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ABSTRACT

This thesis investigates the inventive application of quantum computing
methods to solve two critical challenges: optimization challenges with a
focus on the Vehicle Routing Problem (VRP) and the issue of data imbalance,

especially via the Synthetic Minority Oversampling Technique (SMOTE). The first
section of research delves into the VRP, a critical optimization challenge, and em-
phasizes the use of Quantum algorithms to solve the vehicle routing problem using
hybrid quantum algorithms, as well as the effects of quantum noise. The research
then extends to solve the VRP using a Quantum Machine Learning algorithm,
the Quantum Support Vector Machine. The second portion of the research uses
quantum approaches to address the class imbalance by reinterpreting the synthetic
minority oversampling strategy in quantum. Using these cutting-edge research
efforts, the thesis highlights quantum computing’s transformational potential for
tackling complicated optimization issues and resolving data imbalance. It empha-
sizes the link between quantum physics and computer science, setting the path for
future advances in quantum algorithms and their applications in various domains.
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1
INTRODUCTION

1.1 Quantum Computing In NISQ Era

The emergence of quantum computing has introduced a new computational

era, that has the potential to significantly transform several computational

domains such as machine learning, optimization, chemistry, cryptography,

materials science, and other related subjects. Quantum computing, in contrast to

classical computing, utilizes qubits to process information in a multi-dimensional

computational space, allowing for the parallel processing of information on an

unprecedented scale. This approach leverages the principles of quantum mechanics,

as opposed to relying on binary bits used by current computers. [1].

Preskill (2018) has presented the idea of Noisy Intermediate-Scale Quantum

(NISQ) computing technology, which has generated significant interest and ad-

vancement in recent years. At present, NISQ devices, which have 50‚Äì100 qubits,

can perform computing tasks that go beyond classical capabilities. However, they

are limited by factors related to noise and operational integrity. These devices,

though lacking significant error correction capabilities, represent a crucial advance-

ment towards the realization of the quantum computing era [2].

Navigating the NISQ environment requires meeting a unique combination of
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challenges and opportunities despite its computational advantages over classical

computing. The presence of intrinsic noise presents substantial challenges to the

reliability and accuracy of algorithms in NISQ devices. However, this period also

presents opportunities for innovative algorithms that are specially tailored to make

use of the unique features of NISQ machines, while simultaneously evaluating the

balance between sensitivity to noise and quantum advantage [3].

Throughout recent years, multiple algorithms have been proposed to tackle a

variety of problems with use of quantum computing that can take advantage of the

existing NISQ devices. Some of these algorithms are worth mentioning which are

regarded as the foundation or fundamental principle on which most of quantum

research and applications are created. Following points touch upon the overview of

these algorithms

• Variational Quantum Eigensolver (VQE): The Variational Quantum

Eigensolver (VQE) is a very promising NISQ algorithm that showcases the

potential for quantum advantage in the field of quantum chemistry. The

eigenvalue issue for molecular Hamiltonians is addressed by VQE via the

use of hybrid quantum-classical approaches. This approach provides valuable

insights into molecular characteristics, which have significant implications

for drug development and materials research [4].

• Quantum Approximate Optimization Algorithm (QAOA): The Quan-

tum Approximate Optimization Algorithm (QAOA), focuses on addressing

optimization problems. The approach known as QAOA was presented by [5]

as a means to tackle combinatorial optimization. The authors showcased the

algorithm’s capability to approximate solutions for issues that are considered

difficult for classical computers.

• Grover’s Algorithm : Grover’s algorithm, renowned for its quadratic accel-

eration in search problems, encounters difficulties in the NISQ era owing to

noise and coherence time limitations. However, its principles still serve as a

source of inspiration for algorithmic advances that are compatible with NISQ.

The purpose of these changes is to use some aspects of Grover’s acceleration

in the presence of noise [6].
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• Shor’s algorithm : Shor’s algorithm is a quantum computing technique

created by Peter Shor in 1994 [7]. It is meant to effectively factor big numbers

into their prime factors, which is computationally difficult for traditional

computers. Its relevance arises from its ability to break commonly used cryp-

tographic methods like as RSA, which depend on the difficulty of factorization.

The programme uses quantum features like superposition and entanglement

to execute operations tenfold quicker than the most well-known conven-

tional algorithms. The Quantum Fourier Transform is fundamental to Shor’s

method, since it assists in determining the periodicity of functions‚Äîan es-

sential step in factorization. While promising, the actual implementation of

Shor’s algorithm requires the creation of sufficiently big and error-corrected

quantum computers.

• Quantum Support Vector Machine (QSVM) : In the era of NISQ, quan-

tum machine learning is emerging as a promising field. Algorithms like as

Quantum Support Vector Machines (QSVMs) are showing potential benefits

in data processing and analytical tasks. In their study, Havlicek et al. (2019)

showed the potential of quantum kernel techniques to revolutionise machine

learning by surpassing conventional approaches in certain situations.

The pursuit of achieving quantum advantage, which refers to the stage at

which quantum computers surpass their classical counterparts in significant tasks,

continues to be the overarching objective. The realization of complete quantum

advantage is dependent upon the development of fault-tolerant quantum comput-

ing. However, NISQ algorithms provide a window of opportunity to attain this

significant milestone within certain domains [8]. This intriguing aspect of quan-

tum algorithms on NISQ devices motivates this research. The primary objective

of this thesis is to establish an association between two distinct groups: machine

learning engineers who are interested in making contributions to the advancement

of quantum technology and quantum researchers who are committed to developing

applications using quantum computers. In this study, our goal is to bring together

these separate groups exploring the key aspects of machine learning in quantum

systems. Furthermore, the thesis presents a number of novel methodologies for
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harnessing machine learning via the use of quantum concepts in order to tackle

complex industrial scenarios.

1.1.1 Content and Objectives :

The primary objective of this thesis is to investigate the emerging convergence

of quantum computing and machine learning. The aim is to provide insight into

the benefits of integrating concepts derived from quantum mechanics into com-

putational models, with a specific focus on optimization and data preprocessing

for machine learning. This study aims to shed light on the potential impact of

quantum computing on conventional machine-learning approaches by conducting

a thorough analysis of three seminal articles. By doing so, it seeks to enhance

understanding and accelerate the progress of both fields. The selected examples

not only represent the advanced methods in developing quantum algorithms but

also demonstrate the wide range of applications and issues that these innovative

techniques may address.

The first publication, titled "An Examination of the Vehicle Routing Problem

Resolved through Hybrid Quantum Algorithms in the Presence of Noisy Channels,"

plays an essential part in this thesis by showcasing the pragmatic use of hybrid

quantum algorithms for addressing intricate optimization challenges along with

quantifying the impact of various types of noise on these solutions. This work has

significant relevance for professionals in the fields of machine learning engineering

and quantum algorithm development. It effectively demonstrates the potential

of quantum-enhanced computations in addressing the constraints of classical

computing, especially in conditions of noisy intermediate-scale quantum (NISQ)

settings. Quantum computing is well-suited to address real-world difficulties such

as the vehicle routing problem (VRP), which is a crucial challenge in logistics and

supply chain management. The thesis seeks to analyze this research in order to

emphasize the methodology and results of using quantum algorithms in real-world

situations, with a particular focus on the significance of hybrid approaches in the

present quantum computing environment.

The second study, titled "Solving The Vehicle Routing Problem via Quantum

Support Vector Machines," explores the use of quantum computing for machine
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learning problems, moving beyond quantum-enhanced optimization to the field

of quantum machine learning. This study signifies a notable advancement in

the use of quantum algorithms to machine learning models, with a particular

focus on Quantum Support Vector Machines (QSVMs). The aim of this study is

to examine and comprehend the underlying mechanism by which QSVMs are

capable of processing and analyzing data of a level of complexity and size that

surpasses the capabilities of classical machines. The paper also proposes to use

various quantum encoding schemes along with a cost function to construct a

QSVM that can be used to solve challenging Optimization problems. This study not

only expands the range of applications in quantum computing but also acquaints

machine learning professionals with the innovative opportunities and difficulties

associated with quantum-enhanced algorithms. This study aims to provide a

scholarly contribution to the ongoing conversation around the interdependent

connection between quantum computing and machine learning. It emphasizes the

significant impact that quantum algorithms may have on data-driven applications,

highlighting their revolutionary capabilities.

The third work, titled "A Quantum Approach to Synthetic Minority Oversam-

pling Technique (SMOTE)," tackles a significant obstacle in the domain of machine

learning, namely, the issue of data imbalance. The thesis showcases a fascinating

case study on the use of quantum computing to enhance the SMOTE approach. This

application demonstrates how quantum algorithms may enhance the preparation

stage of machine learning processes. This work investigates quantum-enhanced

data augmentation strategies to elucidate the wider ramifications of quantum

computing in enhancing the equity and precision of machine learning models. The

thesis aims to showcase the many contributions of quantum computing to machine

learning, including improvements in algorithmic efficiency and data pre-treatment.

The overall aim of this thesis is to find use cases where quantum machine

learning and the current scope of computing can be integrated into the existing

computational landscape. The thesis also aims to accomplish several objectives

by conducting a thorough analysis of these three papers. These objectives include

providing a clear understanding of the present condition and future potential

of quantum-enhanced machine learning, demonstrating the practical uses and

difficulties of implementing quantum algorithms in real-life situations and pro-
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moting collaboration between machine learning engineers and quantum scientists.

By accomplishing each of these objectives, the thesis strives to make significant

contributions to the ongoing advancement of quantum computing and its inte-

gration with machine learning, thereby facilitating upcoming breakthroughs and

applications that harness the capabilities of quantum technologies.

Finally, this thesis aims to consolidate existing research and advancements in

the intersection of quantum computing and machine learning. This study seeks

to expand our comprehension and utilization of quantum-enhanced computing

methods by conducting a thorough analysis of relevant literature and generating

fresh perspectives. By doing so, it attempts to pave the way for future technological

advancements in these domains.

1.1.2 Reserach Methods and Tools

1.1.2.1 Statistical Analysis and Visualization

The utilization of statistical analysis, advanced visualizations, and a comprehen-

sive comprehension of data distributions is crucial in the examination of hybrid

quantum algorithm performance in real-world scenarios, as demonstrated in the

paper titled "Analysis of The Vehicle Routeing Problem Solved via Hybrid Quantum

Algorithms in Presence of Noisy Channels." The research methodology used in

this study entails a methodical analysis of algorithmic results in comparison to

different noise models. Statistical techniques are utilized to evaluate the robust-

ness and effectiveness of quantum solutions in addressing the Vehicle Routeing

Problem (VRP). Visualization methods, such as line graphs and box plots, play a

crucial role in effectively displaying the comparative performance metrics of hybrid

quantum algorithms under varying noise intensities. These approaches enable the

identification of patterns and variations that may not be readily observable just

via numerical analysis. An illustration of the algorithm’s accuracy or solution qual-

ity degradation with increasing noise level may be successfully shown using line

graphs. Additionally, box plots can provide valuable insights into the variability of

the algorithm’s performance across numerous runs or configurations.

The 2nd Paper, "Solving The Vehicle Routing Problem via Quantum Support

Vector Machines," used statistical analysis and visualizations as a vital study
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approach to thoroughly assess the results of this quantum support vector machine

across different encoding schemes. This methodology enables a comprehensive

analysis of the performance metrics of Q-SVMs, hence permitting a comparative

evaluation of various quantum data encoding schemes and their influence on effec-

tively solving the VRP. The assessment of the Q-SVM model’s accuracy, computing

time, and scalability under various encoding methods relies heavily on the use of

descriptive and inferential statistical techniques.

1.1.2.2 Model Evaluation Methods

The use of a comprehensive set of model assessment techniques becomes cru-

cial in order to thoroughly evaluate the effectiveness of the quantum-enhanced

methodology presented in the third article titled "A Quantum Approach to Syn-

thetic Minority Oversampling Technique (SMOTE)." The methodologies used in a

quantum machine learning thesis, including as the Receiver Operating Character-

istic (ROC) curve, Area Under the Curve (AUC), Confusion Matrix, F1 Score, and

accuracy, are fundamental components of a thorough study process.

The receiver operating characteristic (ROC) curve is a visual representation

that enhances the diagnostic capability of a binary classifier system. It serves

as a crucial instrument for assessing the effectiveness of the quantum-enhanced

SMOTE algorithm. The ROC curve offers insights into the trade-offs between

sensitivity and specificity by graphing the true positive rate versus the false pos-

itive rate at different threshold values. In addition, the AUC, which measures

the model’s ability to differentiate across classes, provides a single numerical

result that summarises the model’s overall performance overall potential classifi-

cation thresholds. A greater area under the curve (AUC) signifies superior model

performance, particularly when dealing with unbalanced datasets.

The Confusion Matrix is an important method for understanding the model’s

performance in classifying minority and majority classes. It offers a comprehensive

description of the model’s predictions, including true positives, false positives,

true negatives, and false negatives. The detailed analysis provided enables the

calculation of accurate performance measures, including precision, recall, and

the F1 Score (the harmonic mean of accuracy and recall). The F1 Score is a
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valuable metric in the context of unbalanced datasets due to its ability to strike

a balance between precision and recall, hence providing a broader evaluation of

model performance that goes beyond traditional accuracy measures.

Accuracy, while a clear and obvious indicator of model performance, may not

always provide an accurate picture, particularly when there is an imbalance in

class distribution. Hence, it is used in combination with the previously mentioned

metrics in order to provide an in-depth review of the efficacy of the quantum-

enhanced SMOTE in improving machine learning models.

The combination of these model assessment methodologies provides an exten-

sive foundation for evaluating the effectiveness of the quantum-enhanced SMOTE

algorithm in addressing data imbalance, hence offering a multidimensional per-

spective on the performance of the model. The thesis seeks to carefully apply these

evaluation techniques to confirm the efficacy of integrating quantum computing

into SMOTE. Additionally, it aims to facilitate further investigation into the poten-

tial collaboration between quantum computing and machine learning, especially

when addressing inherent challenges like data imbalance.

1.1.2.3 Regression Testing

Regression testing is a critical research methodology used to validate research

outcomes and draw statistical inferences from output data in the context of quan-

tum computing applications. This is particularly important in the exploration of

the Vehicle Routing Problem (VRP) and the innovative application of Synthetic

Minority Oversampling Technique (SMOTE) within quantum paradigms. The re-

search articles titled "Analysis of The Vehicle Routing Problem Solved via Hybrid

Quantum Algorithms in Presence of Noisy Channels," "Solving The Vehicle Routing

Problem via Quantum Support Vector Machines," and "A Quantum Approach to

Synthetic Minority Oversampling Technique (SMOTE)" employ regression testing

as a methodology to thoroughly investigate the correlation between different input

parameters and the performance metrics of their respective quantum-optimized

models.

In the present study, regression testing was utilized to evaluate the resilience

and dependability of quantum algorithms across various scenarios. These scenarios
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included differences in noise levels for hybrid quantum algorithms, as well as the

influence of multiple encoding schemes on the effectiveness of Quantum Support

Vector Machines. We were able to validate the effectiveness and stability of their

models across a range of scenarios by systematically adjusting these parameters

and observing the resulting changes in outcomes, such as solution quality for VRP

and accuracy for models used by quantum-enhanced SMOTE.

In addition, the use of regression testing enabled the derivation of critical

statistical conclusions from the empirical data, so facilitating the discovery of key

factors that influence algorithm performance and the measurement of their effects.

The statistical methodology used in this study not only confirmed the robustness of

the suggested quantum computing applications but also offered valuable insights

into the algorithm parameters to improve overall performance. For example, the

examination of the impact of quantum noise on the solution quality of hybrid

quantum algorithms for VRP has facilitated the determination of noise tolerance

thresholds for quantum circuits and the variability of real outcomes in the absence

of noise. In the same way, the assessment of various quantum data encoding

schemes by Q-SVMs has provided useful insights into the selection of suitable

encoding techniques that may optimize the efficiency of quantum machine learning

models.

Regression testing played a crucial role in the research methods of these signif-

icant investigations, connecting theoretical developments in quantum computing

with their actual implementations. By conducting thorough regression tests, the

studies not only confirmed the effectiveness of the proposed quantum algorithms

but also enhanced their understanding of the complex relationship between quan-

tum computing parameters and model performance, thus facilitating potential

improvements in the field.
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2
FOUNDATIONAL METHODS AND ALGORITHMS

The development and application of quantum technologies to complex computa-

tional problems have made progress through the use of foundational algorithms

developed in quantum computing. Some of these algorithms include the Quan-

tum Approximate Optimization Algorithm (QAOA), the Variational Quantum

Eigensolver (VQE), Quantum Kernel Methods (such as Quantum Support Vec-

tor Machines (Q-SVMs), and the use of Rotational Gates. The above-mentioned

algorithms not only demonstrate the ability of quantum computing to surpass

conventional computational limitations but also establish a base for developing

solutions for complex problems. This is quite evident in research that include the

Vehicle Routing Problem (VRP) and Synthetic Minority Oversampling Technique

(SMOTE) within a quantum framework.

The QAOA algorithm [5] is developed to address combinatorial optimization

problems. Its basic approach is to integrate the solution to a particular problem

into the ground state of a Hamiltonian. The algorithm uses a sequence of quantum

gates to systematically modify parameters and minimize the cost function linked

to the problem, with the target of finding an approximate solution that improves

with each iteration. The significance of QAOA is clearly demonstrated in the

first research paper "Analysis of The Vehicle Routing Problem Solved via Hybrid

Quantum Algorithms in Presence of Noisy Channels", especially when confronted
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with noisy quantum channels.

VQE [4] uses a combination of quantum and classical methods to solve eigen-

value problems and determine the ground state energy of a system. The quantum

state is fine-tuned by using classical optimizers via the adjustment of parameters

in a quantum circuit and subsequent measurement of the output. The use of this

approach is critical in the formulation and solving of quantum iterations of the

VRP, where the objective may be defined as obtaining the energy state with the

lowest energy that corresponds to the most optimum path.

