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Abstract 

Structural condition assessment is critical for ensuring the safety and functionality of building 

structures, yet existing methods face significant challenges, including data scarcity, noise 

contamination, and limited generalisation across diverse operational environments. Traditional 

machine learning-based approaches often rely on extensive labelled datasets and assume consistent 

data distributions, which are impractical in real-world scenarios. Furthermore, these methods 

frequently lack interpretability, limiting their adaptation to practical applications. To address these 

issues, advanced frameworks are required to enhance accuracy, robustness, and scalability in 

structural damage detection and condition assessment. 

A series of physics-guided machine learning frameworks are developed in this research to 

overcome these above-mentioned challenges, mainly including transfer learning and physics-

informed machine learning. Transfer learning methods leverage simulated frequency response 

function (FRF) data to pre-train deep convolutional neural networks (CNNs) and fine-tune them using 

limited real-world measurements, significantly improving damage localisation and severity 

identification. Additionally, a Joint Maximum Discrepancy and Adversarial Discriminative Domain 

Adaptation (JMDAD) framework is developed to eliminate the need for labelled target data. By 

aligning feature distributions at both domain and class levels and leveraging transmissibility functions, 

this approach enhances robustness against noise and environmental variations while effectively 

detecting damage in real structures. 

Physics-informed machine learning methods further embed physical constraints into machine 

learning models to improve interpretability and reliability. The Parallel Neural Ordinary Differential 



 

xix 

 

Equations (PNODEs) framework integrates state-space equations to provide physical constraints, 

enabling accurate damage quantification and enhanced model reliability. Additionally, the Temporal-

Spatial Neural Operator (PhySTN) framework combines a spatial feature mapping encoder with a 

physics-informed time operator to enable structural parameter identification and response 

reconstruction from sparse sensor data, addressing challenges in data insufficiency. 

The proposed frameworks are validated through extensive numerical simulations and 

experimental studies, including nonlinear numerical models, experimental structures, benchmark 

frames, and real-world applications. These methods demonstrate significant improvements in damage 

detection accuracy, scalability, and interpretability, offering reliable and efficient solutions for 

structural health monitoring. By addressing the challenges of insufficient data and enhancing the 

explainability of machine learning-based condition assessment, this research contributes valuable 

advancements to the field. 



 

1 

 

 

Chapter 1. Introduction 

1.1. Background 

Structural health monitoring (SHM) is essential for ensuring the safety and longevity of civil 

infrastructure. Building structures are constantly exposed to operational conditions, environmental 

variations, and potential damage over time, necessitating robust methods for condition assessment 

and damage detection. Traditional approaches, including vibration-based methods and numerical 

modelling, rely heavily on predefined models or extensive labelled datasets(Avci et al., 2021a) . 

However, these methods often struggle with uncertainties, such as modelling inaccuracies, noise 

contamination, and the variability of real-world environments. These challenges make it difficult to 

accurately identify structural damage, especially with limited data from real structures. 

Recent advancements in machine learning, particularly deep learning, have introduced 

promising solutions for SHM by leveraging large datasets to extract complex patterns from structural 

responses. Despite their potential, these data-driven methods face critical limitations, including 

dependency on large labelled datasets, lack of interpretability, and difficulties generalising across 

diverse operational scenarios (Wu et al., 2024). To address these issues, this thesis investigates the 

integration of transfer learning and physics-informed machine learning. These advanced approaches 

aim to reduce reliance on extensive labelled data by transferring knowledge from numerical 

simulations or related domains and embedding physical principles directly into the learning process. 

This combination enhances model interpretability and adaptability, offering a robust framework for 

structural damage detection under practical operational conditions. 
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1.2. Research objectives and significance 

The overall research objectives can be summarised:  

1) to develop a physics-guided machine learning framework for structural condition 

assessment using insufficient and unlabelled data. 

2) to explore the interpretability and explainability of machine learning models for 

structural condition assessment. 

3) to verify the proposed methods using a numerical model, experimental structure 

and real structure. 

Based on the overall research aims, the detailed research objectives of each work can be concluded 

as follows: 

(1) Transfer Learning-Based Structural Damage Detection Using Frequency Response Functions 

(FRFs) 

This study focuses on developing a transfer learning approach to enhance structural damage 

detection when data is insufficient and labelled measurements are scarce. By utilizing frequency 

response functions (FRFs) obtained from impact testing, the method leverages simulated numerical 

data to pre-train a deep convolutional neural network (CNN), which is then fine-tuned with limited 

real-world measurements. This work emphasises improving the accuracy of damage localisation and 

severity identification while aligning with the overall aim of leveraging physics-guided techniques to 

address data limitations. Validation through numerical simulations and experimental studies 

demonstrates the method's practical applicability and effectiveness. 

(2) Structural Damage Detection based on Transmissibility Functions with Unsupervised 
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Domain Adaptation 

This research develops a domain adaptation framework to address the lack of labeled target data 

and distribution mismatches between training and testing data. The Joint Maximum Discrepancy and 

Adversarial Discriminative Domain Adaptation (JMDAD) method integrates transmissibility 

functions with a feature generator, domain discriminator, and dual classifiers to align domain and 

class-level features. By extracting and aligning damage-sensitive features, the method enhances 

interpretability and robustness against noise and environmental variations. Validation through case 

studies involving numerical, experimental, and real-world structures, including the Canton Tower, 

underscores its effectiveness in achieving accurate structural condition assessment with unlabeled 

data. 

(3) Parallel Neural Ordinary Differential Equations (PNODEs) for Structural Damage 

Identification 

This study introduces a Parallel Neural Ordinary Differential Equations (PNODEs) framework 

to enhance the interpretability and explainability of machine learning for structural damage detection. 

By integrating state-space equations with parallel neural networks, the method separates and captures 

discrepancies in structural responses for individual components. This approach emphasises the 

extraction of interpretable features for localised damage detection and structural parameter 

identification. The framework is validated using a three-story building structure and a benchmark 

frame, demonstrating reliable and accurate damage localisation and quantification while advancing 

the understanding of machine learning behavior in structural condition assessment. 

(4) Temporal-Spatial Neural Operator (PhySTN) Framework for Structural System 
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Identification 

This work presents a Temporal-Spatial Neural Operator (PhySTN) framework designed to 

enable structural parameter identification and response reconstruction with sparse and limited 

observations. By integrating a spatial mapping encoder to relate partial observations to full structural 

states and a time operator combining physics knowledge with neural networks, the framework 

addresses challenges associated with insufficient data. The method emphasises enhancing 

interpretability by embedding physics into the learning process and reconstructing missing responses. 

Numerical and experimental validations demonstrate its capability to accurately identify nonlinear 

structural parameters under varying noise levels and observation scenarios, aligning with the overall 

research aims of this thesis. 

Research significance can be drawn:   

• This research develops a framework that embeds known structural physics into neural 

networks, enhancing the interpretability and accuracy of structure identification. 

• The study proposes a novel method for structural condition assessment that effectively 

addresses challenges associated with insufficient and unlabeled data in practical 

applications. 

• By improving the reliability of machine learning methods, this work ensures their 

applicability and robustness for condition assessment in real-world structural monitoring 

scenarios. 

1.3. Organisation of thesis 

Chapter 2 provides a comprehensive review of structural damage detection methodologies. It 
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begins by introducing vibration-based approaches, including model-based and data-driven methods, 

followed by a detailed exploration of machine learning techniques, such as supervised, unsupervised, 

and self-supervised learning. Challenges in applying machine learning to structural damage detection 

are highlighted. The chapter also examines transfer learning and domain adaptation for structural 

condition assessment and concludes with a discussion on physics-informed machine learning 

methods, specifically focusing on Physics-Informed Neural Networks (PINNs), Neural Ordinary 

Differential Equations (NODEs), and Physics-Informed Neural Operators (PINOs). 

Chapter 3 presents a novel transfer learning-based approach for structural damage detection 

using frequency response functions (FRFs) obtained from limited measurements. The methodology 

involves pre-training a deep convolutional neural network (CNN) on simulated FRF data from a 

numerical model representing various damage scenarios, followed by fine-tuning with experimental 

data from a three-story building structure. The proposed method was validated through numerical and 

experimental studies, demonstrating superior performance compared to traditional CNN models, 

particularly in identifying damage location and severity under limited measurement conditions. 

Chapter 4 introduces a novel method for structural damage detection based on joint maximum 

discrepancy and adversarial discriminative domain adaptation (JMDAD), addressing challenges 

posed by data scarcity, modelling errors, and environmental variations. The method utilises 

transmissibility functions of measured structural responses and combines a feature generator, two 

classifiers, and a discriminator to align features at both domain and class levels. Through three case 

studies, including applications to numerical, experimental, and real-world structures, the approach 

demonstrates robustness to noise and environmental variations, accurately identifying structural 
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damage without requiring labeled data from the target structure. 

Chapter 5 presents a novel parallel neural ordinary differential equations (PNODEs) method for 

structural damage identification. This approach integrates state-space equations with a neural network 

block comprising parallel networks, each representing a structural component. By embedding 

physical constraints from the state-space model, the method captures and separates discrepancies in 

structural responses to each part, enhancing interpretability and reliability. Validated through studies 

on a three-story building and a benchmark frame, the method demonstrates high accuracy in 

localizing and quantifying structural damage. 

Chapter 6 introduces a temporal-spatial neural operator (PhySTN) framework for structural 

parameter identification using limited observations. The framework combines a spatial feature 

mapping encoder to relate partial observations to the full system state with a time operator integrating 

physical knowledge and a neural network to capture discrepancies. This approach enables accurate 

parameter identification and response reconstruction under limited sensor data. Validation through a 

nonlinear numerical model and experimental frame structure demonstrates the framework's 

effectiveness in handling noise, sparse observations, and nonlinear behaviors. 
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Chapter 2. Literature review 

This chapter concludes a review of the current challenges in the field of structural health 

monitoring, while the detailed background of specific issues can be found under each chapter in state 

of the art. In this chapter, the concept of structural health monitoring was introduced first. Then, a 

detailed review of vibration-based structural damage detection and machine learning-based structural 

damage detection is presented, highlighting key issues. Transfer learning and physics-informed 

machine learning structural condition assessment are followed. Lastly, the research gaps and 

challenges of damage detection based on machine learning methods are found through the review, 

setting the stage for the research investigations. 

2.1. Concepts of structural health monitoring  

Structural Health Monitoring (SHM) is characterized by the deployment of on-structure sensing 

systems to oversee structural performance and assess health conditions. The primary objective of 

SHM is to accurately identify and localize damage within the limits of sensor resolution, assess its 

severity, and detect damage at an early stage. Furthermore, predict the structure's remaining lifespan 

without compromising its integrity for condition assessment.  As defined by Rytter (Rytter et al., 

1993), the goals of SHM are categorized into four hierarchical levels: 

Level 1: Detecting of damage within the structure 

Level 2: Localizing of the detected damage 

Level 3: Qualifing of the damage severity 

Level 4: Estimating of the remaining service life  

Researchers (Moughty & Casas, 2017) pointed out that vibration-based identification techniques 
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are capable of achieving damage detection up to Level 3. However, in the absence of a precise 

numerical model, these vibration-based methods face limitations in predicting the remaining service 

life of structures at Level 4 (Limongelli et al., 2016). 

Vibration-based methods (VDD) and non-destructive testing (NDT) are the two main categories 

of damage detection techniques (Hou & Xia 2021). The former method can quickly identify the 

damage location inside the structure or the damage due to non-structural components. Rather than the 

NDT method, VDD identification methods are enabled to detect structural global vibration characters 

that have been popularly used as global methods during the past years. Consequently, the major focus 

of this study will be on methods for identifying damage that is based on vibration measurements. 

A review of existing research on vibration-based methods was conducted by Doeling et al. (1996) 

and Sohn et al. (2003). Salawu (1997) explored detecting damage methods using natural frequencies. 

In addition, between 1996 and 2003, Carden and Fanning (2004) published a number of detailed 

literature evaluations. Furthermore, Fan and Qiao (2011) examined and contrasted several damage 

identification techniques. Several types of research (Hankim and Razak 2014; Chen et al. 2014) have 

also determined that The use of artificial neural networks (ANNs) for signal processing and damage 

detection has grown significantly in recent decades. In addition, the VDD is divided into approaches 

that use model-based and data-driven based methods. The key differentiation between model-based 

and data-driven methods for detecting structural damage lies in their methodological basis. Model-

based methods rely on physical or numerical models to simulate the structure's behaviour, using 

deviations between predicted and observed responses to detect damage. In contrast, data-driven 

methods focus on identifying patterns and anomalies directly from sensor data without relying on 
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explicit physical models, employing techniques such as machine learning and statistical analysis to 

infer structural health conditions. In addition, parametric and non-parametric approaches are included 

in data-driven methods. By replacing model parameters with actual data, the parameter-based 

approaches aim to create a computational model, including a finite element model. Although these 

methods can achieve high-accuracy predictive results, they usually require prior knowledge and 

associated assumptions regarding the actual structure, which is inaccurate enough and not accessible. 

The non-parameter technique uses statistical models to directly transform the vibration signals into 

structural features without involving any prior model information, as opposed to parametric-based 

methods.  

2.2. Vibration-based structural damage detection 

2.2.1. Model-based methods  

In model-based damage detection, Finite Element (FE) model updating is frequently employed 

as a key technique, aiming to refine computational models to match actual structural responses. This 

approach involves modifying model parameters, such as material properties, stiffness, or damping 

coefficients, to minimize discrepancies between measured and simulated dynamic responses 

(Mottershead & Friswell, 1993). One key advantage of FE model updating is its strong physical 

interpretability, allowing clear identification of structural behavior changes. Additionally, it can 

effectively model complex structures by incorporating detailed physical parameters (Reynders et al., 

2010). However, it has notable limitations, including sensitivity to measurement noise and model 

uncertainties, which can lead to convergence issues or non-unique solutions  (Reynders & Roeck, 

2008). Moreover, the high computational cost of iterative updating processes poses challenges for 
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large-scale structures. Despite these drawbacks, FE model updating remains essential for damage 

detection due to its capacity to bridge physical modelling with real-world observations. 

2.2.2. Data-driven Methods  

2.2.2.1. Parametric methods 

Data-driven approaches for structural damage detection frequently employ modal parametric 

methods, which utilize extracted modal parameters like natural frequencies, damping ratios, and mode 

shapes to evaluate structural health (Doebling et al., 1996; Wei Fan & Pizhong Qiao, 2011). The main 

advantage of these methods lies in their strong theoretical basis and the clear physical interpretation 

of identified parameters. They are particularly effective for detecting global damage and can be 

applied using relatively sparse sensor networks. However, modal parametric methods are sensitive to 

environmental influences and operational conditions, which can introduce variability unrelated to 

damage, thereby affecting reliability (B. Peeters & De Roeck, 2001). Additionally, these methods may 

struggle with local damage identification due to their focus on global modal characteristics. Despite 

these limitations, their simplicity and broad applicability make them a valuable tool in the early stages 

of structural health monitoring.  

2.2.2.2. Nonparametric methods 

Nonparametric methods in structural damage detection focus on extracting statistical features 

directly from raw vibration signals without relying on predefined physical models. These methods 

combine time-series analysis with statistical classification to identify damage-sensitive features, 

making them more flexible in capturing complex damage patterns. A key advantage of nonparametric 

approaches is their ability to detect damage features that are not easily attributed to explicit physical 
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changes, thus allowing for broader application in various structures. For instance, techniques like 

Auto-Regressive Moving Average (ARMA) models (Krishnan Nair & Kiremidjian, 2007) and 

Principal Component Analysis (PCA) (Goi & Kim, 2017) have shown effectiveness in isolating 

damage indicators and classifying damage states. However, the primary limitation of these methods 

lies in their sensitivity to noise and environmental variations, which can lead to false positives or 

reduced accuracy. Additionally, nonparametric methods often require substantial amounts of training 

data and sophisticated statistical algorithms to function effectively. Despite these challenges, they 

provide a valuable alternative to model-based methods, particularly in cases where physical models 

are unavailable or insufficient. 

2.3. Machine learning for structural damage detection 

2.3.1. Supervised learning for structural damage detection  

In structural damage detection, supervised learning techniques are widely utilized for their 

capacity to leverage labelled datasets during model training. These methods, such as artificial neural 

networks (ANNs) (Yeung & Smith, 2005), support vector machines (SVMs) (Cury & Crémona, 2012) 

and convolutional neural networks (CNNs) are highly effective for classifying structural conditions 

and estimating damage severity by identifying intricate patterns between input features and labeled 

damaged data (Abdeljaber et al., 2018). The main advantage of supervised learning lies in its high 

accuracy and reliability in well-defined damage scenarios, as these models can efficiently map 

structural features to corresponding damage levels. However, the major limitation of supervised 

learning is its dependency on large, high-quality labeled datasets, which are often difficult and costly 

to obtain in structural health monitoring applications. Additionally, supervised models may struggle 
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with generalizing to new or unforeseen damage types, reducing their adaptability in diverse 

operational conditions. Despite these challenges, supervised learning remains a popular approach due 

to its effectiveness in controlled environments and when sufficient labeled data is accessible 

2.3.2. Unsupervised learning for structural damage detection   

Unsupervised learning methods for structural damage detection offer flexibility in dealing with 

unlabeled data, making them suitable for scenarios where labeled datasets are challenging to obtain. 

These methods typically rely on clustering techniques or anomaly detection algorithms to uncover 

hidden patterns and identify deviations from normal structural behavior (Silva et al., 2016). A main 

advantage of unsupervised learning is its ability to detect unexpected or unknown damage types, 

making it more adaptive to real-world conditions. Furthermore, it reduces the need for extensive 

human intervention in data labeling, which can be costly and labor-intensive. However, unsupervised 

approaches are sensitive to environmental and operational variability, which can lead to false 

positives or misinterpretations. In addition, their effectiveness is strongly influenced by the quality 

and diversity of the input data, making feature selection and preprocessing critical. Despite these 

challenges, unsupervised learning methods remain a promising approach for scalable and adaptive 

damage detection systems in structural health monitoring 

2.3.3. Self-supervised learning for structural damage detection  

Self-supervised learning has emerged as an effective approach for structural damage detection, 

particularly in situations where labeled datasets are limited or challenging to acquire (K. Zhang et al., 

2020). By creating pretext tasks, such as predicting missing signals or reconstructing noisy data, this 

approach allows models to extract meaningful patterns from unlabeled data, thereby enhancing their 
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ability to identify structural anomalies. A key advantage of self-supervised learning is its capability 

to generalize well to new damage scenarios by learning representations that capture intrinsic 

relationships within the data(Akrim et al., 2023). This adaptability makes it valuable in real-world 

applications where structures encounter varying conditions and unforeseen damage types (Thai, 

2022). However, a significant challenge lies in designing pretext tasks that are both relevant to 

structural behaviors and effective in highlighting damage-related features. Moreover, the 

effectiveness of learned representations is significantly influenced by the robustness and diversity of 

the training data. Self-supervised learning, despite its challenges, offers an adaptable and scalable 

solution, bridging the gap between supervised and unsupervised methods in structural health 

monitoring. 

2.3.4. Challenges in machine learning for structural damage detection  

Machine learning (ML) applications in structural damage detection encounter several significant 

challenges.  

• First, data quality and availability pose significant limitations. High-quality labelled 

datasets are essential for supervised learning models, but obtaining them is often labor-

intensive and costly, especially in structural health monitoring (Silva et al., 2016).  

• Secondly, the issue of overfitting persists as a major challenge, particularly in data-driven 

methods, where complex models perform well on training datasets but often lack 

generalization to new damage conditions. Additionally, environmental and operational 

variability can affect the accuracy of ML models, leading to false positives or obscuring 

damage patterns.  
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• Another challenge is the interpretability of ML models, especially with deep learning 

approaches, which can limit the validation and acceptance of results in practical 

engineering contexts.  

• Finally, designing self-supervised or unsupervised learning tasks that effectively capture 

structural behaviour remains an ongoing research area. Addressing these challenges is 

critical for improving the reliability and scalability of ML-based damage detection 

systems. 

2.4. Transfer learning based structural damage detection  

2.4.1. Transfer learning (TL) 

Transfer Learning (TL) has attracted growing interest in structural damage detection for its 

capability to utilise knowledge from a source domain to enhance learning in a similar target domain. 

In structural health monitoring, When labeled data in the target domain are difficult or expensive to 

acquire, Transfer Learning (TL) becomes a particularly effective approach (Lin et al., 2022). A typical 

method entails training a model on numerical data from a source domain and adapting it to a target 

structure with sparse real-world data. This method enables the transfer of learned patterns and features, 

improving damage detection accuracy despite variations in structural conditions (X. Wang & Xia, 

2022). The benefits of Transfer Learning (TL) include minimising the dependence on large labeled 

datasets and enhancing the ability to adapt across varying operational and environmental conditions. 

However, challenges such as domain discrepancies and feature mismatches between source and target 

domains can impact its effectiveness. Addressing these issues through techniques like domain 

adaptation or adversarial learning is crucial to enhancing the robustness of TL-based approaches in 
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structural health monitoring. 

2.4.2. Domain adaptation (DA) 

In structural condition assessment, Domain Adaptation (DA) has gained recognition as an 

important technique, particularly when applying models trained source domain to assess structures in 

a different target structure with limited labelled data (M. Wang & Deng, 2018). DA aims to bridge 

the gap between variations in structural responses due to environmental and operational differences, 

ensuring that machine learning models can generalize effectively to new conditions without requiring 

extensive retraining (Vadyala et al., 2022). Methods such as feature alignment and adversarial training 

are commonly employed in DA, enabling the model to learn invariant features that are shared across 

domains. This is especially beneficial in civil infrastructure monitoring, where changes in temperature, 

load conditions, or structural aging may create discrepancies that impact model accuracy(Z. Chen et 

al., 2022; Ganin et al., 2017). While DA significantly improves adaptability and reduces data 

requirements, challenges remain in achieving complete feature alignment and minimizing domain 

shift, which can introduce biases in model predictions. Addressing these limitations continues to be a 

focus of research to enhance DA’s effectiveness in real-world structural health monitoring 

applications.  

2.5. Physics informed machine learning for structural condition assessment  

2.5.1. Physics informed neural networks (PINNs) 

Physics-informed machine learning (PIML), especially through Physics-Informed Neural 

Networks (PINNs), are increasingly applied in structural condition assessment due to their ability to 

integrate physical laws, such as partial differential equations, directly into the machine learning model. 
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By embedding these governing equations as constraints, PINNs can model structural behaviors with 

improved accuracy and consistency, even in cases where data is scarce or noisy (George Em 

Karniadakis 1, n.d.). Integrating data-driven learning with physics-based principles minimizes the 

need for large labeled datasets, positioning PINNs as valuable in real-world scenarios where acquiring 

labelled damage data is difficult (Wu et al., 2024). Furthermore, PINNs offer enhanced interpretability 

compared to traditional black-box models, as their outputs adhere to known structural behaviors. 

2.5.2. Neural ordinary differentiation equations (NODEs) 

Neural Ordinary Differential Equations (NODEs) offer a promising approach in structural 

condition assessment, particularly in handling inverse problems and learning residual patterns 

indicative of structural anomalies (Lai et al., 2021). Unlike traditional neural networks, NODEs treat 

layers as continuous transformations governed by differential equations, making them highly suitable 

for modeling dynamic systems and capturing subtle structural changes over time (R. T. Q. Chen et 

al., 2018). NODEs excel in directly inferring system dynamics by learning the discrepancies between 

baseline models and observed data, thus identifying deviations that may signal damage or degradation. 

This approach enhances interpretability, as NODEs can identify the specific deviations from expected 

physical behavior, allowing engineers to assess structural health with greater accuracy. Furthermore, 

NODEs require fewer parameters than deep networks, reducing computational demands while 

maintaining high accuracy in representing system dynamics.  

2.5.3. Physics informed Neural Operators (PINOs) 

Physics-Informed Neural Operators (PINOs) extend the concept of learning mappings between 

function spaces, making them particularly suitable for addressing high-dimensional problems 
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governed by partial differential equations (PDEs). Unlike Neural Ordinary Differential Equations 

(NODEs), which focus on dynamic systems and model continuous transformations in time, PINOs 

are designed to handle spatial-temporal systems by learning operators that directly approximate 

solutions of PDEs (Z. Li et al., 2024). This capability allows PINOs to generalize across different 

geometries and boundary conditions, enabling broader applications in structural health monitoring.  

The primary advantage of PINOs lies in their flexibility and efficiency in modeling complex, 

multi-physics problems without the need to discretize the entire domain explicitly. In comparison, 

NODEs are more suitable for problems with time-dependent dynamics but may struggle with spatially 

varying phenomena. Furthermore, PINOs require fewer labeled data points by leveraging embedded 

physical constraints, making them ideal for scenarios with limited measurements. However, PINOs 

demand higher computational resources during training due to the evaluation of PDE residuals and 

boundary conditions, which could lead to a limitation for real-time implementation. PINOs, despite 

these difficulties, demonstrate significant advancements in scalability and adaptability for structural 

condition assessment in various problem areas. 

2.6. Research gaps and challenges 

The use of machine learning (ML) in structural damage detection poses several critical 

challenges that impact its accuracy and reliability: 

• Data quality and accessibility: High-quality, labelled datasets are critical for 

training supervised ML models. However, obtaining such data is challenging due to noise 

contamination, high costs, and the rarity of labelled damaged data. This scarcity particularly 

affects the model’s ability to generalize, as limited data can lead to biased learning outcomes 
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and reduced detection accuracy in real-world scenarios. 

• Less damage data: Structural damage data is inherently limited since real damage 

events are often irreversible. This constraint restricts the availability of comprehensive 

datasets, forcing researchers to rely on simulated or limited measurement data, which may not 

accurately capture all damage scenarios, thereby reducing the robustness of ML models in 

varying structural conditions.  

• Lack of physical interpretability: Many ML models, particularly deep learning 

approaches, operate as "black boxes," offering limited interpretability. This lack of physical 

meaning poses challenges in practical applications, where engineers require models that align 

with known structural behaviour and can be trusted in decision-making processes. 

Addressing these challenges is critical for advancing ML in structural health monitoring, 

enabling more reliable, interpretable, and flexible solutions for a variety of structural environments. 
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Chapter 3. Transfer learning-based structural damage identification for building structures 

with limited measurement data 

3.1. Overview 

Detecting structural damage is essential to maintaining the safety of civil building structures 

under operational conditions. Recently, deep learning-based approaches have drawn significant 

interest from engineers and researchers for this application. However, traditional deep learning 

approaches rely on challenging assumptions, namely the availability of a large labeled dataset and 

identical distribution between training and testing data, which are often impractical. This research 

presents a new transfer learning approach for structural damage detection, leveraging frequency 

response functions (FRFs) with limited measurement data. Impact testing was conducted on a three-

storey building structure in a laboratory, measuring impact force and acceleration responses at each 

floor to obtain FRFs. A numerical model was developed to simulate FRF data for various damage 

scenarios. A custom deep convolutional neural network (CNN) was initially trained with numerically 

simulated data and subsequently fine-tuned using limited measurements from the actual structure. 

Numerical and experimental studies were conducted to validate the proposed method's effectiveness 

and accuracy. Results indicate that the transfer learning-based approach outperforms traditional CNN 

models with enough datasets. This approach is highly effective for determining the location and 

severity of structural damage in real-world structures, especially when measurement data are limited 

in practical applications. 

3.2. State of the art 

Civil infrastructure faces potential damage from aging, operational use, and environmental 
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factors, posing safety risks. Early detection of structural damage is crucial to prevent severe 

consequences and ensure safety. Vibration-based damage detection, exploring changes in dynamic 

responses, has been extensively studied. Two main categories include model-based methods, relying 

on accurate numerical modeling, and data-driven approaches. Model-based approaches, such as 

(Manoach et al. 2017), require precise numerical models but are susceptible to uncertainties like 

modeling errors, operational variations, and measurement noise (Meruane and Heylen 2012; Kostic 

and Gul 2017; Gao and Mosalam 2022). Detecting structural damage early on is crucial to mitigate 

risks and prevent costly failures.  

The growing interest in data-driven approaches for structural damage detection is evident in 

recent research efforts (Ye et al. 2019; Avi et al. 2021; Cheraghzade and Roohi et al. 2022; Yu et al. 

2023b; Hao et al. 2022; Sony et al. 2021). Leveraging abundant structural monitoring data, deep 

learning (DL) models, such as the deep convolutional neural network (CNN) models proposed by Lin 

et al. (2017) and Abdeljaber et al. (2018), have demonstrated capabilities in localizing and quantifying 

damage using raw time-domain responses and acceleration measurements. However, these traditional 

data-driven methods encounter practical limitations. Firstly, they assume that measurements for 

damage prediction share the same distribution as those used to train the DL model, a presumption 

often invalidated by modeling errors, measurement noise, and environmental variations. This 

discrepancy can render the trained model inadequate for predicting damage in the target structure. 

Secondly, achieving accurate predictions necessitates a large amount of labelled data representing 

various damage states, a costly and time-consuming endeavor. Addressing these challenges, this 

research introduces a transfer learning-based method for structural damage identification, designed 
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to improve the efficiency and practicality of data-driven approaches. 

Transfer learning (TL) emerges as a solution to address data insufficiency in structural health 

monitoring (SHM) by leveraging numerical simulations to provide ample labelled data in the source 

domain. In SHM practice, obtaining labelled data from real structures in the target domain is limited 

(Kandel and Castelli 2020; Mishra et al. 2022). TL helps alleviate label sparsity by incorporating 

unlabeled data from the structure, effectively expanding the dataset (Gao et al. 2018). Previous studies, 

such as Yu et al. (2022, 2023a) and Azimi and Pekcan (2019), showcased the efficacy of TL in tasks 

like concrete crack detection and structural damage investigation using deep neural networks. Lin et 

al. (2022) demonstrated domain adaptation for structural damage detection, outperforming traditional 

CNN models. Wang and Xia (2022) addressed label space inconsistency between domains using re-

weighted adversarial domain adaptation (RADA), achieving robust damage detection even with 

varying structural characteristics. Han et al. (2022) presented a CNN-based method for localizing and 

quantifying bolt loosening in large-span spatial structures, employing data augmentation and TL to 

enhance accuracy with limited measurements. Despite these advancements, limited studies have 

explored the use of labelled data from real structures to predict damage severity, and there is a gap in 

understanding the interpretability of features extracted by deep learning (DL) models in relation to 

physical performance. One main objective of this research is to improve the performance of datasets 

in the target domain by utilizing the characteristics of the main dataset in the source domain. 

Specifically, the proposed method fine-tunes the fully connected layer (FC) layers to adapt the 

network weights for the target domain, building on insights from Too et al. (2019) and Mishra and 

Passos (2021). This approach addresses the challenges of sparsely labelled data and enhances the 
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interpretability of DL-extracted features, contributing to the advancement of reliable and explainable 

structural damage detection methods. 

The chapter focuses on designing an innovative method for structural damage detection, 

leveraging transfer learning to address challenges posed by limited measurement data. Validation is 

performed using a three-storey building structure, where the real structure and its numerical model 

represent the target and source domains, respectively. A custom CNN model is pre-trained using 

various damage scenarios generated from the numerical model. Subsequently, the pre-trained DL 

model undergoes fine-tuning using limited measurement data from the actual structure. This approach 

optimally utilizes labelled information from both simulated and physical models across source and 

target domains, creating a generalized DL model. TL for SHM involves training the network with 

abundant source domain data from a numerical model, adjusting weights on the fully connected layer 

using target domain data, and testing it with additional target domain data under corresponding 

damage scenarios. Numerical and experimental studies confirm the effectiveness and accuracy of the 

proposed method in identifying structural damage with limited measurement data from real structures.  

3.3. Theoretical background 

3.3.1. The convolutional neural networks (CNN)  

The CNN, known for its advantages in receptive fields, spatial down-sampling, and weight 

sharing (Krizhevsk et al. 2012), serves as the backbone in transfer learning-based structural damage 

detection. Figure 1 depicts the CNN architecture for regression, consisting of Conv-ReLU-Pooling, 

Fully Connected (FC), and Output modules. Batch normalization (BN) is typically employed for 

model training, contributing to the overall effectiveness of the system. 
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Figure 3-1 CNN structure for regression. 

Conv-ReLU-Pooling module consists of a convolutional layer (Conv), an activation function 

layer (such as rectified linear unit - ReLU or sigmoid), and a pooling layer (Nair and Hinton 2010; 

Yu et al. 2022). In this block, the convolutional layer scans the input, generating dot products with 

kernels across the feature diagram. ReLU is a common activation function, preventing gradient 

vanishing. The pooling layer condenses the feature map spatially, enhancing robustness without 

parameters, unlike convolutional layers. Max and average pooling are common techniques, 

calculating the maximum or average values in receptive regions, respectively. These components 

collectively contribute to feature extraction and nonlinearity in the convolutional neural network 

architecture. 

The FC and Output module in a CNN consists of FC layers following Conv-ReLU-Pooling 

modules. Similar to a conventional multilayer perceptron, flattened features from earlier modules are 

processed by FC layers for classification or regression. The linear function is commonly used for 

precise output label values in regression tasks. 

BN is introduced to speed up the training and handle internal covariate shifts by normalising and 

re-scaling the input data. BN is located between the convolutional layer and the nonlinear activation 
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operation function (Bjorck et al. 2108).  

3.4. Methodology  

3.4.1. Problems Definitions 

In transfer learning (TL), it is important to define two main objectives: a domain and a task 

A domain 𝐷 = {𝒳, 𝑃(𝑋)} covers the feature 𝒳 and a marginal distribution 𝑃(𝑋), where 𝑋 =

{𝓍𝑖}𝑖−1
𝑁  ∈ 𝒳.  

A task of this domain is defined as 𝒯 = {𝒴, 𝑓( . )}, including 𝒴 is the label space and 𝑓( . ) 

predictive function (also considered as conditional distribution 𝑃(𝓎|𝓍)), learnt from the training data 

set {𝓍𝑖 , 𝓎𝑖}𝑖−1𝑁  where 𝓎 ∈  𝒴.  

TL is given a source domain 𝐷𝑆 = {𝒳𝑆, 𝑃(𝒳𝑆)} and its task 𝒯𝑆 = {𝒴𝑆, 𝑓𝑆 ( . )} , and the target 

domain  𝐷𝑇 = {𝒳𝑇 , 𝑃(𝒳𝑇)}  and the task 𝒯𝑇 = {𝒴𝑇, 𝑓𝑇 ( . )} . Assuming that 𝐷𝑆 ≠ 𝐷𝑇  and 𝒯𝑆 ≠

𝒯𝑇, the TL is conducted to improve the target predictive function 𝑓𝑇 ( . ) in 𝒯𝑇 by transferring the 

knowledge learned from 𝐷𝑆  and 𝒯𝑆  to the target domain. TL methods are based on whether 

𝒳,𝑃(𝑋), 𝒴 𝑎𝑛𝑑 𝑃(𝓎|𝓍)} are consistent across the source and target domains. Fine-tunning is one of 

the TL methods: for a given source domain 𝐷𝑆 and its task 𝒯𝑆, the target domain and its task are 𝐷𝑇 

and 𝒯𝑇. It is conducted to share the part of parameters previously learned from 𝐷𝑆, and then reweight 

the residual parameters using some labelled datasets from 𝐷𝑇  to improve the target prediction 

function 𝑓𝑇 ( . ) in 𝒯𝑇. It is noted 𝑃(𝒳𝑆) ≠  𝑃(𝒳𝑇) and 𝑃(𝒴𝑆|𝒳𝑆) ≠  𝑃(𝒴𝑇|𝒳𝑇).  

For the case study conducted here, the source and target domains are presented in different but 

similar structures, while the task is to represent the damage data to improve damage detection. The 

feature spaces for source and target domains are the same and their marginal distributions are different 
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e.g. 𝒳𝑆 = 𝒳𝑇 , 𝑃(𝒳𝑆) ≠  𝑃(𝒳𝑇) . The tasks are different but relative (𝒯𝑆 ≠ 𝒯𝑇), in which the label 

spaces are the same and their prediction functions are different, e.g. 𝒴𝑆 = 𝒴𝑇, 𝑃(𝒴𝑆|𝒳𝑆)  ≠

 𝑃(𝒴𝑇|𝒳𝑇). Regarding the studies in this work, the damage state data for the model provides the same 

feature space, and the marginal distribution and the conditional distribution are various from different 

structures forming the sources and target domains. 

3.4.2. Fine-tuning techniques for TL 

The fine-tuning (FT) transfer learning method involves sharing learned parameters from a source 

domain with a target domain, where a pre-trained model predicts labels in the target domain using 

limited labelled data. The algorithm comprises two steps: training an initial CNN on well-labelled 

source data, extracting comprehensive features; and fine-tuning with limited target domain data, 

where only the fully connected and output layers are retrained. Structural damage detection involves 

learning labelled data from 𝐷𝑆, fine-tuning the model using 𝐷𝐹𝑇, and testing it on 𝐷𝑇𝑒𝑠𝑡. Table 3-1 

provides details of source and target domains. This approach optimally leverages existing knowledge 

for effective structural damage prediction with minimal labelled target domain data. 

Table 3-1. Description of source and target domains. 
 Domain Task Classes Datasets 

Source 
Domain  

𝐷𝑆  = {𝒳𝑖
𝑆, 𝒴𝑖

𝑆} 
𝑖 = 1, . . . , 𝑛𝑠 

𝒯𝑆 = {𝒴𝑆, 𝑓𝑆 ( . )} 𝑁𝑠 𝐷𝑇𝑟𝑎𝑖𝑛 ⊂ 𝐷𝑆 

Target 
domain  

𝐷𝑇1 = {𝒳𝑗
𝑇, 𝒴𝑗

𝑇} 
𝐷𝑇2  = {𝒳𝑗

𝑇} 
𝑗 = 1, . . . , 𝑛𝑡 

𝒯𝑇 = {𝒴𝑇, 𝑓𝑇 ( . )} 𝑁𝑡 
(𝑁𝑡 ⊂ 𝑁𝑠 ) 

𝐷𝐹𝑇 ⊂ 𝐷𝑇1  
𝐷𝑇𝑒𝑠𝑡 ⊂ 𝐷𝑇2 

Figure 3-2 illustrates the CNN-based TL architecture. The numerical model is validated against 

the experimental model, generating dynamic responses. The initial CNN is trained on datasets from 

numerical simulations of the three-storey building, including intact and damaged scenarios. 

Subsequently, the model is fine-tuned with limited measurement data, updating only the last FC and 
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output layers based on the new structural dynamic features. The fine-tuned model is tested on 

measurement data to predict real structural damage location and severities. Extracted features are 

visualized for damage localization and qualification.   

 

Figure 3-2. Architecture of the CNN based fine-tuning (FT) transfer learning 

3.5. Data collection  

3.5.1. Experimental tests 

Figure 3-3 shows the three-storey building structure. Dynamic responses are measured using 

three sensors, each installed on a separate floor of the structure. The basic components of the structure 

were two identical columns with a 50 ×3 mm cross-section, and a 900 mm length displayed, as well 

as three steel beams measuring 394 (length)×50 (width)×30 (thickness) mm. The height of each storey 

is 300 mm, and all structural components are made of high-strength steel featuring a yield stress of 

435 MPa and a modulus of elasticity of 200 GPa. 

Various damage scenarios, including single and double damage, were simulated in the three-

storey building structure. Symmetrical saw cuts on the column induced damage, as illustrated in 
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Figure 3-4. For experimental data, two symmetrical cuts simulated the damage scenario. Four 

structural conditions were considered: intact (D0), 10% damage on the second floor (D1), 20% 

damage on the second floor (D2), and double damage with 20% on the second and 10% on the third 

floor (D5). Impact testing with an impact hammer was conducted, measuring dynamic responses on 

each floor with piezoelectric accelerometers. The obtained time-domain data were transformed into 

frequency response functions (FRFs) with a frequency range of 30 Hz and 660 data points, creating 

2D data samples representing structural vibrations. A total of 648 FRF datasets were collected through 

54 repeated tests for each of the four scenarios.

(a) Configuration of the building structure (b) Experimental setup

Figure 3-3. Three-storey building structure

Figure 3-4. 5% (2.5 mm on each side) damage to a column at the third storey

3.5.2. Numerical modelling

A shear building model can be reduced to a lumped mass representation in a two-dimensional 

plane. The lumped mass model for a three-storey structure is shown in Figure 3-5. The structural 

system is expressed as 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝒖(𝑡). In which, Where 𝑴 , 𝑪 and 𝑲

correspond to the mass, damping, and stiffness matrices of the system. �̈�(𝑡), �̇�(𝑡) and 𝒙(𝑡)are the 
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acceleration, velocity and displacement respectively. 𝒖(𝑡) is the input force vector. The mass of the 

first, second and third floors is 5.20 kg, 4.99 kg, and 4.92 kg, respectively. The lumped mass model 

was constructed using Matlab v.2020a.  

