Therefore, the choice of
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Figure 2.7: Quantum circuit schematic of AC-QAOA. AC-QAOA is a variant of QAOA we
designed for solving optimisation of continuous variables with the short-depth advantage of
QAOA layers. In this figure, θi are the continuous variables to be optimized in the training.
Each θi is digitized into binary form and stored in an independent register. The overall process
of AC-QAOA is similar to that of the original QAOA, with the difference being as follows. 1.
The mixers of AC-QAOA with Hamiltonians Si and Ti are acting on the registers of θi (rather
than single qubits as in the original QAOA). 2. The mixers of AC-QAOA contain alternative
mixers taken from a mixers pool and can vary from layer to layer.

mixer Hamiltonian has to be adapted (as in QDD). We also want take advantage of including
alternative mixers and allowing adaptive mixers for different layers (as in ADAPT-QAOA).
Thus, the proper QAOA ansatz for our QNN training problem should be an adaptive continuous
version of QAOA, which we call AC-QAOA. Fig. 2.7 depicts the the quantum circuit schematic
of AC-QAOA.

Grover Adaptive Search

Grover’s algorithm is generally used as a search method to find a set of desired solutions from a
set of possible solutions. Dürr and Høyer presented an algorithm based on Grover’s method
that finds an element of minimum value inside an array of N elements using on the order
of O(

√
N ) queries to the oracle [61]. Baritompa et al. [62] applied Grover’s algorithm for

global optimization, which they call Grover Adaptative Search (GAS). GAS has been applied in
training classical neural networks [12] and polynomial binary optimization [63]. In the following
we outline GAS.
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Consider a function f :X → R, where for ease of presentation assume X = {0,1}n. We are
interested in solving minx∈X f(x). The main idea of GAS is to construct an “adaptive” oracle
for a given threshold y such that it flags all states x ∈X satisfying f(x)< y, namely the oracle
marks a solution x if and only if another boolean function gy satisfies gy(x) = 1, where

gy(x) =





1 if f(x)< y

0 otherwise
, (2.2)

The oracle OGrover then act as

OGrover |x⟩ = (−1)gy(x) |x⟩ . (2.3)

We use Grover search to find a solution x̃ with a function value better than y. Then we set
y = f(x̃) and repeat until some formal termination criteria is met — for example, based on the
number of iterations, time, or progress in y.

2.3 Swap test, Hadamard test, and the Grover operator

Swap Test and its Grover operator

Let |pj⟩ , |t⟩ be the resulting quantum states of unitary operators Pj and T , respectively — that
is, |pj⟩ = Pj |0⟩⊗n and |t⟩ = T |0⟩⊗n. The swap test is a technique that can be used to estimate
|⟨pj |t⟩|2 [64]. The circuit of Swap test is shown in Fig. 2.8.

Uj

Swap Ancilla qubit: |0⟩ H H

Data register 1: |0⟩⊗n Pj T

Data register 2: |0⟩⊗n T Pj

Figure 2.8: Circuit diagram of Swap test. Here we present an alternative form of swap test:
instead of applying the swap operation on two quantum states, the circuit in this figure simulate
the “swap” effect by applying two unitaries Pj ,T on two registers in different order controlled
by an ancilla qubit. The “anti-control” symbol is defined as: when the control qubit is in state
|0⟩, the unitary being controlled is executed; when the control qubit is in state |1⟩, the unitary
being controlled is not executed.

We denote the unitary of the Swap test circuit (dotted green box in Fig. 2.8) as Uj , which
can be written as

Uj := [H⊗ I⊗ I] · [|0⟩⟨0|⊗Pj ⊗T + |1⟩⟨1|⊗T ⊗Pj ] · [H⊗ I⊗ I]. (2.4)
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The output state from Uj is denoted as |ϕj⟩:

|ϕj⟩ = 1√
2

(|+⟩ |pj⟩ |t⟩+ |−⟩ |t⟩ |pj⟩). (2.5)

Rearranging the terms we have

|ϕj⟩ = 1
2
(
|0⟩⊗ (|pj⟩ |t⟩+ |t⟩ |pj⟩)+ |1⟩⊗ (|pj⟩ |t⟩− |t⟩ |pj⟩)

)
. (2.6)

We then define |uj⟩ and |vj⟩ as the normalized states of |pj⟩ |t⟩+ |t⟩ |pj⟩ and |pj⟩ |t⟩− |t⟩ |pj⟩
respectively. Then there is a real number θj ∈ [π/4,π/2] such that

|ϕj⟩ = sinθj |0⟩|uj⟩+cosθj |1⟩|vj⟩, (2.7)

where θj satisfies cosθj =
√

1−|⟨pj |t⟩|2 /
√

2 , sinθj =
√

1+ |⟨pj |t⟩|2 /
√

2 , therefore we have:

|⟨pj |t⟩|2 = −cos2θj . (2.8)

From Eq. 2.8 and Eq. 2.7 we see that the value of |⟨pj |t⟩|2 is encoded in the amplitude of
the output state |ϕj⟩ of swap test. This will be used in the amplitude encoding of QNN cost
function which is a crucial component of the quantum training.

Applying the Schmidt decomposition method to state |ϕj⟩ we find

|ϕj⟩ = −iii√
2

(eiiiθj |w+⟩j − e−iiiθj |w−⟩j), (2.9)

where |w±⟩j = 1√
2 (|0⟩|uj⟩± iii|1⟩|vj⟩).

One can construct a Grover operator using Uj as follows:

Gj := (I⊗(2n+1) −2|ϕj⟩⟨ϕj |)(Z⊗ I⊗2n), (2.10)

= UjCU
†
j (Z⊗ I⊗2n), (2.11)

where Z = |0⟩⟨0|−|1⟩⟨1| is the Pauli-Z operator, C = I⊗(2n+1) −2|0⟩⊗(2n+1)⟨0|⊗(2n+1) can be im-
plemented as the circuit shown in Fig. 2.9. The circuit representation of Gj is shown in Fig. 2.10.

It is easy to check that |w±⟩j are the eigenstates of Gj . — that is,

Gj |w±⟩ = e±iii2θj |w±⟩j . (2.12)

Recall from Eq. 2.8 the value of |⟨pj |t⟩|2 is encoded in the phase of the eigenvalue of Gj . This
will be used in the phase encoding of QNN cost function which is a crucial component of the
quantum training.
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C

...

−Z

Figure 2.9: Quantum circuit to implement unitary C = I⊗(2n+1) −2|0⟩⊗(2n+1)⟨0|⊗(2n+1).

Gj

Swap Ancilla qubit: |0⟩ Z

U †
j C UjData register 1: |0⟩⊗n

Data register 2: |0⟩⊗n

Figure 2.10: Quantum circuit to implement Gj . Gj is defined as Gj := UjCU
†
j (Z⊗ I⊗2n).

Hadamard Test and its Grover operator

Similar to the swap test, the Hadamard test is a technique that is used to estimate ⟨0|P †
j TPj |0⟩,

for two unitary operators Pj and T (assuming T is Hermitian). The circuit of Hadamard test is
shown in Fig. 2.11.

U ′
j

Hadamard Ancilla qubit: |0⟩ H H

Data register: |0⟩⊗n Pj T

Figure 2.11: Circuit diagram of Hadamard Test. The circuit is used to estimate ⟨0|P †
j TPj |0⟩,

for two unitary Pj and T . The Hadamard test will be used the phase encoding of QNN cost
function which is a crucial component of the quantum training.

We denote the unitary of the Hadamard test circuit (the dotted green box in Fig. 2.11) as
U ′

j and the output state from U ′
j as

|ϕ′
j⟩ = 1√

2
(|+⟩Pj |0⟩+ |−⟩TPj |0⟩). (2.13)

Rearranging the terms we have

|ϕ′
j⟩ = 1

2
(
|0⟩⊗ (Pj |0⟩+TPj |0⟩)+ |1⟩⊗ (Pj |0⟩−TPj |0⟩

)
. (2.14)
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Denote |u′
j⟩ and |v′

j⟩ as the normalized states of Pj |0⟩ +TPj |0⟩ and Pj |0⟩−TPj |0⟩ respec-
tively. Then there is a real number θ′

j ∈ [0,π/2] such that

|ϕ′
j⟩ = sinθ′

j |0⟩|u′
j⟩+cosθ′

j |1⟩|v′
j⟩, (2.15)

where θ′
j satisfies cosθ′

j =
√

1−⟨0|P †
j TPj |0⟩ /

√
2 , sinθ′

j =
√

1+ ⟨0|P †
j TPj |0⟩ /

√
2 . Therefore

we have
⟨0|P †

j TPj |0⟩ = −cos2θ′
j . (2.16)

We can define the Grover operator G′
j from U ′

j in the same way as in last subsection for the
swap test and obtain similar eigen-relation. The value of ⟨0|P †

j TPj |0⟩ is encoded in the phase
of the eigenvalue of G′

j . This will be used in the phase encoding of QNN cost function which is
a crucial component of the quantum training.

2.4 Block-encoding

Block encoding is a powerful modern quantum algorithmic technique that is employed in a
variety of quantum algorithms for solving linear algebra problems on a quantum computer[65].
A unitary U is a block encoding of a not-necessarily-unitary square matrix A (A is scaled to
satisfy ∥A∥2 ≤ 1[65]) if A is encoded in the top-left block of the unitary UA as:

UA =



A .

· ·


 ,

where the · symbol stands for a matrix block. Equivalently, we write

A=
(
⟨0|⊗a ⊗ I

)
UA

(
|0⟩⊗a ⊗ I

)
, (2.17)

where a is the number of ancilla qubits used for the block encoding of A. The unitary UA is
considered as a probabilistic implementation of A, i.e., by applying the unitary U to an input
state |0⟩⊗a|b⟩, measuring the first a-qubit register and post-selecting on the outcome |0⟩⊗a,
we obtain a state that is proportional to A|b⟩ in the second register. This is illustrated in Fig.2.12.

The circuit implementation of Block-encoding in general is constructed using Linear Combi-
nation of Unitaries(LCU)[8] technique[66].

2.5 Quantum Singular Value Transformation (QSVT)

Quantum Singular Value Transformation (QSVT)[7] is a recently developed quantum algorithmic
framework that can apply polynomial transformations to the singular values of a matrix encoded
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Using classical arithmetic operations, we can convert this oracle into an oracle

(6.4) O0
A |0di |ii |ji = |e✓iji |ii |ji ,

where 0  e✓ij < 1, and e✓ij is a d-bit representation of ✓ij = arccos(Aij)/⇡ . This step may require
some additional work registers not shown here.

Now using the controlled rotation in Proposition 4.7, the information of eAij , e✓ij has now been
transferred to the phase of the signal qubit. We should then perform uncomputation and free the
work register storing such intermediate information eAij , e✓ij . The procedure is as follows

|0i |0di|{z}
work register

|ii |ji O0
A��! |0i |e✓iji |ii |ji

CR��!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|e✓iji |ii |ji

(O0
A)�1

�����!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|0di |ii |ji

(6.5)

From now on, we will always assume that the matrix entries of A can be queried using the
phase oracle OA or its variants.

6.2. Block encoding

The simplest example of block encoding is the following: assume we can find a (n + 1)-qubit
unitary matrix U (i.e., U 2 C2N⇥2N ) such that

UA =

✓
A ⇤
⇤ ⇤

◆

where ⇤ means that the corresponding matrix entries are irrelevant, then for any n-qubit quantum
state |bi, we can consider the state

(6.6) |0, bi = |0i |bi =
✓
b
0

◆
,

and

(6.7) UA |0, bi =
✓
Ab
⇤

◆
=: |0iA |bi+ |?i .

Here the (unnormalized) state |?i can be written as |1i | i for some (unnormalized) state | i, that
is irrelevant to the computation of A |bi. In particular, it satisfies the orthogonality relation.

(6.8) (h0|⌦ In) |?i = 0.

In order to obtain A |bi, we need to measure the qubit 0 and only keep the state if it returns 0.
This can be summarized into the following quantum circuit:
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|0i
UA

|bi A|bi
kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,
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kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.
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So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,
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then UA is called an (↵,m, ✏)-block-encoding of A. When the block encoding is exact with ✏ = 0,
UA is called an (↵,m)-block-encoding of A. The set of all (↵,m, ✏)-block-encoding of A is denoted
by BE↵,m(A, ✏), and we define BE↵,m(A) = BE(A, 0).

Assume we know each matrix element of the n-qubit matrix Aij , and we are given an (n+m)-
qubit unitary UA. In order to verify that UA 2 BE1,m(A), we only need to verify that

(6.15) h0m, i|UA|0m, ji = Aij ,

and UA applied to any vector |0m, bi can be obtained via the superposition principle.
Therefore we may first evaluate the state UA |0m, ji, and perform inner product with |0m, ii and

verify the resulting the inner product is Aij . We will also use the following technique frequently.
Assume UA = UBUC , and then

(6.16) h0m, i|UA|0m, ji = h0m, i|UBUC |0m, ji = (U†
B |0m, ii)†(UC |0m, ji).

So we can evaluate the states U †
B |0m, ii , UC |0m, ji independently, and then verify the inner product

is Aij . Such a calculation amounts to running the circuit Fig. 6.2, and if the ancilla qubits are
measured to be 0m, the system qubits return the normalized state

P
i Aij |ii / k

P
i Aij |iik.

|0mi
UA

|ji

Figure 6.2. Circuit for general block encoding of A.

Example 6.2 ((1, 1)-block-encoding is general). For any n-qubit matrix A with kAk2  1, the
singular value decomposition (SVD) of A is denoted by W⌃V †, where all singular values in the
diagonal matrix ⌃ belong to [0, 1]. Then we may construct an (n+ 1)-qubit unitary matrix

UA :=

✓
W 0
0 In

◆✓
⌃

p
In � ⌃2p

In � ⌃2 �⌃

◆✓
V † 0
0 In

◆

=

✓
A W

p
In � ⌃2p

In � ⌃2V † �⌃

◆(6.17)

which is a (1, 1)-block-encoding of A. ⇧
Example 6.3 (Random circuit block encoded matrix). In some scenarios, we may want to con-
struct a pseudo-random non-unitary matrix on quantum computers. Note that it would be highly
inefficient if we first generate a dense pseudo-random matrix A classically and then feed it into the
quantum computer using e.g. quantum random-access memory (QRAM). Instead we would like to
work with matrices that are inherently easy to generate on quantum computers. This inspires the
random circuit based block encoding matrix (RACBEM) model [DL21]. Instead of first identifying
A and then finding its block encoding UA, we reverse this thought process: we first identify a
unitary UA that is easy to implement on a quantum computer, and then ask which matrix can be
block encoded by UA.

Example 6.2 shows that in principle, any matrix A with kAk2  1 can be accessed via a (1, 1, 0)-
block-encoding. In other words, A can be block encoded by an (n + 1)-qubit random unitary UA,

6.2. BLOCK ENCODING 81

|0i
UA

|bi A|bi
kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,

Definition 
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Using classical arithmetic operations, we can convert this oracle into an oracle

(6.4) O0
A |0di |ii |ji = |e✓iji |ii |ji ,

where 0  e✓ij < 1, and e✓ij is a d-bit representation of ✓ij = arccos(Aij)/⇡ . This step may require
some additional work registers not shown here.

Now using the controlled rotation in Proposition 4.7, the information of eAij , e✓ij has now been
transferred to the phase of the signal qubit. We should then perform uncomputation and free the
work register storing such intermediate information eAij , e✓ij . The procedure is as follows

|0i |0di|{z}
work register

|ii |ji O0
A��! |0i |e✓iji |ii |ji

CR��!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|e✓iji |ii |ji

(O0
A)�1

�����!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|0di |ii |ji

(6.5)

From now on, we will always assume that the matrix entries of A can be queried using the
phase oracle OA or its variants.

6.2. Block encoding

The simplest example of block encoding is the following: assume we can find a (n + 1)-qubit
unitary matrix U (i.e., U 2 C2N⇥2N ) such that

UA =

✓
A ⇤
⇤ ⇤

◆

where ⇤ means that the corresponding matrix entries are irrelevant, then for any n-qubit quantum
state |bi, we can consider the state

(6.6) |0, bi = |0i |bi =
✓
b
0

◆
,

and

(6.7) UA |0, bi =
✓
Ab
⇤

◆
=: |0iA |bi+ |?i .

Here the (unnormalized) state |?i can be written as |1i | i for some (unnormalized) state | i, that
is irrelevant to the computation of A |bi. In particular, it satisfies the orthogonality relation.

(6.8) (h0|⌦ In) |?i = 0.

In order to obtain A |bi, we need to measure the qubit 0 and only keep the state if it returns 0.
This can be summarized into the following quantum circuit:
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|0i
UA

|bi A|bi
kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,
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Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,

82 6. BLOCK ENCODING

then UA is called an (↵,m, ✏)-block-encoding of A. When the block encoding is exact with ✏ = 0,
UA is called an (↵,m)-block-encoding of A. The set of all (↵,m, ✏)-block-encoding of A is denoted
by BE↵,m(A, ✏), and we define BE↵,m(A) = BE(A, 0).

Assume we know each matrix element of the n-qubit matrix Aij , and we are given an (n+m)-
qubit unitary UA. In order to verify that UA 2 BE1,m(A), we only need to verify that

(6.15) h0m, i|UA|0m, ji = Aij ,

and UA applied to any vector |0m, bi can be obtained via the superposition principle.
Therefore we may first evaluate the state UA |0m, ji, and perform inner product with |0m, ii and

verify the resulting the inner product is Aij . We will also use the following technique frequently.
Assume UA = UBUC , and then

(6.16) h0m, i|UA|0m, ji = h0m, i|UBUC |0m, ji = (U†
B |0m, ii)†(UC |0m, ji).

So we can evaluate the states U †
B |0m, ii , UC |0m, ji independently, and then verify the inner product

is Aij . Such a calculation amounts to running the circuit Fig. 6.2, and if the ancilla qubits are
measured to be 0m, the system qubits return the normalized state

P
i Aij |ii / k

P
i Aij |iik.

|0mi
UA

|ji

Figure 6.2. Circuit for general block encoding of A.

Example 6.2 ((1, 1)-block-encoding is general). For any n-qubit matrix A with kAk2  1, the
singular value decomposition (SVD) of A is denoted by W⌃V †, where all singular values in the
diagonal matrix ⌃ belong to [0, 1]. Then we may construct an (n+ 1)-qubit unitary matrix

UA :=

✓
W 0
0 In

◆✓
⌃

p
In � ⌃2p

In � ⌃2 �⌃

◆✓
V † 0
0 In

◆

=

✓
A W

p
In � ⌃2p

In � ⌃2V † �⌃

◆(6.17)

which is a (1, 1)-block-encoding of A. ⇧
Example 6.3 (Random circuit block encoded matrix). In some scenarios, we may want to con-
struct a pseudo-random non-unitary matrix on quantum computers. Note that it would be highly
inefficient if we first generate a dense pseudo-random matrix A classically and then feed it into the
quantum computer using e.g. quantum random-access memory (QRAM). Instead we would like to
work with matrices that are inherently easy to generate on quantum computers. This inspires the
random circuit based block encoding matrix (RACBEM) model [DL21]. Instead of first identifying
A and then finding its block encoding UA, we reverse this thought process: we first identify a
unitary UA that is easy to implement on a quantum computer, and then ask which matrix can be
block encoded by UA.

Example 6.2 shows that in principle, any matrix A with kAk2  1 can be accessed via a (1, 1, 0)-
block-encoding. In other words, A can be block encoded by an (n + 1)-qubit random unitary UA,
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kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,

Definition 

80 6. BLOCK ENCODING

Using classical arithmetic operations, we can convert this oracle into an oracle

(6.4) O0
A |0di |ii |ji = |e✓iji |ii |ji ,

where 0  e✓ij < 1, and e✓ij is a d-bit representation of ✓ij = arccos(Aij)/⇡ . This step may require
some additional work registers not shown here.

Now using the controlled rotation in Proposition 4.7, the information of eAij , e✓ij has now been
transferred to the phase of the signal qubit. We should then perform uncomputation and free the
work register storing such intermediate information eAij , e✓ij . The procedure is as follows

|0i |0di|{z}
work register

|ii |ji O0
A��! |0i |e✓iji |ii |ji

CR��!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|e✓iji |ii |ji

(O0
A)�1

�����!
✓
Aij |0i+

q
1� |Aij |2 |1i

◆
|0di |ii |ji

(6.5)

From now on, we will always assume that the matrix entries of A can be queried using the
phase oracle OA or its variants.

6.2. Block encoding

The simplest example of block encoding is the following: assume we can find a (n + 1)-qubit
unitary matrix U (i.e., U 2 C2N⇥2N ) such that

UA =

✓
A ⇤
⇤ ⇤

◆

where ⇤ means that the corresponding matrix entries are irrelevant, then for any n-qubit quantum
state |bi, we can consider the state

(6.6) |0, bi = |0i |bi =
✓
b
0

◆
,

and

(6.7) UA |0, bi =
✓
Ab
⇤

◆
=: |0iA |bi+ |?i .

Here the (unnormalized) state |?i can be written as |1i | i for some (unnormalized) state | i, that
is irrelevant to the computation of A |bi. In particular, it satisfies the orthogonality relation.

(6.8) (h0|⌦ In) |?i = 0.

In order to obtain A |bi, we need to measure the qubit 0 and only keep the state if it returns 0.
This can be summarized into the following quantum circuit:
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kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,
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Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,
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then UA is called an (↵,m, ✏)-block-encoding of A. When the block encoding is exact with ✏ = 0,
UA is called an (↵,m)-block-encoding of A. The set of all (↵,m, ✏)-block-encoding of A is denoted
by BE↵,m(A, ✏), and we define BE↵,m(A) = BE(A, 0).

Assume we know each matrix element of the n-qubit matrix Aij , and we are given an (n+m)-
qubit unitary UA. In order to verify that UA 2 BE1,m(A), we only need to verify that

(6.15) h0m, i|UA|0m, ji = Aij ,

and UA applied to any vector |0m, bi can be obtained via the superposition principle.
Therefore we may first evaluate the state UA |0m, ji, and perform inner product with |0m, ii and

verify the resulting the inner product is Aij . We will also use the following technique frequently.
Assume UA = UBUC , and then

(6.16) h0m, i|UA|0m, ji = h0m, i|UBUC |0m, ji = (U†
B |0m, ii)†(UC |0m, ji).

So we can evaluate the states U †
B |0m, ii , UC |0m, ji independently, and then verify the inner product

is Aij . Such a calculation amounts to running the circuit Fig. 6.2, and if the ancilla qubits are
measured to be 0m, the system qubits return the normalized state

P
i Aij |ii / k

P
i Aij |iik.

|0mi
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|ji

Figure 6.2. Circuit for general block encoding of A.

Example 6.2 ((1, 1)-block-encoding is general). For any n-qubit matrix A with kAk2  1, the
singular value decomposition (SVD) of A is denoted by W⌃V †, where all singular values in the
diagonal matrix ⌃ belong to [0, 1]. Then we may construct an (n+ 1)-qubit unitary matrix

UA :=

✓
W 0
0 In

◆✓
⌃

p
In � ⌃2p

In � ⌃2 �⌃

◆✓
V † 0
0 In

◆

=

✓
A W

p
In � ⌃2p

In � ⌃2V † �⌃

◆(6.17)

which is a (1, 1)-block-encoding of A. ⇧
Example 6.3 (Random circuit block encoded matrix). In some scenarios, we may want to con-
struct a pseudo-random non-unitary matrix on quantum computers. Note that it would be highly
inefficient if we first generate a dense pseudo-random matrix A classically and then feed it into the
quantum computer using e.g. quantum random-access memory (QRAM). Instead we would like to
work with matrices that are inherently easy to generate on quantum computers. This inspires the
random circuit based block encoding matrix (RACBEM) model [DL21]. Instead of first identifying
A and then finding its block encoding UA, we reverse this thought process: we first identify a
unitary UA that is easy to implement on a quantum computer, and then ask which matrix can be
block encoded by UA.

Example 6.2 shows that in principle, any matrix A with kAk2  1 can be accessed via a (1, 1, 0)-
block-encoding. In other words, A can be block encoded by an (n + 1)-qubit random unitary UA,
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|0i
UA

|bi A|bi
kA|bik (upon measuring 0)

Figure 6.1. Circuit for block encoding of A using one ancilla qubit.

Note that the output state is normalized after the measurement takes place. The success
probability of obtaining 0 from the measurement can be computed as

(6.9) p(0) = kA |bik2 = hb|A†A|bi .
So the missing information of norm kA |bik can be recovered via the success probability p(0) if
needed. We find that the success probability is only determined by A, |bi, and is independent of
other irrelevant components of UA.

Note that we may not need to restrict the matrix UA to be a (n + 1)-qubit matrix. If we can
find any (n+m)-qubit matrix UA so that

(6.10) UA =

0
BBB@

A ⇤ · · · ⇤
⇤ ⇤ · · · ⇤
...

...
⇤ ⇤ · · · ⇤

1
CCCA

Here each ⇤ stands for an n-qubit matrix, and there are 2m block rows / columns in UA. The
relation above can be written compactly using the braket notation as

(6.11) A = (h0m|⌦ In)UA (|0mi ⌦ In)

A necessary condition for the existence of UA is that kAk  1. (Note: kAkmax  1 does not
guarantee that kAk  1, see Exercise 6.2). However, if we can find sufficiently large ↵ and UA so
that

(6.12) A/↵ = (h0m|⌦ In)UA (|0mi ⌦ In) .

Measuring the m ancilla qubits and all m-qubits return 0, we still obtain the normalized state
A|bi

kA|bik . The number ↵ is hidden in the success probability:

(6.13) p(0m) =
1

↵2
kA |bik2 =

1

↵2
hb|A†A|bi .

So if ↵ is chosen to be too large, the probability of obtaining all 0’s from the measurement can be
vanishingly small.

Finally, it can be difficult to find UA to block encode A exactly. This is not a problem, since it
is sufficient if we can find UA to block encode A up to some error ✏. We are now ready to give the
definition of block encoding in Definition 6.1.

Definition 6.1 (Block encoding). Given an n-qubit matrix A, if we can find ↵, ✏ 2 R+, and an
(m+ n)-qubit unitary matrix UA so that

(6.14) kA� ↵ (h0m|⌦ In)UA (|0mi ⌦ In) k  ✏,

Definition 

U

|0⟩⊗a

Figure 2.12: Block-encoding U , the Block-encoding of a matrix A, can be considered as a
probabilistic implementation of A: applying the unitary U to a given input state |0⟩⊗a|b⟩,
measuring the first a-qubit register and post-selecting on the outcome |0⟩⊗a, we get state
proportional to A|b⟩ in the second register.

as a block of a unitary. The quantum circuits of QSVT have a simple structure, which often re-
sults in optimal algorithmic performance, and only require a constant number of ancilla qubits[7].

In this paper, we utilize a special instance of QSVT – Quantum Eigen Value Transformation
of a Hermitian matrix which can be specified as follows:

For a Hermitian matrix A, let U be a unitary diagonalizing A and λ1,λ2, ...λn be the set of
eigenvalues of A, i.e.

A= U




λ1

. . .

λn




U †

Applying QSVT to A aims to achieve applying a certain polynomial function to the eigen-
values of A such that:

P (A) = U




P (λ1)
. . .

P (λn)




U †

where P (x) is a polynomial function satisfying certain conditions. This can carried out if we
are given access to a unitary UA as a block-encoding of A:

UA :=



A .

· ·



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Using unitary UA and its inverse, plus some phase gates extended onto an additional ancillary
qubit, QSVT realizes a new unitary that is the block-encoding of P (A):



P (A) .

· ·




The quantum circuit for QSVT can be depicted as in Fig.2.13:

QSVT

P(A) A A A

Rz(ϕ1) Rz(ϕ2) Rz(ϕk)

Figure 2.13: Quantum circuit for Quantum Singular Value Transformation (QSVT) Given
access to a multi-qubit unitary U(A) as a block-encoding of A, using unitary U(A) and it’s
inverse, plus some phase gates extended onto an additional ancillary qubit, QSVT realizes a
new unitary that is the block-encoding of P (A).

The phases Φ = {ϕ0,ϕ1, . . . ,ϕk} in the QSVT circuit determine what polynomial function is
applied to the singular values of the matrix and vice-versa. For certain polynomials, the phases
have simple form: e.g., for d-th Chebyshev polynomial of the first kind, the phases take the
following values: Φ =

{
(1 −d)π

2 ,
π
2 , . . . ,

π
2
}
.
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Quantum Training of QNNs
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Chapter 3

Quantum Training of QNNs: Overview

A QNN consists of a set of parameterized quantum gates within a predefined circuit ansatz.
The design of the ansatz together with the value of the gate parameters determine the outcome
of the QNN. In order to successfully perform certain tasks, QNNs must be trained to find
optimal parameters for generating desired outcomes. In the majority of QNN research, the
training is carried out by employing variational hybrid quantum-classical algorithms [32], in
which the parameters are optimized by a classical optimizer using gradient-based or gradient-free
approaches. There are two main avenues for the application of QNNs. The first uses QNNs to
generate quantum states that minimize the expectation value of a given Hamiltonian, such as
the case in Variational Quantum Eigensolvers (VQE) [67] for chemistry problems or Quantum
Approximate Optimization Algorithms (QAOA) [52] for combinatorial optimization problems.
The second path uses QNNs as data-driven machine learning models to perform discriminative
[68, 69, 70] and generative [71, 72, 73, 74, 75] tasks for which QNNs could have more expressive
power than their classical counterparts [76]. Though an ever-increasing amount of effort is
being put into QNN research, there is evidence that they will be difficult to train due to flat
optimisation landscapes called barren plateaus [29].

The barren plateau issue has spawned several studies on the strategies to avoid them,
including layerwise training [77], using local cost functions [78], correlating parameters [79],
and pre-training [80], among others [81, 82, 83]. Such strategies give hope that the variational
quantum-classical algorithms may avoid the exponential scaling due to the barren plateau issue.
However, it has been shown that these strategies do not avoid another type of Barren Plateaus
induced by hardware noise [84], and some strategies may lack theoretical grounding [85]. In
addition to noise, there is also other sources of barren plateaus due to entanglement growth
[86]. Moreover, it has been shown that gradient-free approaches are also adversely affected by
barren plateaus [87].