Quantum Kernel methods and Q-SVMs [9] expand the scope of classical kernel

techniques into the quantum domain, giving the ability to leverage the high-

dimensional Hilbert spaces that are accessible to quantum systems for the purpose

of machine learning. For example, Q-SVMs demonstrate superior performance in

handling complicated datasets with convoluted decision boundaries compared to

standard SVMs. Q-SVMs can classify and evaluate routing alternatives in order to

solve the VRP, using quantum-enhanced pattern recognition to determine optimal

routes.

In quantum circuits, the manipulation of qubits and encoding of information

heavily rely on rotational gates, including the Pauli-X, Y, and Z gates, as well as

other unitary operations. The exact use of these techniques enables the manip-

ulation and regulation of qubit states, which is crucial for the implementation

of quantum circuits that serve as the foundation for algorithms such as QAOA

and VQE. Within the realm of quantum-enhanced SMOTE, the use of rotational

gates serves to promote the generation of synthetic samples in a superposition

manner. This configuration allows for the equitable representation of minority

classes within datasets that exhibit imbalances.

Collectively, these fundamental algorithms and quantum operations are the

central focus of research endeavors focused on using quantum computing to address

real-world challenges. The research conducted on the VRP and quantum-enhanced

SMOTE demonstrates the practical implementation of these quantum algorithms

in addressing real-world problems, highlighting the wide range of possible effects

that quantum computing may have. Incorporating quantum computing concepts

into several domains, such as optimizing logistical operations and boosting machine

learning models, signifies a prospective scenario in which quantum algorithms

14



play a substantial role in resolving intricate challenges with heightened efficiency

and effectiveness.

2.0.1 Quantum Gates

The core components of quantum circuits are quantum gates, which bear resem-

blance to the logic gates used in conventional computers. In contrast to conventional

gates, quantum gates function on qubits, using the principles of quantum me-

chanics to execute complex computations capable of simultaneously incorporating

numerous states due to the phenomena of superposition and entanglement. Quan-

tum gates are technically described as unitary matrices, and their functionalities

may be represented graphically on the Bloch sphere for individual qubits or more

elaborate geometric depictions for multi-qubit systems. The integration of these

gates into quantum circuits enables the execution of quantum algorithms, such

as Shor’s algorithm for integer factorization and Grover’s algorithm for database

searching. This exemplifies the capacity of quantum computing to address issues

that are inherently difficult for conventional computers to handle.

Throughout the development of the quantum algorithms and related research

for this article, we have extensively used quantum gates to create quantum circuits.

Of all the gates used, we are describing some fundamental gates below.

Paului X Gate: The Pauli-X gate, often known as the NOT gate, is a basic logic

gate with a single qubit that executes a bit-flip operation. The matrix representa-

tion is as follows:

X =
[

0 1

1 0

]
(2.1)

The Pauli-X gate is used to convert a qubit in state |0〉 to |1〉, and conversely.

Hadamard Gate: One example of a single-qubit gate that generates superpo-

sition is the Hadamard gate. The matrix representation is as follows:

H = 1p
2

[
1 1

1 −1

]
(2.2)
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When the Hadamard gate is applied to a qubit in state |0〉, it undergoes a

transformation to 1p
2

(|0〉+ |1〉).

CNOT Gate: A Controlled NOT (CNOT) gate is a kind of gate that operates

on two qubits. It carries out a NOT operation on the target qubit (second qubit)

only when the control qubit (first qubit) is in state |1〉. The matrix representation

is as follows:

CNOT=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

(2.3)

The operational mechanism of quantum gates involves the multiplication of

their matrix representations with the state vector of the qubits involved in their

operation. The application of a single-qubit gate U to a qubit state |psirangle may

be expressed as follows:

|ψ′〉 =U |ψ〉(2.4)

The operation of a two-qubit gate is described by a tensor product, as shown by:

|φ′〉 = (U ⊗V )|φ〉(2.5)

Qubits are subjected to a series of quantum gates in quantum circuits. In a

circuit schematic, each horizontal line corresponds to a qubit, and the gates are

applied in a sequential manner from left to right. The design of quantum circuits

plays a critical role in ensuring effective quantum processing, since they serve as

the fundamental building blocks for quantum algorithms.
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Quantum gates are fundamental to various quantum algorithms. The quantum

parallelism and entanglement enabled by these gates form the basis for algorithms

like Shor’s factoring algorithm [7] and Grover’s search algorithm [6].

2.0.1.1 Rotation Gates

Rotational gates play a crucial role in the field of quantum computing as they

allow for the manipulation of the quantum state of a qubit via the rotation of said

qubit along a designated axis inside the Bloch sphere. These gates are of utmost

importance in a wide range of quantum algorithms and jobs related to quantum

information processing.

The exponential of the Pauli matrices provides the generic single-qubit rota-

tion operator around the unit vector n̂ = (sinθ cosφ,sinθsinφ,cosθ), The equation

R(θ,φ) may be expressed as follows:

R(θ,φ)= Rz(φ)Ry(θ)Rz(−φ)(2.6)

The Pauli matrices are denoted as σx, σy, and σz. The operator in question

executes a rotation on the Z-axis (Phase Gate) by an angle theta with respect to

the axis specified by n̂.

The phase gate is a frequently used rotational gate that executes a rotating

movement along the Z-axis. The matrix serves as a representation.

Rz(θ)=
[

e−iθ/2 0

0 eiθ/2

]
(2.7)

The gate incorporates a phase component eiθ into the state, while maintaining the

probability amplitudes at their original values.

The rotation of the X-axis and Y-axis is a subtopic of interest.

Rx(θ)=
[

cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

]
(2.8)

Ry(θ)=
[

cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)

]
(2.9)
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The phase rotation is implemented by this gate only when the control qubit is

in the |1〉 state.

The following section pertains to compounds.

Multiple rotating gates may be used to generate composite rotations. For exam-

ple, the implementation of a rotation around an arbitrary axis n̂ = (sinθ cosφ,sinθsinφ,cosθ)

may be expressed as follows:

The equation R(theta, phi) may be expressed as

R(θ,φ)= Rz(φ)Ry(θ)Rz(−φ)(2.10)

The given sequence executes a rotational motion around the axis n̂.

Parameterized gates are often used in practical applications, whereby the

rotation angles are dynamically modified in accordance with specified optimization

or computational criteria. The representation of these gates is as follows:

The equation Rz(θ) may be expressed as follows:

Rz(θ)=
[

e−iθ/2 0

0 eiθ/2

]
(2.11)

In the context of quantum computing, the parameter denoted as θ is subject to

adjustment.

Quantum rotational gates serve as the foundation for several quantum algo-

rithms and quantum machine learning applications, enabling precise and con-

trolled manipulation and control of quantum states.

2.0.2 Quantum Approximate Optimization Algorithm
(QAOA)

The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algo-

rithm developed by Farhi et al.[10] aimed at solving combinatorial optimization

problems. It has emerged as a promising approach for tackling a wide range of opti-

mization tasks due to its potential advantage over classical algorithms, particularly

for complex optimization problems. It leverages gate-based quantum computing to

find candidate solutions to combinatorial optimization problems using a variational

circuit with parameters tuned in a classical outer loop.
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Since QAOA is based on adiabatic computation and works well for solving

combinatorial optimization problems, we will briefly touch on the concepts in the

subsection below before diving into QAOA.

2.0.2.1 Combinatorial Optimization

Selecting the best item from a limited collection is an example of a traditional

combinatorial optimization (CO) problem. Due to the possibly enormous number of

items, an exhaustive search becomes challenging while trying to locate the ideal

one. If s is a string in a set S with m clauses, where s ≥ m, then we have a CO

problem, which may be defined mathematically as an optimization or minimization

problem. According to Guerrero [11], every clause takes a string argument and

returns a value that corresponds to it. The total cost function of the string is the

sum of all m clauses. With z as the input string and Cα as the clauses, we can

express the total cost function as

C(z)=
m∑

α=1
Cα(z)(2.12)

To achieve this, we need to locate an element z̄ in S such that, for every z in

S, we have C(z̄)≥ C(z) (or, in the case of minimization, C(z̄)≤ C(z)). Here, z̄ is not

required to be unique.

For simplification, restrictions are put on clauses and input strings where

clauses are restricted to integers 0 and 1, whereas input strings are restricted

to binary representation of integers 0 through 2n −1. Hence z can be written as

z = z0z1z2 . . . . . . zn−1 for zi ∈ {0,1}. Also, considering only maximization problems

the minimization problems can be studied as C′
α(z)= 1−Cα(z)

C′(z̄)=
m−1∑
k=0

C′
α(z̄)=

m−1∑
k=0

(1−Cα(z̄))= m−
m−1∑
k=0

Cα(z̄)= m−C(z̄)(2.13)

Classical combinatorial optimization problems include the search for the most

optimum item within a limited collection of items. The problem is formulated in

terms of constraints that need to be fulfilled, with the goal of finding the "optimal

object" that fulfils the maximum number of requirements. Typically, the collection

of items is too extensive to thoroughly search (i.e., the task is NPhard), thus we rely
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on approximating the best answer. (The inclusion of "Approximate Optimization"

in the name "Quantum Approximate Optimization Algorithm" is due to this.)

2.0.2.2 Adiabatic Computation

The theoretical foundation of Adiabatic Quantum Computation was established

by Edward Farhi, a professor at MIT who developed QAOA [5]. The underlying

premise of Adiabatic Quantum Computation (AQC) is derived from the adiabatic

theorem, which claims that a system in the ground state of a given Hamiltonian

will remain in its ground state provided the Hamiltonian undergoes gradual but

continuous changes.

The energy state of a system is represented by a Hamiltonian. In the context of

AQC, we are dealing with two Hamiltonians: the driver Hamiltonian (Hd) and the

problem Hamiltonian
(
Hp

)
. The driver Hamiltonian, denoted as (Hd), represents

the ground state of a system that can be readily prepared. On the other hand, the

problem Hamiltonian, denoted as
(
Hp

)
, represents the desired ground state that

we want to achieve via evolution. The amount of time required is dependent upon

the difference in energy between the two minima of the interpolating Hamiltonian.

The estimation of this gap in a general is not feasible. In simple terms, we begin

with a ground state that is straightforward to create (i.e., the ground state of (Hd))

and aim to get the desired quantum state (i.e., the ground state of
(
Hp

)
), which is

often much more challenging to create.

A mathematical function s(t) is defined on the interval [0,T], where s(0) = 0

and s(T) = 1 . The value of time, denoted as T, is sufficiently high to satisfy the

adiabatic theorem. Thus the Hamiltonian is defined as

H(t)= (1− s(t))HD + s(t)HP(2.14)

According to the Adiabatic Theorem, if we have the right s(t), we will remain in

the ground state of this H(t) for the entire interval [0, T]. Thus, it is evident that at

time t= 0 we are in the ground state of Hd and by time t=T we have transitioned

to the desired ground state of Hp.
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The temporal evolution under this time-dependent Hamiltonian includes an

integral that is difficult to calculate.

U(t)= τexp
{−i
ℏ

∫t

0
H(T)dT

}
(2.15)

This Hamiltonian may be evaluated using the Trotterization approach. The

process involves dividing the matrix U(T) into intervals of ∆t that are sufficiently

short to ensure that the Hamiltonian remains essentially constant throughout

each interval. This enables the use of a more streamlined equation for the time-

independent Hamiltonian.

Let U(b,a) denote the temporal progression from time a to time b,

U(T,0) =U(T,T −∆t)U(T −∆t,T −2∆t) · · ·U(∆t,0)(2.16)

=∏p
j=1U( j∆t, ( j−1)∆t)(2.17)

≈∏p
j=1 e−iH( j∆t)∆t(2.18)

The approximation improves as the value of p increases (or, alternatively, as

∆t decreases), and we have selected ∆t to be measured in units of h. The integral

U(t) may be obtained by using the approximation ei(A+B)x = eiAxeiBx +O
(
x2) and

including the Hamiltonian H( j∆t)= (1− s( j∆t))HD + s( j∆t)Hp.

U(T,0)≈
p∏

j=1
exp {−i(1− s( j∆t))HD∆t}exp

{−is( j∆t)Hp∆t
}

(2.19)

The approximation of this AQC involves allowing the system to develop under

Hp for a small value of s( j∆t)∆t, and then HD for a small value of (1− s( j∆t))∆t.
Unitaries may be created for these operations. The equation U = e−iαH∆t; repre-

sents the scaling due to s( j∆t), where α is a number in the range [0,1] [11, 12].

2.0.2.3 QAOA Algorithm

Let us get into a comprehensive analysis of the QAOA algorithm. It is considered

a hybrid algorithm since it incorporates both classical and quantum approaches.

These algorithms have been the favoured option throughout the NISQ period and

may be used to tackle various optimization challenges.
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In the preceding part, we carefully discussed the concept of quantum adia-

batic computing, specifically focusing on the transition from the eigenstate of the

driver Hamiltonian to the eigenstate of the problem Hamiltonian. The Problem

Hamiltonian may be expressed as

C|z〉 =
m∑

α=1
Cα(z)|z〉(2.20)

The solution to the combinatorial optimization problem is the minimal energy

eigenstate of C. Similarly, we choose the driver Hamiltonian as

B =
n∑

j=1
σx

j(2.21)

Let σx
j be the Pauli operator on bit z j. B is often referred to as the mixing

operator. We will define Uc(γ)= e−iγcα and UB(β)= e−iβB to represent the evolution

of the system under C for a certain γ time and under B for a specific β time,

respectively.

QAOA is an algorithm that accepts a collection of m clauses, a set of p an-

gles represented by
{
γ0,γ1,γ3, . . . . . . ,γp−1

}
, and a set of p angles represented by{

β0,β1,β2 . . . ,βp−1
}
. P. Therefore, the variable P represents the number of itera-

tions performed by the algorithm [12].

Assuming P = 1, we may look at the variables γ0 = γ and β0 = β accordingly.

The unitary function Uc(γ) has been defined.

Uc(γ)= e−iγcα =
m∏

α=1
e−iγcα =

m∏
α=1

exp
(−iγCα

)
(2.22)

The diagonal matrix Cα has dimensions nX and is defined by the entries

Cα(i, j)=
1 if i = j and Cα(i−1)= 1

0 otherwise
(2.23)

The index of z in the preceding formulation is denoted by i−1, and it varies

from 0 to 2n −1. Taking example of n = 2 and the clause

C1(z)=
1 if z ∈ {1,2}

0 if z ∈ {0,3}
(2.24)
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We arrive at the matrix

C1 =


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

(2.25)

Using the 2nd clause

C2(z)=
1 if z ∈ {1}

0 if z ∈ {0,2,3}
(2.26)

from both equations above we can form Uc(γ)

UC(γ)=
2∏

α=1
exp

(−iγCα

)= exp

−iγ


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



exp

−iγ


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0





= exp


−iγ


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

+


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0







(2.27)

= exp

−iγ


0 0 0 0

0 2 0 0

0 0 1 0

0 0 0 0



(2.28)

By combining the two cost functions, C1(z) and C2(z), we may get the original

cost function C(z) as the total of the two. The values of C at different inputs are as

follows: C(0) = 0, C(1) = 2, C(2) = 1, C(3) = 0.Therefore, the expression UC(γ) may

be restated as

UC(γ)= exp(−iγC)(2.29)
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Here, C is a matrix with components that are only present on its diagonal.

C(i, j)=
C(i−1) if i = j

0 otherwise
(2.30)

The integer values of C(z) allow us to consider the variable γ within the range

of 0 to 2π. This is further supported by the observation that for every γ1 ∉ (0,2π),

there exists a γ0 ∈ (0,2π) such that γ1 = γ0 +2πk, where k in Z.

Ultimately, we have

UC
(
γ1

) = exp
(−iγ1C

)
= exp

[−i
(
γ0 +2πk

)
C

]
= exp

(−iγ0C
)
exp(−i2πkC)(2.31)

As we know C is a matrix with integer values the above changes to

= exp
(−iγ0C

)


e−i2πkC(0) 0 . . . 0

0 e−i2πkC(1) . . . 0
...

... . . . ...

0 0 . . . e−i2πkC(2n−1)



= exp
(−iγ0C

)


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

= exp
(−iγ0C

)
I = exp

(−iγ0C
)=UC

(
γ0

)
(2.32)

Looking into 2nd operator

B =
n∑

k=1

(
k−1⊗
i=1

I ⊗σx ⊗
n⊗

i=k+1
I

)
= σx ⊗ I⊗(n−1) + I ⊗σx ⊗ I⊗(n−2) +·· ·+ I⊗(n−1) ⊗σx(2.33)

Where σx =
(

0 1

1 0

)
. Further, we have already established

UB(β)= e−iβB = exp(−iβB)(2.34)
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In their original publication[10], Farhi and Goldstone introduced the concept

of β inside the interval (0,π), indicating the existence of an input domain of

(γ,β)intheinterval[0,2π]X [0,π]. The given expression may be simplified to (γ,β) ∈
[0,2π]X

[
0, π

2

]
or (γ,β) ∈ [0,π]X [0,π] without any loss of information.

To verify the changes in angles, we shall analyze the values of 0≤ γ0 ≤ 2π and

0≤β0 ≤π. The angles that are obtained are as follows.

γ1 =−γ0 +2π− (16)

β1 =−β0 +π · · · (17)
(2.35)

In this context, the variables γ0 and β0 are mirrored over π and π/2, respectively.

Therefore, when the procedure is executed with newer angles γ1,β1, it produces

the identical results to γ0,β0. Therefore, decreasing the domain factor by 50% will

provide similar outcomes. The multiplication of the operators UC
(
γ1

)
,UB

(
β1

)
is

UC
(
γ1

)
UB

(
β1

)= e−iγ1C e−iβ1B = e−i(−γ0+2π)C e−i(−β0+π)B(2.36)

Since C is diagonal

e−i(−γ0+2π)C =


e−i(−γ0+2π)C(0) 0 · · · 0

0 ei(−γ0+2π)C(1) · · · 0
...

... . . . ...

0 0 · · · e−i(−γ0+2π)C(2n−1)



=


eiγ0C(0)e−2πic(0) 0 0

0 eiγ0C(1)) e−2πiC(1) · · ·
...

... . . .

0 0 · · · eiγ0C(2n−1)e−2πiC(2n−1)



(2.37)

Given that C(z) ∈ Z, it follows that exp(−2πiC(z))= 1. The matrix shown above

may be simplified to,

=


eiγ0C(0) 0 · · · 0

0 eiγ0C(1)) 0 0
... 0 . . . ...