 

                                           

(a)The share-type building model                   (b) The lumped mass model 

Figure 3-5. The lumped mass model of the three-storey building 

Before generating data, the validity of numerical model is confirmed by comparing it with 

experimental results. Table 3-2 displays natural frequencies without damage, revealing small 

differences 1.61%, 1.18%, and 0.19% confirming the accuracy of numerical model. Figure 3-6 

illustrates FRFs for three floors from both models, highlighting that uncertainties in stiffness and 

mass contribute more to structural behavior changes than the numerical-experimental model 

discrepancies. The validation process assures the numerical model's reliability in representing the 

three-storey building structure accurately. 

Table 3-2. Natural frequencies of experimental and numerical models 
  Mode  First mode Second mode Third mode 

   Freq. (Hz)  Freq. 
Change  

Freq. 
(Hz)  

Freq. 
Change  

Freq. (Hz)  Freq. 
Change  

Numerical model  5.59 - 15.27
  

- 20.64  - 

Experimental model 5.50  1.61% 15.09 1.18% 20.68 0.19% 

To train the network comprehensively, numerical simulations were conducted to simulate 

various damage severities and locations, allowing the network to learn diverse features of structural 
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damage from the source domain data. Using the validated model, seven damage scenarios are 

simulated, ranging from intact (D0) to 30% stiffness reduction on different floors (D0 is the intact 

structure, D1 is the 0-30% damage on 1st floor, D2 is the 0-30% damage on 2nd floor, D3 is the 0-

30% damage on 3rd floor, D4 is the 0-30% damage on 1st and 2nd floor, D5 is the 0-30% damage on 

2nd and 3rd floor, and D6 is the 0-30% damage on 1st and 3rd floors). Applying an 840 N impact 

force at three reference points on each floor, time-history responses are obtained, corresponding to 

experimental sensor locations. FRFs are then calculated with a range of 0-30 Hz. Each FRF dataset 

comprises 660 spectral lines with a frequency resolution of 0.045 Hz. In total, 1701 (81 damage 

severities× 3 impact locations ×  7 damage scenarios) FRF datasets are generated. The details of 

training, fine-tuning (validating) and testing dataset are provided in each subsection for section 5.3 

and 5.4.  

 

Figure 3-6. FRF for experimental and numerical models (intact structure) 

3.6. Results and discussions 

3.6.1. CNN training  
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The proposed TL-based structural damage detection relies on a CNN as its backbone, and its 

architecture and hyperparameters are detailed in this section. For feature identification through FT, 

the same CNN model is used for training and weight tuning to handle the FRF. Table 3-3 outlines the 

architecture of CNN, comprising convolutional and pooling layers with small kernel sizes for 

capturing local features. The network's capacity improves with an increasing number of layers, 

enhancing its ability to recognize complex patterns. Four avg-pooling layers minimize the feature 

map size, and to avoid premature feature loss during training, kernel numbers in convolutional layers 

increase with depth. The CNN concludes with a few FC layers for regression, providing predictive 

values with extensive capacity at a low computational cost. 

Table 3-3. Architecture of the CNN 

Layer Input Type Kerne
l num. 

Kernel 
size 

Stri
de 

Activati
on Output 

Layer 1 (3,660) 

Conv2D 16 (1, 55) 1 ReLU 

(3, 202) 
BatchNor

m2D 16    

AvgPool2
D  (1, 3)   

Layer 2 (3,202) 

Conv2D 16 (2, 10) 1 ReLU 

(2, 96) 
BatchNor

m2D 16    

AvgPool2
D  (1, 2)   

Layer 3 (2,96) 
Conv2D 16 (1, 5) 1 ReLU 

(2, 92) BatchNor
m2D 32    

Layer 4 (2,92) 
Conv2D 32 (2, 2) 1 ReLU 

(1, 91) BatchNor
m2D 32    

Layer 5 (1,91) Flatten 32  Non
e None (1, 3) 

Linear None    

By processing the FRFs to compute the amplitude as input, the CNN is employed to create the 
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damage identification algorithm. In Section 4, it is emphasized that the calculated signal should be 

the number of levels × frequency length. Extracting the first 30 Hz signal to identify features, a large 

kernel size is realistic for the 2D vibration signal matrix. Using a 3×660 (three sensors) signal matrix 

as input and 1×3 as output for training the CNN model, a kernel size of 50×1 is selected. Datasets for 

various damage scenarios train the CNN model, each containing 243 randomly generated damage 

severities.  

Meanwhile, all activation functions in each network layer are scaled as rectified linear units 

(ReLU), activating nonlinear mapping. ReLU returns positive values unchanged but converts zero or 

negative input values to zero. Using ReLU in convolutional layers enhances training speed, allowing 

for efficient gradient processing with low computational cost.  

During the training, the Adam algorithm substitutes stochastic gradient descent in deep neural 

networks (Kingma and Ba, 2014). 𝐿2 regularization (weight decay) is added to control layer weights, 

enhancing network generality. Epochs regulate the training duration, stopping when the best 

performance is achieved based on validation data. The optimal epoch value ensures network 

efficiency when the best performance is not updated. 

Table 3-4. Hyperparameters of CNN 
Name  Value Description 

Batch size  128 The number of training examples used in 
one integration  

Step per epoch 600 The number of steps in a training epoch 
Initial learning 

rate 
0.001 Learning rate at which the optimization 

method is initially trained 
Momentum 0.9 Weight of the momentum term in Adam 
𝑳𝟐 rate 0.003 Considering L2 regularisation (Weight 

decay) 
Shuffle True  



 

32 

 

 

 

 

 

 

 

Figure 3-7. Flow chart of CNN for structural damage detection 

To ensure uniformity across all damage scenarios, manual hyperparameter tuning is conducted 

for the specific network based on the structure in Table 3-4. A lower learning rate (0.001) stabilizes 

performance during convergence (Cooijmans et al., 2016). . Shuffling training data every epoch 

prevents bias and aids fast convergence, particularly given the orderly range of damage severities in 

the data. The proposed method's flowchart is outlined in Figure 3-7, depicting the systematic approach 

to ensure consistent and optimized training for all damage scenarios. 

3.6.2. Fine-tuning based on CNN 

For a deep CNN, increased network depth intensifies training duration due to heightened 

complexity and growing parameters. Transfer Learning (TL) offers an effective solution by reducing 

dependence on vast datasets. Transfer learning (TL) leverages features from a source domain and 

applies them to a target domain with comparable data types. While some research applies TL 

successfully in vision-based SHM for structural damage detection and classification tasks (Azimi and 

Pekcan 2019; Gao and Mosalam 2018), there is a gap in TL application for regression tasks in 

vibration-based SHM. In vibration-based SHM TL, pre-trained network feature layers remain fixed, 

optimizing regression layers with reduced computational costs.  
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Figure 3-8. CNN configurations for the pre-trained and fine-tuned models 

Figure 3-8 depicts the configurations of CNN models for both pre-trained and fine-tuned models. 

In typical TL, FC layers from pre-trained networks are replaced with new layers for regression tasks. 

In this study, FC layer structure remains consistent with the pre-trained CNN, but the weight of each 

neuron on the FC layer is updated based on new data. During training, the neuron weights generated 

from convolutional layers are fixed, and 'Flatten' output serves as training data to modify linear layer 

weights for predicting damage levels. In vibration-based SHM, common TL applications involve fine-

tuning pre-trained DL models from image datasets. This proposed method advances upon that, 

replacing the dataset with FRFs from structural responses in different domains. As discussed in the 

pervious Section, FRFs from different damage scenarios generated in the numerical model act as the 

source domain for CNN training, and FRFs from the numerical or physical model with uncertainty 

serve as the target domain to update FC layer weights.  

Loss Function 
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In this study, the mean square errors (MSE) between real and predicted values are utilised to 

define the loss function of CNN, illustrated in Figure 3-7. The expression of MSE is given as below. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2
                                                𝑛

𝑖=1    Eq. 3-1 

where 𝑌𝑖 and �̂�𝑖 are the true and predicted values of the ith sample among the total n samples. 

Regularly, MSE is used to evaluate the fitting performance of the regression problems. 

Damage evaluation indices 

In this study, two regression metrics are used to indicate the performance of the prediction of FT 

for TL. These indices are formed from the true labelled values  {𝒀𝑖 , 𝑖 = 1,2, … , 𝑛} and predicted 

values {�̂�𝑖 , 𝑖 = 1,2, … , 𝑛}, where n is the number of samples. Each value is a vector that has three 

elements to represent the damage severities of three floors in this study. Symmetric mean absolute 

percentage error (SMAPE) is a regression accuracy measurement based on the relative errors as below. 

𝑆𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

| �̂�𝑖−𝑌𝑖|

(|�̂�𝑖|+|𝑌𝑖|)/2
𝑛
𝑡=1                    Eq. 3-2 

The absolute difference between 𝑌𝑖 and �̂�𝑖 is defined as half the sum of their absolute value of 

them. The value of these calculations is summed for every fitted value i and over again by the sample 

number n, to find the final mean value. The symmetric absolute percentage error (SAPE) is proposed 

to calculate the distribution of the relative error as 

𝑆𝐴𝑃𝐸 =  
| �̂�𝑖−𝑌𝑖|

(|�̂�𝑖|+|𝑌𝑖|)/2
                          Eq. 3-3 

Different from SMAPE, SAPE only requires the difference between 𝑌𝑖 and �̂�𝑖 , and it requires 

checking the relative error of each sample for each damage scenario instead of the mean value of the 

entire samples.  

3.6.3. Knowledge transfer between two models with uncertainty  
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3.6.3.1. Data generation from two models  

To explore knowledge transfer and the impact of uncertainty, two numerical models, Models 1 

and 2, are utilized. Model 2, validated in Section 4.2 using experimental results, serves as the source 

domain, while Model 1, the target domain, incorporates modelling errors. The masses are represented 

by three degrees of freedom (𝑚1, 𝑚2, 𝑚3), and stiffness elements are calculated from each column 

in bending (𝑘𝑏 = 3𝐸𝐼/𝑙𝑐3). Detailed properties of Models 1 and 2 are in Table 3-5, and their natural 

frequencies are listed in Table 3-6. Differences in natural frequencies between Models 1 and 2 (5.72%, 

5.96%, and 5.47%) indicate modelling errors in Model 1, considered as the uncertainty in this study. 

Table 3-5.Properties of Models 1 and 2 

Model DOF 
𝒅𝒕 

Beam geometry 
{𝒍𝒄, 𝒘𝒄, 𝒕𝒄} 

(mm) 

Mass geometry 
{𝒎𝟏,𝒎𝟐,𝒎𝟑} 

(kg) 

Elastic 
modulus E 

(GPa) 

Stiffness 
{𝒌𝟏, 𝒌𝟐, 𝒌𝟑} 

(𝒌𝑵/𝒎) 
Model 2 3 {915, 50, 3} {5.20, 4.99, 4.92} 20 {44.539,23.126,23.709} 
Model 1 3 {915, 50, 3} {5.24, 5.07,4.99} 20 {49.968,26.012,27.291} 

The efficacy of proposed method is demonstrated through single and double damage detection. 

Stiffness reduction on columns simulates structural damage, generating datasets for different damage 

scenarios using two models. Acceleration responses are measured on each floor subjected to impact 

forces. These FRF data serve as CNN input, with CNN output indicating damage location and severity 

in the label space. For instance, output {0 0.2 0.1} signifies damage on the second and third floors, 

with severities of 20% and 10%, respectively. 

Table 3-6. Natural frequencies of Models 1 and 2. 
Model  First mode Second mode Third mode  

Frequency 
(Hz)  

Frequency 
difference  

Frequency 
(Hz)  

Frequency 
difference  

Frequency 
(Hz)  

Frequency 
difference  

Model 
2 

5.59 - 15.27  - 20.64  - 

Model 
1 

5.91 5.72% 16.18 5.96% 21.77 5.47% 

3.6.3.2. Effects of impact locations 
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Model 2 is used to study the effect of impact location. Figure 3-9 displays FRF plots for the 

structure under various impact locations. Each subfigure is labeled with two digits: the first indicating 

the floor number, and the second representing the impact location. For instance, "23" corresponds to 

the second floor's FRF with an impact on the third floor. Rows represent FRFs of three floors with a 

single impact location, and columns show FRFs of one floor with impacts at different levels. A row 

with FRFs of three floors and the same impact location forms a CNN input sample. To assess the 

impact location effect, four damage scenarios (D0, D1, D2, D3) from Section 4.2 are simulated, 

generating 81 samples per floor. The total training samples for each damage scenario amount to 243 

for training the CNN model. 

 

Figure 3-9. FRFs of three floors with three impact locations (intact scenarios) 

The t-distribution stochastic neighbor embedding (t-SNE) method is employed for feature 

visualization, reducing high-dimensional data to low dimensionality (Matten and Hinton 2008). In 

Figure 3-10, features from FC layers depict four damage scenarios impacted by three locations (intact 

D0, first-floor damage D1, second-floor damage D2, and third-floor damage D3). Features are plotted 
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with different colors for each impact location, revealing variation with impact location. Each impact 

exhibits three feature clusters corresponding to damage scenarios, with features from the intact 

scenario concentrated at one corner. Features for each single damage scenario (0 to 30%) gradually 

extend from the intact scenario. In subsequent studies, the first-floor impact location is generally 

considered.   

 

Figure 3-10.Feature visualisation through t-SNE for different damage scenarios and impact 
locations (Note: D0, D1, D2 and D3 represented by (×), (�), (○) and  (◊) respectively; Brown, pink 

and black indicates the impact on the first, second and third floors respectively.) 

3.6.3.3. Knowledge transfer from Model 2 to Model 1  

In Section 5.3.1, Model 2 is treated as the source domain with ample labeled data, while Model 

1 is the target domain with limited data. Knowledge from Model 2 is applied to Model 1 for structural 

damage detection. Table 3-7 displays sample numbers for training and testing in each domain, 

covering scenarios D0 to D6. 243 samples per scenario are generated from Model 2 as source domain 

1 (SD1), totaling 1701 samples. Target domain 0 (TD0) comprises 243 samples from Model 1's intact 
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scenario and 81 samples from each damage scenario. The initial CNN model is trained exclusively 

with data from SD1. Performance is verified using testing data from TD0 (Table 3-7). The pre-trained 

model is then fine-tuned with limited data from TD0, and its performance is compared with the initial 

model using 162 samples for each scenario during testing. It is noted that the fine-tuned and testing 

data are from the same dataset and both are randomly selected.  

Table 3-7. Sample numbers of different damage scenarios for source and target domains 
 Training Testing 

  Inta
ct 

Single 
damage 
0-30% 

Double 
damage 
0-30% 

 Intact Single 
damage 
0-30% 

Double 
damage 
0-30% 

Source 
Domain 

1 
(SD1) 

Model 
2 

(CNN) 

D0 
243 

D1 243 D4 243 Model 
1 

(TD0) 

D0 162 D1 162 D4 162 

D2 243 D5 243 D2 162 D5 162 

D3 243 D6 243 D3 162 D6 162 

Target 
domain 

0 
(TD0) 

Model 
1 (FT) 

D0 
81 

D1 81 D4 81 Model 
1 

(TD0) 

D0 162 D1 162 D4 162 

D2 81 D5 81 D2 162 D5 162 

D3 81 D6 81 D3 162 D6 162 

Figure 3-11 illustrates the t-SNE feature for first-floor impact, exploring feature changes with 

damage location and severity, including both single and double damage scenarios. The 2D plot reveals 

overlapping features for double damage (D4, D5, D6) with corresponding single damage scenarios, 

indicating a relationship. D4 overlaps with D1 and D2, and D5 and D6 overlap with their respective 

single damage scenarios. Lighter blue and darker blue labels denote double damage scenarios with 

trends aligning with D2. Additionally, the feature trends of D1 and D4 intersect precisely at 10% and 

20% damage of D1, emphasizing distinct features for double and single damage scenarios and an 

evident relationship between them. 

It is assumed that the feature distributions of data from the source and target domains are 
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identical. Figure 3-12 presents a t-SNE visualization of features from these domains using the initial 

CNN model. The differing feature distributions highlight the discrepancies between the source and 

target domains, showcasing the influence of modeling errors on the mapping of damage classes in the 

label space. This discrepancy could lead to misclassification and poor regression performance. The 

study employs a large number of source domain samples for initial CNN training and a small number 

for fine-tuning the pre-trained model. By fine-tuning with limited target domain data, the weights in 

the fully connected layer are adjusted, allowing accurate classification and regression of target data 

while utilizing knowledge from the source domain. 

 

Figure 3-11. t-SNE visualization of features extracted from the data of the source domain 
(Note: Red is for D0, Grey, yellow and green are for D1, D2 and D3; Light blue is the double 

damage scenario 20%, 0-30% damage on the first and second floors; Blue is the double damage 
scenario 30%, 0-30% damage on the first and second floors; Light purple is the double damage 

scenario 20%, 0-30% damage on the second and third floors; purple is the double damage scenario 
30%, 0-30% damage on the second and third floors; Light pink is the double damage scenario 20%, 

0-30% damage on the first and third floors; purple is the double damage scenario 30%, 0-30% 
damage on the first and third floors.) 

Figure 3-13 displays the MSE loss of the validation dataset for each epoch during fine-tuning on 

the target model data. The MSE loss of the proposed method is significantly smaller than that of the 
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initial model, indicating that fine-tuning leads to faster learning and more accurate results. The initial 

MSE value for the fine-tuned model is lower than the initial CNN model, demonstrating that target 

domain data efficiently readjust the weights on the FC layer, progressively reducing MSE loss to 

accommodate variations between Models 1 and 2. The reduced MSE loss signifies improved 

adaptation to structural features, suggesting more suitable weights for effective structural damage 

detection. 

 

Figure 3-12. t-SNE visualization of features using FT for structures with modelling errors (The 
data for the source domain 1 and the target domain 0 are denoted by (◊) and (�) respectively. Red, 

grey, yellow and green are for D0, D1, D2 and D3 respectively.) 
 

Figure 3-13. The MSE loss of the validation dataset for each epoch with the initial and FT models 

Figure 3-14. indicates the model regression performance, in which the top figure shows that the 

initial CNN model predicted results and the bottom figure is for predicted results by the FT model. 
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The results show that the FT model outperforms the initial model with the performance increased 

from 𝑅2=0.2075 to 0.9922. The regression model effectively captures the linear relationship between 

predicted and true values, indicating the proposed method’s accurate prediction of damage severities 

even in the presence of model errors.  

 

Figure 3-14. Regression analysis of testing results without or with FT 

 

(a)Target domain 0 



 

42 

 

 

 
(b)Target domain 0 with 3% 

noise 

 

 
Target domain 0 with 5% 

noise 

 

 
Target domain 0 with 10% nois 

Figure 3-15. Box charts for predicted and true damage severities with or without FT.  
 

 

Noise effects  

To further validate the robustness of the proposed method. The 3%, 5% and 10% Gaussian white 

noise are added the target structure responses to TD0, 𝑋𝑛𝑜𝑠𝑖𝑒 = ~𝑋 +𝒩(𝜇, 𝜎), where 𝑋 is the noise-

free data. 𝒩(𝜇, 𝜎) is the standard normal distribution for Gaussian process. 𝜇, 𝜎 are the mean value 

and standard deviation of the noise. In this study, 𝜇 is equal 0, and 𝜎 is equal to 0.03, 0.05 and 0.1 

respectively. Figure 3-15 illustrates the comparison of single damage predicted results using the CNN 

model with and without fine-tuning. The figure displays the median of predicted data, with the box 

indicating the interquartile range (IQR) between the 25th and 75th quantiles. Whisker lines, extending 

from the box, depict the expected data variation (1.5 times the IQR). The upper and lower whisker 

boundaries cover 95% of data points within the predicted damage range for each severity in the 

experimental model. Outliers, exceeding the expected data variation, are represented by black lines. 

Figure 3-15 (a) plot the predicted results for TD0 comparing without FT and with FT. The damage 

severities can also be used to identify damage locations by examining their maximum values. The 

proposed method that includes FT significantly decreases the range of predicted damage severity 
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compared to the CNN model without FT. The medians for all three damage severities closely align 

with their true values, indicating high accuracy and overall performance. Figure 3-15(b) presents 

results for TD0 with varies noise levels, showcasing substantial improvement of proposed method in 

damage predictions. The comparison between the distributions in Figure 3-15(a) and 3-15(b) 

highlights that the outlier for TD0 with noise is larger than that for TD0 without noise, emphasizing 

the slightly deceased predicted accuracy with an increase level of random noise from the target 

domain.  

3.6.4. Knowledge transfer from numerical to experimental models 

This section is to study the knowledge transfer from numerical simulation to real structure. The 

numerical model is considered as the source domain and the real structure is the target domain. 

Various combinations of damage scenarios are constructed to create distinct domains, and the 

outcomes are utilized to evaluate the proposed method's performance. 

3.6.4.1. Analysis of single damage scenarios  

In this section the single damage scenarios are studied. FT technology is employed to adjust the 

fully connected layer weights for damage classification and regression in structural damage detection. 

The source domain involves four scenarios generated using Model 2: D0 (intact), D1 (0-30% damage 

on 1st floor), D2 (0-30% damage on 2nd floor), and D3 (0-30% damage on 3rd floor). In the target 

domain, limited measurement data include the intact structure D0, 10D2 (10% damage on 2nd floor), 

and 20D2 (20% damage on 2nd floor). Figure 3-16 displays the FRF plot for various damage 

scenarios from the experimental model.   
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Figure 3-16. FRFs of three floors with different damage scenarios from the experimental 
model (nd is intact structure; 10d is single damage scenario 10% on the second floor; 20d is 

single damage scenario 20% on the second floor;  20d10d is the double damage scenario 20% 
and 10% damage on the second and third floors) 

Table 3-8. Lumped mass model, single damage case study: sample numbers in each damage 
scenario for each domain. 

 Training  Testing  
  Intact Single damage Target domain Intact Single 

damage 

Source 
Domain 1 

(SD1) 

Numerical 
Model 
(CNN) 

D0 243 D1 243  
20D2 54 D2 243 

D3 243 

Target 
domain 1 

(TD1) 

Experimenta
l 

Model 
(FT) 

D0 108 10D2 108 Experimental  
Model 
(TD1) 

D0 54 10D2 54 

20D2 108 20D2 54 

Target 
domain 

2a 
(TD2a) 

Experimenta
l 

Model 
(FT) 

D0 54 10D2 54 Experimental  
Model 
(TD2) 

D0 54 10D2 54 

20D2 54 20D2 54 

Target 
domain 

2b 
(TD2b) 

Experimenta
l 

Model 
(FT) 

D0 27 10D2 27 Experimental  
Model 
(TD2) 

D0 54 10D2 54 

In real-world scenarios, limited labelled data in the target structure pose challenges for 

identifying structural damage using restricted measurements. To address this, two target domains, 

TD1 and TD2 (a and b), are established with varying amounts of labelled data from the same database. 
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Details of source domain 1 (SD1), target domain 1 (TD1), and target domain 2 (TD2) are outlined in 

Table 3-8. TD1 involves 108 samples for each scenario, while TD2a has 54 samples and TD2b has 

27 sample for each scenario. Each label is represented as a 1×3 vector, denoting damage locations 

and severities across three floors.  

Figure 3-11 illustrates the expected feature mapping for the source domain, displaying intact and 

various single damage scenarios. The target domain, featuring intact (D0), 10% damage on the second 

floor (10D2), and 20% damage on the second floor (20D2) as per Table 3-8, is presented in Figure 3-

17. The feature mapping encompasses six clusters, with three representing scenarios from the source 

domain and the others from the target domain. Notably, the feature spaces from the source domain 

are distinct from those corresponding to scenarios in the target domain. This discrepancy arises from 

differences between the numerical and experimental models. 

 

Figure 3-17. Feature visualization of FT the weight through t-SNE for single damage 
scenarios. ((◊), (+) and (○) represent the features of the training data from the source domain, the 
fine-tuning data and testing data from the target domain respectively.  Blue, green and red are 

the intact, 10% damage and 20% damage on the second floor.) 

In this study, the FT-based TL is utilized for structural damage detection. FT adjusts the weights 
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of the pre-trained CNN based on target domain features and their respective labels. Fig 18 shows that 

the average damage identification results of TD3 and TD4 from without FT and with FT. The 

proposed method is very accurate in identifying damage compared to without FT.  Figure 3-19 

portrays the predicted results for TD1. The proposed method, involving FT, significantly narrows the 

predicted damage severity range compared to the CNN model without FT. The medians for all three 

damage severities closely align with their true values, indicating high accuracy and overall 

performance. Figure 3-19 (b) and 3- 19 (c)presents results for TD2a and TD2b, showcasing 

substantial improvement of proposed method in damage predictions. The comparison between the 

distributions in Figure 3-19 (a), 3-19 (b) and 3-19 (c) highlights that the outlier for TD2a and TD2b 

is larger than that for TD1, emphasizing the enhanced predicted accuracy with an increased number 

of FT samples from the target domain. There is also the comparison between MSE value with the 

number frozen layers for the testing data of TD1, TD2a and TD2b.   

 

(a) 10% damage 2nd floor     (b) 20% damage 2nd floor 

Figure 3-18. Damage identification results of TD1, TD2a and TD2b from without FT and with 
FT 
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Target domain 1 Target domain 

2a 
Target domain 

2b 
 

Figure 3-19. Box charts for predicted and true damage severities with or without FT 
SAPE is introduced as relative errors to evaluate the overall predicted results.  

Figure 3-20 shows the overall percentage of errors in predicted damage severities. In Figure 3-

20(a), the 20% damage is much more sensitive and it is much close to zero. In Figure 3-20(b), both 

two damage severities are accurately predicted by the proposed method and the relative errors are 

between -0.5% to 0.7%. Compared with the TD1 case, the TD2 case uses half the number of 

experimental data for fine-tuning, and its SAPE value is slightly higher than that of TD1. This is due 

to the use of less data to adjust the network weight for the FC layer. Although there are half of the 

fine-tuning samples for TD2, the relative error still remains at a low level.   

     

Target domain 1     (b) Target domain 2 

Figure 3-20. Histograms of SAPE (%) on the predicted damage severities 

3.6.4.2. Analysis of double damage scenarios  

The TL is to transfer knowledge across similar structures using the pre-trained network. In this 

section, the proposed method is extended to the double damage scenarios. Table 3-9 lists the sample 
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numbers of each damage scenario for source and target domains. Those scenarios D0~D3 on the 

source domain and D0, 10D2 and 20D2 on the target domain are the same as that in Section 5.4.1. 

The double damage scenarios are introduced in this section. In the source domain, three double 

damage scenarios are added: D4 is the double damage scenario with 0-30% damage on the first and 

second floors, D5 is the double damage scenario with 0-30% damage on the second and third floors, 

and D6 is the double damage scenario with 0-30% damage on the first and third floors. In the target 

domain, the double damage scenario is 20% and 10% damage on the second and third floors (2010D5).  

Table 3-9. Sample numbers of each damage scenario for source and target domains 
  Training   Testing   
  Intact Single damage Double 

damage 
Target 
domain 

Intact Single 
damage 

Double 
damage 

Source 
Domain 

2 
(SD2) 

Numeri
cal 

Model 
(CNN) 

D0 
243 

D1 243 D4 
243 

Experi
mental 
Model 
(TD3) 

D0 108 10D2 108 
2010D5 108 
20D2 108 D2 243 D5 

243 
D3 243 D6 

243 
Target 

domain 3 
(TD3) 

Experi
mental 
Model 
(FT) 

D0 54 10D2 
54 

2010
D5 54 

Experi
mental  
Model 
(TD3) 

D0 108 10D2 108 2010D5 
108 

20D2 
54 

20D2 108 

Target 
domain 4 

(TD4) 

Experi
mental 
Model 
(FT) 

D0 54 10D2 
54 

2010
D5 0 

Experi
mental  
Model 
(TD4) 

D0 0 10D2 0 2010D5 
108 

20D2 
54 

20D2 0 

From Table 3-9, the source domain is SD2 and there are two target domains: TD3 and TD4. For 

SD2, there are 243 samples for each scenario. For TD3, there are 54 samples for each scenario to be 

used for fine-tuning and it has samples from four scenarios: D0, 10D2, 20D2 and 2010D5. The 

scenarios of TD3 have a large overlap with that of SD2, which can help with feature transfer for 

regression. TD4 has samples of intact and single damage scenarios for fine-tuning. Compared with 

SD2, TD3 and TD4 have the small sample size. 
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Figure 3-21.Feature visualization through t-SNE for different damage scenarios. (The data for 
SD2, TD3 and its testing are represented by (◊), (+) and (○) respectively.  Blue, brown, red and 

green are D0, D1/10D2, D2/20D2 and D5/2010D5.) 

Figure 3-21 shows the latent feature space for both training and testing data for different damage 

scenarios before the FT is conducted. The corresponding scenarios between source and target domains 

are compared. From Figure 3-21, there are eight clusters corresponding to four scenarios from SD2 

and another four scenarios from TD3. The t-SNE feature spaces between SD2 and TD3 have a 

substantial discrepancy. The results show that the distributions of features from SD2 and TD3 are not 

aligned and there is a domain shift.   

FT is conducted to readjust the weight for structural damage detection using the data from TD3 

and TD4. It is noted that in TD4, there is no observation for the double damage scenario in the FT 

process, and the double damage data is only used for testing. Figure 3-22 shows that the average 

damage identification results of TD3 and TD4 from without FT and with FT. The proposed method 

is very accurate in identifying damage compared to without FT. It effectively identifies the location 

of the damage and accurately assesses the severity of the damage at the damaged location, which is 
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very close to the true value. 

Figure 3-23 shows the predicted and true damage severities for TD3 and TD4 with or without 

FT. From Figure 3-23(a), the medium values of the intact and single damage scenarios without FT 

are -0.025, 0.025, 0.175 for D0, 10D2, 20D2, respectively, and the medium value of the double 

damage are -0.025 and 0.200 for 2010D5. By the proposed method, the predicted results are 0.000, 

0.100, 0.200 for D0, 10D2, and 20D2, respectively, and the predicted results of the double damage 

are 0.100 and 0.200. The predicted results by the proposed method are much closer to the true value.  

The results show that the proposed method significantly improves the accuracy of the predicted 

damage severity. In Figure 3-23(b), the predicted damage severities for 2010D5 without FT are 0.200 

and -0.025, respectively and the predicted values by the proposed method are 0.220 and -0.075. The 

results show that the predicted results for double damage scenarios have not been improved. This is 

mainly due to observations of such scenarios missing in the fine-tuning training data.  

 

 

(a)10% damage 2nd floor (b) 20% damage 2nd floor 

 



 

51 

 

 

(c) 10% damage 2nd floor & 20% damage 3rd floor 

Figure 3-22. Damage identification results of TD3 and TD4 from without FT and with FT 

  

(a) Target domain 3 (b) Target domain 4 

Figure 3-23. Box chart for predicted and true damage severities without or with FT.  

 

(a) Target domain 3    (b) Target domain 4 

Figure 3-24. Histogram of SAPE (%) for the predicted damage severities 

Figure 3-24 shows the histogram of SAPE for predicted damage severities. Figure 3-24(a) 

illustrates the FT model is more sensitive to larger damage severities i.e. 20D2 and 2010D5 as they 

are in the ranges of -1.00% to 0.25% and -0.50 to 0.25%, respectively. In Figure 3-24(b), the 

distribution of the SAPE values is decentralised with the range between -25% to -20% for the damage 

scenario 2010D5. This reflects that the FT model on TD4 is a failure to transfer the feature of double 
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damage scenarios without the same scenarios for FT.  

3.7. Summary 

A transfer learning-based approach has been designed for structural damage detection using 

limited measurement data, with its performance validated through numerical and experimental results. 

The following conclusions can be drawn: 

A TL-based method for structural damage detection is proposed, utilizing the feature extraction 

capabilities of CNNs. The CNN is first pre-trained on a large dataset generated through numerical 

simulations and later fine-tuned with limited real-world measurement data to adapt the network 

weights. This approach transfers labeled information from a numerical (source) structure to a real-

world (target) structure. Although feature distribution differences between the structures may exist, 

the method helps mitigate the challenge of limited damage data for a specific structure. 

By leveraging a 2D CNN, the proposed method focuses on extracting damage-relevant features 

from FRF data. The FT-based TL framework adjusts the FC layer weights for each specific target 

domain. This approach demonstrates a notable improvement in structural damage detection when 

compared to the initial CNN model. 

The proposed method needs a small number of labelled data from the target structure to fine-

tune the CNN model. The large amount of source domain datasets has been used to avoid the risk of 

overfitting. In practice, the required structural damage scenarios are often not available before they 

are identified in the real world, which makes it difficult to obtain the damage-labelled data for 

detecting the damage scenarios. Further study will be carried out to overcome this limitation.  
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Chapter 4. Structural damage detection based on transmissibility functions with 

unsupervised domain adaptation 

4.1. Overview 

Deep learning (DL) has been used for structural damage detection by training neural network 

models with a large amount of data. These trained models perform well when the test samples are 

from the data with an identical distribution of the training data. The distributions are always different 

due to numerical modelling errors and operational environmental varieties, and the data for damage 

scenarios is difficult to be obtained in practice. A novel method based on the joint maximum 

discrepancy and adversarial discriminative domain adaptation (JMDAD) for structural damage 

detection without labelled measurement data has been developed to address the above issues. To 

reduce the influence of external excitations in practice, the transmissibility function of measured 

structural responses is used for structural damage detection. The proposed network includes a feature 

generator, two classifiers and one discriminator. Firstly, the feature generator and domain 

discriminator are to extract features and merge their distributions at the domain level to overcome the 

issue of insufficient data from the target real structure. Secondly, the generator and two classifiers are 

optimised to align their distributions at the class level using the classification discrepancy between 

the two classifiers. As a result, the damage-sensitive features are extracted and aligned to eliminate 

modelling errors and operational environmental varieties between the source and target structures. 

Three case studies have been conducted in this chapter, e.g., one case between two building structures 

with different storeys, another case between the numerical and experimental structures subjected to 

random and earthquake excitations and the application of Canton Tower. The results show that the 
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proposed method is much robust to the measurement noise and operational environment and the 

structural damage is identified accurately without labelled measurement data from the target structure 

in operational environments.  

4.2. State of the art 

The existing civil infrastructure deteriorates due to ageing, environmental and operational 

loading. To avoid compromising operation or structural failure, vibration-based methods are used to 

detect structural damage or deterioration. Vibration based structural damage detection methods are 

often categorised into model-based and data-driven approaches (Avci et al. 2021). The model-based 

approach is based on accurate numerical modelling and the damage identified results are significantly 

affected by uncertainties, such as modelling errors, operational and environmental variations, and 

measurement noise (Hou and Xia, 2021). The data-driven approach, especially the deep learning (DL) 

based approach, has recently attracted the interest of researchers and engineers (Abdeljaber et al., 

2017; Azimi et al., 2020; Sun et al., 2020). The DL-based methods can automatically extract structural 

damage features from the input response data through stacked blocks of neural network layers to 

identify structural damage. The performance of existing vibration-based damage detection methods 

to real world structures are significantly affected by the varying environmental and operational 

conditions (Peng et al., 2022). Structural dynamic responses are related not only to structural 

parameters but also to external excitations. For complex and large structures in practice, the external 

excitation is unknown. The influence of unknown external excitations on structural damage 

identification needs to be reduced. Transmissibility function (TF) is a mathematical representation of 

the output-to-output relationship, and it is widely used for damage detection due to its sensitivity to 
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the damage and robustness to external excitations. Yan et al. (2019) presented a literature review of 

transmissibility-based system identification for structural health monitoring. Liu et al. (2023) used 

TFs for data-driven identification of structural damage under unknown seismic excitations. Mei et al. 

(2025) a TF-based online damage detection through streaming variational inference-empowered 

Bayesian nonparametric clustering. To avoid measuring the input and assuming specific models for 

the input, TF is used as input data in this study.  

Various types of DL-based methods have been proposed for structural damage detection.  Lin 

et al. (2017) used the deep convolutional neural network (CNN) to extract the damage feature and 

identify the damage location from the low-level sensor data with the measurement noise. Pathirage 

et al. (2018) utilised a deep autoencoder for effective feature learning to build the nonlinear mapping 

between the input modal information and output structural stiffness parameters for structural damage 

identification. The effectiveness of the DL-based structural damage detection methods is mainly 

based on two assumptions (Zhao et al., 2021): 1) the data being predicted (test data) have the same 

distribution of input and its labels as that of the data used to build the DL model (training data); 2) a 

large amount of labelled training data are available. In practice, it is very difficult or even impossible 

to obtain the damage state data from the real structure. The training data are normally generated using 

the numerical model of the real structure and different damage scenarios are simulated using the 

numerical model (Chen et al. 2023; Jiao et al. 2020). Due to the uncertainty, such as modelling errors, 

the operational and environmental varieties and measurement noise, the generated data using the 

numerical model are not consistent with the measurement data from the real structure (Lin et al. 2022).  

The distribution of the data from the numerical model is different with that of measurements on real 
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structures. When the trained DL models from the numerical model is applied to the real structure, its 

performance is decreased significantly (Zhang et al. 2022). It is a big challenge to detect structural 

damage without a large amount of labelled measurement data. 

Domain adaptation (DA) has been used to address the above issue for structural damage 

detection recently. Gardner et al. (2020; 2021) demonstrated the application of three domain 

adaptation techniques for population-based structural health monitoring, namely transfer component 

analysis, joint domain adaptation and adaptation regularisation-based transfer learning. Yano et al. 

(2023) also conducted a comparison for structural damage detection of the bridges using transfer 

component analysis (TCA), joint distribution adaptation (JDA) and maximum independent domain 

adaptation (MIDA) based transfer learning methods. Knowledge transfer-based DA methods highly 

depend on massive high-quality data to align the data distributions in the high dimension feature 

spaces between two domains. Xu and Noh (2021) presented a physics-informed domain adversarial 

network for knowledge transfer between structures with different storeys for damage detection and 

quantification. Lin et al. (2022) presented a maximum mean discrepancy (MMD) based domain 

adaptation method for structural damage localization. The MMD is used to measure the discrepancy 

of the feature distributions between the source and target domains. The deep domain adaptation 

network is to extract the damage-sensitive and domain-invariant features by reducing the discrepancy. 

This method requires that both domains have identical damage states (label spaces) for their datasets. 

Wang and Xia (2022) presented a re-weighted adversarial domain adaptation method for structural 

damage detection with the inconsistent label spaces between the source and target domains. A weight 

parameter is used to improve the importance of the shared label space in the domain adaptation 



 

57 

 

process, and it needs the manual intervention to modify classification weights. A large amount of 

unlabelled testing data samples are required for forming the data distribution in the target domain. Li 

et al. (2023) developed the ensembled damage-sensitive feature method based on domain adversarial 

neural network (DANN) for damage identification between simulation to real structures. As the above, 

the existing domain adaptation methods heavily rely on the precision classifiers trained from the 

source domain, and its performance is reduced significantly when the domain discrepancy is large. 

The same number of samples for the source and target domains are also needed in the domain 

adaptation process. In practice, the measurement data from real structures, especially under damaged 

states, are limited. When dealing with the insufficient labelled data and domain variance problem, it 

may be restricted for employing only class-level aligning without leveraging domain-level knowledge 

for categories. Also deploying only domain-level alignment may cause misclassification of the 

learned features. The existing methods focus on the boundary of source and target domains, and the 

subset class information has not been considered. The features located in the class decision boundary 

might be non-discriminative and misclassed (Saito et al. 2018). The information on discriminatory 

categories needs to be retained in the domain adaptation process. A joint adversarial domain adaption 

approach has been proposed to align domain and class wise distributions across the source and target 

domains in the domain adaptation process (Li et al. 2019). A dynamic joint domain adaptation neural 

network has been used to extract transferable features from cross-session motor imagery classification 

(Hong et al. 2021).  