The above-noted results indicate that training QNNs using classical optimisation methods
25
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has unprecedented challenges as the system scales up. Therefore, one seeks to leverage alterna-
tive optimisation methods for training QNNs. In the first part of the thesis including Chapter3
4 5, we design a scalable, maximally quantum pipeline of the applications of QNNs by replacing
the classical optimizer by quantum optimizers. In short, we employ quantum optimisation
methods for training QNNs. Our quantum training methods of QNNs exploit hidden structures
in the QNN optimisation problem and are expected to mitigate the barren plateau issue.

3.1 Previous work on Quantum Training of QNNs

Preliminary attempts have been made in utilizing quantum methods for training QNNs. Verdon
et al. proposed a QAOA-like training protocol for QNNs [3] and Gilyén et al. developed a
quantum algorithm for calculating gradients faster than classical methods [4]. In these two works,
to cast the optimisation problem of training QNNs into the context of quantum optimisation,
the network parameters in the QNN are quantized — moved from being classical to being stored
in quantum registers, which are in addition to those upon which the QNN is performing its
computation. The quantized parameters are used as control registers of the parameterized
gates on the QNN registers. The parameters can now be in superposition, which one hopes
would allow for a quantum parallelism-type computation of the QNN with multiple parameter
configurations.

In Ref. [3], the quantum training process can be described as the state evolution in the joint
Hilbert space of the parameter register and the QNN register. Their quantum training protocol
consists of two alternating operations in a QAOA fashion — the first operation acts on both the
parameter register and QNN register to encode the cost function of QNN onto a relative phase
of the parameter state. The second operation acts only on the parameter register and it is a
variant of the original QAOA Mixers, tailored for the case that the parameters in the QNN are
continuous variables. These two operation can be mathematically expressed as e−iγiC(θθθ) and
e−iβiHM , where θθθ are the parameters of QNN, C(θθθ) is the cost function of the QNN, and γi

and βi are tunable hyperparameters, HM is the Mixer Hamiltonian. By heuristically tuning the
hyperparameters, the quantum training is expected to home in on the optimal parameters of the
QNN after several iterations of the QAOA alternating operations. We illustrate the alternating
operations of their quantum training in Fig. 3.1.

Despite being the pioneering application of the QAOA method for training QNNs, the
protocol in Ref. [3] has some limitations. In the phase encoding operation, the parameter
register and the QNN register are generally always entangled. This will have the effect of causing
phase decoherence in the parameter eigenbasis. To minimize the effect of this decoherence, the
tuneable hyper-parameter γi must be sufficiently small — in other words, the phase encoding is
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eiγ1HC

γ1

Phase Encoding

eiγ2HC

γ2

eiγpHC

γp

eiβpAp

…

eiβ1HM

β1

Mixer

eiβ2HM

β2

eiβpHM

βp

Parameter Register

QNN Register 
&  

Other Registers 

Phase Encoding Mixer 

Figure 3.1: QAOA-like training protocol for QNN, proposed in Ref. [3]. The quantum training
protocol consists of two alternating operations in a QAOA fashion — the first operation acts
on both the parameter register and QNN register to encode the cost function of QNN onto
a relative phase of the parameter state. This operation is represented by the blue blocks in
the figure. The second operation acts only on the parameter register and it is a variant of the
original QAOA Mixers, tailored for the case that the parameters in the QNN are continuous
variables. This operation is represented by the pink blocks in the figure. These two operation
can be mathematically expressed as e−iγiC(θθθ) and e−iβiHM , where θθθ are the parameters of QNN,
C(θθθ) is the cost function of the QNN, and γi and βi are tunable hyperparameters,HM is the
Mixer Hamiltonian. The width of each block represents the hyperparameters γi and βi — the
wider the block, the larger the value of the hyperparameters. The phase encoding operation
e−iγiHC act as e−iγiC(θθθ).

coherent only in the first order of γi. To overcome this limitation — to enact phase encoding
operation with arbitrary hyperparameters — the phase encoding operation with a small hyperpa-
rameter ∆γ should be repeated an excessive amount of times. This simulates the phase encoding
operation with a large hyperparameter γ via e−iγC(θθθ) = e−i∆γC(θθθ)e−i∆γC(θθθ)e−i∆γC(θθθ)... These
repetitions will yield large overhead in the complexity of the algorithm. In Ref. [4], a phase
oracle is designed for the phase encoding and can achieve it coherently and efficiently. (Note that
throughout this paper, the term phase oracle has a different meaning than the one in Ref. [4],
our phase oracle stands for the term fractional phase oracle in Ref. [4].) Nevertheless, they did
not utilise the phase encoding as a component of QAOA routine to accomplish a fully quantum
training algorithm for QNNs. Instead, they use the phase oracle as a component of the quantum
evaluation of the gradient of a QNN, which serves for gradient-based classical training of QNNs.
However, this improvement will not be practically useful due to the barren plateau issue of QNNs.

3.2 Our Framework

In this part of the thesis, we devise an improved framework for training QNNs, taking advantage
of the well-established parts in Refs. [3] and [4], while eliminating the shortcomings. A schematic
of our quantum training framework for QNNs is depicted in Fig. 3.2. More specifically, we
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achieve the following:

1. We replace the phase encoding operations in QAOA-like protocol of Ref. [3] by the phase
oracle in Ref. [4]. This achieves coherent encoding of the cost function onto a relative
phase of parameter state, while avoiding the limitations of the hyper-parameters in the
phase encoding.

2. For the mixers in the QAOA-like routine we adopt a similar approach to Ref. [5] by making
the mixers adaptive — that is, we allow different mixers for each layer (particularly, to
allow entangling mixers that act across different parameters). This potentially leads to a
dramatic shortening of the depth of QAOA layers while significantly improving the quality
of the solution (the optimal QNN parameters found by the QAOA routine).

…

eiγ1HC

γ1

Phase Oracle

eiγ2HC

γ2

eiβ1A1

β1

Mixer

eiβ2A2

β2 βpeiγpHC

γp

eiβpAk

…

Phase Oracle Mixers 

eiβiA1 eiβiA2 e iβi AkeiβiA3 …

Parameter Register

QNN Register 
&  

Other Registers 

Mixers Pool

Figure 3.2: Schematic of our framework for quantum training of QNN. Our quantum training for
QNN takes advantage of the well-established parts in Refs. [3] and [4], while eliminating their
shortcomings. We replace the phase encoding operations in QAOA-like protocol of Ref. [3](as
depicted in Fig 3.1) by the phase oracle in Ref. [4]. For the mixers in the QAOA-like routine, we
allow different mixers for each layer, similar to Ref. [5]. In this figure, the colour of each block
represents the nature of the corresponding Hamiltonian: different colour corresponds to different
Hamiltonian (One can see that the Cost Hamiltonian is the same throughout the training
whereas the mixer varies from layer to layer). The mixers pool contains the proper mixers
tailored to our QNN training problem. These rules also apply to the other circuit schematic in
this paper.

By making the mixers flexible and adaptive to specific optimisation problems, it is demanding
to find an efficient way of determining the best sequence of mixers and the optimized hyperpa-
rameters. To address these we adopt machine learning approaches (in particular, Recurrent
Neural Networks and Reinforcement Learning) as proposed in Refs. [88, 20, 89, 80]. The
quantum mechanism of this framework is the best candidate to exploit hidden structures in the
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QNN optimisation problem, which would provide beyond-Grover speed-up and mitigate the
barren plateau issues for training QNNs.

3.3 Creating Superpositions of QNNs

As an essential building block for our quantum training protocol, we present a way to create
superpositions of QNNs entangled with corresponding parameters. That is, we construct a
controlled unitary P such that

P |θθθ⟩ |0⟩ → |θθθ⟩⊗U(θθθ) |0⟩ for every θθθ (3.1)

in which θθθ = (θ1, . . . , θM ) is the set of trainable parameters in the QNN and U(θθθ) is the unitary
of the QNN with corresponding parameters. When P acts on a superposition state of parameters
∑

θθθωθθθ |θθθ⟩, we have
P
∑

θθθ

ωθθθ |θθθ⟩ |0⟩ →
∑

θθθ

ωθθθ |θθθ⟩⊗U(θθθ) |0⟩ . (3.2)

The action of the controlled unitary P is depicted in Fig. 3.3.

P

∑
θθθωθθθ |θθθ⟩ ∑

θωθθθ |θθθ⟩⊗U(θθθ) |0⟩
|0⟩ U(θθθ)

Figure 3.3: Action of the controlled unitary P . In this figure, the upper register is the parameter
register and the lower register is the QNN register. θθθ = (θ1, . . . , θM ) is the set of trainable
parameters in the QNN and U(θθθ) is the unitary of the QNN with corresponding parameters.
The qubits in the parameter register act as control qubits on the rotation gates in the QNN. The
controlled operations (in the dotted blue box) is denoted as P . When P acts on a superposition
state of parameters ∑θθθωθθθ |θθθ⟩, the output state is ∑θθθωθθθ |θθθ⟩⊗U(θθθ) |0⟩ . in which the parameter
register and QNN register are entangled.

This controlled unitary can be realised by dividing each rotation gate in QNN into a sequence
of binary segments, followed by applying controlled operations on them. A simple example of
one rotation gate, for example U(θθθ) = Rz(θ), is illustrated in Fig. 3.4.

Each bit string of the parameter register is a binary representation of the rotation angle.
Furthermore the associated basis state of the register is entangled with the rotation gate of the
corresponding angle. For instance, the bit string 111 corresponds to the angle 7θ̄/8 and |111⟩ is
associated with Rz(7θ̄/8), where θ̄ is the maximum value that angle θ can take. This relation
can be fully illustrated in Fig. 3.5, in which we take θ̄ = π.



30 CHAPTER 3. QUANTUM TRAINING OF QNNS: OVERVIEW

P

Rz(θ)

Parameter register
for θ in Rz(θ)

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩ Rz(θ̄/2) Rz(θ̄/4) Rz(θ̄/8)

Figure 3.4: An example of the construction of P for one rotation gate Rz(θ). In this example,
the parameter register consists of three qubits, each qubit controls a “partial” rotation on the
fourth qubit. The “partial” rotation are the binary segments Rz(θ̄/2),Rz(θ̄/4),Rz(θ̄/8) in which
θ̄ is the maximum value that angle θ can take.

Rz(θ)

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩ Rz(π
2 ) Rz(π

4 ) Rz(π
8 )

=

|0⟩ H

|0⟩ H

|0⟩ H

|0⟩ Rz(0) Rz(π
8 ) Rz(2π

8 ) Rz(3π
8 ) Rz(4π

8 ) Rz(5π
8 ) Rz(6π

8 ) Rz(7π
8 )

Figure 3.5: An example of the effect of P defined in Fig. 3.4. Each bit string of the parameter
register can be seen as a binary representation of the rotation angle and the associated basis
state of the register is entangled with the rotation gate of the corresponding angle. For instance,
in the example above, the bit string 111 corresponds to the angle 7θ̄/8 and |111⟩ is associated
with Rz(7θ̄/8).

The unitary operator of P can be written as:

P =
∑

j

|j ⟩⟨j|⊗Pj , (3.3)

in which Pj is a specific configuration of the QNN defined by its control bit string j. This
representation does not only apply to a single rotation gate, but also to the case where there
are multiple parameterised rotation gates in the QNN. An example of two rotation gates is
depicted in Fig. 3.6.

In order to achieve precision ϵ0 for each rotation angle, the number of control qubits needed
is d= ⌈log2(1/ϵ0)⌉. Let r be the number of rotation gates in a QNN, then the total number of
control qubits needed is dr.
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P

Rz(θ1)

Rz(θ2)

|0⟩⊗3

Parameter register
for θ1 in Rz(θ1)

H

H

H

|0⟩⊗3

Parameter register
for θ2 in Rz(θ2)

H

H

H

|0⟩ Rz(θ̄1/2) Rz(θ̄1/4) Rz(θ̄1/8)

|0⟩ Rz(θ̄2/2) Rz(θ̄2/4) Rz(θ̄2/8)

Figure 3.6: Example of the construction of P for QNN consisting of two rotation gates. In
this example, the QNN consist of two rotation gates Rz(θ1), Rz(θ2) on the lower two qubits.
The upper 6 qubits are divided into two parameter registers for the two rotation angles θ1, θ2
respectively. Each qubit controls a "partial" rotation. For instance, the "partial" rotations of
Rz(θ1) are the binary segments Rz(θ̄1/2),Rz(θ̄1/4),Rz(θ̄1/8) in which θ̄1 is the maximum value
that angle θ1 can take.





Chapter 4

QNN training by Grover Adaptive
Search

In this chapter, we discuss using Grover adaptive search to perform global optimisation of QNNs.
As presented in Section 2.2, the core of the Grover adaptive search is the adaptive oracle defined
in Eq. 2.3. In what follows, we detail how to construct such oracle for QNN training.

4.1 Construction of the Grover Oracle

The adaptive Grover Oracle OGrover in the context of QNN training acts as

OGrover |θθθ⟩⊗ |0⟩QNN+ancillas = (−1)g(C(θθθ)−C∗) |θθθ⟩⊗ |0⟩QNN+ancillas , for every θθθ, (4.1)

in which C∗ is the adaptive threshold for the cost function and the function g is defined as

g(x) =





1 x < 0

0 otherwise
. (4.2)

When OGrover acts on a superposition state of parameters ∑θθθωθθθ |θθθ⟩, we found

OGrover
∑

θθθ

ωθθθ |θθθ⟩⊗ |0⟩QNN+ancillas =
∑

θθθ

(−1)g(C(θθθ)−C∗)ωθθθ |θθθ⟩⊗ |0⟩QNN+ancillas . (4.3)

The QNN Grover oracle OGrover can be constructed by the following steps.

4.1.1 Amplitude Encoding

The first step is to encode the cost function of QNN into amplitude. Depending on the form of
the cost function of the QNN, the amplitude encoding is achieved by the swap test or Hadamard
test. The correspondences are summarized in Table 4.1.

33
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Task Cost function Amplitude
encoding
Method

Generating Ground
state of T

Expectation
value

C(θθθ) =
⟨0|U †(θθθ)TU(θθθ) |0⟩

Hadamard
test

Generating a pure state
|ψ⟩ = T |0⟩ ( T is a
given unitary)

Fidelity C(θθθ) = | ⟨0|U †(θθθ)T |0⟩ |2 Swap test

Table 4.1: QNN Cost functions for two types of tasks. Here we present the Cost functions for
two tasks respectively: For the task of Generating Ground state of some given Hamiltonian
T (we use T instead of H here, and assume T is Hermitian), the cost function is chosen to be
the Expectation value of T . For the task of Generating a pure state |ψ⟩ = T |0⟩ (T is a given
unitary), the cost function is chosen to be the Fidelity between the generated state from QNN
and the state |ψ⟩ = T |0⟩.

Amplitude Encoding by Swap test. For the task of learning a pure state |ψ⟩ = T |0⟩ (T is
a given unitary), the cost function is the fidelity between the generated state from the QNN
and the state |ψ⟩ = T |0⟩. In this case, the amplitude encoding can be achieved by swap test, as
shown in the circuit in Fig. 4.1.

We denote the unitary for the swap test circuit (in the dotted green box) as U , and the input
and output state of U as |Ψ0⟩ and |Ψ1⟩, respectively. The input to U , |Ψ0⟩, can be written as
(note here and throughout the paper, we omit the normalization factor):

|Ψ0⟩ = |0⟩⊗ (
∑

j

|j⟩)⊗|0⟩n
QNN1 |0⟩n

QNN2 (4.4)

Then U can be written explicitly as

U := [H⊗ I⊗ I⊗ I] · [|0⟩⟨0|⊗ (
∑

j

|j ⟩⟨j|⊗Pj ⊗T )+ |1⟩⟨1|⊗ (
∑

j

|j ⟩⟨j|⊗T ⊗Pj)] · [H⊗ I⊗ I⊗ I],

(4.5)

Here, Pj represents QNN with specific parameter configuration defined by its control bit string
j, as defined in Eq. 3.3. It can be proven (see Appendix A.2) that U can be rewritten as

U =
∑

j

|j ⟩⟨j|⊗Uj , (4.6)

where Uj is the individual swap test unitary on unitary Pj and target unitary T , defined as in
Eq. 2.4:

Uj := [H⊗ I⊗ I] · [|0⟩⟨0|⊗Pj ⊗T + |1⟩⟨1|⊗T ⊗Pj ] · [H⊗ I⊗ I]. (4.7)

As in Eq. 2.7, the resulting state of Uj acting on |Ψ0⟩ is |ϕj⟩ := Uj |0⟩ |0⟩n
QNN1 |0⟩n

QNN2 and has
the following form:

|ϕj⟩ = sinθj |uj⟩ |0⟩+cosθj |vj⟩ |1⟩ . (4.8)
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U

Swap Ancilla qubit: |0⟩ H H

Parameter register: |0⟩⊗dr
H⊗dr

QNN register: |0⟩⊗n Pj T

QNN register2: |0⟩⊗n T Pj

|Ψ0⟩ |Ψ1⟩

Figure 4.1: Amplitude Encoding by Swap test. This circuit can perform the swap test depicted in
Fig. 2.8 in parallel for multiple Pj . Here, Pj represents QNN with specific (the “jth”) parameter
configuration. To achieve swap test in parallel, we add an extra register– the parameter register—
as the control of Pj : each computational basis j of the parameter register corresponds to a
specific parameter configuration in Pj . As illustrated in Fig. 3.3, once the parameter register is
in superposition state(by the Hadamard gates H⊗dr), the corresponding Pj are in superposition.
We refer to the control operation on QNN as “controlled-QNN”. Compared with the normal swap
test depicted in Fig. 2.8, the difference here is that the Swap ancilla qubit is anti-controlling
/controlling the "controlled-QNN" together with the Unitary T (as gathered together in the
dotted blue/orange box). It can be proven that the entire circuit in dotted the green box
(denoted as U) can be expressed as U =∑

j |j ⟩⟨j| ⊗Uj where Uj is the swap test unitary for
Pj defined in Fig. 2.8. This indicates that U effectively perform the swap test in parallel for
multiple Pj . Recall the fact that the normal swap test Uj encode |⟨pj |t⟩|2 in the amplitude of
the output state (Eq. 2.8 and Eq. 2.7), here the "parallel swap test" U encodes the QNN cost
function |⟨pj |t⟩|2 in the amplitude of a superposition of Pj(QNN) with different parameters.

The final output state from U , |Ψ1⟩ = U |Ψ0⟩, is therefore

|Ψ1⟩ =
∑

j

|j⟩( sinθj |uj⟩ |0⟩+cosθj |vj⟩ |1⟩)
︸ ︷︷ ︸

|ϕj⟩

=
∑

j

|j⟩ |ϕj⟩ (4.9)

From Eqs. 4.9 and 2.8 we see that the cost function (fidelity |⟨pj |t⟩|2) for different parameters
has been encoded into the amplitudes of the state |Ψ1⟩.

Amplitude encoding by Hadamard Test. For the task of generating ground states of given
Hamiltonian T , the cost function is the expectation value of T with respect to the generated
state from the QNN. In this case, the amplitude encoding can be achieved by the Hadamard
test, as shown in the circuit in Fig. 4.2.

Since the analysis for the case of the Hadamard test is very similar to that of the swap test,
we omit the details here. For the same reason, we only present the case using the swap test also
in the next section when discussing phase encoding.
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U ′

P

Hadamard test Ancilla qubit: |0⟩ H H

Parameter register: |0⟩⊗dr
H⊗dr

QNN register: |0⟩⊗n Pj T

Figure 4.2: Amplitude encoding by Hadamard Test This circuit can perform the Hadamard
test depicted in Fig. 2.11 in parallel for multiple Pj . Here, Pj represents QNN with specific
(the “jth”) parameter configuration. To achieve Hadamard test in parallel, we add an extra
register– the parameter register— as the control of Pj : each computational basis j of the
parameter register corresponds to a specific parameter configuration in Pj . As illustrated in
Fig. 3.3, once the parameter register is in superposition state(by the Hadamard gates H⊗dr),
the corresponding Pj are in superposition. It can be proven that the entire circuit in dotted the
green box (denoted as U) can be expressed as U ′ =∑

j |j ⟩⟨j|⊗U ′
j where U ′

j is the Hadamard test
unitary for Pj defined in Fig. 2.11. This indicates that U ′ effectively perform the swap test in
parallel for multiple Pj . Recall the fact that the normal Hadamard test U ′

j encode ⟨0|P †
j TPj |0⟩

in the amplitude of the output state (Eq. 2.15 and Eq. 2.16), here the “parallel Hadamard test”
U ′ encodes the QNN cost function ⟨0|P †

j TPj |0⟩ in the amplitude of a superposition of Pj(QNN)
with different parameters.

4.1.2 Amplitude estimation

The second step following the amplitude encoding is to use amplitude estimation [90] to extract
and store the cost function into an additional register which we call the “amplitude register”. In
the following, we present the details of amplitude estimation.

After the amplitude encoding by the swap test, we introduce an extra register |0⟩t
amplitude

and the output state
∣∣∣Ψ1

〉
= |Ψ1⟩⊗ |0⟩t

amplitude becomes

∣∣∣Ψ1
〉

=
∑

j

|j⟩ |ϕj⟩ |0⟩t
amplitude , (4.10)

where |ϕj⟩ can be decomposed as

|ϕj⟩ = −i√
2
(
eiθj |ω+⟩j − ei(−θj) |ω−⟩j

)
. (4.11)

Hence, we have

|Ψ1⟩ =
∑

j

−i√
2
(
eiθj |j⟩ |ω+⟩j − ei(−θj) |j⟩ |ω−⟩j

)
|0⟩t

amplitude . (4.12)

The overall Grover operator G is defined as

G := UC2U
−1C1, (4.13)
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UO

Amplitude Estimation UG

Amplitude encoding U

Phase Ancilla Qubit: |−⟩

Amplitude register: |0⟩⊗t
H⊗t QFT †

Swap Ancilla qubit: |0⟩ H H

G := UC2U−1C1

Parameter register: |0⟩⊗dr
H⊗dr

QNN register: |0⟩⊗n Pj T

QNN register2: |0⟩⊗n T Pj

|Ψ2⟩|Ψ0⟩ |Ψ1⟩

Figure 4.3: Major steps in the Construction of the Grover Oracle. Step 0: We initialize
the system by applying Hadamard gates on the parameter register, leading to the state
|Ψ0⟩ = |0⟩s ⊗ (∑j |j⟩)⊗|0⟩n

QNN1 |0⟩n
QNN2 . Step 1(dotted green box): Amplitude encoding of the

cost function, as illustrated in Fig. 4.1 (refer the caption of Fig. 4.1 for the meaning of each
symbol), resulting in the state |Ψ1⟩ =∑

j |j⟩( sinθj |uj⟩ |0⟩+cosθj |vj⟩ |1⟩), in which θi contains
the cost function. Step 2(dotted pink box): Amplitude estimation to extract and store the cost
function into an additional register which we call the “amplitude register”, resulting in the state
|Ψ2⟩ =∑

j
−i
2
(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
. Step 3(dotted yellow box): Threshold

Oracle to encode the cost function into relative phase by using a Phase ancilla qubit, resulting
in the state |Ψ3⟩ =∑

j
−i
2 (−1)g(θj−θ∗)

(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
.

where C1 is the Z gate on the swap ancilla qubit, and C2 is “flip zero state” unitary which is
similar to that defined in Fig. 2.9. It can be shown (see Appendix A.2) that G can be expressed
as

G=
∑

j

|j ⟩⟨j|⊗Gj , (4.14)

where Gj is the individual Grover operator as defined in Eq. 2.11. The overall Grover operator
G possesses the following eigen-relation:

G |j⟩ |ω±⟩j = ei(±2θj) |j⟩ |ω±⟩j . (4.15)

Next, we apply phase estimation of the overall Grover operator G on the input state |Ψ1⟩.
The resulting state |Ψ2⟩ can be written as

|Ψ2⟩ =
∑

j

−i√
2
(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
. (4.16)

Note here in Eq. 4.16, |±2θj⟩ denotes the eigenvalues ±2θj being stored in the amplitude
register with some finite precision.

4.1.3 Threshold Oracle and Uncomputations

Next, we apply a threshold oracle UO on the amplitude register and an extra phase ancilla
qubit, which acts as

UO |±2θj⟩ = (−1)g(θj−θ∗) |±2θj⟩ , (4.17)
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where θ∗ is implicitly defined as

C∗ = −cos2θ∗, θ∗ ∈ [π/4,π/2]. (4.18)

Note that in Eq. 4.17 we omit the state of the phase ancilla qubit.

The state after the oracle |Ψ3⟩ can be written as

|Ψ3⟩ =
∑

j

−i√
2

(−1)g(θj−θ∗)
(
eiθj |j⟩ |ω+⟩j |2θj⟩− ei(−θj) |j⟩ |ω−⟩j |−2θj⟩

)
, (4.19)

The procedure thus far can be illustrated in a circuit as in Fig. 4.3.

After we perform the uncomputation of Phase estimation, the resulting state is

|Ψ4⟩ =
∑

j

−i√
2

(−1)g(θj−θ∗)
(
eiθj |j⟩ |ω+⟩j |0⟩t

amplitude − ei(−θj) |j⟩ |ω−⟩j |0⟩t
amplitude

)
, (4.20)

=
∑

j

(−1)g(θj−θ∗) |j⟩ |ϕj⟩ |0⟩t
amplitude . (4.21)

Finally, we perform the uncomputation of the swap test and the resulting state is

|Ψ5⟩ =
∑

j

(−1)g(θj−θ∗) |j⟩ |0⟩n
QNN1 |0⟩n

QNN2 |0⟩ |0⟩t
amplitude . (4.22)

As can be seen from Eqs. 4.22 and 2.8, the above steps implemented the Grover oracle
OGrover (defined in Eq. 4.1) After the above procedure a relative phase, which depends on
the cost function of the QNN |⟨pj |t⟩|2 and the threshold, have been coherently added to the
parameter state. Importantly, uncomputation allows the parameter register to be decoupled
from the QNN and other registers.

Performance of the Quantum training by Grover Adaptive Search
Taking training VQE as an example, in Table. 4.2 we present the result for the number of

“controlled-QNN” runs, the number of QNN runs and the number of measurements needed in
the quantum training by Grover Adaptive Search. The derivation is included in Appendix A.3.

4.2 Advantages and disadvantages of training by Grover
Adaptive Search

In the presence of a noise-free barren plateau, the Grover Adaptive Search mechanism can find
global optima without an exponential number of measurements. However, it has the following
disadvantages:

• It can be seen from Table. 4.2 that in Quantum training by Grover adaptive search, the
number of “controlled-QNN” runs is exponential in the number of parameters in QNN.
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Number of “controlled-QNN”
runs

Number of QNN runs Number of measure-
ments

O
(

1
ϵ2ϵ1

(
1
ϵ0

)r/2
s−0.5

)
O
(

1
ϵ2

(
r log

(
1
ϵ0

))1.5)
O
((
r log

(
1
ϵ0

))1.5)

Table 4.2: Performance of the Quantum training by Grover Adaptive Search. Here we present
the result for the number of “controlled-QNN” runs, the number of QNN runs and the number
of measurements needed in the quantum training by Grover Adaptive Search. In this table, r
is the number of parameters (rotation angles) in QNN, 1 − ϵ1 is the probability of success of
the phase estimation, ϵ2 is the precision we set up for the evaluation of the cost function using
amplitude estimation, ϵ0 is the precision of each angle value, s is the number of global optima
of the QNN cost function.

Even in the case where the number of parameters scales only linearly with the number of
qubits in a QNN, the quantum training by Grover takes excessive runtime. Moreover, it
invokes very deep circuit.

• Training by Grover adaptive search does not circumvent the noise-induced barren plateau.
When the entire cost landscape is flatten in the case of noise-induced barren plateau
[84], it requires exponential precision of the amplitude estimation. That is, ϵ2 should be
exponentially small. According to Table. 4.2, this adds another exponentially large factor
to the number of “controlled-QNN” runs and QNN runs.

While these disadvantages most probably rule out Grover adaptive search for NISQ-era
devices, it still represents a maximally quantum solution. For fault-tolerant devices, this method
is the provably optimal approach for QNN cost function with no structure, it enjoys a quadratic
speed-up which is a significant improvement compared to the exponential "slow-down" of the
classical training methods due to the barren plateau issue.





Chapter 5

QNN training by Adaptive QAOA

In this chapter we discuss using Adaptive QAOA to perform the training of QNNs. As depicted
in Fig. 3.2, our framework for quantum training using Adaptive QAOA of QNNs consists of two
major components.

• Phase oracle. This coherently encodes the cost function of QNNs onto a relative phase
of a superposition state in the Hilbert space of the parameters [4].

• Adaptive Mixers. These exploit hidden structures in QNN optimisation problems, hence
can achieve short-depth circuit [91].

Iterations of the phase oracle and the adaptive mixers constitute a QAOA routine which
quantumly homing in on optimal network parameters of QNNs. This section presents the details
of our framework.

5.1 Phase Oracle
We aim to coherently achieve the phase encoding for the cost function of the QNN by a phase
oracle OPhase , which acts as

OPhase |θθθ⟩ |0⟩QNN+ancillas → e−iγC(θθθ) |θθθ⟩ |0⟩QNN+ancillas (5.1)

in which γ is a parameter to be optimized. When OPhase is acting on a superposition state of
parameters ∑θθθωθθθ |θθθ⟩, we have

OPhase
∑

θθθ

ωθθθ |θθθ⟩ |0⟩QNN+ancillas →
∑

θθθ

e−iγC(θθθ)ωθθθ |θθθ⟩ |0⟩QNN+ancillas (5.2)

As detailed in Ref. [4], this phase oracle can be constructed based on the amplitude encoding
which we have implemented in Section 4.1.1. Next, we present the details of how to construct
the phase oracle from the amplitude encoding by amplitude estimation or Linear Combination
of Unitaries (LCU) [6].

41
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Phase oracle by amplitude estimation The procedure to achieve OPhase by amplitude
estimation is very similar to that of OGrover , the only difference is that the threshold UO (defined
in Eq. 4.17) needs to be replaced by U ′

O which acts as

U ′
O |±2θj⟩ = e−iγC(θθθ) |±2θj⟩ . (5.3)

Recall Eq. 2.8, Eq. 2.16 and the form of the cost function in Table 4.1, the cost function C(θθθ) is
encoded in θj as C(θθθ) = −cos2θj , therefore U ′

O acts as

U ′
O |±2θj⟩ = eiγ cos2θj |±2θj⟩ . (5.4)

Once we have chosen the specific value of γ, U ′
O can be constructed according to Eq. 5.4.