0 0 · · · eiγ0C(2n−1)

= eiγ0C(2.38)
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In the same way forUB
(
β1

)
, it is necessary for all the eigenvalues of B to be

either odd or even integers. Therefore, we will proceed to define B using a recursive

approach

B1 =σx =
(

0 1

1 0

)

Bn+1 =
(

Bn In

In Bn

)(2.39)

The identity matrix of 2nX2n is denoted as In. The recursive definition pro-

vided is comparable to the definition previously established for B, which re-

lates to n qubits. For a value of n = 1, the equation may be expressed as B1 =∑1
k=1

(⊗0
i=1 I ⊗σx ⊗⊗1

i=2 I
)=σx

Given the assumption that the definition holds true for n−1 qubits.

Let us now shift our focus towards the eigenvalue of matrix B. By intuition, it is

necessary for these values to be odd or even integers. In the case of B1, these values

are ±1. Let’s suppose that the eigenvalues of Bn−1 are integers that are either odd

or even. To demonstrate this, let us begin the computation of the eigenvalue of Bn.

0 = |Bn −λIn| =
∣∣∣∣∣
(

Bn−1 In−1

In−1 Bn−1

)
−λIn

∣∣∣∣∣
=

∣∣∣∣∣ Bn−1 −λIn−1 In−1

In−1 Bn−1 −λIn−1

∣∣∣∣∣(2.40)

By using the property of symmetric block matrices

det

(
A B
B A

)
= det(A−B)det(A+B)(2.41)

Thus our eigenvalue calculation becomes

= det(Bn−1 −λIn−1 − In−1)det(Bn−1 −λIn−1 + In−1)

= det(Bn−1 − (λ+1)In−1)det(Bn−1 − (λ−1)In−1)
(2.42)

Both determinants are the characteristic polynomial for Bn−1 with roots shifted

±1. Therefore, the eigenvalues of Bn might be equivalent to the eigenvalues of
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Bn−1 following either a subtraction or an addition of 1. Given the assumption that

the eigenvalues of Bn−1 are all odd or even integers, it follows that the eigenvalues

of Bn must also be all odd or even integers.

We have

UB
(
β1

)= exp
(−iβ1B

)= exp
(−i

(−β0 +π
)
B

)
(2.43)

Given that B is diagonizable, it may be expressed as B = UBDU−1 where U

represents a unitary matrix and BD is a diagonal matrix of B with eigenvalues of

B on diagonals and 0 elsewhere.

Hence

U exp
(−i

(−β0 +π
)
BDU−1 =U exp

(
iβ0BD

)
exp(−iπBD)U−1(2.44)

We know exp(−iπBD) is simply the identity matrix times (−1n). Therefore, the

equation changes to

(−1n)
U exp

(
iβ0BD

)
U−1 = (−1n)

exp
(
iβ0BD

)= (−1n)
exp

(
iβ0B

)
(2.45)

Therefore, the resultant product of UC
(
γ1

)
UB

(
β1

)
will be as follows.

UC
(
γ1

)
UB

(
β1

)= (−1n)
exp

(
iβ0B

)
exp

(
iγ0C

)
(2.46)

In the final measurement (−1n) has no effect since it is squared. exp
(
iβ0B

)
exp

(
iγ0C

)
are clearly matrices UB

(
β0

)
and UC

(
γ0

)
with rotation in the opposite directions.

That is, the final measurement will be equal whether we use the angles γ0,β0 or

γ1,β1.

The squared value of (−1n) does not have any impact on the final measure-

ment. The matrices exp
(
iβ0B

)
exp

(
iγ0C

)
may be identified as UB

(
β0

)
and UC

(
γ0

)
,

respectively, with rotations in opposite directions. The final measurement will be

equal regardless of whether the angles γ0,β0 or γ1,β1 are used.

After considering the Operators, we will now shift our focus to the Hadamard

function, which is used to initialise all qubits to the superposition state.
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We know that Hadamard gate is

H = 1p
2

(
1 1

1 −1

)
(2.47)

The state may be constructed using (γ,β) angles in the following manner.

|ψ〉 =UB(β)UC(γ)H⊗n|0〉⊗n(2.48)

Considering p > 1 then

|ψ〉 =UB
(
βp−1

)
UC

(
γp−1

) · · ·UB
(
β1

)
UC

(
γ1

)
UB

(
β0

)
UC

(
γ0

)
H⊗n|0〉⊗n(2.49)

2.0.3 Variational Quantum Eigensolver (VQE)

The Variational Quantum Eigensolver (VQE) is a key hybrid quantum-classical

method used to solve eigenvalue and optimization problems on quantum computers.

Peruzzo et al. [4] presented one of the first and most referenced papers that intro-

duced the Variational Quantum Eigensolver (VQE) method. Its use in quantum

chemistry, especially in determining the ground state energy of molecules, is highly

regarded due to its outstanding reputation in the area. The VQE method works by

preparing quantum states and measuring observables using a quantum computer,

while a classical optimizer tweaks the quantum states’ parameters to minimize a

cost function, usually the system’s energy. VQE is a versatile method for estimating

the ground state energy of quantum systems. VQE, combines variational concepts

with quantum computing methods, and provides a potential way to solve problems

in quantum chemistry, materials research, and optimization.

2.0.3.1 Mathematical Formulation

Let us examine a quantum system characterized by a Hamiltonian Ĥ, which has

the lowest energy state denoted as
∣∣ψgs

〉
and has an associated energy value of Egs.

The objective of Variational Quantum Eigensolver (VQE) is to obtain an estimate

of the ground state energy, denoted as Egs, by creating a trial quantum state
∣∣ψ(θ)

〉
that is defined by a set of angles θ. The aim is to minimise the expectation value of

the Hamiltonian operator Ĥ with respect to the trial state
∣∣ψ(θ)

〉
.
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E(θ)= 〈
ψ(θ)

∣∣ Ĥ
∣∣ψ(θ)

〉
(2.50)

The trial state, denoted as
∣∣ψ(θ)

〉
, is often generated using a parameterized

quantum circuit called the variational ansatz. The ansatz circuit consists of many

layers of quantum gates, where each gate is parameterized by elements of θ.

2.0.3.2 Variational Ansatz

The ansatz U(θ) is a parameterized quantum circuit that creates trial states by

applying operations to a starting state
∣∣ψ0

〉
:

∣∣ψ(θ)
〉=U(θ)

∣∣ψ0
〉

(2.51)

The ansatz circuit often has many layers of single-qubit rotations and entan-

gling gates, such as the parameterized Ry(θ) and CNOT gates. The selection of

ansatz architecture and circuit depth may have a substantial influence on the

range of possible solutions and the optimization process of the Variational Quan-

tum Eigensolver (VQE).

2.0.3.3 Optimization Procedure

Variational Quantum Eigensolver (VQE) uses standard optimization techniques,

such as gradient descent or variational approaches, to determine the best parame-

ters θ∗ that minimize the function E(θ). The optimization procedure repeatedly

modifies the settings using the energy expectation values derived from quantum

measurements.

θ(k+1) = θ(k) −η∇E(θ(k))(2.52)

where η is the learning rate, and ∇E(θ(k)) is the gradient of E(θ) with respect

to θ(k).

The η represents the learning rate, whereas ∇E(θ(k)) denotes the gradient of

E(θ) with regard to θ(k).
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2.0.3.4 Challenges and Considerations

Even with its potential, VQE has a number of obstacles to overcome, such as:

1. Hardware Limitations: The capabilities and noise levels of existing quan-

tum hardware have a major role in the performance of VQE. Energy estimate

errors may be caused by noise and mistakes in quantum gates.

2. Optimization Landscape: Finding the global energy minimum effectively

may be difficult due to the very non-convex and rugged nature of the VQE

optimization landscape.

3. Ansatz Selection: The effectiveness of VQE depends on selecting a suitable

variational ansatz. For the ansatz to accurately represent the ground state of

the system, expressiveness and circuit depth must be balanced.

2.0.3.5 Future Directions

Although VQE has potential, it encounters several obstacles such as the ruggedness

of the optimization environment, the need for noise and error reduction[13], and the

issue of scalability [14]. The optimization landscape of the Variational Quantum

Eigensolver (VQE) may exhibit significant non-convexity, which can result in

challenges with convergence and the possibility of being trapped in local minima.

Furthermore, the presence of flaws in quantum hardware and the phenomenon of

decoherence may lead to mistakes that diminish the precision of VQE computations.

In order to tackle these difficulties, current research endeavors are concentrated

on creating enhanced optimization methods specifically designed for VQE, improv-

ing quantum error correction and mitigation strategies [15, 16], and upgrading

quantum hardware technologies. Furthermore, investigating hybrid quantum-

classical methods and inventive ansatz constructs show potential for enhancing

the efficiency and usefulness of the Variational Quantum Eigensolver (VQE) in

real-world scenarios [17].

Overall, VQE is a very promising method for addressing quantum chemistry

issues and emulating quantum systems with the use of quantum devices that

are expected to be available in the near future. Although there has been notable
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advancement, further investigation is required to address the current obstacles

and fully use the capabilities of VQE in the field of quantum chemistry and beyond.

2.0.4 Quantum Kernel Methods

Quantum Kernel Methods (QKMs) are a category of machine learning algorithms

that use principles from quantum computing to carry out a range of tasks, such

as classification, regression, and clustering. Quantum kernel methods (QKMs)

enhance classical kernel techniques by integrating quantum characteristics, such

as quantum kernel functions and quantum feature maps.

The core of QKMs is centered on the premise of quantum feature spaces, in

which data points are transformed into high-dimensional quantum states via

the use of quantum feature maps. Subsequently, these quantum states are used

to establish quantum kernel functions, which measure the degree of similarity

between data points in the feature space.

The quantum kernel function K(xi, x j) quantifies the inner product between

the quantum states associated with input data points xi and x j. A frequently used

quantum kernel function is the quantum inner product.

(2.53) K(xi, x j)= |〈ψ(xi)|ψ(x j)〉|2 = |〈0|U†(xi)U(x j)|0〉|2

The quantum states |ψ(xi)〉 and |ψ(x j)〉 correspond to the input data points xi

and x j, respectively. The quantum inner product quantifies the similarity between

quantum states and is used to establish the quantum kernel matrix.

2.0.4.1 Quantum Kernel Estimation

The kernel estimation can be performed using the following steps in algorithm ??.

In this approach, we conduct a total of R measurements and increment the

value of r by 1 each time we encounter a string consisting entirely of zeros. The

likelihood of seeing a string consisting entirely of zeros is thus equal to the ratio

of "r" to "R". The estimated value of the kernel κp(xi, x j) may deviate from the

actual value of the kernel κ(xi, x j) by an additional sampling error that is directly

proportional to 1p
R

, where κp(xi, x j)= κ(xi, x j)+ 1p
R

.
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Algorithm 1 Quantum Kernel Estimation
1: Set r = 0
2: for i = 1 to R do
3: Prepare |0〉⊗n

4: Apply U(x j)
5: Apply U†(xi)
6: Measure in the Z basis
7: if all bits are in 0 state then
8: r = r+1
9: end if

10: end for
11: Compute κ(x, y)= r

R

2.0.5 Quantum Feature Maps

Quantum feature maps play a crucial role in QKMs by encoding classical data into

quantum states. A quantum feature map Φ(x) is a quantum circuit that transforms

an input data point x into a quantum state |ψ(x)〉 in a high-dimensional feature

space.

One commonly used quantum feature map is the Quantum Fourier Transform

(QFT), which maps classical data points to quantum states using the Fourier basis.

The QFT is defined as:

(2.54) Φ(x)= 1p
2n

2n−1∑
k=0

e2πix·k|k〉

where x is the classical data point, n is the number of qubits, and |k〉 represents

the basis state in the quantum feature space.

Furthermore, we can use two feature maps based on encoding methods, which

are:

φ1 : x →|φ(x)〉
φ2 : x → ρ(x)(2.55)

We call these two feature maps type 1 and type 2 mapping.
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|0〉 H Rz(xi) •

|0〉 H Rz(x j) Rz(xix j)

Figure 2.1: Sample circuit for Rotation Encoding

2.0.5.1 Type 1 Encoding

Type 1 encoding includes several types of data encoding, including basis encoding,

amplitude encoding, angle encoding, and more.

In basis encoding, a data point is first converted into binary values, which

are then further converted into qubits. As a result, this creates vectors that are

orthogonal to each other. For instance, let’s consider a data point: [2,5]. This

data point is then associated with the binary representation [010,101], which in

turn corresponds to the vectors [00000100,00100000]. Orthogonal vectors may

be linearly separated with ease. Nevertheless, there exists a problem related to

learning from the training set.

Amplitude encoding is ineffective for processing substantially nonlinear data,

making it of moderate usefulness. The use of rotation encoding is beneficial since

it enables a non-linear mapping. As an example, let us examine the circuit shown

in Figure 2.1. By using entanglements and repeating the circuit shown with

dashed lines, we may get an implementation that is very challenging to achieve

using traditional methods. Contemporary encoding approaches use a consistent

approach, using parametrized rotation gates in combination with entanglement

and repetition. For instance, this concept is evident in the Pauli feature map and

ZZ feature map created by IBM.

The selection of a feature map for a given problem requires a lot of consideration.

A feature map that is readily reproducible conventionally is a bad option. Thus, a

traditionally difficult feature map is essential but not sufficient. It is important

to avoid feature maps that are easily implemented methodically. We should avoid

feature maps based on product states, amplitude encoding, or too sophisticated

(noise may complicate things).
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2.0.5.2 Type 2 Encoding

In Type 2 encoding, the data is represented by a density matrix ρ(x), which is

obtained by taking the outer product of a quantum state

ρ(x)= |φ(x)〉〈φ(x)|.(2.56)

In type 2 encoding, we use a mapping of the variable x to the density matrix

ρ(x). The kernel function κ(xi, x j) may be calculated as follows:

κ(xi, x j) = trace
(
|ρ(xi)〉†|ρ(x j)〉

)
= trace(|φ(xi)〉〈φ(xi) |φ(x j)〉〈φ(x j)|)
= 〈φ(xi) |φ(x j)〉trace(|φ(xi)〉〈φ(x j)|)
= 〈φ(xi) |φ(x j)〉trace(〈φ(x j) |φ(xi)〉)
= 〈φ(x j) |φ(xi)〉〈φ(xi) |φ(x j)〉 = |〈φ(xi) |φ(x j)〉|2(2.57)

κ(xi, x j) = |〈φ(xi) | φ(x j)〉|2 is always a positive quantity (in fact, this is the

same as the overlap). Now, the state |φ(xi)〉 can be prepared by using a unitary

gate U(xi), and thus |φ(x)〉 =U(xi)|0〉. With this, κ(x, x j)=
∣∣〈0

∣∣U†(x)U(x j)
∣∣0

〉∣∣2. The

computation of this kernel function may be achieved using the swap test, however,

the most cost-effective approach to measure this kernel is by employing a quantum

kernel estimate.

2.0.5.3 Quantum Support Vector Machine (QSVM)

Assuming we are dealing with a binary classification issue and the data can be

separated by a straight line. Linearly separable data refers to a kind of data

where the categorization may be achieved by drawing a straight line or a flat

surface. Furthermore, for the sake of clarity, let us consider data that exists in

two dimensions, as seen in Figure 1. Suppose we have created a line known as the

classifier, which is responsible for categorizing the data. The line in Figure 2.2 is

shown in the color purple. Next, we choose two data points - one from the positive

data (shown as cross) and the other from the negative data (shown as triangle) -
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Figure 2.2: (a) Linearly separable data. (b) Classification with SVM.

that are closest to the red line. Next, we will create two more lines (depicted in blue

in Figure 1) that are parallel to the red line and intersect with the closest positive

and negative data points. The blue lines, referred to as support vectors, constitute

a street. The objective of the support vector machine is to identify the street with

the maximum width. The selection of the classifier determines the outcome of the

street. Therefore, we can assert that the concept of the support vector machine is

to locate the classifier (a line in two dimensions and a hyperplane in n-dimensions)

that creates the broadest possible street.

In order to proceed with the discussion, it is necessary for us to have some

notations. Assuming that w is a vector that is perpendicular to the median of the

roadway and has an unknown magnitude, and u is an unknown data point. The

classifier is as follows:

H =+
w ·u ≥ c

H =−
(2.58)

In this equation, we are calculating the projection of vector u onto vector w,

and determining whether the magnitude of this projection is larger than a certain

constant c. If the value is larger, we choose our hypothesis (decision rule) as ’cross’;

otherwise, we choose the hypothesis as ’triangle.’

Regarding vectors in Rn, we may express this equation as f (u)= sign
(
wT u+b

)
,

with b being equal to −c. Let us assume that we have training data denoted by the

35



CHAPTER 2. FOUNDATIONAL METHODS AND ALGORITHMS

Figure 2.3: Support Vector Machine

variable x. It is important to mention that we have details about the labels of the

training data. Therefore, we may use the symbols x+ and x− to represent the ’cross’

and ’triangle’ data, respectively. Additionally, we make the assumption that the

provided training data complies with the following equations:

wT x++b ≥ 1, and wT x−+b ≤−1.(2.59)

To simplify the equations, we can combine them into a single equation by

adding a variable yi. This variable represents the label of the data points and can

be specified as yi =
{

1 if x+
−1 if x−

. By adding this variable, it is important to note

that the previous two equations can be written in a simplified manner:

yi

(
wT xi +b

)
≥ 1(2.60)
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Now, let’s choose two positions x+,s and x−,s that are located on either the blue

line or the support vectors. Therefore, these two points must satisfy the following

equations:

wT x+,s +b = 1, and wT x−, s+b =−1.(2.61)

The width of the street can be calculated by evaluating the projection of(
x+,s − x−,s

)
onto the unit vector that is perpendicular to the street, denoted as

w
∥w∥′ .

width = wT (
x+,s − x−, s

)
∥w∥ = 1−b− (−1−b)

∥w∥ = 2
∥w∥∗(2.62)

The objective of the support vector algorithm is to maximise the expression
2

∥w∥′ , which is equivalent to minimising the expression 1
2∥w∥2.