In this chapter, a novel joint maximum classifier discrepancy and adversarial discriminative 

domain adaptation (JMDAD) method for structural damage detection using TFs is proposed. The 
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knowledge learned with the labelled data from numerical models are utilised for structural damage 

identification of real structures without labelled measurement data. The proposed network mainly 

includes one feature generator, two classifiers and one discriminator. The global domain knowledge 

is captured by the domain-level distribution alignment to minimise the domain discrepancy due to the 

modelling errors, and the local discriminative information is explored by the class-level distribution 

alignment to minimise its conditional discrepancy due to uncertainty in the numerical modelling and 

real structure. The domain and class level distributions of structural damage features are aligned 

simultaneously across source and target domains in the adversarial learning process. Two label 

classifiers are to detect the discrepancy between the source and target samples at the class level.  

Three case studies, e.g. knowledge transfer from one numerical model to another one with different 

sizes, from the numerical to experimental structures and the application of Canton tower, are 

conducted to verify the performance of the proposed method. The results show that the proposed 

method is effective and accurate to identify structural damage with limited unlabelled datasets and 

the performance outperforms existing deep domain adaptation methods.  

4.3. Methodology 

4.3.1. Problem definition 

In this study, the real structure and its numerical model are denoted as the target and source 

domains 𝐷𝑇 and 𝐷𝑆 respectively. The data for different damage scenarios can be generated using 

the numerical model. The source domain 𝐷𝑆  with 𝑛𝑠  labelled samples is defined as 𝐷𝑆 =

{(𝒙𝑠𝑖 , 𝑦𝑠𝑖)| 𝒙𝑠𝑖 ∈ 𝑿𝑆 , 𝑦𝑠𝑖 ∈ 𝑌𝑆, 𝑖 = 1,2, … , 𝑛𝑠}  , where the input data is 𝑿𝑆 = {𝒙𝑠𝑖 , 𝑖 = 1,2, … 𝑛𝑠} 

and the output label is 𝑌𝑆 = {𝑦𝑠𝑖 , 𝑖 = 1,2,… 𝑛𝑠}. The measurement data from the real structure is 
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limited, especially the data under structural damage state. The unlabelled target domain with 𝑛𝑡 

samples can be defined as 𝐷𝑇 = {(𝒙𝑡𝑖)|𝒙𝑡𝑖 ∈ 𝑿𝑇 , 𝑖 = 1,2, …𝑛𝑡} . There are two different types of 

distributions over the input and output space 𝑋 × 𝑌  for the source and target domains, one is 

marginal distribution and another one is conditional distribution. The marginal (global) distributions 

for the source and target domains are defined as P(X) and Q(X) respectively, where X refers to a 

specific learning sample 𝑋 = {𝒙𝑖| 𝒙𝑖 ∈ 𝑿𝑆 𝑜𝑟 𝑿𝑇 , 𝑖 = 1,2, …𝑚} . The corresponding conditional 

(local) distributions are 𝑃(𝑌|𝑋)  and 𝑄(𝑌|𝑋)  respectively. Due to the uncertainty, such as the 

modelling errors, the operational and environmental varieties, and the measurement noise, there is 

always a discrepancy between the real structure and its numerical model. Further, the distributions of 

the data from the source and target domains are not identical. This leads to a network pre-trained by 

the source domain data losing performance on the target domain data. To tackle the above problem, 

the unsupervised domain adaptation is used to transfer the enriched label knowledge learned from the 

source domain data to the unlabelled target domain data by adapting the feature representation or 

classifier models to reduce the distribution discrepancy between the source and target domains in this 

study.  

4.3.2. The proposed method 

This study is to develop a new method based on the joint maximum classifier discrepancy and 

adversarial discriminative domain adaptation (JMDAD) for structural damage identification. Figure 

4-1 shows the framework of the proposed JMDAD method, which mainly includes three modules: 

data pre-processing, feature extraction and domain adaptation. The raw data includes sufficient 

simulated data with structural damage labels from the source domain, and the limited unlabelled 
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measurement data from the target domain. Firstly, the raw data is pre-processed via data filtering and 

data argumentation, and the transmissibility function (TF) data are obtained by the ratio between the 

Fourier transform of the response at each floor and that on the ground (Chesne and Deraemaeker 

2013). Secondly, the 2D-CNN based feature extractor (𝐺) with four blocks is designed to extract the 

damage sensitive features from the data of both the source and target domains. Lastly, the domain 

adaption and damage identification module include two classifiers 𝐶1,  𝐶2 and one discriminator 𝐷. 

The feature generator 𝐺 is to extract the damage sensitive features from both the source and target 

domains. The feature generator 𝐺  and domain discriminator 𝐷  are to merge the marginal 

distributions at the domain level as the global alignment to overcome the issue of insufficient data 

from the real structure. The feature generator 𝐺 and two classifiers 𝐶1 𝑎𝑛𝑑  𝐶2 utilise the source 

domain data to locally align the conditional distributions of the target domain data at the class level 

using the classification discrepancy between these two classifiers. As a result, the damage-sensitive 

features are extracted and aligned to eliminate modelling errors and uncertainties between the 

numerical model and the real structure. The iteration of the local and global alignments enables to 

extract damage sensitive features for all classes to compensate the limited measurements from the 

real structure.  
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Figure 4-1. Overview of the proposed framework 

In the proposed framework, the local and global alignments are integrated to reduce the 

discrepancy in both domain and class levels simultaneously (Ganin et al., 2016; Tzeng et al., 2017). 

As shown in Figure 4 2(a), the global discriminator is to align the marginal distributions (global 

boundary in the figure) across domains, and the classifiers trained on aligned features from the source 

domain data are used to improve the prediction performance in the target domain. As shown in Figure 

4- 2(b), the local discriminator discovers and reduces the discrepancy of the conditional distributions 

for each subcategory across domains (local boundaries in the figure) by embedding the discriminative 

information in predictions of two classifiers which are used to assist in adversarial training to classify 

unlabelled target data. To summarise, the feature generator is trained to extract the target features by 
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minimising the discrepancy at both class and domain levels. In the adversarial training process, the 

generator aligns the source domain classifier boundary to generate the domain-invariance and class-

separate feature from the target domain data. By applying those two adversarial networks separately, 

different weights for adversarial loss functions are used to adapt to various divergencies 

corresponding to environmental effects or modelling errors between source and target domains 

effectively.  

 

(a) At domain level         (b) At class level 
Figure 4-2. Class and domain discrepancy alignments.  

4.3.2.1. Network architecture of JMDAD 

As shown in Figure 4- 3, the proposed JMDAD network architecture contains a generator 𝐺, 

two classifiers 𝐶1and 𝐶2, and a domain discriminator 𝐷. The network architecture and parameters 

are listed in Table 3-1. The feature generator 𝐺  is designed as three convolutional blocks for 

generating the damage-sensitive feature. The first three blocks conduct three convolutional operations, 

including Conv2D, BachNorm2D and Maximum polling. The number of channels is set as 32, 64 and 

128. With the increase in the size of the convolution block, it could compress the extracted 

information and get much robust sensitive feature. The first convolutional layer is designed as 2×32 

with Stride 1, which allows the generator to focus on the global feature. The following layers are 
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decreased for extracting the local features. The small padding number allows the network to generate 

more feature mapping after the convolutional layer. After the features are extracted by the generator, 

it is then flattened at a fully connected layer block for connecting to two classifiers. Two classifiers 

are designed as two layers for feature dimension reduction and classification. The input of Block 1 is 

set as 3D with the size of  3 × 2 × 660  corresponding to the size after the data pre-processing, 

which are corresponding to the number of data channels, and its height and width. In Table 3-1, C, H 

and W represent the channel numbers, height and width of each layer respectively. The final output 

is m×1. m is the size of outputs for damage classification. 

 
Figure 4-3. The network architecture of the proposed JMDAD 

4.3.2.2. Loss Functions 

In the proposed method, both marginal and conditional distributions are aligned by considering 

the domain and class discrepancies. The domain discrepancy exists between the marginal 

distributions of source and target domains, and the domain discriminator is to reduce the distance for 
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these distributions. The conditional distributions between two classifiers also exist between source 

and target domains under different conditions. The classifiers are trained to maximise their 

discrepancy on samples in the target domain, and the generator is to minimise it. Based on the above 

theory, the corresponding three loss functions in the algorithm are introduced as below. 

Table 4-1.The network structure of the proposed JMDAD 
Block Input  

(C, H, W) 
Type Kernel 

num. 
Kernel 

size  
Stride  Padding Output  

(C, H, W) 
Block 1 (3,2,660) Conv2D 16 (2, 32) 1 2 (32,3,317) 

BatchNorm2D 32 /   
MaxPool2D None (3, 3) 2 1 

Block 2 (32,3,317) Conv2D 16 (2, 8) 1 2 (64,3,157) 
BatchNorm2D 64 /   
MaxPool2D  (3, 3) 2 1 

Block 3 (64,3,157) Conv2D 16 (2, 4) 1 2 (128,6,158) 
BatchNorm2D 128    

  Relu Activation function 
Block 4 (128,6,158) Flatten   None  (512,1) 

Classifier (512,1) Flatten   None  (256,1) 
 (256,1) Flatten   None  (m,1) 
 (m,1) Softmax   None  (m,1) 

Classification loss 

The classification loss function is to calculate the classification errors of the source domain data:  

𝐿𝑦(𝑋𝑆, 𝑌𝑆) = −𝔼(𝕏𝑠,𝑦𝑠)∼(𝑋𝑆,𝑌𝑆)∑ 1[𝑘=𝑦𝑠] log 𝑝(𝑦|𝕩𝑠)
𝐾
𝑘=1       Eq. 4-1 

where  1[𝑘=𝑦𝑠]  if 𝑘 = 𝑦𝑠  and 0 else. 𝑘  is the number of categories (𝐾 = 𝑁𝑠  for the source 

domain), and  𝑝(𝑦|𝕏𝑠)  is the probability of the source domain  𝕏𝑠  for each class, which is 

produced by the softmax functions.  

Class discrepancy loss  

The second loss function is the class discrepancy loss between the two classifiers. With the ith 

input 𝕏𝑖, the discrepancy between the cross-entropy outputs of two classifiers is defined as (Saito et 
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al. 2018): 

𝑑(𝑝1(𝑦|𝕏𝑖), 𝑝2(𝑦|𝕏𝑖)) =
1

𝐾
∑ ‖𝑝1𝑘 − 𝑝2𝑘‖
𝐾
𝑘=1      Eq. 4-2 

where 𝑝1(𝑦|𝕏𝑖) and 𝑝2(𝑦|𝕏𝑖) are the softmax outputs of 𝐶1 and 𝐶2, respectively. And the 𝑝1𝑘and 

𝑝2𝑘 represents the cross-entropy outputs for class 𝑘 of two classifiers. The discrepancy loss of the 

target domain corresponding to the source domain is defined as the average of all samples’ 

discrepancies (Saito et al. 2018): 

𝐿𝑎𝑑𝑣𝑐(𝑋𝑡) = 𝔼𝕏𝑡∼𝑋𝑡[𝑑(𝑝1(𝑦|𝕏1), 𝑝2(𝑦|𝕏2))]        Eq. 4-3 

The second loss function detects the discrepancy between the source and target domains under 

each class, and the discrepancy of the target domain each subclass can be aligned according to the 

source domain. 

 Domain discrepancy loss 

The third loss function is the domain discrepancy loss, which is classifying whether a data point 

belongs to the source or target domain. The domain discriminator is optimized based on the general 

cross-entropy loss, where the labels indicate the origin domain as (Tzeng et al. 2017):  

𝐿𝑎𝑑𝑣𝑑(𝑋𝑠, 𝑋𝑡 , 𝑀𝑠, 𝑀𝑡) = −𝔼𝕏𝑠∼𝑋𝑠[log𝐷(𝑀𝑠(𝕏𝑠))] − 𝔼𝕏𝑡∼𝑋𝑡[log(1 − 𝐷(𝑀𝑡(𝕏𝑡)))  ]  Eq. 4-4 

where 𝑋𝑠 and 𝑋𝑡 are the inputs for source and target domains, and 𝑀𝑠 and 𝑀𝑡 are the mappings 

of input samples. This loss function ensures that the adversarial discriminator treats the data from 

these two domains identically. The distance of the feature mapping between two entire domains can 

be reduced, and the generator 𝐺 can generate the same feature from both domains.  
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Adversarial and classification weight factors 

The class and domain discrepancies may have different effects on domain adaptation, which can 

be adjusted by the weight factor 𝜔 of their two loss functions listed in Eqs. 4-2 and 4-4. The weight 

is initially set as 0.5 and can be adjusted between the range [0, 1], which quantitatively evaluates the 

relative importance of the marginal and conditional distributions corresponding to environmental 

uncertainly and modelling errors.  

4.3.2.3. Training process 

As shown in Figure 4- 4, the network structure includes a generator and two classifiers expressed 

as G, 𝐶1 and 𝐶2 denoted as 𝜃𝑓, 𝜃𝐶1 and 𝜃𝐶2, respectively. Note that  𝐶1 ≠ 𝐶2. Even though these 

two classifiers are designed with identical structures, their parameters are generated randomly at the 

beginning according to the labelled source domain data. The training process are mainly separated 

into three steps as below. 

Step A 

Figure 4- 4 shows Step A in the training process. The generator 𝐺 and two classifiers 𝐶1and 𝐶2 

are trained with the source domain data by minimising the loss function in Eq. 4-1 as,  

𝑚𝑖𝑛
𝐺,𝐹1,𝐹2  

𝐿𝑦(𝑿𝑠, 𝑌𝑠)                              Eq. 4-5                                              

where 𝐿𝑦(𝑋𝑠, 𝑌𝑠) = −𝔼(𝕏𝑠,𝑦𝑠)∼(𝑋𝑆,𝑌𝑆)∑ 1[𝑘=𝑦𝑠] log 𝑝(𝑦|𝕩𝑠)
𝐾
𝑘=1 . 
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Figure 4-4. Step A in the training process 

This step is to train the network using the labelled source data for structural damage detection 

as a classification task to identify the class of the input data 𝑋𝑠. This step updates the parameter 

weights for G (for feature extraction), 𝐶1 and 𝐶2  (for classification), while D is frozen. The 

optimisation algorithm is applied throughout the training process, with the initial learning rate of 

5 × 10−5. 

Step B 

In Step A, the generator G and two classifiers C1, C2 are trained using the labelled source domain 

data. These two pre-trained classifiers can classify the damage-sensitive features generated from the 

source data, while they still cannot identify the damage from the target domain data due to the domain 

discrepancy since both the features generated and classifiers fit only the source domain data. 

Maximise the discrepancy between those two classifiers 

In order that the target data can also be classified accurately, the source data (with labels) and 

target data (without labels) are input together to the feature generator. Figure 4- 5 shows Step B in the 

training process. In this step, the feature generator G trained in Step A is frozen and these two pre-

trained classifiers are tuned by the maximum discrepancy in Eq. 4-3 under each class between two 

domain features. As shown in Figure 4- 5, each class of the target domain data is classified differently 



 

68 

 

by those two classifiers pre-trained in Step A. In this step, the discrepancy between two domains 

under each class could be caused by modelling errors. 

 
Figure 4-5. Step B in the training process 

Discriminant data origin 

In Step B, the discriminator 𝐷  denoted as 𝜃𝑑  is used to detect the data whether it is from 

source or target domains by the discrepancy loss in Eq. 4-4. With this discriminator, the origin of the 

data can be identified and the same damage-sensitive features from both domains are extracted by the 

global distribution alignment. For structural damage detection, the discrepancy includes the 

environmental uncertainly or structural differences (mass, stiffness or damping) between the 

numerical model and real structure is adapted on the domain level.  

The weights of class and domain discrepancy losses  

The weighting factors of class and domain discrepancies between two domains can be adjusted 

to implement knowledge transfer and merge better as,  

𝑚𝑖𝑛
𝐶1,𝐶2  

𝐿𝑦(𝑋𝑠, 𝑌𝑠) − 𝜔𝐿𝑎𝑑𝑣𝑐(𝑋𝑡) + 𝑚𝑖𝑛
𝐷  
(1 − 𝜔)𝐿𝑎𝑑𝑣𝑑(𝑋𝒔, 𝑋𝑡 , 𝑀𝑠, 𝑀𝑡)    Eq. 4-6 

where 𝜔 is the weighing factor,  
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𝐿𝑎𝑑𝑣𝑐(𝑋𝑡) = 𝔼𝕏𝑡∼𝑋𝑡[𝑑(𝑝1(𝑦|𝕏1), 𝑝2(𝑦|𝕏2))]     Eq. 4-7 

   𝐿𝑎𝑑𝑣𝑑(𝑋𝑠, 𝑋𝑡 , 𝑀𝑠, 𝑀𝑡) = −𝔼𝕏𝑠∼𝑋𝑠[log𝐷(𝑀𝑠(𝕏𝑠))] − 𝔼𝕏𝑡∼𝑋𝑡[log(1 − 𝐷(𝑀𝑡(𝕏𝑡)))  ]   Eq. 4-8 

Step C 

 
Figure 4-6. Step C in the training process 

The last step in the training process is Step C, as shown in Figure 4- 6. This step is to update the 

feature generator 𝐺 to minimize the class discrepancy loss and maximise the domain discrepancy 

loss. At the class level, the generator 𝐺 is updated to reduce the class discrepancy loss (minimising 

𝐿𝑎𝑑𝑣𝑐) by aligning the local distributions of two domains from those two tuned classifiers in Step B 

(Eq. 4-7). At the domain level, the generator 𝐺  is updated to align the global distributions by 

maximising the domain level adversarial loss (maximising 𝐿𝑎𝑑𝑣𝑑). Thus, the generator 𝐺 needs to 

be updated to align local and global distributions simultaneously by minimising both these 

discrepancy functions as,      

𝑚𝑖𝑛
𝐺  
(𝜔𝐿𝑎𝑑𝑣𝑐(𝑋𝑡) − (1 − 𝜔)𝐿𝑎𝑑𝑣𝑑(𝑋𝒔, 𝑋𝑡 , 𝑀𝑠, 𝑀𝑡))           Eq. 4-9 

The above three steps are combined to extract the features from both domains and predict 

structural damage for the unlabelled target domain. For structural damage detection, the weights for 

class and domain levels can be optimised by the available data. The proposed training process is 
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summarized in Table 4-2.   

4.4. Knowledge transfer between two building structures with different storeys 

4.4.1. Numerical models 

This section is transferring the knowledge from one structure to the other structure with different 

storeys, as shown in Figure 4- 7(a). Model 1 is a 3-story structure as the source domain with the 

labelled data, and Model 2 is a 6-storey structure as the target domain with limited unlabelled data. 

As shown in Figure 4- 7(b), a 3-storey structure mainly includes two identical columns with the height 

930 mm and the cross-section 60 mm × 2 mm, and three steel floors measuring 340 mm×60 mm×30 

mm. The height of each story is 300 mm. The material used to build all columns and floors is a high-

strength steel with an elasticity modulus of 200𝐺𝑃𝑎  and mass density of 7.5 × 103𝑘𝑔/𝑚3 . The 

Rayleigh damping is adopted: 𝑪 = 𝛼𝑲 + 𝛽𝑴 , where 𝛼 =0.016 and 𝛽=0.0028 are the mass and 

stiffness proportional coefficient, respectively. The model parameters of these two models are listed 

in Table 4-3. Model 2 have the same material properties and cross-section as Model 1 but different 

stories. 

Table 4-2. Parameters of Models 1 and 2 
No. 

of Model 
Mass 

{𝒎𝒏} (kg) 
Stiffness 

{𝒌𝒏} (𝒌𝑵/𝒎) 
Damping 

{𝒄𝒏} (𝑵𝒔/𝒎𝒎) 
Mod

el 1 
{4.8,4.8,4.

8} 
{9.755, 9.755,9.755,} {4.244,2.084, 2.161} 

Mod
el 2 

{4.8,4.8,4.
8,4.8,4.8, 4.8, 

4.8} 

{9.755, 9.755, 9.755, 
9.755,9.755, 9.755} 

{4.244,4.244,2.084, 2.084, 
2.161, 2.161} 
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Table 4-3. Summary of the training process 
Algorithm: JMDAD 

Note the labelled source domain 𝑆 = (𝒙𝑠𝑖 , 𝑦𝑠𝑖)𝑠𝑖=1𝑛𝑠 ~(𝐷𝑆)
𝑛𝑠 and unlabeled target domain 

𝑇 = (𝒙𝑡𝑖)𝑡𝑖=1
𝑛𝑡 ~(𝐷𝑇)

𝑛𝑡, the feature generator 𝐺, two classifiers 𝐶1 and 𝐶2, the discriminator 𝐷, 
the mini-batch size and epochs. The Adam optimization algorithm is utilised the learning rate of 5 
× 10−5.  
For 𝒑 = 1 to No. of epochs (i.e., 150): 
     For q = 1 to No. of batch size (i.e., 256): 
         Train 𝐺, 𝐶1and 𝐶2 to classify the source data by minimizing Eq. 4-5; 
          Train 𝐶1and 𝐶2 to maximise the class-level discrepancy by minimising Eq. 4-7; and  
          Train 𝐷 to minimise the domain level discrepancy by minimising Eq. 4-8. 
              For 𝒌 = 1 to n (i.e.,𝑛 =5) 
              Train 𝐺 by minimising the class level discrepancy and maximising the domain 
level discrepancy in Eq. 4-9. 
              End  
      End 
End 
Use the trained 𝐺, 𝐶1and 𝐶2 for the classification of unlabeled target data.  

 

                                         

(a) Models 1 and 2                   (b) The three-story building structure  

Figure 4-7. The multi-storey building structure and the numerical models 

3.2 Data description  

The building structures are subjected to ground excitations. The building structures are 
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simplified as the lumped mass models, as shown in Figure 4- 7(a). The equation of motion for building 

structures can be written by  

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝑴𝒖(𝑡)      Eq. 4-10 

where n is the degrees of freedom.  �̈�(𝑡) ∈ ℝ𝑛, �̇�(𝑡) ∈ ℝ𝑛, and 𝒙(𝑡) ∈ ℝ𝑛 are the acceleration, 

velocity, and displacement response vectors, respectively. 𝒖(𝑡)  is the ground excitation. 𝑴 ∈

ℝ𝑛×𝑛, 𝑪 ∈ ℝ𝑛×𝑛, 𝑲 ∈ ℝ𝑛×𝑛  are the mass, damping and stiffness matrices of the system respectively.  

The acceleration responses of each floor at the building structure are calculated. A 

transmissibility function (TF) is defined as the ratio between the Fourier transform of an arbitrary 

acceleration response �̈�𝑖(𝑡) and that of a reference response �̈�𝑟(𝑡) (Yan et al., 2019).  

 𝑇𝑖𝑟 =
𝑋𝑖(𝜔)

𝑋𝑟(𝜔)
                            Eq. 4-11 

where 𝑋𝑖(𝜔)  (i = 1, 2, 3) and 𝑋𝑟(𝜔)  donate the Fourier transform of �̈�𝑖(𝑡)  and �̈�𝑟(𝑡) , 

respectively. In this section, the acceleration response at the ground floor is used as the reference 

response. Two types of excitations are used in this study. The random excitation, e.g. white noise 

(WN), is to simulate the ambient excitation with the amplitude of 0.1 g and the frequency range 

between 1 Hz and 25 Hz. Four classics earthquake recordings, including Elcentro, Hachinohe, Kobo 

and Nortridge are also used to simulate earthquake excitations with the amplitude of 0.05g.  

For the source domain, Model 1, e.g. the 3-storey building structure, is subjected to the ground 

excitation. The dynamic response at each floor and the ground floor are recorded with a sampling rate 

of 1000 Hz. The record length is 600s for the structure under the random excitation and it is 30 s for 

the structure under each earthquake excitation. 45 datasets for the structure under each type of 

excitations are generated. The record acceleration responses at each floor and the ground floor are 
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filtered to 30 Hz with the low-pass filter. Then the TF samples are obtained using Eq. 4-11. TF data 

for three floors are as three input channels of Block 1 in the convolutional neural network (CNN) in 

Table 4-1, and each channel has the size of 3 × 2 × 660 as inputs to CNN. The detail information 

of CNN is listed in Table 4-1. For the target domain data, e.g. Model 2 for the 6-stroey building 

structure, the size of input data is same as that of the source domain. The data are collected from 

Floors 2, 4 and 6 of the 6-storey building structure, and the damage labels are unavailable during the 

training process.  

4.4.2. Single damage detection 

In this study, structural damage is simulated by the sectional reduction of columns for each floor, 

which results in the corresponding stiffness reduction of the lumped mass model. Three damage 

scenarios, e.g. the damage for each floor, are simulated in this section. To verify the proposed method, 

three types of excitation scenarios are used e.g. the random excitation, the earthquake excitation and 

the mixed random and earthquake excitations. For the source domain, e.g. Model 1, the damage 

severities are simulated by reducing the structural stiffness between 0-30% (0%, 10%, 20% and 30%) 

at each floor, respectively. The damage class details are summarized in Table 4-4. A total of 180 data 

samples are generated, e.g. 45 samples of random excitations×4 damage scenarios, that cover all four 

scenarios D0, D1, D2, D3 with Labels 0, 1, 2, 3 for each type of excitation, respectively. Similarly, 

the unlabelled target domain data are collected from Model 2. The damage identification is conducted 

using the proposed method. In this study, 70% datasets are used for training and 30% of datasets are 

used for testing. 

Table 4-4. Damage detection with identical datasets from source and target domains 
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 Model 1 
3-story model 

 Model 2 
6-story model 

 

Damage 
scenarios 

Damage location Damage 
severity 

Damage location Damage 
severity 

Labels 

D0 Undamaged / Undamaged / 0 
D1 1st floor 0-30%  1st and 2nd floor 0-30%  1 
D2 2nd floor 0-30% 3rd and 4th floor 0-30% 2 
D3 3rd floor 0-30% 5th and 6th floor 0-30% 3 

4.4.2.1. With identical label spaces of datasets from source and target domains 

 

 

(a) With the same type of excitations  

 

(b) With different types of excitations 
Figure 4-8. Damage localization accuracy with adversarial weight (𝜔 = 0 𝑡𝑜 1) 

Similar to the source domain data from Model 1, the target domain data with identical damage 

severities are collected from Model 2, with 180 datasets (45 excitations×(1 undamage + 3 damage 

scenarios)) for each type of excitations. During the training process, the target domain data are 
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unlabelled. Figure 4- 8(a) shows the test accuracy with different adversarial weights using the learning 

rate of 5𝑒 − 5 and training epochs of 300 when two structures are subjected to the same type of 

excitations. From Figure 4- 8(a), it reaches the highest test accuracy with 91% when the adversarial 

weight is 0.9. The results show that under the same type of excitations, the knowledge learned from 

the 3-storey building structure is transferred successfully to structural damage detection of the 6-

storey building structure. Figure 4- 8(b) shows the test accuracy when two structures are subjected to 

different types of excitations. From Figure 4- 8(b), when the adversarial weight  𝜔 = 0.4  , the 

accuracy reaches the highest value with 89% for the mix excitation cases. As the above, the proposed 

method can extract the features which are invariant to the structural excitation.   

 
  

(a) Testing accuracy over epoch (b) Confusion Matrix of Classification results 

Figure 4-9. The results with identical damage datasets.  

Figure 4- 9(a) shows the testing accuracy over epoch when the structures are subjected to random 

excitations by the proposed method and the results are compared with that by the CNN network 

without the domain adaption. In this figure, the red line is that by the CNN network which is trained 

with a learning rate of 5𝑒 − 5 using the labelled source data from Model 1. The light blue line shows 

the results by the proposed method with the same learning rate and the initial adversarial weight factor 

𝜔 of 1 and the dash red line is for 𝜔 = 0. The best performance is achieved when the weight is 0.9.  
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From Figure 4- 9(a), the results show that the accuracy by the proposed method is much higher that 

by the CNN network. Figure 4- 9(b) shows the damage classification results of the target domain by 

the proposed method. From Figure 4- 9(b), the overall classification accuracy by the proposed method 

is 91%, which is significantly improved compared 67% by the CNN network. The accuracies for 

Classes 0, 1, 2, 3 are 91%, 91%, 91% and 89% respectively.  

To further understand the transfer learning process, the principal component analysis (PCA) is 

used to extract the most representative components from features of the source and target domains. 

The first three principal components are considered, e.g. PCA1, PCA2 and PCA3. Figure 4- 10 shows 

the distributions of each principal component before and after domain adaptation. The x-axis is the 

value of PCA, and the y-axis is the class (label) for each damage scenario. The legend (the orange 

and blue colour) represents the number of distributions for each class. The extreme value of the 

distribution for all classes constitutes the margin for the distribution of each PCA. Figure 4- 10(a) 

shows the distributions for each PCA component of features from source and target domains by CNN. 

The results show that there is a clear discrepancy between the distributions of features from source 

and target domain data. By the CNN network directly, the distributions of each PCA for source and 

target domains are not consistently mapped, and the PCA components for each class are not the same. 

The distribution for each class is unaligned between source and target domains. Figure 4- 10(b) shows 

the distribution of each PCA component after domain adaptation using the proposed method. The 

results show that the distribution margin of each PCA component for each class between the source 

and target domain is well aligned and this is corresponding to the domain discrepancy. The PCA 

values for both source and target domains in the x-axis are approximate the same. This global 
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alignment for the domain discrepancy is attributed to the discriminator  𝐷  which the damage 

sensitivities features could be efficiently extracted and identified to overcome the effect of modelling 

errors. Besides, the conditional distributions for each class between source and target domains, which 

is corresponding to the class discrepancy, are also updated, and aligned well after the knowledge 

transfer and feature merger, achieved by two classifiers 𝐶1𝑎𝑛𝑑 𝐶2 . The local alignment for the class 

discrepancy is to identify the damage-sensitive feature eliminating the effects due to modelling errors 

and environmental varieties.  

 
(a) Distribution of PCA components with the CNN network 
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(b) Distribution of PCA components with the proposed method 
Figure 4-10. Distributions of PCA components with identical datasets 

4.4.2.2. With limited noise datasets from the target domain  

In practice, the damage cases are rare occurred in real structures. The damaged scenario data 

from the target domain are very limited and there is the measurement noise. In this study, the source 

domain data for all damage scenarios with damage severities between 0-30% are generated from 

Model 1. As listed in Table 4-5, only the data for the undamaged scenario and the 30% damage 

scenario of each floor are available from the target domain, which correspond to four classes with 

Labels 0, 1, 2 and 3 respectively. The 3%, 5% and 10% Gaussian white noise are added the target 

structure responses to simulate the measurement data 𝑋𝑛𝑜𝑖𝑠𝑒~𝑋 +𝒩(𝜇, 𝜎), where 𝑋 is the noise-

free data. 𝒩(𝜇, 𝜎) is the standard normal distribution for Gaussian process.  𝜇, 𝜎  are the mean 

value and standard deviation of the noise. In this study,  𝜇 is equal 0, and 𝜎 is equal to 0.03, 0.05 

and 0.1 respectively. There are a total of 180 data samples (45 random excitations×(1 undamage + 3 

damage scenarios)) for each type of excitation. 
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Table 4-5. Limited damage datasets from the target domain Model 2 
Damage 

scenarios /Classes  
Damage location Damage severity Labels 

D0 Undamaged -- 0 
D1 1st and 2nd floor 30%  1 
D2 3rd and 4th floor 30% 2 
D3 5th and 6th floor 30% 3 

     

      (a) Testing accuracy over epochs       (b) Confusion Matrix of Classification results                

Figure 4-11. The classification results with limited damage datasets 

Figure 4- 11 shows the accuracy and the classification results with limited damage datasets with 

different noise levels by the proposed method. The light blue, orange, and blue lines in Figure 4- 11(a) 

are the results with 3%, 5% and 10% measurement noise. From Figure 4- 11(a), there are some 

fluctuations in the beginning of the testing accuracy curve, and they approach the same accuracy after 

250 epochs. The results show that the accuracy is not affected by the measurement noise. Figure 4- 

11(b) shows the classification results by the proposed method. From Figure 4- 11(b), the classification 

accuracies with measurement noise are 82.2% or over. The results show that the proposed method is 

much robust to the measurement noise, and those two classifiers and the discriminator work together 

to extract the damage sensitive feature and identify the damage accurately with limited damage 

datasets from the target domain.  

4.4.2.3. With class imbalanced datasets from source and target domains 
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In the previous studies, all class datasets have the identical sizes except damage severities are 

limited. In practice, the data related the damage scenarios are limited and the datasets from source 

and target domains are unbalanced. This section is to study the structural damage detection with 

imbalanced datasets.  

  
Figure 4-12. Testing accuracy over epoch using CNN and the proposed JMDAD method  

 
Figure 4-13．Feature visualization with PCA using JMDAD with imbalanced datasets 

The source domain data are the same as that in Sections 3.3.1 and 3.3.2 for four damage classes 

with all the damage severities from 0 to 30%. The target domain only contains one damage scenario 

D1 (damage on the 1st and 2nd floors). There are 45 samples from the target domain with random 

excitations. Figure 4- 12 shows the test accuracy with epoch using the CNN network and the proposed 

method with different weights. From Figure 4- 12, the accuracies by the proposed method are much 

higher than that by the CNN network. When the adversarial weight factor 𝜔 = 0.9, the classification 
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accuracy is 61.1%. Figure 4- 13 shows that the PCA visualization of features using the proposed 

method. From the figure, the features extracted from different classes in the target domain are clearly 

separated and classified by the proposed method. 

4.5. Knowledge transfer from numerical to experimental structures 

This section is to study the knowledge learned from the numerical model to the real structure. 

The numerical model is defined as the source domain and the real structure is related to the target 

domain. The numerical model is not calibrated using experimental results and the discrepancy 

between the numerical and experimental models is to simulate modelling errors. One challenge in 

transferring the knowledge learned from the numerical model to the real structure is the effect of the 

operational environment, especially the excitation. Another challenge is the limited dataset available 

from the real structure, in particular very limited or no data from damaged scenarios. This causes 

different excitations are encompassed to both numerical and experimental structures, and the target 

domain has much less data than the source domain for both the samples and classes. In this study, the 

proposed JMDAD method is used to identify the damage of the real structure under varies excitations 

with limited data by using the knowledge learned from the numerical model.  

4.5.1. Experimental setup 

To validate the proposed method for structural damage detection in the real structure, a 3-storey 

steel building structure was manufactured and installed on the shake table at UTS Tech Lab. The 

experimental setup is shown in Figure 4- 14. The structure is made of two steel columns and four 

mass blocks, the bottom mass block was fixed on a multi-axis shake table by two bolts. The detail 

dimensions of the structure are listed in Figure 4- 7(b). The four accelerometers are installed on each 

floor and the surface of the shaking table to monitor the acceleration responses of the ground floor. 
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The remote lasers are installed beside the shake table to measure the structural displacement responses. 

The shaking table is used to generate one-axis seismic ground motions.  For each damage scenario, 

the WN and four earthquake excitations as described in Section 3.2 are simulated using the shaking 

table and dynamic responses of the building structure are measured by four accelerometers. The 

acceleration responses at each floor and ground of the building structure are recorded with the 

sampling frequency 1000 Hz. The record length for each WN test is 600 s and the record length for 

each earthquake excitation test is 60 s. The TF data can be obtained by Eq. 4-11. As the samples for 

the building structure under earthquake excitations are small, a dense sliding window with a small 

striding to augment the excitation response data under the earthquake excitation. The damage is 

introduced by inflicting two symmetrical cuts of the columns on each floor with 9 mm cuts width of 

the columns (30% damage), respectively. Undamaged and three damage scenarios are simulated with 

the corresponding stiffness reduction 30%. 45 samples (13 excitation samples×(undamaged, 1st floor 

damage) + 9 excitation samples×2nd floor damage+10 excitation samples×1st & 2nd floor damage) 

are obtained from the experimental tests for random and earthquake excitations, respectively.  

    

Figure 4-14．Experimental setup 

4.5.2. Damage Detection with Imbalance Class datasets  

As the same as Section 3.3.1, the numerical model (Model 1) is used as the source domain. Both 
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the random and earthquake excitations are applied at the bottom of structure, and 45 datasets are 

generated for each scenario. For the damage scenarios, a total of 45 damage severity levels are 

simulated on each floor using the numerical model. 180 data samples for the source domain (45 

excitations× (3 damage scenarios + 1 undamaged scenario) are obtained. The damage labels are 

defined regarding to the damage locations, e.g. 0 (undamaged), 1 (damage on the 1st floor), 2 (damage 

on the 2nd floor), 3 (damage on the 3rd floor). Different with the source damage scenarios, the target 

domain data includes the undamaged and two single damage scenarios summarised in Table 4-6, 

which are from the real structure including 45 samples (15 samples for the undamaged and 1st floor 

damage each; 10 samples for 2nd floor damage). The labels of the target data are not available during 

the training process.  

Table 4-6. Test and sample number for single damage detection (Imbalanced class).  
 3-story numerical model 3-story experimental model 

Damage 
scenarios 

Damage 
location 

Labels Damage 
severity 

Damage 
location 

Labels Damage 
severity 

D0 Undamaged 0 / Undamaged 0 / 
D1 1st floor 1  0-30% 1st floor 1 30% 
D2 2nd floor 2 0-30% 2nd floor 2 30% 
D3 3rd floor 3 0-30% -  - 

The network is initially trained using the source domain data without domain adaptation. The 

batch size is 128 as the exponent of 2. The number of epochs is set equal to 150 which is applicable 

to the small sample dataset. The predicted test accuracy for the target domain is 48% using the pre-

trained network. Three types of excitations are used to excite both numerical and experimental 

structures, namely, random (WN), earthquake and mixed random and earthquake excitations. Figure 

4- 15(a) shows the damage localisation accuracy using the proposed JMDAD method with different 

weights. From Figure 4- 15(a), the case with 𝜔 = 0.1 has the accuracy of 91% or above. The results 
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show that with different operational excitations, the proposed method can extract the damage sensitive 

features and identify the damage accuracy. Figure 4- 15(b) shows the identified accuracy when the 

numerical and real structures are subjected to the same type of excitations. From Figure 4- 15(b), 

when the adversarial weight 𝜔 = 0.5, it has the highest accuracy of 91%. As the above, the proposed 

method could apply the knowledge learned from the numerical model to detect the damage accurately 

in real structure. Figure 4- 16(a) shows the comparisons of classification accuracies by the CNN 

network and the proposed JMDAD method with different adversarial weights.  From Figure 4- 16(a), 

when 𝜔 = 0.1 , it achieves the highest accuracy. Figure 4- 16(b) shows the confusion matrix of 

classification results when 𝜔 = 0.1 . From the figure, the proposed method achieves the high 

classification accuracy with no less than 92.3%. Compared to the CNN network, the classification 

accuracy is increased by around 20% using the proposed method with limited unlabelled experimental 

data.

 
(a) Under different types of excitations  
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(b) Under the same type of excitations  

Figure 4-15. Damage localization accuracy under different excitations with adversarial weight 
(𝜔 = 0 to 1) 

 

 
 

(a) Testing accuracy and error over epochs (b) Confusion Matrix of 
Classification results 

Figure 4-16. JMDAD method performance for single-damage damage datasets  

4.5.3. Damage prediction with different operational excitations 

In practice, the operational excitation may be varied. The excitation has a big effect on structural 

damage detection. In this section, the structure under different ground excitations is studied. As the 

same as Section 3.3.1, the numerical model (Model 1) is used as the source domain with 45 excitations 

applied on the ground floor to form 180 data samples (45 excitations× (3 damage scenarios + 1 

undamaged scenario) for each excitation. The real experimental structure is regard as the target 

domain and the experimental tests are conducted on the shaking tables. There are 35 samples (15 

samples for the undamaged and 1st floor damage each; 9 samples for 2nd floor damage) for the target 

domain. The labels for the target domain data are not available in the training process. Both source 
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domain and target domain data are separate into datasets corresponding to each excitation.  

 
Figure 4-17.JMDAD method performance with operational environmental varieties  

Three case studies have been conducted using the datasets of source and target domains from 

mixed to mixed excitations, random to earthquake excitations and earthquake to random excitations, 

respectively. Figure 4- 17 shows the accuracies of three cases using the proposed method with the 

adversarial weight 𝜔 = 0.1 . This is further confirmed a light weight is needed for operational 

varieties when the numerical and experimental structures have the similar scales. From Figure 4- 17, 

the accuracy with the mixed excitations is much higher than other two cases. Even with the case with 

the random excitation in the source domain and the earthquake excitation in the target domain or the 

opposite, the accuracy could still achieve around 90%. As a result, the proposed method could extract 

the feature which is sensitive to the structural damage and robust to the operational environment and 

accurately identify the structural damage location in civil engineering practice. 