Phase oracle by LCU For this approach, we start with constructing an operator G∗ defined
similarly as in Eq. 4.13: 1

G∗ := C2U
−1C1U, (5.5)

It has been shown in Ref. [4] that

e−i 1
2 (C(θθθ)−1) · I ≈

M∑

m=−M

βmG
∗m, (5.6)

where βm =∑M
k=|m|




2k

k−m




(−1)mik

k!22k , M ∈ N+.

Define a new cost function C ′(θθθ) := 1
2 (C(θθθ)−1) (optimizing C ′(θθθ) is equivalent to optimizing

C(θθθ)), we have

e−iC′(θθθ) · I ≈
M∑

m=−M

βmG
∗m. (5.7)

∑M
m=−M βmG

∗m can be implemented using the LCU technique (together with the subsequent
"Oblivious Amplitude Amplification") [6] in which the number of calls to G∗ needed is only
logarithmic of the inverse of the desired precision [4]. Using the techniques in Ref. [7], we can
convert phase oracle with e−iC′(θθθ) into phase oracle with e−iγC′(θθθ) for arbitrary γ bounded from
[−1,1]), by only logarithmic (of the inverse of the desired precision) number of queries of phase
oracle with e−iC′(θθθ).

In Fig. 5.1 we summarise the two approaches for the Phase encoding of the cost function.

1Note that here our definition of G∗ is slightly different from the GU in Ref. [4]: C1 and C2 being negative
to their counterpart in the definition of GU . However the two negative signs cancel, therefore we have G∗ = GU .
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controlled-QNN

P = ∑
j

j ⟩⟨ j ⊗ Pj

Amplitude 
Encoding

U = ∑
j

j ⟩⟨ j ⊗ Uj

Phase Oracle 
 e−iC′ (θ)

G = UC2U−1C1

G* = C2U−1C1U

Phase 
estimation 

on G

Amplitude estimation 

       LCU on G*

U′ O Uncomputations Phase Oracle 
 e−iγC(θ)

Step 0 Step 1 Step 2 Step 3

Phase Oracle 
 e−iγC′ (θ)

Figure 5.1: Pipeline of the construction of the phase oracle. Here we summarise the two
approaches by amplitude estimation and by LCU for the Phase encoding of the cost function.
Step 0: Creating superposition for QNN with different parameters, which is implemented by
"controlled-QNN" (see Fig. 2.8), denoted by P =∑

j |j ⟩⟨j|⊗Pj . Step 1: Amplitude encoding of
the cost function, by the unitary operation U =∑

j |j ⟩⟨j|⊗Uj . Step 2: Constructing the "Grover
Operator" upon the amplitude encoding unitary. In the approach using amplitude estimation,
the Grover Operator G is constructed as G = UC2U−1C1. In the approach using LCU, the
Grover Operator G∗ is constructed as G∗ = C2U−1C1U . Step 3: Phase encoding of the cost
function, by amplitude estimation(upper path) or by LCU(lower path). In the upper path, the
Phase Oracle is achieved by phase estimation on G, threshold oracle U ′

O, and uncomputation. In
the lower path, LCU on G∗ (together with the subsequent "Oblivious Amplitude Amplification")
[6] realizes e−iC′(θθθ) which is then converted to the Phase Oracle with arbitrary γ —eiγC′(θθθ)

using the method in Ref. [7]. C ′(θθθ) := 1
2 (C(θθθ)−1) is a new cost function, optimizing C ′(θθθ) is

equivalent to optimizing C(θθθ).

5.2 Adaptive Mixers

As in Section 2.2, we designed a new variant of QAOA — “Adaptive-Continuous(AC-QAOA)”
— to be the ansatz of our quantum training for QNN. We summarise the reason of this choice as
follows:

1. [Why "Continuous"] In our optimisation problem of QNN training, the parameters
we are optimizing (the angles of rotation gates) are continuous variables (real values),
hence the choice of mixer Hamiltonian has to be designed for continuous variables. For
example, the mixer Hamiltonian of the original QAOA (X rotations) generates shifts in
the computational basis, here in the continuous case, the corresponding mixer should shift
the value for each digitized continuous variable stored in independent registers.

2. [Why "Adaptive"] The Cost function of QNNs is complicated and task-specific (given by
the learning objectives). Hence it is non-trivial to analytically determine good mixers for
our optimisation problem of QNN training. Therefore, we would want to take advantage
of including alternative mixers and allowing adaptive mixers for different layer (as in
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ADAPT-QAOA).

Adopting "AC-QAOA" could exploit hidden structures in the QNN optimisation problem and
dramatically shorten the depth of QAOA layers while significantly improving the quality of the
solution [91].

Generally, the mixer pool of AC-QAOA should include two types of Mixer Hamiltonians for
continuous variables:

1. Quadratic functions of the position operator and the momentum operator for single
continuous variables, e.g. the squeezing operator [92].

2. Entangling mixers that acts on two continuous variables, e.g. the two-mode squeezing
operator [92].

These operators could be carried out in continuous-variable quantum systems. However,
we focus on the circuit implementation of these mixers when using a collection of qubits to
approximate the behaviour of continuous variables.

When using a qudit of dimension d to digitally simulate a continuous variable, the position
operator can be written as

Jd :=
d−1∑

j=0
j |j⟩⟨j| , (5.8)

in which j is the digitized value of the continuous variable.

We can use N qubits to simulate the qudit and construct Jd for d= 2N as [3],

J2N =
N∑

n=1
2n−2(I(n) −Z(n)), (5.9)

where I(n) and Z(n) are the identity and the Pauli-Z operator (respectively) for the nth qubit.

The momentum operator, which act as generator of shifts in the value of a continuous
variable (denoted as S) can be written as the discrete Fourier transform of Jd [3],

S := F †
dJdFd, (5.10)

in which the discrete Fourier transform Fd is defined by

Fd |j⟩ := 1√
d

d−1∑

k=0
ω−jk

d |k⟩ , (5.11)

where ωd := e2πi/d.
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As mentioned above, a general mixer Hamiltonian is the quadratic functions of the position
operator Jd and the momentum operator S, therefore using Eq. 5.9 and Eq. 5.10 (set d= 2N )
we can rewrite a mixer Hamiltonian as a summation of simple unitaries. Hence utilising the
Hamiltonian simulation technique in [6], the Mixer operator can be efficiently implemented.
For instance, the digitized version of the generator of the squeezing operator (denote as T ) is
defined as:

T := JdS+SJd. (5.12)

Plugging Eq. 5.10 into Eq. 5.12, together with Eq. 5.9 (set d = 2N ), we can see that T =
JdF

†
dJdFd +F †

dJdFdJd can be expressed as the summation of simple unitaries. Therefore the
corresponding Mixer with Hamiltonian T can be efficiently implemented using the Hamiltonian
simulation technique in [6]. Similarly, the entangling Mixers on two continuous variables with
Hamiltonian SiSj ,SiTj ,TiTj (The subscript i, j indicate that they are for specific variables) can
be implemented in the same manner. In Fig. 5.2, we depict the schematic diagram of applying
AC-QAOA to QNN training.

Due to the fact that the non-Gaussian operators are costly to implement, we only consider
up-to-second-order polynomial functions of the position operator Jd and the momentum operator
S for the Mixer Hamiltonian. The Mixer pool can generally include mixers with Hamiltonians:
Jd, S, JdS, SJd, Jd

2, S2, Jd
2 +S2 for one continuous variable and the entangling Mixers for two

continuous variables. Comparing to the Mixer pool of ADAPT-QAOA for discrete variables, we
can have the following analogy:

1. The momentum operator S is the (digitized) continuous version of X mixers that shift
the value for each digitized continuous variable stored in independent registers.

2. JdS is the (digitized) continuous version of Y mixers which ‘unlock’ geodesics in parameter
space, allowing the QAOA iterations to reach the target state faster. [20]

We note that quadratic Hamiltonians are efficiently simulatable (classically), but only when
the initial state is from a special class of Gaussian states (e.g. the vacuum state) [93]. Here, the
initial state in the qubit encoding is far from Gaussian and a continuous variable analog of our
technique would use an equivalent encoding.

By making the mixers flexible and adaptive to specific optimisation problems, it is demanding
to find an efficient way of determining the mixers’ sequence and optimizing the hyper-parameters.
There are several research works on using machine learning approaches (Recurrent Neural
Networks (RNN) and Reinforcement Learning(RL)) to determine the mixers’ sequence and
optimize the hyper-parameters. These works achieved significantly fewer measurements than
the conventional approach(e.g. gradient-based methods). We list the papers in the following
table:
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Figure 5.2: Schematic diagram of applying AC-QAOA to QNN training. AC-QAOA is a variant
of QAOA we designed for solving optimisation of continuous variables with the short-depth
advantage of QAOA layers, see Fig. 2.7. This figure illustrates applying AC-QAOA to QNN
training, following the scheme in Fig. 3.2. The quantum training protocol consists of alternating
operations in a QAOA fashion — the first operation acts on both the parameter register and
QNN register to encode the cost function of QNN onto a relative phase of the parameter state.
This operation is represented by the blue blocks in the figure. The other operations are the
Mixers (green and pink boxes) which act only on the parameter register. In the parameter
register, θi are the continuous variables to be optimized in the training, each θi is digitized into
binary form and stored in an independent register. The overall process of AC-QAOA is similar
to that of the original QAOA, with the difference being as follows. 1. The mixers of AC-QAOA
with Hamiltonians Si and Ti are acting on the registers of θi (rather than single qubits as in the
original QAOA). 2. The mixers of AC-QAOA contain alternative mixers taken from a mixers
pool and can vary from layer to layer.

RNN RL

Determining mixers sequence Ref. [89] Ref. [20]

Optimizing hyper-parameter Ref. [80] Refs. [88, 20, 94,
95]

We adopt the approaches developed in these works to our quantum training of QNNs for
efficiently determining the mixers’ sequence and optimizing the hyper-parameters.
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5.3 Advantages of training by QAOA
As we have discussed in 4.2, due to the global-search nature of Grover’s algorithm, the quantum
training using Grover Adaptive Search can circumvent the noise-free barren plateau, however it
has certain limitations and disadvantages such as: 1. cannot handle the noise-induced barren
plateau; 2. requires an exponential number of calls to the “controlled-QNN” with excessive
lengths of circuit and run time.

In contrast, our quantum training using adaptive continuous QAOA could eliminate the
limitations of using Grover Adaptive Search and the advantages come in the following two folds:

1. The phase oracle by LCU approach does not explicitly evaluate/store the value of the cost
function at any stage of the algorithm and the number of calls to the “controlled-QNN”
scales only logarithmic with respect to the inverse of the desired precision [4]. Therefore the
phase encoding is not affected by the noise-induced barren plateau for which the precision
required is exponentially small. This is better than the case using Grover Adaptive Search.

2. The adaptive mixers can dramatically reduce the number of QAOA iterations while
significantly increasing the quality of the output solution. This will enable our quantum
training to achieve high performance within relatively shallow circuit and short run time.
Thanks to the phase encoding faithfully conserving all the information and structure
in the cost function, our adaptive QAOA protocol can exploit hidden structures in the
QNN training problem. (Whereas, the Grover Oracle ‘cuts off’ the cost function with the
threshold effectively losing some information and structure in the cost function.) Therefore,
adaptive QAOA can offer beyond-Grover speed-up. Moreover, numerical experiments in
[20] show that when using the adaptive approach, the depth of the QAOA steps can be
independent of the problem size (number of qubits), this would yield even more advantage
when system size scales up.

5.4 Applications
In this section, we discuss several applications of QNN to which our quantum training algorithm
can be applied. For each application, we first briefly illustrate the usage of QNN and the
corresponding cost function for the task, then we present the way of amplitude encoding tailored
for this application. Based on the amplitude encoding, the construction of the full quantum
training algorithm is similar for every application.

5.4.1 Training VQE

Variational quantum eigensolvers (VQEs) utilize QNN to estimate the eigenvalue corresponding
to some eigenstate of a Hamiltonian. The most common instance is ground state estimation in
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which the QNN (a parameterized circuit ansatz) is applied to an initial state (the zero state)
over multiple qubits to generate the ground state. The parameters in the QNN are optimized
so that the generated state of the QNN possesses the lowest expectation value of the given
Hamiltonian. A schematic of VQE for ground state estimation is presented in Fig. 5.3.
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optimization of the trial state R: §∣ ( ) . In practice, in the case of largemolecular systems the limited achievable
circuit depth in current quantumdevices requires a further truncation of the series in equation (12). Thus, while
the coupled clustermethod guarantees in principle an efficient convergence towards the exact ground state, its
implementation in state-of-the-art quantum computers requires further studies in terms of howdifferent
approximations (truncations) affect the accuracy of the solution.

4.3.Hardware-efficient trial states suitable for near-termquantumhardware
Amuch simpler approach is, therefore, the heuristic generation of the trial state with unitary operations that are
more suited to the available quantumhardware [72]. Independently of the particular problem to be solved, one
may choose trial states that can be efficiently generated in current quantumhardware and at the same time allow
the generation of highly entangled states that are close to the target state.

This approach is showcased in the examples provided in sections 4.4 and 5.2. As shown infigure 4, the
preparation of the heuristic trial states comprises two types of quantumgates, single-qubit Euler rotations R( )U
determined by the rotation angles R and an entangling drift operationUent acting on pairs of qubits. TheN-qubit
trial states are obtained by applying a sequence ofD entanglersUent alternatingwith the Euler rotations on theN
qubits to the initial ground state y §∣00 0 ,
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This gate sequence has a total number of � �( )p N D3 2 independent angles.
To bemore specific, the single-qubit operations are decomposed into rotations about the x- and the z-axes,
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operation acting on qubit q at the ith position in the gate sequences. The heuristic approach does not rely on the
accurate implementation of specific two-qubit gates and can be usedwith anyUent that generates sufficient
entanglement. A natural choice can be the cross-resonance gate [83, 84] as a two-qubit gate suited for thefixed-
frequency superconducting qubit architecture as used, for example, for the IBMQexperience [61].

4.4. Smallmolecules calculatedwith theVQE
As an application of themethod described above, we present the calculation of the ground-state energy of simple
molecules such as the hydrogenmolecule: the starting point is theHamiltonian in second quantization in
equation (5)with the one-body terms, tij, representing the kinetic energy of the electrons and the potential
energy that they experience in the presence of the nuclei,
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Zn are the nuclei chargesZn (n=1, 2), and eachwavefunction G ( )xi 1 orbital is a 1s orbital centered at the one
hydrogen atom.We assume that the system is in its spin singlet state. After reduction [78] a two-qubit

Figure 4.Heuristic preparation of trial states for the variational quantum eigensolver based on single-qubit gates R( )U interleaved by
entangling operationsUent as described in the text.
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 cost function

Figure 5.3: Schematic of VQE for ground state estimation. The QNN (a parameterized circuit
ansatz) is applied to an initial state (e.g. the zero state) over multiple qubits to generate the
ground state of a given Hamiltonian H. The parameters in the QNN, i.e. the rotation angles
of the parametrized gates (here for simplicity we use the same symbol θ for all the angles
of different gates), are optimized so that the generated state of the QNN possess the lowest
expectation value of the given Hamiltonian.

Consider a Hamiltonian
H =

∑

i

aiUi

where Ui is a unitary, ai > 0 and ∑
j ai = 1. (This assumption can be made without loss of

generality by renormalizing the Hamiltonian and absorbing signs into the unitary matrix.) Let
the state |ψ(θθθ)⟩ for θθθ ∈ Rm be the variational state prepared by the QNN. (m is the number of
parameters in the QNN.) The cost function of the QNN is:

C(θθθ) = ⟨ψ(θθθ)|
∑

i

aiUi |ψ(θθθ)⟩ . (5.13)

Our goal is then to estimate

θθθ∗ = argmin
θθθ

(
⟨ψ(θθθ)|

∑

i

aiUi |ψ(θθθ)⟩
)
. (5.14)

Here we use the technique "Linear Combinations of Unitaries"(LCU) [8] to implement the
Hamiltonian. Define new unitary oracles W,HLCU such that

W |0⟩ =
∑

i

√
ai |i⟩ , (5.15)

HLCU =
∑

i

ii⊗Ui. (5.16)

The amplitude encoding of the cost function of the QNN can be implemented using the
following circuit in Fig. 5.4 [4]:
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U ′

HLCUP

Hadamard test Ancilla qubit: |0⟩ H H

LCU Ancilla qubits: |0⟩ W W †

Parameter register: |0⟩⊗dr H

QNN register: |0⟩⊗n Pj Ui

Figure 5.4: Circuit for the amplitude encoding of the cost function for VQE. Here we use the
Hadamard Test Circuit for the amplitude encoding of the cost function, as detailed in 4.1.1. We
use a technique "Linear Combinations of Unitaries"(LCU) [8] to implement the given Hamiltonian
H =∑

iaiUi. The unitary oracles W,HLCU are defined as W |0⟩ =∑
i
√
ai |i⟩ ,HLCU =∑

i ii⊗Ui.

5.4.2 Learning to generate a pure state

Another application of our quantum training is when QNN is served as a generative model to
learn a pure state. In our scenario, the target state is generated by a given unitary (e.g. a
given sequence of gates), the QNN serves as another generator circuit for the target state. The
parameters in QNN are optimized such that the generated state of QNN matches the target
state. This approach can be used to transform a given sequence of gates to a different/simpler
sequence (e.g. translating circuits from superconducting gate sets to ion trap gate sets) A
schematic of this application is presented in Fig. 5.5.
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T |Ψtarget⟩ = T |0⟩|0⟩

|ΨQNN⟩ = U(θ) |0⟩|0⟩

Try to Match C(θ) = |⟨Ψtarget |ΨQNN⟩ |2 = |⟨0 |T†U(θ) |0⟩ |2
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Figure 5.5: Schematic of using QNN to generate a pure state. In our scenario, the target state
is generated by a given Unitary T , i.e. |Ψtarget⟩ = T |0⟩), the QNN (denoted as U(θ)) serves as
another generator circuit for the target state. The parameters in QNN are optimized such that
the generated state of QNN

∣∣∣ΨQNN

〉
matches the target state. The cost function is the fidelity

between the target state and the generated state by QNN.
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The amplitude encoding for this application has been given in section 4.1.1.

5.4.3 Training a Quantum Classifier

Finally, we discuss the application of QNN as a quantum classifier that performs supervised
learning which is a standard problem in machine learning.

To formalise the learning task, let X be a set of inputs and Y a set of outputs. Given
a dataset D = {(x1,y1), ...,(xM ,yM )} of pairs of so called training inputs xm ∈ X and target
outputs ym ∈ Y for m= 1, ...,M , the task of the model is to predict the output y ∈ Y of a new
input x ∈ X. For simplicity, we will assume in the following that X = RN and Y = {0,1}, which
is a binary classification task on a N -dimensional real input space. In summary, the quantum
classifier aims to learn an effective labeling function ℓ : X → {0,1}.

Given an input xi and a set of parameters θθθ, the quantum classifier first embeds xi into the
state of a n-qubit quantum system via a state preparation circuit Sxi such that Sxi |0⟩ = |φ(xi)⟩,
and subsequently uses a learnable quantum circuit U(θθθ) (QNN) as a predictive model to make
inference. The predicted class label y(i) = f(xi, θθθ) is retrieved by measuring a designated qubit
in the state U(θθθ) |φ(x)⟩. A schematic of the quantum classifier is presented in Fig. 5.6. Note
although the variational quantum classifier could be operated as a multiclass classifier, here we
limit ourselves to the case of the binary classification discussed above and cast the multi-label
tasks as a set of binary discrimination subtasks.

(xi, yi)
Training data point

Sxi

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Data embedding  
unitary QNN 

Prediction:  
y(i) = f(xi, θ)

Input:     
label:      

xi
yi

Quantum Classifier

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)
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Figure 5.6: Schematic of a quantum classifier. For a training data point (xi,yi), the quantum
classifier first embeds xi into the state of a n-qubit quantum system via a data embedding
circuit Sxi (purple box) such that Sxi |0⟩ = |φ(xi)⟩, and subsequently uses a learnable quantum
circuit U(θθθ) (QNN) as a predictive model to make inference (here for simplicity we use the
same symbol θ for all the angles of different gates). The predicted class label y(i) = f(xi, θθθ) is
retrieved by measuring a designated qubit in the state U(θθθ) |φ(x)⟩.
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Denote p(λ) as the probability of the measurement result on the designated qubit being λ
(λ ∈ {0,1}). The cost function of each training data point Li(θθθ), as a function of yi and y(i) and
hence a function of yi,xi, θθθ which we denote as L(xi,yi, θθθ), is chosen to be the probability of the
measurement result on the designated qubit being identical to the given label [69], namely:

Li(θθθ) = L(xi,yi, θθθ) := p(yi). (5.17)

Note here the larger the probability is, the more correct the prediction is, so we want to maximize
the cost (in this paper, to be coherent with the former narrative, we use "cost" instead of the
commonly used "likelihood" of inferring the correct label for a data sample.)

On the other hand, the quantum state of the system after the state preparation and QNN
inference can be written as:

|Ψi(θθθ)⟩ = U(θθθ) |φ(xi)⟩ =
√
p(0) |0⟩|uθθθ⟩+

√
1−p(0) |1⟩|vθθθ⟩ (5.18)

=





√
p(yi) |0⟩|uθθθ⟩+

√
1−p(yi) |1⟩|vθθθ⟩, yi = 0

√
p(yi) |1⟩|uθθθ⟩+

√
1−p(yi) |0⟩|vθθθ⟩, yi = 1

(5.19)

in which |uθθθ⟩, |vθθθ⟩ are some normalized state that depend on θθθ.

From Eqs. 5.17 and 5.19 we can see that the cost of each data sample L(xi,yi, θθθ) is naturally
encoded in the amplitude of the output state of QNN |Ψi(θθθ)⟩. We illustrate the amplitude
encoding of the cost function for the quantum classifier in Fig. 5.7. Constructing the "controlled-
QNN" will achieve the amplitude encoding for all the parameter configurations in parallel.
Based on this amplitude encoding, we can construct e−iγL(xi,yi,θθθ) using the methods discussed
in section 5.1. 2

The total cost function of the whole training set can be defined as: (for simplicity we omit
1

M here)
C(θθθ) =

∑

i

L(xi,yi, θθθ). (5.20)

It follows immediately
e−iγC(θθθ) = Πie

−iγL(xi,yi,θθθ). (5.21)

Therefore the phase encoding of the total cost function can be implemented by accumulating
individual phase encoding for each training sample, this process can be illustrated in Fig. 5.8.

Armed with the phase encoding of the total cost function, we can now construct the full
quantum training protocol as in Fig. 5.9.

2Note that for the training data point with yi = 0, C1 in the Grover Operator G and G∗ has to be adjusted
to −Z
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Amplitude Encoding of Cost function 

(xi, yi)
Training data point

Sxi

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Data 
embedding  

unitary
QNN 

Input:     
label:      

xi
yi

Quantum Classifier

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

R(θ)

optimization of the trial state R: §∣ ( ) . In practice, in the case of largemolecular systems the limited achievable
circuit depth in current quantumdevices requires a further truncation of the series in equation (12). Thus, while
the coupled clustermethod guarantees in principle an efficient convergence towards the exact ground state, its
implementation in state-of-the-art quantum computers requires further studies in terms of howdifferent
approximations (truncations) affect the accuracy of the solution.

4.3.Hardware-efficient trial states suitable for near-termquantumhardware
Amuch simpler approach is, therefore, the heuristic generation of the trial state with unitary operations that are
more suited to the available quantumhardware [72]. Independently of the particular problem to be solved, one
may choose trial states that can be efficiently generated in current quantumhardware and at the same time allow
the generation of highly entangled states that are close to the target state.

This approach is showcased in the examples provided in sections 4.4 and 5.2. As shown infigure 4, the
preparation of the heuristic trial states comprises two types of quantumgates, single-qubit Euler rotations R( )U
determined by the rotation angles R and an entangling drift operationUent acting on pairs of qubits. TheN-qubit
trial states are obtained by applying a sequence ofD entanglersUent alternatingwith the Euler rotations on theN
qubits to the initial ground state y §∣00 0 ,
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This gate sequence has a total number of � �( )p N D3 2 independent angles.
To bemore specific, the single-qubit operations are decomposed into rotations about the x- and the z-axes,
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operation acting on qubit q at the ith position in the gate sequences. The heuristic approach does not rely on the
accurate implementation of specific two-qubit gates and can be usedwith anyUent that generates sufficient
entanglement. A natural choice can be the cross-resonance gate [83, 84] as a two-qubit gate suited for thefixed-
frequency superconducting qubit architecture as used, for example, for the IBMQexperience [61].

4.4. Smallmolecules calculatedwith theVQE
As an application of themethod described above, we present the calculation of the ground-state energy of simple
molecules such as the hydrogenmolecule: the starting point is theHamiltonian in second quantization in
equation (5)with the one-body terms, tij, representing the kinetic energy of the electrons and the potential
energy that they experience in the presence of the nuclei,
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Zn are the nuclei chargesZn (n=1, 2), and eachwavefunction G ( )xi 1 orbital is a 1s orbital centered at the one
hydrogen atom.We assume that the system is in its spin singlet state. After reduction [78] a two-qubit

Figure 4.Heuristic preparation of trial states for the variational quantum eigensolver based on single-qubit gates R( )U interleaved by
entangling operationsUent as described in the text.
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|Ψi⟩ = U(θ) |φ(xi)⟩

Li(θ) |0⟩ |uθ⟩ + 1 − Li(θ) |1⟩ |vθ⟩, yi = 0
Li(θ) |1⟩ |uθ⟩ + 1 − Li(θ) |0⟩ |vθ⟩, yi = 1= {

where Li(θ) := L(xi, yi, θ) = p(yi)
is the Cost function for one training data point

|y(i)⟩

Prediction:  
y(i) = f(xi, θ)

Amplitude Encoding of Cost function, 
for one training data point

Figure 5.7: Amplitude encoding of the cost function for the quantum classifier. For a training data
point (xi,yi), the quantum classifier first embeds xi into the state of a n-qubit quantum system
via a data embedding circuit Sxi (purple box) such that Sxi |0⟩ = |φ(xi)⟩, and subsequently
uses a learnable quantum circuit U(θθθ) (QNN) as a predictive model to make inference (here
for simplicity we use the same symbol θ for all the angles of different gates). The predicted
class label y(i) = f(xi, θθθ) is retrieved by measuring a designated qubit in the state U(θθθ) |φ(x)⟩.
Denote p(λ) as the probability of the measurement result on the designated qubit being λ
(λ ∈ {0,1}). The cost function of each training data point Li(θθθ), as a function of yi and y(i)

and hence a function of yi,xi, θθθ which we denote as L(xi,yi, θθθ), is chosen to be the probability
of the measurement result on the designated qubit being identical to the given label, namely:
Li(θθθ) = L(xi,yi, θθθ) := p(yi). We can see that the cost of each data sample is naturally encoded
in the amplitude of the output state of QNN.
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Figure 5.8: Phase encoding of the total cost function of quantum classifier. The total cost
function of the whole training set can be defined as: C(θθθ) =∑

iL(xi,yi, θθθ). It follows immediately
e−iγC(θθθ) = Πie

−iγL(xi,yi,θθθ). Therefore the phase encoding of the total cost function (the overall
yellow box) can be implemented by accumulating individual phase encoding for each training
sample(blue boxes). In this figure, we omit θθθ in L(xi,yi, θθθ) for simplicity. The inner boxes in
the blue boxes represent different data embedding unitaries for the training data points.
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Figure 5.9: Schematic of our quantum training protocol for the quantum classifier. The full
quantum training protocol consists of the alternation of the Phase Oracle that achieves coherent
phase encoding of the cost function and the Adaptive Mixers chosen from a Mixers pool. The
phase encoding of the total cost function for the quantum classifier is detailed in Fig. 5.8. The
total cost function of the whole training set can be defined as C(θθθ) =∑

iL(xi,yi, θθθ). It follows
that e−iγC(θθθ) = Πie

−iγL(xi,yi,θθθ). Therefore the Phase Oracle for the total cost function (the
yellow boxes in the upper part of this figure) can be implemented by accumulating individual
phase encoding for each training sample(blue boxes). In this figure, we omit θθθ in L(xi,yi, θθθ) for
simplicity. The colourful boxes with white borders represent different data embedding unitary
for the training data points. The colourful boxes with a black border (excluding the blue ones
for the Phase encoding) represent different Mixers chosen from a Mixers Pool.
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Chapter 6

Quantum Graph Neural Networks:
Overview

Quantum Neural Networks (QNNs) lacking prior knowledge of target problems do not exploit
the underlying structure of data, which leads to issues on trainability and generalization[30], they
also encounter a quantum version of the no-free lunch theorem[96]. As a result, there is a demand
for designing problem-tailored QNN model. In the second part of the thesis including Chapter 6
7 8 9, we design problem-tailored QNNs for graph-structured data by incorporating the inductive
biases into their architectures. Specifically, we devise QNN architectures in accordance with
three major types of classical Graph Neural Networks(GNNs): Graph Convolutional Neural
Networks, Graph Attention Neural Networks, Message-Passing GNNs. This chapter gives an
overview of the background. A brief introduction of the three classical GNNs are given in
Section 6.1. Section 6.2 presents the related works and Section 6.3 describes our framework for
Quantum Graph Neural Networks.

6.1 Graph Neural Networks

Graphs are a ubiquitous representation of data for a variety of real-world applications in social
networks, biological networks, transportation systems, etc.[97] Graph Neural Networks (GNNs)
are powerful machine learning models for analyzing structured data represented as graphs.
They have shown remarkable success in various applications including social network analysis,
recommendation systems, antibacterial discovery, physics simulations, fake news detection and
traffic prediction[97]. In this section, we provide a brief introduction to classical Graph Neural
Networks, which serve as the foundation for the development of our quantum GNNs.