The objective is to minimise the expression 1
2∥w∥2 while satisfying the restric-

tions yi
(
wT xi +b

)−1. To do this, we may use the Lagrange minimization method,

which involves the introduction of a constant αi (generally referred to as the

Lagrange multiplier) prior to yi
(
wT xi +b

)−1.

L = 1
2
∥w∥2 −∑

i
αi

(
yi

(
wT xi +b

)
−1

)
(2.63)

By taking the derivative of L with respect to w and setting it equal to zero,

we get dL
dw = wT −∑

i αi yixT
i = 0. This equation yields the value of w as

∑
i αi yixi.

Furthermore, we may compute the derivative of L with respect to b and get
dL
db =∑

i αi yi = 0. The result is a fresh equation for L, which can be expressed as

L = 1
2
∥w∥2 −∑

i
αi

(
yi

(∑
j
α j yjxT

j xi

))
+∑

i
αi

= 1
2

(∑
i
αi yixT

i

)(∑
j
α j yjx j

)
−∑

i

∑
j
αiα j yi yjxT

j xi +
∑

i
αi

=−1
2

∑
i

∑
j
αiα j yi yjxT

j xi +
∑

i
αi

(2.64)
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Figure 2.4: Circular Data

Now, the decision rule can be written as

= sign

(∑
j
α j yjxT

j u+b

)
(2.65)

Upon analysing the two equations for L and the decision rule, it becomes clear

that both equations depend on the inner product between the data points.

L =−1
2

∑
i

∑
j
αiα j yi yj

〈
x j, xi

〉+∑
i
αi

f (u)= sign

(∑
j
α j yj

〈
x j,u

〉+b

)(2.66)

This is important since it allows us to replace a kernel function κ with a generic

inner product. The benefit of utilising κ(x, y) instead of 〈x, y〉 is as follows. κ(x, y)

represents the inner product of feature maps of data points (x, y). For data point

x, feature map φ(x) increases its dimension. In this higher dimension, linearly

inseparable data points may become separable. Take an example to illustrate.

Examine the data in Fig ??
The data 2.4 is not separable linearly. Drawing a line will not separate ’crosses’

from ’triangles’ which is obvious. This data may be separated by drawing a circle,

as indicated in Fig 2.5.

In mathematical terms, the effect of this is that the data points

[
x1

x2

]
can-

not be linearly classified. However, if we convert them to a higher dimension as
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Figure 2.5: Separating Circular data By SVM


x1

x2

x2
1 + x2

2

, they can be classified. The data points may be readily categorized by

comparing the third data characteristic with b. Therefore, this example shows how

the data may be divided into distinct groups in the new higher dimension in a

linear way. Therefore, the feature space is transformed into our new space, where

we can determine the inner product by using a kernel function.

Therefore, the function k(x, y) may be expressed as the inner product of φ(x)

and φ(y). However, entering a feature space might be difficult since the calculations

can get complex due to the greater number of dimensions. Kernel functions are

selected in such a manner that they can always be represented using the inner

product in the original dimension. Two frequently used choices for kernel functions

are:

a) Radial basis function:

κ (x1, x2)= 〈
φ (x1) ,φ (x2)

〉= e−∥(x1−x2)/∥σ(2.67)

b) Polynomial kernel:

κ (x1, x2)= 〈
φ (x1) ,φ (x2)

〉= (〈x1, x2〉+1)n ,(2.68)

where n is an integer.
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It is important to understand that the feature space in the radial basis function

is infinite-dimensional. Nevertheless, the processing of the kernel is much simpler

to understand.

Let us take one example. Suppose φ : (X1, X2)→ (
1,
p

2 X1,
p

2 X2, X2
1 ,
p

2 X1X2, X2
2
)
.

Now,

k(x, x)= 〈φ(x) |φ(x)〉 =
[

1
p

2 X1
p

2 X2 X2
1

p
2 X1X2 X2

2

]


1p
2 X1p
2 X2

X2
1p

2 X1X2

X2
2


= 1+2X2

1 +2X2
2 + X4

1 +2X2
1 X2

2 + X4
2

= 1+ (
X2

1 + X2
2
)2 +2

(
X2

1 + X2
2
)= (

1+ (
X2

1 + X2
2
))2 = (1+〈x | x〉)2.

(2.69)

Therefore, in this particular instance, we have shown that the function κ (x1, x2)=
(〈x1, x2〉+1)2 can be expressed as the inner product of feature vectors with a dimen-

sion of 6. It is important to highlight that feature maps must be nonlinear in order

to transform linearly inseparable data into linearly separable data. The primary

advantage of SVM is its ability to use kernel functions, enabling it to effectively

handle many types of data sets. We want to enhance the precision of these kernel

functions by implementing them on quantum computers, with the expectation of

achieving improved accuracy in the near future.
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ANALYSIS OF THE VEHICLE ROUTING PROBLEM

SOLVED VIA HYBRID QUANTUM ALGORITHMS IN THE

PRESENCE OF NOISY CHANNELS

Abstract

The vehicle routing problem (VRP) is an NP-hard optimization problem

that has been an interest of research for decades in science and industry. The

objective is to plan routes of vehicles to deliver goods to a fixed number of

customers with optimal efficiency. Classical tools and methods provide good

approximations to reach the optimal global solution. Quantum computing and

quantum machine learning provide a new approach to solving combinatorial

optimization of problems faster due to inherent speedups of quantum effects.

Many solutions of VRP are offered across different quantum computing plat-

forms using hybrid algorithms such as quantum approximate optimization

algorithm and quadratic unconstrained binary optimization. In this work, we

build a basic VRP solver for 3 and 4 cities using the variational quantum

eigensolver on a fixed ansatz. The work is further extended to evaluate the

robustness of the solution in several examples of noisy quantum channels. We

find that the performance of the quantum algorithm depends heavily on what
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noise model is used. In general, noise is detrimental, but not equally so among

different noise sources.

3.1 Introduction

Quantum computers, the next generation of computing technology, are expected to

solve complex optimization problems much faster than their traditional counter-

parts. As parallelism is quantum computing’s most notable benefit [18, 19], it is

only natural to turn to quantum computing to speed up calculations in complicated

optimization problems (such as those described by quantum approximate optimiza-

tion algorithm (QAOA) [10], adiabatic computation (AC) [5], Grover’s algorithm

[20], and others). When applied to a multidimensional problem, classical optimiza-

tion techniques in machine learning (ML) can take a long time to calculate global

optimum and consume a lot of CPU and GPU power [21]. In higher dimensional

problem spaces, classical algorithms have been shown to be less effective in general

[22]. This is due to the fact that NP-hard optimization tasks are often assigned to

ML algorithms [21].

VRP comes under the category of routing problems that try to address multiple

issues related to fleet management [23]. The objective is always to optimize vehicle

movement to minimize the cost or maximize the profit. Notwithstanding the

difficulty in delivering quick and dependable solutions to the computationally hard

VRP problem, several precise and heuristic techniques have been developed for

solving it [23, 24]. Describing the VRP in its simplest form, a single vehicle is

tasked to deliver goods at multiple customer locations; also, the vehicle needs to

return to pick up additional items when it runs out of goods [25]. The goal is to

minimize the cost of service by finding the best feasible combination of routes that

begin and terminate at a central location (the depot) while maximizing the reward

(often the inverse of the total distance the mean service time). This problem is

computationally difficult to solve, even with only a few hundred customer nodes,

and is classified as an NP-hard problem [21, 26].

Any VRP (n,k) involves (n−1) locations with k vehicles and a depot D [23, 27].

Its solution is a set of routes in which all k vehicles begin and terminate at the

given depot D, ensuring that each place is visited only once. The route with the
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shortest sum total of distance traveled by k vehicles is the ideal one. For a long time,

VRP has been studied as an extension of the classical traveling salesman problem

[24, 28], where now a group of k salesmen has to service collectively (n−1) locations,

such that each location is serviced exactly once [23]. Constraints such as vehicle

capacity or restricted covering time often complicate the VRP issue in practical

settings. As a result, a plethora of conventional and quantum approaches have been

presented in an effort to effectively solve the problem. Current quantum approaches

for solving optimization problems include QAOA [10], Quadratic unconstrained

binary optimization (QUBO) [29, 30], quantum annealing [31–33], and Variational

quantum eigensolver(VQE) [27], which we will define in detail later.

In this work, we study the VRP in a different light. Here we explore adding

controlled noise to an adapted quantum solution to determine if it improves or

degrades the overall results. Recent works in QAOA [34–37] and VQE algorithms

[38] studied the generic effects of noise in these hybrid algorithms. Our work

complements these results by analyzing the effects of noise in a detailed gate-based

simulation of an algorithm to solve VRP. We analyze the effect of various noise

channels on an existing, yet variable, ansatz developed as a solution to VRP. We

apply amplitude damping, bit-flip, phase-flip, bit-phase-flip, and depolarising noise

channels to VRP circuits, analyze the effects, and consolidate our findings.

The paper is organized as follows. Sec. 3.2 discusses fundamental mathematical

concepts such as combinatorial optimization, adiabatic computation, QAOA, and

the Ising model. Sec. 3.3 discusses the formulation of VRP using the concepts

discussed in the previous Section. Sec. 3.4 covers the basic building blocks of

circuits to solve VRP. Sec. 3.5 covers building an ansatz for VRP. Finally, Sec.

3.6 covers the effects of applying noise models on the VRP circuit. Then Sec. 3.7

presents the observations from the simulation results. In Sec. 3.8, we summarize

the effects of various noise models on the VRP circuit and future directions of

research.

3.2 Mathematical Background

The fundamental concepts used to solve routing problems involve techniques

and procedures from the field of combinatorial optimization. This is followed by
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converting the mathematical models to a quantum equivalent mathematical model

for formulating the objective function. The solution of the objective function is

often achieved by maximization or minimization of the function. In this section, we

outline the key concepts.

3.2.1 Combinatorial Optimization

A classical combinatorial optimization (CO) problem is finding an optimal object

from a finite set of objects. Exhaustive search is impractical in finding the optimal

object due to the potentially high number of objects. Mathematically defining, if

s is a string in some set S and m number of clauses, where s ≥ m, we have a

maximization or minimization problem, known as a CO problem. Each clause

expects a string parameter and returns a corresponding value [11]. It is the sum

over the m clauses that constitute the string’s total cost function. If we refer to the

input string as z and clauses as Cα, we can write the total cost function as

C(z)=
m∑

α=1
Cα (z).(3.1)

The objective is to identify z ∈ S such that C (z) ≥ C(z) for all z ∈ S (or, in the

case of minimization, C (z)≤C(z) for all z ∈ S). Here z is not required to be unique.

Cα(z) can take two values 0 or 1 and z can be written as z=z0z1z2. . . . . .zn−1 for

zi ∈{0,1}. Also, considering maximization problems (assuming Cα(z) is a clause),

the minimization problems can be studied as C
′
α(z)= 1−Cα(z)

C
′
(z) =

m−1∑
α=0

C
′
α(z)=

m−1∑
α=0

(1−Cα(z)) ,

= m−
m−1∑
α=0

Cα(z)= m−C(z).(3.2)

3.2.2 Adiabatic Quantum Computation

Adiabatic quantum computation (AQC) is a theoretical framework of a quantum

computer [5, 39]. The adiabatic theorem asserts that if the change to the Hamilto-

nian is sufficiently gradual, the system remains in the ground state of the given
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Hamiltonian[40]. The Hamiltonian is an energy operator of a system. In AQC,

there are two Hamiltonians: the driver Hamiltonian (Hd) and the problem Hamil-

tonian (Hp). The driver Hamiltonian (Hd) is the energy operator whose ground

state is easy to prepare, whereas the problem Hamiltonian (Hp) is the energy

operator whose ground state is obtained after evolution [5]. Interpolation times are

proportional to the energy gap between the two lowest states of the Hamiltonian

being used.

The procedure begins with an easy-to-prepare ground state (i.e., the ground

state of (Hd)) and ends (ideally) with the ground state of (Hp), which is, in general,

not directly characterizable. Mathematically, constitute function s(t) on [0,T] where

s (0)= 0 and s (T)= 1. T is the value of time set high enough for the adiabatic

theorem to hold. We define the Hamiltonian, H(t)= (1−s(t))HD+s(t)HP . According

to the adiabatic theorem, a system maintains its ground state of H(t) across the

whole interval [0,T], provided a suitable s(t); hence, the system is in the initial

ground state (Hd) at time t = 0, and it will evolve into the intended ground state

(Hp) at time t = T. In general, it is challenging to assess the integral describing

the temporal evolution under this time-dependent Hamiltonian [12]:

U(t)= τexp
{−i
ℏ

∫t

0
H(T)dT

}
.(3.3)

It is possible to assess this Hamiltonian using Trotterization methods [41]. We

divide U(T) into intervals of δt small enough such that the Hamiltonian is almost

constant over them. This permits us to use the much more streamlined formula

for the Hamiltonian that is independent of time. Assuming U(b,a) is the time

evolution from instant a to instant b.

U(T,0) = U(T,T −δt)U(T −δt,T −2δt) · · ·U(δt,0),

=
p∏

j=1
U( jδt, ( j−1)δt),

≈
p∏

j=1
e−iH( jδt)δt.(3.4)

Where the approximation gets better as p gets larger (or, in other words, as

δt gets smaller), and where δt is measured in ℏ. Now using the approximation
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ei(A+B)x=eiAxeiBx+O
(
x2) and adding Hamiltonian H( jδt)= (1−s( jδt))HD+s( jδt)HP

the integral U(t) becomes,

U(T,0)≈
p∏

j=1
e−i(1−s( jδt))HDδte−is( jδt)HPδt.(3.5)

AQC may be approximated by allowing the system to develop under HP for a

small s( jδt)δt and then HD for a small (1−s ( jδt) )δt, and unitaries can be derived

for these operations using U=e−iαHδt. Here, α is an integer in the range [0,1], and

this includes the scaling resulting from s( jδt). AQC forms the theoretical basis of

the variational quantum algorithm QAOA, which is discussed briefly in the next

section.

3.2.3 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid variational

algorithm, introduced by Farhi et al. [5, 10]. It combines principles of adiabatic

quantum computation and classical optimization. In adiabatic computation, the

system transitions from the driver Hamiltonian’s eigenstate to the problem Hamil-

tonian’s eigenstate, useful in optimization contexts.

For optimization, the problem Hamiltonian, C, and the driver Hamiltonian, B,

are defined as:

(3.6) C|z〉 =
m∑

α=1
Cα(z)|z〉, B =

n∑
j=1

σx
j ,

where σx
j is the Pauli x operator on bit z j. The evolution operators UC(γ)= e−iγC and

UB(β)= e−iβB enable the system to evolve under C and B for specified durations,

respectively.

QAOA constructs the state:

(3.7) |β,γ〉 = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C|s〉,

where |s〉 is the superposition of all input qubits. The expectation value of the cost

function,
∑m

α=1〈β,γ|Cα|β,γ〉, provides an approximate solution to the optimization

problem through simplex or gradient optimization [42].
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3.2.4 Ising Model

The Ising model of ferromagnetism is a well-established mathematical model used

extensively in the field of statistical mechanics [43, 44]. There are two possible

states for the magnetic dipole moments of atomic "spins" (+1 and 1), each of which

is represented by a discrete variable in the model. Each spin is able to communicate

with its neighbors because of how they are organised in a graph, usually a lattice

(where the local structure regularly repeats in all directions). The system tends

towards the lowest energy state when neighboring spins agree, but heat interrupts

this tendency, allowing for the emergence of alternate structural phases. The model

serves as a simplification of reality that may be used to spot phase transitions [45].

Using the following Hamiltonian, we can describe the sum of the spin energies:

Hc =− ∑
〈i, j〉

Ji jσiσ j −h
∑

σi,(3.8)

where Ji j represents the interaction between i and j, which are adjacent spins,

and h represents an external magnetic field. If J is positive, the ground state

at h = 0 is a ferromagnet. If J is negative, the ground state at h = 0 is an anti-

ferromagnet for a bipartite lattice. Hence for simplification and in the context of

this document, we can write the Hamiltonian as

Hc =− ∑
〈i, j〉

Ji jσ
z
i σ

z
j −

∑
hiσ

x
i .(3.9)

Here σz and σx represent Pauli z and x operator. For simplification, we can

consider the following conditions to be ferromagnetic (Ji j > 0), h = 0 assuming no

external influence on the spin. Thus we can rewrite the Hamiltonian as follows,

Hc =− ∑
〈i, j〉

Ji jσ
z
i σ

z
j =− ∑

〈i, j〉
σz

i σ
z
j .(3.10)

3.2.5 VQE

The Variational Quantum Eigensolver (VQE) is a hybrid quantum-classical al-

gorithm designed to determine the eigenvalues of a Hamiltonian H, utilizing a
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parameterized trial quantum state |ψ(⃗θ)〉 [46]. The expectation value of H, given

the state |ψ(⃗θ)〉, is represented as:

(3.11) E(⃗θ)= 〈ψ(⃗θ)|H |ψ(⃗θ)〉 .

The Hamiltonian H is spectrally decomposed into:

(3.12) H =
n∑

i=1
λi |ψ〉i 〈ψ|i ,

where λi are the eigenvalues and |ψ〉i are the orthogonal eigenstates of H.

The trial state |ψ(⃗θ)〉 is a superposition of these eigenstates:

(3.13) |ψ(⃗θ)〉 =
n∑

i=1
αi (⃗θ) |ψ〉i ,

leading to the expectation:

(3.14) E(⃗θ)=
n∑

i=1
|αi (⃗θ)|2λi.

VQE iteratively adjusts θ⃗ to minimize E(⃗θ), aiming to approximate λmin, the

lowest eigenvalue of H. This process utilizes a quantum circuit, parameterized

by θ⃗, and a classical optimizer to find the minimum expectation value, which is

critical for solving combinatorial optimization problems.