4.6. Knowledge transfer from numerical to real structures for the Canton Tower 

This section presents a complicated example using the Canton Tower (CT). Firstly, the basic 

information about CT is introduced, including its dimensions, sensor arrangement and field 

measurement data. Subsequently, the field measurement is pre-processed, and the results for damage 
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detection are shown. Finally, the extracted damage-sensitive features are visualised. It needs note that 

there is only undamaged data available in field monitoring and the damage data is simulated by adding 

the white noise to the calculation using finite element model.   

4.6.1. Real structure and its numerical model  

The Canton tower, located in the city of Guangzhou, China, is a high-rise tower structure 

standing at a total height of 600 meters, as shown in Figure 4- 18(b). CT contains a 454 m main tower 

section and 146 m antenna mast (Ni et al., 2009). A long-term SHM system consisting of over 700 

sensors has been installed on CT and details of the SHM system can be found in references (Ni et al., 

2009; Ni et al., 2012). As shown in Figure 4- 18(b), sixteen accelerometers with the frequency range 

of 50Hz have been installed at eight levels along the height of the tower. Each level has two uni-

anxial accelerometers to monitor the horizontal vibration along the x and y directions. Field 

measurement data used in this study are from the website (http://polyucee.hk/ceyxia/benchmark//). 

The wind direction and speed at a height of 461.1 m is also obtained by the anemometer installed in 

the southeast of the tower.  

Based on physical properties of the tower, a reduced order finite element (FE) model has been 

established by Chen et al. (2011). This FE model includes 37 beam elements and 38 nodes with 185 

degrees of freedom (DOFs) in total. Each node has 5 DOFs, including two horizontal translational 

DOFs and three rotational DOFs. To further reduce the model, a lumped mass model is proposed 

based on the reduced order FE model by retaining the x- and y-axis translational DOFs and removing 

rotational DOFs using dynamic condensation technique (Lin and Xia, 2003). The lumped mass model 

is built in MATLAB with only 8 segments and 9 nodes corresponding with locations of 
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accelerometers. Each node contains 2 DOFs, which indicate two horizontal translational DOFs along 

x and y directions shown in Figure 4- 18(a). As a results, the lumped mass model has 16 DOFs in 

total. Due to removing rotational DOFs, there are no torsional modes in the lumped mass model. The 

modal assurance criterion (MAC) values between mode shapes from the reduced order FE and 

lumped mass models are calculated to pair modes. Their MAC values are not less than 0.9900 as 

listed in Table 4-7. Natural frequencies of the lumped mass model are compared with existing results 

by the reduced order FE model and measurements as listed in Table 4-7. From the results, the 

maximum frequency difference compared with measurements is 12.832%, and that is due to the 

uncertainty, such as the modelling error, measurement noise and operational environment.   

Table 4-7. Natural frequencies of CT from measurements, and FE and proposed lumped mass 
models.  

Vibration 
direction 

Measurements 
(Hz) (Chen et 

al. 2011) 

FE model 
(Hz) (Chen 

et al., 
2011) 

Lumped 
mass 
model 
(Hz) 

MAC 
with FE 
model 

Difference with 
Measurements 

(%) 

Difference 
with FE 

model (%) 

1st y-axis 0.101 0.110 0.111 0.9998 9.606 0.638 
1st x-axis 0.148 0.159 0.159 0.9995 7.534 0.095 

2nd y-
axis 

0.358 0.347 0.370 0.9996 3.248 6.521 

2nd x-
axis 

0.534 0.485 0.465 0.9991 12.832 4.026 

3rd y-axis 0.810 0.738 0.740 0.9900 8.655 0.257 
3rd x-axis 0.980 0.902 0.926 0.9936 5.506 2.665 

1st 
torsion 

0.535 0.461 -  - - 

2nd 
torsion 

1.271 1.122 -  - - 

The measurement of wind data at 19:00, 10 January 2010, is analysed to obtain wind 

characteristics. The wind velocity is first decomposed into X and Y directions as 𝜐𝑥 and 𝜐𝑦 in a 

plane shown in Figure 4- 18(c), as follows (Hua et al., 2020): 

 
𝜐𝑥(𝑡) = 𝜐(𝑡)sin (𝜃(𝑡) + 18

𝑜)

𝜐𝑦(𝑡) = 𝜐(𝑡)cos (𝜃(𝑡) + 18
𝑜)

                    Eq. 4-12 
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where v and 𝜃 are the measured instantaneous wind speed and wind direction at the time series t. 

The distribution of wind speed with tower height needs to be calculated. According to the Chinese 

design load code GB 50009-2001 (2002), the wind speed profile is an approximate exponential 

relation with the height of the structure as, 

 
𝜐𝑥𝑛 = 𝜐𝑥,𝑍𝑛=461.1(

𝑍𝑛

461.1
)𝛼

𝜐𝑦𝑛 = 𝜐𝑦,𝑍𝑛=461.1(
𝑍𝑛

461.1
)𝛼

                       Eq. 4-13 

where 𝜐𝑥,𝑍𝑛=461.1,𝜐𝑦,𝑍𝑛=461.1   are the wind velocities in X and Y directions obtained from the 

anemometer at 𝑍𝑛 = 461.1𝑚. 𝑍𝑛 represents the height from the ground of the tower in Figure 4- 

18(b). 𝛼 is the mean wind speed exponential index. To obtain the wind force on the actual tower, a 

series of wind tunnel tests on the tower model have been conducted (Zhou et al., 2009). Based on the 

experimental results, the equivalent wind loads at varying heights along the tower 𝐹𝑥𝑛 and 𝐹𝑦𝑛 can 

be calculated as, 

   
𝐹𝑥𝑛(𝑡) =

1

2
𝜌𝜐𝑥𝑛

2 𝐻𝑛𝐷𝑛𝜇𝐹𝑥

𝐹𝑦𝑛(𝑡) =
1

2
𝜌𝜐𝑦𝑛

2 𝐻𝑛𝐷𝑛𝜇𝐹𝑦

                      Eq. 4-14 

where 𝜐𝑥𝑛, 𝜐𝑦𝑛  represent the calculated wind speeds in X and Y directions at the height 𝑍𝑛 by Eq. 

4-13; 𝜌 is the air density; 𝐻𝑛 is the height of each segment of the tower and 𝐷𝑛 is the characteristic 

dimension uniformly adopted as 18m. 𝜇𝐹𝑥 , 𝜇𝐹𝑦  are the aerodynamic force coefficients. Eq. 4-14 is 

used as the input to each DOF of the lumped mass model in the numerical simulation next section. 
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Figure 4-18.Canton Tower: (a) 16-DOF numerical model, (b) real structure, and (c) the top 
view. 

4.6.2. Damage prediction with imbalanced dataset 

In this section, the numerical model is regard as the source domain and the real structure is as 

the target domain. Similar to previous case studies in Sections 3 and 4, the labelled source domain 

data contains different damage locations and severities are generated using the lump mass model. 

Considering that the actual situation is that the damage to the structure is minor structural damage 

rather than severe damage. The labelled source domain data are designed with light damage severity. 

Single-element damage of 0-20% severity is simulated form the source domain data. The damage 

severities are randomly introduced to each element, under the wind loads simulating a total of 270 

samples (Undamaged + 8 damage locations)× 30 random damage severities) listed in Table 4-8. In 

the unlabelled target domain, the undamaged data is collected from field measurement since the tower 

condition is known as health. The field damaged data are simulated using the reduced-order FE model 

(Chen et al., 2011) added 3% WN noise. Considering the operational condition in the real structure, 
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the damage in the middle and top of the tower are simulated. In a single damage dataset, the damage 

occurs at heights 171-228m and 382-446m, with 15 % severity to be tested as unlabelled data. 

Keeping a similar sample number of each class with source domain data, a total of 90 samples 

(Undamaged + 2 damage locations) × 30 collected wind excitations) from the target domain are 

obtained. Also, for an unseen damaged dataset, the damage accidentally appears in the top section of 

the tower in heights 350-355m (TEMPE-RATE - refuge floor damage) and 428-433m (ARCTIC - 

observation floor damage) with 25% severity, a total of 90 samples (Undamaged + 2 damage locations) 

× 30 collected wind excitations) in the target domain dataset. It is noted that the labelled source 

domain data for training does not cover the damage severity range of the unseen datasets.  

Table 4-8. Damage detection with unseen datasets from source and target domains 

 
For both labelled source and unlabelled target datasets, the recording period is 1350 seconds for 

the dynamic response under the wind excitation with a sampling rate of 50Hz, and it is split into 90 

samples, with each sample 15 s. The recording acceleration responses at each floor are filtered by a 

low pass filter with a cut-off frequency of 10 Hz. In addition to the wind load, the WN with the same 

sampling rate and length is also applied to the lumped mass model to simulate different operating 

environments for studying the effect of adversarial weights. Then the TF samples are calculated using 

the ratio between the bottom seven sensors’ responses over the top sensor mentioned in Section3.2, 
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input to CNN with the size of 7 × 2 × 660. The output size is 8, which corresponds to eight classes 

of damage scenarios. 

The proposed JMDAD method is trained based on the labelled source domain datasets under the 

WN excitation and wind load, respectively. The single damage scenarios under wind load from field 

measurements are utilized to evaluate the accuracy of the proposed method with different adversarial 

weights. The outcome of single damage detection is illustrated in Figure 4- 19. In this figure, the 

accuracy of two cases using the datasets of source and target domains with different types of 

excitations and the same type of load excitation. Under the different types of loads, the highest 

accuracy appears as 90% when the adversarial weight 𝜔 =0.1. While under the same type of 

excitations, e.g. wind load, the best performance is 91% when the 𝜔 set to 0.5 or 0.6. The results of 

the tests in the real structure show that the adjustment of the adversarial weight is consistent with the 

results of previous numerical simulations and experimental case studies. When there are model errors 

(e.g., differences in degrees of freedom or size) between the model that produces data with labelled 

source domains and the model that produces unlabelled target domains, the adversarial weight needs 

to be set to be greater than 0.6 to obtain better prediction accuracy. If there are other uncertainties 

such as the impact of the operating environment, it suggests that the adversarial weight needs to be 

reduced to improve the accuracy of damage identification.  

The prediction accuracy with epochs during the training process is shown in Figure 4- 20 and 

the results for each scenario of a single damage dataset and unseen damage dataset are illustrated in 

Table 4-9. The adversarial weight is kept at 0.1, considering the different types of loads between 

numerical and real structures. For the single damage detection, the results show that the proposed 
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method is successfully to detect the damage with a correct classification of 96% for undamaged case 

and with over 85% accuracy for the damage at 171-228m and 382-446m heights. For the unseen 

damage dataset, it has a good performance with the 94% accuracy for undamaged case, and the 

identification accuracies for damage at heights of 350-355m and 428-433m are 84% and 85% 

respectively. 

 
Figure 4-19．Damage localization accuracy with adversarial weight (𝜔 = 0 to 1) with WN 

and wind load. 
Table 4-9．Accuracy of JMDAD method for damage detection 

Single damage Unseen damage 
Damage location Accuracy (%) Damage location Accuracy (%) 

Undamaged 96 Undamaged 94 
171-228m 85 350-355m 84 
382-446m 86 428-433m 85 

Overall 90 Overall 88 
 

 
Figure 4-20.Testing accuracy over epochs with single and unseen damage 

Figure 4- 21 shows that the PCA feature vitalization using the proposed method with different 
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unlabelled datasets. In Figure 4- 21(a), TC0, TC3 and TC8 without DA represent features of Classes 

D0, D3 and D8 in Table 4-8 by the CNN network, respectively. TC0, TC3 and TC8 represent the 

features of these three classes by the proposed method, respectively. SC0 to SC8 represent the features 

of Classes D0 to D8 in the source domain, respectively. Similar to the PCA feature distribution of the 

single damage dataset, Figure 4- 21(b) shows the feature visualization of labelled and unlabelled 

datasets of the unseen damaged datasets. From the figure, compared to the results obtained by the 

CNN network, the features in the target domain using the proposed method are better separated 

between each class and aligned well with the corresponding features in the source domain. 

  
(a) Single damage dataset (b) Unseen damage dataset 

 

Figure 4-21. Feature visualization with PCAs with single and unseen damage dataset 

4.6.3. Discussions 

The proposed method mainly integrates the domain and class levels of domain adaptation with 

an optimising weight to reduce the uncertainty due to modelling errors and varieties of operating 

environments when extracting features in practice. The following observations could be obtained 

from numerical and experimental results, 

The adversarial weight is mainly to consider the influence of the class and domain discrepancies. 

When the source and target structures have significant different scales, the order of models will be 
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different, which induces a significant discrepancy in damage classifications. The weight should be 

chosen a large value to reduce the class discrepancy. When the source and target structures have 

similar scales and the operational environments are different, the domain discrepancy will be 

dominated, and the weight needs to take a small value for knowledge transfer.  

The proposed method is to overcome this issue with limited unlabelled measurement data. In 

above sections, experimental examples and applications to real structures have demonstrated that the 

method can perform effective damage detection in the presence of environmental uncertainties and 

model discrepancies. Over-fitting issues usually indicate that the trained DL model only works with 

training data, while from the case study of the experiment and real case, applying the test data different 

from the training data also works for the DL model with good accuracy. The results  use the test data 

differently from the training data, considering the environment and modelling errors to validate the 

method. Considering that the labelled dataset and the unknown test dataset have different damage 

schemas and damage severities, the proposed method has good generalisation and utilisation value 

for damage detection in practical engineering.  

The numerical and experimental results have demonstrated the performance of the proposed 

method for different excitations. The results show that JMDAD has a good ability in extracting 

damage sensitive features and damage detection. This is mainly due to two aspects in the proposed 

method, 1) the transmissibility function is used to eliminate the effect of operational excitations; 2) 

different loading scenarios are also considered in the domain discrepancy loss.  

4.7. Summary 

A JMDAD based method has been developed to transfer the knowledge learned with labelled 
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data from the numerical model to real structure for structural damage detection with limited 

unlabelled measurement data. The proposed method is composed of a CNN generator and two 

classifiers with a fully connected layer and one discriminator. The TF data are used as the input of the 

proposed method. Three case studies have been conducted to verify the performance of the proposed 

method: the knowledge transfer between two building structures with different storeys, that between 

the numerical and experimental structures subjected to different excitations and the application for 

the Canton tower. Numerical and experimental results show that the proposed JMDAD method is 

reliable and accurate to identify the damage of the real structure with limited unlabelled measurement 

data. The following points can be concluded, 

1)  The proposed method integrates the maximum classifier discrepancy domain 

adaptation with the adversarial discriminative domain adaptation through optimising the 

adversarial weight. The optimisation of the adversarial weight could provide an accurate and fast 

assessment for damage identification of the target structure. 

2) The results show that the proposed method is much robust to the measurement noise and 

the operational excitation. It achieves 91 % for structural damage localization accuracy between 

two structures with different storeys under different operational excitations.  

3) The knowledge learned from the numerical model has been successfully applied for 

structural damage localization of the experimental structure and real structure with 90% accuracy 

using imbalance data and unseen data with different excitations respectively. 
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4) The training process can be visualised through the distribution of PCA components. The 

difference of the PCA values is related to the domain discrepancy and the margin of the 

distribution for PCA components of each class is corresponding to the class discrepancy.  

While domain adaptation improves damage detection, the limited real measurement data may not 

fully capture all operational conditions. To address this, Chapters 5 and 6 introduce physics-informed 

models that integrate governing equations, enhancing generalizability and interpretability. 
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Chapter 5. Parallel neural ordinary differential equations based damage identification for 

building structures 

5.1. Overview 

Data-driven-based methods for structural damage identification need to extract the high 

dimensional features from structural responses. Most existing data-driven-based methods are based 

on black-box models without interpretability and explainability. In this study, a new parallel neural 

ordinary differential equations (PNODEs) based method is developed for structural damage 

identification. The proposed method integrates the state-space equation based physical model with a 

neural network block, which includes a bunch of parallel neural networks. Each neural network could 

correspond to a part of the structure. The state-space equation for the structural dynamic system 

provides the physical constraints of prior knowledge to this neural network block. The neural network 

block captures the entire discrepancy from the input data compared with the prior knowledge and 

separates this discrepancy into each neural network corresponding to each structural part. The 

separated discrepancy of each neural network includes the high dimensional features of each part for 

structural damage identification. The proposed approach explores the closed-form expression for a 

group of neural networks to identify the structural parameters, which increases the interpretability 

and enhances the reliability of the neural network model. A three-story building structure and a three-

dimensional IASC-ASCE benchmark frame are used to verify the performance of the proposed 

method. The results show that the proposed method could be reliable and accurate to localise and 

quantify the damage.  

5.2.  State of the art 
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Civil infrastructure is deteriorated due to aging, environmental attacks, operational loading and 

extreme events. Structural damage identification allows for identifying structural damage location 

and severity and the cost-effective maintenance could be conducted timely for structural safety. 

Vibration-based methods have been used for structural damage detection (Fan and Qiao, 2011). These 

methods could mainly be categorised as model-based and data-driven approaches (Hou and Xia, 

2021). Model-based approach relies on a detailed finite element model (FEM) that accurately reflects 

the actual structure. A dynamic response sensitivity-based method has been presented for structural 

damage identification in time domain (Lu and Law, 2007; Baybordi and Esfandiari, 2022). Hou et al. 

(2018) have presented a sparse regularisation technique for structural damage detection. Bayesian 

model updating has been used for structural damage identification (Huang et al. 2017; Liu et al. 2023) 

have explored. Despite great progress made in structural damage localization and quantification, 

significant challenges still remain, such as the discrepancy between the numerical model and real 

structure, operational environmental varieties, and the considerable computational efforts required 

for simulations, especially for the application of large and complex structures.  

The data-driven approach for structural damage detection, especially machine learning based 

methods, has recently attracted the interest of researchers and engineers (Avci et al., 2021). Pathirage 

et al. (2018) proposed an autoencoder neural network-based approach using the relation between 

vibration characteristics and structure damages for steel frame damage qualification. Yu et al. (2019) 

proposed a deep convolutional neural network to extract high-level features from raw response data 

for structural damage identification of smart building structures. As the residual neural network could 

avoid the gradient vanishing problem by utlilising skip connections, the deep residual network 
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framework has been used for structural health monitoring (Wang et al., 2020). These data-driven 

method based on ML could automatically extract the damage-sensitive feature from the monitoring 

data based on classification or regression tasks to identify structural damage. Since these methods 

purely depend on reliable data and neural networks to build a ‘black box’ and rapidly learn the 

complicated relationship between the input and the output of various tasks based on their ability to 

approximate the arbitrary structure functionality. However, they usually lack a physical explanation 

of their intrinsic mechanisms (Zhang et al., 2020). Furthermore, in practical application, these 

methods face challenges due to lack of complete high-quality training data, especially the scarcity of 

structural damage data and measurement noise.  

Physical informed neural network (PINN) integrates the physical knowledge with the ML 

process to solve the forward and inverse scientific problems (Karniadakis et al., 2021). Bao et al. 

(2021) used system response to reconstruct the mode shape for a cable stayed bridge based on a deep 

learning model with a complex cost function that constructs the relationship between structural 

response and modal information to constrain the training process. Lei et al. (2024) integrated a 

physical loss function related to modal sensitivity into a deep-learning network for structural damage 

identification. As the above, the hybrid model not only takes advantage of the fact that neural 

networks can quickly and accurately fit relationships between input and output data to achieve the 

task for system identification but also allows the overall the training process to follow informed 

physical rules to enhance credibility (Wu et al., 2024). The integration of physical knowledge into 

neural network architectures enhances the interpretability and physical consistency of the ML-based 

data-driven approach. Lai et al. (2021) used the Neural ordinary differential equations (NODEs) to 
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identify the parameters of dynamic systems. Instead of obtaining large amounts of health and damage 

data for pre-training the NN, the measurement time series data is directly compared with the health 

condition data generated by the ordinary differential equations (ODEs), which can represent 

structures in the form of state space equations and have been widely used in simulation for both linear 

and non-linear modelling tasks (Karpatne et al., 2017; Raissi and Karniadakis, 2018). Most recently, 

Meng et al. (2020) and Shukla et al. (2021) embedded the physic knowledge into a group of parallel 

neural networks for increasing computational efficiency and dealing with complex tasks. Within one 

physical constraint, each neural network in this group can be given separate inputs and then trained 

simultaneously.  

In this study, a novel structural damage identification method based on parallel neural ODEs 

(PNODEs) has been proposed for complex frame structures. The proposed PNODEs framework 

mainly includes two parts: a physical information term represented the prior knowledge, and a 

discrepancy term processed by parallel neural networks. Each neural network was specifically 

designed to consider responses from a subsection of the structure. Each neural network was parallel-

solved and spliced together at the same time for solving ODEs. The process is that the neural network 

is used to solve ODEs, learning the discrepancy between prior physical knowledge and the actual 

system. The health state of the structure can be informed as the prior knowledge, and parallel neural 

networks learn the discrepancy through each neural network corresponding to each subsection of the 

structure. Therefore, the priori knowledge and discrepancy terms are then summed to form the whole 

model, where the discrepancy term can be considered as the damaged part of the structure.  

The chapter is organised as follows: the theoretical background of NODEs is introduced first, 
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and then the structural damage identification based on PNODEs is explained in Section 2. Numerical 

experimental studies of a building structure with linear or nonlinear damage were conducted to verify 

the proposed method in Sections 3 and 4. An application for a three-dimensional IASC-ASCE 

benchmark frame is used to further verify the performance of the proposed method in Section 5. The 

conclusions are drawn in Section 6.  

5.3. Methodology 

In this section, the neural ordinary differential equations (NODEs) theory is introduced briefly. 

Then the key phases and mechanisms of the proposed parallel neural ordinary differential equations 

(PNODEs) framework are presented, including the data incorporation, prior physical knowledge, the 

parallel neural network (NN) block and the damage index.  

5.3.1. NODEs Theory 

5.3.2. Structural Dynamic System  

As a priori physical knowledge in this study, the ordinary differential equation (ODE) of multiple 

degrees of freedom (DOFs) systems is expressed as,  

  𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐱(𝑡) + 𝐠(𝐱(𝑡), �̇�(𝑡)) = 𝐮(𝑡)     Eq. 5-1 

where 𝐌, 𝐂 and 𝐊 are the system mass, damping and stiffness matrices, respectively. �̈�(𝑡), �̇�(𝑡) 

and 𝐱(𝑡)  are the acceleration, velocity, and displacement responses, respectively. 𝐮(𝑡)  is the 

excitation force, and 𝐠(𝐱(𝑡), �̇�(𝑡))  is the terms associated with state variables to represent two 

situations: a) the difference between the numerical model and real structure due to modelling errors 

and operational environmental varieties; b) the structural damage.  

Eq. 5-1 can be written as state space form as  
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𝑑𝐡(𝑡)

𝑑𝑡
= 𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) + 𝐆(𝐡(𝑡))                 Eq. 5-2 

where  𝐡(𝑡) = [
𝐱(𝑡)

�̇�(𝑡)
]  ∈ ℝ𝑛, 𝐀𝐡(𝑡) = [

𝟎 𝐈
−𝐌−𝟏𝐊 −𝐌−𝟏𝐂

] 𝐡(𝑡) , 𝐆(𝐡(𝑡)) = [
𝟎

−𝐌−𝟏] 𝐠(𝐡(𝑡)) ,  

𝐁𝐮(𝑡) = [
𝟎

−𝐌−𝟏] 𝐮(𝑡). 

5.3.3. Neural Ordinary Differential Equations (NODEs) 

NODEs have garnered significant attention in recent years for a close connection between neural 

networks and differential equations. NODEs could be a continuous equivalent expression of residual 

networks (ResNets). The transformation of the hidden state from layer t to layer (t+1) in ResNets is 

carried out by a differentiable function 𝑓𝑡(∙) as below (He et al. 2016),  

 𝐡𝑡+1 = 𝐡𝑡 + 𝑓𝑡(𝐡𝑡)                      Eq. 5-3 

where 𝐡𝑡 ∈ 𝑅𝑑 is the hidden state of the layer. The difference 𝐡𝑡+1− 𝐡𝑡 is the discretisation of the 

derivation of 𝐡′𝑡  when ∆𝑡 = 1 , following Euler discretization (Wanner & Hairer 1996; Butcher 

2016).  

Eq. 5-3 can be rewritten as 

 𝐡𝑡+1− 𝐡𝑡

∆𝑡
=  𝑓(𝐡𝑡)                                                                 Eq. 5-4 

When ∆𝑡 → 0,  Eq. 5-4 becomes to 

 lim
∆𝑡→0

𝐡𝑡+1− 𝐡𝑡

∆𝑡
 =  

𝑑𝐡(𝑡)

𝑑𝑡
 = lim

∆𝑡→0

𝑓𝑡(𝐡𝑡)

∆𝑡
= 𝑓(𝐡(𝑡), 𝑡, 𝜃)            Eq. 5-5 

The hidden units of the neural networks are parameterised as the ODE form. The data point ℎ0 can 

be mapped into the set of features to time step t by solving the Initial Value Problems (IVPs) as,  

 {
𝑑𝐡(𝑡)

𝑑𝑡
= 𝑓(𝐡(𝑡)) = 𝑓(𝐡(𝑡), 𝑡, 𝜃),

𝐡(𝑡0) = 𝐡0

                     Eq. 5-6 

In the actual operation of the structural dynamic problems, there is normally forced excitation 

instead of the pure Initial Value Problems (IVPs) and informs the priory physical knowledge into 
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NODEs. By adding the excitation force u(t), Eq. 5-6 can be obtained as, 

{
𝑑𝐡(𝑡)

𝑑𝑡
= 𝑓(𝐡(𝑡)) = 𝑓(𝐡(𝑡), 𝑡, 𝐮(𝑡) 𝜃),

𝐡(𝑡0) = 𝐡0
                Eq. 5-7 

Solving the continuous dynamic system using a neural network 𝑓(∙) is an important step in 

establishing NODE (Dupont et al. 2018; Chen et al. 2019). A neural network 𝑓(∙) is the solution of 

the function 𝑓(∙) which represents the dynamics of the system state. When solving the ODE from the 

initial condition 𝐡(𝑡0) = 𝐡0, which initiative the states of the ODE at a given time t depend on the 

initial conditions ℎ0. Thus, given the u(t) as the input to the 𝑓(∙), the output layer ℎ𝑇 is the solution 

of Eq. 5-7 at the final time T.  

In NODEs, an initial state 𝐡(𝑡0) can be mapped to the final state 𝐡(𝑡𝑇) from data to feature 

by mathematically solving an ODE as ℒ(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝐡(𝑡0), 𝑓,  𝑡0, 𝑡𝑇, 𝐮(𝑡), 𝜃)). This defines a loss 

function 𝐿(∙) in a forward process, to evaluate the difference between the predicted state 𝐡(𝑡𝑇) and 

the true state 𝐡true(𝑡𝑇) as, 

ℒ(𝐡(𝑡𝑇)) = ℒ(𝐡(𝑡0)  + ∫ 𝑓(𝐡(𝑡), 𝑡, 𝜃)
𝑡𝑇
𝑡0

𝑑𝑡) = ℒ(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝐡(𝑡0), 𝑓,  𝑡0, 𝑡𝑇, 𝐮(𝑡), 𝜃)) Eq. 5-8 

where 𝜃 is the trainable weight of the neural network 𝑓(∙), which can be optimised by minimize the 

loss function 𝐿(∙). According to Rung-Kutta methods, the solutions of 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 are approximated 

by establishing NODE solvers (Dupont et al. 2018; Chen et al. 2019).   

  𝐡(𝑡𝑇) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(𝐡(𝑡0), 𝑓,  𝑡0, 𝑡𝑇 , 𝐮(𝑡), 𝜃)              Eq. 5-9 

where 𝐡(𝑡𝑇) is the generated results from the neural ODEs based on Eq. 5-7. 

In solving the NODE, the measured data is only required to be given to the network, the 

derivative function 𝑑𝐡(𝑡)
𝑑𝑡

 of the measurement is unnecessary. This training process can be treated as 

solving ODEs in Eq 5-7. As a result, the solutions of ordinary differential equations stored in 𝑓(∙) 
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are finally obtained by training the neural network.   

Loss function:  

During the training process of NODEs, the parameters of the neural network 𝜃 are updated by 

minimising the MSE loss functions: 

 MSE =
1

𝑚
∑ |𝐡true(𝑡𝑖)  − 𝐡(𝑡𝑖)|
𝑚
𝑖=1                          Eq. 5-10 

where 𝐡true(𝑡𝑖)  is the true solution, 𝐡(𝑡𝑖) is the generated results at time 𝑡𝑖, and m is the number 

of the samples of 𝐡(𝑡𝑖). 

5.3.4. PNODEs for Structural Damage Identification  

As shown in Figure 5- 1, the proposed PNODEs framework is introduced in this section. The 

framework mainly includes three phases, e.g. data measurement, solving PNODEs and inference of 

trained neural network. In Phase I, the limited measured displacement and velocity responses are 

formed the state vectors for input of Phase II. The prior physical knowledge is integrated into the 

parallel neural networks with supervision of limited measurement data. Each neural network is 

corresponding to a floor of the building structure as a substructure. Phase III is to apply the trained 

PNODEs for response prediction and structural damage identification. The proposed PNODE 

framework can be summarised as follows: (i) By implicitly placing a prior structured dynamical 

system in a state space form, the general high-performance representation of NNs is used to represent 

the structural damage by discovering discrepancies between the measured data and a priori system. 

(ii) Building a set of parallel neural networks. Based on the characteristics of the structural dynamics 

governing equations, each neural network is provided with only the measured responses associated 

with the part of the structure it represents, which allows the discrepancy information to be stored 
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separately in each network corresponding to each part of the structure. The great favour of this parallel 

neural network is that it avoids the whole discrepancy information being stacked in one whole neural 

network, further clearly identifying the source of the discrepancy (iii) Inference with each of the 

trained NN as discrepancy, plotting and fitting the inputs and outputs of a neural network to discover 

the latent restore force. Finally, the fitted parameter of the restore force indicating the stiffness change 

of the relevant section is utilized to localise and quantify damage.  

 
Figure 5-1. PNODEs framework 

The main contribution of this work can be summarised as (i) Based on PNODES, discrepancy 

information between the prior physics and real structure is stored using a set of parallel neural 

networks with prior knowledge of the structural dynamics model under health conditions (based on 

ODEs) and the training of network does not require large amounts of measurement data. (ii) Damage 

localisation is achieved by discovering and separating the discrepancies of each part of the structure, 
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respectively, using each neural network in a set of parallel networks. (iii) damage quantification is 

performed by observing structural restoring force from each neural network and the neural network 

is further interpreted to enhance interpretability. 

5.3.5. Informed priory physical knowledge  

In Phase II, the simplified numerical model is embedded into the parallel neural network as the 

prior physical knowledge. As shown in Figure 5-1, this phase consists of a prior physics block (blue 

block) and a parallel NN block (green block). In the prior physics block, the prior structural physics 

knowledge can be simplified as multiple DOFs in Eq. 5-1, and it can be expressed in the form of 

state-space equations. 

 𝑑𝐡phy(𝑡)

𝑑𝑡
= 𝐀𝐡phy(𝑡) + 𝐁𝐮(𝑡)                      Eq. 5-11 

where A and B matrices in this physical model consist of the K, M and C matrices of their 

corresponding physical parameters. In this study, the prior structural physics represents the structure 

in a healthy state generating 𝑑𝐡phy(𝑡)
𝑑𝑡

  . Once the structure is damaged, the structural damage 

information compared with the health state is, therefore, modelled as parallel NNs as the discrepancy 

term. Then, the parallel NN block was utilized to learn the discrepancy (green shadows) between 

measurement (blue line) and prior structural physics knowledge (blue dash line) in the latent space 

through time-series data. Finally, combining the process of solving ODEs with neural networks 

mentioned in Section 2.1.2., and informs the physical model, Eq. 5-2 can be rewritten as the NODE 

form,  

  
𝑑𝐡(𝑡)

𝑑𝑡
=  𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) + 𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃)              Eq. 5-12 

where 𝑓𝑁𝑁(∙) is the approximated functions learned by a group of parallel NNs.  
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5.3.6. Design of the parallel neural networks 

After the displacement and velocity response are measured from the real structure, these 

responses are formed as a state vector 𝐡true(𝑡) for supervising PNODEs as shown in Phase II. In 

order for each neural network to represent only one part of the structure, separating the discrepancy 

terms from each part of the structure from the whole into each neural network, the inputs and outputs 

of each neural network were specifically designed based on the responses from subsections of the 

structure. For a building structure with n floors as shown in Figure 5- 1, each floor could be a 

subsection. The equation of motion for the ith floor can be expressed as below (Nayeri et al., 2008; 

Zhan et al., 2014),  

𝑢𝑖(𝑡) = −𝑚𝑖�̈�𝑖(𝑡) + 𝑘𝑖𝑥𝑖−1(𝑡) − (𝑘𝑖 + 𝑘𝑖+1)𝑥𝑖(𝑡) + 𝑘𝑖+1𝑥𝑖+1(𝑡) + 𝑐𝑖�̇�𝑖−1(𝑡) − (𝑐𝑖 + 𝑐𝑖+1)�̇�𝑖(𝑡) +

𝑐𝑖+1�̇�𝑖+1(𝑡)                                                                  Eq. 5-13 

where 𝑘𝑖 , 𝑚𝑖 , 𝑐𝑖 are the stiffness mass and damping coefficients of the nth floor; 𝑥𝑖, �̇�𝑖 and �̈�𝑖 are 

the displacement, velocity and acceleration of the ith floor; 𝑢𝑖 is the external force applied in the ith 

DOF. From Eq. 5-13, it can be found that the ith floor of the physical parameters changes are relevant 

to the state of the (i-1)th, ith and (i+1)th floor. Therefore, the input of each neural network 𝐡𝑖(𝑡) =

[𝑥𝑖−1(𝑡); 𝑥𝑖(𝑡); 𝑥𝑖+1(𝑡); �̇�𝑖−1(𝑡); �̇�𝑖(𝑡); �̇�𝑖+1(𝑡) ] (when i=1, the input items of the neural network 

𝑥𝑖−1(𝑡)  and �̇�𝑖−1(𝑡)  are set as 0; when i=n, the input items of the neural network 𝑥𝑖+1(𝑡)  and 

�̇�𝑖+1(𝑡) are set as 0 ). 

A parallel neural network is designed for PNODEs. There are n neural networks in the 

framework and each network represents a subsection, e.g. a floor of the structure. For each time step 

t, the PNODEs generated a state vector 𝐡(𝑡) = [𝑥1(𝑡); 𝑥2(𝑡); … ; 𝑥𝑛(𝑡); �̇�1(𝑡); �̇�2(𝑡); … ; �̇�𝑛(𝑡)] . 

𝐡(𝑡) is regrouped as 𝐡𝑖(𝑡) (i = 1, 2, …, n). 𝐡𝑖(𝑡) is corresponding to the ith neural network, e.g. 
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the ith floor of the structure.  

5.3.7. Solving the ODEs based on the parallel neural networks 

Details of Phase II, architecture of PNODEs is shown in Figure 5-2. The parallel NN block 

cooperating with the prior physics block is to generate 𝐡(𝑡). With the cooperation of the prior physics 

block, the parallel NN block is constrained by structural dynamic rules. For the time step t, the parallel 

neural networks block, 𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃) in Eq. 5-12 has been designed as a group of parallel neural 

networks. Eq. 5-12 can be rewritten as,  

 𝑑𝐡(𝑡)

𝑑𝑡
= 𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) +

[
 
 
 
 

𝟎𝑛×1
𝑓𝑁𝑁1(𝐡1(𝑡), 𝑡, 𝜃)

𝑓𝑁𝑁2(𝐡2(𝑡), 𝑡, 𝜃)…
𝑓𝑁𝑁𝑛(𝐡𝑛(𝑡), 𝑡, 𝜃)]

 
 
 
 

              Eq. 5-14 

where the 𝑓𝑁𝑁𝑖(𝐡𝑖(𝑡), 𝑡, 𝜃)(𝑖 = 1, 2, … , 𝑛)  is the ith neural network, and the input of the neural 

network is 𝐡𝑖(𝑡). G(𝐡(𝑡)) can be obtained by combining {𝑓𝑁𝑁𝑖(𝐡𝑖(𝑡), 𝑡, 𝜃), 𝑖 = 1,2,⋯𝑛} together 

which is a derivative of discrepancy item relative to each section.  

In the parallel NN block, the initial condition 𝐡(𝑡0) when 𝑡 = 𝑡0 from the real structure of is 

obtained and regrouped as 𝐡𝑖(𝑡0)  given to the parallel NN block to generate discrepancy item 

G(𝐡(𝑡)). In the prior physics block, at the same time step, the derivative of the physical structure’s 

state 𝑑𝐡phy(𝑡)
𝑑𝑡

  in Eq. 5-11 is calculated using the excitation force u(t). Then, the output of the 

PNODEs block 𝑑𝐡(𝑡)
𝑑𝑡

 is determined by the sum of G(𝐡(𝑡)) and 𝑑𝐡phy(𝑡)
𝑑𝑡

, and the acceleration vector 

of the structure [�̈�1(𝑡); �̈�2(𝑡); … ; �̈�𝑛(𝑡)] is corresponding to last n values of the output. Finally, by 

solving the ODE, the state of the system 𝐡(𝑡) in the next time can be obtained. At the same time 

step, the MSE loss in Eq. 5-10 is computed by the difference between the measured response 𝐡true(𝑡) 

and the generated response 𝐡(𝑡) from PNODEs to update parameters of the parallel NN block. After 
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the above process, the PNODEs complete the solution at one time step, and 𝐡(𝑡)  is regrouped again 

and input to the PNODEs block to generate solution along time series.  

 

Figure 5-2. Phase II. Architecture of PNODEs  

5.3.8. Inference of the parallel NN block 

After the parallel NN block is trained, the structural physical parameters are fitted and 

determined from each NN for structural damage identification. The ith neural network 

𝑓𝑁𝑁𝑖(𝐡𝑖(𝑡), 𝑡, 𝜃) is parameterised by weight 𝜃, which can be represented by the chain structure with 

𝐿 + 1 layers.  

 𝑓𝑁𝑁𝑖(𝐡𝑖): 

{
 
 

 
 
𝐡𝑖
1 = 𝜎1(𝐖1𝐡𝑖

0 + 𝑏1)
⋮

𝐡𝑖
𝑙 = 𝜎𝑙(𝐖l𝐡𝑖

l−1 + 𝑏𝑙)
⋮

𝐡𝑖
𝐿 = 𝜎𝐿(𝐖L𝐡𝑖

L−1 + 𝑏𝑳)

                Eq. 5-15 

where 𝐡𝑖𝑙 is the intermediate output hidden in the 𝑙 + 1 layer of the ith network,  𝐡𝑖0and 𝐡𝑖𝐿 are 

assigned as input and output vector of the ith network, respectively. 𝐖𝑙  is the weight vector 

associated with linear transfer from the (𝑙 − 1) layer to the 𝑙 layer. 𝑏𝒍 is the bias in the 𝑙 layer . 
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𝜎𝑙 is the activation function at the 𝑙 layer. 