Graphs are made up of nodes and edges, with nodes representing entities or objects and edges
representing the connections between them. We can represent a graph with an adjacency matrix
A and node features X. GNN architectures are permutation-equivariant functions F(X,A)
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constructed by applying shared permutation-invariant functions ϕ over local neighborhoods[1].
This local function ϕ is sometimes referred to as "graph diffusion", "propagation", or "message
passing", and the overall computation of such F is known as a "GNN layer"[1]. The design and
study of GNN layers is a rapidly expanding area of deep learning, and the literature can be
divided into three "flavours" (of GNN layers)[1]: convolutional, attentional, and message-passing
(see Figure 6.1). These flavours determine the extent to which ϕ transforms the neighbourhood
features, allowing for varying levels of complexity when modelling interactions across the graph.
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Figure 6.1: GNN pipeline and three "flavours" of GNN layers[1] GNN architectures are per-
mutation equivariant functions F(X,A) constructed by applying shared permutation invariant
functions ϕ over local neighbourhoods. This local function ϕ is sometimes referred to as "dif-
fusion", "propagation", or "message passing", and the overall computation of such F is known
as a "GNN layer". The design and study of GNN layers is a rapidly expanding area of deep
learning, and the literature can be divided into three "flavours" (of GNN layers): convolutional,
attentional, and message-passing. These flavours determine the extent to which ϕ transforms the
neighbourhood features, allowing for varying levels of complexity when modelling interactions
across the graph.

In the convolutional flavour (e.g.[11, 98]), the features of the neighbouring nodes are directly
combined with fixed weights,

hu = ϕ


xu,

⊕

v∈Nu

cuvψ (xv)

 .

Here, cuv is a constant indicating the significance of node v to node u′ s representation. ⊕ is
the aggregation operator which is often chosen to be the summation. ψ and ϕ are learnable
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affine transformations1: ψ(x) = Wx +b, ϕ(x,z) = Wx +Uz+b, where W,U,b are learnable
parameters. For simplicity, we omit b in our quantum case.

In the attentional flavour (e.g.[17]), a learnable self-attention mechanism is used to compute
the importance coefficients αuv = a(xu,xv). When ⊕ is the summation, the aggregation is still
a linear combination of the neighbourhood node features, but the weights are now dependent
on the features. This is represented by

hu = ϕ


xu,

⊕

v∈Nu

a(xu,xv)ψ (xv)

 .

Finally, the message-passing flavour (e.g.[99]) involves computing arbitrary vectors ("messages")
across edges,

hu = ϕ


xu,

⊕

v∈Nu

ψ (xu,xv)

 .

Here, ψ is a trainable message function, which computes the vector sent from v to u, and the
aggregation can be thought of as a form of message passing on the graph.

Classical GNNs have been shown to be highly effective in a variety of graph-related tasks
including node classification(where the goal is to assign labels to nodes based on their attributes
and the graph structure), link prediction(where the objective is to predict whether an edge
exists between two nodes in the graph), graph classification(where the goal is to classify entire
graphs based on their structures and attributes). Despite their success, classical GNNs also face
challenges such as scalability—GNNs can be computationally expensive, particularly for large
graphs.[97]

In the following three chapters of this thesis, we will devise and analyze QNN architectures
in accordance with the three major types of classical GNNs(corresponding to the three flavours):
Graph Convolutional Networks, Graph Attention Networks, Message-Passing GNNs. We term
our QNN architectures as Quantum Graph Convolutional Networks, Quantum Graph Attention
Networks, and Quantum Message-Passing GNNs which fall into the research area of Quantum
Graph Neural Networks.

6.2 Related works

The area of Quantum Graph Neural Networks (QGNNs) has recently emerged as a promising
avenue to leverage the power of quantum computing for graph representation learning. In this
section, we provide an overview of relevant works in this area and highlight the key contributions

1Note we omitted the activation function in the original definition in [1], the quantum implementation of the
activation function is described in Section 7.1.3
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of our work.

Verdon et al. [100] proposed one of the first QGNN architectures, introducing a general
framework based on Hamiltonian evolutions. While their work demonstrated the use of QGNNs
for tasks like learning quantum dynamics, creating multipartite entanglement in quantum net-
works, graph clustering, and graph isomorphism classification, our architectures are specifically
designed for tasks like node classification on classical graph-structured data. Furthermore, [100]
suggests several future research directions for QGNNs, including quantum-optimization-based
training and extending their QSGCNN to multiple features per node. Our work makes progress
on both of these aspects: The design of our architectures enables quantum-optimization-based
training [101] for our quantum GNNs, and our quantum GNN architectures natively support
multiple features per node. While [100] provides a general framework for QGNNs, our work
delves into the specifics of designing quantum circuits that closely mimic the functionality of
classical GNNs and analyzes their potential quantum advantages, thus advancing the field in a
complementary direction.

Beer et al. [102] designed quantum neural networks specifically for graph-structured quantum
data. In contrast, our QGNNs are primarily designed to handle classical graph-structured
data. Skolik et al. [103] proposed a PQC ansatz for learning on weighted graphs that respect
equivariance under node permutations. In their ansatz, the node features are encoded in the
rotation angles of the Rx gates, whereas in our GNN architecture, the node features are encoded
directly in the amplitudes of the quantum state, enabling the usage of quantum linear algebra
for the subsequent transformation.

Ai et al. [104] proposed DQGNN, which decomposes large graphs into smaller subgraphs
to handle the limited qubit availability on current quantum hardware, however, subsampling
techniques have reliability issues–it is challenging to guarantee that the subgraphs preserve the
semantics of the entire graph and provide reliable gradients for training GNNs[105]. Tuysuz et al.
[106] introduced a hybrid quantum-classical graph neural network (HQGNN) for particle track
reconstruction. Mernyei et al. [107] proposed equivariant quantum graph circuits (EQGCs)
as a unifying framework for QGNNs. In the niche of a quantum graph convolutional neural
networks, detailed comparisons between our work (specifically, quantum GCN/SGC/LGC) and
three other related works are provided in section 6.3.

6.3 Our Framework

Here in this section, we give an overview of our approach for Quantum Graph Convolutional
Networks, as illustrated in Fig.6.2.
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Figure 6.2: Overview of our approach for Graph Convolutional Networks We start with the
scenario where neural networks (classical and quantum) process data without inductive bias,
depicted as the lower part of this figure. In this scenario, the classical and quantum neural
networks process each data point individually without acknowledging the connections between
them. Here for a classical neural network, we depicted a linear layer represented as a matrix
acting on a single data point as a vector. For the quantum neural network, we depicted a
parametrized quantum circuit for implementing the linear layer as described in Section 2.1. In
the upper part of this figure, we illustrate the scenario where classical and quantum GNNs
process data with inductive bias of graph-structured data. In this scenario, the classical and
quantum GNN process all the data points for every node on a graph, with cross-node connections
between them. Here for classical GNN, we depicted the layer-wise linear transformation for multi-
channel Graph Convolutional Networks (Section 7.2 provides the details): the trainable weight
matrix(for node-wise transformation) and the renormalized adjacency matrix(for Graph diffusion)
multiplied on the node feature matrix. In our Quantum GNN Architecture, this layer-wise linear
transformation is implemented by applying the block-encoding of the renormalized adjacency
matrix and a parameterized quantum circuit following a data encoding procedure(Section 7.2
provides the details). By incorporating graph inductive bias(here, the graph diffusion)into
the architecture, our Quantum GNN can potentially operate with fewer parameters than its
problem-agnostic counterpart. This can potentially lead to more efficient training and less
overfitting, improving the conventional QNNs.

We start with the scenario where neural networks (classical and quantum) process data
without inductive bias, depicted as the lower part of Fig.6.2. In this scenario, the classical
and quantum neural networks process each data point individually without acknowledging
the connections between them. Here for a classical neural network, we depicted a linear layer
represented as a matrix acting on a single data point as a vector. For the quantum neural
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network, we depicted a parametrized quantum circuit for implementing the linear layer as
described in Section 2.1.

In the upper part of Fig.6.2, we illustrate the scenario where classical and quantum GNNs
process data with inductive bias of graph-structured data. In this scenario, the classical and
quantum GNN process all the data points for every node on a graph, with cross-node connections
between them. Here for classical GNN, we depicted the layer-wise linear transformation for
multi-channel Graph Convolutional Networks (Section 7.2 provides the details): the trainable
weight matrix(for node-wise transformation) and the renormalized adjacency matrix(for Graph
diffusion) multiplied on the node feature matrix. In our Quantum GNN Architecture, this
layer-wise linear transformation is implemented by applying the block-encoding of the renor-
malized adjacency matrix and a parameterized quantum circuit following a data encoding
procedure(Section 7.2 provides the details). By incorporating graph inductive bias(here, the
graph diffusion)into the architecture, our Quantum GNN can potentially operate with fewer
parameters than its problem-agnostic counterpart. This can potentially lead to more efficient
training and less overfitting, improving the conventional QNNs.

In summary, while the related works share the high-level goal of developing quantum neural
networks for graph-structured data, our work makes distinct contributions in the following
aspects:

First, we propose novel QGNN architectures that are specifically designed to mirror the
structure and functionality of popular classical GNN variants, namely Graph Convolutional
Networks (GCNs), Graph Attention Networks (GATs), and Message Passing Neural Networks
(MPNNs). This allows us to leverage the proven effectiveness of these architectures while
harnessing the power of quantum computing.

Second, our quantum GNN architectures go beyond generic parameterized quantum circuits:
For example, in our quantum graph convolutional networks, we employ quantum singular value
transformation (QSVT) circuits to implement the spectral graph convolutions, enabling the
application of learnable convolutional filters; in our quantum graph attention networks, we
construct quantum circuits to evaluate and store attention scores, allowing the incorporation of
self-attention mechanisms.

In the niche of quantum graph convolutional neural networks, we can compare our work
with three other related works:

Hu et al. [108] designed a quantum graph convolutional neural network for semi-supervised
node classification. While both works design quantum circuits to implement the graph convolu-
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tional neural network, there are significant differences in the approaches. For data encoding, Hu
et al. use N separate quantum circuits (N is the number of nodes), with each circuit encoding
the features of a single node. In contrast, our work coherently encodes all N node features into
a single quantum state on two entangled registers. For node-wise transformations, Hu et al.
apply N subsequent parameterized quantum circuits (PQCs) acting on each of the separate
circuits to implement the trainable weight matrix. For aggregation over neighborhood nodes,
they first perform measurements on all N separate circuits to obtain the transformed node
features, then regroup the features into different channels. For each channel, an N -dimensional
vector is encoded into the amplitudes of a quantum state, resulting in C separate quantum
circuits (C is the number of features/channels per node). They then utilize Givens rotations to
perform aggregation over neighborhood nodes. In contrast, thanks to our data encoding scheme,
we are able to simultaneously apply the block encoding of the normalized adjacency matrix
(and further, QSVT for spectral convolution) and a single PQC for node-wise transformation
on the two entangled registers, achieving both node-wise transformation and aggregation over
neighborhood nodes simultaneously.

Zheng et al. [109] proposed a quantum graph convolutional neural network model to accom-
plish graph-level classification tasks. While both works aim to develop quantum versions of
GCNs, there are several key differences. For data encoding, Zheng et al. use separate quantum
circuits for each node, whereas our work coherently encodes all node features into a single
quantum state on two entangled registers. Moreover, Zheng et al. focus on graph classification
tasks, while our work focuses on node classification tasks (although our architectures are also
well suited for graph classification tasks).

Chen et al. [110] proposed a parameterized quantum circuit architecture for quantum graph
convolutional networks. Although both works design quantum circuits for implementing the
adjacency matrix and the learnable weight matrix, the approaches differ. For aggregation over
neighborhood nodes, Chen et al. use LCU to implement the adjacency matrix. In contrast, we
utilize block encoding for the normalized adjacency matrix which enables the usage of QSVT
for spectral graph convolutions and the corresponding higher order neighborhood propagation.
(Although LCU effectively implements certain block-encoding, but a general block-encoding
can accommodate more matrix–without the limitations of the approach used by Chen et al.)
Notably, for cost-function evaluation, we only perform measurements on a single ancillary
qubit, whereas they perform measurements on all the qubits. Another differentiation is that for
implementation of the nonlinear activation function, we utilize NTCA for a two-layer GCN.

To conclude, our work makes significant contributions to the field of QGNNs by introduc-
ing beyond-generic-parameterized-quantum-circuits architectures aligned with classical GNNs.
These advances complement and extend the existing literature on Quantum Graph Neural
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Networks and lay the foundation for further research in this promising area.



Chapter 7

Quantum Graph Convolutional
Networks

In this chapter, we present our quantum algorithm for the problem of node classification
with Graph Convolutional Networks (GCN) [11]. We start by restating some notations: Let
G = (V,E) be a graph, where V is the set of nodes and E is the set of edges. A ∈ RN×N is
the adjacency matrix, with N being the total number of nodes, and X ∈ RN×C is the node
attribute matrix, with C being the number of features for each node. The node representations
at the l-th layer is denoted as H(l) ∈ RN×Fl , l ∈ {0,1,2, · · · ,K}, where Fl being the dimension
of node representation for each node. These notations are summarised in the following table.

Concept Notation

Graph G= (V,E)

Adjacency matrix A ∈ RN×N

Node attributes X ∈ RN×C

Total number of GCN layers K

Node representations at the l-th layer H(l) ∈ RN×Fl , l ∈ {0,1,2, · · · ,K}

7.1 Single-Channel GCN

The "GNN layer" (described in Section 6.1) in a Graph Convolutional Network, often termed as
"Graph Convolution", can be carried out either in spectral domain[98] or spatial domain[11].
Ref.[111] demonstrated the equivalence of these two types of Graph Convolution. Here we
present the case of spectral Graph Convolution.

65
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We will begin by considering the situation in which each node has a single feature, i.e. C = 1
and X ∈ RN×C becomes a vector x ∈ RN . The spectral convolutions on graphs can be defined
as a multiplication of x ∈ RN with a convolutional filter gθ = diag(θ)

(
θ ∈ RN is the parameter

of the filter) in the spectral domain[98]:

gθ ⋆x = UgθU
T x.

in which U is the matrix of the eigenvectors of the normalized graph Laplacian matrix
L= IN −D− 1

2AD− 1
2 that has the eigen-decomposition L= UΛUT ( Λ is a diagonal matrix of

its eigenvalues).

The Graph Convolution consists of three steps: 1) Graph Fourier Transform by multiplying
UT on the input signal x, 2) Element-wise product with the convolutional filter gθ, 3) Inverse
Graph Fourier Transform. For machine learning applications, directly learning the parameter of
the filter θ ∈ RN is typically inappropriate for a number of reasons such as 1) The resulting
convolution of a general filter is often not localised, 2) The Graph convolution of a general filter
is computationally expensive, etc. A common solution is to make the filter a function of Λ,
typically a degree-k polynomial function such that

gθ′(Λ) =
K∑

k=0
θ′

kΛk,

in which the coefficients {θ′
k} are the trainable parameters. The graph convolution then becomes:

gθ′ ⋆x =
K∑

k=0
θ′

kL
kx. (7.1)

A graph convolutional network comprises multiple convolution layers defined according
to Eqn.7.1 with each layer followed by a nonlinear activation function. Next, we present the
quantum implementation of the layer-wise transformation for Single-Channel GCN.

7.1.1 Data Encoding

We adopt a commonly used data encoding method— Amplitude encoding[112]—for our graph
data: The node features x ∈RN (after normalization) are encoded in the amplitudes of a n-qubit
quantum state |ψx⟩ as

|ψx⟩ =
N∑

i=1
xi|i⟩

where N = 2n,xi is the i-th element of x, and |i⟩ is the i-th computational basis state. Although
the focus of this thesis is not on the specific implementation of the data encoding process,
numerous quantum state preparation techniques can be utilized to achieve it [113, 114, 115,
116, 117, 118, 119, 120, 121, 9, 122, 123].
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Figure 7.1: Quantum implementation of the layer-wise linear transformation for Single-Channel
GCN The node features x ∈ RN (after normalization) are encoded in the amplitudes of a n-qubit
quantum state |ψx⟩ as |ψx⟩ =∑N

i=1xi|i⟩ via a quantum state preparation process[9]. The main
operation of GCN – graph convolution – is achieved by Quantum Singular Value Transformation
(QSVT): applying a block encoding of the polynomial of the Laplacian on the state in which
data is encoded in.

7.1.2 Graph Convolution by QSVT

Once data has been encoded into the quantum state |ψx⟩, the main operation of GCN – graph
convolution – can be achieved by Quantum Singular Value Transformation (QSVT). We apply
a block encoding of the polynomial of the Laplacian on the state in which data is encoded in,
resulting in the following transformation:

N∑

i=1
xi|i⟩⊗ |0⟩ →

N∑

i=1
x′

i|i⟩⊗ |0⟩+ |garbage⟩ (7.2)

in which |garbage⟩ is some garbage state, the transformed data features, denoted as x′, satisfy

x′ = P (L)x (7.3)

where P (L) is the polynomial function in graph convolution with trainable parameters

P (L) =
K∑

k=0
θ′

kL
k (7.4)

Fig. 7.1 summarises this step and the previous step (Data encoding).

As mentioned in section 2.5, the coefficients in the polynomial are determined by the Pauli
angles(phases) in the QSVT circuit. Hence parametrization of the polynomial is equivalent to
parametrization of the Pauli angles(phases) in the QSVT circuit, that is, the phases are the
tunable weights to be trained in our Quantum implementation of Graph convolutional networks.
This is illustrated in Fig. 7.2
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Figure 7.2: Graph Convolution by QSVT Graph Convolution is parametrized by the coefficients
in the polynomial function of the graph Laplacian. In our quantum implementation of Graph
Convolution by QSVT, the coefficients are determined by the Pauli angles(phases) in the QSVT
circuit. Hence parametrization of the polynomial is equivalent to parametrization of the Pauli
angles(phases) in the QSVT circuit, that is, the phases are the tunable weights to be trained in
our Quantum implementation of Graph convolutional networks.

7.1.3 Nonlinear Activation Function

The step after the graph convolution is applying an element-wise non-linear activation function
to the updated node features. In our Quantum GCN, this step aims to achieve:

N∑

i=1
x′

i|i⟩ →
N∑

i=1
f(x′

i)|i⟩

in which f(x) is a non-linear activation function, e.g. ReLU function, Sigmoid function etc.

We utilise algorithm "Nonlinear transformation of complex amplitudes(NTCA)" introduced
in Ref.[10] for this step. The overall procedure of NTCA is taking a unitary that produces
the initial state(to be transformed) as components, to build a new unitary that generates the
desired state whose amplitudes are transformed by certain nonlinear functions. This overall
routine is illustrated in Fig.7.3.

Using NTCA in our Quantum GCN to implement a non-linear activation function, we take
the unitary of data encoding and graph convolution as components to build a new unitary that
generates the desired state whose amplitudes are transformed by certain nonlinear functions.
The full quantum circuit is depicted in Fig.7.4:

Note that the activation function in our Quantum GCN is trainable via tuning the Pauli
angles(phases) in the NTCA circuit. This could become an advantage over classical GCN where
having a trainable cost function can be hard/expensive to implement.
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Figure 7.3: Overall procedure of "Nonlinear transformation of complex amplitudes(NTCA)"[10]
The overall procedure of NTCA is taking a unitary that produces the initial state ∑N

i=1xi|i⟩ as
components, to build a new (larger) unitary that generate the desired state ∑N

i=1 f(xi)|i⟩ whose
amplitudes are transformed by certain nonlinear function f(x). Note that the transformed
state ∑N

i=1 f(xi)|i⟩ does not sit on the original register where the initial state ∑N
i=1xi|i⟩ exist

on, instead it sits at the exit of some other register introduced when constructing the larger
unitary(NTCA operations).
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Figure 7.4: Example of the full quantum circuit for a GNN layer (C = 1, single channel).
Utilising NTCA in our Quantum GCN to implement a non-linear activation function, we take
the unitary of data encoding and graph convolution as components to build a new unitary that
generates the desired state whose amplitudes are transformed by certain nonlinear functions.
Note that the schematics in this figure are for illustration purposes only.

7.2 Multi-Channel GCN

For a multi-channel GCN, each node has multiple features such that the node features X ∈RN×C

is a matrix with C (C > 1) columns and the Node representations at the l-th layer H(l) ∈ RN×Fl
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is a matrix whose Fl columns corresponds to Fl feature maps of each node. In addition to the
graph convolution in the layer-wise linear transformation of a single-channel GCN, an extra
layer-specific trainable weight matrix is applied to that of multi-channel GCN, yielding the
layer-wise propagation rule of a multi-channel GCN (Here, we present the architecture proposed
in Ref.[11] — the graph convolution is chosen to be a localized first-order approximation of
spectral graph convolutions discussed in Section 7.1) :

H(l+1) = σ
(
ÂH(l)W (l)

)

Here, Â= D̃− 1
2 ÃD̃− 1

2 in which Ã=A+IN is the adjacency matrix of the graph G with added
self-connections(IN is the identity matrix), D̃ii =∑

j Ãij . W (l) is a layer-specific trainable weight
matrix. σ(·) denotes an activation function. The linear layer-wise transformation (excluding
the nonlinear activation function) can be illustrated in Fig.7.5.

Graph-structured Data  
(Multi-Channel)

Node Features

Node-wise 
Transformation

Graph Diffusion

Figure 7.5: The linear layer-wise transformation for a Multi-Channel GCN For a multi-channel
GCN, each node has multiple features such that the Node representations at the l-th layer
H(l) ∈ RN×F is a matrix whose F columns corresponds to F feature maps of each node. In
addition to the graph convolution in the layer-wise linear transformation of a single-channel
GCN, an extra layer-specific trainable weight matrix is applied to that of a multi-channel GCN.
Here for brevity, we present the architecture proposed in Ref.[11] — the graph convolution is
chosen to be a localized first-order approximation of spectral graph convolutions, yielding the
linear layer-wise transformation for a Multi-Channel GCN to be the layer-specific trainable
weight matrix W (l) and renormalized adjacency matrix Â multiplied on the node feature matrix
H(l). Note that the trainable weight matrix W (l) does not have to be a square matrix.

At the output of the last layer, softmax activation function, defined as softmax(xi) =
1
Z exp(xi) with Z =∑

i exp(xi), is applied row-wise to the node feature matrix, producing the
final output of the network:

Z = softmax(ÂH(K−1)W (l)) (7.5)

For semi-supervised multi-class classification, the cost function is defined by the cross-entropy
error over all labelled examples [11]:
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L= −
∑

s∈YL

FK∑

f=1
Ysf lnZsf , (7.6)

where YL is the set of node indices that have labels, Y ∈ BN×FK denotes the one-hot encoding
of the labels. The GCN pipeline mentioned above is summarised in Fig.7.6.
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Figure 7.6: GCN Pipeline. A GCN consists of a series of layers in which graph convolution and
non-linear activation functions are applied to the node features. (Note that the schematics in
this figure are for illustration purposes only, e.g. the normalized adjacency matrix depicted here
does not include the added self-connections) At the output of the last layer, softmax activation
function, defined as softmax(xi) = 1

Z exp(xi) with Z =∑
i exp(xi), is applied row-wise to the

node feature matrix, producing the final output of the network: Z = softmax(ÂH(K−1)W (K−1)).
For semi-supervised multi-class classification, the cost function is defined by the cross-entropy
error over all labelled examples [11]:L= −∑s∈YL

∑FK
f=1Ysf lnZsf , where YL is the set of node

indices that have labels, Y ∈ BN×FK denotes the one-hot encoding of the labels.

Next, we present the Quantum implementation of the Multi-Channel GCN.

7.2.1 Data Encoding

For multi-channel GCN, the node features X ∈ RN×C of which the entries are denoted as
Xik = x

(k)
i (after normalization) can be encoded in a quantum state |ψX⟩ 1 as follows:

|ψX⟩ =
N∑

i=1
|i⟩ |xi⟩ (7.7)

1Note throughout this thesis we often omit the normalization factors in quantum states.
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where |xi⟩ = ∑C
k=1x

(k)
i |k⟩ , being the amplitude encoding of the features for node i over the

channels(indexed by k), is entangled with an "address" state |i⟩. The entire state is prepared
on two quantum registers hosting the channel index k and node index i which are denoted as
Reg(k) and Reg(i) respectively. The data encoding, represented as the blue box in Fig.7.7, can
be achieved by the "Controlled Quantum State Preparation" process [9].
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Figure 7.7: Quantum implementation of linear layer-wise transformation for multi-channel GCN
The linear layer-wise transformation for multi-channel GCN (i.e. the layer-specific trainable
weight matrix and the normalized adjacency matrix multiplied on the node feature matrix),
can be implemented by applying the block-encoding of the normalized adjacency matrix and a
parametrized quantum circuit on the two quantum registers Reg(i) and Reg(k) respectively.
Here we depicted the first layer of GCN — the linear layer-wise transformation is applied on
the state prepared by the data encoding procedure (the blue box) described in Section 7.2.1.
Note that the schematics in this figure are for illustration purposes only, e.g. 1) the normalized
adjacency matrix depicted here does not include the added self-connections; 2) the ancillary
qubits used in the quantum state preparation for the data encoding is not depicted in this
figure.

7.2.2 Layer-wise transformation and Cost function

The layer-wise linear transformation for multi-channel GCN (i.e. H ′(l) = ÂH(l)W (l) 2: the
layer-specific trainable weight matrix and renormalized adjacency matrix multiplied on the
node feature matrix), can be implemented by applying the block-encoding of the renormalized
adjacency matrix and a parameterized quantum circuit on the two quantum registers Reg(i)
and Reg(k) respectively, as depicted in Fig.7.7. This can be proven as follows:

From H ′(l) = ÂH(l)W (l) we have

H ′(l)T
=W (l)T

H(l)T
ÂT (7.8)

Using vec(ABC) = (CT ⊗A)vec(B) (A, B,C are matrices), we have
2Here we use H ′(l) to denote the transformed feature matrix.
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vec(H ′(l)T
) = vec(W (l)T

H(l)T
ÂT ) = (Â⊗W (l)T

)vec(H(l)T
) (7.9)

For an arbitrary matrix M , define vectors ψψψM = vec(M), and Eqn.7.9 becomes

ψψψ
H ′(l)T = (Â⊗W (l)T

)ψψψ
H(l)T (7.10)

Similar to Eqn.7.7, we can define the quantum state on the two quantum registers Reg(i)
and Reg(k) for H(l) as

∣∣∣ψH(l)

〉
=

N∑

i=1
|i⟩⊗

∣∣∣∣x
(l)
i

〉
(7.11)

and for H ′(l):

∣∣∣ψH ′(l)

〉
=

N∑

i=1
|i⟩⊗

∣∣∣∣x′(l)
i

〉
(7.12)

Writing the quantum states in Eqn.7.11 and 7.12 as vectors we note that

ψψψ
H(l)T =

∣∣∣ψH(l)

〉
(7.13)

ψψψ
H ′(l)T =

∣∣∣ψH ′(l)

〉
(7.14)

Substituting Eqs.7.11 - 7.14 into Eq. 7.10 we find

∣∣∣ψH ′(l)

〉
= (Â⊗W (l)T

)
∣∣∣ψH(l)

〉
(7.15)

in which (Â⊗W (l)T ) corresponds to applying the block-encoding of Â and a parameterized
quantum circuit implementing W (l)T on the two quantum registers Reg(i) and Reg(k) respec-
tively. That is, H ′(l) = ÂH(l)W (l) — the layer-specific trainable weight matrix and renormalized
adjacency matrix multiplied on the node feature matrix can be implemented by applying the
block-encoding of the renormalized adjacency matrix and a parameterized quantum circuit on
the two quantum registers Reg(i) and Reg(k) respectively. The proof can be summarised in
Fig.7.8.

After the linear layer-wise transformation, the element-wise non-linear activation function
can be applied in a similar way as described in section7.1.3. In practice, GCNs often involve two
or three layers[97], therefore we only need to apply the non-linear activation function two or three
times. This enables our quantum GCN that utilize NTCA (for the non-linear activation function)
to maintain certain advantages—in the case of more layers, NTCA’s complexity-theoretic benefit
will vanish[10]. 3

3However there are proposals of classical GCN architectures (e.g.[124]) in which the non-linear activation
functions are ommited.
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Figure 7.8: Proof of our Quantum implementation of linear layer-wise transformation for multi-
channel GCN The linear layer-wise transformation for multi-channel GCN (i.e. the layer-specific
trainable weight matrix and adjacency matrix multiplied on the node feature matrix), can
be implemented by applying the block-encoding of the renormalized adjacency matrix and a
parametrized quantum circuit on the two quantum registers Reg(i) and Reg(k) respectively.
The figure summarises the proof from Eqn.7.8 to 7.15.

For semi-supervised multi-class classification, the cost function used in our framework is
defined as the negative inner product between the outcome state of our quantum GCN and a
target label state |ψY ⟩ :=∑

s∈YL

∑C
f=1Ysf |s⟩ |f⟩⊗ |0⟩. The cost function can be evaluated via

the “Modified Hadamard test” [125, 126].



Chapter 8

Quantum Graph Attention Network

Attention mechanisms [16] have become effectively a standard component in a variety of tasks in
natural language processing and computer vision. Veličković et al [127] introduced an attention-
based architecture, Graph Attention Network, to perform node classification of graph-structured
data. As mentioned in Section 6.1, the building block layer of Graph Attention Network achieves
the following transformations which we refer as "Graph attention operation":

hj = ϕ


xj ,

⊕

i∈Nj

a(xi,xj)ψ (xi)

 , (8.1)

where a(xj ,xi) is a scalar that indicates the relationship strength between node i and j, often
referred as attention coefficients or attention scores [16]. The following sections present our
quantum implementation of Eqn.8.1. In Section 8.1 we design a Quantum Attention Mechanism
to evaluate and store attention score a(xi,xj) on quantum circuit, which serves as a crucial
component for the subsequent construction described in Section 8.2.2.

8.1 Quantum Attention Mechanism
The quantum attention mechanism aims to coherently evaluate and store attention score a(xi,xj)
for each pair of the nodes, which can be defined as a quantum oracle Oattention such that:

Oattention |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |a(xi,xj)⟩ (8.2)

In this section we present the construction of the quantum attention oracle consisting of the
following two steps:

8.1.1 Evaluating Attention score in superposition

The Attention score a(xi,xj) in our Quantum Attention Mechanism can take one of the standard
forms in classical literature [16] — the inner product of the linearly transformed feature vectors
of each pair of nodes

75
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a(xi,xj) = xT
i W

T
KWQxj , (8.3)

in which WK ,WQ are trainable linear transformations. In terms of Dirac notation, this can be
written as:

a(xi,xj) = ⟨xi|U †
KUQ |xj⟩ (8.4)

in which UK ,UQ are trainable unitaries.

In our Quantum Attention Mechanism, the attention score can be evaluated on quantum
circuit by parallel Swap Test (mentioned in Chapter 4) as depicted in Fig. 8.1 which we will
discuss in detail below.