3.3 Modelling VRP in Quantum

To find a solution to the vehicle routing problem, we can map the cost function to

an Ising Hamiltonian Hc [45]. The minimization of Ising Hamiltonian Hc gives

the solution to the problem. To begin, let us consider an arbitrary connected graph

of n vertices and a binary decision variable xi j who has a value 1 if there exists

an edge between i and j for edge weight wi j > 0 else; the value is 0. To represent

the VRP problem, we need n× (n−1) decision variables. For every edge from i → j,
we define two sets of nodes source [i] and target[ j]. The set source [i] contains

the nodes j to which i sends an edge j ϵ source[i]. The set target [ j] contains the

nodes i to which i sends an edge i ϵ target[ j]. We define VRP as follows [27, 47],
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V RP(n,k)= min
{xi j}i→ j∈{0,1}

∑
i→ j

wi jxi j,(3.15)

where k is the number of vehicles and n is the total number of locations.

Considering the starting location as 0th location or Depot D, we have n−1 locations

for vehicles to travel. This is subject to the following constraints,

∑
j∈ source [i]

xi j = 1,∀i ∈ {1, . . . ,n−1},∑
j∈ target [i]

x ji = 1,∀i ∈ {1, . . . ,n−1},∑
j∈ source [0]

x0 j = k,∑
j∈ target [0]

x j0 = k

ui −u j +Qxi j ≤ Q− q j,∀i ∼ j, i, j ̸= 0,

qi ≤ ui ≤ Q,∀i, i ̸= 0.(3.16)

The first two constraints impose the restriction that the delivering vehicle

must visit each node only once. The middle two constraints enforce the restriction

that the vehicle must return to the depot after delivering the goods. The last two

constraints impose the sub-tour elimination conditions and are bound on ui, with

Q > q j > 0, and ui,Q, qi ∈R.

For the VRP equation, we can form the Hamiltonian of VRP as follows [27],
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HV RP = HA +HB +HC +HD +HE,

HA = ∑
i → j

wi jxi j,

HB = A
∑

i∈1,...,n−1

(
1− ∑

j∈ source [i]
xi j

)2

,

HC = A
∑

i∈1,...,n−1

(
1− ∑

j∈ target[i]
x ji

)2

,

HD = A

(
k− ∑

j∈ source[0]
x0 j

)2

,

HE = A

(
k− ∑

j∈ target[0]
x j0

)2

,(3.17)

where A > 0 is a constant.

The set of all binary decision variables xi j can be represented in vector form as,

−→x = [
x(0,1), x(0,2), . . . x(1,0), x(1,2), . . . x(n−1,n−2)

]T .(3.18)

Using the above vector, we can define two additional vectors for each node,

−→z S[i] = x⃗ ∋ xi j = 1, xk j = 0 , k ̸= i , ∀ j,k ∈ {0, . . . ,n−1},
−→z T[i] = x⃗ ∋ x ji = 1, x jk = 0 , k ̸= i , ∀ j,k ∈ {0, . . . ,n−1}.

(3.19)

∑
j∈ source [i]

xi j = z⃗T
S[i]⃗x,∑

j∈ target [i]
x ji = z⃗T

T[i]⃗x.(3.20)

The above vectors will assist in the formulation of the QUBO model of VRP. For

a linked graph G = (N,V ), the QUBO model [29, 30, 48, 49] is defined as,
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f (x)QUBO = min
x∈{0,1}(N×V )

xTQx+ gT x+ c ,(3.21)

where Q is a quadratic coefficient of the edge weights, g is a linear coefficient

of the node weights, and c is a constant. In order to find these coefficients in the

QUBO formations of HV RP given in Eq. 3.17 we first put in Eqs. 3.20 in terms HB

and Hcrespectively, then expand and regroup the expression of HV RP according to

Eq. 3.21

H = A
n−1∑
i=0

[
zS[i]zT

S[i] + zT[i]zT
T[i]

]
x⃗2

+ wT x⃗−2A
n−1∑
i=1

[
zT

S[i] + zT
T[i]

]
x⃗

− 2Ak
[
zT

S[0] + zT
T[0]

]
x⃗+2A(n−1)+2Ak2.

(3.22)

Hence for QUBO formulation of Eq. (3.17) we get the coefficients Q(n(n−1)×
n(n−1)),g(n(n−1)×1) and c :

Q = A
[[

zT[0], . . . , zT[n−1]
]T [

zT[0], . . . , zT[n−1]
]

+ (In ⊗J(n−1,n−1))] ,

g = W −2Ak
(
(e0 ⊗Jn−1)+ [

zT[0]
]T

)
,

+2A (Jn ⊗Jn−1) ,

c = 2A(n−1)+2Ak2.(3.23)

Here, J is the matrix of all ones, I is the identity matrix, and e0 = [1,0, . . . ..,0]T .

The binary decision variable xi j is transformed to spin variable si j ∈ {−1,1} as

xi j = (si j +1)/2.

From the above Eqs, we can expand Eq. (3.21) to form the Ising Hamiltonian of

VRP [29],

HIsing =−∑
i

∑
i< j

Ji jsis j −
∑

i
hisi +d.(3.24)
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Here, the terms Ji j,hi and d are defined as follows,

Ji j = −Q i j

2
, ∀ i < j,

hi = g i

2
+∑ Q i j

4
+ ∑ Q ji

4
,

d = c+∑
i

g i

2
+∑

i

∑
j

Q i j

4
.(3.25)

(a) (b)

Figure 3.1: (a) Sample circuit showing gate selections for Hcost. (b) Sample circuit
showing gate selections with additional U gate after barrier for Hmixer. Note: The
sample circuits displayed in the figures represent the building blocks of the actual
circuit and do not represent actual angles that are obtained as a solution of VRP
using VQE.

Note: The sample circuits displayed in the figures represent the building blocks

of the actual circuit and do not represent actual angles that are obtained as a

solution of VRP using VQE.

3.4 Analysis And Circuit Building

In this section, we create a gate-based circuit to realize the above formulation using

the IBM gate model, which we have implemented using the Qiskit framework [50].

For any arbitrary VRP problem using qubits, we begin with the state of |+〉⊗n(n−1)

the ground state of Hmixer by applying the Hadamard to all qubits initialized as

zero states, and we prepare the following state.

|β,γ〉 = e−iHmixerβp e−iHcostγp ...

...e−iHmixerβ0 e−iHcostγ0 |+〉n⊗(n−1) .(3.26)
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The energy E of the state |β,γ〉 is calculated by the expectation of Hcost from

Eq. (??). Once again, the Hcost term may be expressed in terms of Pauli operators

using the Ising model, as

Hcost =−∑
i

∑
i< j

Ji jσ
z
i σ

z
j −

∑
i

hiσ
z
i −d.(3.27)

Thus for a single term of state in |β,γ〉 as β0,γ0, the expression reads,

e−iHmixerβ0 e−iHcostγ0 . The first term Hcost can be expanded to following,

eiJi jγ0σiσ j = cos Ji jγ0I + i sin Ji jγ0σiσ j,

=


eiJi jγ0 0 0 0

0 e−iJi jγ0 0 0

0 0 e−iJi jγ0 0

0 0 0 eiJi jγ0

 ,

= M.(3.28)

Applying CNOT gate on, before, and after the above matrix ‘M’ we can swap

the diagonal elements,

CNOT(M)CNOT =


eiJi jγ0 0 0 0

0 e−iJi jγ0 0 0

0 0 eiJi jγ0 0

0 0 0 e−iJi jγ0

 .

(3.29)

Observing the upper and lower blocks of the matrix, we can rewrite,

[
1 0

0 1

]
⊗

[
eiJi jγ0 0

0 e−iJi jγ0

]
= I ⊗ eiJi jγ0

[
1 0

0 e−2iJi jγ0

]
.

(3.30)[
1 0

0 e−2iJi jγ0

]
is a phase gate. Looking at the 2nd term of Hcost we get,
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Hcost = ∑
i

hiσ
z
i ,

eihiγ0σ
z
i = coshiγ0I + isinhiγ0σ

z
i ,

= coshiγ0

[
1 0

0 1

]
+ isinhiγ0

[
1 0

0 −1

]
,

=
[

eihiγ0 0

0 e−ihiγ0

]
,

= eihiγ0

[
1 0

0 e−2ihiγ0

]
.(3.31)

Fig. 3.1 depicts the basic circuit with two qubits along with gate selections for

Hcost.

Similarly Hmixer can be derived as follows

Hmixer =−∑
i
σx.(3.32)

Considering a single term of Hmixer and taking the unitary,

e−iHmixerβ0 = e−i(−σx)β0 ,

= eiσxβ0,

= cosβ0I+ isinβ0σx,

=
[

cosβ0 isinβ0

isinβ0 cosβ0

]
.(3.33)

The IBMQ U gate is defined as follows.

(3.34) U =
[

cosθ/2 −eiλ sinθ/2

eiφ sinθ/2 ei(λ+φ) cosθ/2

]
.

Comparing Eqs. (3.30), (3.31), (3.33) and (3.34), we can establish relation of

circuit parameters with γ,β to U gate which will form building blocks of circuit.

From Fig. 3.1, the circuit represents Hcost term, where the first U gate takes

the parameters, θ = 0,φ = −2Ji jγ0, and λ = 0, and the second U gate takes the

parameters, θ = 0,φ=−2hiγ0, and λ= 0. Similarly, in Fig. 3.1(b), the U gate after

the barrier represents the Hmixer term having the parameters θ = 2β0,φ=π/2, and

λ=−π/2.
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3.5 VQE Simulation of VRP

We construct the VRP circuit using the above equations and create the Hamil-

tonians for 3-city and 4-city scenarios. Since we need n(n−1) qubits, we end up

with only Hamiltonians and circuits with 6 (Fig. 3.2) and 12 qubits. Beyond four

cities, it is impossible to simulate in a classical desktop computer due to memory

limitations. We create the ansatz using a quantum circuit defined in the previous

section and run it across various VQE optimizers available in the IBM Qiskit

framework: COBYLA, L_BFGS_B, SPSA, and SLSQP. We run the circuit up to 4

layers across all the optimizers and obtain the results depicted in Fig. 3.3 and Fig.

3.4. The primary difference between the Figs. 3.3 and 3.4 is that while the former

represents average energy value the later represents minimum energy value of 15

consecutive runs at each layer.

The tables for these figures are presented in Supplementary material section

3.9 with tables 3.6 and 3.7. The figures are derived from 15 consecutive runs of the

VRP circuit, each with all the optimizers and four layers. While the average energy

values of VRP simulations decrease as optimizations increase across layers for

most of the six qubit circuits, the same trend is not observed for 12 qubit circuits.

Also, the energy curves vary significantly across all optimizers. Similarly, for

minimum energy graphs Fig.3.4, energy values have no clear decreasing trend as

optimization layers increase. Yet from the minimum energy graphs, we can reliably

say that the protocol has achieved the minimum energy value, However they do not

always follow the downward trend or stay at the same level as optimization layers

increase. This, of course, is heavily dependent on the optimizer. Thus when selecting

an optimizer for simulation, we chose the optimizer that achieves the lowest

minimum, the fewest number of optimization layers. In summary, we have found

that COBYLA is the best-performing optimizer, followed by SPSA, L_BFGS_B, and

SLSQP. However, in the following, when we pass the circuit through various noise

models, we will use only the COBYLA optimizer.
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Figure 3.2: VRP Simulation circuit for 6 Qubits
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Figure 3.3: Plot illustrating the circuit simulation of VRP with 5 layers using
various optimizers (COBYLA, L_BFGS_B, SLSQP, SPSA). The plot consists of two
separate graphs depicting the simulation output of 6 qubit and 12 qubit circuits
each executed with 1024 shots, respectively. Each plot, in turn, consists of four
lines indicating energy values for different optimizers. The average value at each
Layer is represented in pairs with (layer, average energy) format.
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Figure 3.4: Plot illustrating the circuit simulation of VRP with 5 layers using
various optimizers (COBYLA, L_BFGS_B, SLSQP, SPSA). The plot consists of
two graphs depicting the simulation output of 6 qubit and 12 qubit circuits each
executed with 1024 shots, respectively. Each plot consists of four lines indicating
energy values for different optimizers. The minimum value at each Layer is repre-
sented in pairs with (layer, minimum energy) format.
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3.6 Noise Model Simulation of VQE

In a noisy quantum environment, a pure input state will be transformed into a

mixed state represented as a density matrix [36, 51]. In the case of a 6-qubit state

pure state |ψ〉qoq1q2q3q4q5
the density matrix can be defined as ρ = |ψ〉qoq1q2q3q4q5

〈ψ|qoq1q2q3q4q5
.

After the implementation of the noise model, the density matrix takes the following

form,

ξr(ρ)=∑
m

(Erq0
m )(Erq1

m )...(Erq5
m )ρ

×(Exq0
m )†(Exq1

m )†...(Exq5
m )†,(3.35)

where r ∈ {A,B,W ,F,D}. The elements of the noise channels are described as

follows, A is amplitude damping noise, B is bit-flip noise, W is phase-flip noise, F
is bit-phase-flip noise, and D is depolarising noise. We apply these noise channels

to our VRP circuit and ansatz, which is variable based on the number of qubits

(6 or 12) and layers (1 to 5). For simulation purposes, we choose the optimizer

COBYLA as it has the best performance characteristics in the simulation of VQE.

We restrict the noise probability to 0.5 as noisy environments beyond this noise

level are unlikely and irrelevant in practice. The following subsections discuss the

noise channels and operators we experimented on in the VRP circuit.

3.6.1 Amplitude Damping

The energy dissipation is a consequence of the interaction of the quantum system

with an amplitude-damping channel. A quantum system gaining or losing energy

from or to its environment is described as a change in amplitude rather than phase

[51, 52]. If κA is the probability of gain or loss of amplitude or decoherence rate,

the Kraus operators of amplitude damping channel can be described as follows,

EA
0 =

[
1 0

0
p

1−κA

]
,

EA
1 = p

κ A

[
0 1

0 0

]
.(3.36)
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3.6.2 Bit-Flip Noise

Random bit-flip errors characterize bit-flip noise [52] with probability κB. Thus,

the Kraus operators of the bit-flip noise channel can be described as,

EB
0 =

√
1−κB I,

EB
1 =p

κB X =p
κB

[
0 1

1 0

]
.(3.37)

3.6.3 Phase Flip Noise

Phase-flip noise alters the phase parameter of the quantum system without ex-

change of energy [51, 52]. The decoherence rate or the phase-flip noise parameter

also follows the simple Bernoulli distribution with probability parameter κW . thus

the Kraus operators of phase-flip noise channel can be defined as Eq. (3.38),

EW
0 =

√
1−κW I,

EW
1 = p

κW Z =p
κW

[
1 0

0 −1

]
.(3.38)

3.6.4 Bit-Phase Flip Noise

Bit-phase flip noise channel is characterized by a combination of random bit-flip

errors and a change in the quantum system’s phase information without energy loss

[52]. Like other noise channels, the decoherence rate or the combined probability of

bit-phase flip error follows the distribution κF . The Kraus operator of the bit-phase

flip channel could be given by,

EF
0 =

√
1−κF I,

EF
1 = p

κF Y =p
κF

[
0 −i
i 0

]
.(3.39)
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3.6.5 Depolarizing Noise

A depolarizing noise channel leaves the system untouched or replaces it with a

maximally mixed state of I/d for a d-level quantum system. The decoherence rate

or the depolarization noise probability follows the distribution with parameter κD .

The Kraus operators are as follows,

ED
0 =

√
1−κD I,

ED
1 =

√
κD

3
X =

√
κD

3

[
0 1

1 0

]
,

ED
2 =

√
κD

3
Y =

√
κD

3

[
0 −i
i 0

]
,

ED
3 =

√
κD

3
Z =

√
κD

3

[
1 0

0 −1

]
.