To reconstruct the structural parameters from the parallel NN block linking to the prior physics 

block, the identification of variation in local stiffness value can be achieved by conducting the process 

below: (a) The discrepancy between the real dynamic and prior structural knowledge of the parallel 

NN block [
𝑓𝑁𝑁1(𝐡1(𝑡))
𝑓𝑁𝑁2(𝐡2(𝑡))…
𝑓𝑁𝑁𝑛(𝐡𝑛(𝑡))

] can be computed from each network 𝜎(𝐖𝐡𝑖 + 𝑏) from Eq. 5-15, then 

the parallel NN block can also be expressed as 𝐖(𝐡) = [
𝜎(𝐖1𝐡1 + 𝑏)

𝜎(𝐖2𝐡2 + 𝑏)…
𝜎(𝐖𝑛𝐡𝑛 + 𝑏)

]; (b) The discrepancy term 

expression is fitted by establishing a regression problem, the neural network is then expressed by a 

matrix of the coefficients as shown below 

 𝐖(𝐡) =  [

𝐡1𝚯1
𝐡2(𝑡)𝚯2…
𝐡𝑛(𝑡)𝚯𝑛

]                        Eq. 5-16                          

where 𝐡𝑖(𝑡)𝚯𝑖 is a polynomial function corresponding to the ith floor of the structure, followed by 

the prior physical for the structure. Then the closure approximation expression is consistently related 

to the known dynamical system as follows, 

 𝑑𝐡(𝑡)

𝑑𝑡
=  𝐀𝐡(𝑡)) + 𝐁𝐮(𝑡) + 𝐡(𝑡)𝚯              Eq. 5-17 

5.3.9. Damage Index 

After the structural parameters are determined, the damage index is introduced for structural 

damage localisation and qualification. Considering the structure under the health condition, the prior 

physics in Eq (12) is expressed as, 

 𝑓health(⋅) =
𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏𝐊health −𝐌−𝟏𝐂

] 𝐡(𝑡) + [
𝟎

−𝐌−𝟏] 𝐮(𝑡)     Eq. 5-18 
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where 𝐊health is a stiffness matrix for the structure of the health condition. Structural damage can 

be represented as changes of physical properties (i.e stiffness), which are treated as indicators of the 

structural damage location and severity (Radzienski et al. 2011; Maia 2003; Yan et al. 2019; Avci et 

al. 2020). Therefore, the damaged structure from Equation (18) is expressed as, 

𝑓damage(⋅) =
𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏(𝐊health −△ 𝐊) −𝐌−𝟏𝐂

] 𝐡(𝑡) + [
𝟎

−𝐌−𝟏] 𝐮(𝑡)     

  

= [
𝟎 𝐈

−𝐌−𝟏(𝐊health) −𝐌−𝟏𝐂
] 𝐡(𝑡) + [

𝟎
−𝐌−𝟏] 𝐮(𝑡) + [

𝟎 𝟎
−𝐌−𝟏(− △ 𝐊) 𝟎

]𝐡(𝑡)    Eq. 5-19 

where △𝐊  is a matrix representing of change in stiffness of the damaged structure. Eq. 5-15 

represents the health structure system that has been put into the prior physics block as the referenced 

physical knowledge. Therefore, the expression of the model discrepancy between health condition 

and damage condition 𝑓health(⋅)-𝑓damage(⋅) is expressed as  

 𝒇△𝑲(⋅) =
𝑑𝐡△𝑲

𝑑𝑡
= [

𝟎 𝟎
−𝐌−𝟏(△ 𝐊) 𝟎

]𝐡(𝑡)              Eq. 5-20 

Compared with Eq. 5-17, Eq. 5-19 can be rewritten as, 

  
𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏(𝐊health) −𝐌−𝟏𝐂

] 𝐡(𝑡) + [
𝟎

−𝐌−𝟏] 𝐮(𝑡) + 𝐡(𝑡)𝚯    Eq. 5-21 

The discrepancy term 𝑓△𝑲(⋅) of the structural system is stored in the Parallel NN block 𝐡(𝑡)𝚯 

(it is obtained by the reconstruction task introduced in Section 2.2.5 process (a) and (b)). Therefore, 

the 𝐡(𝑡)𝚯   represents the model discrepancy from Eq. 5 − 16 and it could be expressed as,  

 

[
 
 
 
 
 

𝟎𝑛×1
𝐡1(𝑡)𝚯1
𝐡2(𝑡)𝚯2…

𝐡𝑛−1(𝑡)𝚯𝑛−1
𝐡𝑛(𝑡)𝚯𝑛 ]

 
 
 
 
 

=
𝑑𝐡△𝑲

𝑑𝑡
=

[
 
 
 
 
 
 
 
 

𝟎𝑛×1

−(
△𝑘1

𝑚1
+
△𝑘2

𝑚1
)𝑥1(𝑡) +

△𝑘2

𝑚1
𝑥2(𝑡)

△𝑘2

𝑚2
𝑥1(𝑡) − (

△𝑘2

𝑚2
+
△𝑘3

𝑚2
) 𝑥2(𝑡) +

△𝑘3

𝑚2
𝑥3(𝑡)

…
△𝑘𝑛−2

𝑚𝑛−1
𝑥𝑛−2(𝑡) − (

△𝑘𝑛−1

𝑚𝑛−1
+

△𝑘𝑛

𝑚𝑛−1
) 𝑥𝑛−1(𝑡) +

△𝑘𝑛

𝑚𝑛−1
𝑥𝑛(𝑡)

△𝑘𝑛

𝑚𝑛
𝑥𝑛−1(𝑡) −

△𝑘𝑛

𝑚𝑛
𝑥𝑛(𝑡) ]

 
 
 
 
 
 
 
 

  Eq. 5-22 



 

113 

 

To reconstruct the stiffness parameter change of the damaged structural system to explore the 

damage location and severity, each network 𝐡𝑖(𝑡)𝚯𝑖 should be interpreted. Thus, considering the ith 

intermediate non-zero equation, multiplying 𝑚𝑖, the structural restoring force can be obtained as 

𝑚𝑖
𝑑𝐡𝑖△𝒌

𝑑𝑡
= −△ k𝑖(𝑥𝑖(𝑡) − 𝑥𝑖−1(𝑡)) +△ k𝑖+1(𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡)) . Therefore, each △ k𝑖  can be 

estimated by solving the corresponding equation group with respect to 𝑥𝑖(𝑡) − 𝑥𝑖−1(𝑡) on right hand 

side of Eq. 5-22. Then, △ k𝑖 can be obtained by the element of 𝚯𝑖 times 𝑚𝑖. Finally, the damages 

index is defined as 

 𝛼𝑖 = △k𝑖
k𝑖

                                                                 Eq. 5-23 

where k𝑖 is the stiffness value of the ith floor in the health condition and △ k𝑖 is the fitted stiffness 

change. The damages index is later used to indicate the damage.  

5.4. Numerical study 

In this section, a three-story building structure is used to verify the performance of the proposed 

method for structural damage identification. The physical properties of the building structure are 

introduced first. Then, the data preparation process is introduced, followed by the PNODEs 

architecture, including the prior physical knowledge and the neural network parameters. Subsequently, 

the proposed method is used for structural damage identification.  

5.4.1. Numerical model 

A three-storey building structure is used as an example in this section. The stiffness and mass of 

each floor are 𝑘𝑖 =9.755× 103  𝑁/𝑚  and 𝑚𝑖 = 4. 8 5 kg respectively. The Rayleigh damping is 

introduced as 𝑐 = 𝛼𝑚 + 𝛽𝑘 , in which 𝛼 = 0.016  and 𝛽 = 2.136𝑒 − 4  . The model has two 

identical columns with a 50 mm × 3 mm cross-section, a 900 mm length, and three steel floors 
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measuring 394 mm × 50 mm × 30 mm. The story height is 300 mm. The material used to build all 

columns and floors is high-strength steel with a yield stress of 435 MPa and an elasticity modulus of 

200 GPa. The three-storey building structure is modelled as lumped mass model with three degrees 

of freedom (DOFs), as shown in Figure 5- 3(a). The three natural frequencies of the model are 3.195 

Hz, 8.951 Hz and 12.935 Hz, respectively. The equations of the motion for the model are obtained as 

(Zhan et al., 2014), 

{

𝑢𝑔(𝑡) − 𝑚1�̈�1(𝑡) = (𝑘1 + 𝑘2)𝑥1(𝑡) − 𝑘2𝑥2(𝑡) + (𝑐1 + 𝑐2)�̇�1(𝑡) − 𝑐2�̇�2(𝑡)

−𝑚2�̈�2(𝑡) = −𝑘2𝑥1(𝑡) + (𝑘2 + 𝑘3)𝑥2(𝑡) − 𝑘3𝑥3(𝑡) − 𝑐2�̇�1(𝑡) + (𝑐2 + 𝑐3)�̇�2(𝑡) − 𝑐3�̇�3(𝑡)
−𝑚3�̈�3(𝑡) = −𝑘3𝑥2(𝑡) + 𝑘3𝑥3(𝑡) − 𝑐3�̇�2(𝑡) + 𝑐3�̇�3(𝑡)

Eq. 5-24 

where 𝑥𝑖   �̇�𝑖  and �̈�𝑖  represent the displacement, velocity and acceleration responses of the 𝑖𝑡ℎ 

floor. 𝑢𝑔  is the ground excitation. The state vector 𝐡(𝑡) ∈ ℝ6×1 is expressed as 𝐡(𝑡) =

[𝑥1(𝑡); 𝑥2(𝑡); 𝑥3(𝑡); �̇�1(𝑡); �̇�2(𝑡);  �̇�3(𝑡)].   

         

(a) Lumped mass model                 (b) Spectra of WN and earthquake excitations 

Figure 5-3. Building structure and its excitations  

5.4.2. Data preparation  

The ground excitation u(t) is simulated by four earthquakes, e. i., El Centro (E1), Hachinohe 

(E2), Kobe (E3) and Northridge (E4), and white noise (WN) as shown in Figure 5- 3(b). The sampling 
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rate is 100 Hz sampling rate. As mentioned above, the highest frequency of the three-story model is 

12.935 Hz and a sampling rate of 100 Hz is sufficient to obtain the features of all the modes of the 

model from the data. In terms of frequency band of each excitation, that of the earthquake recordings 

are between 0 − 5 𝐻𝑧 due to their natural characteristic, and that of WN is set between 1 − 25 𝐻𝑧 

as shown in Figure 5- 3(b). Then, the state vector  𝐡(𝑡) of the structural system are formed by the 

displacement and velocity responses. 𝐡(𝑡)  is regrouped as 𝐡1(𝑡) =

[0; 𝑥1(𝑡); 𝑥2(𝑡); 0; �̇�1(𝑡); �̇�2(𝑡)] , 𝐡2(𝑡) = [𝑥1(𝑡); 𝑥2(𝑡); 𝑥3(𝑡); �̇�1(𝑡); �̇�2(𝑡); �̇�3(𝑡)]  and 𝐡3(𝑡) =

[𝑥2(𝑡); 𝑥3(𝑡); 0; �̇�2(𝑡); �̇�3(𝑡); 0] to supervise the PNODEs in Phase II. For the length of training data, 

a 32 s state vector 𝐡𝑖(𝑡) containing 3200 data points is used.  

5.4.3. PNODEs architectures  

In the Prior physics block, the structure under health condition is given with the known ground 

excitation 𝐮(𝑡). It can be expressed as  

𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏𝐊 −𝐌−𝟏𝐂

] 𝐡(𝑡)  + [
𝟎

−𝐌−𝟏] 𝐮(𝑡) = 𝒇health(⋅) + 𝐁𝐮(𝑡)   Eq. 5-25 

where 𝟎3×1 is a zero-matrix vector ℝ𝟑 ; The mass matrix 𝐌 , stiffness matrix 𝐊   and damping 

matrix 𝐂 are given.        

𝐊 = 103 [
19.509 9.755 0
−9.755 19.509 −9.755
0 −9.755 9.755

] (𝑁/𝑚);𝐌 = [
4.8 0 0
0 4.8 0
0 0 4.8

] (kg); 

𝐂 = [
4.244 4.244 0
−2.084 4.244 −2.084
0 −2.084 2.161

] (𝑁𝑠/𝑚𝑚) 

In the Parallel NN block, the discrepancy 𝑁𝑁(𝐡(𝑡)) from Eq. 5-14 of the structural system is 
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learned by three parallel neural networks 

[
 
 
 
 

𝟎3×1
𝑁𝑁1(𝐡1(𝑡))

𝑁𝑁2(𝐡2(𝑡))

𝑁𝑁3(𝐡3(𝑡))]
 
 
 
 

 (𝑁𝑁𝑖: ℝ
6 ⟶ℝ1, 𝑖 =

1, 2 𝑎𝑛𝑑 3) representing three floors of the structure. The input for each network is the state vector 

𝐡𝑖(𝑡) = [𝑥𝑖−1(𝑡); 𝑥𝑖(𝑡); 𝑥𝑖+1(𝑡); �̇�𝑖−1(𝑡);  �̇�𝑖(𝑡); �̇�𝑖+1(𝑡)],  and the output of PNODEs is the 

acceleration vector [�̈�1(𝑡); �̈�2(𝑡); �̈�3(𝑡)]. To accurately capture the discrepancy term, the 𝑁𝑁𝑖(∙) is 

designed with two layers, a hyperbolic tangent function 𝑡𝑎𝑛ℎ(∙) is applied as an activation function 

𝜎(∙). Based on the Eq. 5-10, the 𝑁𝑁𝑖(𝐡(𝑡)) can be represented as   

𝑁𝑁𝑖(𝐡𝑖(𝑡)) = 𝐖
2[𝜎1(𝐖1𝐡0 + 𝒃1)] + 𝒃2 

= 𝒘[2]𝑇[𝜎1(𝒘[1]𝑇𝐡0 + 𝑏[1])] + 𝑏[2]                  Eq. 5-26 

where 𝒘 and 𝒃 is the matrix representation for weight vector and bias respectively; The number of 

neurons assumed in the hidden layer is equal to 10, thus dimensions of matrices are 𝒘[1] ∈ ℝ6×10; 

𝒃[1] ∈ ℝ10; 𝒘[2] ∈ ℝ10×1; 𝒃[2] ∈ ℝ1. The architecture of 𝑁𝑁𝑖 and training hyper-parameters are 

listed in Table 5-1.  

Table 5-1. Architecture of the network and its training hyper-parameters  
Architecture of each neural network 𝑁𝑁𝑖  Training hyper-parameters 
Layer type Size Numbe

r of neurons  
Name  Value 

Input 6  Batch size 200 
Layer 1  10 Epoch 2e5 
Layer 2  10 Learning rate 1e-5 
Output 1 1   

5.4.4. Results 

5.4.4.1. Structural damage identification with measurement noise 

In practice, the measurement generally contains some noise. Thus, this section will discuss the 

performance of the proposed method for damage identification with measurement noise. Firstly, the 
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damage is introduced on the first floor by a stiffness reduction of 10%. The state space equations of 

the 3DOF structure system with the first-floor 10% damaged are:  

𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏𝐊 −𝐌−𝟏𝐂

] 𝐡(𝑡) +

[
 
 
 
 
 

0
0
0

−
0.1𝑘1

𝑚1
𝑥1(𝑡)

0
0 ]

 
 
 
 
 

 + [
𝟎

−𝐌−𝟏] 𝐮(𝑡) = 𝒇damage(⋅) + 𝐁𝐮(𝑡)

 Eq. 5-27 

Then, the 3% and 5% Gaussian white noise are added to the responses to simulate the 

measurement data  𝑋𝑛𝑜𝑖𝑠𝑒 for the training data as 𝑋𝑛𝑜𝑖𝑠𝑒 = 𝑋 +𝒩(𝜇, 𝜎), where 𝑋 is the noise-free 

data. 𝒩(𝜇, 𝜎) is the standard normal distribution of Gaussian noise. 𝜇, 𝜎 are the mean value and 

standard deviation of the noise. In this case, 𝜇 is equal to 0; 𝜎 is equal to 0.05 and 0.1 for 5% and 

10% noise respectively.  

Figure 5-4 shows the identification results of the damage index calculated by △ k𝑛 from each 

𝑁𝑁𝑖(𝐡𝑖(𝑡)), and their relative errors summarised in Table 5-2. From Figure 5- 4, the identified result 

is very close to the true value when there is no measurement noise. When the measurement noise is 

5% or 10%, the damaged floor can be clearly identified. For damage severity, with the noise level 

increases, the value of the identified damage index gradually far away from the true value. It can be 

observed that with an increased noise level, the 𝑁𝑁𝑖(𝐡𝑖(𝑡)) is still enabled to capture the damage 

location accurately, while the damage severities can be precisely identified with the lower noise level.  
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Figure 5-4. Identified results for Damage case 1M with different measurement noise. 
 

Table 5-2. Relative errors of identified results for Damage case 1M with different measurement 
noise.   

Damage 
Index  

True   Identified  
  0% noise  5% noise  

 
10% noise   

PNODEs Errors(%) PNODEs Errors(%) PNODEs Errors(%) 
𝛼1 0.300 0.296 1.400 0.326 9 0.276 7.900 
𝛼2 - 0.003 - 0.012 - 0.002 - 
𝛼3 - 0.004 - 0.037 - 0.048 - 

The output of 𝑁𝑁𝑖(𝐡𝑖(𝑡)) is the acceleration of the ith floor, and the restoring force can be 

obtained by multiplying by its mass. The force versus the relative displacement (𝑥𝑛(𝑡) − 𝑥𝑛−1(𝑡)) 

for each floor is shown in Figure 5- 5 and it is compared with the true force from Eq. 5-26. Using the 

linear fitting, the stiffness change is determined, by the slope as △ 𝑘1 = 973.7𝑁/𝑚. It is close to 

the true value of the stiffness change as 0.1k1 = 975.46𝑁/𝑚. The result shows that the proposed 

method can efficiently quantify the structural damage given the a priori knowledge of the system 

under the health structure, and the PNODES can be sufficiently trained to accurately represent model 

discrepancies caused by the damage. 
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Figure 5-5. The relationship between 𝑁𝑁𝑖(𝐡𝑖(𝑡)) and relative displacement for each floor  

5.4.4.2. Nonlinear structural system identification 

Nonlinearities usually exist in civil structures, and it is usually caused by material, geometrical 

or boundary conditions (i. e. sliding surface, vibratory impact caused by semi-rigid connection, or 

elastic bodies) (Worden et al., 2008). In this study, the proposed method is to identify the nonlinear 

damage scenario in the structure under seismic excitations. The damage scenario is introduced by 

adding an additional nonlinear stiffness term 𝑘𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟
𝑚1

𝑥1
3, the state space equation of the nonlinear 

system are as,  

𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏𝐊 −𝐌−𝟏𝐂

] 𝐡(𝑡) +

[
 
 
 
 
 

0
0
0

𝑘𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟

𝑚1
𝑥1
3(𝑡)

0
0 ]

 
 
 
 
 

 +  [
𝟎

−𝐌−𝟏] 𝐮(𝑡)      Eq. 5-28 

where 𝑘𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = 2800 × 103 𝑁/𝑚.  

The relationship between the restoring force versus the relative displacement of each floor is 

shown in Figure 5-6. From the figure, the restoring forces for the second and third floors are close to 

zero and their stiffness changes are equal to zero. The restoring force for the first floor is nonlinear 

and the nonlinear stiffness can be determined by the polynomial fitting as 2908.2 × 103 𝑁/𝑚 and 

the relative error between them is 3.864%. The result shows that the proposed method captures the 

nonlinear stiffness of structural system. 
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Figure 5-6. 𝑁𝑁𝑖(𝐡𝑖(𝑡)) versus each relative displacement for the nonlinear system.  

5.5. An experimental study of a three-storey building structure 

In this section, a 3-storey steel building model is established in the laboratory to further verify 

the proposed method. First, the experiment setup is introduced. Next, the experimental study of the 

building structure with different damage scenarios subjected different excitations are conducted on a 

shaking table. Finally, the feasibility of the proposed method in localizing damage is demonstrated. 

5.5.1. Experimental setup 

A 3-storey steel building frame was built and installed on the shake table at UTS Tech Lab. The 

experimental setup is shown in Figure 5- 7. The building structure is made of two spring steel strips 

and four mass blocks, the bottom mass block was fixed on a multi-axis shake table by two high-

strength bolts. The accelerometers are installed on each floor to collect the acceleration responses and 

the lasers are installed beside the shake table to measure the structural displacement response. The 

shake table provides one-axis seismic ground motions made by the shake table controller. The first 

three natural frequencies of the experimental structure are 3.063 Hz, 8.620 Hz and 12.520 Hz, 

respectively. 
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Figure 5-7. Experimental set up Figure 5-8. Damage models   

Different damage scenarios are simulated through the saw cut on two columns as listed in Table 

5-3. The steel columns on both sides of the model were cut symmetrically, and the location of the 

damage is shown in the red colour in Figure 5- 8. For each damage scenario, given the excitations, 

the displacement responses of the structure under different excitations are measured by laser sensors. 

Table 5-3. Damage scenarios of the experimental frame structure. 
Name Single damage case  Name Double damage case  

1L 1st floor 10% damage; 𝐿 = 4.5𝑚𝑚 1M2M 1st & 2nd floor 30% 
damage: 𝐿 = 9𝑚𝑚 1M 1st floor 30% damage; 𝐿 = 9𝑚𝑚 

1S 1st floor 50% damage; 𝐿 = 12.5𝑚𝑚 

5.5.2. Data preparation 

The ground excitation is the same as used in the numerical study, including four earthquakes (El, 

E2, E3 and E4) and WN, which were provided by the shake table to excite the experimental structure. 

The frequency band of the four earthquakes are between 0 − 5 𝐻𝑧, and that of WN are set between 

1 − 25 𝐻𝑧 as shown in Figure 5- 3(b). The magnitude of all ground motions is scaled to 0.1𝑔  keep 

the structure remained in a linear behaviour. Lastly, the time series response h(t) is recombined into 
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𝐡𝑖 (i = 1, 2 and 3) for the input of the PNODE model. 

5.5.3. Architecture of PNODEs  

In the Prior physics block, the prior physics knowledge under the health condition corresponding 

to the undamaged experimental structure is simplified to a 3-DOFs numerical model. However, there 

are some differences due to the modelling error between the experimental structure and numerical 

model even both under health condition, these differences may be incorrectly identified as structural 

damage and captured by the parallel neural network, leading to inaccurate damage identification 

results. Thus, the numerical model is updated using the responses of the experimental structure under 

the health condition. After the updating process, the stiffness and damping matrix of the experimental 

structure of health condition 𝐊Exp and 𝐂Exp are obtained as prior physical knowledge summarised 

in Table 5-4 below. 

Table 5-4. Updated stiffness and damping matrices for the experimental model. 
Updated stiffness matrix Updated damping matrix 

𝐊Exp = [
18.00 −9.35 −0.04
−9.32 18.24 −9.07
−0.29 −8.84 8.97

]       𝐂Exp = [
5.45 3.99 −0.25
−2.34  5.14 −2.64
−0.34 −2.69 2.73

]     

In the parallel NN block, the state space equations are established by structural state vectors 

𝐡(𝑡) ∈ ℝ6×1 as below, 

𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−𝟏(𝐊Exp) −𝐌−𝟏𝐂Exp

] 𝐡(𝑡) + [
𝟎

−𝐌−𝟏] 𝐮(𝑡) + [
𝟎3×1

𝑁𝑁(𝐡(𝑡))
]                        

= [
𝟎 𝐈

−𝐌−𝟏(𝐊Exp) −𝐌−𝟏𝐂Exp
] 𝐡(𝑡) + [

𝟎
−𝐌−𝟏] 𝐮(𝑡) +

[
 
 
 
 

𝟎3×1
𝑁𝑁1(𝐡1(𝑡))

𝑁𝑁2(𝐡2(𝑡))

𝑁𝑁3(𝐡3(𝑡))]
 
 
 
 

             Eq. 5-29 

where 𝑁𝑁𝑖(𝐡𝑖(𝑡)) (i = 1, 2, 3) represents the discrepancy between the undamaged and damaged 

structures. The architecture of each network is designed as same as the numerical study with 6 inputs 
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and 1 output introduced in Section 3.4. 

5.5.4. Results 

5.5.4.1. Effect of different excitations 

Excitations may variously appear in practice. The performance of the proposed approach for 

damage identification under various excitations is further investigated in this section. Under different 

ground excitations E2, E3 and WN, the responses 𝐡(𝑡)  of the experimental structure with 30% 

damage (1M) of the first floor are recorded, respectively. Figure 5- 9 shows the identified damage 

indices compared with the true value, and the relative errors are shown in Table 5-5. They shows that 

the proposed PNODEs can accurately identify the damage severity of the first floor underground 

excitation E2 and E3, with results of 0.325 and 0.327 also with the relative errors of 9% and 8.333% , 

respectively. When the experimental model is under WN, it also can correctly localise the damaged 

location and identify the damage severity with a result of 0.343 and relative error of 14.333%. Besides, 

there is an error in the identified results for the second and third floors with the maximum damage 

index of 0.002.  

 

Figure 5-9. Identified results for Damage case 1M under excitations of E2, E3 and WN. 
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Table 5-5. Relative errors of identified results for Damage case 1M under different excitations.   
Damage 

Index  
True   Identified  

  E2  E3  
 

WN   
PNODEs Errors 

(%) 
PNODEs Errors(%) PNODEs Errors(%) 

𝛼1 0.300 0.325 8.333 0.327 9.000 0.343 14.333 
𝛼2 - 0.002 - 0.019 - 0.030 - 
𝛼3 - 0.006 - 0.006 - 0.012 - 

 

 
Figure 5-10. Output of trained 𝑁𝑁𝑖(𝐡𝑖(𝑡)) versus each relative displacement for Damage case 1M 

under E2, E3 and WN 

The restoring force is extracted from 𝑁𝑁𝑛(𝐡𝑛(𝑡)) and plotted in Figure 5- 10. The linear fitting 

is used to determine the stiffness reduction from the restoring force. From Figure 5- 10, the identified 

stiffness reductions under E2, E3 and WN excitations are △ 𝑘1 = 3280.9
𝑁

𝑚
 ,  3200.8 𝑁

𝑚
  and 

3361.4
𝑁

𝑚
  , respectively. The identified results are close to the true stiffness changes 0.3𝑘1 =

2793.8 𝑁/𝑚. The results show that the proposed method is robust to the environmental excitation. 

5.5.4.2. Single damage identification  

To explore the performance of the proposed method for structural damage identification, single 

damage with different severities are studied in this section. With the earthquake excitation (E1) is 
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applied, dynamic responses of the structure with 10%(1L), 30%(1M) and 50%(1S) damage on the 

first floor were used to test. Figure 5- 11 shows the identified results compared with the true value 

and Table 5-6 summarised the relative errors. Upon damage scenario of 1L, the damage index of the 

identified result 0.126 is slightly higher than the true value 0.1. Besides, the identified damage index 

of 1M and 1S are close to the true values. There are errors in identified results on the second and third 

floors with the maximum identified index of 0.03.  

The restoring force is extracted from 𝑁𝑁𝑛(𝐡𝑛(𝑡)) and plotted in Figure 5- 12. The change of 

stiffness is obtained through the linear curve fitting. The identified stiffness changes are △ 𝑘1 =

1549.9
𝑁

𝑚
,  3180.9 𝑁

𝑚
 and 5359.1 𝑁

𝑚
, respectively. There is a slight difference with the real stiffness 

changes 0.1𝑘1 = 931.3 𝑁/𝑚, 0.3𝑘1 = 2793.8 𝑁/𝑚 and 0.5𝑘1 = 4656.3 𝑁/𝑚 and this may be 

due to the modelling errors between the numerical model and real structure. The results show that the 

stiffness change can be well separated and accurately extracted for structural damage identification 

by the proposed method.  

 
Figure 5-11. Identified results for Damage cases 1L, 1M and 1S. 
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Table 5-6. Relative errors of identified results for Damage case 1L, 1M and 1S.   
Damage 

Index 
1L 1M 1S 

True Identified True Identified  True Identified  
 

 
PNODEs Errors 

(%) 

 
PNODEs Errors 

(%) 

 
PNODEs Errors 

(%) 
𝛼1 0.100 0.126 25.800 0.300 0.325 8 0.500 0.548 9.600 

𝛼2 - 0.015 - - 0.020 - - 0.021 - 

𝛼3 - 0.029 - - 0.023 - - 0.003 - 

 
Figure 5-12. Relationship between 𝑁𝑁𝑖(𝐡𝑖(𝑡)) and relative displacement for damage scenarios 1L, 

1M and 1S under the excitation E3. 

5.5.4.3. Multiple damage identification 

The section investigates the multiple damage identification using the proposed approach. The 

earthquake excitation E1 is applied on the shake table with two single damage cases 1M and 2M and 

one double damage case 1M2M. The damage case 1M is the damage severity 30% on the first floor 

and the damage case 2M is 30% damage on the second floor. The double damage case 1M2M is with 
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30% damage on both the first and second floors. Similar to Section 4.4.2, the identified results are 

shown in Figure 5- 13. From Figure 5- 13, the identified results are 0.325 and 0.281 for Cases 1M 

and 2M respectively, and 0.325 and 0.311 for Case 1M2M. Theie relative errors are calculated in 

Table 5-7. The results show that the proposed method could identify both single and double damage 

accurately. The restoring force is extracted from 𝑁𝑁𝑖(𝐡𝑖(𝑡)) and plotted in Figure 5- 14 and the 

stiffness changes are determined by the linear curve fitting. The predicted stiffness reductions are 

△ 𝑘1 = 3180.9
𝑁

𝑚
, △ 𝑘2 = 2756.6

𝑁

𝑚
 for Cases M1 and M2 respectively.  For the double damage 

case, the identified results are △ 𝑘1 = 2267.8
𝑁

𝑚
, △ 𝑘2 = 1601.4

𝑁

𝑚
. The true stiffness changes are 

0.3𝑘1 = 0.3 𝑎𝑛𝑑 𝑘2 = 2793.8 𝑁/𝑚. The results show that the proposed method could predict the 

stiffness changes for both single and double damage cases. For the multi damage case, the proposed 

method could accurately identify the damage location, and further improvement is needed for the 

damage severity. 

 

Figure 5-13. Identified results for Damage cases 1M, 2M and 1M2M. 
Table 5-7. Relative errors of identified results for Damage case 1L, 1M and 1S.   
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Damage 
Index 

1M  2M  1M2M 
True  Identified True  Identified  

 
True  Identified 

 
 

PNODEs Errors 
(%) 

 
PNODEs Errors 

(%) 

 
PNODEs Errors 

(%) 
𝛼1 0.300 0.325 8.333 - 0.008 - 0.300 0.325 8.333 

𝛼2 - 0.020 - 0.300 0.281 6.333 0.300 0.311 3.667 

𝛼3 - 0.002 - - 0.009 - - 0.008 - 

 

Figure 5-14. 𝑁𝑁𝑖(𝐡𝑖(𝑡)) versus relative displacement for Damage cases 1M, 2M and 1M2M  

5.6. Application for three-dimensional frame structures 

In this section, the IASC-ASCE benchmark frame is used to further verify the performance of 

the proposed method and the results are compared that by the NODEs method directly. The physical 

properties of the benchmark Frame is introduced first including sensor locations and damage 

scenarios. Then, the data preparation process is presented, following by the NODEs and PNODEs 

architecture and the prior physical knowledge and the neural network parameters. Lastly, the results 

of damage localisation and qualification by the proposed method and NODES are compared. Finally, 
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the practicality of using parallel neural network in PNODE for damage quantification is summerised. 

5.6.1. Experimental structure information 

The IASC-ASCE benchmark frame, the American Society of Civil Engineers (ASCE) 

benchmark structure (experimental Phase II) (Dyke et al., 2003), is shown in Figure 5- 15. The plane 

size of the structure is 2.5 meters square, and the height of each floor is 0.9 m. The sections of beams 

and columns are S75×11 and B100×9, respectively. Within each bay, the bracing system consists of 

two parallel, diagonally arranged threaded steel rods, each with a diameter of 12.7 mm. The braces 

are constructed from 300W grade hot-rolled steel. To achieve a realistically distributed mass, a single 

floor slab is installed within each bay at each floor. In detail, there are four slabs, each weighing 1000 

kg, The slabs located at the first, second, and third floors are 1000 kg. The slab on the fourth floor is 

750 kg. The details are illustrated in Figure 5- 15(b). The locations of accelerometers are depicted in 

Figure 5- 15(a). For each floor, three accelerometers are installed, e.g. two accelerometers on the y-

axis (�̈�𝑦𝑛𝑎  and �̈�𝑦𝑛𝑏 ) and one on the x-axis. Two sets of accelerometers �̈�𝑦𝑛𝑎  and �̈�𝑦𝑛𝑏  in y-

direction are divided into Groups A and B, respectively.  
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Figure 5-15. Sensor arrangements (a) front view and (b) top view. 

As shown in Figs. 16(a) and 16(b), two damage scenarios have been simulated: the first damage 

scenario involves removing braces on the first floor in one bay at the southeast corner, and the second 

damage scenario involves removing braces on all floors on the eastern side and on the second-floor 

braces on the northern side. 

 
Figure 5-16. Damage scenarios: (a) removing braces on the first floor in one bay at the southeast 
corner and (b) removing braces on all floors on the eastern side and on the second-floor braces on 

the northern side. (c) the lumped mass model  
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The experimental data from this benchmark dataset comprises acceleration measurements 

gathered from the structure under various conditions: ambient conditions, excitation induced by a 

shaker, and excitation resulting from a force hammer. In addition, the natural frequency of the 

benchmark frame under the health condition are 3.5 Hz, 11.0 Hz, 17.5 Hz, 24.0 Hz, 29.5 Hz, 34.0 Hz, 

37.0 Hz and 39.5 Hz from the measurement data. The detailed descriptions and experimental data for 

this experiment are available at https://datacenterhub.org/resources/257.  

5.6.2. Data Preparation  

In this work, the displacement and velocity data are necessary for input to the neural network, 

which is deviated from the measured acceleration data of the structure under the environment 

excitation. Two sets of displacement and velocity responses are obtained from �̈�𝑦𝑛𝑎 and �̈�𝑦𝑛𝑏 along 

y direction, named as Groups A and B. The data from Groups A and B were fed into the neural network 

separately for damage identification, and an average of damage indexes from both data were used for 

damage qualification. The data was sampled at a frequency of 200 Hz, and a low pass filter with a 

cutoff frequency of 100 Hz was employed to ensure that the filtered data contains all the mode 

information of the experimental structure as mentioned above. Both the undamaged scenario and 

damage scenario 1 comprise 300 s of data each, whereas damage scenario 2 contains only 220 s of 

data. 

The numerical model is updated using the measurement data from the undamaged structure. 

Then, the first 50 s of the state response 𝐡(𝑡) from the two damage scenarios were used to supervised 

the PNODEs, and the same length of environment excitation 𝐮(𝑡)  is given to the ODEs for 

generating the response under the health condition. To identify the damage in this complex frame, the 
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neural network is designed as four individual neural networks, representing four floors of the frames. 

In each time step, 𝐡(𝑡) is regrouped  as 𝐡𝑖  input to each neural network; where 

𝐡𝑖= [𝑥𝑥(𝑖−1); 𝑥𝑦(𝑖−1); 𝑥𝑥𝑖;  𝑥𝑦𝑖; 𝑥𝑥(𝑖+1);  𝑥𝑦(𝑖+1)； �̇�𝑥(𝑖−1);   �̇�𝑦(𝑖−1);  �̇�𝑥𝑖;  �̇�𝑦𝑖;  �̇�𝑥(𝑖+1);  �̇�𝑦(𝑖+1)] (i = 1, 

2, 3 and 4) contains the displacement and velocity responses relevant to that part of the structure it 

represents. Besides, the NODEs contained only one neural network is also used for damage 

identification using the input 𝐡(𝑡). Table 5-8 shows the input data for each neural network in NODE 

and PNODEs. The results from the proposed method and NODEs are compared.  

Table 5-8. Input data of NODEs and PNODEs. 
NODEs  PNODEs  

Neural network Input data Neural network Input data 

𝑁𝑁(∙) 𝐡(𝑡) 

𝑁𝑁1(∙) 𝐡1(𝑡) 
𝑁𝑁2(∙) 𝐡2(𝑡) 
𝑁𝑁3(∙) 𝐡3(𝑡) 
𝑁𝑁4(∙) 𝐡4(𝑡) 

5.6.3. PNODEs and NODEs architecture 

In the Prior physics block, the prior physics knowledge under the health condition corresponding 

to the undamaged frame structure is simplified as a lumped mass model using 4 segments and 5 nodes 

with locations of accelerometers. Each node contains 2 DOFs, which indicate horizontal and 

translational DOFs along x and y directions shown in Figure 5- 16(c). As a result, each segment has 

4 DOFs and 8 DOFs in total for the entire structure. 

In the Parallel NN block, similar to Section 3.4, the discrepancy term 𝑓△𝑲(⋅) of the structural 

system is learned by the n neural network (𝑁𝑁𝑖: ℝ12 ⟶ℝ2). The input for the each network is the 

state vector 𝐡𝑖(𝑡),  and the output of the PNODE is the acceleration vector 

 [�̈�𝑥1(𝑡); �̈�𝑦1(𝑡); �̈�𝑥2(𝑡); �̈�𝑦2(𝑡); �̈�𝑥3(𝑡); �̈�𝑦3(𝑡); �̈�𝑥4(𝑡); �̈�𝑦4(𝑡) ] . Thus, each 𝑁𝑁𝑛  represents the 

discrepancy of each floor of the frame including x and y directions. To further reconstruct the 
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structural parameters for structural damage identification, the 𝑁𝑁𝑛(∙) is designed with additional 

one layer being three layers for learning the discrepancy part related to experimental structure. The 

learning epoch is increased to 3e5 due to the complexity of the 3D frame. The results from the 

proposed method are compared with that by NODEs.  

For the NODEs contained one whole neural network, the neural network 𝑁𝑁(∙) (ℝ16 ⟶ℝ8) 

is designed with 16 displacement and velocity responses 𝐡(𝑡) of the entire structure as input and 8 

acceleration vectors as outputs with three layers, in which the numbers of neuron in each layer are 

doubled comparing with the previous cases due to the increase of input and output sizes. Both the 

NODEs and PNODEs are solved using the same hyper-parameters for comparison. The details for 

each neural network architecture of in NODEs & PNODEs and training hyper-parameters are shown 

in Table 5-9. 

Table 5-9. Architecture of neural network in NODEs & PNODEs, and training hyper-parameters.  
Architecture of neural network  

𝑁𝑁(∙) In NODE 
 Architecture of each neural 

network  
𝑁𝑁𝑖(∙) in PNODEs 

 Training hyper-
parameters 

Layer type Size Number of 
neurons 

Layer type Size Number of 
neurons 

Name  Value 

Input 16  Input 16  Batch size 200 
Layer 1  40 Layer 1  20 Epoch 3e5 
Layer 2  40 Layer 2  20 Learning rate 1e-5 
Layer 3  40 Layer 3  20   
Output 8  Output 2    

5.6.4. Results 

5.6.4.1. Single damage identification 

The true values of the changes in the stiffness of the frame structure were obtained from the 

results of the previous experiments (Johnson, 2003). The NODE and PNODE based methods were 

used and their results were compared with the true stiffness loss, as shown in Figure 5- 17. The relative 
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errors between the true and identified damage index are summarised in Table 5-10. From Figure 5- 

17, the identified result by the proposed PNODEs is much closer to the true value than that by NODEs. 

The results show that the damage location can be better separated from the discrepancy information 

using a parallel neural network. There are some errors in the identified results on the 1st floor & 2nd 

floor along the y direction and 4th floor along the x direction by NODEs. For the damage severity, the 

loss of stiffness of the 1st floor along the x direction is 0.051 by NODEs with 54.956% error, while 

the true value is 0.113. By the proposed PNODEs, there are identified damage index of 0.025 and 

0.013 in the x-direction on Floors 2 and 4 respectively. The identified result in the x-direction on the 

1st floor by the proposed method is 0.109 with only 3.363% errors, which is much closer to the true 

value compared with that by NODEs.  

 
Figure 5-17. Identified results for Damage scenario 1 of the experimental structure. 
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Table 5-10. Relative errors of identified results for Damage scenario 1. 

Damage Index 
 

True    Identified  
NODEs Errors (%) PNODEs Errors (%) 

𝛼𝑥1 0.113 0.051 54.956 0.109 3.363 
𝛼𝑦1 - 0.047 - 0.004 - 
𝛼𝑥2 - 0.025 - 0.009 - 
𝛼𝑦2 - 0.024 - 0.002 - 
𝛼𝑥3 - 0.033 - 0.002 - 
𝛼𝑦3 - 0.001 - 0.002 - 
𝛼𝑥4 - 0.013 - 0.011 - 
𝛼𝑦4 - 0.004 - 0.002 - 

 
Figure 5-18. The relationship between 𝑁𝑁𝑛(𝐡(𝑡)) and relative displacement for Damage scenario 

1. 

To gain insight into the 𝑁𝑁𝑛(∙)in PNODEs, the restoring forces in both directions for each floor 

are shown in Figure 5- 18. Since each 𝑁𝑁𝑛(∙)  represents the discrepancy term between the damage 

and health states for each floor of the structure, a linear fitting between the displacement and restoring 

force relationship is used to determine the stiffness change ∆𝑘𝑛 of each floor using Eq. 5-21 for 

structural damage identification. From the first plot in Figure 5- 18, there is approximate linear 

relationship between the relative displacement and restoring force and the slope is used to determine 
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the stiffness change in the x-direction of the first layer, resulting in ∆𝑘1𝑥 =12.913kN/m. Overall, the 

proposed PNODEs improved the damage identification results compared with the NODEs for a signal 

damage in a 3D frame structure.  