Q
k

Q
k

x
x
x
x
x
x

x
x
x
x
x
x

H H H H

Q
k

Q
k

O

a (xi , xj) = ⟨xi |U†
KUQ |xj⟩ a (xi , xj) = (⟨xi |U†

K)⊗ (⟨xi |U†
Q)U†

eOUe(UK |xi⟩)⊗ (UQ |xi⟩)

Figure 8.1: Quantum Attention Mechanism The Attention score a(xi,xj) in our Quantum
Attention Mechanism can take the form of the inner product of the linearly transformed feature
vectors of each pair of nodes a(xi,xj) = xT

i W
T
KWQxj , in which WK ,WQ are trainable linear

transformations. In terms of Dirac notation, this can be written as: a(xi,xj) = ⟨xi|U †
KUQ |xj⟩,

in which UK ,UQ are trainable unitaries. In our Quantum Attention Mechanism, this attention
score can be evaluated in superposition on quantum circuit by parallel Swap Test(mentioned in
Chapter 4), depicted as the left side of this figure. On the left side of this figure, we illustrate
an alternative form of the Attention score, which can be evaluated by parallel Hadamard Test
(mentioned in Chapter 4)

We denote the unitary for the parallel swap test circuit, as circled by the pink box on the
left panel of Fig. 8.1, as U . The input to U , |Ψ0⟩, can be written as (note here and throughout
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the thesis, we omit the normalization factor):

|Ψ0⟩ = |0⟩⊗ (
∑

i

|i⟩)⊗|0⟩n
K ⊗ (

∑

j

|j⟩)⊗|0⟩n
Q , (8.5)

where |0⟩n
K , |0⟩n

Q are the initial states of two copies of data registers on which the node features
a(xi,xj) will be loaded. The data encoding via Controlled Quantum State Preparation[9],
depicted as the blue boxes in Fig.8.1, can be written as ∑i |i⟩⟨i|⊗Uxi where Uxi |0⟩ = |xi⟩.

Applying this data encoding on the two copies of data registers yields the overall state:

|Ψ1⟩ = |0⟩⊗ (
∑

i

|i⟩⊗ |xi⟩n)⊗ (
∑

j

|j⟩⊗ |xj⟩n) (8.6)

Node-wise linear transformation UK ,UQ(trainable unitaries) implemented by PQC are then
applied to the node feature registers, yielding the following state:

|Ψ2⟩ = |0⟩⊗ (
∑

i

|i⟩⊗UK |xi⟩n)⊗ (
∑

j

|j⟩⊗UQ |xj⟩n) (8.7)

We further define Ki,Qj and corresponding state |ki⟩ , |qj⟩ as Ki |0⟩n
K =UK |xi⟩ = |ki⟩ ,Qj |0⟩n

Q =
UQ |xj⟩ = |qj⟩. Then U can be written explicitly as

U := [H⊗ I⊗ I⊗ I⊗ I]·
[|0⟩⟨0|⊗ (

∑

i

∑

j

|i⟩⟨ i|⊗Ki ⊗|j ⟩⟨j|⊗Qj)+ |1⟩⟨1|⊗ (
∑

i

∑

j

|i⟩⟨ i|⊗Qj ⊗|j ⟩⟨j|⊗Ki)]

· [H⊗ I⊗ I⊗ I⊗ I], (8.8)

which can be rewritten as

U =
∑

i

∑

j

|i⟩⟨ i|⊗ |j ⟩⟨j|⊗Uij , (8.9)

where

Uij := [H⊗ I⊗ I] · [|0⟩⟨0|⊗Ki ⊗Qj + |1⟩⟨1|⊗Qj ⊗Ki ] · [H⊗ I⊗ I], (8.10)

Define |ϕij⟩ := Uij |0⟩ |0⟩n
K |0⟩n

Q and we have:

|ϕij⟩ = 1√
2

(|+⟩ |ki⟩ |qj⟩+ |−⟩ |qj⟩ |ki⟩). (8.11)

Expanding and rearranging the terms in Eq. 8.11 we find

|ϕij⟩ = 1
2 (|0⟩⊗ (|ki⟩ |qj⟩+ |qj⟩ |ki⟩)+ |1⟩⊗ (|ki⟩ |qj⟩− |qj⟩ |ki⟩) . (8.12)
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Denote |uij⟩ and |vij⟩ as the normalized states of |ki⟩ |qj⟩ + |qj⟩ |ki⟩ and |ki⟩ |qj⟩ − |qj⟩ |ki⟩
respectively. Then there is a real number θij ∈ [π/4,π/2] such that

|ϕij⟩ = sinθij |0⟩|uij⟩+cosθij |1⟩|vij⟩. (8.13)

θij satisfies cosθij =
√

1−|⟨ki|qj⟩|2 /
√

2 , sinθij =
√

1+ |⟨ki|qj⟩|2 /
√

2 .

The final output state from U , |Ψ3⟩ = U |Ψ0⟩, can then be written as

|Ψ3⟩ =
∑

i

∑

j

|i⟩|j⟩( sinθij |uij⟩ |0⟩+cosθij |vij⟩ |1⟩)
︸ ︷︷ ︸

|ϕij⟩

=
∑

i

∑

j

|i⟩|j⟩ |ϕij⟩ (8.14)

Note that ⟨ki|qj⟩ = ⟨xi|U †
KUQ |xj⟩ = a(xi,xj) being the attention scores are encoded in the

amplitudes of the output state |Ψ3⟩ of swap test as:

|⟨ki|qj⟩|2 = −cos2θij .(8.15)

8.1.2 Storing Attention score

The second step is to use amplitude estimation [90] to extract and store the attention scores
into an additional register which we call the “amplitude register”.

After step 1, we introduce an extra register |0⟩t
amplitude and the output state |Ψ3⟩ (using the

same notation) becomes

|Ψ3⟩ =
∑

i

∑

j

|i⟩|j⟩ |ϕij⟩ |0⟩t
amplitude , (8.16)

where |ϕij⟩ can be decomposed as

|ϕij⟩ = −i√
2
(
eiθij |ω+⟩ij − ei(−θij) |ω−⟩ij

)
. (8.17)

Hence, we have

|Ψ3⟩ =
∑

i

∑

j

−i√
2
(
eiθij |i⟩ |j⟩ |ω+⟩ij − ei(−θij)|i⟩ |j⟩ |ω−⟩ij

)
|0⟩t

amplitude . (8.18)

The overall Grover operator G is defined as

G := UC2U
†C1, (8.19)

where C1 is the Z gate on the swap ancilla qubit, and C2 = I−2|0⟩⟨0| is the “flip zero state”
on registers other than the two registers hosting indices i, j (represented as S0 in Fig.8.2). It
can be shown that G can be expressed as

G=
∑

i

∑

j

|i⟩ |j ⟩⟨j| ⟨i|⊗Gij , (8.20)
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where Gij is defined as

Gij = (I−2|ϕij⟩⟨ϕij |))C1 (8.21)

It is easy to check that |w±⟩ij are the eigenstates of Gij , that is,

Gij |w±⟩ij = e±iii2θij |w±⟩ij . (8.22)

The overall Grover operator G possess the following eigen-relation:

G |i⟩ |j⟩ |ω±⟩ij = ei(±2θij) |i⟩ |j⟩ |ω±⟩ij . (8.23)

Next, we apply phase estimation of the overall Grover operator G on the input state |Ψ3⟩.
The resulting state |Ψ4⟩ can be written as

|Ψ4⟩ =
∑

i

∑

j

−i√
2
(
eiθij |i⟩ |j⟩ |ω+⟩ij |2θij⟩− ei(−θij) |i⟩ |j⟩ |ω−⟩ij |−2θij⟩

)
. (8.24)

Note here in Eq. 8.24, |±2θij⟩ denotes the eigenvalues ±2θij being stored in the amplitude
register with some finite precision.

Next, we apply an oracle UO on the amplitude register and an extra ancilla register, which
acts as

UO |0⟩ |±2θij⟩ = |a(xi,xj)⟩ |±2θij⟩ , (8.25)

The state after the oracle can be written as

|Ψ5⟩ =
∑

i

∑

j

−i√
2

|a(xi,xj)⟩
(
eiθij |i⟩ |j⟩ |ω+⟩ij |2θij⟩− ei(−θij) |i⟩ |j⟩ |ω−⟩ij |−2θij⟩

)
. (8.26)

Then we perform the uncomputation of Phase estimation, the resulting state is

|Ψ6⟩ =
∑

i

∑

j

−i√
2

|a(xi,xj)⟩
(
eiθij |i⟩ |j⟩ |ω+⟩ij |0⟩t

amplitude − ei(−θij) |i⟩ |j⟩ |ω−⟩ij |0⟩t
amplitude

)

(8.27)

=
∑

i

∑

j

|a(xi,xj)⟩ |i⟩|j⟩ |ϕij⟩ |0⟩t
amplitude

(8.28)

Finally, we perform the uncomputation of the swap test and the resulting state is

|Ψ7⟩ =
∑

i

∑

j

|a(xi,xj)⟩ |i⟩|j⟩ |0⟩ |0⟩t
amplitude . (8.29)

The above steps, as illustrated in Fig. 8.2, implemented the quantum attention oracle
Oattention such that:

Oattention |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |a(xi,xj)⟩ (8.30)
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Figure 8.2: Quantum attention oracle Oattention The quantum attention mechanism aims to
coherently evaluate and store attention score a(xi,xj) for each pair of the nodes, which can
be defined as a quantum oracle Oattention such that Oattention |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |a(xi,xj)⟩. The
construction of the quantum attention oracle, depicted in this figure, is detailed in section 8.1.1
and 8.1.2.

8.2 Quantum algorithm for Graph Attention

The Graph Attention operation defined in Eq.8.1 can also be described similar to the layer-wise
linear transformation for multi-channel GCN in Section 7.2.2, i.e. H ′(l) = ÂH(l)W (l): the
layer-specific trainable weight matrix and renormalized adjacency matrix multiplied on the
node feature matrix. Here in the Graph Attention operation, the non-zero elements in the
renormalized adjacency matrix Â are modified to be the attention score of the corresponding
node pairs [17]. Therefore on quantum circuit, similar to the case of multi-channel GCN,
the Graph Attention operation can be implemented by applying the block-encoding of the
modified renormalized adjacency matrix(which we refer as "weighted adjacency matrix" and
a parameterized quantum circuit. In the following Section 8.2.2 we present how to achieve
the block-encoding of the weighted adjacency matrix. As a preliminary, the block-encoding of
certain sparse1 matrix is illustrated in Section 8.2.1.

8.2.1 Block encoding of certain sparse matrices

The block encoding of a general sparse matrix[65] requires a certain oracle that it’s hard to
construct in our case for the Graph Attention operation. In this thesis, we investigate the sparse
matrices that can be decomposed as the summation of 1-sparse matrices (A "1-sparse matrix" is
defined as there is only one nonzero entry in each row or column of the matrix). We start with

1For many practical applications, the adjacency matrix of a Graph is often sparse.
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the block encoding of 1-sparse matrices.

For each column j of a 1-sparse matrix A, there is a single row index c(j) such that Ac(j),j ̸= 0,
and the mapping c is a permutation.[66] Therefore, A can be expressed as the product of a
diagonal matrix (whose diagonal entries are the non-zero entries of the 1-sparse matrix) and
a permutation matrix. Ref.[66] showed that the block encoding of a 1-sparse matrix can be
constructed by multiplying the block encoding of a diagonal matrix and the block encoding of a
permutation matrix: the permutation matrix, denoted as Oc act as

Oc|j⟩ = |c(j)⟩.

and the block encoding of the diagonal matrix, denoted as OA, act as:

OA|0⟩|j⟩ =
(
Ac(j),j |0⟩+

√
1−

∣∣∣Ac(j),j
∣∣∣
2 |1⟩

)
|j⟩.

UA = (I⊗Oc)OA is a block encoding of the 1-sparse matrix A [66].

Now we consider the case for the sparse matrices that can be decomposed as the summation
of 1-sparse matrices, below we also use A to denote such matrix(for reason will be clear soon).
After the decomposition, we index the 1-sparse matrices by l. For the l-th 1-sparse matrix, the
row index of the nonzero entry in each column j, is denoted by c(j, l). There exist Ol

c and Ol
A

and corresponding U l
A such that [66]

Ol
c|j⟩ = |c(j, l)⟩. (8.31)

Ol
A|0⟩|j⟩ =

(
Ac(j,l),j |0⟩+

√
1−

∣∣∣Ac(j,l),j
∣∣∣
2 |1⟩

)
|j⟩ (8.32)

It can be shown that ∑lU
l
A =∑

l

(
I⊗Ol

c

)
Ol

A is a block encoding of the sparse matrix A

[66]. The summation over l can be carried out by Linear Combination of Unitaries(LCU)[8].

For the construction of Ol
A, assume that there is an oracle [66]

Õl
A

∣∣∣0d′〉 |j⟩ =
∣∣∣Ãc(j,l),j

〉
|j⟩,

where Ãc(j,l),j is a d′-bit representation of Ac(j,l),j . By arithmetic operations, we can convert
this oracle into another oracle

Ol
A

′
∣∣∣0d
〉

|j⟩ =
∣∣∣θ̃c(j,l),j

〉
|j⟩,

where 0 ⩽ θ̃c(j,l),j < 1, and θ̃c(j,l),j is a d-bit representation of θc(j,l),j = arccos
(
Ac(j,l),j

)
/π.
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Next, using the "Controlled rotation given rotation angles" (Proposition 4.7 in Ref.[66],
denoted as "CR" below) and uncomputation of Ol

A
′ we can achieve the construction of Ol

A:

|0⟩
∣∣∣0d
〉

︸︷︷︸
work register

|j⟩ Ol
A

′
−→ |0⟩

∣∣∣θ̃c(j,l),j
〉

|j⟩ (8.33)

CR−→
(
Ac(j,l),j |0⟩+

√
1−

∣∣∣Ac(j,l),j
∣∣∣
2 |1⟩

)∣∣∣θ̃c(j,l),j
〉

|j⟩ (8.34)

(Ol
A

′)−1

−→
(
Ac(j,l),j |0⟩+

√
1−

∣∣∣Ac(j,l),j
∣∣∣
2 |1⟩

)∣∣∣0d
〉

|j⟩ (8.35)

8.2.2 Quantum Graph Attention operation

As mentioned in section 8.2.1, in this thesis we investigate certain sparse matrices(here in
Graph attention operation, the weighted adjacency matrices) that can be decomposed as the
summation of 1-sparse matrices. From the preliminary discussion in section 8.2.1, the block
encoding of such matrices can be boiled down to the Õl

A for each 1-sparse matrix. That is, the
core task is to construct the following operation for each 1-sparse matrix(indexed by l):

Odiagonal
l : |j⟩ |0⟩ → |j⟩

∣∣∣Ac(j,l),j
〉
, (8.36)

where
∣∣∣Ac(j,l),j

〉
denotes Ac(j,l),j being stored in a quantum register with some finite precision,

and for simplicity we use |0⟩ to represent a state of the register that all qubits in the register
being in the state of |0⟩. We also adopt this kind of notion in the rest of the thesis: for a scalar
a, |a⟩ denotes a being stored in a quantum register with some finite precision, and in contexts
where there is no ambiguity, |0⟩ represent a state of a quantum register that all qubits in the
register being in the state of |0⟩.

In our case of Graph attention operation, the elements of the weighted adjacency matrix are
the attention scores, i.e. Ai,j = a(xi,xj), and we have

Odiagonal
l : |j⟩ |0⟩ → |j⟩

∣∣∣a(xc(j,l),xj)
〉
. (8.37)

Note that in section 8.1 we have already construct a quantum oracle Oattention such that:

Oattention : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |a(xi,xj)⟩ (8.38)

In the following of this section, we present how to construct an alternative version2 of
Odiagonal

l utilising Oattention.

2Note that we are not strictly constructing Odiagonal
l here and the following operations do not strictly achieve

a block-encoding of the weighted adjacency matrix, however the alternative versions do generate a quantum
state that resembles the Graph attention operation.
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Figure 8.3: Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. The initial data state

∣∣∣ψ3
X0
〉

=∑
i |i⟩⊗3 |xi⟩ is prepared by the blue box on the left.

The QNN module, denoted as Uw, transform the state to
∣∣∣ψ3

X

〉
=∑

i |i⟩⊗3Uw |xi⟩. The pale green
box together with the three red boxes which achieve M ′

l =∑
jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0| + ...,

are then applied to the transformed initial data state, resulting ∑jAc(j,l),j |j⟩⊗3Uw

∣∣∣xc(j,l)
〉

|0⟩.
The pale green box consists of the following Modules: Module 1(the first pink box). O

diagonal
l

Module 2. the “Conditional Rotation” (Theorem 3.5 in Ref. [12]) Module 3 (the second pink
box) is the uncomputation of Module 1.

Step 1: Attention oracle loading the attention scores Ai,j = a(xi,xj)

The first component is the attention oracle Oattention, depicted as the navy box in Fig.8.3.
When being applied onto the three address register Reg(i), Reg(j) and the corresponding
memory register Reg(m1), Oattention loads the attention scores Ai,j = a(xi,xj) for each pair of
the nodes i, j into Reg(m1), while the other memory register Reg(m2) stays |0⟩. Oattention act
as:

Oattention : |i⟩ |j⟩ |0⟩ |0⟩ |k⟩ → |i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ . (8.39)

If Oattention is applied onto an input state as ∑i
∑

j
∑

k |i⟩ |j⟩ |0⟩ |0⟩ |k⟩, it transform the state as:

∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →
∑

i

∑

j

∑

k

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ . (8.40)

Step 2: Selective copying of the attention scores Ai,j = a(xi,xj)

The second component is a multi-controlled unitary which performs the “selective copying”
of the attention scores onto Reg(m2), depicted as the blue-navy-red-blue combo boxes following
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Quantum Attentional GNN 

Figure 8.4: Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. This figure provides a small example of the corresponding states and matrices in
Fig. 8.3. The panels perpendicular to the circuit plane represent the quantum states, while the
panels parallel to the circuit plane represent the corresponding matrices.

the attention oracle in Fig.8.3. The copying is implemented by a quantum oracle that acts as
|0⟩ |x⟩ → |f(x)⟩ |x⟩ where f can be a nonlinear activation function, however, we still name the
operation as “copying.”

Consider the branches indexed by i, j,k in the state ∑i
∑

j
∑

k |i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩, the
copying is defined3 to happen only for the branches i = c(j, l);k = j, that is, the "selective
copying" operation transform the branches in the state ∑i

∑
j
∑

k |i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ as follows:

For branches i= c(j, l);k = j:

∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉
|0⟩ |j⟩ →

∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉∣∣∣a(xc(j,l),xj)
〉

|j⟩ . (8.41)

For other branches :

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ →
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ , (8.42)

combining all branches we have the selective copying of the attention scores Ai,j = a(xi,xj)

3For an implementation of the "selective copying" operation, see AppendixA.1
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as:
∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉
|0⟩ |j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉∣∣∣a(xc(j,l),xj)
〉

|j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ .

Step 3: Uncomputation of attention oracle O†
attention

The third component is the uncomputation of attention oracle Oattention which act as

O†
attention : |i⟩ |j⟩ |a(xi,xj) → |i⟩ |j⟩ |0⟩⟩ . (8.43)

When acting on the output state of Step 2, it transforms the state as follows:
∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉∣∣∣a(xc(j,l),xj)
〉

|j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣a(xc(j,l),xj)

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ .

Step 4: Permutation of basis on register Reg(i)

The fourth component is the permutation of basis in the register Reg(i) by applying the
unitary Ol

c
† (defined in Eq.8.31) which act as

Ol
c
†|c(j, l)⟩ = |j⟩.

When acting on the output state of Step 3, it transforms the state as follows:
∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣a(xc(j,l),xj)

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →

∑

j

|j⟩ |j⟩ |0⟩
∣∣∣a(xc(j,l),xj)

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|P (i)⟩ |j⟩ |0⟩ |0⟩ |k⟩ ,

where |P (i)⟩ :=Ol
c
† |i⟩.

The state evolution during the four steps can be summarized as follows:

∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ =
∑

j

|c(j, l)⟩ |j⟩ |0⟩ |0⟩ |j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉
|0⟩ |j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩
∣∣∣a(xc(j,l),xj)

〉∣∣∣a(xc(j,l),xj)
〉

|j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |a(xi,xj)⟩ |0⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣a(xc(j,l),xj)

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →

∑

j

|j⟩ |j⟩ |0⟩
∣∣∣a(xc(j,l),xj)

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|P (i)⟩ |j⟩ |0⟩ |0⟩ |k⟩ .
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Gathering all four steps above, the pink box in Fig.8.3 implements an alternative version of
Odiagonal

l denoted as O
diagonal
l which act as:

O
diagonal
l : |j⟩⊗3 |0⟩ → |j⟩⊗3 ∣∣∣a(xc(j,l),xj)

〉
, (8.44)

in which we neglected some registers that are unchanged before/after. Note Eq.8.44 does not
specify the transformation of Odiagonal

l acting on states other than |j⟩⊗3 |0⟩.

In terms of the elements of the weighted adjacency matrices, Odiagonal
l which act as:

O
diagonal
l |j⟩⊗3 |0⟩ → |j⟩⊗3 ∣∣∣Ac(j,l),j

〉
(8.45)

Armed with O
diagonal
l , we can then construct the Graph attention operation using the recipe

discussed in the previous section 8.2.1, which is based on the following modules.

Module 1. O
diagonal
l

Module 2. the "Conditional Rotation" (Theorem 3.5 in Ref. [13]), to convert Ac(j,l),j from
basis to amplitude.

Module 3. Uncomputation of module 1

These three modules achieve the following unitary:

Ml =
∑

j

Ac(j,l),j |j⟩⊗3 |0⟩⟨j|⊗3 ⟨0|+ ... . (8.46)

Module 4. Permutation of basis

Three Ol
c
† which act as ⟨j|Ol

c
† = ⟨c(j, l)| are applied before the previous three modules on

the addresses, yield

M ′
l =

∑

j

Ac(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+ ... . (8.47)

When M ′
l is applied on the transformed data state

∣∣∣ψ3
X

〉
:=∑

i |i⟩⊗3Uw |xi⟩, prepared by the
blue box and the QNN module (represented by Uw) in Fig.8.1, it act as follows
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Figure 8.5: Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. The initial data state

∣∣∣ψ3
X0
〉

=∑
i |i⟩⊗3 |xi⟩ is prepared by the blue box on the left. The

QNN module, denoted as Uw, transforms the state to
∣∣∣ψ3

X

〉
=∑

i |i⟩⊗3Uw |xi⟩. The transparent
box which achieves M ′

l =∑
jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0| + ..., consist of four Modules: Module

1(the first pink box) O
diagonal
l . Module 2 the Conditional Rotation (Theorem 3.5 in Ref. [13]),

represented as the controlled-R gate between the two pink boxes. Module 3 (the second
pink box) Uncomputation of Module 1. Module 4(the three red boxes on the left of module
1) Permutation of basis. An overall LCU is then applied to the four modules, depicted
in as the add-on register Reg(l) controlling the transparent box, to achieve the addition
over index l: M = ∑

lM
′
l = ∑

l
∑

jAc(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0| + .... M is then applied on∣∣∣ψ3
X

〉
=∑

i |i⟩⊗3Uw |xi⟩, producing the outcome state ∑j |j⟩⊗3∑
lAc(j,l),jUw

∣∣∣xc(j,l)
〉

|0⟩.

M ′
l

∣∣∣ψ3
X

〉
= (

∑

j

Ac(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+ ...)
∑

i

|i⟩⊗3Uw |xi⟩ |0⟩ (8.48)

= (
∑

j

Ac(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|)
∑

i

|i⟩⊗3Uw |xi⟩ |0⟩ (8.49)

=
∑

j

Ac(j,l),j |j⟩⊗3Uw

∣∣∣xc(j,l)
〉

|0⟩ . (8.50)

The operations constructed so far can be summarised in Fig.8.3, Fig.8.4 provide a small example
of the corresponding states and matrices.

To achieve the addition over index l, an overall LCU is applied to the four modules, depicted
in Fig.8.5 and 8.6 as the add-on register Reg(l) with the controlled unitaries in the transparent
box, achieving the following operation:

M :=
∑

l

M ′
l =

∑

l

∑

j

Ac(j,l),j |j⟩⊗3 |0⟩⟨c(j, l)|⊗3 ⟨0|+ ... (8.51)
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Figure 8.6: Quantum implementation of linear layer-wise transformation for Graph Attention
Networks. This figure provides a 3D state-circuit view for Fig. 8.5. The panels perpendicular to
the circuit plane represent the quantum states generated by corresponding circuits.

When M is applied on
∣∣∣ψ3

X

〉
=∑

i |i⟩⊗3Uw |xi⟩, it produces the outcome state as:

M
∣∣∣ψ3

X

〉
=
∑

l

M ′
l

∣∣∣ψ3
X

〉
=
∑

l

∑

j

Ac(j,l),j |j⟩⊗3Uw

∣∣∣xc(j,l)
〉

|0⟩ (8.52)

=
∑

j

|j⟩⊗3∑

l

Ac(j,l),jUw

∣∣∣xc(j,l)
〉

|0⟩ (8.53)

We can add an extra Identity unitary I with coefficient r in the LCU that produces M ,
yielding

M ′
∣∣∣ψ3

X

〉
= (M + rI)

∣∣∣ψ3
X

〉
=
∑

j

|j⟩⊗3∑

l

Ac(j,l),jUw

∣∣∣xc(j,l)
〉

|0⟩+ r
∑

j

|j⟩⊗3Uw |xj⟩ |0⟩ (8.54)

=
∑

j

|j⟩⊗3 (
∑

l

Ac(j,l),jUw

∣∣∣xc(j,l)
〉

+ rUw |xj⟩) |0⟩ (8.55)

=
∑

j

|j⟩⊗3 (
∑

l

a(xc(j,l),xj)Uw

∣∣∣xc(j,l)
〉

+ rUw |xj⟩) |0⟩ (8.56)

=
∑

j

|j⟩⊗3 ∣∣∣x′
j

〉
|0⟩ (8.57)

where
∣∣∣x′

j

〉
:= rUw |xj⟩+∑l a(xc(j,l),xj)Uw

∣∣∣xc(j,l)
〉

is the updated node feature in accordance
with Eqn. 8.1, by identifying Uw |xi⟩ is the amplitude encoding of ψ (xi), setting ϕ(x,z) = Wx+z,
and interpreting c(j, l) as the node index for the l-th neighbourhood of a node indexed by j in
the graph.
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In summary, by the circuit construction described so far, we obtain the following state that
resembles the Graph attention operation:

∑

j

|j⟩⊗3 |hj⟩ |0⟩ =
∑

j

|j⟩⊗3
∣∣∣∣∣∣
ϕ


xj ,

⊕

i∈Nj

a(xi,xj)ψ (xi)


〉

|0⟩ . (8.58)





Chapter 9

Quantum Message-Passing GNN

Similar to the case of Graph Attention Networks in Chapter 8, our Quantum Message-Passing
GNN aims to evaluate and store the updated node features

hj = ϕ


xj ,

⊕

i∈Nj

ψ (xj ,xi)

 , (9.1)

into a quantum state as ∑j |j⟩⊗3 |hj⟩+ ..., that is, to obtain the following state

∑

j

|j⟩⊗3
∣∣∣∣∣∣
ϕ(xj ,

⊕

i∈Nj

ψ(xi,xj))
〉

+ ... . (9.2)

This can be achieved via the following steps, as illustrated in Fig. 9.1 and 9.2.

Step 1: Data Loading of linearly transformed node features xk

The first step is to apply the data loading module described in Section 7.2.1 on the address
register Reg(k) and the corresponding memory register Reg(m1) on which a parameterized
quantum circuit module is then applied to linearly transform the node features. This step loads
the linearly transformed node features xk of each node into the memory register associated with
address |k⟩. Together with the other two address registers Reg(i), Reg(j) and corresponding
memory registers Reg(m2), Reg(m3)(which will be described in the following steps), the overall
state transforms as:

∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →
∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ . (9.3)

Step 2: Selective LCU

The second step aims to implement updating each node’s feature xi from the vectors ψ(xi,xj),
as in Eq. 9.1.

91
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Figure 9.1: Quantum Algorithm for Message-Passing GNN. Our Quantum Message-Passing
GNN aims to evaluate and store the updated node features hj = ϕ

(
xj ,

⊕
i∈Nj

ψ (xj ,xi)
)
into a

quantum state as ∑j |j⟩⊗3 |hj⟩+ ... This can be achieved via the following steps: Step 1: Data
Loading of linearly transformed node features xk; Step 2: Selective LCU; Step 3: Permutation of
basis; Gathering all steps above, the Quantum Message-Passing GNN loads and transforms the
node features as: ∑i

∑
j
∑

k |i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →∑
j |j⟩⊗3 ∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
+ ... Step 4: Overall

LCU, we then apply the overall LCU module (depicted as the top add-on register Reg(l) with
the controlled unitaries in fainted blue box), to achieve the aggregation over different neighbours,
obtaining the following state:∑j |j⟩⊗3 ∣∣∣ϕ(xj ,

∑
lψ(xc(j,l),xj))

〉
+ ..., which can also be written as

∑
j |j⟩⊗3 ∣∣∣ϕ(xj ,

⊕
v∈Nj

ψ(xv,xj))
〉

+ ...

Similar to the case of Graph Attention Networks (mentioned in Section 8.2.1), in this section,
we investigate the graphs with certain adjacency matrices that can be decomposed as the
summation of 1-sparse matrices. After the decomposition, we index the 1-sparse matrices by l.
For the l-th 1-sparse matrix, the row index of the nonzero entry in each column j, is denoted by
c(j, l). Interpreting c(j, l) as the node index for the l-th neighbourhood of a node indexed by j
in the graph, aggregation over different neighbours can be formulated as summing over l, that
is,

ϕ(xj ,
⊕

v∈Nj

ψ(xv,xj)) := ϕ(xj ,
∑

l

ψ(xc(j,l),xj)). (9.4)

Since ϕ is linear in its arguments, we have,

ϕ(xj ,
∑

l

ψ(xc(j,l),xj)) =
∑

l

ϕ(xj ,ψ(xc(j,l),xj)). (9.5)



93

Figure 9.2: Quantum Algorithm for Message-Passing GNN This figure provide a 3D state-circuit
view for Fig.9.1. The panels perpendicular to the circuit plane represent the quantum states
generated by corresponding circuits.