(3.40)

It is to be noted that, in all cases, the noise channel is applied locally to each qubit

in the circuit.
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Figure 3.5: Plot illustrating the average Deviation of the energy cost of VRP with
4 layers using various Amplitude damping and Bit-flip noise models. The plot
consists of two charts depicting the simulation output of 6 qubit and 12 qubit
circuits, respectively. The Average Deviation at each Layer is represented in pairs
with (Noise parameter, Average Deviation of Energy cost) format.
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Figure 3.6: Plot illustrating the average Deviation of the energy cost of VRP with 4
layers using Bit-phase-flip, and Depolarising noise. The plot consists of two charts
depicting the simulation output of 6 qubit and 12 qubit circuits, respectively. The
Average Deviation at each Layer is represented in pairs with (Noise parameter,
Average Deviation of Energy cost) format.
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Figure 3.7: Plot illustrating the average energy cost of VRP with 4 layers using
the Phase-flip noise model. The plot consists of two charts depicting the simulation
output of 6 qubit and 12 qubit circuits, respectively. The average deviation at each
Layer is represented in pairs with (Noise parameter, Average Deviation of Energy
cost) format.
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Qubits Layers Noise_Parameter Noise_Model
Amplitude_Damping Bit_Flip Bit_Phase_Flip Depolarising_Noise Phase_Flip

6

1

0.05 -12.053 -13.768 -4.247 -4.949 -2.033
0.1 -9.273 -9.577 -2.571 -2.437 -0.447

0.15 -10.121 -9.661 -3.383 -0.750 -0.036
0.2 -12.928 -9.614 -5.297 -0.608 0.049

0.25 -12.491 -10.965 -4.170 -0.416 0.058
0.3 -12.381 -10.883 -3.761 -0.261 0.059

0.35 -11.519 -9.809 -4.724 -0.045 0.059
0.4 -11.040 -9.881 -3.535 0.006 0.059

0.45 -9.440 -10.531 -2.724 0.034 0.059
0.5 -11.470 -11.999 -3.118 0.050 0.059

2

0.05 -13.698 -4.262 -1.668 -2.377 -1.601
0.1 -12.773 -6.576 -1.118 -0.748 -0.313

0.15 -12.495 -6.282 -1.313 -0.305 -0.055
0.2 -13.909 -5.872 -1.411 -0.052 0.058

0.25 -13.171 -3.002 -1.621 0.029 0.058
0.3 -12.834 -1.198 -1.699 0.055 0.059

0.35 -13.162 -1.603 -1.468 0.058 0.059
0.4 -12.760 -3.024 -1.304 0.059 0.059

0.45 -13.789 -3.790 -1.236 0.059 0.059
0.5 -12.986 -3.075 -1.237 0.059 0.059

3

0.05 -15.924 -2.332 -0.551 -1.167 -1.755
0.1 -14.026 -1.392 -0.605 -0.396 -0.476

0.15 -14.999 -3.239 -0.539 -0.031 -0.014
0.2 -12.909 -1.634 -0.492 0.053 0.058

0.25 -14.413 -2.651 -0.407 0.058 0.059
0.3 -15.029 -0.910 -0.600 0.059 0.059

0.35 -14.246 -1.864 -0.723 0.059 0.059
0.4 -13.519 -1.784 -0.574 0.059 0.059

0.45 -15.388 -1.621 -0.620 0.059 0.059
0.5 -14.377 -0.498 -0.693 0.059 0.059

4

0.05 -15.659 -0.969 -0.411 -0.681 -1.574
0.1 -15.055 -1.494 -0.446 -0.052 -0.357

0.15 -15.560 -0.213 -0.343 0.047 -0.022
0.2 -14.661 -1.312 -0.101 0.059 0.059

0.25 -14.771 -0.502 -0.219 0.059 0.059
0.3 -16.147 -0.193 -0.368 0.059 0.059

0.35 -13.608 -0.238 -0.440 0.059 0.059
0.4 -13.916 -0.012 -0.439 0.059 0.059

0.45 -13.427 -0.886 -0.241 0.059 0.059
0.5 -15.757 -0.074 -0.221 0.059 0.059

Table 3.1: VQE simulation of amplitude damping, bit-flip, phase-flip, bit-phase-flip,
and depolarizing channel for 6 qubits with 4 layers involving optimizer COBYLA,
where energy costs are averaged over 10 simulations.
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Qubits Layers Noise_Parameter Noise_Model
Amplitude_Damping Bit_Flip Bit_Phase_Flip Depolarising_Noise Phase_Flip

12

1

0.05 -42.626 -31.086 -1.522 -3.741 -1.056
0.1 -42.157 -33.947 -1.743 -0.919 -0.514
0.15 -38.465 -22.328 -2.430 -0.669 -0.660
0.2 -37.787 -38.835 -3.391 -0.637 -0.581
0.25 -46.766 -20.722 -2.142 -0.599 -0.609
0.3 -41.555 -30.384 -0.982 -0.653 -0.567
0.35 -37.722 -37.187 -2.105 -0.512 -0.444
0.4 -38.388 -35.172 -2.454 -0.618 -0.548
0.45 -40.835 -35.500 -3.122 -0.545 -0.482
0.5 -47.219 -45.676 -1.586 -0.565 -0.577

2

0.05 -47.215 -13.251 -0.416 -0.718 -0.658
0.1 -43.464 -11.857 -0.419 -0.255 -0.410
0.15 -40.368 -7.993 -0.299 -0.208 -0.383
0.2 -45.283 -2.685 -0.417 -0.242 -0.178
0.25 -48.947 -7.242 -0.359 -0.231 -0.363
0.3 -36.422 -5.921 -0.372 -0.209 -0.192
0.35 -44.922 -0.137 -0.431 -0.454 -0.255
0.4 -43.944 -9.986 -0.400 -0.113 -0.313
0.45 -46.463 -0.931 -0.556 -0.444 -0.274
0.5 -43.890 -1.993 -0.434 -0.259 -0.211

3

0.05 -46.368 -1.086 -0.409 -0.713 -0.662
0.1 -40.817 -0.656 -0.461 -0.690 -0.520
0.15 -37.797 -0.649 -0.493 -0.709 -0.786
0.2 -39.519 -4.338 -0.465 -0.649 -0.626
0.25 -48.781 -3.428 -0.402 -0.658 -0.823
0.3 -40.945 -1.416 -0.349 -0.576 -0.736
0.35 -38.358 -3.589 -0.288 -0.646 -0.529
0.4 -42.179 -3.328 -0.447 -0.605 -0.539
0.45 -41.264 -0.603 -0.585 -0.700 -0.523
0.5 -44.605 -2.647 -0.345 -0.613 -0.593

4

0.05 -46.110 -0.565 -0.509 -0.643 -0.533
0.1 -42.539 -1.276 -0.630 -0.628 -0.577
0.15 -42.971 -0.596 -0.616 -0.650 -0.611
0.2 -44.977 -0.560 -0.553 -0.676 -0.653
0.25 -39.561 -0.781 -0.508 -0.567 -0.680
0.3 -44.023 -0.624 -0.531 -0.651 -0.539
0.35 -40.907 -0.657 -0.507 -0.599 -0.606
0.4 -42.012 -2.570 -0.597 -0.594 -0.585
0.45 -43.650 -0.604 -0.736 -0.569 -0.681
0.5 -42.357 -0.608 -0.608 -0.571 -0.686

Table 3.2: VQE simulation of amplitude damping, bit-flip, phase-flip, bit-phase-flip,
and depolarizing channel for 12 qubits with 4 layers involving optimizer COBYLA,
where energy costs are averaged over 10 simulations.
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Qubits Layers Noise_Parameter Noise_Model
Amplitude_Damping Bit_Flip Bit_Phase_Flip Depolarising_Noise Phase_Flip

6

1

0.05 5.631 3.917 13.437 12.736 15.651
0.1 8.412 8.107 15.113 15.247 17.238

0.15 7.563 8.023 14.301 16.934 17.649
0.2 4.757 8.070 12.388 17.076 17.734

0.25 5.194 6.719 13.514 17.269 17.742
0.3 5.303 6.801 13.923 17.423 17.744

0.35 6.165 7.875 12.961 17.639 17.744
0.4 6.644 7.803 14.149 17.690 17.744

0.45 8.244 7.153 14.960 17.718 17.744
0.5 6.215 5.686 14.567 17.734 17.744

2

0.05 3.986 13.423 16.017 15.307 16.084
0.1 4.911 11.108 16.567 16.936 17.371

0.15 5.189 11.402 16.372 17.379 17.630
0.2 3.775 11.813 16.273 17.632 17.742

0.25 4.513 14.683 16.063 17.714 17.742
0.3 4.851 16.487 15.985 17.739 17.744

0.35 4.522 16.081 16.217 17.742 17.744
0.4 4.925 14.661 16.380 17.744 17.744

0.45 3.895 13.894 16.449 17.744 17.744
0.5 4.698 14.610 16.447 17.744 17.744

3

0.05 1.760 15.352 17.133 16.518 15.929
0.1 3.658 16.292 17.080 17.289 17.208

0.15 2.686 14.445 17.146 17.653 17.670
0.2 4.776 16.051 17.192 17.737 17.742

0.25 3.271 15.033 17.278 17.742 17.743
0.3 2.655 16.774 17.084 17.744 17.744

0.35 3.438 15.820 16.961 17.744 17.744
0.4 4.165 15.901 17.110 17.744 17.744

0.45 2.297 16.063 17.065 17.744 17.744
0.5 3.307 17.187 16.991 17.744 17.744

4

0.05 2.025 16.715 17.273 17.003 16.111
0.1 2.629 16.190 17.238 17.632 17.328

0.15 2.124 17.472 17.342 17.732 17.662
0.2 3.023 16.373 17.583 17.743 17.743

0.25 2.914 17.182 17.465 17.744 17.744
0.3 1.537 17.492 17.316 17.744 17.744

0.35 4.076 17.447 17.244 17.744 17.744
0.4 3.769 17.672 17.246 17.744 17.744

0.45 4.257 16.798 17.443 17.744 17.744
0.5 1.927 17.610 17.463 17.744 17.744

Table 3.3: For 6 qubits with 4 layers and using COBYLA as an optimizer, the
table above shows the average deviation from the classical minimum (over 10
simulations) for VQE simulations utilizing amplitude damping, bit-flip, phase-flip,
bit-phase-flip, and depolarising channels.
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Qubits Layers Noise_Parameter Noise_Model
Amplitude_Damping Bit_Flip Bit_Phase_Flip Depolarising_Noise Phase_Flip

12

1

0.05 23.058 34.599 64.163 61.943 64.628
0.1 23.528 31.738 63.942 64.765 65.171
0.15 27.220 43.356 63.254 65.015 65.025
0.2 27.898 26.850 62.294 65.048 65.104
0.25 18.919 44.963 63.543 65.086 65.076
0.3 24.129 35.301 64.703 65.031 65.118
0.35 27.963 28.498 63.579 65.173 65.241
0.4 27.297 30.513 63.231 65.067 65.136
0.45 24.850 30.185 62.563 65.140 65.203
0.5 18.465 20.008 64.099 65.120 65.107

2

0.05 18.469 52.433 65.268 64.967 65.026
0.1 22.220 53.827 65.266 65.429 65.275
0.15 25.317 57.691 65.385 65.477 65.302
0.2 20.402 62.999 65.268 65.443 65.507
0.25 16.737 58.443 65.325 65.453 65.322
0.3 29.263 59.764 65.313 65.475 65.493
0.35 20.763 65.548 65.254 65.231 65.430
0.4 21.740 55.698 65.285 65.572 65.372
0.45 19.222 64.753 65.129 65.241 65.411
0.5 21.795 63.692 65.251 65.425 65.474

3

0.05 19.317 64.599 65.275 64.972 65.023
0.1 24.868 65.029 65.224 64.994 65.164
0.15 27.888 65.035 65.191 64.976 64.899
0.2 26.165 61.347 65.220 65.036 65.059
0.25 16.904 62.256 65.283 65.026 64.862
0.3 24.740 64.269 65.335 65.108 64.949
0.35 27.327 62.096 65.397 65.038 65.156
0.4 23.506 62.356 65.238 65.079 65.146
0.45 24.421 65.082 65.100 64.985 65.162
0.5 21.079 63.038 65.339 65.072 65.092

4

0.05 19.575 65.120 65.175 65.042 65.152
0.1 23.145 64.408 65.055 65.057 65.108
0.15 22.713 65.088 65.068 65.034 65.074
0.2 20.707 65.124 65.132 65.008 65.031
0.25 26.124 64.903 65.177 65.117 65.004
0.3 21.662 65.061 65.153 65.033 65.145
0.35 24.778 65.028 65.178 65.086 65.079
0.4 23.672 63.115 65.088 65.090 65.100
0.45 22.034 65.080 64.949 65.116 65.004
0.5 23.328 65.076 65.077 65.114 64.998

Table 3.4: For 12 qubits with 4 layers and using COBYLA as an optimizer, the
table above shows the average deviation from the classical minimum (over 10
simulations) for VQE simulations utilizing amplitude damping, bit-flip, phase-flip,
bit-phase-flip, and depolarising channels.

3.7 Inferences from Simulation

In the experiment of simulating VRP across various noise channels, we vary the

noise probability from 0.05 to 0.5 and observe the energy values of VQE. We execute

the VRP circuit with 1 to 4 layers on our chosen optimizer COBYLA for both 6 qubit

and 12 qubit configurations. The experiment is repeated ten times for each noise

model with different noise realizations. In the same experiment, we calculate the
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minimum eigenvalue of classical Hamiltonian and record the difference in energy

cost after noise induction. The state’s energy is recorded for each layer from 1 to 4

of the QAOA circuit. These values are averaged over the ten iterations to arrive

at the average energy cost for each value of the noise parameter and each layer

number. The results are shown in Table 3.1 and Table 3.2. The deviation from the

optimal value is shown in Table 3.3 and Table 3.4. Finally, table 3.5 summarizes

the inferences on deviation from the classical minimum for various noise models.

We observe that VQE results are impacted due to the induction of noise. In the

below subsections, we will describe our observations briefly for each noise model.

3.7.1 Amplitude damping Noise

Amplitude damping noise shows values range between 50% to 75% of classical

minimum for both 6 qubit (−17.68) and 12 qubit (−65.684) circuits. There are a

few outliers where the algorithm can reach very close to the classical minimum

for 6 qubit circuits. For 12 qubit circuits, the values are mostly above 50% of

classical minimum but never reach classical minimum as close as in 6 qubit

circuits. This trend is seen across multiple layers for amplitude damping channels.

It is noticed that the global minimum across layers is observed at the 2nd layer

at −48.947, but it is very close to the minimum of the 1st layer at −47.219. Hence

we can infer that increasing layers does not necessarily improve the results for

the amplitude-damping channel. Table 3.8 summarizes the amplitude damping

average energy values. Figure 3.5 refers to the average deviation of energy cost

from the classical minimum at each noise parameter across layers. This again

confirms that deviation from classical minimum energy cost due to amplitude

damping noise remains within 25% to 50%, which is recorded in the table 3.5.

3.7.2 Bit-Flip Noise

For the bit-flip noise channel, we note that the VQE values are 50% or above the

classical minimum for the first layer, but it degrades to around 25% for 2nd layer,

falling further on 3rd and finally close to zero on 4th layer. Since this trend is seen

in both 6 qubit and 12 qubit circuits, we can infer that increasing the number of

layers degrades the VQE values for the bit-flip noise channel. We have summarized
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the bit-flip noise channel average energy values in the table 3.10. Figure 3.5

refers to the average deviation of energy cost from the classical minimum at each

noise parameter across layers. This again confirms that deviation from classical

minimum energy cost due to bit-flip noise remains within the range of 50% to 75%

for the first two Layers before deteriorating further, which is recorded in the table

3.5.

3.7.3 Bit-Phase-Flip Noise

There is a similar observation for the bit-phase-flip channel. The VQE values are

25% (or above) of the classical minimum for the first layer, but they degrade as the

layers increase for 6 qubit. For 12 qubit circuits, the VQE values are consistently

poor. We have summarized bit-phase-flip noise channel average energy values in

the table 3.14. Figure 3.6 refers to the average deviation of energy cost from the

classical minimum at each noise parameter across layers. This again confirms that

deviation from classical minimum energy cost due to bit-phase-flip noise remains

close to 100%; this is recorded in the table 3.5.

3.7.4 Phase-Flip and Depolarizing Noise Channel

Finally, for both depolarizing and phase-flip channels, the VQE values remain close

to zero for both 6 qubit and 12 qubit circuits. It appears that phase-flip and depo-

larizing noise channels are the most detrimental in VQE circuits (Supplementary

Tables 3.12 and 3.16). The figures 3.6 and 3.7 refer to the average deviation of

energy cost from the classical minimum at each noise parameter across layers.

This again confirms that deviation from classical minimum energy cost due to

depolarising and phase-flip noise remains close to 100%, recorded in the table 3.5.

3.7.5 Data gathering and Statistics Collection

In all the simulations, we have used a quantum instance object and a fixed random

seed in the Qiskit framework to avoid VQE terminating early and mitigate statisti-

cal fluctuations. Hence, all the noise models used here are applied to the quantum

instance object, which in turn applies noise to the circuit whose parameters are
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varied by VQE to arrive at a result. We have executed ten iterations of VQE using

various noise channels described above. From the results of the ten simulations,

we have taken the average energy value of each noise parameter at each layer.

Our figure of merit is the difference between the layer’s classical minimum and

average energy cost. We remind the reader that gate-based simulations are ex-

tremely expensive. The results reported here amounted to 219 hours of CPU time

on a standard laptop computer using Qiskit’s built-in simulators [50]. While more

iterations would improve the variability of the average energy calculations, some

clear trends have already been observed.

Noise Channel Qubits Classical Minimum 1st Layer Dev. % 2nd Layer Dev.% 3rd Layer Dev. % 4th Layer Dev.%

Amplitude Damping 6 -17.68 25% - 50% 25% - 50% 25% - 50% 25% - 50%
Bit Flip 6 -17.68 50% 75% nearly 100% nearly 100%
BitPhase Flip 6 -17.68 nearly 100% nearly 100% nearly 100% nearly 100%
Phase Flip 6 -17.68 nearly 100% nearly 100% nearly 100% nearly 100%
Depolarising 6 -17.68 75% nearly 100% nearly 100% nearly 100%

Noise Channel Qubits Classical Minimum 1st Layer Dev. % 2nd Layer Dev.% 3rd Layer Dev. % 4th Layer Dev.%

Amplitude Damping 12 -65.684 25% - 50% 25% - 50% 25% - 50% 25% - 50%
Bit Flip 12 -65.684 50% 75% nearly 100% nearly 100%
BitPhase Flip 12 -65.684 nearly 100% nearly 100% nearly 100% nearly 100%
Phase Flip 12 -65.684 nearly 100% nearly 100% nearly 100% nearly 100%
Depolarising 12 -65.684 nearly 100% nearly 100% nearly 100% nearly 100%

Table 3.5: Table summarizing the inferences on deviation from the classical min-
imum for VQE simulation VRP using amplitude damping, bit-flip, phase-flip,
bit-phase-flip, and depolarizing channels for 6 and 12 qubits.

3.7.6 Choice Of COBYLA

The COBYLA optimizer, a gradient-free method, is particularly effective in quan-

tum computing scenarios where derivatives are not available or reliable. It operates

by linearly approximating both the objective and constraint functions within a

trust-region framework, which allows it to handle noisy optimization environments

effectively [53]. Unlike gradient-based methods like L-BFGS [54] and SLSQP

[55], COBYLA does not require derivative information, reducing the risk of error

amplification due to noisy data. This characteristic makes it highly suitable for

quantum variational algorithms, such as those used in the vehicle routing problem,
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where noise is a significant challenge. In contrast, methods like the Simultaneous

Perturbation Stochastic Approximation (SPSA) optimizer also operate without

gradients but might require more tuning and can show slower convergence in

certain conditions [56]. Overall, COBYLA’s ability to efficiently manage constraints

and adaptively refine its optimization strategy in the absence of accurate gradient

information makes it a superior choice for handling the complexities of quantum

noise [57].

3.8 Discussion and Conclusion

Detailed simulation results, first for a noiseless case (Figs. 3.3 and 3.4) and then

for each noise channel, are provided in the new section 3.9. Each noise channel’s

simulation results are divided into two tables: an average and a minimum. These

tables make it easy to see that the deviation from the classical minimum does not

change linearly when the noise parameter is changed from 0.05 to 0.5 for each

given noise channel. It is also clear that the deviation from the classical minimum

does not grow linearly with the number of circuit layers used for optimization.