5.6.4.2. Multiple damage identification 

In practice, it may be much complex with multiple damage appearing in different locations. 

Introducing multiple damage in different locations of the frame structure makes it even more 

challenging. In this section, the same amount of damage data from Damage case 2 is used for 

structural damage identification by the proposed PNODEs and NODEs. Figure 5- 19 shows identified 

results by these two methods and relative errors are summerised in Table 5-11. From Fig 19, the 

identified results with a maximum error of 8.840% by the proposed PNODEs method with a 

maximum error of 30.946% are much closer to the true values than those by NODEs. For both the 

damage localisation and quantification, the proposed PNODEs method outperforms the NODEs 

method. The NODEs method incorrectly determines the presence of damage in the Y-direction in the 

first and third floors of the structure, as the damage indexes representing the stiffness change are 

significant at these two locations. In other damage locations that can be correctly identified by 

NODEs, the severity of the damage cannot be accurately quantified, particularly in the y-direction of 

the second floor which has a very high damage severity. On the other hand, the PNODEs method 

localises the damage location correctly, except for the y-direction of the first floor. The identified 

damage severities by the PNODEs method are close to the true values. The results show that the 

PNODEs method can accurately quantify the damage severities of multiple damage. Overall, the 

proposed PNODEs method significantly increases the damage identification accuracy for the multiple 
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damage case compared with the NODEs method.  

To further explain each network, the input and output of each 𝑁𝑁𝑛(∙) in PNODEs have also 

been plotted in Figure 5-20. Each plot in the figure represents the discrepancy term relative to each 

part of the frame structure, where the y-axis is the restoring force of the 𝑁𝑁𝑛(∙)  output and the x-

axis is the measured relative displacement. Similar to the single damage identification, the stiffness 

change ∆𝑘𝑛 in the x and y directions with respect to each floor can be determined by linear curve 

fitting. From the figure, the discrepancy between the health and damage states in each part of the 

frame structure is captured separately by its relative neural network. 

 
Figure 5-19. Identified results for Damage scenario 2 of the experimental structure 

Table 5-11. Relative errors of identified results for Damage scenario 2. 

Damage Index 
 

True    Identified  
NODEs Errors (%) PNODEs Errors (%) 

𝛼𝑥1 0.226 0.156 30.946 0.217 4.070 
𝛼𝑦1 - 0.159 - 0.030 - 
𝛼𝑥2 0.226 0.176 22.104 0.214 5.261 
𝛼𝑦2 0.355 0.208 41.413 0.387 8.840 
𝛼𝑥3 0.226 0.266 17.683 0.215 4.863 
𝛼𝑦3 - 0.140 - 0.010 - 
𝛼𝑥4 0.226 0.266 17.595 0.224 1.194 
𝛼𝑦4 - 0.040 - 0.012 - 
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Figure 5-20. Output of 𝑁𝑁𝑖(𝐡𝑖(𝑡)) versus each relative displacement for Damage scenario 2  

5.7. Summary 

A new PNODEs method based on parallel neural networks has been developed for structural 

damage localisation and quantification. The proposed method is made by a priori physical model of 

structural dynamical system embedded with a group of parallel neural networks. This set of parallel 

neural networks efficiently separates the discrepancy terms that represent damage information for the 

entire structure. The damage is then accurately quantified based on the information in each network. 

In addition, the interpretability of the proposed method can be achieved by coupling the 

implementation of an identification scheme for model parameters that can extract expressions from 

derived each neural network terms that are consistent with each part of a structural model, thereby 

improving the interpretability of how the model works, overcome the issue of unexplained 

approximations provided by traditional black-box models. This enhances the accuracy and reliability 

of this damage identification method. The three-storey building structure and the three-dimensional 
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IASC-ASCE benchmark frame have been used to verify the effectiveness of the proposed method for 

damage localisation and quantification. Several findings can be concluded:  

The PNODEs method requires only a small amount of damage state measurement data to solve  

parallel neural networks without the need for health state measurement data. The discrepancy term 

between the health and damaged structure is represented by these neural networks and are used to 

perform damage identification to obtain accurate identification results.  

Existing studies on NODEs for structural damage identification can only store the entire 

discrepancy information into a single neural network but cannot find the source of the discrepancy 

caused to achieve precise localisation and quantification. The proposed method is based on the 

structural dynamic representation, where each neural network is fed by its associated dynamic 

response and separates the entire discrepancy term based on each part of the structure to overcome 

the problem of the confusion caused by the entire discrepancy being stacked together. Each neural 

network in parallel networks is utilised in PNODEs to represent a part of the structure and can find 

the discrepancy in each part of the structure for damage localisation.  

In the purposed PNODEs, damage quantification is converted into a problem of reconstructing 

structural parameters using a neural network. Each neural network in PNODEs is solved to derive the 

restoring force for each section of the structure separately to reconstruct its stiffness change. This 

further makes the neural network transparent to improve interpretability. 

The proposed PNODEs method requires the response information of all relevant DOFs. Due to 

the limitation of sensors in practice, only part of the DOFs data can be measured. Future work will 

investigate to utilise the limited number of measurements for structural damage identification. 
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Chapter 6. Spatial-temporal-based physics neural operators for response reconstruction and 

structural identification with limited sensors 

6.1. Overview 

In recent years, deep learning-based data-driven techniques have a wide range of applications in 

structural system identification, which can reconstruct structural parameters based on a large amount 

of data. However, in most practical engineering cases, large amounts of high-quality data are usually 

hard to obtain. Particularly when the limited sensors are placed only in some of the degrees of freedom 

of the structure, limited observation is obtained, which causes the identification of structural 

parameters to become difficult. To address this challenge, this chapter proposes a novel temporal-

spatial neural operator (PhySTN) framework that allows limited observations to be used directly for 

structure identification. This framework consists of a spatial feature mapping encoder and a time 

operator. The spatial encoder describes a spatial representation of the relationship between the full 

state and the limited observation. The time operator consists of simplified physical knowledge and a 

neural network, where the neural network is used to describe the complex discrepancy terms between 

physical knowledge and the real structure. The temporal operator, assisted by the spatial mapping 

encoder, allows a limited number of observations to be used directly to reconstruct the discrepancy 

terms. With limited observation training, a neural network constrained by the laws of physics can be 

used for structural parameter identification, and the time operator can also be used to reconstruct the 

missing response. The performance of the proposed framework is evaluated through a nonlinear 

numerical model and an experimental frame structure with magnetorheological elastomer isolator 

validation based on cases with different noise levels, different numbers of observations, and different 
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locations. The results show that the purposed framework can accurately identify the nonlinear 

structural parameter and reconstruct missing response.  

6.2. State of the art 

System identification (SI) is a process of inverse physical modelling of a real structural system 

and determining modal parameters (e.g natural frequency and modal shape) and physical properties 

(e.g. stiffness or damping ratio) utilising the measured dynamic response from real structures, which 

represents the dynamic characteristics of the real model to increase the reliability in condition 

assessment and residual life prediction and widely approaches in Structural Health Monitoring 

(SHM)(Kerschen et al., 2006; Alvin et al., 2003; Huang et al., 2017; Ebrahimian et al., 2018).  

Generally, SI includes model-based and data-driven methods. The model-based methods focus 

on updating the model parameters to identify the system condition changes based on measurement 

data with its physical interpretability. Some methods have been carried out, including the Bayesian 

updating algorithm and Kalman filter methods(Eftekhar Azam et al., 2015; Hou et al., 2019). The 

effectiveness of these methods depends heavily on the ‘high-fidelity’ Finite Element (FE) model with 

a large number of parameters for estimating the model parameters (Ding et al., 2020; Marin et al., 

2015; Pedram et al., 2017). In reality, sensors are usually installed in a limited number of locations 

rather than in positions that correspond to each degree of freedom (DOF) of the structural model; this 

causes spare/incomplete measurement. Thus, identifying model parameters with sufficient accuracy 

requires a number of high-quality and complete measurement data from the field, which is 

unrealisable and expensive in practice sensing constraints (Hou & Xia, 2021, pp. 2010–2019; Y. Lu 

et al., 2024). Besides, the optimisation of a large number of parameters is a major challenge and 
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computationally heavy when optimising large-scale complex structures (Ebrahimian et al., 2018; 

Eftekhar Azam et al., 2015; Pedram et al., 2017).  

In contrast, traditional data-driven methods are implemented directly from the system response 

without a physical model, a series of research based on the time domain (H. Chen & Ni, 2018; 

Cremona & Brandon, 1992; Cunha & Caetano, 2006), frequency domain(Ding et al., 2020; Gul & 

Catbas, 2008; Sadeghzadeh & Khatibi, 2017), and time-frequency(Ghahari et al., 2017; Y. Yang & 

Nagarajaiah, 2014), including Ibrahim time domain method (ITD) (Brincker et al., 2019) and 

Frequency Response Functions (Limongelli, 2010). To conduct modal analysis to extract modal 

information and to identify physical parameters for the task of system identification. Nevertheless, 

these conventional data-driven methods can obtain accurate results in the linear structure, which are 

challenging to apply to the nonlinear system. (Avci et al., 2021b; M. Peeters et al., 2011). But non-

linearity commonly exists in practical civil structures, such as cracking under the influence of wind 

loads, deformations, or instability of structural boundary conditions under seismic loading, etc, which 

is hard to express by the simplified and approximated assumptions(Correa, 2014; Huang et al., 2017; 

Shiki et al., 2017; Worden et al., 2008).To handle nonlinear structures, state space equations-based 

methods are conducted for the nonlinear system identification based on partially known modelling 

assumptions and some candidate equations (Lai & Nagarajaiah, 2019; Paduart et al., 2010), but due 

to the multivariate nature of the representation of the real complex structures, there is a heavy reliance 

on a priori hypothesis functions of the physical model. Deep learning (DL)-based data driven methods 

have been intensively used in SHM, with their capability to approximate complex relationships 

(excitation and response of a real structural system) accurately and efficiently, while they always 
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require full measurements from all degrees of freedom (DOF) in order to construct comprehensive 

and accurate relationships about the structure. Moreover, such DL-based methods always the black 

box and lack reliability in practice (Cha et al., 2024; Y. Lu et al., 2023);  

Combining model-based and data-driven approaches, hybrid models for system identification 

are proposed to overcome the extensive computational cost and increase the reliability of the model 

(Ghorbani et al., 2020). As a branch of the hybrid method, Physics-informed deep learning (PIDL) is 

conducted by adding the governing equations of the underlying physical principle (e.g., state space 

equations or modal information) to constrain deep learning process to create more accurate results 

and enhance the explainability(Raissi et al., 2019). Zhang et al. and Yin et al. (Yin et al., 2023; R. 

Zhang et al., 2020) informed the physical loss function into the deep neural networks to improve the 

accuracy for response prediction and damage identification of real structure with nonlinearity. 

However, the built network model still needs a certain amount of full measurement data to be trained 

to produce impressive results. Nevertheless, repeating the experimental or field test to obtain a 

sufficient number of data is also infeasible. To address the challenge of training data, another PIDL 

method that directly embeds the physics model into the neurons or layers is proposed. (L. Lu et al., 

2021). Combining a low-fidelity physical model (simplified numerical model) with the neural 

operator, the method can precisely represent the ‘high-fidelity’ structural model (FE mode or real 

structure). In detail, the low fidelity model is expressed by the linear governing equations as the 

structural main components with fewer parameters, and neural networks are responsible for fitting 

the complex discrepancy component. 

Due to the low fidelity linear structure model informed, which has already deployed the vital 
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parts of the true structural dynamic behaviours(Yaghoubi et al., 2018), therefore, the neural network 

with fewer trainable variables is also more capable of capturing the part of the discrepancy between 

low fidelity model with the real structure (L. Lu et al., 2022). Recently, Yu et al. (Yu et al., 2020) 

proposed a physical-guided ML learning method for structural dynamic simulation; they efficiently 

map the known physical information into recurrent neural networks and approximate the unknown 

(residual) information into the general multilayer perceptron (MLP) to improve the performance of 

response prediction. Similar to the process of solving differential equations, Sadeghi Eshkevari et al. 

(Sadeghi Eshkevari et al., 2021) proposed a time series Physics-based neural architecture (DynNet) 

method based on recurrent neural cells for a complete set response prediction of multiple degrees of 

freedom (MDOFs) nonlinear system. Even though these works perform well for the system response 

prediction, including (e.g. displacement and restoring force, etc.), the process of method validation is 

limited to the stage of numerical simulation. Kridelis et al. (Krikelis et al., 2024) proposed neural 

network hysteresis operators for hysteretic system identification. It takes the similarity of the classical 

activation function to dynamical behaviours of the hysteresis, compacting and exacting the hysteresis 

components into recurrent ANNs, which allows flexibly to identify complex model structures 

combining with other hysteresis or linear elements. Li et al. (H.-W. Li et al., 2024) modelled the 

forced vibration system based on a continuous-time state-space neural network (CSNN) purposing 

on system state prediction, which contains two independent neural networks with turned-off bias 

allowing to capture the linear and nonlinear components automatically to improve the stability of the 

built model. In all of the above PIDL studies, the training of the hybrid model was supervised using 

the full state of the structure of all DOF data. Because they do not consider the spatial representation 
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relation, i.e a mapping relation between the observation and the full state, these studies can only be 

applied in the relatively ideal situation where the observations are in perfect alignment with the 

complete state. That is, these studies lack consideration and validation of the situation that only 

observations from a limited number of DOFs are available. However, it is common in practice that, 

due to sensing constraints or an excessive number of DOFs in large civil structures, sensors are often 

installed in a limited number of positions rather than corresponding to each DOF of the structural 

model, resulting in limited observations(Park & Noh, 2017). Therefore, in order to perform system 

identification in most cases, it is necessary to consider the spatial relationship between the full state 

and the limited observations, to make full use of the full state from the low-fidelity model in the 

hybrid model to address the constraints of a limited number of observations in real measurements.  

Taking into account the advantages of the above PIDL hybrid model-based structural system 

identification methods, and considering the research gap of such methods using limited observations 

for structural damage identification, this chapter embeds the structural physical model into a neural 

network, with the spatial feature representation relationship between the limited observation and the 

full state, to propose a spatio-temporal-based-physics neural operator (PhySTN) framework. Inspired 

by the previous research (Kontolati et al., 2024), the proposed PhySTN framework is made by a 

spatial-feature encoder and a time operator (NODEs). The spatial-feature encoder is constructed 

to represent spatial feature representation relationships utilizing the full state from a healthy numerical 

model and limited observations from a healthy real structure. This spatial feature representation 

relation remains unchanged at the same location of observation, even if the structural condition 

changes.  Using this spatial relationship, the full state of the time operator made by prior knowledge 
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and a neural network (NN) can be projected onto the limited observations; the limited observations 

is utilized to train the time operator, which leads to unknown discrepancy term between the healthy 

numerical model and unknown real structure is stored in NN, and then fit their parameters to perform 

system identification. The proposed method can be summarised as (i) Based on an encoder network, 

a spatial feature representation relationship is constructed by using a full state (input) from low-

fidelity models in the health condition to encode limited observation (output) of the actual model in 

the healthy state. (ii) The simplified numerical model under health conditions and the NN discrepancy 

term make up the time operator representing the true structure, whose generated full state is encoded 

as a limited observation by the spatial-feature encoder; under the unknown condition of the real 

structure, the time operator is trained using the limited observation to reconstruct the discrepancy 

term between the health and the unknown conditions. (iii) The time operator represents the real 

structure and outputs the full state, and the missing response of the corresponding missing sensor can 

be reconstructed from this full state. Further, the inputs and outputs of the NNs, the relationship of 

which can be used to describe the discrepancy terms of the structure between different conditions, are 

extracted and their corresponding parameters are fitted for structural system parameter identification; 

this process also demonstrates the consistency of the neural network in terms of physical knowledge. 

Thus, the novelty and main contribution of this work can be summarized as follows: (i) Using a spatial 

feature representation relationship of structure, an observation matrix mapping full state to limited 

observation is constructed by an encoder network learning latent pattern from the full state to 

observation. Through this spatial representation relation, the full state is compressed and reduced in 

dimension to a limited observation in the actual structure; (ii) Using the pre-trained observation 
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matrix based on the spatial feature relationship, the time operator consisting of NN and health 

numerical model is constructed to represent real structure with only limited observation. It addressing 

the limitation that limited observation cannot be used directly for structural parameter identification. 

In addition, the missing response outside of the observations is enable to be reconstructed from the 

outputs of the time operator. (iii) The proposed framework PhySTN can be used to reconstruct and 

predict the response in time and space. The encoder networks treated as observation matrix and NN 

seen as restoring force models in structural dynamics improve the reliability of the proposed 

framework and increase the interpretability of the neural network. 

The chapter is organised as follows: The theoretical background, including the theoretical 

background of structural dynamic systems and Neural ODEs, and the proposed framework are 

introduced in Section 2. A numerical study on a nonlinear 5-storey model is used in section 3 to 

validate the performance of the proposed method. A nonlinear experimental model with an adaptive 

magnetorheological elastomer (MRE) base isolator is conducted to validate the proposed method in 

the laboratory in section 4. Finally, in section 5, a summary and conclusion are provided.  

6.3. Theoretical Background and Methodology 

The proposed Spatial-time-based-physics neural operators (PhySTN) are established using 

encoder and time operator based on the theory of structural dynamic system. The proposed PhySTN 

framework is established based on neural networks with physical interpretability related to structural 

dynamics knowledge. This framework, using limited observation from the measurement, achieves 

structural system identification and missing response reconstruction. The background information of 

the structural dynamic system, observation matrix and NODEs are introduced first. Subsequently, the 
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key stages and running mechanism of the proposed method are explained in detail, including the 

construction of spatial feature encoder, training the time operator and missing structural response 

reconstruction and structural system identification strategies.  

6.3.1. Background Information 

6.3.1.1. Structural Dynamic Systems 

Considering the dynamic system characterized by its degrees of freedoms (DOFs),  

 

𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝐱(𝑡) + 𝐠(𝐱(𝑡), �̇�(𝑡)) = 𝐒u𝐮(𝑡)            Eq. 6-1 

where M, K and C denote the matrices representing the mass, damping, and stiffness of the system, 

respectively. The variables�̈�(𝑡), �̇�(𝑡)  and 𝐱(𝑡) signify the acceleration, velocity, and displacement, 

correspondingly. In this model, u(t) represents the known ground excitation force, and 

𝐠(𝐱(𝑡), �̇�(𝑡))denotes terms associated with state variables, serving to represent two scenarios: (a) all 

potential discrepancies between the numerical model and the actual structure, which include boundary 

conditions, modelling errors, and environmental uncertainties of the dynamic system; and (b) the 

structural differences between the healthy structure and the damaged structure.  

In this study, the potential variances and structural damages are defined as discrepancies within 

the structural dynamic system. 

The typical format of dynamic systems is represented by a state space equation, as shown below:  

𝑑𝐡(𝑡)

𝑑𝑡
= 𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) + 𝐆𝐡(𝑡)                    Eq. 6-2 

where  𝐡(𝑡) = [
𝑥(𝑡)

𝑥
.
(𝑡)
] ∈ ℝ2𝑛 , 𝐀 = [

𝟎 𝐈
−𝐌−𝟏𝐊 −𝐌−𝟏𝐂

] , 𝐁 = [
𝟎

−𝐌−𝟏] , 𝐆(𝐡(𝑡)) =

[
𝟎

−𝐌−1] 𝐠(𝐡(𝑡))and n is the numbers of DOFs.    

6.3.1.2. Observation matrix 
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Considering the observable measurement response, the measurement equation regarding to 

observation vector q(t) and the system full state vector h(t) can be written as: 

  𝐪(𝑡) = 𝐂𝐡(𝑡)                             Eq. 6-3 

where C is the observation matrix. Recombining Eqs. (2) and (3), the state space equation of the 

dynamic system relevant to the observation can be expressed as 

 𝐂−1
𝑑𝐪(𝑡)

𝑑𝑡
= 𝐀𝐂−𝟏𝐪(𝑡) + 𝐁𝐮(𝑡) + 𝐆𝐂−𝟏𝐪(𝑡)             Eq. 6-4 

In the case of observation, a state is obtained, which can be expressed with the dynamic system using 

the observation matrix  

𝑑𝐪(𝑡)

𝑑𝑡
= 𝐂𝐀𝐂−𝟏𝐪(𝑡) + 𝐂𝐁𝐮(𝑡) + 𝐂𝐆𝐂−𝟏𝐪(𝑡) 

= 𝐂𝐀𝐡(𝑡) + 𝐂𝐁𝐮(𝑡) + 𝐂𝐆𝐡(𝑡) = 𝐂[𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) + 𝐆𝐡(𝑡)]                           Eq. 6-5 

6.3.1.3. Neural ODEs 

Neural Ordinary Differential Equations (Neural ODEs) have garnered significant attention in 

recent years due to their ability to establish a close connection between neural networks and 

differential equations. As a result of this integration, various variant forms of Neural ODEs have 

emerged. Notably, Neural ODEs can be viewed as the continuous equivalent of residual networks 

(ResNets). In ResNets, the transformation of the hidden state from one layer, t, to the subsequent 

layer, t+1, is facilitated by a differentiable functions (R. T. Q. Chen et al., 2018)illustrated below : 

 𝐡𝑡+1 = 𝐡𝑡 + 𝑓𝑡(𝐡t)                        Eq. 6-6 

Where 𝐡𝑡 ∈ 𝑅𝑑  denotes the hidden state at layer t and represents differentiable functions that 

preserve the dimension of 𝐡𝑡. The difference 𝐡𝑡+1 − 𝐡𝑡represents the discretization of the derivative 

when ∆𝑡 = 1, according to Euler's method of discretization (Butcher, 2016; Hairer & Wanner, 1996): 

  𝐡𝑡+1−𝐡𝑡
Δ𝑡

= 𝑓𝑡(𝐡t)                         Eq. 6-7 

( )tf 
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When ∆𝑡 →1, Eq. 6-7 becomes to  

   lim
Δ𝑡→0

𝐡𝑡+1−𝐡𝑡

Δ𝑡
=

𝑑𝐡(𝑡)

𝑑𝑡
= lim

Δ𝑡→0

𝑓𝑡(𝐡𝑡)

Δ𝑡
= 𝑓(𝐡(𝑡), 𝑡, 𝜃)          Eq. 6-8 

So far, the hidden units of the neural networks have been parameterized in the form of ODEs. 

The initial data point 𝐡0 can be transformed into a set of features at time step t by solving the Initial 

Value Problems (IVPs), as illustrated below 

                      {
𝑑𝐡(𝑡)

𝑑𝑡
= 𝑓(𝐡(𝑡)) = 𝑓(𝐡(𝑡), 𝑡, 𝜃)

𝐡(t0) = 𝐡0
}                   Eq. 6-9 

In the practical application of structural dynamics problems, the scenarios often involve forced 

excitation rather than pure IVPs. This necessitates the integration of a priori physical knowledge into 

the NODEs. Consequently, the function in Eq. 6-9 is modified to include an excitation force term, 

u(t) as demonstrated below 

 {
𝑑𝐡(𝑡)

𝑑𝑡
= 𝑓(𝐡(𝑡)) = 𝑓(𝐡(𝑡), 𝑡, 𝐮(𝑡), 𝜃)

𝐡(t0) = 𝐡0
}              Eq. 6-10 

Solving the continuous dynamic system using a neural network, denoted as 𝑓(∙), is a critical step in 

the development of NODEs (Dupont et al. (2018) and Chen et al. (2019)). The neural network 𝑓(∙

) serves as the solution mechanism for the function 𝑓 (∙ ) which encapsulates the dynamics of the 

system state over time. This model tracks the hidden state at each time step t. When solving the ODE 

from the initial condition 𝐡(𝑡0) = 𝐡0 , which initiative the states of the ODE at a given time t depend 

on the initial conditions 𝐡0. Consequently, with u(t) provided as the input to 𝑓(∙)the output layer 

𝐡(𝑡𝑇) = 𝐡Trepresents the solution of Eq. 6-6 at the final time T.  

In neural ODEs, an initial state  𝐡(𝑡0)  is mapped to a final state 𝐡(𝑡𝑇)  through a 

transformation from data to feature by mathematically solving an ordinary differential equation. This 

process is defined as ODESolve  (𝐡(𝑡0), 𝑓, 𝑡0, 𝑡𝑇, 𝐮(𝑡), 𝜃).  Here, L(⋅) represents the loss function 

( )f 
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in the forward process, which evaluates the discrepancy between the predicted state h(t) and the true 

state as depicted below 

ℒ(𝐡(𝑡𝑇)) = ℒ (𝐡(𝑡0) + ∫ 𝑓(𝐡(𝑡), 𝑡, 𝜃)𝑑𝑡
𝑡𝑇
𝑡0

) = ℒ (ODESolve(𝐡(𝑡0), 𝑓, 𝑡0, tT, 𝐮(𝑡), 𝜃)) Eq. 6-11 

where θ represents the trainable weights of the neural network ( )f   which are optimized by 

minimizing the loss function L(⋅). The solutions to ODESolve are approximated using the Runge-

Kutta methods, as described in the establishment of neural ODE solvers by Dupont et al. (Dupont et 

al., 2019)and Chen et al. (Z. Chen et al., 2019) 

 
 
𝐡(𝑡𝑇) = ODESolve(𝐡(𝑡0), 𝑓, 𝑡0, 𝑡𝑇, 𝐮(𝑡), 𝜃)           Eq. 6-12 

where
 
𝐡(𝑡𝑇) is the generated results from the neural ODEs based on Eq.6-10. During the training 

process of NODEs, the parameters of the neural network are updated by minimising the MSE loss 

functions.   

The neural network 𝑓(∙)can be represented by the chain structure with l+1 layers:  

 𝑓(𝐡)

{
 

 
𝐡1 = 𝜎1(𝐖1𝐡0 + 𝑏1)

𝐡2 = 𝜎2(𝐖2𝐡1 + 𝑏2)
⋮

𝐡𝐿 = σl(𝐖1𝐡1−1 + bl)

                   Eq. 6-13 

where   is the intermediate output hidden in the layer,   and   are assigned as input and 

output vector of the network, respectively. W is the weight matrix associated with transfer from i-1 

in the layer i ,  is the bias in layer . is the activation function at layer i.  

6.3.1.4. Encoder network 

The encoder can be used to map latent feature representation relationships from inputs to outputs, 

accurately fitting the complex relationships between them (S. Li et al., 2024).  Assuming a vector h 

with input to the encoder at time variable t, the deterministic mapping E(h(t))) converts the input 

vector intooutput q(t). The typical form of the encoder can be written as an affine transformation 

relationship as  

ih 0h lh

ib 
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 𝐪(𝑡) = 𝐸(𝐡(𝑡)) = 𝜎(𝐖𝐡(𝑡) + 𝑏)               Eq. 6-14 

where𝐖  is the weight matrix associated with transfer from between 𝐪(𝑡) and 𝐡(𝑡) ; 𝜎  is an 

activation function, and b is the bias in the layer.  

6.3.2. Method of PhySTN  

As shown in Figure 6-1, the proposed framework for missing response reconstruction and system 

identification involves three steps. It can be found in Figure 6- 1, (i) Constructing the spatial feature 

representation relationship. The simplified numerical simulation model representing the 

corresponding real structure has a total of n degrees of freedom. In the actual measurement, there are 

only m (m<n) observations with respect to this degree of freedom. Under a healthy condition, 

numerical simulation data are generated, and observation data are collected from real model, being 

input and output to train spatial-feature encoder representing spatial feature representation 

relationship, respectively. (ii) Reconstructing the unknown discrepancy. The time operator 

contains a simplified numerical model under the health condition and a neural network as a 

discrepancy term. Using the already constructed spatial feature representation relationship, from 

the initial state, full-state data in the next time step generated by the time operator can be encoded to 

the predicted limited observation; This allows the true limited observation to be directly used with 

the predicted limited observation in the loss function to supervise the neural network (NN). In another 

word, using limited observation data, the time operator consisting of a healthy numerical model and 

the NN gradually approximates the true structure. As a result,  limited observations are used by NN 

to reconstruct the discrepancy between the numerical model under health conditions and the real 

structure under an unknown condition. (iii) Reconstructing the missing structural response and 
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identifying the structural system parameters. Missing structural response outside of limited 

observations under the unknown condition can be reconstructed by finding the corresponding sensor 

response from the output of the time operator; The displacement and internal restoring force of the 

structural discrepancy can be obtained from the inputs and outputs of the NN, respectively. The 

structural parameters of the system can be identified by fitting polynomial equations corresponding 

to the displacement and restoring force. 
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Figure 6-1. Flow chart of the proposed structural identification and response reconstruction and 

prediction framework.  

6.3.2.1. Construction of the spatial-feature encode 

As presented in section 2.1.3, solving partial differential equations for structural systems using 

NODEs requires the full state of the response to be involved in the computational process. In this 

work, a spatial feature encoder based on an encoder network is constructed in Figure 6- 2, which 

maps full states to finite observations for the purpose of directly using limited observations for 
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structural identification treated as an observation matrix. This spatial mapping relation needs to be 

constructed between full states and limited observations under the same conditions of structure to 

ensure that it only maps features that are relevant to the space of structures. Besides, this spatial 

relation will remain unchanged, even if the conditions of the structure change since it depends only 

on the spatial location of the observation. The health condition in real structure is usually known. 

Thus, encoder networks are trained on the same health condition by using full states from simplified 

numerical models and limited observations from real structures. This encoder network is introduced 

in the section 6.3.1.4 is designed as a fully connected layer, which can be represented as 

𝐪u(𝑡) = SE(𝐡u(𝑡)) = Identity(𝐖𝐡u(t) + b)            Eq. 6-15 

where 𝐡u is the full state from the numerical model and 𝐪u(𝑡)is the limited observation from the 

real structure, 𝐖 ∈ ℝ2𝑛×2𝑚  ,  𝐛 ∈ ℝ2𝑚×1 , and Identity ( )f x x=  is selected as the identity 

activation function due to the use of neural networks.  As can be seen from Eq. 6-15, the proposed 

encoder uses linear activation functions and bias, and their addition enables a high-dimensional and 

latent pattern between the full state to a limited observation. Single-layer networks with a small 

number of trainable parameters allow for fast network training for parameter fitting (Cer et al., 2018). 

A single-layer network is also sufficient for both encoding accuracy and computational complexity 

from our experiment. In addition, the 
uqMSE loss is computed between the predicted �̂�u(𝑡)and true 

𝐪u(𝑡) observation as shown below: 

 MSEqu
=

1

𝑛
∑ |𝐪u(𝑡𝑖) − �̂�u(𝑡𝑖)|
𝑛
𝑖=1                     Eq. 6-16 

As an example of a numerical model with n degrees of freedom, it is a simplified lumped mass 

model representing the corresponding real structure, which can be expressed in the form of an 
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ordinary differential equation (ODE) state space equation,  

𝑑𝐡u(𝑡)

𝑑𝑡
= 𝐀𝐡u(𝑡) + 𝐁𝐮(𝑡)                      Eq. 6-17 

where matrices A and B in this lumped mass model consist of the K, M and C matrices of their 

corresponding physical parameters under the health condition; The measured excitations u(t) is then 

given as input to the numerical model, generating structural full state vectors 𝐡u(𝑡) =

[𝑥1(𝑡); 𝑥2(𝑡); … ; 𝑥𝑛(𝑡); �̇�1(𝑡); �̇�2(𝑡); … ; �̇�𝑛(𝑡)]  of dimension 2n. Taking a real structure arranged 

m (m< n) observation points with the excitation u(t) under the health condition, displacement and 

velocity responses of the real structure are collected to form a limited observation state vector 

𝐪u(𝑡) = [𝑥1(𝑡); 𝑥2(𝑡); … ; 𝑥𝑚(𝑡); �̇�1(𝑡); �̇�2(𝑡); … ; �̇�𝑚(𝑡)]of dimension 2m. The inputs and outputs of 

the SE are 𝐡u(𝑡) from numerical simulations and 𝐪u(𝑡)from real structures, respectively. 

In the case where the location of the measurement sensor is constant, when the state of the 

structure is unknown, using the established spatial characterization relationship allows the encoding 

of the full state to the limited observation and maintains the high dimension feature of the structure 

condition.  
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Figure 6-2. Details of the operational mechanisms for each step in the proposed framework 

6.3.2.2. Reconstruction of the unknown discrepancy 

The time operator combines the spatial-feature encoder constructed in Step I. Based on the 

limited number of observations, the discrepancy between the numerical model in the healthy 

condition and the real structure in the unknown condition can be reconstructed. The time operator 

contains a NN and a simplified numerical model the same as in step I, where the simplified numerical 

model represents the model with known health conditions, and the reconstructed discrepancy terms 

are stored in NN.  

In the initial time step t0, the initial state as the dimension of 2n vector 𝐡(𝑡0)of the structure is 

input to the NN and output of NN is a discrepancy item as the dimension of n vector between the 
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healthy numerical model and unknown condition real structure; in the same time step, the excitations 

u(t) from the measurement is given to the numerical model to generate the derivative of a 2n 

dimension vector full state under the health state from Eq. 6-17. Then, a dimension of the n vector 𝟎 ∈

ℝ𝑛×1 is concatenated with output of NN to form GNN(𝐡(𝑡))expressed in Eq. 6-18, in order to get a 

2n dimensions vector to sum with 𝑑𝐡u(𝑡)

𝑑𝑡
. As a result, the derivative of the predicted full state 𝑑𝐡(𝑡)

𝑑𝑡
 

under the unknown conditions is obtained, which is written as: 

𝑑𝐡(𝑡)

𝑑𝑡
= 𝐀𝐡(𝑡) + 𝐁𝐮(𝑡) + GNN(𝐡(𝑡))

= [
0 𝐼

−𝐌−1𝐊u −𝐌−1𝐂u
] 𝐡(𝑡) + [

0
−𝐌−1] 𝐮(𝑡) + [

0
𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃)

]
          Eq. 6-18 

where 𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃) is the approximated functions learned by NN with is parameterised by weight

 ; 𝟎 ∈ ℝ𝑛×𝑛 is a zero matrix; 𝐈 ∈ ℝ𝑛×𝑛  is an eye matrix; 𝐊u ∈ ℝ
𝑛×𝑛 ,  𝐌 ∈ ℝ𝑛×𝑛 and 𝐂u ∈

ℝ𝑛×𝑛 are the physical properties of the structure under the health condition. The 𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃) can 

be represented by the formula shown in Eq. 6-13, and nonlinear activation function of Rectified 

Linear Unit (ReLU), ReLU(𝑢) = {𝑢, 𝑢 > 0
0, 𝑢 < 0

 is selected at each layer. Due to its efficient computing 

speed and introduction of nonlinearities, it helps neural networks to learn complex patterns better.  

Then, the time operator is then solved by utilising the approach presented in Section 2.1.3., 

which leads to the predicted full state h(t) in the next time step t=t+1 obtained. Next, the predicted 

full state h(t) is encoded into its corresponding predicted limited observation q(t) through the encoder 

at the same time step, shown in Figure 6-2 and expressed in Eq. 6-19. At the same time  the loss 

functionMSEqd
=

1

𝑛
∑ |𝐪d(𝑡𝑖) − 𝐪(𝑡𝑖)|
𝑛
𝑖=1   is computed between solved q(t) and the true limited 

observation qd(t) from the real structure under the unknown condition to update the parameters of 

NN.  




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 q(t) =SE[h(t)]                         Eq. 6-19 

Through the above process and the derived Eq. 6-18, it can be seen that the structural discrepancy 

terms can be reconstructed and stored in the ( ( ), , )NNf t t h   based on limited observations. The 

𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃)  working in collaboration with physical knowledge allows the NN to follow the 

established rules of structural dynamics. 

6.3.2.3. Reconstruction of the missing response and structural identification  

In the proposed framework, missing responses can be reconstructed utilising time operators that 

represent the real structure. Unknown structural parameters can be converted into a regression 

problem by finding expressions about the inputs and outputs of the NN. 

The time operator has been trained using limited observation from real structure data under 

unknown conditions. The output of the time operator representing the real structure is the predicted 

full states h(t) shown in step ii of Figure 6-1. The corresponding missing sensors, including 

displacement and velocity in the real structure, can be found from the predicted full state h(t) for 

response reconstruction.  

The NN can be expressed as the equations representing the relationship between displacement 

and restoring force following the process below:  

(a) Considering the structure under healthy conditions, the prior physics as described in Eq. 6-17 is 

expressed as follows: 

 𝑓health (⋅) =
𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−1𝐊u −𝐌−1𝐂u

] 𝐡(𝑡) + [
𝟎

−𝐌−1] 𝐮(𝑡)       Eq. 6-20 

where uK  , M  and uC  are the physical properties of the structure under the health condition. 

Structure changes condition, can be expressed in terms of changes in system stiffness or damping 
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(Ren & De Roeck, 2002). Thus, the structure under the known condition can be rewritten as  

𝑓unknown(⋅) =
𝑑𝐡(𝑡)

𝑑𝑡
= [

𝟎 𝐈
−𝐌−1(𝐊u − Δ𝐊) −𝐌−1(𝐂u − Δ𝐂)

] 𝐡(𝑡) + [
𝟎

−𝐌−1] 𝐮(𝑡)

= [
𝟎 𝐈

−𝐌−1𝐊u −𝐌−1𝐂u
] 𝐡(𝑡) + [

𝟎
−𝐌−1] 𝐮(𝑡) + [

𝟎 𝟎
−𝐌−1(−Δ𝐊) −𝐌−1(−Δ𝐂)

] 𝐡(𝑡)

      

Eq. 6-21 

where the matrix n n K and n n C representing the changes in stiffness and damping matrix 

of the structure under unknown conditions. Eq. 6-20 represents the physical knowledge of structure 

under health condition. Therefore, the expression of the model discrepancy between the health and 

unknown conditions𝑓health(⋅) − 𝑓unknown(⋅) is expressed as  

  

GΔ(⋅) = [
𝟎 𝟎

−𝐌−1(−Δ𝐊) −𝐌−1(−Δ𝐂)
] 𝐡(𝑡)              Eq. 6-22 

GΔ(⋅)is the discrepancy item in Eq. 6-18 stored in the 𝑓𝑁𝑁(𝐡(𝑡), 𝑡, 𝜃) and expressed as a function 

GNN(𝐡(𝑡)) . It can be also written as 

 

GNN(𝐡(𝑡)) = [
𝟎 𝟎

−𝐌−1(−Δ𝐊) −𝐌−1(−Δ𝐂)
] 𝐡(𝑡) = [

𝟎𝑛×1
𝐡(𝑡)𝚯

]       Eq. 6-23 

where 𝐡(𝑡)𝚯 is the discrepancy term captured by NN; ( )th contains the displacement of the real 

structure; 𝚯is a polynomial function that can be obtained by establishing a regression problem that 

fits the inputs and outputs of the NN using the Matlab function polyfit (The MathWorks Inc. (2022). 

MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. 

https://au.mathworks.com/help/matlab/math/polynomial-curve-fitting.html). This expression can be 

written in the forms regarding K and C for structural parameter identification. 

6.4. Numerical Example – nonlinear 5-storey building model with an MRE isolator 

In this section, a 5-storey building model with a magnetorheological elastomer (MRE) isolator 
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will be presented to validate the proposed framework based on the identification of nonlinear 

structural parameters with limited observations and missing response reconstruction. The basic 

information about the building model and the MRE isolator setup will be presented first. This will be 

followed by a description of the data preparation process. Then, the results of nonlinear parameter 

identification and missing response reconstruction are shown and discussed, including three scenarios 

of noise contamination, different observation periods and observation locations. Finally, a 

comparative assessment between the predicted and real results of the proposed method is presented. 