This allows us to achieve the aggregation over different neighbours by the overall LCU
module depicted in Fig. 9.1 and 9.2 as the top add-on register Reg(l) with the controlled
unitaries in fainted blue box implementing ϕ(xj ,ψ(xc(j,l),xj)) for each l. For a node in the
graph, we then first focus on the message-passing from one neighbour of the node represented
as ϕ(xj ,ψ(xc(j,l),xj)).

For each neighbour of a node, a “selective LCU” is performed to implement the node updating
function ϕ(xi,ψ(xi,xj)). This is achieved by applying the following modules:

Module 1: A data loading+linear transformation module that evaluates the vector ψ(xi,xj),
depicted in Fig. 9.1 and 9.2 as the pink box. This module comprises two data loading modules
on address registers Reg(i), Reg(j) and their corresponding data registers Reg(m2), Reg(m3),
followed by two parametrized quantum circuits on Reg(m2), Reg(m3) respectively and an
overall parametrized quantum circuits on Reg(m2), Reg(m3).

This module acts as follows:

∑

i

∑

j

|i⟩ |j⟩ |0⟩ →
∑

i

∑

j

|i⟩ |j⟩ |ψ(xi,xj)⟩ (9.6)
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Module 2: Selectively controlled unitaries on the three data registers, as gathered in the
fainted blue box in Fig. 9.1 and 9.2.

we can write out |ψ(xi,xj)⟩ as:

|ψ(xi,xj)⟩ =
∑

p
wij

p |p⟩ (9.7)

and the controlled unitaries, depicted in Fig. 9.1 and 9.2 as the multi-controlled red/purple
boxes, can be written as

Umulti =
∑

p
|p⟩⟨p|⊗Up (9.8)

where Up are some constant or trainable unitaries.

and the selective controlled unitaries are defined1 as:

USelective :=
∑

j

|j⟩⟨j|⊗ |j⟩⟨j|⊗ |c(j, l)⟩⟨c(j, l)|⊗Umulti. (9.9)

Module 3: Uncomputation of Module 1.

Module 4: Projection onto zero state on Reg(m2), Reg(m3).

For each specific combination of i, j,k, the above modules achieve LCU on Reg(m1) and act
as,

|xk⟩ →
∑

p
|wij

p |2Up |xk⟩ . (9.10)

Considering Eq. 9.7 and the definitions of functions ϕ and ψ, We denote the transformed
state in Eq. 9.10 as

|ϕ(xk,ψ(xi,xj))⟩ :=
∑

p
|wij

p |2Up |xk⟩ . (9.11)

Consider the branches indexed by i, j,k in the overall state, according to the action of the
selectively controlled unitaries defined in Module 2, the selective LCU only happens for the
branches i= c(j, l);k = j.

For branches i= c(j, l);k = j:
∑

j

|c(j, l)⟩ |j⟩ |0⟩ |xj⟩ |j⟩ →
∑

j

|c(j, l)⟩ |j⟩
∣∣∣ψ(xc(j,l),xj)

〉
|xj⟩ |j⟩ →

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩

(9.12)
in which the node features transform as:

1The implementation of the “Selective controlled unitaries” can be achieved in the same way as the
implementation of the “selective copying” operation described in Section 8.2.2.



95

|xj⟩ →
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
. (9.13)

That is, the node features |xj⟩ are updated by the “message” ψ(xc(j,l),xj)) from one of its
neighbours indexed by l.

For other branches:

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ →
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |ψ(xi,xj)⟩ |xk⟩ |k⟩ →
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ .

(9.14)
All branches combined together:

∑

j

|c(j, l)⟩ |j⟩ |0⟩ |xj⟩ |j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ .

Step 3: Permutation of basis

We then apply a permutation of basis on register Reg(i) via applying the unitary Ol†
c (defined

in Eq.8.31) as,

Ol†
c |c(j, l)⟩ = |j⟩.

when acting on the output state of Step 2, it transforms the state as follows:

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ →

∑

j

|j⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|P (i)⟩ |j⟩ |0⟩ |xk⟩ |k⟩ .

where |P (i)⟩ :=Ol†
c |i⟩.

The state evolution during the above steps can be summarized as follows:

∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →
∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ =

∑

j

|c(j, l)⟩ |j⟩ |0⟩ |xj⟩ |j⟩+
∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ →

∑

j

|c(j, l)⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|i⟩ |j⟩ |0⟩ |xk⟩ |k⟩ →

∑

j

|j⟩ |j⟩ |0⟩
∣∣∣ϕ(xj ,ψ(xc(j,l),xj))

〉
|j⟩+

∑

i ̸=c(j,l)

∑

j

∑

k ̸=j

|P (i)⟩ |j⟩ |0⟩ |xk⟩ |k⟩ .
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Gathering all the steps above, the Quantum message passing GNN load and transforms the
node features as:

∑

i

∑

j

∑

k

|i⟩ |j⟩ |0⟩ |0⟩ |k⟩ →
∑

j

|j⟩⊗3 ∣∣∣ϕ(xj ,ψ(xc(j,l),xj))
〉

+ ... (9.15)

where we have neglected some registers that are unchanged.

Step 4: Overall LCU

We then apply the aforementioned overall LCU module (depicted in Fig. 9.1 and 9.2 as the
top add-on register Reg(l) with the controlled unitaries in the faint blue box), to achieve the
aggregation over different neighbours, obtaining the following state:

∑

j

|j⟩⊗3
∣∣∣∣∣∣
ϕ(xj ,

∑

l

ψ(xc(j,l),xj))
〉

+ ... (9.16)

which can also be written as,

∑

j

|j⟩⊗3
∣∣∣∣∣∣
ϕ(xj ,

⊕

v∈Nj

ψ(xv,xj))
〉

+ ... (9.17)

That is, through our Quantum Message passing GNN, we obtained the desired state in Eq.
9.2.
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Chapter 10

Transformer on Quantum Computer 1:
Background

The emergence and rapid advancement of Large Language Models (LLMs) such as ChatGPT
has had a significant global impact, revolutionizing our interactions with artificial intelligence
and expanding our understanding of its capabilities. Models like GPT-4 have demonstrated the
vast potential of LLMs in a wide range of applications across various domains. In the field of
natural language processing (NLP), LLMs have proven to be highly proficient in tasks such as
machine translation, sentiment analysis, question answering, and text summarization. They
excel in identifying intricate language patterns, comprehending context, and generating text
that is coherent and contextually appropriate.

Despite the significant achievements in QML, integrating quantum computing with state-
of-the-art machine learning models, especially LLMs, is only at its nascent stages. Recent
explorations such as Ref. [33, 34, 35, 36, 37] etc. indicate a burgeoning interest in leveraging
quantum computing to elevate the capabilities of LLMs. In the third part of the thesis including
Chapter 10 11, we explore the quantum implementation of GPT [14] (also referred as GPT-1,
the first generation of the GPT series1) — the original version of ChatGPT. This chapter gives
an overview of the background.

10.1 Transformer Architecture Used in GPT

The Generative Pre-trained Transformer (GPT) [14] is the inaugural version in the series of
groundbreaking language models developed by OpenAI, marking the beginning of a new era in
NLP. GPT’s architecture is predicated on the transformer model [15], a type of neural network
that relies on self-attention mechanisms to process sequences of data, such as text. With 117

1In this thesis, we use "GPT" instead of "GPT-1"
99
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million parameters, GPT was a large model for its time, capable of capturing complex language
patterns and generating coherent and contextually relevant text. GPT’s introduction was a
pivotal moment in NLP; it paved the way for the development of more advanced models, such
as GPT-2 and GPT-3, setting the stage for the rapid advancement of AI technologies in the
years that followed. The remainder of this section gives an overview of GPT’s architecture and
its training, and the next section 10.2 presents its application in language modeling.

Input 
embedding

Transformer block

Layer 1

Transformer block

Layer 2

Transformer block

Layer n

Softmax

Linear 

Positional 
Encoding +

…

Output

Input

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (hsi, hei).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hm

l
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4

Figure 10.1: GPT’s Architecture, adapted from [14]. GPT’s architecture is a multi-layer decoder-
only Transformer (a variant of the Transformer[15]). The primary part of the architecture is a
stack of transformer blocks [14], each of which is composed of two main components: a (masked)
multi-head self-attention mechanism followed by a position-wise fully connected feed-forward
network. Layer Normalization and Residual Connections are placed around these two main
components. The transformer blocks are stacked on top of each other, with each layer processing
the output of the previous one. Prior to the input embedding entering the transformer blocks,
positional encoding is added.

GPT’s architecture is a multi-layer decoder-only Transformer (a variant of the Transformer[15]).
The primary part of the architecture is a stack of transformer blocks [14], each of which is
composed of two main components: a (masked) multi-head self-attention mechanism followed
by a position-wise fully connected feed-forward network. Layer Normalization and Residual
Connections are placed around these two main components. The transformer blocks are stacked
on top of each other, with each layer processing the output of the previous one. Prior to the input
embedding entering the transformer blocks, positional encoding is added. Fig.10.1 illustrates
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these components in GPT’s architecture, the following subsubsections briefly2 introduce each
component.

Multi-Head Masked Self-Attention Mechanism

The multi-head self-attention mechanism, with the addition of a masking operation, is a core
component of the transformer block in GPT. This attention mechanism allows a model to weigh
the importance of different words in a sentence. Unlike previous models (such as Recurrent
Neural Networks(RNNs) [128]) that process words in a sequential manner, self-attention enables
the model to look at all parts of the sentence simultaneously. This allows for a more nuanced
understanding of context and relationships between words, regardless of their position in the
sentence. The masking operation is a critical aspect of this mechanism, especially in the context
of language modeling(a brief introduction is given in Section 10.2): it ensures that the prediction
of a current word does not get influenced by future words. [16]

Layer Normalization and Residual Connections

Each transformer block in GPT includes layer normalization and residual connections. Layer
Normalization is applied after the self-attention mechanism and after the feed-forward network
within each transformer block. It normalizes the inputs across the features, improving the stabil-
ity of the model. Residual Connections allow the input of each sub-layer (i.e., the self-attention
and feed-forward networks) to be added to its output.

Position-Wise Fully Connected Feed-Forward Network

In each transformer block in GPT, after the attention mechanism together with corresponding
Layer Normalization and Residual Connection, the output is passed through a feed-forward
network that applies the same transformation to each position separately and identically.

Positional Encoding

Since GPT (and transformer models in general) does not inherently process sequential data in
order, it uses positional encodings to incorporate information about the order of the sequence
into its inputs. These positional encodings are added to the input embeddings at the bottom of
the model stack, providing the model with information about the position of each word in the

2Here in this section, for each component in GPT’s architecture, we only give an overview, the detailed
mathematical descriptions of each component are presented in Section ??.
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sequence.

The training process of GPT consists of two main stages [14]: unsupervised pre-training
and supervised fine-tuning. During pre-training, GPT is exposed to a large corpus of text data,
learning the underlying structure of the language without any task-specific instructions. This
stage allowed the model to develop a broad understanding of language, including grammar,
semantics, and common phrases. The fine-tuning stage then adapted the pre-trained model to
specific tasks, such as translation, question-answering, and summarization, by training it on
smaller, task-specific datasets.

10.2 Language Modeling basics

This section briefly introduces one of GPT’s applications in language modeling — text genera-
tion, which is the foundation of the services provided by ChatGPT. We start by presenting an
overview of language modelling:

Language modeling is a fundamental aspect of natural language processing (NLP) that
focuses on the development of probabilistic models capable of understanding, generating, and
interpreting human language. At its core, a language model predicts the likelihood of upcoming
sequences of words occurring in a text. This predictive capability enables a wide range of
applications, from autocomplete systems in smartphones and email platforms to sophisticated
chatbots, machine translation, speech recognition, and even content generation tools.

The essence of language modeling lies in capturing the statistical structure of language—learning
how words and phrases tend to come together to convey meaning. Early language models were
relatively simple n-gram models, where the prediction of the next word in a sequence depended
on the previous n− 1 words. However, these models had limitations, particularly in dealing
with long-term dependencies and the vast diversity of linguistic contexts. The advent of neural
networks brought a significant leap forward in language modeling. Recurrent Neural Networks
(RNNs)[128], and later, Long Short-Term Memory (LSTM) networks[129], provided mechanisms
to remember information over longer sequences, improving the model’s ability to handle context
in language. Despite these advances, RNNs and LSTMs also faced challenges, such as difficulty
in training over very long sequences and capturing complex dependencies.

The breakthrough came with the introduction of the Transformer architecture[15], which
led to the development of models like OpenAI’s GPT series that demonstrated unprecedented
capabilities in generating coherent and contextually relevant text over extended passages. The
development of language models continues to be a vibrant area of research in AI, with ongoing
work aimed at improving their accuracy, efficiency, and ability to understand and generate
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human language in all its complexity.

Next, we delve into fundamental concepts of language modeling, such as tokenization,
explaining how a language model (here, GPT) operates for text generation.

10.2.1 Tokenization, Word Embedding

Tokenization is the process of converting text into tokens which are the basic units of language
models. There are three levels of tokenization:

• Character-level: Processes text one letter at a time.

• Word-level: Segments text into individual words.

• Subword-level: Breaks down words into subunits. For example, the subword tokenization
of the phrase "Language Model" may look like ["Lan", "gu", "age ", "Mod", "el"].

Upon establishing the tokens for a language model, we arrange them into a structured
vocabulary, assigning a distinct index to each token. These indices are then transformed
into input features through various methodologies. Directly inputting these indices into the
model is inadvisable, as the sequential order within the vocabulary does not inherently re-
flect semantic relationships. An alternative is the utilization of one-hot encoding. For a
vocabulary encompassing 10,000 words, each word is symbolized by a 10,000-element vector,
predominantly composed of zeros, save for the element corresponding to the word’s indexed
position. The primary benefit of one-hot encoding is its ability to preclude presumptions about
word importance, facilitating the model’s learning of word relationships during its training phase.

However, one-hot encoding presents scalability issues in the context of extensive vocabularies.
Considering the English language, with its repertoire exceeding 100,000 words, representing
a single word would necessitate a vector comprising 100,000 elements. In scenarios involving
lengthy sequences, this approach demands substantial storage space and computational resources.
To mitigate this issue of dimensionality, the use of word embeddings is proposed (e.g.[130, 131,
132, 133]). In this framework, an embedding layer projects the one-hot encoded tokens into a
more condensed vector space. These embeddings, essentially denser token representations, are
generated through a linear layer equipped with a weight matrix, which the model optimizes
during its training process. Fig.10.2 summarizes this section.

10.2.2 Next token prediction

In the inference stage, a language model (here, GPT) takes in a sequence of one-hot encoded
tokens, and generates predictions for the next word in a sequence.3 The sequence of one-hot

3Here, we only consider autoregressive language models.
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Figure 10.2: Tokenization, one-hot encoding and word embedding.

encoded tokens is first transformed through word embedding, as described in the above section.
These embeddings, after the positional encodings are added, are then input into the transformer
blocks. Then, a final linear layer is applied to map the outputs from the transformer blocks back
into the vocabulary space, generating a sequence of transformed vectors. The last transformed
vector in the sequence is referred as "logits". The logits are passed through a softmax activation
function, yielding a probability distribution across the vocabulary, indicating the likelihood of
each word as the next sequence component. Fig.10.3 summarizes this section.

10.2.3 Generative Pre-training

GPT model undergo extensive pre-training on large text corpora using the following loss function:

L(θ) = −
∑

t

logP (wt|w1:t−1;θ) (10.1)

where wt is the t-th word, and θ represents the model parameters. This pre-training endows
GPT with a broad understanding of language, which is then refined for specific tasks through
fine-tuning.

Given the unlabeled nature of these sentences, this process is classified as unsupervised
learning. It involves the pairing of a text segment as input with its subsequent segment as the
target. The training process encompasses processing these input-target pairs in batches. The
loss is computed by evaluating the next token in the target output, and this process is repeated
for each subsequent token in the sequence. The cumulative loss is calculated across all batches,
followed by the execution of backpropagation to adjust the model’s parameters.

The culmination of this process is a pre-trained language model, which we can then employ
for text generation. This begins with the input of an initial word or phrase, serving as the
genesis for text generation. The model assesses this input to predict the next token, which is
subsequently reintroduced into the model as the new input. This iterative process engenders a
feedback loop, enabling the model to generate continuous text sequences.
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Figure 10.3: Next token prediction process of GPT. In the inference stage, a language model
(here, GPT) takes in a sequence of one-hot encoded tokens, and generates predictions for the
next token in a sequence. The sequence of one-hot encoded tokens is first transformed through
word embedding, as described in the above section. These embeddings, after the positional
encodings are added, are then input into the transformer blocks. Then, a final linear layer
is applied to map the outputs from the transformer blocks back into the vocabulary space,
generating a sequence of transformed vectors. The last transformed vector in the sequence is
referred as "logits". The logits are passed through a softmax activation function, yielding a
probability distribution across the vocabulary, indicating the likelihood of each token as the
next sequence component.





Chapter 11

Transformer on Quantum Computer 2:
Architecture implementation

As outlined in Section 10.1 and depicted in Figure 10.1, the architecture of GPT encompasses
several key elements: input embedding, positional encoding, a series of transformer blocks, and
a concluding linear layer followed by a softmax function. Within the context of this thesis, it
is assumed that both the input embedding and positional encoding are executed on classical
computers. Our focus, however, shifts to detailing the implementation of the transformer
blocks’ core components on a quantum computer. Additionally, we delve into the methodologies
employed for executing Generative Pre-training of the model on a quantum computer. To ensure
a holistic presentation, a detailed exposition on the quantum implementation of positional
encoding is provided in section 11.2.

11.1 Input encoding by CQSP

The input to the Transformer block is a sequence of vectors
{
xxxi ∈ Rd

}n

i=1
stacked as a matrix

XXX := [xxx1, . . . ,xxxn] ∈ Rd×n. It can be encoded in a quantum state(after normalization) |ψXXX⟩ as,

|ψXXX⟩ :=
n∑

i=1
|i⟩ |xxxi⟩ , (11.1)

where |xxxi⟩ :=∑d
k=1xxx

(k)
i |k⟩ is the amplitude encoding of the vector xxxi whose k-th elements are

denoted as xxx(k)
i .

The entire state is prepared on two quantum registers hosting the index k and index i, which
are denoted as Reg(k) and Reg(i), respectively. The unitary that realizes the data encoding as,

UXXX : |i⟩ |0⟩ → |i⟩ |xxxi⟩ ,∀i= 1, · · ·n, (11.2)
107
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IMPLEMENTATION

is represented as the blue box in Fig.11.3. U
XXX

can be achieved by “Controlled Quantum State
Preparation(CQSP)” process[9].

11.2 Positional encoding by multi-controlled RY gate

The positional encoding mentioned in Section 10.1 can be described as follows[16]: Corresponding
to the i-th vector in the sequence xxxi ∈ Rd, define the position vector pppi ∈ Rd as:





ppp
(2j+1)
i := cos

(
i

10000
2j
d

)

ppp
(2j)
i := sin

(
i

10000
2j
d

) (11.3)

for all j ∈ {0,1, . . . ,⌊d/2⌋}, where ppp(2j+1)
i and ppp

(2j)
i denote the odd and even elements of pppi,

respectively. For encoding of positional information into data, the position vectors are added
directly to the input vectors:

xxx′′′
i = xxxi +pppi, (11.4)

where xxx′′′
i is the appended input vectors that contain positional information, and we define

XXX ′′′ := [xxx′′′
1, . . . ,xxx

′
n] ∈ Rd×n. as the matrix by stacking xxx′′′

i.

Our quantum algorithm for positional encoding aims to create the quantum state

∣∣∣ψXXX ′′′
〉

:=
n∑

i=1
|i⟩
∣∣∣xxx′′′

i

〉
, (11.5)

where |xxx′′′
i⟩ :=∑d

k=1xxx
′′′(k)
i |k⟩ is the amplitude encoding of the vector xxx′′′

i whose k-th elements are
denoted as xxx′′′(k)

i . Similarly, we define |pppi⟩ :=∑d
k=1 ppp

(k)
i |k⟩ which is the amplitude encoding of

the vector pppi whose k-th elements are denoted as ppp(k)
i and

|ψPPP ⟩ :=
n∑

i=1
|i⟩ |pppi⟩ (11.6)

From the above definitions of |xxx′′′
i⟩ , |pppi⟩ and Eqn. 11.1,11.4,11.5,11.6 we have

∣∣∣ψXXX ′′′
〉

= |ψXXX⟩+ |ψPPP ⟩ =
n∑

i=1
|i⟩ |xxxi⟩+

n∑

i=1
|i⟩ |pppi⟩ (11.7)

Note that

|pppi⟩ =
d∑

k=1
ppp

(k)
i |k⟩ =

∑

j

(ppp(2j)
i |2j⟩+ppp

(2j+1)
i |2j+1⟩) (11.8)

Denote the unitary that prepares |ψPPP ⟩ from ∑n
i=1 |i⟩ |0⟩ as UPPP , then

∣∣∣ψXXX ′′′
〉

can be achieved
by applying LCU to UXXX ,UPPP . As the construction of UXXX is given by the CQSP mentioned in
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Section 11.1, we can focus on the construction of UPPP . Next, we present the construction of UPPP

as depicted in Fig.11.1.

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Reg(i)

Reg( j)

|0⟩

P1 = ∑
i

| i > < i | ⊗ Ry(−2iw)

Ry(N2 w) Ry(N4 w) Ry(N8 w) Ry(−2w)Ry(Nw) Ry(N2 w2) Ry(N4 w2) Ry(N8 w2) Ry(−2w2)Ry(Nw2) Ry(N2 wj) Ry(N4 wj) Ry(N8 wj) Ry(−2wj)Ry(Nwj)

Pj = ∑
i

| i > < i | ⊗ Ry(−2iw j)

∑
j

| j > < j |Pj = ∑
j

| j > < j | ⊗ ∑
i

| i > < i | ⊗ Ry(−2iw j)

P2 = ∑
i

| i > < i | ⊗ Ry(−2iw2)

H⊗

X

∑
i

| i >

… …

…

…

…

Figure 11.1: Quantum circuit for positional encoding Build upon the two registers Reg(i)
and Reg(k) hosting the index i and k respectively (illustrated in Fig. 11.3), we set up a
register Reg(j) hosting the index j below Reg(i) and an ancillary qubit above Reg(i). The
blue boxes that group the series of controlled RY gates implement the following unitaries:
Pj =∑

i |i⟩⟨i|⊗Ry(−2iwj), each of which is controlled by the qubits in Reg(j) and the entire
controlled sequences grouped in the transparent box implement the unitary Uc =∑

j |j⟩⟨j|⊗Pj =∑
j |j⟩⟨j|⊗∑

i |i⟩⟨i|⊗Ry(−2iwj). The whole circuit implements UPPP . Note that in this figure,
N = −n.

Build upon the two registers Reg(i) and Reg(k) hosting the index i and k respectively
(illustrated in Fig. 11.3), in Fig. 11.1, we set up a register Reg(j) hosting the index j below
Reg(i) and an ancillary qubit above Reg(i). For reasons that will be clear soon, we combine
Reg(j) and the ancillary qubit as a single register which coincides with Reg(k). The blue boxes
that group the series of controlled RY gates implement the following unitaries:

Pj =
∑

i

|i⟩⟨i|⊗Ry(−2iwj) (11.9)

each of which is controlled by the qubits in Reg(j), and the entire controlled sequences
grouped in the transparent box implement the unitary

Uc =
∑

j

|j⟩⟨j|⊗Pj =
∑

j

|j⟩⟨j|⊗
∑

i

|i⟩⟨i|⊗Ry(−2iwj) (11.10)

The Hadamard gates and X gate before Uc transform the input state to the state ∑j |j⟩⊗
∑

i |i⟩⊗ |1⟩, after Uc, it becomes

Uc(
∑

j

|j⟩⊗
∑

i

|i⟩⊗ |1⟩) =
∑

j

|j⟩⊗
∑

i

|i⟩⊗Ry(−2iwj) |1⟩ (11.11)



110
CHAPTER 11. TRANSFORMER ON QUANTUM COMPUTER 2: ARCHITECTURE

IMPLEMENTATION

By placing Reg(j) and the ancillary qubit next to each other we can rewrite the above state
as:

∑

i

|i⟩⊗
∑

j

|j⟩⊗Ry(−2iwj) |1⟩ (11.12)

=
∑

i

|i⟩⊗
∑

j

|j⟩⊗ (sin(iwj) |0⟩+cos(iwj) |1⟩). (11.13)

Combining Reg(j) and the ancillary qubit as a single register that coincides with Reg(k), the
computational basis transform as |j⟩ |0⟩ → |2j⟩,|j⟩ |1⟩ → |2j+1⟩ and we can write the output
state from the circuit in Fig.11.1 as:

|output⟩ =
∑

i

|i⟩⊗
∑

j

(sin(iwj) |2j⟩+cos(iwj) |2j+1⟩) (11.14)

Set w = 1
10000

1
d

, and from Eqn. 11.3,11.6,11.8,11.14 we have

|output⟩ = |ψPPP ⟩ (11.15)

That is, the circuit in Fig.11.1 implements UPPP .

11.3 Attentions on Quantum Computer
An attention function can be described as mapping queries, keys, and values to an output,
where the queries, keys, values, and output are all vectors[15]. The query qqqi, key kkki, and value
vvvi are p-dimensional, p-dimensional, and r-dimensional vectors defined as:[16]

Rp ∋ qqqi =WWW⊤
Qxxxi, (11.16)

Rp ∋ kkki =WWW⊤
Kxxxi, (11.17)

Rr ∋ vvvi =WWW⊤
V xxxi, (11.18)

where WWWQ ∈ Rd×p,WWWK ∈ Rd×p, and WWW V ∈ Rd×r are trainable matrices.1 Similar to vectors{
xxxi ∈ Rd

}n

i=1
being stacked as a matrix XXX := [xxx1, . . . ,xxxn] ∈ Rd×n, we define QQQ := [qqq1, . . . , qqqn] ∈

Rp×n, KKK := [kkk1, . . . ,kkkn] ∈ Rp×n, and VVV := [vvv1, . . . ,vvvn] ∈ Rr×n.

The "Scaled Dot-Product Attention" defined in [15] can be written in matrix form as:

ZZZ := attention(QQQ,KKK,VVV ) = VVV softmax
(

1√
p
QQQ⊤KKK

)
, (11.19)

where ZZZ = [zzz1, . . . , zzzn] ∈ Rr×n.
Note that for each i, the queries, keys, and values are all from the same vector xxxi in the

sequence, this type of attention is referred to as the "self-attention"[16].
1The "transpose" in 11.18,11.17,11.16 are in the definition for some reason which will be clear in Section 11.5.
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x1
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x2

WV

vi

v1

WQ

q1

qi

x1

xi

x2

x1

xi

x2

WK

k1

ki

X := [x1,…, xn] ∈ ℝd×n

Auv = q⊤u kv = x⊤u WQW⊤
Kxv

=
W⊤

V X

Z = [z1,…, zn]

A

Auv = q⊤u kv = x⊤u WQW⊤
Kxv

z1

zi

Z = attention(Q,K,V) = V softmax( 1
p
Q⊤K)

A

Z = W⊤
VXA

Original 

Modified version that we aim to 
implement on quantum circuit

Figure 11.2: The Classical Self-Attention(modified version that we aim to implement on quantum
circuit) As described in Ref.[12], an attention function can be described as mapping query,
keys, values to an output, where the query, keys, values, and output are all vectors. The query
qqqi, key kkki, and value vvvi are p-dimensional, p-dimensional, and r-dimensional vectors defined
as: Rp ∋ qqqi = WWW⊤

Qxxxi,Rp ∋ kkki = WWW⊤
Kxxxi,Rr ∋ vvvi = WWW⊤

V xxxi, where WWWQ ∈ Rd×p,WWWK ∈ Rd×p, and
WWW V ∈ Rd×r are the projection matrices. Similar to vectors

{
xxxi ∈ Rd

}n

i=1
being stacked as a

matrix XXX := [xxx1, . . . ,xxxn] ∈ Rd×n, we define QQQ := [qqq1, . . . , qqqn] ∈ Rp×n, KKK := [kkk1, . . . ,kkkn] ∈ Rp×n,
and VVV := [vvv1, . . . ,vvvn] ∈ Rr×n, respectively.The "Scaled Dot-Product Attention" defined in [15]
can be written in matrix form as:ZZZ := attention(QQQ,KKK,VVV ) = VVV softmax

(
1√
p QQQ

⊤KKK
)
, where

ZZZ = [zzz1, . . . , zzzn] ∈ Rr×n. Note that for each i, the queries, keys, and values are all from the same
vector xxxi in the sequence, this type of attention is referred to as the "self-attention"[16].Denote
softmax

(
1√
p QQQ

⊤KKK
)

≡ AAA0, plugging in VVV =WWW⊤
V XXX we have ZZZ =WWW⊤

V XXXAAA0. Considering it’s not
straightforward to implement the softmax function using quantum circuit and the scaling will
be taken care of in block-encoding procedure, we aim to implement an alternative version of AAA0
denoted as AAA≡QQQ⊤KKK, that is, we aim to design quantum circuit implementing the following
computation:ZZZ =WWW⊤

V XXXAAA .Note that the matrix elements of AAA are AAAuv = qqq⊤
u kkkv = xxx⊤

uWWWQWWW
⊤
Kxxxv

11.3.1 Self-Attention on Quantum Computer

The "Scaled Dot-Product Attention" defined in 11.19 can also be written as follows, by plugging
in VVV =WWW⊤

V XXX and denoting AAA0 ≡ softmax
(

1√
p QQQ

⊤KKK
)

:

ZZZ := attention(QQQ,KKK,VVV ) (11.20)

=WWW⊤
V XXXAAA0 (11.21)



112
CHAPTER 11. TRANSFORMER ON QUANTUM COMPUTER 2: ARCHITECTURE

IMPLEMENTATION

Considering it’s not straightforward to implement the softmax function 2 using quantum
circuit and the scaling will be taken care of in the block-encoding procedure described later in
this section, we aim to implement an alternative version of AAA0 denoted as AAA≡QQQ⊤KKK, that is,
we aim to design quantum circuit implementing the following computation:

ZZZ =WWW⊤
V XXXAAA, (11.22)

Note that the matrix elements of AAA are

AAAuv = qqq⊤
u kkkv = xxx⊤

uWWWQWWW
⊤
Kxxxv (11.23)

The above description of classical attention (the modified version that we aim to implement
on quantum circuit) can be illustrated in Fig.11.2. Next, we present its quantum implementation.