Consider the instance of a bit-flip noise channel with a noise parameter of 0.25; for

layers 1-3, the minimum energy cost is almost the classical minimum at −16.8, but

at 4th layer, it abruptly lowers to −1.9. In the same scenario, the average energy

continues a downward trend, going from 10.9 to 0.5. As we go over the tables for

all of the noise channels, we observe several similar patterns. As a corollary, this

validates making all noise channels use the same 0.05 to 0.5 broad noise parameter

range. When we choose a lesser range or a range of noise parameters that do not

ruin the results (different for each noise channel), we will see similar tendencies

as we have found here, despite the fact that separate noise channels impact the

circuit and the findings differently. We can see similar behaviors and range of noise

parameters (though the case and experiment is different) for the application of

noise channels in quantum teleportation [52].

The work we have presented in this paper provides an interesting avenue for

evaluating the effect of noise on detailed gate-based simulations of hybrid quantum

algorithms for real-world applications. Noise is considered the most problematic

aspect of today’s intermediate-scale devices, and hence understanding the details
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of the effects of noise is critical in understanding how to make the most effective

use of them.

In most cases, the effects of noise are minimal at the first layer of the VRP

circuits. While additional layers improve upon the results in the noiseless case, the

opposite is valid with the induction of noise. Since some noise will always be present

in quantum circuits, an empirical finding of our results is that the COBYLA opti-

mizer performs better for VQE circuits compared to the other available optimizers.

Yet, there is room to study other optimizers, such as SPSA. As we had come across

prior work on noise simulations in quantum circuits, one clear trend is that the

results are heavily influenced by the optimizer used for the simulations, while some

optimizers perform well at first for lower values of noise, as the noise probabilities

increase the performance degrades yet among them COBYLA performs well as

seen by multiple experiments[37].

We also aim to test and compare these results on more significant VRP instances

in physical devices, which is beyond the ability to simulate classically. Future work

is also needed to analyze more detailed noise models guided by the measured

characteristics from the real NISQ devices proposed to solve problems such as VRP.

3.9 Supplementary Tables and Statistics

3.9.1 No Noise VQE Simulation Stats

Tables for VRP Simulation without noise 3.6, 3.7
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Average of energy_cost
Qubits Layers COBYLA L_BFGS_B SLSQP SPSA

1 -9.919 -3.367 -2.381 -8.753
2 -10.985 -4.257 -3.692 -11.854
3 -11.467 -3.792 -3.037 -12.850

6 4 -13.711 -3.931 -5.420 -13.057
1 -30.920 -9.480 -5.941 -32.290
2 -38.107 -12.802 -16.892 -37.090
3 -38.461 -17.027 -18.203 -32.380

12 4 -37.779 -18.312 -18.916 -32.460

Table 3.6: Table summarizing the Average Energy Cost (out of 15 runs) of VQE
simulation using 5 Optimizers.

Minimum of energy_cost
Qubits Layers COBYLA L_BFGS_B SLSQP SPSA

1 -16.776 -8.109 -6.240 -16.793
2 -17.684 -8.033 -11.730 -17.589
3 -17.438 -9.526 -7.461 -17.658

6 4 -17.674 -7.655 -9.882 -17.651
1 -58.481 -39.316 -32.918 -62.181
2 -65.227 -32.425 -35.286 -57.846
3 -60.576 -27.507 -37.533 -55.635

12 4 -60.704 -50.267 -51.096 -61.020

Table 3.7: Table containing the Minimum Energy value (out of 15 runs) across each
layer of VQE simulation using 5 Optimizers.

3.9.2 Amplitude Damping Tables

Tables for Amplitude damping Noise channel containing Average and minimum

energy values at various noise parameter over 10 iterations (Tables 3.8 and 3.9).
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Average Energy Cost (Amplitude Damping)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -12.053 -9.273 -10.121 -12.928 -12.491 -12.381 -11.519 -11.040 -9.440 -11.470
2 -13.698 -12.773 -12.495 -13.909 -13.171 -12.834 -13.162 -12.760 -13.789 -12.986
3 -15.924 -14.026 -14.999 -12.909 -14.413 -15.029 -14.246 -13.519 -15.388 -14.377

6 4 -15.659 -15.055 -15.560 -14.661 -14.771 -16.147 -13.608 -13.916 -13.427 -15.757
1 -42.626 -42.157 -38.465 -37.787 -46.766 -41.555 -37.722 -38.388 -40.835 -47.219
2 -47.215 -43.464 -40.368 -45.283 -48.947 -36.422 -44.922 -43.944 -46.463 -43.890
3 -46.368 -40.817 -37.797 -39.519 -48.781 -40.945 -38.358 -42.179 -41.264 -44.605

12 4 -46.110 -42.539 -42.971 -44.977 -39.561 -44.023 -40.907 -42.012 -43.650 -42.357

Table 3.8: Table containing the Average Energy values (out of 10 runs) for Ampli-
tude Damping Noise Channel across each layer of VQE simulation Using COBYLA.

Minumum Energy Cost (Amplitude Damping)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -16.796 -16.796 -16.799 -16.799 -16.806 -16.790 -16.799 -16.799 -16.783 -16.796
2 -17.684 -17.684 -17.684 -17.684 -17.684 -17.638 -17.684 -17.388 -17.648 -17.684
3 -17.467 -17.349 -17.655 -17.497 -17.043 -17.642 -17.520 -16.780 -17.684 -17.642

6 4 -17.546 -17.609 -17.684 -17.480 -17.178 -17.530 -17.138 -16.609 -16.076 -17.467
1 -62.027 -61.905 -61.971 -61.889 -61.964 -61.961 -61.882 -61.866 -61.961 -61.879
2 -61.908 -61.375 -55.915 -64.155 -64.033 -53.234 -62.422 -61.047 -64.905 -55.145
3 -65.491 -55.402 -48.300 -51.375 -65.320 -53.079 -48.096 -51.954 -65.586 -65.303

12 4 -63.899 -50.359 -64.895 -53.408 -48.994 -53.405 -62.089 -51.583 -56.198 -51.556

Table 3.9: Table containing the Minimum Energy values (out of 10 runs) for Ampli-
tude Damping Noise Channel across each layer of VQE simulation Using COBYLA.

3.9.3 Bit-Flip Tables

Tables for BitFlip Noise channel containing Average and minimum energy values

at various noise parameters over 10 iterations (Tables 3.10 and 3.11).

Average Energy Cost (Bit Flip)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -13.768 -9.577 -9.661 -9.614 -10.965 -10.883 -9.809 -9.881 -10.531 -11.999
2 -4.262 -6.576 -6.282 -5.872 -3.002 -1.198 -1.603 -3.024 -3.790 -3.075
3 -2.332 -1.392 -3.239 -1.634 -2.651 -0.910 -1.864 -1.784 -1.621 -0.498

6 4 -0.969 -1.494 -0.213 -1.312 -0.502 -0.193 -0.238 -0.012 -0.886 -0.074
1 -31.086 -33.947 -22.328 -38.835 -20.722 -30.384 -37.187 -35.172 -35.500 -45.676
2 -13.251 -11.857 -7.993 -2.685 -7.242 -5.921 -0.137 -9.986 -0.931 -1.993
3 -1.086 -0.656 -0.649 -4.338 -3.428 -1.416 -3.589 -3.328 -0.603 -2.647

12 4 -0.565 -1.276 -0.596 -0.560 -0.781 -0.624 -0.657 -2.570 -0.604 -0.608

Table 3.10: Table containing the Average Energy values (out of 10 runs) for BitFlip
Noise Channel across each layer of VQE simulation Using COBYLA.
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Minimum Energy Cost (Bit Flip)
Noise Parameter Energy

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -16.806 -16.783 -16.799 -16.783 -16.799 -16.799 -16.799 -16.793 -16.790 -16.799
2 -8.424 -16.602 -11.780 -11.859 -16.793 -3.497 -11.786 -11.790 -10.842 -16.790
3 -9.951 -5.599 -10.799 -9.681 -16.799 -2.658 -8.158 -15.346 -8.322 -3.109

6 4 -4.089 -7.556 -1.013 -9.082 -1.898 -1.891 -2.020 -0.520 -3.635 -0.520
1 -62.556 -62.537 -62.547 -62.507 -56.500 -62.550 -62.566 -62.570 -62.533 -62.510
2 -38.609 -41.921 -25.464 -25.559 -42.451 -50.056 -0.497 -56.892 -8.194 -9.020
3 -5.632 -0.819 -0.786 -14.905 -26.730 -9.385 -24.846 -28.303 -0.727 -20.372

12 4 -0.882 -6.806 -0.819 -0.895 -2.286 -0.809 -0.888 -21.122 -1.059 -0.938

Table 3.11: Table containing the Minimum Energy values (out of 10 runs) for
BitFlip Noise Channel across each layer of VQE simulation Using COBYLA.

3.9.4 Phase-Flip Tables

Tables for PhaseFlip Noise channel containing Average and minimum energy

values at various noise parameters over 10 iterations (Tables 3.12 and 3.13).

Average Energy Cost (Phase Flip)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -2.033 -0.447 -0.036 0.049 0.058 0.059 0.059 0.059 0.059 0.059
2 -1.601 -0.313 -0.055 0.058 0.058 0.059 0.059 0.059 0.059 0.059
3 -1.755 -0.476 -0.014 0.058 0.059 0.059 0.059 0.059 0.059 0.059

6 4 -1.574 -0.357 -0.022 0.059 0.059 0.059 0.059 0.059 0.059 0.059
1 -1.056 -0.514 -0.660 -0.581 -0.609 -0.567 -0.444 -0.548 -0.482 -0.577
2 -0.658 -0.410 -0.383 -0.178 -0.363 -0.192 -0.255 -0.313 -0.274 -0.211
3 -0.662 -0.520 -0.786 -0.626 -0.823 -0.736 -0.529 -0.539 -0.523 -0.593

12 4 -0.533 -0.577 -0.611 -0.653 -0.680 -0.539 -0.606 -0.585 -0.681 -0.686

Table 3.12: Table containing the Average Energy values (out of 10 runs) for Phase-
Flip Noise Channel across each layer of VQE simulation Using COBYLA.

Minimum Energy Cost (Phase Flip)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -2.309 -0.493 -0.092 0.043 0.056 0.059 0.059 0.059 0.059 0.059
2 -2.243 -0.602 -0.086 0.056 0.056 0.059 0.059 0.059 0.059 0.059
3 -2.234 -0.599 -0.089 0.056 0.056 0.059 0.059 0.059 0.059 0.059

6 4 -2.240 -0.609 -0.086 0.056 0.059 0.059 0.059 0.059 0.059 0.059
1 -1.559 -0.539 -0.849 -0.664 -0.822 -0.717 -0.543 -0.589 -0.589 -0.645
2 -1.135 -0.536 -0.516 -0.451 -0.510 -0.365 -0.385 -0.438 -0.576 -0.362
3 -0.914 -0.602 -1.013 -0.855 -1.089 -0.921 -0.618 -0.641 -0.615 -0.763

12 4 -0.914 -0.914 -0.711 -0.743 -0.849 -0.622 -0.717 -0.796 -0.987 -0.730

Table 3.13: Table containing the Minimum Energy values (out of 10 runs) for
PhaseFlip Noise Channel across each layer of VQE simulation Using COBYLA.
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3.9.5 Bit-Phase-Flip Table

Tables for Bit-PhaseFlip Noise channel containing Average and minimum energy

values at various noise parameters over 10 iterations (Tables 3.14 and 3.15).

Average Energy Cost (Bit-PhaseFlip)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -4.241 -2.571 -3.370 -5.296 -4.159 -3.756 -4.722 -3.519 -2.716 -3.104
2 -1.668 -1.118 -1.313 -1.411 -1.621 -1.699 -1.468 -1.304 -1.236 -1.237
3 -0.551 -0.605 -0.550 -0.492 -0.407 -0.600 -0.723 -0.574 -0.620 -0.693

6 4 -0.411 -0.446 -0.343 -0.101 -0.219 -0.368 -0.440 -0.439 -0.241 -0.221
1 -1.486 -1.713 -2.390 -3.355 -2.124 -0.978 -2.046 -2.405 -3.078 -1.565
2 -0.417 -0.419 -0.299 -0.417 -0.358 -0.372 -0.431 -0.400 -0.555 -0.433
3 -0.409 -0.460 -0.493 -0.464 -0.401 -0.349 -0.289 -0.446 -0.584 -0.345

12 4 -0.510 -0.630 -0.617 -0.553 -0.508 -0.499 -0.526 -0.596 -0.736 -0.607

Table 3.14: Table containing the Average Energy values (out of 10 runs) for Bit-
Phase-Flip Noise Channel across each layer of VQE simulation Using COBYLA.

Minimum Energy Cost (Bit-Phase-Flip)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -5.355 -5.069 -5.378 -5.368 -5.352 -5.378 -5.355 -5.365 -5.378 -5.378
2 -1.819 -1.845 -1.839 -1.852 -1.799 -1.763 -1.826 -1.770 -1.780 -1.855
3 -0.776 -0.776 -0.799 -0.766 -0.556 -0.793 -0.796 -0.724 -0.783 -0.793

6 4 -0.503 -0.533 -0.447 -0.438 -0.447 -0.530 -0.507 -0.516 -0.431 -0.533
1 -4.171 -4.332 -4.197 -4.523 -4.352 -2.632 -4.523 -4.516 -4.516 -4.033
2 -0.638 -0.510 -0.368 -0.470 -0.447 -0.500 -0.609 -0.477 -0.780 -0.539
3 -0.497 -0.717 -0.711 -0.714 -0.609 -0.408 -0.477 -0.599 -0.776 -0.582

12 4 -0.737 -0.691 -0.829 -0.796 -0.609 -0.727 -0.720 -0.757 -0.885 -0.832

Table 3.15: Table containing the Minimum Energy values (out of 10 runs) for
Bit-PhaseFlip Noise Channel across each layer of VQE simulation Using COBYLA.

3.9.6 Depolarising Table

Tables for Depolarising Noise channel containing Average and minimum energy

values at various noise parameters over 10 iterations (Tables 3.16 and 3.17).
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Average Energy Cost (Depolarising)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -4.949 -2.437 -0.750 -0.608 -0.416 -0.261 -0.045 0.006 0.034 0.050
2 -2.377 -0.748 -0.305 -0.052 0.029 0.055 0.058 0.059 0.059 0.059
3 -1.167 -0.396 -0.031 0.053 0.058 0.059 0.059 0.059 0.059 0.059

6 4 -0.681 -0.052 0.047 0.059 0.059 0.059 0.059 0.059 0.059 0.059
1 -3.741 -0.919 -0.669 -0.637 -0.599 -0.653 -0.512 -0.618 -0.545 -0.565
2 -0.718 -0.255 -0.208 -0.242 -0.231 -0.209 -0.454 -0.113 -0.444 -0.259
3 -0.713 -0.690 -0.709 -0.649 -0.658 -0.576 -0.646 -0.605 -0.700 -0.613

12 4 -0.643 -0.628 -0.650 -0.676 -0.567 -0.651 -0.599 -0.594 -0.569 -0.571

Table 3.16: Table containing the Average Energy values (out of 10 runs) for Depo-
larising Noise Channel across each layer of VQE simulation Using COBYLA.

Minimum Energy Cost (Depolarising)
Noise Parameter

Qubits Layers 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1 -7.632 -3.464 -1.651 -0.701 -0.530 -0.336 -0.102 -0.059 0.013 0.039
2 -3.507 -1.020 -0.516 -0.089 -0.010 0.046 0.056 0.059 0.059 0.059
3 -1.822 -0.533 -0.086 0.039 0.056 0.059 0.059 0.059 0.059 0.059

6 4 -1.105 -0.115 0.030 0.056 0.059 0.059 0.059 0.059 0.059 0.059
1 -7.888 -1.447 -0.783 -1.000 -0.750 -0.763 -0.579 -0.793 -0.655 -0.826
2 -1.849 -0.421 -0.461 -0.582 -0.391 -0.477 -0.855 -0.359 -0.628 -0.589
3 -1.102 -1.039 -0.819 -0.803 -0.987 -0.743 -0.934 -0.862 -0.931 -0.793

12 4 -0.862 -0.977 -0.829 -0.964 -0.750 -0.954 -0.813 -0.760 -0.697 -0.796

Table 3.17: Table containing the Minimum Energy values (out of 10 runs) for
Depolarising Noise Channel across each layer of VQE simulation Using COBYLA.
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SOLVING THE VEHICLE ROUTING PROBLEM VIA

QUANTUM SUPPORT VECTOR MACHINES

Abstract

The Vehicle Routing Problem (VRP) is an example of a combinatorial

optimization problem that has attracted academic attention due to its potential

use in various contexts. VRP aims to arrange vehicle deliveries to several

sites in the most efficient and economical manner possible. Quantum machine

learning offers a new way to obtain solutions by harnessing the natural

speedups of quantum effects, although many solutions and methodologies are

modified using classical tools to provide excellent approximations of the VRP.

In this paper, we employ 6 and 12 qubit circuits, respectively, to build and

evaluate a hybrid quantum machine learning approach for solving VRP of 3

and 4-city scenarios. The approach employs quantum support vector machines

(QSVMs) trained using a variational quantum eigensolver on a static or

dynamic ansatz. Different encoding strategies are used in the experiment to

transform the VRP formulation into a QSVM and solve it. Multiple optimizers

from the IBM Qiskit framework are also evaluated and compared.
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4.1 Introduction

4.1.1 Quantum Computing

Quantum computing has provided novel approaches for solving computationally

complex problems over the last decade by leveraging the inherent speedup(s) of

quantum calculations compared to classical computing. Quantum superposition

and entanglement are two key factors that give a massive speed up to calculations

in the quantum domain compared to classical counterparts [18, 19, 58]. Because of

this, addressing Optimization problems by quantum computing is an appealing

prospect. Multiple approaches, such as Grover’s algorithm [20], adiabatic compu-

tation (AC) [5], and quantum approximate optimization algorithm (QAOA) [10],

have been proposed to use quantum effects and, as such, have served as the ba-

sis for solving mathematically complex problems using quantum computing. The

performance of classical algorithms has generally been found to be subpar when

applied to larger dimensional problem spaces [22]. On a multidimensional problem,

classical machine learning optimization techniques frequently require a significant

amount of CPU and GPU resources and long computation time. The reason for this

is that ML techniques are needed to resolve NP-hard optimization problems [21].