6.4.1. Basic information  

The numerical model is made by a 5-storey building adaptive MRE base isolators, the system is 

presented in Figure 6- 3. Due to the seismic protection purposes of the MRE base devices, they are 

deployed under the first floor, the entire building model can be expressed with n + 1 DOFs (n = 5 in 

this example). Because of two main features of viscoelasticity and strain stiffening of MRE base 

isolator, the force-displacement loops can be regarded as a synthesis of two distinct curve types: one 

representing the conventional viscoelastic properties of the rubber, and the other illustrating the strain 

stiffening characteristic induced by the applied magnetic field plotted in Figure 6-3. Therefore, the 

nonlinear behaviours of the system can be expressed by the Kelvin model(Christensen, 2003). This 

model comprises a linear spring and a viscous dashpot, while a nonlinear spring is employed to 

describe the strain stiffening phenomenon. The nonlinear MRE restore force of the system can be 

expressed as  
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FMRE(𝐼, 𝑡) = 𝑘𝑏(𝐼)𝑥𝑏(𝑡) + 𝑐𝑏(𝐼)�̇�𝑏(𝑡) + 𝛼(𝐼)𝑥𝑏
3(𝑡) + 𝐹0

𝛼(𝐼) = −0.1232 ⋅ 𝐼2 + 0.7366 ⋅ 𝐼
𝑘𝑏(𝐼) = 8.062 ⋅ 𝐼

𝑐𝑏(𝐼) = 0.0994 ⋅ 𝐼
2 + 0.7598 ⋅ 𝐼

         Eq. 6-24 

where I is the constant current of is applied on the MRE isolator, equal to 1 A in this numerical 

example; 𝑥𝑏and �̇�𝑏imply the displacement and velocity of the base; both cb and kb are the damping 

and stiffness parameters of the model; α is the coefficient for the power law element, while F0 denotes 

the initial shear force generated by the initial displacement of the device. The motion of the equation 

of each floor can be written as:     

{
  
 

  
 

(𝑘0 + 𝑘1)𝑥𝑏 − 𝑘1𝑥1 + (𝑐0 + 𝑐1)�̇�𝑏 − 𝑐1�̇�1 + 𝑙𝑐𝑚𝑏�̈�𝑏 = FMRE − 𝑙𝑐𝑚𝑏𝑢𝑔
−𝑘1𝑥𝑏 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 − 𝑐1�̇�𝑏 + (𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 +𝑚1�̈�1 = −𝑚1𝑢𝑔
−𝑘2𝑥1 + (𝑘2 + 𝑘3)𝑥2 − 𝑘3𝑥3 − 𝑐2𝑥𝑏 + (𝑐2 + 𝑐3)𝑥2 − 𝑐3𝑥3 +𝑚2𝑥2 = −𝑚2𝑢𝑔
−𝑘3𝑥2 + (𝑘3 + 𝑘4)𝑥3 − 𝑘4𝑥4 − 𝑐3𝑥3 + (𝑐2 + 𝑐3)𝑥3 − 𝑐4𝑥4 +𝑚3𝑥3 = −𝑚3𝑢𝑔
−𝑘4𝑥3 + (𝑘4 + 𝑘5)𝑥4 − 𝑘5𝑥5 − 𝑐4𝑥4 + (𝑐3 + 𝑐4)𝑥4 − 𝑐5𝑥5 +𝑚4𝑥4 = −𝑚4𝑢𝑔

−𝑘5𝑥4 + 𝑘5𝑥5 − 𝑐5�̇�4 + 𝑐5�̇�5 +𝑚5�̈�5 = −𝑚5𝑢𝑔

   Eq. 6-25 

where lc is the number of the MRE base isolators; 𝑥𝑖 , �̇�𝑖 and �̈�𝑖 indicate the displacement, velocity 

and acceleration of the i th DOF (i = b, 1, 2, 3, 4, 5), respectively; the stiffness coefficient is designed 

as 𝑘𝑏=8.062, 𝑘0= 6.544 , 𝑘1= 1146, 𝑘2=3124,  𝑘3 = 𝑘4=3156 and 𝑘5=2978 (N/m);  𝑚𝑏= 150, 

𝑚1 =214 and𝑚2 = 𝑚3 = 𝑚4 = 𝑚5 =207 (kg); 𝑐𝑏 = 0.8592, 𝑐0 = 0.3254;  𝑐1 =0.0584, 𝑐2 =0.1117, 

𝑐3=0.1128 𝑐4=0.11; 𝑐5=123.3 (N∙s/m).  



 

163 

 

 
Figure 6-3. 5-storey building model with MRE nonlinear structural system 

The nonlinear component of the system generated by the force of MRE base isolator is 

influenced by the applied current, displacement and velocity of the based floor, which can be 

expressed by the stiffness and damping changes 6 6
MRE

K and 6 6
MRE

C  respectively(Y. Li et 

al., 2013; J. Yang et al., 2013).  

The state equation of the 6-DOF numerical model can summarised as  

d𝐡(𝑡)
d𝑡

= [
𝟎 𝐈

−𝐌−1(𝐊𝐼=0 + 𝐊MRE) −𝐌−1(𝐂𝐼=0 + 𝐂MRE)
] 𝐡(𝑡) + [

𝟎
−𝐌−1] 𝐮(𝑡)

= [
𝟎 𝐈

−𝐌−1𝐊𝐼=0 −𝐌−1𝐂𝐼=0
] 𝐡(𝑡) + [

𝟎
−𝐌−𝟏] 𝐮(𝑡) + [

𝟎 𝟎
−𝐌−1𝐊MRE −𝐌−1𝐂MRE

] 𝐡(𝑡)

= [
0 𝐼

−𝐌−1𝐊𝐼=0 −𝐌−1𝐂𝐼=0
] 𝐡(𝑡) + [

𝟎
−𝐌−1] 𝐮(𝑡)

+[0; 0; 0; 0; 0; 0; 𝑘𝑏𝑥𝑏(𝑡) + 𝑐𝑏�̇�𝑏(𝑡) + 𝛼𝑥𝑏
3(𝑡); 0; 0; 0; 0; 0]

Eq. 6-26 

where 6 6
=0I

K and 6 6
=0I

C are the stiffness and damping matrix of the linear system, when 

The MRE isolator is powered off at current I = 0 A is a known condition, and the isolator is at its 

softest state leading without the MRE force; M is the mass matrix of the model; 6 60 is a zero 
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matrix and 6 6I   is the identity matrix; In addition, the natural frequencies for the numerical 

model under this condition are 0.676 Hz, 10.068 Hz, 16.679 Hz, 24.072 Hz, 31.792 Hz and 37.306 

Hz, respectively.  

6.4.2. Data preparation 

The purpose of the proposed framework is to identify the unknown nonlinear behaviours as the 

discrepancy between known and unknown conditions using limited observation. Thus, a linear 5-

storey model with the MRE isolator power off under the known condition is considered as the known 

numerical model under the health condition, which was used in steps i and ii in the proposed 

framework.  

In step i, it is required to obtain the data of full state 𝐡u(𝑡) generated from the numerical model 

under the health condition and the limited observation 𝐪u(𝑡)obtained by deleting the lost sensors 

from the  𝐡u(𝑡), to construct the spatial feature representation relationship. The ground motions from 

four earthquakes, El Centro (E1), Hachinohe (E2), Kobe (E3), and Northridge (E4), were applied to 

the numerical model as input, with a sampling rate of 100 Hz for u(t). According to Nyquist's theorem 

(H. Nyquist, 1928) , the data must be sampled at more than twice the highest frequency present in the 

structure. As mentioned earlier, the highest frequency of the 5-story numerical model is 37.306 Hz. 

Therefore, the 100 Hz sampling rate is sufficient to capture the features of all modes within the model. 

Regarding the frequency range of each excitation, the earthquake recordings are mainly within 0-5 

Hz due to their natural characteristics. The full state vector 𝐡u(𝑡) ∈ ℝ
12×1 expressed as 

[𝑥𝑏; 𝑥1; 𝑥2; 𝑥3; 𝑥4; 𝑥5; �̇�𝑏; �̇�1; �̇�2; �̇�3; �̇�4; �̇�5] are generated from the 5-storey numerical model under 

the known condition shown in Eq. 6-27; the limited observations 𝐪u(𝑡) associated with the number 
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and location of their observation points are obtained, at the same sampling rate as the input excitation. 

Table 6-1 summarises the different limited observations for the 4 different cases used in this numerical 

example, including the different numbers and locations of observations. 

d𝐡𝐼=0(𝑡)

d𝑡
= [

𝟎 𝐈
−𝐌−1𝐊𝐼=0 −𝐌−1𝐂𝐼=0

] 𝐡(𝑡) + [
𝟎

−𝐌−1] 𝐮(𝑡)          Eq. 6-27 

In step ii of the proposed framework, the limited observation 𝐪d(𝑡)  under the unknown 

condition is required for reconstructing the discrepancy term between different conditions. Thus, 

𝐪d(𝑡)  with the same numbers and observation location as 𝐪u(𝑡)  is collected to train the time 

operator. The dimensions for 𝐪d(𝑡) different cases are summarised in Table 6-1.  

Table 6-1. Cases of missing measurement and limited observation of the 5-storey numerical model. 
Cases description  limited observation 𝐪u(𝑡)or 𝐪d(𝑡)     

Case 1: Missing measurement 𝑥3, �̇�3 [𝑥𝑏; 𝑥1; 𝑥2; 𝑥4; 𝑥5; �̇�𝑏; �̇�1; �̇�2; �̇�4; �̇�5] 
Case 2: Missing measurement 𝑥𝑏 , �̇�𝑏 [𝑥1; 𝑥2; 𝑥3; 𝑥4; 𝑥5; �̇�1; �̇�2; �̇�3; �̇�4; �̇�5] 

Case 3: Missing measurement 𝑥𝑏 , 𝑥3, �̇�𝑏, �̇�3 [𝑥1; 𝑥2; 𝑥4; 𝑥5; �̇�1; �̇�2; �̇�4; �̇�5] 
Case 4: Missing measurement 𝑥𝑏 , 𝑥2, 𝑥3, �̇�𝑏, �̇�2, �̇�3 [𝑥1; 𝑥4; 𝑥5; �̇�1; �̇�4; �̇�5] 

6.4.3. Construction of the spatial-feature encoder  

The proposed framework constructs spatial feature representation relations to map full state to 

limited observation, which allows limited observations to be used directly to identify structural 

parameters in unknown states. Under the known condition of the structure, the full state 𝐡u(𝑡) and 

limited observation 𝐡u(𝑡) are the input and output of the spatial feature encoder, respectively. Thus, 

the architecture of the encoder network needs to be matched to the dimension of 𝐡u(𝑡) ∈ ℝ
12×1 and 

𝐪u(𝑡) ∈ ℝ
𝑛×1(n=10, 8 and 6), which varies in different cases. Table 6-2 summarises the encoder 

network architecture for different cases. In addition, the corresponding training hyper-parameters are 

summarised in Table 6-2. It is noted that the relatively bigger learning rate 0.001 and fewer epochs 

1000 were selected to train the encoder due to the simple structure of the encoder design being easy 
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to train. Finally, vectors containing 500 data points of length 5 s 𝐡u and 𝐪u(𝑡)are used to train the 

encoder. 

Table 6-2. SE network architecture for different cases and training hyper-parameters used of the 
numerical example. 

 Number of nodes Training hyper-parameters 
Layer Case1 Case 2 Case 3 Case 4 Name Value   
Input 12 12 12 12 Batch size 200   

Output 10 10 8 6 Epoch 1000   
     Learning rate 0.001   

6.4.4. Reconstruction of the unknown discrepancy  

In the step of reconstructing the discrepancy, time operators are trained to reconstruct the 

discrepancy terms of structure between different conditions, utilising the limited observations under 

the unknown condition of the structure and spatial feature representation relationships constructed in 

the known condition. The condition of the structure when the MRE base isolator is powered on 

(constant current I = 1A) is considered as an unknown condition and reconstructing this unknown 

discrepancy using the proposed method is a task. The time operator is made by an NN and healthy 

numerical model to form a NODE, in which the architecture of NN is only dependent on the 

dimension of the full state; Because it represents a discrepancy in the entire structure; and the healthy 

numerical model is the same as the physical knowledge used in step i expressed in Eq. 6-26. Table 6-

3 summarises the architecture of NN and training hyper-parameters. It is important to note that due 

to the complexity of the NN structure, it requires large training epochs, lower learning rates, and more 

data to fit more parameters. The limited observation under the unknown structural condition 𝐪d(𝑡) 

contained 1,000 data points of 10 seconds is used to train the time operator for reconstructing the 

discrepancy.  

Table 6-3. The architecture of the NN network and training hyper-parameters of the numerical 
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example. 
The architecture of NN  Training hyper-parameters 

Layer type Number of nodes  Name  Value 
Input 12 Batch size 200 

Layer 1 24 Epoch 10000 
Layer 2 24 Learning rate 0.00005 
Output 6   

6.4.5. Reconstruction of the missing response and structure identification  

Time operators trained by limited observations under unknown conditions can output the full state 

h(t) of the structure under unknown conditions and thus perform response reconstruction. In addition, 

as the structure is in an unknown condition with MRE isolator power on, this differs from the structure 

under the health condition, causing this discrepancy term to be stored in the NN, mentioned in section 

2.2.4. This implies that the output of the NN should fulfil the following relationships:  

GNN(𝐡(𝑡)) = [0; 0; 0; 0; 0; 0; 𝑘𝑏𝑥𝑏(𝑡) + 𝑐𝑏�̇�𝑏(𝑡) + 𝛼𝑥𝑏
3(𝑡); 0; 0; 0; 0; 0]      Eq. 6-28 

where GNN(𝐡(𝑡))  as the discrepancy term contains the output of NN; 𝑥𝑏(𝑡) and �̇�𝑏(𝑡)  is the 

displacement and velocity for the base floor of the structure; the unknown structural 

parameters 𝑘𝑏 , 𝑐𝑏and 𝛼 can be reconstructed by fitting the polynomial equations between the output 

of NN and 𝑥𝑏(𝑡)or �̇�𝑏(𝑡).  

6.4.5.1. Result 1: scenario of noisy data 

In this numerical example, a limited observation under different noise levels in Case 1 is 

considered to validate the performance of the proposed framework, and then its corresponding results 

are discussed. Since observations usually contain noise, Gaussian white noise is only added to the 

limited observations u ( )tq that are not in the full state u ( )th . For the limited observation of noise 

pollution, 𝐪u noise (𝑡) = 𝐪u(𝑡) +𝒩(𝜇, 𝜎)  and 𝐪d noise (𝑡) = 𝐪d(𝑡) +𝒩(𝜇, 𝜎) are under health 

condition and unknown condition, used to train the spatial feature encoder in step i and the time 



 

168 

 

operator in step ii respectively; where 𝜇 and  𝜎 are the mean value and standard deviation of the 

noise, where 𝜇is equal to 0; 𝜎 is equal to 0.03, 0.05 and 0.1 for 3%, 5% and 10% noise respectively.  

  After the completion of training in each step using limited observation of noise-polluted data, 

the missing responses including displacement 𝑥3(𝑡), velocity �̇�3(𝑡)and acceleration �̈�3(𝑡) of case 

1 are reconstructed by time operators, respectively, shown in Figure 6-4 (a). It can be seen that the 

proposed framework is able to reconstruct the missed response under the training of a limited number 

of observations adding different white noises. The reconstructed signals almost overlap with the real 

responses when the noise pollution is less than 5%, while at 10% noise the reconstructed signals show 

less deviation from the real response; Figure 6- 4(b) shows a violin plot for the Mean-square (MSE) 

error, where contains a white box (interquartile (IQR) range: cover the difference between the Q1 and 

Q3 (25th and 75th percentiles of the data)), a black line in the mid of the white box (the mean value of 

the data), and two symmetrical black lines outside of the white box (reach lower and upper wisher: 

Q1-1.5IQR and Q3+1.5IQR, cover 99.65% of the data). The MSE loss between the reconstructed 

data and the real response and its accuracy relative to the training model decreases as the noise level 

increases.  

For the structural identification, the nonlinear discrepancy term presented in Eq. 6-28 has been 

stored by the neural network and is plotted in Figure 6-4 (c); From this Fig 6-4 (c); . , the base floor 

displacement 𝑥𝑏(𝑡) and the first output of the NN are plotted at different noise levels and compared 

with the reference values. It can be clearly seen that after training with noise interference with 0%, 

3% and 5% levels, the NN accurately captures the nonlinear MRE term of the model in Case 1, it has 

the largest offset at 10 % noise. Then, the polynomial regression was used to explore expressions 
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related to these three variables for structural parameter identification, and identified nonlinear 

expressions were summarized in Table 6-4, in which the maximum error of these parameters for each 

noise level is 1.5%, 5.7%, 10.9 and 67.8%, respectively. The maximum error occurs when the noise 

level is 10% since the time operator will not be able to resist this high level of noise interference to 

accurately capture the nonlinear discrepancy term. With only a limited number of observations, the 

nonlinear unknown discrepancy terms in the structure can still be accurately captured by the NN 

under the noise below 10%, and missing response can be reconstructed from the time operator, due 

to the spatial feature representation relation constructed based on the encoder. It can be drawn that 

when the noise level is below 10%, the proposed method with limited measurement observation can 

still use spatial feature relations to train a neural network with physical knowledge to infer missing 

signals and identify structure parameters. Spatial relations combine this a priori structural knowledge 

to maximise the use of physical principles, increase the reliability of the framework, and increase the 

interpretability of the neural network. 
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Figure 6-4. Numerical example result 1: scenario of noisy data (a) reconstructed missing response; (b) 

Testing MSE loss (c) reconstructed discrepancy term.   
Table 6-4. Numerical example Result 1: scenario of noisy data - Identified model expression 

𝑓𝑁𝑁(𝐡(𝑡)). 
Case 1 𝑓𝑁𝑁(𝐡(𝑡)) [1, :] parameters in the discrepancy model   Identified error (%) 

  𝑘𝑏𝑥𝑏(𝑡) + 𝑐𝑏�̇�𝑏(𝑡) + 𝛼𝑥𝑏
3(𝑡) 𝑘𝑏 𝑐𝑏 𝛼 

True  �̈�𝑏 322.48𝑥𝑏 + 26.4�̇�𝑏 + 28.97𝑥𝑏
3 - - - 

Without noise �̈�𝑏 323.1𝑥𝑏 + 26.8�̇�𝑏 + 28.6𝑥𝑏
3 0.2 1.5 1.3 

3 % noise �̈�𝑏 321.2𝑥𝑏 + 24.9�̇�𝑏 + 27.9𝑥𝑏
3 0.4 5.7 3.7 

5 % noise �̈�𝑏 299.9𝑥𝑏 + 23.6�̇�𝑏 + 25.8𝑥𝑏
3 7.0 10.6 10.9 

10% noise  �̈�𝑏 103.8𝑥𝑏 + 30.4�̇�𝑏 + 10.1𝑥𝑏
3 67.8 15.2 65.1 

6.4.5.2. Results 2: scenario of different observation period (numbers of points) 

There is a further discussion of the performance of the proposed method with different 

observation periods. In practice, the observation of the structure under the health condition 𝐪u(𝑡) 

can be easily obtained, while that under unknown conditions 𝐪d(𝑡) is usually limited. Thus, the 

various data lengths of observation used in training are only considered in step ii, when using the 
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limited observation under the unknown condition 𝐪d(𝑡)to construct the discrepancy term. In case 1, 

the time operator in step ii is trained using time durations of 10 s (number of points=1000) of the 

limited observation under the unknown condition. Shorter training time data with 1s and 5s (number 

of points =100 and 500) of the limited observation is also used for comparison of the performance for 

the missing responses reconstructed by the proposed method. 

Figure 6- 5(a) shows the results of reconstructing the missing response of 3rd floor displacement 

𝑥3(𝑡) , velocity �̇�3(𝑡)  and acceleration �̈�3(𝑡)  using different observation period training time 

operators and comparing them with the true response. In addition, the MSE loss is shown in Figure 

6-5 (b). From Figure 6-5 (a) and (b), it can be observed that the performance of the time operator is 

enhanced with the increase in the training data length. When the training data over 5s reaches 10s, 

there is less increase in performance that can be found since the accuracy of the reconstructed 

responses has already reached a stable level.  

For the nonlinear MRE force identification, predicted data beyond the training data were used 

for identification due to the short observation times of 1s and 5s. Figure 6-5(c) shows the first output 

of the NN vs. base floor displacement out of the training range, compared to the ground truth. It can 

be seen that when the training data points of the observation are sufficiently long and reach 5 s, the 

NN successfully captures the main characteristics of the MRE model's nonlinearity. 

 Some conclusions can be obtained from the results: first, the proposed method has the potential 

to achieve reconstruction and identification with a much smaller number of training samples 

compared with the whole observation period, which proves the robustness and efficiency in practice; 

second, unlike the conventional data-driven learning method that requires a large number of training 
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data, the proposed approach reveals that by the fusion of NN and prior physics, the cost of the learning 

can significantly drop but it can still maintain a stable even better performance.  

 
Figure 6-5. Numerical example result 2: scenario of noisy data (a)reconstructed missing response; (b) 

Testing MSE loss; (c) reconstructed discrepancy term.   

6.4.5.3. Results 3: scenario of different observation locations 

In real situations, different types of limited-observation states of the structure can occur, such as 

the states of some stories are unseen. The position and number of observation locations are changed 

to obtain several different limited observations in order to verify the performance of the proposed 

method for response reconstruction and structural parameter identification. It is worth noting that 

reconstructing the response of floors with MRE isolators is important and a principal indicator to 

evaluate the performance of identifying system parameters. Thus, this scenario focuses on 

reconstructing the response of the base floor in this section. In Case 2, the limited observations are 
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the responses of the other floors except the ground layer. Based on Case 2, the missing response of 

the 3rd floor is considered to form Case 3. Besides, the missing response from the 2nd and 3rd floors 

simultaneously is considered to form Case 4, summarised in Table 6-1.  

As can be seen in Figure 6-6 (a), the missing ground response 𝑥𝑏 , �̇�𝑏  and �̈�𝑏(𝑡)  is 

reconstructed by the time operator trained with a limited observation of 10 seconds. From the 

reconstructed response, the time operator accurately reconstructs the missed ground response, even 

using limited observations that miss the ground, 2nd and 3rd floor responses. Figure 6-6 (b) shows the 

MSE loss between the reconstructed and real signals for cases 3, 4, and 5. As the number of 

observations decreases, the MSE loss for cases 3 and 4 becomes slightly larger than that for case 2; 

in general, most of the values are in the small range of 0-0.0015, indicating that the timer operator 

has been well trained. Figure 6-6(c) shows the first output of the, NN versus the bottom displacement 

in the training range compared to the ground truth. It can be seen that the NN captures the main 

features of the MRE model in terms of nonlinearity for all three cases with limited observations. The 

proposed framework can reconstruct the missing base floor response, based on data from numerical 

simulations in which the number of model observations is only half of the full state. 

The proposed framework can reconstruct the missed response, based on data from numerical 

simulations in which the number of model observations is only half of the full state. This demonstrates 

that the spatial feature representation relationship can be well bridge the knowledge of the physical 

structure and a limited observations, enabling the limited observations to be directly utilised for 

structural parameter identification and then for missing response reconstruction. 
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Figure 6-6. Numerical example result 3: scenario of different observation locations (a)reconstructed 

missing response; (b) Testing MSE loss; (c) reconstructed discrepancy term.   

6.5. Experimental Example - 3-storey frame structure with MRE isolators 

In this section, the efficiency of the proposed framework is validated by a 3-storey frame 

structure with two identical MRE base isolators. The basic information of the experiment is 

introduced first, including the structure's physical parameters and data acquisition system. Then, the 

training process of the proposed framework is introduced sequentially. Lastly, the results and 

discussion of structural identification and response reconstruction under different cases of various 

observation locations are presented. 

6.5.1. Basic information  

As shown in Figure 6-7, a 3-storey frame structure is designed with a total height of 1200 mm 

and each floor height is 400 mm, and more details can be found in (Gu, n.d.; Gu et al., 2017). Four 
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steel strips have a cross-section of 344 mm to provide a weak stiffness in the weak axis and strong 

stiffness along the strong axis. Each floor is made by a mass plate with dimension of 60050040 

mm, each of which are connected with the four strips using clamp and countersunk head screws, 

respectively. A bottom plate is connected to the bottom of the four steel strips with patches and screws 

for fixing the frame model. Two identical MRE isolators are placed under the frame model with hight 

of 112 mm and connected with the bottom plate. The MRE base isolator in the experimental model 

is based on the Kelvin model, which has been expressed in Eq. 6-24 and introduced in section 3.1. 

The material properties of the frame structure can be summarized as in Table 6-6. 

 
Figure 6-7. Dimensions of the 3-storey experimental structure: (a) 3-dimensional view, (b) front 

view, and (c) side view. 
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Table 6-5. The material properties for each component of the 3-storey experimental structure. 
Name  Number Material Density (kg/m3) Weight (kg) 

Mass plate 3 Aluminum 2.70×103 14.58 
Strip 2 Steel 7.85×103 1.28 

Clamp 6 Steel 7.85×103 0.57 
Bottom plate 1 Steel 7.85×103 61 

MRE base 
isolator 

2 - - 55 

The experimental set up data acquisition system of the frame structure is shown in Figure 6-8. 

Four laser sensors (OADM 20I4460/S14C) are installed in the reference wall for measuring the 

displacement of each floor (𝑥𝑏 , 𝑥1, 𝑥2, 𝑥3) for this structure, and one extract accelerometer is placed 

on the side of the shake table to obtain the ground excitation acceleration u(t). Sequentially, the built-

in digital controller of the data acquisition system calculates the required current and the 

corresponding pulse‐width modulation (PWM) signals, the PWN current driver outputs the 

corresponding current signals to the wire connector to control the parameters bc and bk of the MRE 

base isolators. In this experimental example, I = 0 and 1A are only considered as constant currents 

which are directly given to the data acquisition system without calculation; 
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Figure 6-8. (a) Experimental setup and data acquisition system (b) details of the experimental 

equipment.  

Similar to the numerical example, the current on the MRE isolator I=0 A and the isolator is at its 

softest state, the known condition of the experimental structure can be also expressed as a lumped 

mass model in Eq. 6-27, while 𝐊𝐼=0 ∈ ℝ
4×4 and 𝐂𝐼=0 ∈ ℝ

4×4are replaced by corresponding physical 

parameters from the 4-DOF model. To obtain the accurate 𝐊𝐼=0  and 𝐂𝐼=0 of the experimental 

structure under the known condition, impulse hammer testing has been conducted for modal 

identification of the frame structure under the condition I=0 A. After this, the MATLAB toolbox 

(Damage Identification and Modal Analysis for Dummies) is used to obtain the updated modal 

parameters. Thus, the stiffness and damping matrixes updated from the modal analysis are shown in 

Table 6-7. There is also the comparison of the natural frequency of the structure for the designed, 

updated and measured results. It can be found that after the model updating, compared with the 

designed natural frequency, the that of the experimental structure is closer to the measurement. 
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Table 6-6. The updated stiffness and damping matrices and the natural frequencies of the 3-storey 
experimental structure. 

Updated matrix   Natural frequency (Hz) 
Number  
of mode 

Designed 
value 

Updated 
value 

Measure
ment  

Stiffness 
matrix  

𝐊𝐼=0 = 

[

32147 -25603 0 0
-25603 44825 -19222 -905

0 -18407 39401 -19631
0 -238 -20874 21052

] 

(N/m) 
 

1st  0.961 1.015 1.166  

2nd  3.039 3.086 3.231 

Damping 
matrix  

𝐂𝐼=0 = 

[

334.044 -8.644 0 0
-8.644 13.162 -4.518 -0.403

0 -4.518 12.028 -5.613
0 -0.403 -5.613 8.944

] 

(N∙s/m) 

3rd  5.604 5.803  5.878 

4th  7.308 7.449  7.510 

6.5.2. Data preparation 

To identify the discrepancy term of the frame structure between the known and the unknown 

conditions based on limited observation, a 3-storey model of MRE isolators under the powered off (I 

= 0A) condition as the known condition in Eq. 6-27 is considered the known physical knowledge 

used in steps i and ii of the proposed frameworks.  

In step i, the full state u ( )th  and limited observation u ( )tq  of the structure under known 

condition are required to construct the spatial feature relationship. The earthquake excitations u(t), 

including E1, E2, E3 and E4 mentioned in section 3.1 as input, with the sampling rate of 100 Hz, 

which satisfies the requirement of exceeding the maximum frequency of the frame structure twice 

ensure that the response contains the main information about its structure. They are given to the 3-

storey numerical model under the known condition (I = 0) to generate the full state 

 u 1 2 3 1 2 3( ) ; ; ; ; ; ; ;b bt x x x x x x x x=h  ; The same excitations are given to the shake table to excite the 

experimental structure under the known condition (applying consistent current I = 0). The 
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displacements of the observations are obtained from the sensors at the same sampling rate, while the 

velocities are obtained from their derivation. A limited observation is obtained by removing the 

response of the associated missing sensors in this observation. Therefore, the limited observations of 

the experimental structure at different observation positions under the known condition are 

summarised in Table 6-7. 

In step ii, limited observation  𝐪d(𝑡)  from the experimental structure under unknown 

conditions is required to reconstruct the discrepancy with the health condition. Three different 

unknown conditions are set by applying the current of the MRE isolator, I=1A, the observations are 

collected from the sensors, and the limited observations  𝐪d(𝑡)  under different conditions 

corresponding to each case are formed as summarised in Table 6-7.  

Table 6-7. Cases of missing measurement and limited observation of the 3-storey experimental 
structure. 

Cases description  limited observation 
𝐪u(𝑡)or 𝐪d(𝑡)  

Case a: Missing measurement 𝑥𝑏 , 𝑥1, �̇�𝑏, �̇�1 [𝑥2; 𝑥3; �̇�2; �̇�3] 
Case b: Missing measurement 𝑥𝑏, 𝑥2, �̇�𝑏, �̇�2 [𝑥1; 𝑥3; �̇�1; �̇�3] 
Case c: Missing measurement 𝑥𝑏 , 𝑥3, �̇�𝑏, �̇�3 [𝑥1; 𝑥2; �̇�1; �̇�2] 

6.5.3. Construction of the spatial-feature encoder  

The proposed framework constructs a spatial feature representation relation using an encoder 

network that maps the full state to a limited observation, and therefore, the limited observation can 

be directly used to identify the structural parameters in unknown conditions. In this practical 

application, the powered off (current I=0A) of the structure is a known condition, and limited 

observations 𝐪u(𝑡) of the real structure can be collected from the measurement. Under the same 

condition, the full state 𝐡u(𝑡) is generated from the numerical model. Then, the spatial feature 

encoder is trained using the structure’s full state 𝐡u(𝑡) and limited observations 𝐪u(𝑡)as input and 
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output along the time series, respectively. Therefore, the encoder network consists of a fully 

connected layer and its structure needs to match the dimensions of 𝐡u(𝑡) ∈ ℝ
8×1and 𝐪u(𝑡) ∈ ℝ

4×1. 

Table 6-8 summarises the structure of the encoder network and the corresponding training 

hyperparameters for this experimental example. Finally, 𝐡u(𝑡)and 𝐪u(𝑡)under the excitation E1 the 

datasets containing 500 data points of length 5s are used to train the spatial encoder for three different 

cases respectively. 

Table 6-8. SE network architecture for different cases and training hyper-parameters used in the 
experimental example. 

Layer Number of nodes Training hyper-parameters  
Input 8 Name Value 

Output 4 Batch size 200 
  Epoch 1000 
  Learning rate 0.001 

6.5.4. Reconstruction of the unknown discrepancy 

In the reconstructing discrepancy step, the limited observations under the unknown condition 

𝐪u(𝑡)  of the real structure and the spatial feature representation relations constructed in known 

conditions are employed to train the timing operator to reconstruct the structural discrepancy between 

the unknown and known condition. The experimental structure when the MRE base isolator is 

powered on (constant current I = 1A) is considered to be in an unknown condition, and the proposed 

approach is required to reconstruct this unknown discrepancy. The time operator is a NODE 

consisting of NN and a numerical model under the known condition; where NN represents the 

discrepancy of the whole structure, the architecture of which depends on the dimensions of the full 

state, and the numerical model under the known condition is the same as the physical knowledge used 

in step i, as shown in Eq.6-27. Table 6-9 summarises the structure and training hyperparameters of 

the NN used for the experimental examples. The𝐪d(𝑡)under the excitation E1 contains 1,000 data 
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points over 10 s, which are used to train the time operator to reconstruct the discrepancy. 

Table 6-9. The architecture of the NN network and training hyper-parameters of the experimental 
example. 

The architecture of NN  Training hyper-parameters 
Layer type Number of nodes  Name  Value 

Input 8 Batch size 200 
Layer 1 16 Epoch 10000 
Layer 2 16 Learning rate 0.00005 
Output 4   

6.5.5. Reconstructing the missing response and structural identification 

In the same manner as the numerical example, the experimental structure is treated as the 

unknown condition when the MRE isolation unit is powered on. Thus, the discrepancy term between 

the known and unknown conditions is stored in the NN, leading to the input and output of the NN 

fulfilling the relationship expressed in Eq. 6-28. 

6.5.5.1. Result: scenario of different observation locations 

The location of the observations where sensors can be placed may vary depending on the real 

situation. The performance of the proposed method for response reconstruction and structural 

parameter identification is evaluated by changing the observation locations. Under the structure’s 

unknown conditions, the reconstruction of the response of a floor equipped with MRE isolation 

devices is the main reference for evaluating the system's parameter identification performance. Thus, 

in several cases in this experimental example summarised in Table 6-7, the number of limited 

observations is half of the full state and the missing responses always contain the based floor; in cases 

a, b and c, the response is missed at the base floor & 1st floor, base floor & the 2nd floor, and at the 

base floor & the 3rd floor, respectively.  

As can be seen in Figure 6- 9(a), the time operator reconstructs the missing ground response of 
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10 s under the excitation E1 using a limited number of observations for training. Figure 6- 9(b) shows 

the MSE loss between the reconstructed signal and the true signal in cases a, b, and c. From Figure 

6- 9(b), it can be found that with the change of observation location, most of the MSE values in cases 

a, b and c are within 0-0.0001, 0-0.0002 and 0-0.00025, respectively. Moreover, when using the 

limited observation case a and b, the time operator accurately reconstructs the missed ground response 

compared to the true response. However, in the case of limited observations using case c, the 

reconstructed ground response has a larger error than the true response, the analysis of the reason can 

be found below. Figure 6- 9(c) shows the first output of the NN with the reconstructed bottom 

displacement compared to the real results, and the identified nonlinear expressions are summarized 

in Table 6-10. In this table, the errors between the identified and true parameters show that the 

maximum error for each case is 8.389%, 32.540%, 54.906%, respectively. It can be found that the 

NN accurately capture the nonlinear characteristics of the MRE model powered on in case b with less 

error using limited observations.  
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Figure 6-9. Experimental example result 1: scenario of different observation locations 

(a)reconstructed missing response of the base floor; (b) Testing MSE loss; (c) reconstructed discrepancy 
term.   

Table 6-10. Experimental example result: scenario of noisy data - Identified model 
expression𝑓𝑁𝑁(𝐡(𝑡)) . 

Case 𝑓𝑁𝑁(𝐡(𝑡))[1, : ] parameters in the discrepancy 
model  

 Identified error (%) 

  𝑘𝑏𝑥𝑏(𝑡) + 𝑐𝑏�̇�𝑏(𝑡) + 𝛼𝑥𝑏
3(𝑡) 𝑘𝑏 𝑐𝑏 𝛼 

True  bx  8.062𝑥𝑏 + 0.660�̇�𝑏 + 0.613𝑥𝑏3 - - - 
Case a bx  7.985𝑥𝑏 + 0.605�̇�𝑏 + 0.645𝑥𝑏

3 0.955 8.389 5.152 
Case b bx  7.145𝑥𝑏 + 0.459�̇�𝑏 + 0.813𝑥𝑏

3 11.374 30.497 32.540 
Case c bx  7.002𝑥𝑏 + 1.023�̇�𝑏 + 0.456𝑥𝑏

3 13.148 54.906 25.660 

Besides, to test the extensibility of the time operator, the missing responses of the 1st, 2nd and 

3rd floor in cases a, b and c were reconstructed under the excitation out of the training range, 

separately. The unseen earthquake excitations E2, E3 and E4 were given to pre-trained time operators 

of three cases, respectively, and the results are presented in Figure 6-10. Similar to the performance 

of each case in Figure 6- 9 (a), it can be seen that the reconstructed displacements in case c have some 
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shifting occurrences and oscillations compared to the true displacement, while that in case a and b is 

very close to the true displacement. Variation of timer operator performance due to different 

observations under multiple cases may be due to the fact that when the number of missed signals 

reaches half of the number of full states, and the positions between them are overly far, the spatial 

mapping relationship constructed is not accurate enough to precisely project the full state to a limited 

observation. More observation locations may be required to construct a more accurate spatial relation. 

In summary, missing responses of the experimental frame structure under unknown conditions are 

reconstructed, and structure parameters are identified based on limited observations.  

 
Figure 6-10. Experimental example result 1: scenario of different observation locations: 

reconstructed missing response of the 1st, 2nd and 3rd floor. 

6.6. Summary 
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This chapter presents a novel PhySTN architecture used for the reconstruction of missing 

response and identification parameters in the nonlinear structure under the unknown condition using 

limited observations. The PhySTN model consists of spatial encoders and NODEs that act as spatial 

feature representation relationships and time operators, respectively. The spatial feature 

representation relationship addresses the limitation that most current methods are unable to identify 

structural parameters using limited observations, and it enables the limited observation directly used 

to reconstruct the discrepancy term represented by NN.  Due to the knowledge of the structural 

physics contained in the time operator exploited to the fullest extent, enabling the neural networks 

into which this knowledge is embedded to represent nonlinear difference terms under structurally 

unknown conditions only based on limited observation. 

A numerical study using a nonlinear 5-storey building model and an experimental study using a 

3-storey framework structure are carried out to validate the performance of the proposed framework. 

The results of numerical and experimental example show that the proposed PhySTN can reconstruct 

the missing response and identify the structural parameters based on limited observations. Several 

conclusions can be made from the results:  

(i) By considering the spatial feature representation between the full state and the limited 

observations, the limited observations from the measurement can be directly used for response 

reconstruction and structural parameter identification. (ii) Time operator combined with spatial 

feature representation relations, using a limited number of observations to reconstruct the discrepancy 

terms between different states of the structure; even if the limited observations are half of the full 

state, the missing responses can be reconstructed accurately, then, accurately identifying the unknown 
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structural parameters. (iii) In the proposed approach, using limited observational data, the integration 

of structural physics knowledge with the neural network allows the parameters of the structural 

discrepancy terms to be obtained by a regression task that fits the inputs and outputs of the neural 

network, which provides the neural network with interpretability and improves its reliability.  
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Chapter 7. Conclusions and future research 

7.1. Conclusions  

This thesis presents a comprehensive exploration of advanced methods for structural condition 

assessment under practical constraints, addressing key challenges in the field. 

1. Chapter 3 proposes a transfer learning-based method leveraging frequency response 

functions (FRFs) for damage detection. By pre-training a convolutional neural network on 

simulated data and fine-tuning it with limited real measurements, this approach significantly 

improves damage localization and severity quantification. 

2. Chapter 4 introduces a joint maximum discrepancy and adversarial discriminative 

domain adaptation (JMDAD) method, enabling accurate damage detection without labeled 

target data. The approach effectively bridges domain gaps caused by modeling errors and 

environmental variations. 

3. Chapter 5 develops a parallel neural ordinary differential equations (PNODEs) 

framework, integrating physical constraints to enhance the interpretability and reliability of 

damage detection models. This method demonstrates robust performance in both numerical 

and experimental validations. 

4. Chapter 6 presents a temporal-spatial neural operator (PhySTN) framework, 

combining physical knowledge and limited observations to reconstruct structural parameters 

and responses. This innovative method effectively addresses challenges in sparse sensor data 

scenarios. 

Overall, this thesis advances structural condition assessment by integrating machine learning, 
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transfer learning, and physics-informed methodologies. The proposed frameworks enhance accuracy, 

interpretability, and robustness, offering practical solutions for real-world structural health 

monitoring challenges. 

7.2. Recommendations for future works  

Building upon the findings of this thesis, several recommendations for future research can be 

outlined: 

1. Data Challenges: Future efforts should focus on improving the quality and accessibility of 

structural health monitoring (SHM) data, especially in obtaining labeled damage datasets for diverse 

operational scenarios. Exploring synthetic data generation and advanced simulation techniques can 

also address data scarcity challenges. 

2. Scalability and Real-time Applications: While the proposed methods have demonstrated 

effectiveness on mid-rise structures and benchmark frames, their applicability to more complex or 

large-scale structures may require further adaptations. Future work could explore extending these 

frameworks to high-rise buildings, irregular structures, or infrastructure systems, incorporating 

additional physical constraints and domain adaptation techniques to enhance generalization. 

3. Interpretable Models: Enhancing the interpretability and explainability of machine learning 

methods will bridge the gap between academic research and practical engineering applications, 

fostering broader adoption in the SHM industry. 