On quantum circuit, after the input encoding described in 11.1 (here in this subsection
and the following subsection 11.3.2, for simplicity we omit the positional encoding described
in 11.23), The attention function can be implemented by applying the block-encoding of AAA⊤

and a parameterized quantum circuit for WWW⊤
V on the two quantum registers Reg(i) and Reg(k)

respectively, as depicted in Fig.11.3.

This can be proven as follows: Starting From Eqn. 11.22

ZZZ =WWW⊤
V XXXAAA,

Utilising the formula vec(ABC) = (CT ⊗A)vec(B)

vec(ZZZ) = vec(WWW⊤
V XXXAAA) = (AAA⊤ ⊗WWW⊤

V )vec(XXX)(11.24)

For a matrix M , define vectors ψψψM = vec(M), and Eqn.11.24 becomes

ψψψZZZ = (AAA⊤ ⊗WWW⊤
V )ψψψXXX(11.25)

Recall Eqn.11.1:

|ψXXX⟩ =
n∑

i=1
|i⟩ |xxxi⟩

Writing the quantum states in Eqn.11.1 as vectors we note that

ψψψXXX = |ψXXX⟩ (11.26)

And correspondingly we have
2Exploring alternatives to the softmax function in attention mechanisms has garnered interest due to the

potential for efficiency gains and improved model performance. Research has demonstrated that it’s possible to
achieve high performance without the need for softmax normalization [134, 135].

3One can consider the input encoding and positional encoding are combined as "appended" input encoding
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∑
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| i⟩ A
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=
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V X

Z = [z1,…, zn]

A
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implement on quantum circuit

Uw

Figure 11.3: Self-Attention on Quantum Computer The right side of the figure describes classical
attention (the modified version that we aim to implement on quantum circuit), and the left
side of the figure depicts its quantum implementation. On the quantum circuit, the input
encoding is represented by the blue box, as described in 11.1(here in this subsection and the
following subsection 11.3.2, for simplicity we omit the positional encoding described in 11.2 in
the presentation). The attention function can be implemented by applying the block-encoding
of AAA⊤ and a parameterized quantum circuit for WWW⊤

V on the two quantum registers Reg(i) and
Reg(k) respectively.

ψψψZZZ = |ψZZZ⟩ (11.27)

by defining

|ψZZZ⟩ :=
n∑

i=1
|i⟩ |zzzi⟩ (11.28)

where |zzzi⟩ :=∑d
k=1 zzz

(k)
i |k⟩ is the amplitude encoding of the vector zzzi whose k-th elements

are denoted as zzz(k)
i .

From Eqn.11.27 to 11.25 we have

|ψZZZ⟩ = (AAA⊤ ⊗WWW⊤
V ) |ψXXX⟩(11.29)

This amounts to the action of the quantum circuit for Self-Attention which can be written
as:

|ψZZZ⟩⊗ |0⟩+ ...= (U
AAA⊤ ⊗U

WWW ⊤
V

)(|ψXXX⟩⊗ |0⟩) (11.30)
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where U
AAA⊤ corresponds to applying the block-encoding of AAA⊤ and U

WWW ⊤
V

a parameterized
quantum circuit implementing WWW⊤

V on the two quantum registers Reg(i) and Reg(k) respectively,
"+..." indicates upon post-selecting we can obtain the desired state |ψZZZ⟩ = vec(ZZZ).

The block-encoding of AAA⊤ can be constructed using the following lemma from Ref.[136].

Lemma 3.2 from Ref.[136] (Naive block-encoding of dense matrices with oracle access).
Let A ∈ CN×N (where N = 2s) with aij being its elements and let â⩾ maxi,j |aij |. Suppose the
following oracle is provided

OA : |i⟩|j⟩|0⟩⊗b → |i⟩|j⟩|ãij⟩,

where 0 ⩽ i, j < N and ãij is the (exact) b-qubit description of aij/â. Then one can implement
a (Nâ,s+ 1, ϵ)-block-encoding of A with two uses of OA, O(polylog(âN/ϵ)) one- and two-qubit
gates and O(b,polylog(âN/ϵ)) extra qubits (which are discarded before the post-selection step).

Below we explain that the block-encoding of AAA⊤ ∈ Rn×n can be constructed using the above
lemma:

From Eqn.11.23, the matrix elements of AAA⊤ (which we denote as Λij) are

Λij := AAA⊤
ij = xxx⊤

j WWWQWWW
⊤
Kxxxi (11.31)

let Λ̂ ⩾ maxi,j |Λij | and Λ̃ij is defined to be the (exact) b-qubit description of Λij/Λ̂.
According to the above lemma, we need the following oracle to the block-encoding of AAA⊤

O
AAA⊤ : |i⟩|j⟩|0⟩⊗b → |i⟩|j⟩|Λ̃ij⟩, (11.32)

where 0 ⩽ i, j < n.
This oracle O

AAA⊤ can be constructed in the same way(described in section 8.1) as Oattention

defined in Eqn. 8.2 with the attention score as Eqn. 8.3. Therefore, substituting A in the
above lemma with AAA⊤, we can implement the block-encoding of AAA⊤ with two uses of O

AAA⊤ ,
O(polylog(Λ̂n/ϵ)) one- and two-qubit gates.

Masked-Attention

The masked attention is defined as:[16]

Rr×n ∋ ZZZm := maskedAttention(QQQ,KKK,VVV )

= VVV softmax
(

1√
p

(
QQQ⊤KKK+MMM

))
,

where the mask matrix MMM ∈ Rn×n is:
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MMM ij :=





0 if j ⩽ i

−∞ if j > i

For positions j ⩽ i in a sequence (representing current or previous words), the mask doesn’t
alter the softmax output, this allows these positions to contribute to the softmax computation.
In contrast, for positions j > i (corresponding to future words in the sequence), the nature
of softmax function indicates that the mask effectively nullifies their contribution as e−∞ is
0. This selective masking ensures that the model’s attention is appropriately focused on the
relevant parts of the sequence: considering past and present words while ignoring future words.

Denoting AAAMask
0 ≡ softmax

(
1√
p

(
QQQ⊤KKK+MMM

))
, we have its elements as

AAAMask
0 ij :=




AAA0ij if j ⩽ i

0 if j > i

where AAA0ij is the elements of AAA0 ≡ softmax
(

1√
p QQQ

⊤KKK
)

.

In the quantum case, we aim to implement an alternative version of AAAMask
0 denoted as AAAMask

whose elements are defined as

AAAMask
ij :=




AAAij if j ⩽ i

0 if j > i

where AAAij is the elements of AAA≡QQQ⊤KKK.
For Masked-Attention, we aim to design quantum circuit implementing the following compu-

tation:

ZZZ ′′′
m =WWW⊤

V XXXAAA
Mask, (11.33)

This can be done in a similar way as in the case of self-attention where we implemented
Eqn. 11.22, the only difference is that we now need the block-encoding of AAAMask⊤

(instead of
AAA⊤) whose elements are

ΛMask
ij := AAAMask⊤

ij :=





0 if j < i

AAAji if j ⩾ i

Similar to the case of self-attention, let Λ̂Mask ⩾ maxi,j |ΛMask
ij | and Λ̃Mask

ij is defined to be the
(exact) b-qubit description of ΛMask

ij /Λ̂Mask. The block-encoding of AAAMask⊤
can be constructed

using lemma 3.2 from Ref.[12], given the following oracle

O
AAAMask⊤ : |i⟩|j⟩|0⟩⊗b → |i⟩|j⟩|Λ̃Mask

ij ⟩, (11.34)

where 0 ⩽ i, j < n.
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This oracle O
AAAMask⊤ can be constructed by conditionally applying O

AAA⊤ : on the registers
hosting |i⟩|j⟩, set up a circuit comparing the values of i, j with the result stored in an extra
ancillary qubit (using Claim 3.1 in Ref.[13]). Then using this ancillary qubit as control qubit,
apply controlled O

AAA⊤ if j ⩾ i.

11.3.2 Multihead-Attention on Quantum computer

In the multihead attention module, We have H set of queries, values, and keys as: [16]

Rp×n ∋QQQh =WWW⊤
Q,hXXX, ∀h ∈ {1, . . . ,H},

Rp×n ∋ VVV h =WWW⊤
V,hXXX, ∀h ∈ {1, . . . ,H},

Rr×n ∋KKKh =WWW⊤
K,hXXX, ∀h ∈ {1, . . . ,H}.

Then, the scaled dot product attention are applied to generate the H output {ZZZh}H
h=1

ZZZh = attention(QQQh,KKKh,VVV h) = VVV h softmax
(

1√
p
QQQ⊤

hKKKh

)
, (11.35)

and ZZZh =
[
zzz1,h, . . . , zzzn,h

]
∈ Rr×n. The outputs are concatenated over different heads as

ZZZMulti-heads =
[
∥H

h=1 zzz1,h,∥H
h=1 zzz2,h, . . . ,∥H

h=1 zzzn,h,
]

∈ RrH×n (11.36)

where ∥ represents concatenation [17]. Then, by a linear projection WWW⊤
O, the total attention

value is obtained:

zzzTotal
i :=WWW⊤

O ∥H
h=1 zzzi,h (11.37)

ZZZTotal :=WWW⊤
OZZZMulti-heads

and ZZZTotal =
[
zzzTotal

1 , . . . , zzzTotal
n

]
∈ RrH×n.

The above description of classical multihead attention can be illustrated in Fig.11.4. Next,
we present its quantum implementation.

On quantum circuit, we aim to obtain the following quantum state

∣∣∣ψ
ZZZTotal

〉
:=

n∑

i=1
|i⟩⊗

∣∣∣zzzTotal
i

〉
(11.38)

where
∣∣∣zzzTotal

i

〉
is the amplitude encoding of the vector zzzTotal

i . This can be achieved via the
quantum circuit depicted in Fig.11.4 in which the additional register Reg(h) is hosting index h
and the multi-controlled unitary is defined as

UMulti-heads =
∑

h

|h⟩⟨h|⊗USingle-head (11.39)
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Figure 11.4: Multihead-Attention on Quantum Computer The upper part of the figure provides
the illustration of classical Multihead-Attention, and the lower part of the figure depicts its
quantum implementation. In the multihead attention module, We have H set of queries,
values, and keys as:Rp×n ∋ QQQh = WWW⊤

Q,hXXX, ∀h ∈ {1, . . . ,H},Rp×n ∋ VVV h = WWW⊤
V,hXXX, ∀h ∈

{1, . . . ,H},Rr×n ∋KKKh =WWW⊤
K,hXXX, ∀h ∈ {1, . . . ,H} Then, the scaled dot product attention are

applied to generate the H output {ZZZh}H
h=1 and ZZZh =

[
zzz1,h, . . . , zzzn,h

]
∈ Rr×n. The outputs are

concatenated over different heads asZZZMulti-heads =
[
∥H

h=1 zzz1,h,∥H
h=1 zzz2,h, . . . ,∥H

h=1 zzzn,h,
]

∈ RrH×n,
where ∥ represents concatenation [17]. Then, by a linear projection WWW⊤

O, the total attention value
is obtained: zzzTotal

i := WWW⊤
O ∥H

h=1 zzzi,h,ZZZTotal := WWW⊤
OZZZMulti-heads and ZZZTotal =

[
zzzTotal

1 , . . . , zzzTotal
n

]
∈

RrH×n. On the quantum circuit, the input encoding is represented by the blue box, as described
in 11.1(here in this subsection and the following subsection 11.3.2, for simplicity we omit the
positional encoding described in 11.2 in the presentation). The attention function can be
implemented by applying the block-encoding of AAA⊤ and a parameterized quantum circuit for
WWW⊤

V on the two quantum registers Reg(i) and Reg(k) respectively.

where we define USingle-head = (U
AAA⊤

h
⊗U

WWW ⊤
V,h

) in which for each head, U
AAA⊤

h
is the block-

encoding of AAA⊤
h , U

WWW ⊤
V,h

is a parameterized quantum circuit implementing WWW⊤
V,h.

For a simple head, from Eqn.11.30, when USingle-head acting on the state |ψXXX⟩ ⊗ |0⟩ , the
outcome state is

USingle-head(|ψXXX⟩⊗ |0⟩) =
∣∣∣ψZZZh

〉
⊗|0⟩+ ... (11.40)

where
∣∣∣ψZZZhhh

〉
:=∑n

i=1 |i⟩⊗
∣∣∣zzzi,h

〉
and

∣∣∣zzzi,h

〉
is the amplitude encoding of the vector zzzi,h.
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When UMulti-heads acting on the state prepared as ∑h |h⟩⊗ (|ψXXX⟩⊗ |0⟩) by the blue box and
Hadamard gates on Reg(h), the outcome state is

|ψMulti-heads⟩ = UMulti-heads
∑

h

|h⟩⊗ (|ψXXX⟩⊗ |0⟩) =
∑

h

|h⟩⊗ (
∣∣∣ψZZZh

〉
⊗|0⟩+ ...) (11.41)

upon post-selecting, we obtain the state

|ψMulti-heads⟩ =
∑

h

|h⟩⊗
∣∣∣ψZZZhhh

〉
(11.42)

=
∑

h

|h⟩⊗
n∑

i=1
|i⟩⊗

∣∣∣zzzi,h

〉
(11.43)

=
n∑

i=1
|i⟩⊗

∑

h

|h⟩
∣∣∣zzzi,h

〉
(11.44)

=
n∑

i=1
|i⟩⊗

∣∣∣∥H
h=1 zzzi,h

〉
(11.45)

where
∣∣∣∥H

h=1 zzzi,h

〉
is the amplitude encoding of the vector ∥H

h=1 zzzi,h.

Applying a parameterized quantum circuit implementing WWW⊤
O on Reg(k) and Reg(h), which

act as U
WWW ⊤

O

∣∣∣∥H
h=1 zzzi,h

〉
=
∣∣∣zzzTotal

i

〉
, obtain

U
WWW ⊤

O
|ψMulti-heads⟩ =

n∑

i=1
|i⟩⊗U

WWW ⊤
O

∣∣∣∥H
h=1 zzzi,h

〉
(11.46)

=
n∑

i=1
|i⟩⊗

∣∣∣zzzTotal
i

〉
(11.47)

=
∣∣∣ψ

ZZZTotal

〉
(11.48)

which is the desired state in Eqn.11.38.

11.4 Residual-connection on Quantum computer

After the multihead attention module, the data (containing positional encoding) xxx′′′
i and the

total attention value zzzTotal
i are added (often referred as "residual-connection" introduced by

ResNet [18]):

zzz′
i := zzzTotal

i +concat(xxx′′′
i,xxx

′′′
i, ...xxx

′′′
i) ∈ RrH (11.49)

where concat(xxx′′′
i,xxx

′′′
i, ...xxx

′′′
i) represents the concatenation of H identical vectors4 xxx′′′

i , For later
usage, define |concat(xxx′′′

i,xxx
′′′
i, ...xxx

′′′
i)⟩ as the the amplitude encoding of the vector concat(xxx′′′

i,xxx
′′′
i, ...xxx

′′′
i)

and ZZZ ′′′ := [zzz′′′
1, . . . , zzz

′′′
n] ∈ RrH×n.

4Note that this is a bit different from the standard classical residual connection.
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On quantum circuit, we aim to obtain the following quantum state

∣∣∣ψZZZ′′′
〉

:=
n∑

i=1
|i⟩⊗

∣∣∣zzz′′′
i

〉
(11.50)

where |zzz′′′
i⟩ is the amplitude encoding of the vector zzz′′′

i. This can be achieved via the quantum
circuit depicted in Fig.11.5.

Multi − Head

Head 1

Head 2

Head h

+ =

Attention
Residual Connection

| 0⟩
| 0⟩
| 0⟩ H⊗tReg(h)

H H

H⊗t

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Q

Q

|0⟩
|0⟩
|0⟩

Reg(i)

Reg(k)

∑
i

| i⟩

Figure 11.5: Residual-connection on Quantum computer The upper part of the figure provides the
illustration of classical Multihead-Attention followed by Residual-connection, the lower part of
the figure depicts their quantum implementation. After the multihead attention module, the data
(containing positional encoding) xxx′′′

i and the total attention value zzzTotal
i are added (often referred

as "residual-connection" introduced by ResNet [18]):zzz′
i := zzzTotal

i +concat(xxx′′′
i,xxx

′′′
i, ...xxx

′′′
i) ∈ RrH . The

quantum circuit in this figure generates the following quantum state
∣∣∣ψZZZ′′′

〉
:= ∑n

i=1 |i⟩ ⊗ |zzz′′′
i⟩

where |zzz′′′
i⟩ is the amplitude encoding of the vector zzz′′′

i. The circuit implements Linear Combination
of Unitaries of two operators grouped in the two transparent boxes controlled by the top ancillary
qubit.

The first transparent box controlled by the top ancillary qubit in Fig.11.5 implements U
ZZZTotal

which acts as

U
ZZZTotal : |i⟩⊗ |0⟩ → |i⟩⊗

∣∣∣zzzTotal
i

〉
(11.51)

The blue box represents the data encoding (containing positional encoding) which acts as

UXXX ′′′ : |i⟩⊗ |0⟩ → |i⟩⊗
∣∣∣xxx′′′〉 (11.52)
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Including the Hadamard gates, the second transparent box controlled by the top ancillary
qubit acts on the input state as

UXXX ′′′ ⊗H⊗ logH =
n∑

i=1
|i⟩⊗ |0⟩⊗ |0⟩ =

∣∣∣ψXXX ′′′
〉

⊗
∑

h

|h⟩ =
n∑

i=1
|i⟩⊗

∣∣∣xxx′′′
i

〉
⊗
∑

h

|h⟩ (11.53)

The circuit in Fig.11.5 implements Linear Combination of two Unitaries as in the two
transparent boxes controlled by the top ancillary qubit, it generates the state

∣∣∣ψ
ZZZTotal

〉
+
∣∣∣ψXXX ′′′

〉
⊗
∑

h

|h⟩

=
n∑

i=1
|i⟩⊗

∣∣∣zzzTotal
i

〉
+

n∑

i=1
|i⟩⊗

∣∣∣xxx′′′
i

〉
⊗
∑

h

|h⟩

=
n∑

i=1
|i⟩⊗ (

∣∣∣zzzTotal
i

〉
+
∣∣∣xxx′′′

i

〉
⊗
∑

h

|h⟩)

=
n∑

i=1
|i⟩⊗ (

∣∣∣zzzTotal
i

〉
+
∑

h

|h⟩
∣∣∣xxx′′′

i

〉
)

=
n∑

i=1
|i⟩⊗ (

∣∣∣zzzTotal
i

〉
+
∣∣∣concat(xxx′′′

i,xxx
′′′
i, ...xxx

′′′
i)
〉
)

=
n∑

i=1
|i⟩⊗

∣∣∣zzz′
i

〉
=
∣∣∣ψZZZ′′′

〉

which is the desired state in Eqn.11.50.

11.5 Feed-Forward Network on Quantum computer
After the multihead attention module and Residual-connection, a position-wise Feed-Forward
Network(FFN) is applied[16]. The FFN is a fully connected feed-forward module that operates
separately and identically on each zzz′

i:

FFN
(
zzz′

i

)
= W2⊤ ReLU

(
W1⊤zzz′

i +b1
)

+b2,

where W1 ∈ RrH×dff ,W2 ∈ Rdff ×rH ,b1 ∈ Rdff ,b2 ∈ RrH are trainable parameters, dff is the
intermediate dimension of the FFN. For simplicity we omit b1,b2 in the following discussion.
Similar to we defined XXX := [xxx1, . . . ,xxxn] before, we can write W1 :=

[
www1, . . . ,wwwm, . . . ,wwwdff

]
where

wwwm ∈ RrH .

Denote yyyi := W1⊤zzz′
i ∈ Rdff , we have its elements as

yyy
(m)
i = zzz′

i ·wwwm,∀m ∈ {1, . . . ,dff } (11.54)
∣∣∣ψZZZ′′′

〉
=∑n

i=1 |i⟩⊗ |zzz′
i⟩⊗ |0⟩+ ...

by the unitary circled in the overall transparent box in Fig.11.5, denoted as UZZZ′′′ , which act
as

UZZZ′′′ : |i⟩ |0⟩k,h |0⟩other → |i⟩
∣∣∣zzz′′′

i

〉
|0⟩other + ...,∀i ∈ {1, · · ·n}. (11.55)
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Head h

Multi − Head

+ =
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…

Feed − Forward

…
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H H

H⊗t

Reg(m)

H H

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Q

Q

|0⟩
|0⟩
|0⟩

Reg(i)

Reg(k)

FFN
$
zzz′

i

%
=W2⊤ReLU

$
W1⊤zzz′

i+b1
%
+b2,

N
$
zzz′

i

%

=W2⊤R

b1

b1, b2Note : are omitted

iteW1 :=
+
www1, . . . ,wwwm, . . . ,wwwdff

,
w
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11.5 Feed-Forward Network on Quantum computer

After the multihead attention module and Residual-connection, a position-wise Feed-Forward
Networ(FFN) is applied. The FFN is a fully connected feed-forward module that operates
separately and identically on each zzzÕ

i:

FFN
1
zzzÕ
i

2
=W2€ReLU

1
W1€zzzÕ

i+b1
2
+b2,

where W1 œ RrH◊dff ,W2 œ Rdff◊rH ,b1 œ Rdff ,b2 œ RrH are trainable parameters, dff is the
intermediate dimension of the FFN. For simplicity we omit b1,b2 in the following discussion.
Similar to we defined XXX := [xxx1, . . . ,xxxn] before, we can write W1 :=

Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
where

wwwm œ RrH .

Denote yyyi :=W1€zzzÕ
i œ Rdff , we have its elements as

yyy
(m)
i = zzzÕ

i ·wwwm,’m œ {1, . . . ,dff} (11.54)
---ÂZZZÕÕÕ

f
= qn

i=1 |iÍ¢ |zzzÕ
iÍ¢ |0Í+ ...

by the unitary circled in the overall transparent box in Fig.11.5, denoted as UZZZÕÕÕ , which act
as

UZZZÕÕÕ : |iÍ |0Ík,h |0Íother æ |iÍ
---zzzÕÕÕ

i

f
|0Íother+ ...,’i œ {1, · · ·n}. (11.55)

For implementing W1 :=
Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
, we can create a trainable unitary

UW111 : |mÍ |0Ík,h |0Íother æ |mÍ |wwwmÍ |0Íother ,’m œ {1, . . . ,dff}. (11.56)

with |wwwmÍ on Reg(k),Reg(h) and |mÍ on an additional registered Reg(m).
This trainable unitary UW111 can be implemented as a series of controlled parameterised

quantum circuits as UW111 =
q

m |mÍÈm|Um where each Um, acting as Um : |0Ík,h æ |wwwmÍ, is a
parameterised quantum circuit.

Notice that
yyy
(m)
i = ÈzzzÕ

i|wwwmÍ,’m œ {1, . . . ,dff} (11.57)

This can be evaluated using Parallel Swap test for each zzzÕ
i œ RrH and wwwm œ RrH , via the

quantum circuit depicted in Fig.11.6.
The input state to the circuit is

|�0Í =
ÿ

i

ÿ

m
|iÍ|mÍ |0Ík,h |0Íother |0Í (11.58)

For each branch |iÍ|mÍ |0Ík,h |0Íother |0Í, applying a Hadamard gate on the bottom ancillary
qubit, and controlled UZZZÕÕÕ , UW111 we obtain

|iÍ|mÍ(
---zzzÕÕÕ

i

f
|0Íother+ ...) |0Í+ |iÍ|mÍ |wwwmÍ |0Íother |1Í (11.59)
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Figure 11.7: Quanutn

The above steps, as gathered in the grey box in Fig. 11.7, implements an oracle OFFN such
that:

OFFN : |iÍ |mÍ |0Ík,h |0Íother |0Í |0ÍReLU æ |iÍ |mÍ |0Ík,h |0Íother |0Í
----ReLU(yyy

(m)
i )

>
(11.80)

Which produces the state

ÿ

i

ÿ

m
|iÍ |mÍ

---yyyÕÕÕ
i
(m)

f
|0Ík,h |0Íother |0Í (11.81)

where we denote yyyÕÕÕ
i
(m) =ReLU(yyy(m)

i )
Next, the "controlled-rotation" and uncomputation of OFFN are applied, obtaining

ÿ

i

ÿ

m
|iÍyyyÕÕÕ

i
(m) |mÍ =

ÿ

i

|iÍ
ÿ

m
yyyÕÕÕ
i
(m) |mÍ =

ÿ

i

|iÍ
---yyyÕÕÕ

i

f
(11.82)

where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ

i

f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.
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∑
i

| i⟩

∑
m

|m⟩

|0⟩

Figure 11.6: Feed-Forward Network on Quantum computer 1 The upper part of the figure
provides the illustration of classical Multihead-Attention followed by Residual-connection and
Feed-Forward Network, and the lower part of the figure depicts their quantum implementation.
After the multihead attention module and residual connection, a position-wise Feed-Forward
Network(FFN) is applied. The FFN is a fully connected feed-forward module that operates
separately and identically on each zzz′

i: W2⊤ ReLU
(
W1⊤zzz′

i +b1
)

+ b2, we can write W1 :=[
www1, . . . ,wwwm, . . . ,wwwdff

]
where wwwm ∈ RrH ,dff is the intermediate dimension dff of the FFN.

Denote yyyi := W1⊤zzz′
i, we have its elements as yyy(m)

i = zzz′
i ·wwwm. Recall we created state on registered

Reg(i),Reg(k),Reg(h) and ancillas:
∣∣∣ψZZZ′′′

〉
=∑n

i=1 |i⟩⊗ |zzz′
i⟩⊗ |0⟩+ ..., by the unitary circled in

the overall transparent box in this figure, denoted as UZZZ′′′ , which act as UZZZ′′′ : |i⟩ |0⟩k,h |0⟩other →
|i⟩ |zzz′′′

i⟩ |0⟩other + ...,∀i ∈ {1, · · ·n}. For implementing W1, we can create a trainable unitary
UW111 : |m⟩ |0⟩k,h |0⟩other → |m⟩ |wwwm⟩ |0⟩other ,∀m ∈ {1, . . . ,dff }. with |wwwm⟩ on Reg(k),Reg(h) and
|m⟩ on an additional registered Reg(m). UW111 , depicted as the blue box with a green centre
in this figure, can be implemented as a series of controlled parameterised quantum circuits
as UW111 = ∑

m |m⟩⟨m|Um where each Um, acting as Um : |0⟩k,h → |wwwm⟩, is a parameterised
quantum circuit.yyy(m)

i = ⟨zzz′
i|wwwm⟩ can be evaluated using Parallel Swap test for each zzz′

i and wwwm,
via the quantum circuit depicted in this figure .

For implementing W1 :=
[
www1, . . . ,wwwm, . . . ,wwwdff

]
, we can create a trainable unitary

UW111 : |m⟩ |0⟩k,h |0⟩other → |m⟩ |wwwm⟩ |0⟩other ,∀m ∈ {1, . . . ,dff }. (11.56)

with |wwwm⟩ on Reg(k),Reg(h) and |m⟩ on an additional registered Reg(m).
This trainable unitary UW111 can be implemented as a series of controlled parameterised

quantum circuits as UW111 =∑
m |m⟩⟨m|Um where each Um, acting as Um : |0⟩k,h → |wwwm⟩, is a

parameterised quantum circuit.
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Notice that
yyy

(m)
i = ⟨zzz′

i|wwwm⟩,∀m ∈ {1, . . . ,dff } (11.57)

This can be evaluated using Parallel Swap test for each zzz′
i ∈ RrH and wwwm ∈ RrH , via the

quantum circuit depicted in Fig.11.6.
The input state to the circuit is

|Ψ0⟩ =
∑

i

∑

m
|i⟩|m⟩ |0⟩k,h |0⟩other |0⟩ (11.58)

For each branch |i⟩|m⟩ |0⟩k,h |0⟩other |0⟩, applying a Hadamard gate on the bottom ancillary
qubit, and controlled UZZZ′′′ , UW111 we obtain

|i⟩|m⟩(
∣∣∣zzz′′′

i

〉
|0⟩other + ...) |0⟩+ |i⟩|m⟩ |wwwm⟩ |0⟩other |1⟩ (11.59)

Applying another Hadamard gate on the bottom ancillary qubit yield

|ψim⟩ = |i⟩|m⟩
(
(
∣∣∣zzz′′′

i

〉
|0⟩other + ...)+ |wwwm⟩ |0⟩other

)
|0⟩+ |i⟩|m⟩

(
(
∣∣∣zzz′′′

i

〉
|0⟩other + ...)−|wwwm⟩ |0⟩other

)
|1⟩

(11.60)
Denote |uim⟩ and |vim⟩ as the normalized states of ((|zzz′′′

i⟩ |0⟩other + ...)+ |wwwm⟩ |0⟩other) and
((|zzz′′′

i⟩ |0⟩other + ...)−|wwwm⟩ |0⟩other) respectively. Then there is a real number θim such that

|ψim⟩ = |i⟩|m⟩( sinθim |uim⟩ |0⟩+cosθim |vim⟩ |1⟩)
︸ ︷︷ ︸

|ϕim⟩

= |i⟩|m⟩ |ϕim⟩ (11.61)

θim satisfies cosθim =
√

1−⟨zzz′
i|wwwm⟩ /

√
2 , sinθim =

√
1+ ⟨zzz′

i|wwwm⟩ /
√

2 , and we have:

⟨zzz′
i|wwwm⟩ = −cos2θim. (11.62)

To summarize, the quantum circuit depicted in Fig.11.6 , denoted as U , acts as

U : |i⟩|m⟩ |0⟩k,h |0⟩other |0⟩ → |i⟩|m⟩( sinθim |uim⟩ |0⟩+cosθim |vim⟩ |1⟩)
︸ ︷︷ ︸

|ϕim⟩

= |i⟩|m⟩ |ϕim⟩ , (11.63)

where yyy(m)
i = ⟨zzz′

i|wwwm⟩ are encoded as:

⟨zzz′
i|wwwm⟩ = −cos2θim.(11.64)

When acting on the input state to the circuit |Ψ0⟩ =∑
i
∑

m |i⟩|m⟩ |0⟩k,h |0⟩other |0⟩, U , also
depicted as the pink box in Fig.11.7, produces the following state

|Ψ1⟩ =
∑

i

∑

m
|i⟩|m⟩( sinθim |uim⟩ |0⟩+cosθim |vim⟩ |1⟩)

︸ ︷︷ ︸
|ϕim⟩

=
∑

i

∑

m
|i⟩|m⟩ |ϕim⟩ (11.65)
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Next use amplitude estimation [90] to extract and store yyy(m)
i = ⟨zzz′

i|wwwm⟩ into an additional
register which we call the “amplitude register” |0⟩t

amplitude and the output state |Ψ1⟩ (using the
same notation) becomes

|Ψ3⟩ =
∑

i

∑

m
|i⟩|m⟩ |ϕim⟩ |0⟩t

amplitude , (11.66)

where |ϕim⟩ can be decomposed as

|ϕim⟩ = −i√
2
(
eiθim |ω+⟩im − ei(−θim) |ω−⟩im

)
. (11.67)

where |w±⟩im = 1√
2 (|0⟩|uim⟩± iii|1⟩|vim⟩).