These future directions aim to address remaining gaps and ensure the continued advancement of 

SHM methodologies. 

  



 

189 

 

Reference 

Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018) ‘1-D 
CNNs for Structural Damage Detection: Verification on a Structural Health Monitoring 
Benchmark Data’, Neurocomputing, 275, pp. 1308–1317. 
https://doi.org/10.1016/j.neucom.2017.09.069. 

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017) ‘Real-time vibration-
based structural damage detection using one-dimensional convolutional neural networks’, Journal 
of Sound and Vibration, 388, pp. 154–170. 

Akrim, A., Gogu, C., Vingerhoeds, R. and Salaün, M. (2023) ‘Self-Supervised Learning for data 
scarcity in a fatigue damage prognostic problem’, Engineering Applications of Artificial 
Intelligence, 120, p. 105837. doi: 10.1016/j.engappai.2023.105837. 

Alvin, K.F., Robertson, A.N., Reich, G.W. and Park, K.C. (2003) ‘Structural system identification: 
From reality to models’, Computers & Structures, 81(12), pp. 1149–1176. doi: 10.1016/S0045-
7949(03)00034-8. 

Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021) ‘A review 
of vibration-based damage detection in civil structures: From traditional methods to Machine 
Learning and Deep Learning applications’, Mechanical Systems and Signal Processing, 147, p. 
107077. 

Azam, S.E., Chatzi, E. and Papadimitriou, C. (2015) ‘A dual Kalman filter approach for state 
estimation via output-only acceleration measurements’, Mechanical Systems and Signal 
Processing, 60–61, pp. 866–886. https://doi.org/10.1016/j.ymssp.2015.02.001. 

Azimi, M. and Pekcan, G. (2019) ‘Structural Health Monitoring Using Extremely Compressed Data 
through Deep Learning’, Computer-Aided Civil and Infrastructure Engineering. 
https://doi.org/10.1111/mice.12517. 

Azimi, M., Eslamlou, A.D. and Pekcan, G. (2020) ‘Data-Driven Structural Health Monitoring and 
Damage Detection through Deep Learning: State-of-the-Art Review’, Sensors, 20(10), p. 2778. 

Baybordi, S. and Esfandiari, A. (2022) ‘A novel sensitivity-based finite element model updating and 
damage detection using time domain response’, Journal of Sound and Vibration, 537, p. 117187. 

Brincker, R., Olsen, P., Amador, S., Juul, M., Malekjafarian, A. and Ashory, M. (2019) ‘Modal 
participation in multiple input Ibrahim time domain identification’, Mathematics and Mechanics 
of Solids, 24(1), pp. 168–180. doi: 10.1177/1081286517733034. 

Butcher, J. (2016) Numerical Methods for Ordinary Differential Equations. p. 513. doi: 
10.1002/9781119121534. 

Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R.S., Constant, N., Guajardo-Cespedes, M., 
Yuan, S., Tar, C., Sung, Y.H., Strope, B. and Kurzweil, R. (2018) ‘Universal Sentence Encoder 
(1773 citation(s); No. arXiv:1803.11175)’, arXiv. Available at: http://arxiv.org/abs/1803.11175. 

Cha, Y.J., Ali, R., Lewis, J. and Büyükӧztürk, O. (2024) ‘Deep learning-based structural health 
monitoring’, Automation in Construction, 161, p. 105328. doi: 10.1016/j.autcon.2024.105328 

Chen, H. and Ni, Y. (2018) Structural Health Monitoring of Large Civil Engineering Structures. 1st 
edn. Wiley. doi: 10.1002/9781119166641. 



 

190 

 

Chen, R.T.Q., Rubanova, Y., Bettencourt, J. and Duvenaud, D.K. (2018) ‘Neural Ordinary 
Differential Equations’, in Advances in Neural Information Processing Systems, 31. Available at: 
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-
Abstract.html. 

Chen, W.H., Lu, Z.R., Lin, W., Chen, S.H., Ni, Y.Q., Xia, Y. and Liao, W.Y. (2011) ‘Theoretical and 
experimental modal analysis of the Guangzhou New TV Tower’, Engineering Structures, 33(12), 
pp. 3628–3646. 

Chen, Z., Wang, C., Wu, J., Deng, C. and Wang, Y. (2023) ‘Deep convolutional transfer learning-
based structural damage detection with domain adaptation’, Applied Intelligence, 53, pp. 5085–
5099. doi: 10.1007/s10489-022-03713-y. 

Chen, Z., Zhang, J., Arjovsky, M. and Bottou, L. (2019) ‘Symplectic Recurrent Neural Networks’, 
arXiv. Available at: https://arxiv.org/abs/1909.13334v2. 

Chesné, S. and Deraemaeker, A. (2013) ‘Damage localization using transmissibility functions: A 
critical review’, Mechanical Systems and Signal Processing, 38(2), pp. 569–584. 

Christensen, R.M. (2003) Theory of viscoelasticity. 2nd edn. Dover Publications. 
Cooijmans, T., Ballas, N., Laurent, C., Gülçehre, Ç. and Courville, A. (2016) ‘Recurrent Batch 

Normalization’, in International Conference on Learning Representations. 
Correa, J.C.A.J. (2014) Parameter identification and monitoring of mechanical systems under 

nonlinear vibration. Elsevier Science. Available at: 
https://books.google.com.au/books?id=m9FzAwAAQBAJ. 

Cremona, C.F. and Brandon, J.A. (1992) ‘On recursive forms of damped complex exponential 
methods’, Mechanical Systems and Signal Processing, 6(3), pp. 261–274. doi: 10.1016/0888-
3270(92)90029-I. 

Cunha, A. and Caetano, E. (2006) ‘Experimental Modal Analysis of Civil Engineering Structures’, 
Sound and Vibration, 40. 

Cury, A. and Crémona, C. (2012) ‘Pattern recognition of structural behaviors based on learning 
algorithms and symbolic data concepts’, Structural Control and Health Monitoring, 19(2), pp. 
161–186. doi: 10.1002/stc.412. 

Ding, Z., Li, J. and Hao, H. (2020) ‘Non-probabilistic method to consider uncertainties in structural 
damage identification based on Hybrid Jaya and Tree Seeds Algorithm’, Engineering Structures, 
220, p. 110925. doi: 10.1016/j.engstruct.2020.110925. 

Doebling, S.W., Farrar, C., Prime, M. and Shevitz, D.W. (1996) Damage Identification and Health 
Monitoring of Structural and Mechanical Systems From Changes in Their Vibration 
Characteristics: A Literature Review. Technical Report No. LA-13070-MS, 30. Available at: 
https://doi.org/10.2172/249299. 

Dupont, E., Doucet, A. and Teh, Y.W. (2019) ‘Augmented Neural ODEs’, arXiv. Available at: 
https://arxiv.org/abs/1904.01681v3. 

Dyke, S.J., Bernal, D., Beck, J. and Ventura, C. (2003) ‘Experimental phase II of the structural health 
monitoring benchmark problem’, in Proceedings of the 16th ASCE Engineering Conference, pp. 
1–7. 



 

191 

 

Ebrahimian, H., Astroza, R., Conte, J.P. and Papadimitriou, C. (2018) ‘Bayesian optimal estimation 
for output-only nonlinear system and damage identification of civil structures’, Structural Control 
and Health Monitoring, 25(4), p. e2128. doi: 10.1002/stc.2128. 

Edna, T., Li, Y., Sam, N. and Liu, Y. (2018) ‘A Comparative Study of Fine-Tuning Deep Learning 
Models for Plant Disease Identification’, Computers and Electronics in Agriculture, 161. 
https://doi.org/10.1016/j.compag.2018.03.032. 

Fan, W. and Qiao, P.Z. (2011) ‘Vibration-Based Damage Identification Methods: A Review and 
Comparative Study’, Structural Health Monitoring, 10(1), pp. 83–111. 
https://doi.org/10.1177/1475921710365419. 

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M. and 
Lempitsky, V. (2016) ‘Domain-adversarial training of neural networks’, The Journal of Machine 
Learning Research, 17(1), pp. 2096–2030. 

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M. and 
Lempitsky, V. (2017) ‘Domain-Adversarial Training of Neural Networks’, in Csurka, G. (ed.) 
Domain Adaptation in Computer Vision Applications. Cham: Springer International Publishing, 
pp. 189–209. https://doi.org/10.1007/978-3-319-58347-1_10. 

Gao, Y. and Mosalam, K.M. (2018) ‘Deep Transfer Learning for Image-Based Structural Damage 
Recognition’, Computer-Aided Civil and Infrastructure Engineering, 33(9), pp. 748–768. 
https://doi.org/10.1111/mice.12363. 

Gardner, P., Bull, L.A., Gosliga, J., Dervilis, N. and Worden, K. (2021) ‘Foundations of population-
based SHM, Part III: Heterogeneous populations – Mapping and transfer’, Mechanical Systems 
and Signal Processing, 149, p. 107142. 

Gardner, P., Liu, X. and Worden, K. (2020) ‘On the application of domain adaptation in structural 
health monitoring’, Mechanical Systems and Signal Processing, 138, p. 106550. 

GB 50009-2001 (2002) Load Code for the Design of Building Structures. 
George Em Karniadakis 1,2 ✉ (n.d.) Physics-informed machine learning. 
Ghahari, S.F., Abazarsa, F. and Taciroglu, E. (2017) ‘Blind modal identification of non-classically 

damped structures under non-stationary excitations: ID of non-Classically Damped Systems 
Under non-Stationary Excitations’, Structural Control and Health Monitoring, 24(6), p. e1925. 
https://doi.org/10.1002/stc.1925. 

Ghorbani, E., Buyukozturk, O. and Cha, Y.-J. (2020) ‘Hybrid output-only structural system 
identification using random decrement and Kalman filter’, Mechanical Systems and Signal 
Processing, 144, p. 106977. https://doi.org/10.1016/j.ymssp.2020.106977. 

Goi, Y. and Kim, C.-W. (2017) ‘Damage detection of a truss bridge utilizing a damage indicator from 
multivariate autoregressive model’, Journal of Civil Structural Health Monitoring, 7(2), pp. 153–
162. https://doi.org/10.1007/s13349-017-0222-y. 

Gu, X., Yu, Y., Li, J. and Li, Y. (2017) ‘Semi-active control of magnetorheological elastomer base 
isolation system utilising learning-based inverse model’, Journal of Sound and Vibration, 406, pp. 
346–362. https://doi.org/10.1016/j.jsv.2017.06.023. 

Gul, M. and Catbas, F.N. (2008) ‘Ambient vibration data analysis for structural identification and 
global condition assessment’, Journal of Engineering Mechanics, 134(8), pp. 650–662. 
https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(650). 



 

192 

 

Hairer, E. and Wanner, G. (1996) ‘Solving Ordinary Differential Equations II. Stiff and Differential-
Algebraic Problems’, Springer Verlag Series in Comput. Math., 14. https://doi.org/10.1007/978-
3-662-09947-6. 

Han, Q., Pan, Y., Yang, D. and Xu, Y. (2022) ‘CNN-Based Bolt Loosening Identification Framework 
for Prefabricated Large-Span Spatial Structures’, Journal of Civil Structural Health Monitoring, 
12(3), pp. 517–536. https://doi.org/10.1007/s13349-022-00561-9. 

Hao, J., Zhu, X., Yu, Y., Zhang, C. and Li, J. (2022) ‘Damage localization and quantification of a truss 
bridge using PCA and convolutional neural network’, Smart Structures and Systems, 30(6), pp. 
678–686. 

Hong, X., Zheng, Q., Liu, L., Chen, P., Ma, K., Gao, Z. and Zheng, Y. (2021) ‘Dynamic Joint Domain 
Adaptation Network for Motor Imagery Classification’, IEEE Transactions on Neural Systems 
and Rehabilitation Engineering, 29, pp. 556–565. 

Hou, R. and Xia, Y. (2021) ‘Review on the new development of vibration-based damage identification 
for civil engineering structures: 2010–2019’, Journal of Sound and Vibration, 491, p. 115741. 
https://doi.org/10/ghr3vh. 

Hou, R., Xia, Y., Bao, Y. and Zhou, X. (2018) ‘Selection of regularization parameter for l1-regularized 
damage detection’, Journal of Sound and Vibration, 423, pp. 141–160. 

Hou, R., Xia, Y., Zhou, X. and Huang, Y. (2019) ‘Sparse Bayesian learning for structural damage 
detection using expectation–maximization technique’, Structural Control and Health Monitoring, 
26(5), p. e2343. https://doi.org/10.1002/stc.2343. 

Hua, X.G., Xu, K., Wang, Y.W., Wen, Q. and Chen, Z.Q. (2020) ‘Wind-induced responses and 
dynamic characteristics of a super-tall building under a typhoon event’, Smart Structures and 
Systems, 25(1), pp. 81–96. 

Huang, Y., Beck, J.L. and Li, H. (2017) ‘Bayesian system identification based on hierarchical sparse 
Bayesian learning and Gibbs sampling with application to structural damage assessment’, 
Computer Methods in Applied Mechanics and Engineering, 318, pp. 382–411. 
https://doi.org/10.1016/j.cma.2017.01.030. 

Jiao, J., Lin, J., Zhao, M. and Liang, K. (2020) ‘Double-level adversarial domain adaptation network 
for intelligent fault diagnosis’, Knowledge-Based Systems, 205, p. 106236. 

Jin, Z., Teng, S., Zhang, J., Chen, G. and Cui, F. (2022) ‘Structural Damage Recognition Based on 
Filtered Feature Selection and Convolutional Neural Network’, International Journal of Structural 
Stability and Dynamics, 22(12), p. 2250134. 

Johnson, E.A. (2003) ‘Phase I IASC-ASCE structural health monitoring benchmark problem using 
simulated data’, Journal of Engineering Mechanics ASCE, 130(1), pp. 3–15. 

Kandel, I. and Castelli, M. (2020) ‘Transfer Learning with Convolutional Neural Networks for 
Diabetic Retinopathy Image Classification. A Review’, Applied Sciences, 10(6), p. 2021. 
https://doi.org/10.3390/app10062021. 

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S.F. and Yang, L. (2021) ‘Physics-
informed machine learning’, Nature Review Physics, 3, pp. 422–440. 

Karpatne, A., Atluri, G., Faghmous, J., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., 
Samatova, N. and Kumar, V. (2017) ‘Theory-Guided Data Science: A New Paradigm for Scientific 



 

193 

 

Discovery from Data’, IEEE Transactions on Knowledge and Data Engineering, 29(10), pp. 
2318–2331. 

Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.-C. (2006) ‘Past, present and future of 
nonlinear system identification in structural dynamics’, Mechanical Systems and Signal 
Processing, 20(3), pp. 505–592. https://doi.org/10.1016/j.ymssp.2005.04.008. 

Kingma, D. and Ba, J. (2014) ‘Adam: A Method for Stochastic Optimization’, arXiv. Available at: 
https://arxiv.org/abs/1412.6980. 

Kontolati, K., Goswami, S., Em Karniadakis, G. and Shields, M.D. (2024) ‘Learning nonlinear 
operators in latent spaces for real-time predictions of complex dynamics in physical systems’, 
Nature Communications, 15(1), p. 5101. https://doi.org/10.1038/s41467-024-49411-w. 

Kostic, B. and Gül, M. (2017) ‘Vibration-based damage detection of bridges under varying 
temperature effects using time-series analysis and artificial neural network’, Journal of Bridge 
Engineering, 22(10), p. 04017065. 

Krikelis, K., Pei, J.-S., Van Berkel, K. and Schoukens, M. (2024) ‘Identification of structured 
nonlinear state–space models for hysteretic systems using neural network hysteresis operators’, 
Measurement, 224, p. 113966. https://doi.org/10.1016/j.measurement.2023.113966. 

Krishnan Nair, K. and Kiremidjian, A.S. (2007) ‘Time Series Based Structural Damage Detection 
Algorithm Using Gaussian Mixtures Modeling’, Journal of Dynamic Systems, Measurement, and 
Control, 129(3), pp. 285–293. https://doi.org/10.1115/1.2718241. 

Lai, Z. and Nagarajaiah, S. (2019) ‘Sparse structural system identification method for nonlinear 
dynamic systems with hysteresis/inelastic behavior’, Mechanical Systems and Signal Processing, 
117, pp. 813–842. https://doi.org/10/gnnzpr. 

Lei, Y., Li, J. and Hao, H. (2024) ‘Physics-guided deep learning based on modal sensitivity for 
structural damage identification with unseen damage patterns’, Engineering Structures, 316, p. 
118510. 

Li, H., Wang, T., Yang, J.P. and Wang, G. (2023) ‘Deep Learning Models for Time-History Prediction 
of Vehicle-Induced Bridge Responses: A Comparative Study’, International Journal of Structural 
Stability and Dynamics, 23(1), p. 2350004. 

Li, H.-W., Ni, Y.-Q., Wang, Y.-W., Chen, Z.-W., Rui, E.-Z. and Xu, Z.-D. (2024) ‘Modeling of Forced-
Vibration Systems Using Continuous-Time State-Space Neural Network’, Engineering Structures, 
302, p. 117329. https://doi.org/10.1016/j.engstruct.2023.117329. 

Li, S., Cao, Y., Gdoutos, E.E., Tao, M., Faisal Alkayem, N., Avci, O. and Cao, M. (2024) ‘Intelligent 
framework for unsupervised damage detection in bridges using deep convolutional autoencoder 
with wavelet transmissibility pattern spectra’, Mechanical Systems and Signal Processing, 220, p. 
111653. https://doi.org/10.1016/j.ymssp.2024.111653. 

Li, S., Liu, C.H., Xie, B., Su, L., Ding, Z. and Huang, G. (2019) ‘Joint Adversarial Domain 
Adaptation’, in Proceedings of the 27th ACM International Conference on Multimedia, pp. 729–
737. 

Li, Y., Li, J., Tian, T. and Li, W. (2013) ‘A Highly Adjustable Magnetorheological Elastomer Base 
Isolator for Applications of Real-Time Adaptive Control’, Smart Materials and Structures, 22(9), 
p. 095020. https://doi.org/10.1088/0964-1726/22/9/095020. 



 

194 

 

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu, B., Azizzadenesheli, K. and Anandkumar, A. 
(2024) ‘Physics-Informed Neural Operator for Learning Partial Differential Equations’, ACM / 
IMS Journal of Data Science, 1(3), pp. 1–27. https://doi.org/10.1145/3648506. 

Li, Z.-D., He, W.-Y., Ren, W.-X., Li, Y.-L., Li, Y.-F. and Cheng, H.-C. (2023) ‘Damage detection of 
bridges subjected to moving load based on domain-adversarial neural network considering 
measurement and model error’, Engineering Structures, 293, p. 116601. 

Limongelli, M.P. (2010) ‘Frequency response function interpolation for damage detection under 
changing environment’, Mechanical Systems and Signal Processing, 24(8), pp. 2898–2913. 
https://doi.org/10.1016/j.ymssp.2010.03.004. 

Limongelli, M.P., Siegert, D., Merliot, E., Waeytens, J., Bourquin, F., Vidal, R., Le Corvec, V., 
Gueguen, I. and Cottineau, L.M. (2016) ‘Damage detection in a post tensioned concrete beam – 
Experimental investigation’, Engineering Structures, 128, pp. 15–25. 
https://doi.org/10.1016/j.engstruct.2016.09.017. 

Lin, R. and Xia, Y. (2003) ‘A new eigensolution of structures via dynamic condensation’, Journal of 
Sound and Vibration, 266, pp. 93–106. 

Lin, Y., Nie, Z. and Ma, H. (2017) ‘Structural Damage Detection with Automatic Feature‐Extraction 
through Deep Learning’, Computer‐Aided Civil and Infrastructure Engineering, 32(12), pp. 
1025–1046. https://doi.org/10.1111/mice.12313. 

Lin, Y., Nie, Z. and Ma, H. (2022) ‘Dynamics‐based cross‐domain structural damage detection 
through deep transfer learning’, Computer-Aided Civil and Infrastructure Engineering, 37(1), pp. 
24–54. https://doi.org/10.1111/mice.12692. 

Lin, Y.Z., Nie, Z.H. and Ma, H.W. (2017) ‘Structural damage detection with automatic feature‐
extraction through deep learning’, Computer‐Aided Civil and Infrastructure Engineering, 32(12), 
pp. 1025–1046. 

Liu, D., Tang, Z., Bao, Y. and Li, H. (2021) ‘Machine‐learning‐based methods for output‐only 
structural modal identification’, Structural Control and Health Monitoring, 28(12), p. e2843. 

Liu, L.J., Zhang, X. and Lei, Y. (2023) ‘Data-Driven Identification of Structural Damage under 
Unknown Seismic Excitations Using the Energy Integrals of Strain Signals Transformed from 
Transmissibility Functions’, Journal of Sound and Vibration, 546, p. 117490. 

Liu, W., Lai, Z., Bacsa, K. and Chatzi, E. (2024) ‘Neural Extended Kalman Filters for Learning and 
Predicting Dynamics of Structural Systems’, Structural Health Monitoring, 23(2), pp. 1037–1052. 

Liu, W., Sicard, B. and Gadsden, S.A. (2024) ‘Physics-Informed Machine Learning: A 
Comprehensive Review on Applications in Anomaly Detection and Condition Monitoring’, 
Expert Systems with Applications, 255, p. 124678. 

Liu, Y., Li, L. and Chang, Z. (2023) ‘Efficient Bayesian Model Updating for Dynamic Systems’, 
Reliability Engineering & System Safety, 236, p. 109294. 

Ljung, L. (2010) ‘Perspectives on System Identification’, Annual Reviews in Control, 34(1), pp. 1–
12. 

Lu, L., Jin, P. and Karniadakis, G.E. (2021) ‘DeepONet: Learning Nonlinear Operators for Identifying 
Differential Equations Based on the Universal Approximation Theorem of Operators’, Nature 
Machine Intelligence, 3(3), pp. 218–229. https://doi.org/10.1038/s42256-021-00302-5. 



 

195 

 

Lu, L., Pestourie, R., Johnson, S.G. and Romano, G. (2022) ‘Multifidelity Deep Neural Operators for 
Efficient Learning of Partial Differential Equations with Application to Fast Inverse Design of 
Nanoscale Heat Transport’, Physical Review Research, 4(2), p. 023210. 
https://doi.org/10.1103/PhysRevResearch.4.023210. 

Lu, Y., Tang, L., Chen, C., Zhou, L., Liu, Z., Liu, Y., Jiang, Z. and Yang, B. (2023) ‘Reconstruction 
of Structural Long-Term Acceleration Response Based on BiLSTM Networks’, Engineering 
Structures, 285, p. 116000. https://doi.org/10.1016/j.engstruct.2023.116000. 

Lu, Y., Tang, L., Chen, C., Zhou, L., Liu, Z., Liu, Y., Jiang, Z. and Yang, B. (2024) ‘Unsupervised 
Structural Damage Assessment Method Based on Response Correlations’, Engineering Structures, 
302, p. 117413. https://doi.org/10/gtw37z. 

Manoach, E., Warminski, J., Kloda, L. and Teter, A. (2017) ‘Numerical and experimental studies on 
vibration based methods for detection of damage in composite beams’, Composite Structures, 170, 
pp. 26–39. 

Marin, L., Döhler, M., Bernal, D. and Mevel, L. (2015) ‘Robust Statistical Damage Localization with 
Stochastic Load Vectors’, Structural Control and Health Monitoring, 22(3), pp. 557–573. 
https://doi.org/10.1002/stc.1686. 

Mei, L.-F., Yan, W.-J., Yuen, K.-V. and Beer, M. (2025) ‘Streaming Variational Inference-Empowered 
Bayesian Nonparametric Clustering for Online Structural Damage Detection with 
Transmissibility Function’, Mechanical Systems and Signal Processing, 222, p. 111767. 

Meng, X., Li, Z., Zhang, D. and Karniadakis, G.E. (2020) ‘PPINN: Parareal Physics-Informed Neural 
Network for Time-Dependent PDEs’, Computer Methods in Applied Mechanics and Engineering, 
370, p. 113250. 

Meruane, V. and Heylen, W. (2012) ‘Structural Damage Assessment under Varying Temperature 
Conditions’, Structural Health Monitoring, 11, pp. 345–357. 

Mishra, P. and Passos, D. (2021) ‘Realizing Transfer Learning for Updating Deep Learning Models 
of Spectral Data to Be Used in a New Scenario’, Chemometrics and Intelligent Laboratory 
Systems, p. 104283. https://doi.org/10.1016/j.chemolab.2021.104283. 

Mishra, P. and Passos, D. (2021) ‘Realizing Transfer Learning for Updating Deep Learning Models 
of Spectral Data to Be Used in a New Scenario’, Chemometrics and Intelligent Laboratory 
Systems, p. 104283. https://doi.org/10.1016/j.chemolab.2021.104283. 

Mottershead, J.E. and Friswell, M.I. (1993) ‘Model Updating in Structural Dynamics: A Survey’, 
Journal of Sound and Vibration, 167(2), pp. 347–375. https://doi.org/10.1006/jsvi.1993.1340. 

Moughty, J.J. and Casas, J.R. (2017) ‘A State of the Art Review of Modal-Based Damage Detection 
in Bridges: Development, Challenges, and Solutions’, Applied Sciences, 7(5), p. 510. 
https://doi.org/10.3390/app7050510. 

Nair, V. and Hinton, G.E. (2010) ‘Rectified Linear Units Improve Restricted Boltzmann Machines’, 
in International Conference on Machine Learning, pp. 807–814. 

Nayeri, R.D., Masri, S.F., Ghanem, R.G. and Nigbor, R.L. (2008) ‘A Novel Approach for the 
Structural Identification and Monitoring of a Full-Scale 17-Story Building Based on Ambient 
Vibration Measurements’, Smart Materials and Structures, 17(2), p. 025006. 



 

196 

 

Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009) ‘Technology Innovation in Developing the 
Structural Health Monitoring System for Guangzhou New TV Tower’, Structural Control and 
Health Monitoring, 16(1), pp. 73–98. 

Ni, Y.Q., Xia, Y., Lin, W., Chen, W.H. and Ko, J.M. (2012) ‘SHM Benchmark for High-Rise 
Structures: A Reduced-Order Finite Element Model and Field Measurement Data’, Smart 
Structures and Systems, 10(4–5), pp. 411–426. 

Nyquist, H. (1928) ‘Certain topics in telegraph transmission theory’, Transactions of the American 
Institute of Electrical Engineers, 47(2), pp. 617–644. https://doi.org/10.1109/T-
AIEE.1928.5055024. 

Paduart, J., Lauwers, L., Swevers, J., Smolders, K., Schoukens, J. and Pintelon, R. (2010) 
‘Identification of Nonlinear Systems Using Polynomial Nonlinear State Space Models’, 
Automatica, 46(4), pp. 647–656. https://doi.org/10.1016/j.automatica.2010.01.001. 

Park, S.-K. and Noh, H.Y. (2017) ‘Updating Structural Parameters with Spatially Incomplete 
Measurements Using Subspace System Identification’, Journal of Engineering Mechanics, 143(7), 
p. 04017040. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001226. 

Pathirage, C.S.N., Li, J., Li, L., Hao, H., Liu, W. and Ni, P. (2018) ‘Structural Damage Identification 
Based on Autoencoder Neural Networks and Deep Learning’, Engineering Structures, 172, pp. 
13–28. 

Pedram, M., Esfandiari, A. and Khedmati, M.R. (2017) ‘Damage Detection by a FE Model Updating 
Method Using Power Spectral Density: Numerical and Experimental Investigation’, Journal of 
Sound and Vibration, 397, pp. 51–76. https://doi.org/10.1016/j.jsv.2017.02.052. 

Peeters, B. and De Roeck, G. (2001) ‘One-Year Monitoring of the Z24-Bridge: Environmental Effects 
Versus Damage Events’, Earthquake Engineering & Structural Dynamics, 30(2), pp. 149–171. 
https://doi.org/10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z. 

Peeters, M., Kerschen, G. and Golinval, J.C. (2011) ‘Dynamic Testing of Nonlinear Vibrating 
Structures Using Nonlinear Normal Modes’, Journal of Sound and Vibration, 330(3), pp. 486–
509. https://doi.org/10.1016/j.jsv.2010.08.028. 

Peng, Z., Li, J. and Hao, H. (2022) ‘Structural Damage Detection via Phase Space Based Manifold 
Learning under Changing Environmental and Operational Conditions’, Engineering Structures, 
263, p. 114420. 

Raissi, M. and Karniadakis, G.E. (2018) ‘Hidden Physics Models: Machine Learning of Nonlinear 
Partial Differential Equations’, Journal of Computational Physics, 357, pp. 125–141. 

Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019) ‘Physics-Informed Neural Networks: A Deep 
Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial 
Differential Equations’, Journal of Computational Physics, 378, pp. 686–707. 
https://doi.org/10/gfzbvx. 

Ren, W.-X. and De Roeck, G. (2002) ‘Structural Damage Identification Using Modal Data. I: 
Simulation Verification’, Journal of Structural Engineering, 128(1), pp. 87–95. 
https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(87). 

Reynders, E. and De Roeck, G. (2008) ‘Reference-Based Combined Deterministic–Stochastic 
Subspace Identification for Experimental and Operational Modal Analysis’, Mechanical Systems 
and Signal Processing, 22(3), pp. 617–637. https://doi.org/10.1016/j.ymssp.2007.09.004. 



 

197 

 

Reynders, E., Teughels, A. and De Roeck, G. (2010) ‘Finite Element Model Updating and Structural 
Damage Identification Using OMAX Data’, Mechanical Systems and Signal Processing, 24(5), 
pp. 1306–1323. https://doi.org/10.1016/j.ymssp.2010.03.014. 

Rytter, A., Brincker, R. and Hansen, L.P. (1993) ‘Vibration Based Inspection of Civil Engineering 
Structures’, [Technical Report], Aalborg University, Denmark. 

Sadeghi Eshkevari, S., Takáč, M., Pakzad, S.N. and Jahani, M. (2021) ‘DynNet: Physics-Based 
Neural Architecture Design for Nonlinear Structural Response Modeling and Prediction’, 
Engineering Structures, 229, p. 111582. https://doi.org/10.1016/j.engstruct.2020.111582. 

Sadeghzadeh, S. and Khatibi, M.M. (2017) ‘Modal Identification of Single Layer Graphene Nano 
Sheets from Ambient Responses Using Frequency Domain Decomposition’, European Journal of 
Mechanics - A/Solids, 65, pp. 70–78. https://doi.org/10.1016/j.euromechsol.2017.03.009. 

Saito, K., Watanabe, Y., Ushiku, Y. and Harada, T. (2018) ‘Maximum Classifier Discrepancy for 
Unsupervised Domain Adaptation’, in Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 3723–3732. 

Shiki, S.B., Da Silva, S. and Todd, M.D. (2017) ‘On the Application of Discrete-Time Volterra Series 
for the Damage Detection Problem in Initially Nonlinear Systems’, Structural Health Monitoring, 
16(1), pp. 62–78. https://doi.org/10.1177/1475921716662142. 

Shukla, K., Jagtap, A.D. and Karniadakis, G.E. (2021) ‘Parallel Physics-Informed Neural Networks 
via Domain Decomposition’, Journal of Computational Physics, 447, p. 110683. 

Silva, M., Santos, A., Figueiredo, E., Santos, R., Sales, C. and Costa, J.C.W.A. (2016) ‘A Novel 
Unsupervised Approach Based on a Genetic Algorithm for Structural Damage Detection in 
Bridges’, Engineering Applications of Artificial Intelligence, 52, pp. 168–180. 
https://doi.org/10.1016/j.engappai.2016.03.002. 

Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021) ‘A Systematic Review of Convolutional 
Neural Network-Based Structural Condition Assessment Techniques’, Engineering Structures, 
226, p. 111347. https://doi.org/10.1016/j.engstruct.2020.111347. 

Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020) ‘Review of Bridge Structural 
Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to 
Damage Detection’, Journal of Structural Engineering ASCE, 146(5), p. 0002535. 

Thai, H.-T. (2022) ‘Machine Learning for Structural Engineering: A State-of-the-Art Review’, 
Structures, 38, pp. 448–491. https://doi.org/10.1016/j.istruc.2022.02.003. 

Tzeng, E., Hoffman, J., Saenko, K. and Darrell, T. (2017) ‘Adversarial Discriminative Domain 
Adaptation’, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 7167–7176. 

Wang, M. and Deng, W. (2018) ‘Deep Visual Domain Adaptation: A Survey’, Neurocomputing, 312, 
pp. 135–153. https://doi.org/10.1016/j.neucom.2018.05.083. 

Wang, R.H., Chencho, An, S.J., Li, J., Li, L., Hao, H. and Liu, W.Q. (2020) ‘Deep Residual Network 
Framework for Structural Health Monitoring’, Structural Health Monitoring, 20(4), pp. 1443–
1461. 

Wang, X. and Xia, Y. (2022) ‘Knowledge Transfer for Structural Damage Detection through Re-
Weighted Adversarial Domain Adaptation’, Mechanical Systems and Signal Processing, 172, p. 
108991. https://doi.org/10.1016/j.ymssp.2022.108991. 



 

198 

 

Wei Fan and Qiao, P.Z. (2011) ‘Vibration-Based Damage Identification Methods: A Review and 
Comparative Study’, Structural Health Monitoring, 10(1), pp. 83–111. 
https://doi.org/10.1177/1475921710365419. 

Worden, K., Farrar, C.R., Haywood, J. and Todd, M. (2008) ‘A Review of Nonlinear Dynamics 
Applications to Structural Health Monitoring’, Structural Control and Health Monitoring, 15(4), 
pp. 540–567. https://doi.org/10.1002/stc.215. 

Xia, Y., Wang, X. (2022) ‘Knowledge Transfer for Structural Damage Detection through Re-
Weighted Adversarial Domain Adaptation’, Mechanical Systems and Signal Processing, 172, p. 
108991. (If duplicated, merge with Wang, X. and Xia, Y. (2022) entry.) 

Xie, X. Yin, W. Yan, Y. Liu, Y. Zhou and L. Li (2023) ‘Structural Damage Detection Based on 
Improved Sensitivity Function of Modal Flexibility and Iterative Reweighted l1 Regularization’, 
International Journal of Structural Stability and Dynamics. 
https://doi.org/10.1142/S0219455424501116. 

Xu, S. and Noh, H.Y. (2021) ‘PhyMDAN: Physics-Informed Knowledge Transfer between Buildings 
for Seismic Damage Diagnosis through Adversarial Learning’, Mechanical Systems and Signal 
Processing, 151, p. 107374. 

Yaghoubi, V., Rahrovani, S., Nahvi, H. and Marelli, S. (2018) ‘Reduced Order Surrogate Modeling 
Technique for Linear Dynamic Systems’, Mechanical Systems and Signal Processing, 111, pp. 
172–193. https://doi.org/10.1016/j.ymssp.2018.02.020. 

Yan, W.J., Zhao, M.Y., Sun, Q. and Ren, W.X. (2019) ‘Transmissibility-Based System Identification 
for Structural Health Monitoring: Fundamentals, Approaches and Applications’, Mechanical 
Systems and Signal Processing, 117, pp. 453–482. 

Yang, J., Du, H., Li, W., Li, Y., Li, J., Sun, S. and Deng, H.X. (2013) ‘Experimental Study and 
Modeling of a Novel Magnetorheological Elastomer Isolator’, Smart Materials and Structures, 
22(11), p. 117001. https://doi.org/10.1088/0964-1726/22/11/117001. 

Yang, Y. and Nagarajaiah, S. (2014) ‘Blind Identification of Damage in Time-Varying Systems Using 
Independent Component Analysis with Wavelet Transform’, Mechanical Systems and Signal 
Processing, 47(1–2), pp. 3–20. https://doi.org/10.1016/j.ymssp.2012.08.029. 

Yano, M.O., Figueiredo, E., Da Silva, S. and Cury, A. (2023) ‘Foundations and Applicability of 
Transfer Learning for Structural Health Monitoring of Bridges’, Mechanical Systems and Signal 
Processing, 204, p. 110766. 

Ye, X.W., Jin, T. and Yun, C. (2019) ‘A Review on Deep Learning-Based Structural Health 
Monitoring of Civil Infrastructures’, Smart Structures and Systems, 24(5), pp. 567–585. 
https://doi.org/10.12989/sss.2019.24.5.567. 

Yeung, W.T. and Smith, J.W. (2005) ‘Damage Detection in Bridges Using Neural Networks for 
Pattern Recognition of Vibration Signatures’, Engineering Structures, 27(5), pp. 685–698. 
https://doi.org/10.1016/j.engstruct.2004.12.006. 

Yin, X., Huang, Z. and Liu, Y. (2023) ‘Bridge Damage Identification under the Moving Vehicle Loads 
Based on the Method of Physics-Guided Deep Neural Networks’, Mechanical Systems and Signal 
Processing, 190, p. 110123. https://doi.org/10.1016/j.ymssp.2023.110123. 

Yu, Y., Hoshyar, A.N., Samali, B., Zhang, G., Rashidi, M. and Mohammadi, M. (2023b) ‘Corrosion 
and Coating Defect Assessment of Coal Handling and Preparation Plants (CHPP) Using an 



 

199 

 

Ensemble of Deep Convolutional Neural Networks and Decision-Level Data Fusion’, Neural 
Computing and Applications, 35(25), pp. 18697–18718. https://doi.org/10.1007/s00521-023-
08699-3. 

Yu, Y., Li, J., Li, J., Xia, Y., Ding, Z. and Samali, B. (2023) ‘Automated Damage Diagnosis of 
Concrete Jack Arch Beam Using Optimized Deep Stacked Autoencoders and Multi-Sensor 
Fusion’, Developments in the Built Environment, 14, p. 100128. 
https://doi.org/10.1016/j.dibe.2023.100128. 

Yu, Y., Samali, B., Rashidi, M., Mohammadi, M., Nguyen, T.N. and Zhang, G. (2022) ‘Vision-Based 
Concrete Crack Detection Using a Hybrid Framework Considering Noise Effect’, Journal of 
Building Engineering, 61, p. 105246. https://doi.org/10.1016/j.jobe.2022.105246. 

Yu, Y., Wang, C.Y., Gu, X.Y. and Li, J.C. (2019) ‘A Novel Deep Learning-Based Method for Damage 
Identification of Smart Building Structures’, Structural Health Monitoring, 18(1), pp. 143–163. 

Yu, Y., Yao, H. and Liu, Y. (2020) ‘Structural Dynamics Simulation Using a Novel Physics-Guided 
Machine Learning Method’, Engineering Applications of Artificial Intelligence, 96, p. 103947. 
https://doi.org/10.1016/j.engappai.2020.103947. 

Zhan, C., Li, D. and Li, H. (2014) ‘A Local Damage Detection Approach Based on Restoring Force 
Method’, Journal of Sound and Vibration, 333(20), pp. 4942–4959. 
https://doi.org/10.1016/j.jsv.2014.04.043. 

Zhang, K., Zhang, Y. and Cheng, H.D. (2020) ‘Self-Supervised Structure Learning for Crack 
Detection Based on Cycle-Consistent Generative Adversarial Networks’, Journal of Computing 
in Civil Engineering, 34(3), p. 04020004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000883. 

Zhang, R., Liu, Y. and Sun, H. (2020) ‘Physics-Guided Convolutional Neural Network (PhyCNN) 
for Data-Driven Seismic Response Modeling’, Engineering Structures, 215, p. 110704. 
https://doi.org/10.1016/j.engstruct.2020.110704. 

Zhang, Z., Sun, C. and Guo, B. (2022) ‘Transfer-Learning Guided Bayesian Model Updating for 
Damage Identification Considering Modelling Uncertainty’, Mechanical Systems and Signal 
Processing, 166, p. 108426. 

Zhao, Z.B., Zhang, Q.Y., Yu, X.L., Sun, C., Wang, S.B., Yan, R.Q. and Chen, X.F. (2021) 
‘Applications of Unsupervised Deep Transfer Learning to Intelligent Fault Diagnosis: A Survey 
and Comparative Study’, IEEE Transactions on Instrumentation and Measurements, 70, p. 
3525828. 

Zhou, X., Gu, M., Zhu, L., Huang, P. and Pan, H. (2009) ‘Wind Tunnel Force Balance Test and Wind-
Induced Responses of the Guangzhou New TV Tower Structure. II: Analysis of Wind-Induced 
Responses’, China Civil Engineering Journal, 42(7), pp. 14–20. 

 
 

 

 

 


	GRS-TEMPLATE-Thesis-Title-XutongZhang
	Xutong Zhang - 12856617_with_comment