Hence, we have

|Ψ1⟩ =
∑

i

∑

m

−i√
2
(
eiθim |i⟩ |m⟩ |ω+⟩im − ei(−θim)|i⟩ |m⟩ |ω−⟩im

)
|0⟩t

amplitude . (11.68)

The overall Grover operator G is defined as

G := UC2U
−1C1, (11.69)

where C1 is the Z gate on the bottom ancilla qubit in the pink box, and C2 = (I−2|0⟩⟨0|)⊗Ii,m

is the “flip zero state” on registers other than Reg(I),Reg(m)(represented as S0 in Fig.11.7).
Utilising Eqn. 11.63, it can be shown that G can be expressed as

G=
∑

i

∑

m
|i⟩ |m⟩⟨m| ⟨i|⊗Gim, (11.70)

where Gim is defined as

Gim = (I−2|ϕim⟩⟨ϕim|))(Z⊗ I) (11.71)

It is easy to check that |w±⟩im are the eigenstates of Gim, that is,

Gim|w±⟩im = e±iii2θim |w±⟩im. (11.72)

Therefore overall Grover operator G possess the following eigen-relation:

G |i⟩ |m⟩ |ω±⟩im = ei(±2θim) |i⟩ |m⟩ |ω±⟩im . (11.73)

Next, we apply phase estimation of the overall Grover operator G on the input state |Ψ1⟩.
The resulting state |Ψ2⟩ can be written as

|Ψ2⟩ =
∑

i

∑

m

−i√
2
(
eiθim |i⟩ |m⟩ |ω+⟩im |2θim⟩− ei(−θim) |i⟩ |m⟩ |ω−⟩im |−2θim⟩

)
. (11.74)

Note here in Eq. 11.74, |±2θim⟩ denotes the eigenvalues ±2θim being stored in the amplitude
register with some finite precision.
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Next we apply an oracle UO on the amplitude register and an extra ancilla register |0⟩ReLU,
which acts as

UO |0⟩ReLU |±2θim⟩ =
∣∣∣∣ReLU(yyy(m)

i )
〉

|±2θim⟩ , (11.75)

The state after the oracle can be written as

|Ψ3⟩ =
∑

i

∑

m

−i√
2

∣∣∣∣ReLU(yyy(m)
i )

〉(
eiθim |i⟩ |m⟩ |ω+⟩im |2θim⟩− ei(−θim) |i⟩ |m⟩ |ω−⟩im |−2θim⟩

)
.

(11.76)
Then we perform the uncomputation of Phase estimation, the resulting state is

|Ψ4⟩ =
∑

i

∑

m

−i√
2

∣∣∣∣ReLU(yyy(m)
i )

〉(
eiθim |i⟩ |m⟩ |ω+⟩im |0⟩t

amplitude − ei(−θim) |i⟩ |m⟩ |ω−⟩im |0⟩t
amplitude

)

(11.77)

=
∑

i

∑

m

∣∣∣∣ReLU(yyy(m)
i )

〉
|i⟩|m⟩ |ϕim⟩ |0⟩t

amplitude

(11.78)
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The above steps, as gathered in the grey box in Fig. 11.7, implements an oracle OFFN such
that:

OFFN : |iÍ |mÍ |0Ík,h |0Íother |0Í |0ÍReLU æ |iÍ |mÍ |0Ík,h |0Íother |0Í
----ReLU(yyy

(m)
i )

>
(11.80)

Which produces the state

ÿ

i

ÿ

m
|iÍ |mÍ

---yyyÕÕÕ
i
(m)

f
|0Ík,h |0Íother |0Í (11.81)

where we denote yyyÕÕÕ
i
(m) =ReLU(yyy(m)

i )
Next, the "controlled-rotation" and uncomputation of OFFN are applied, obtaining

ÿ

i

ÿ

m
|iÍyyyÕÕÕ

i
(m) |mÍ =

ÿ

i

|iÍ
ÿ

m
yyyÕÕÕ
i
(m) |mÍ =

ÿ

i

|iÍ
---yyyÕÕÕ

i

f
(11.82)

where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ

i

f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.

ReLU

Reg(h)

∑
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∑
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|(|zzzÕÕÕ
iÍ |0Íother+ ...)≠ |wwwmÍ |0Íother) respectively. Then there is a real number ◊im such that

|ÂimÍ = |iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)
¸ ˚˙ ˝

|„imÍ

= |iÍ|mÍ |„imÍ (11.61)

◊im satisfies cos◊im =
Ò
1≠ÈzzzÕ

i|wwwmÍ /
Ô
2 , sin◊im =

Ò
1+ ÈzzzÕ

i|wwwmÍ /
Ô
2 , and we have:

ÈzzzÕ
i|wwwmÍ = ≠cos2◊j . (11.62)

To summarize, the quantum circuit depicted in Fig.11.6 , denoted as U , acts as

U : |iÍ|mÍ |0Ík,h |0Íother |0Í æ |iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)
¸ ˚˙ ˝

|„imÍ

= |iÍ|mÍ |„imÍ , (11.63)

where yyy
(m)
i = ÈzzzÕ

i|wwwmÍ are encoded as:

ÈzzzÕ
i|wwwmÍ = ≠cos2◊im.(11.64)

When acting on the input state to the circuit |�0Í =
q

i
q

m |iÍ|mÍ |0Ík,h |0Íother |0Í, U , also
depicted as the pink box in Fig.11.7, produces the following state

|�1Í =
ÿ

i

ÿ

m
|iÍ|mÍ( sin◊im |uimÍ |0Í+cos◊im |vimÍ |1Í)

¸ ˚˙ ˝
|„imÍ

=
ÿ

i

ÿ

m
|iÍ|mÍ |„imÍ (11.65)

Next use amplitude estimation [?] to extract and store yyy
(m)
i = ÈzzzÕ

i|wwwmÍ into an additional
register which we call the “amplitude register” |0Ítamplitude and the output state |�1Í (using the
same notation) becomes

|�3Í =
ÿ

i

ÿ

m
|iÍ|mÍ |„imÍ |0Ítamplitude , (11.66)

where |„imÍ can be decomposed as

|„imÍ = ≠iÔ
2

1
ei◊im |Ê+Íim ≠ ei(≠◊im) |Ê≠Íim

2
. (11.67)

where |w±Íim = 1Ô
2 (|0Í|uimÍ± iii|1Í|vimÍ).

Hence, we have

|�1Í =
ÿ

i

ÿ

m

≠iÔ
2

1
ei◊im|iÍ |mÍ |Ê+Íim ≠ ei(≠◊im)|iÍ |mÍ |Ê≠Íim

2
|0Ítamplitude . (11.68)

The overall Grover operator G is defined as

G := UC2U
≠1C1, (11.69)

where C1 is the Z gate on the bottom ancilla qubit in the pink box, and C2 = (I ≠2|0ÍÈ0|)¢Ii,m

is the “flip zero state” on registers other than Reg(i),Reg(m).
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Using 11.63, it can be shown that G can be expressed as

G=
ÿ

i

ÿ

m
|iÍ |mÍÈm|Èi|¢Gim, (11.70)

where Gim is defined as

Gim = (I ≠2|„imÍÈ„im|))(Z ¢ I) (11.71)

It is easy to check that |w±Íim are the eigenstates of Gim, that is,

Gim|w±Íim = e±iii2◊im|w±Íim. (11.72)

Therefore overall Grover operator G possess the following eigen-relation:

G |iÍ |mÍ |Ê±Íim = ei(±2◊im) |iÍ |mÍ |Ê±Íim . (11.73)

Next we apply phase estimation of the overall Grover operator G on the input state |�1Í.
The resulting state |�2Í can be written as

|�2Í =
ÿ

i

ÿ

m

≠iÔ
2

1
ei◊im |iÍ |mÍ |Ê+Íim |2◊imÍ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |≠2◊imÍ

2
. (11.74)

Note here in Eq. 11.74, |±2◊imÍ denotes the eigenvalues ±2◊im being stored in the amplitude
register with some finite precision.

Next we apply an oracle UO on the amplitude register and an extra ancilla register, which
acts as

UO |0ÍReLU |±2◊imÍ =
----ReLU(yyy

(m)
i )

>
|±2◊imÍ , (11.75)

The state after the oracle can be written as

|�3Í =
ÿ

i

ÿ

m

≠iÔ
2

----ReLU(yyy
(m)
i )

>1
ei◊im |iÍ |mÍ |Ê+Íim |2◊imÍ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |≠2◊imÍ

2
.

(11.76)
Then we perform the uncomputation of Phase estimation, the resulting state is

|�4Í =
ÿ

i

ÿ

m

≠iÔ
2

----ReLU(yyy
(m)
i )

>1
ei◊im |iÍ |mÍ |Ê+Íim |0Ítamplitude ≠ ei(≠◊im) |iÍ |mÍ |Ê≠Íim |0Ítamplitude

2

(11.77)

=
ÿ

i

ÿ

m

----ReLU(yyy
(m)
i )

>
|iÍ|mÍ |„imÍ |0Ítamplitude

(11.78)

Finally, we perform U † and the resulting state is

|�5Í =
ÿ

i

ÿ

m

----ReLU(yyy
(m)
i )

>
|iÍ|mÍ |0Ík,h |0Íother |0Í |0Ítamplitude . (11.79)
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11.5 Feed-Forward Network on Quantum computer

After the multihead attention module and Residual-connection, a position-wise Feed-Forward
Networ(FFN) is applied. The FFN is a fully connected feed-forward module that operates
separately and identically on each zzzÕ

i:

FFN
1
zzzÕ
i

2
=W2€ReLU

1
W1€zzzÕ

i+b1
2
+b2,

where W1 œ RrH◊dff ,W2 œ Rdff◊rH ,b1 œ Rdff ,b2 œ RrH are trainable parameters, dff is the
intermediate dimension of the FFN. For simplicity we omit b1,b2 in the following discussion.
Similar to we defined XXX := [xxx1, . . . ,xxxn] before, we can write W1 :=

Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
where

wwwm œ RrH .

Denote yyyi :=W1€zzzÕ
i œ Rdff , we have its elements as

yyy
(m)
i = zzzÕ

i ·wwwm,’m œ {1, . . . ,dff} (11.54)
---ÂZZZÕÕÕ

f
= qn

i=1 |iÍ¢ |zzzÕ
iÍ¢ |0Í+ ...

by the unitary circled in the overall transparent box in Fig.11.5, denoted as UZZZÕÕÕ , which act
as

UZZZÕÕÕ : |iÍ |0Ík,h |0Íother æ |iÍ
---zzzÕÕÕ

i

f
|0Íother+ ...,’i œ {1, · · ·n}. (11.55)

For implementing W1 :=
Ë
www1, . . . ,wwwm, . . . ,wwwdff

È
, we can create a trainable unitary

UW111 : |mÍ |0Ík,h |0Íother æ |mÍ |wwwmÍ |0Íother ,’m œ {1, . . . ,dff}. (11.56)

with |wwwmÍ on Reg(k),Reg(h) and |mÍ on an additional registered Reg(m).
This trainable unitary UW111 can be implemented as a series of controlled parameterised

quantum circuits as UW111 =
q

m |mÍÈm|Um where each Um, acting as Um : |0Ík,h æ |wwwmÍ, is a
parameterised quantum circuit.

Notice that
yyy
(m)
i = ÈzzzÕ

i|wwwmÍ,’m œ {1, . . . ,dff} (11.57)

This can be evaluated using Parallel Swap test for each zzzÕ
i œ RrH and wwwm œ RrH , via the

quantum circuit depicted in Fig.11.6.
The input state to the circuit is

|�0Í =
ÿ

i

ÿ

m
|iÍ|mÍ |0Ík,h |0Íother |0Í (11.58)

For each branch |iÍ|mÍ |0Ík,h |0Íother |0Í, applying a Hadamard gate on the bottom ancillary
qubit, and controlled UZZZÕÕÕ , UW111 we obtain

|iÍ|mÍ(
---zzzÕÕÕ

i

f
|0Íother+ ...) |0Í+ |iÍ|mÍ |wwwmÍ |0Íother |1Í (11.59)
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The above steps, as gathered in the grey box in Fig. 11.7, implements an oracle OFFN such
that:

OFFN : |iÍ |mÍ |0Ík,h |0Íother |0Í |0ÍReLU æ |iÍ |mÍ |0Ík,h |0Íother |0Í
----ReLU(yyy

(m)
i )

>
(11.80)

Which produces the state

ÿ

i

ÿ

m
|iÍ |mÍ

---yyyÕÕÕ
i
(m)

f
|0Ík,h |0Íother |0Í (11.81)

where we denote yyyÕÕÕ
i
(m) =ReLU(yyy(m)

i )
Next, the "controlled-rotation" and uncomputation of OFFN are applied, obtaining

ÿ

i

ÿ

m
|iÍyyyÕÕÕ

i
(m) |mÍ =

ÿ

i

|iÍ
ÿ

m
yyyÕÕÕ
i
(m) |mÍ =

ÿ

i

|iÍ
---yyyÕÕÕ

i

f
(11.82)

where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ

i

f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.
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where |yyyÕÕÕ
iÍ :=

q
m yyyÕÕÕ

i
(m) |mÍ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2€ is
applied

|�FFF Í =
ÿ

i

|iÍUW2
---yyyÕÕÕ
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f
=

ÿ

i

|iÍ |fff iÍ (11.83)

where fff i :=W2€yyyÕÕÕ
i = FFN(zzzÕ

i) œ RrH and we define FFF := [fff1, . . . ,fffn] œ RrH◊n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer
layer.

Figure 11.7: Feed-Forward Network on Quantum computer 2 The figure illustrates the description
from Eqn.11.63 to 11.83.The pink box in this figure, denoted as U , is meant to be the circuit
in Fig.11.6, but for simplicity, we omitted the Residual-connection as in Fig.11.6, however the
derivation follows the same.

Finally, we perform U † and the resulting state is

|Ψ5⟩ =
∑

i

∑

m

∣∣∣∣ReLU(yyy(m)
i )

〉
|i⟩|m⟩ |0⟩k,h |0⟩other |0⟩ |0⟩t

amplitude . (11.79)
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The above steps, as gathered in the grey box in Fig. 11.7, implement an oracle OFFN such
that:

OFFN : |i⟩ |m⟩ |0⟩k,h |0⟩other |0⟩ |0⟩ReLU → |i⟩ |m⟩ |0⟩k,h |0⟩other |0⟩
∣∣∣∣ReLU(yyy(m)

i )
〉

(11.80)

Which produces the state

∑

i

∑

m
|i⟩ |m⟩

∣∣∣yyy′′′
i
(m)

〉
|0⟩k,h |0⟩other |0⟩ (11.81)

where we denote yyy′′′
i
(m) = ReLU(yyy(m)

i )
Next, the "Conditional Rotation" (Theorem 3.5 in Ref. [13]) and uncomputation of OFFN

are applied, obtaining

∑

i

∑

m
|i⟩yyy′′′

i
(m) |m⟩ =

∑

i

|i⟩
∑

m
yyy′′′

i
(m) |m⟩ =

∑

i

|i⟩
∣∣∣yyy′′′

i

〉
(11.82)

where |yyy′′′
i⟩ :=∑

m yyy
′′′
i
(m) |m⟩ and we omitted the zero registers.

Finally, a trainable unitary UW2 (a parameterised quantum circuit) implementing W2⊤ is
applied

|ΨFFF ⟩ =
∑

i

|i⟩UW2
∣∣∣yyy′′′

i

〉
=
∑

i

|i⟩ |fff i⟩ (11.83)

where fff i := W2⊤yyy′′′
i = FFN(zzz′

i) ∈ RrH and we define FFF := [fff1, . . . ,fffn] ∈ RrH×n

By the quantum circuit in Fig. 11.7 we have obtained the final state from a Transformer block.

A tomography procedure (Theorem 4.3 from Ref.[13]) is performed to read out the amplitudes
of the final state of a Transformer block. The results are then used as the input for the next
Transformer block.

11.6 Generative Pre-training on Quantum Computer

Using the same notation as in the previous section, we denote the final state from the last
Transformer block in GPT as:

|ΨFFF ⟩ =
∑

i

|i⟩ |fff i⟩ (11.84)

where fff i ∈ RrH and FFF := [fff1, . . . ,fffn] ∈ RrH×n.

For language modeling, we then apply a linear layer WWWE ∈ RV ×rH to map the output back
to the vocabulary space as fff ′′′

i =WWWEfff i ∈ RV . WWWE can be implemented on a quantum circuit by
applying a trainable unitary UWWW E

(a parameterised quantum circuit) on Reg(k),Reg(m) and
some extra qubits (since V ≫ rH) and we obtain the state
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∣∣∣ΨFFF ′′′
〉

= UWWW E
(|ΨFFF ⟩⊗ |0⟩) =

∑

i

|i⟩UWWW E
(|fff i⟩⊗ |0⟩) =

∑

i

|i⟩
∣∣∣fff ′′′

i

〉
(11.85)

where FFF ′′′ :=
[
fff ′′′

1, . . . ,fff
′′′
n

]
∈ RV ×n.

For the tth batch in Generative Pre-training, we examine fff ′′′
t+1 in the output, given the

input [xxx1, . . . ,xxxt]. The loss function for this batch is defined as the cross-entropy between
softmax(fff ′′′

t+1) and the one-hot encoding of the (t+1)th token in the training text, denoted by
bbbt+1 ∈ BV . On the quantum circuit, the loss function can be correspondingly defined as the
overlap between

∣∣∣fff ′′′
t+1
〉

and |bbbt+1⟩5, which can be evaluated via swap test on
∣∣∣ΨFFF ′′′

〉
=∑

i |i⟩
∣∣∣fff ′′′

i

〉

and an additional state
∣∣∣Ψbbbt+1

〉
= |t+1⟩ |bbbt+1⟩. The cumulative loss is calculated across all

batches, followed by the execution of certain optimization methods to adjust the model’s
parameters.

5∣∣fff ′′′
t+1
〉

and |bbbt+1⟩ represent the amplitude encoding of fff ′′′
t+1 and bbbt+1.



Chapter 12

Conclusion

In this thesis, we have explored the frontier of Quantum Neural Networks (QNNs), delving into
their architecture design, training methodologies, and practical applications. Our contributions
span three core areas: the development of quantum-optimization-powered training methods,
the design of QNNs tailored for graph-structured data, and the pioneering exploration of
implementing GPT on quantum computers.

Our quantum training methods, leveraging quantum optimization algorithms, have shown
promise in mitigating barren plateau issues and improving the efficiency of training QNNs. By
exploiting hidden structures within QNN optimization problems, our framework demonstrates
the potential for beyond-Grover speedup in quantum training.

For graph-structured data, we designed QNN architectures that incorporate inductive biases,
aligning with classical Graph Neural Networks. Compared to their classical counterparts, these
quantum architectures promise better scalability and expressivity. Compared to conventional
problem-agnostic QNN, the number of parameters in our QNNs could be significantly reduced,
improving trainability of the model.

Lastly, our exploration into the quantum implementation of GPT represents a significant
step towards integrating large language models with quantum computing. This endeavour not
only bridges the gap between quantum machine learning and state-of-the-art language models,
but also sets the stage for future advancements in quantum-enhanced artificial intelligence.

Overall, this thesis contributes to the fundamental aspects of QNNs, offering novel insights
and methodologies that pave the way for future research including: 1) Analysing the quantum
advantages of our QNN architectures in detail, 2) Exploring the possibility of applying other
quantum optimisation algorithms to QNN training. As we stand on the brink of a new era in
computing, this research underscores the importance of continued exploration and innovation at
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the intersection of quantum computing and machine learning.



Appendix A

Appendix

A.1 Implementation of the "selective copying" operation

In this section, we show that the "selective copying" operation can be implemented by a circuit
with constant depth, as depicted in Fig.A.1.

|x⟩ |x⟩

| f (x)⟩|0⟩

|c( j, l )⟩⟨c( j, l ) |

| j⟩⟨ j |

| j⟩⟨ j |

O†
c Oc

=

Compare

|x⟩ |x⟩

| f (x)⟩|0⟩

Compare

Figure A.1: The multiple multi-controlled unitaries for the "selective copying" can be implemented
by a circuit with constant depth.

First, for each j, the multi-controlled unitaries can be rewritten as in Fig.A.2.

Then by piling up all the multi-controlled unitaries, we see that cancellation happens in the
middle as in Fig.A.3 and we have the result depicted in Fig.A.4

The stack on the right side can be implemented by a comparing unitary followed by a
controlled copy, as depicted in Fig.A.5.
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|x⟩ |x⟩

| f (x)⟩|0⟩

|c( j, l )⟩⟨c( j, l ) |

| j⟩⟨ j |

| j⟩⟨ j |

O†
c Oc

|x⟩ |x⟩

| f (x)⟩|0⟩

| j⟩⟨ j |

| j⟩⟨ j |

| j⟩⟨ j |

=

Figure A.2: For each j, the multi-controlled unitaries can be rewritten as in this figure.

|x⟩
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| j⟩⟨ j |
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|1⟩⟨1 |
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|2⟩⟨2 |

|2⟩⟨2 |

|x⟩ |x⟩

| f (x)⟩|0⟩

| j⟩⟨ j |

| j⟩⟨ j |

…

…

…

…

…

…

…

…

= =:
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O†
c Oc O†

c Oc O†
c Oc

|x⟩ |x⟩

| f (x)⟩|0⟩
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| j⟩⟨ j |

… …

|x⟩ |x⟩

| f (x)⟩|0⟩

|1⟩⟨1 |

|1⟩⟨1 |

|1⟩⟨1 |

|x⟩ |x⟩

| f (x)⟩|0⟩

|2⟩⟨2 |

|2⟩⟨2 |

|2⟩⟨2 |

|x⟩ |x⟩

| f (x)⟩|0⟩

| j⟩⟨ j |

| j⟩⟨ j |

| j⟩⟨ j |

|x⟩ |x⟩

| f (x)⟩|0⟩

|1⟩⟨1 |

|1⟩⟨1 |

|1⟩⟨1 |
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Figure A.3: By piling up all the multi-controlled unitaries we see that cancellation happens in
the middle.
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| f (x)⟩|0⟩
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O†
c Oc

|x⟩ |x⟩

| f (x)⟩|0⟩

| j⟩⟨ j |

| j⟩⟨ j |

| j⟩⟨ j |

=

Figure A.4: Result of piling up all the multi-controlled unitaries, cancellation happens as in
Fig.A.3

A.2 Proofs for the claims mentioned in Section 4.1
Here we provide proofs for the claims mentioned in Section 4.1
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Figure A.5: The stack on the right side in Fig.A.4 can be implemented by a comparing unitary
followed by a controlled copy

U =
∑

j

|j ⟩⟨j|⊗Uj

Proof.

U = [H⊗ I⊗ I⊗ I] · [|0⟩⟨0|⊗ (
∑

j

|j ⟩⟨j|⊗Pj ⊗T )+ |1⟩⟨1|⊗ (
∑

j

|j ⟩⟨j|⊗T ⊗Pj)] · [H⊗ I⊗ I⊗ I] =

∑

j

[H⊗ I⊗ I⊗ I] · [|0⟩⟨0|⊗ |j ⟩⟨j|⊗Pj ⊗T + |1⟩⟨1|⊗ |j ⟩⟨j|⊗T ⊗Pj ] · [H⊗ I⊗ I⊗ I] =

∑

j

[I⊗H⊗ I⊗ I] · [|j ⟩⟨j|⊗ |0⟩⟨0|⊗Pj ⊗T + |j ⟩⟨j|⊗ |1⟩⟨1|⊗T ⊗Pj ] · [I⊗H⊗ I⊗ I] =

∑

j

[I⊗H⊗ I⊗ I] · [|j ⟩⟨j|⊗ (|0⟩⟨0|⊗Pj ⊗T + |1⟩⟨1|⊗T ⊗Pj)] · [I⊗H⊗ I⊗ I] =

∑

j

(I · |j ⟩⟨j| · I)⊗ ([H⊗ I⊗ I] · [|0⟩⟨0|⊗Pj ⊗T + |1⟩⟨1|⊗T ⊗Pj ] · [H⊗ I⊗ I]) =

∑

j

|j ⟩⟨j|⊗Uj

G=
∑

j

|j ⟩⟨j|⊗Gj
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Proof.

G= C1U
−1C2U = (A.1)

C1


∑

j

|j ⟩⟨j|⊗U †
j


C2


∑

k

|k ⟩⟨k|⊗Uk


= (A.2)

∑

j

∑

k

C1
(
|j ⟩⟨j|⊗U †

j

)
C2 (|k ⟩⟨k|⊗Uk) = (A.3)

∑

j

|j ⟩⟨j|⊗C1U
†
jC2Uj = (A.4)

∑

j

|j ⟩⟨j|⊗Gj (A.5)

A.3 Performance of quantum training using Grover Adap-
tive Search

It has been shown in Ref. [62] that Global Optimization by Grover Adaptive Search takes
O(
√
N/s ) calls of Grover Oracle in which N is the dimension of the search space, s is the

number of global optima and assuming s is small compared to N . A unique optimum will be
found after O(logN) improvements on the threshold, in expectation. The number of measure-
ments invoked between the improvements is no larger than O(log

√
N ). Therefore the total

number of measurements for Grover Adaptive Search to find a global optimum is no larger than
O(logN log

√
N ).

Here we apply the above results to our QNN training problem. Taking training VQE as an
example, we evaluate the number of “controlled-QNN” runs, the number of QNN runs, and the
number of measurements respectively as follows.

A.3.1 Number of “controlled-QNN” runs

For our quantum training, each Grover iteration consists of the steps of Amplitude Encod-
ing(AE), Phase estimation(PE), Threshold Oracle, and Uncomputation. Taking training VQE
as an example, the number of the number of “controlled-QNN” runs of each step can be listed
as:

• In Amplitude Encoding(AE): nAE = 1

• In Phase estimation(PE): nP E = (2t −1)2 = 2t+1 −2

• In Threshold Oracle: 0
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• In Uncomputation: nP E +nAE

in which t is the number of qubits in the amplitude register for the phase estimation.

The number of “controlled-QNN” runs of each Grover iteration, which we denote as N0, is
the sum of the above numbers:

N0 = 2(nAE +nP E) = 2(2t+1 −1) (A.6)

To obtain phase accurate to n′ bits with probability of success at least 1 − ϵ1, t is chosen as

t= n′ + ⌈log(2+ 1
2ϵ1

)⌉. (A.7)

Hence:

N0 ≈ (2n′+2(2+ 1
2ϵ1

)−2) (A.8)

For small ϵ1 we have:

N0 ≈ 2n′+2 1
2ϵ1

(A.9)

n′ determines the precision of the QNN cost function evaluated by phase estimation, which
we denote as ϵ2, and we have:

2−n′
= ϵ2 (A.10)

therefore:

N0 ≈ 2
ϵ2ϵ1

(A.11)

Therefore the total number of “controlled-QNN” runs for O(
√
N/s ) Grover iterations scales

as
Ncontrolled-QNN ∼O( 1

ϵ2ϵ1

√
N/s ) (A.12)

in which N is the dimension of the parameter space of QNN and s is the number of global
optima of the QNN cost function.

Let r be the number of parameters(rotation angles)in QNN, d be the number of control
qubits for each rotation angle. Therefore

N = 2dr (A.13)

On the other hand,
2−d = ϵ0, (A.14)

where ϵ0 is the precision of each angle value. Hence

N = ( 1
ϵ0

)r (A.15)

Inserting Eq. A.15 into A.12 we get

Ncontrolled-QNN ∼O

(
1
ϵ2ϵ1

( 1
ϵ0

)r/2
s− 1

2

)
(A.16)
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A.3.2 Number of Measurements

As mentioned before, the total number of measurements for Grover Adaptive Search to find a
global optimum scale as

NMeasurements ∼O(logN log
√
N ) (A.17)

Inserting Eq. A.13 into A.17 we get

NMeasurements ∼O
(
(dr)3/2

)
(A.18)

From Eq. A.14 we have d∼O
(
log

(
1
ϵ0

))
, therefore

NMeasurements ∼O

((
r log

( 1
ϵ0

))1.5)
(A.19)

A.3.3 Number of QNN runs

After each measurement on the parameter register, we obtain a specific parameter configuration
of QNN. We then need to estimate the cost function for this particular parameter configuration.
For VQE, the cost function is the expectation value of some Hamiltonian and the number of
the estimation scale as O(1/ϵα) for some small power α [137](α is a small integer about 1 or
2), where ϵ is the desired accuracy of the expectation value. For our QNN training, we choose
the accuracy ϵ to be ϵ2 defined above. Taking α = 1, the number of QNN runs after each
measurement scale as O(1/ϵ2) and the total number of QNN runs all the measurements during
the quantum training scale as

NQNN ∼O
( 1
ϵ2

)
NMeasurements . (A.20)

Inserting A.19 into A.20 we have

NQNN ∼O

(
1
ϵ2

(
r log

( 1
ϵ0

))1.5)
(A.21)

A.4 Number of qubits needed for Quantum training by
AC-QAOA

Taking training VQE as an example, the number of qubits in each register can be listed as:

• For QNN register : n qubits

• For Parameter register : dr qubits (r is the number of parameters in QNN, d is the number
of control qubits for each rotation angle.)

• For Hadamard test: 1 ancilla qubit
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• For LCU register and other registers: O(log log(1/ϵ)) [4] qubits (ϵ is the precision of
implementing the phase oracle by LCU)

In total, the number of qubits needed for quantum training is:

ntotal ∼ n+dr+O(log log(1/ϵ)) (A.22)

For instance, when n= 5, d= 5, r = 10, ϵ= 10−8, ntotal ≈ 60.
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