4.1.2 Vehicle Routing Problem

The vehicle routing problem is an intriguing optimization problem because of its

many uses in routing and fleet management [23], but its computational complexity

is NP-hard [59, 60]. Moving automobiles as quickly and cheaply as feasible is al-

ways the objective. VRP has inspired a plethora of precise and heuristic approaches

[23, 24], all of which struggle to provide fast and trustworthy solutions. The VRP’s

bare bones implementation comprises sending a single vehicle to deliver items to

many client locations before returning to the depot to restock [25]. By optimizing a

collection of routes that are available and all initiate and conclude at a single node

called the depot, the maximum reward sought by VRP is often expressed as the

inverse of total distance traveled or mean service time. Even with just a few hun-

dred delivery locations, finding the best solution to this problem is computationally

challenging.
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To be precise, in every VRP with parameters (n,k), there are (n−1) locations, k
motor vehicles, and a depot D [23, 27]. The solution is a collection of paths whereby

each vehicle takes exactly one journey, and all k vehicles start and conclude at

the same location, D. The best route is one that requires k vehicles to drive the

fewest total miles. This problem may be thought of as a generalization of the well-

known “traveling salesman" problem, whereby a set of k salesmen must service an

aggregate of (n−1) sites with a single visit to each of those places being guaranteed

[23]. In most practical settings, the VRP issue is complicated by other constraints,

such as limited vehicle capacity or limited time for coverage. As a consequence,

several other approaches, both classical and quantum, have been proposed as

potential ways forwards. Currently, available quantum approaches for optimizing

a system include the Quantum Approximate Optimization Algorithm (QAOA) [27],

the Quadratic Unconstrained Binary Optimization (QUBO) [29], and quantum

annealing [31–33].

4.1.3 Quantum Support Vector Machine (QSVM)

The goal of the support vector machine (SVM) technique is to find the best line

(or decision boundary) between two classes in n-dimensional space so that new

data may be classified quickly. This optimum decision boundary is referred to

as a hyperplane. The most extreme vectors and points that help construct the

hyperplane are selected using SVM. The SVM method is based on support vectors,

which are used to represent these extreme instances. Typically, a hyperplane

cannot divide a data point in its original space. In order to find this hyperplane, a

nonlinear transformation is applied to the data as a function. A feature map is a

function that transforms the features of provided data into the inner product of

data points, also known as the kernel [9, 61, 62].

Quantum computing produces implicit calculations in high-dimensional Hilbert

spaces using kernel techniques by physically manipulating quantum systems. Fea-

ture vectors for SVM in the quantum realm are represented by density operators,

which are themselves encodings of quantum states. The kernel of a quantum sup-

port vector machine (QSVM) is made up of the fidelities between different feature

vectors, as opposed to a classical SVM; the kernel conducts an encoding of classical
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input into quantum states [9, 63].

4.1.4 Novelty and Contribution

• In this work, we propose a new method to solve the VRP using a machine-

learning approach through the use of QSVM.

• In this context, we came across recent and older works in QSVM [61, 62, 64]

and VQE algorithms [38], which are used to solve optimization problems

such as VRP. However, none of them use a hybrid approach to arrive at a

solution.

• Our work implements this new approach of solving VRP using gate-model

simulation of a 3-city or 4-city problem on a 6-qubit or 12-qubit system,

respectively, using a parameterized circuit that is proposed as a solution to

VRP.

• We apply quantum encoding techniques such as amplitude encoding, angle

encoding, higher order encoding, IQP Encoding, and quantum algorithms

such as QSVM, VQE, and QAOA to construct circuits for VRP and assess the

results and summarize our findings.

• We evaluate our solution using a variety of classical optimizers, as well as

fixed and variable Hamiltonians to draw statistical conclusions.

4.1.5 Organization

The paper is organized as follows. Sec. 4.2 discusses the fundamental mathematical

concepts such as QAOA, the Ising model, quantum support vector machine, Ampli-

tude encoding, Angle encoding, Higher order encoding, IQP encoding, and VQE. Sec.

4.3 discusses the formulation and solution of VRP utilizing the concepts covered

in the preceding Section. Sub-Sec. 4.3.2 includes the fundamental components of

circuits required to solve VRP using QSVM. Sec. 4.4 covers the outcomes of the

QSVM simulation consisting of two sub-sections. Sub-Sec 4.4.1 covers the outcome

of simulation results of all the encoding schemes used, Finally in Sub Sec. 4.4.2,

we conclude by comparing the results of QSVM solutions using various optimizers
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in the Qiskit platform on the VRP circuit and discuss the feasibility of higher qubit

solutions as the future directions of research.

4.2 Background

Dealing with methods and processes for resolving combinatorial optimization prob-

lems is the foundation of solving routing challenges. The objective function is then

derived by converting the mathematical models into their quantum counterparts.

We arrive at the objective function’s solution by iteratively maximizing or minimiz-

ing the mathematical model. In this section, we provide an outline of our solution

strategy’s key concepts.

4.2.1 QAOA

The Quantum Approximate Optimization Algorithm (QAOA) was proposed by

Farhi et al. in 2014 [5, 10] using an adiabatic quantum computation framework

as the algorithm’s foundation. It is a hybrid algorithm because both classical

and quantum approaches are utilized. Quantum adiabatic computation entails

transitioning between the eigenstates of the driver Hamiltonian and the problem

Hamiltonian. The Hamiltonian problem can be expressed as,

C|z〉 =
m∑

α=1
Cα|z〉.(4.1)

It is well known that the combinatorial optimization problem may be effectively

addressed by determining the eigenstate of C with the maximum energy. Likewise,

we use driver Hamiltonian as

B =
n∑

j=1
σx

j ,(4.2)

here σx
j denotes the σx Pauli operator on bit z j and B is the mixing operator. Let’s

additionally define two operators

UC
(
γ
)=e−iγC,UB

(
β
)=e−iβB.(4.3)

This enables the system to develop under C for γ time and B for β time. Essentially,

QAOA creates the following state,
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|β,γ〉 =UB
(
βp

)
UC

(
γp

) · · ·UB
(
β2

)
UC

(
γ2

)
UB

(
β1

)
UC

(
γ1

) |s〉(4.4)

Here |s〉 represents the superposition state of all inputs. The expectation value

of the cost function
∑m

α=1 〈β,γ |Cα |β,γ 〉 provides the solution, or an approximate

solution to the problem [42].

4.2.2 Ising Model

The Ising model is a well-known mathematical representation of ferromagnetism in

statistical mechanics [43, 44]. In the model, discrete variables (+1 or −1) represent

magnetic dipole moments of spins in one of two possible states. Each spin can

interact with its neighbours because they are organised in a network, commonly

a lattice (when there is periodic repetition in all directions of the local structure).

The spins interact in pairs, with one value of energy when the two spins are

identical and another value when they are dissimilar. However, heat reverses this

tendency, permitting the formation of alternative structural phases. The model is a

condensed representation of reality that allows phase transitions to be identified.

The subsequent Hamiltonian describes the entire spin energy:

Hc =− ∑
〈i, j〉

Ji jσiσ j −h
∑

σi,(4.5)

where Ji j is the interaction between adjacent spins i and j, and h is an external

magnetic field. At h = 0, the ground state is ferromagnetic if J is positive. At h = 0,

the ground state is antiferromagnetic if J is negative in a bipartite lattice. Thus,

for the purpose of clarity and within the scope of this paper, the Hamiltonian can

be expressed as

Hc =− ∑
〈i, j〉

Ji jσ
z
i σ

z
j −

∑
hiσ

x
i .(4.6)

Here, σz and σx represent the z and x Pauli operators, respectively. For the

sake of simplification, we can presume the following conditions to be ferromagnetic
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(Ji j > 0) if there is no external impact on the spin: h = 0. The Hamiltonian may

therefore be reformulated as follows:

Hc =− ∑
〈i, j〉

Ji jσ
z
i σ

z
j =− ∑

〈i, j〉
σz

i σ
z
j .(4.7)

4.2.3 Quantum Support Vector Machine

SVM [61, 62] is a supervised algorithm that constructs hyper-plane with w⃗ ·⃗x+b = 0

such that w⃗ · x⃗+b ≥ 1 for a training point x⃗i in the positive class, and w⃗ · x⃗+b ≤−1

for a training point x⃗i in the negative class. During the training process, the

algorithm aims to maximize the gap between the two classes, which is intuitive

as we want to separate two classes as far as possible, in order to get a sharper

estimate for the classification result of new data samples like x⃗0. Mathematically,

we can see the objective of SVM is to find a hyper-plane that maximizes the

distance 2/|w⃗| constraint to y⃗i(w⃗ · x⃗i +b)≥ 1. The normal vector w⃗ can be written as

w⃗ =∑M
i=1α i⃗xi where αi is the weight of the ith training vector x⃗i. Thus, obtaining

optimal parameters b and αi is the same as finding the optimal hyper-plane. To

classify the new vector is analogous to knowing which side of the hyper-plane it

lies, i.e., yi (⃗x0)= sign(w⃗.⃗x+b). After having the optimal parameters, classification

now becomes a linear operation. From the least-squares approximation of SVM,

the optimal parameters can be obtained by solving a linear equation,

F⃗(b,α1,α2,α3, ...,αM)T = (0, y1, y2, y3, ...yM)T .(4.8)

In a general form of F, we adopt the linear kernels K i, j = κ(⃗xi, x⃗ j)= x⃗i .⃗x j. Thus,

to find the hyper-plane parameters we use matrix inversion of F : (b, α⃗T
i )T =

F̃−1(0, y⃗T
i )T .

4.2.3.1 Quantum Kernels

The main inspiration for a quantum Support vector machine is to consider quantum

feature maps that lead to quantum kernel functions, which are hard to simulate in

classical computers. In this case, the quantum computer is only used to estimate a
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quantum kernel function, which can be later used in kernel-based algorithms. For

simplicity assuming the datapoints x, z ∈X , the nonlinear feature map of any data

point is

Φ(x)=U(x)
∣∣0n〉〈

0n∣∣U†(x).(4.9)

The kernel function κ(x, z) can be computed as

κ(x, y)= |〈φ(x) |φ(z)〉|2.(4.10)

The state |φ(x)〉 can be prepared by using a unitary gate U(x), and thus |φ(x)〉 =
U(x)|0〉.Thus the kernel function becomes ,

κ(x, z)=
∣∣∣〈0

∣∣∣U†(x)U(z)
∣∣∣0

〉∣∣∣2 .(4.11)

From the above we can say that the kernel κ(x, z) is simply the probability of

getting an all-zero string when the circuit U†(x)U(z)|0〉 is measured, or this kernel

is an |0n〉 to |0n〉 transition probability of a particular unitary quantum circuit on

n qubits [9, 65]. This can be implemented using the following kernel estimation

circuit (Fig. 4.1).

Figure 4.1: Schematic diagram depicting quantum circuit for Kernel estimation.

4.2.4 Amplitude Encoding(AE)

In the process of amplitude-embedding [66], data is encoded into the amplitudes

of a quantum state. A N-dimensional classical datapoint x is represented by the

amplitudes of an n-qubit quantum state |ψx〉 as
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(4.12)
∣∣ψx

〉= N∑
i=1

xi|i〉

where N = 2n, xi is the i-th element of x and |i〉 is the i-th computational basis

state.

In order to encode any data point x into an amplitude-encoded state, we must

normalize the same by following

(4.13) |ψxnorm〉 =
1

xnorm

N∑
i=1

xi|i〉,

where xnorm=
√∑N

i=1 |xi|2 .

4.2.5 Angle Encoding (AgE)

While the above-described amplitude encoding expands into a complicated quantum

circuit with huge depths, the angle encoding employs N qubits and a quantum

circuit with fixed depth, making it favorable to NISQ computers [67, 68]. We define

angle encoding as a method of classical information encoding that employs rotation

gates(the rotation could be chosen along x, y or z axis). In our scenario, the classical

information consists of the node and edge weights assigned to the vehicle’s nodes

and pathways, which are further assigned as parameters to ansatz.

(4.14) |x〉 =
n⊗
i

R (xi)
∣∣0n〉

,

Where xi represents the classical information stored on the angle parameter of

rotation operator R.

4.2.6 Higher Order Encoding(HO)

Higher order encoding is a variation of angle encoding where we have an entangled

layer and an additional sequential operation of rotation angles of two entangled

qubits [68]. This can be loosely defined as the following
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(4.15) |x〉 =
n⊗

i=2
R(xi−1.xi)

n−1⊗
i=2

CX i,i+1

n⊗
i=1

R (xi)
∣∣0n〉

.

Similar to angle encoding we are free to choose the rotation.

4.2.7 IQP Encoding(IqpE)

IQP-style encoding is a relatively complicated encoding strategy. We encode classi-

cal information [69]

(4.16) |x〉 = (
UZ(x)H⊗n)r ∣∣0n〉

,

where r is the depth of the circuit, indicating the repeating times of UZ(x)H⊗n.

H⊗n is a layer of Hadamard gates acting on all qubits. UZ(x) is the key step in IQP

encoding scheme:

UZ(x)= ∏
[i, j]∈S

RZtZ j

(
xix j

) n⊗
k=1

Rz (xk) ,(4.17)

where S is the set containing all pairs of qubits to be entangled using RZZ

gates. First, we consider a simple two-qubit gate: RZ1Z2(θ). Its mathematical

form e−i i
2 Z1⊗Z2 can be seen as a two-qubit rotation gate around ZZ, which makes

these two qubits entangled.

4.2.8 VQE

Variational Quantum Eigensolver (VQE) is another hybrid quantum-classical

algorithm used for the estimation of the eigenvalue of a matrix or Hamiltonian H
[46] of significant size. The primary objective of this approach is to ascertain a trial

qubit state from a wave function |ψ(⃗θ)〉 that relies on a collection of parameters θ⃗ =
θ1,θ2, · · · , which are often referred to as the variational parameters. The expectation

of an observable or Hamiltonian H in a state |ψ(⃗θ)〉 can be expressed as follows,

E(⃗θ)= 〈ψ(⃗θ)|H |ψ(⃗θ)〉 .(4.18)
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By spectral decomposition

H =λ1 |ψ〉1 〈ψ|1 +λ2 |ψ〉2 〈ψ|2 + . . .+λn |ψ〉n 〈ψ|n ,

(4.19)

where λi and |ψ〉i are the matrix H’s eigenvalues and eigenstates, respectively.

Additionally, because H’s eigenstates are orthogonal,
〈
ψi |ψ j

〉 = 0 If i ̸= j. The

wave function |ψ(⃗θ)〉 can be expressed as a superposition of eigenstates.

|ψ(⃗θ)〉 =α1(⃗θ) |ψ〉1 +α2(⃗θ) |ψ〉2 + . . .+αn (⃗θ) |ψ〉n .(4.20)

Hence the expectation is given by,

E(⃗θ) = |α1(⃗θ)|2λ1 +|α2(⃗θ)|2λ2 + . . .+|αn (⃗θ)|2λn.

(4.21)

Hence, E(⃗θ)≥λmin. The VQE method involves the iterative adjustment of the

parameters θ⃗ = θ1,θ2, . . . in order to minimise the value of E(⃗θ). This property

of VQE is advantageous when attempting to solve combinatorial optimization

problems. Specifically, the approach involves using a parameterized circuit to

establish the trial state of the algorithm, with the cost function denoted as E(⃗θ),

which is also the expected value of the Hamiltonian in this state. It is possible

to derive the ground state of the desired Hamiltonian by iteratively minimizing

the cost function. A classical optimizer uses a quantum computer to calculate its

gradient and assess the cost function at each step of the optimization process.

4.3 Methodology

4.3.1 Modelling VRP in QSVM

By mapping the cost function to an Ising Hamiltonian Hc, the vehicle routing

problem can be solved [45]. The solution to the problem is determined by minimiz-

ing the Ising Hamiltonian Hc. Consider a graph with n vertices and n−1 edges

and an arbitrary connectivity. Assuming we must route a vehicle between two
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non-adjacent vertices in the graph, consider a binary decision variable xi j whose

value is 1 if there is an edge between i and j with an edge weight wi j > 0 and 0

otherwise. Now, the VRP problem necessitates n× (n−1) selection variables. We

define two sets of nodes for each edge from i → j: source s [i] and target t[ j]. s [i]
contains the nodes j to which i sends an edge j ϵ s[i]. The collection t [ j] comprises

the nodes i to which the node i delivers the edge i ϵ t[ j]. The VRP is defined as

follows[27, 47]:

V RP(n,k)= min
{xi j}i→ j∈{0,1}

∑
i→ j

wi jxi j,(4.22)

where k and n represent the number of vehicles and locations respectively,

there are n−1 locations for vehicles to traverse if the starting point is considered

to be the 0th location or Depot D. Notably, the following restrictions apply to this

[? ]:

∑
j∈ s [i]

xi j = 1,∀i ∈ {1, · · · ,n−1},∑
j∈ t [i]

x ji = 1,∀i ∈ {1, · · · ,n−1},∑
j∈ s [0]

x0 j = k,∑
j∈ t [0]

x j0 = k

ui −u j +Qxi j ≤ Q− q j,∀i ∼ j, i, j ̸= 0,

qi ≤ ui ≤ Q,∀i, i ̸= 0.(4.23)

The first two restrictions establish that each node may only be visited once

by the delivering vehicle. The middle two limitations enforce the requirement

that after product delivery, the vehicle must return to the depot. The last two

restrictions enforce the requirements for eliminating sub-tours and are constrained

on ui, with Q > q j > 0, and ui,Q, qi ∈R. For the VRP equation and constraints, the

VRP Hamiltonian can be expressed as follows[27].
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HV RP = Ha +Hb +Hc +Hd +He,

Ha = ∑
i → j

wi jxi j,

Hb = A
∑

i∈1,··· ,n−1

(
1− ∑

j∈ s [i]
xi j

)2

,

Hc = A
∑

i∈1,··· ,n−1

(
1− ∑

j∈ t[i]
x ji

)2

,

Hd = A

(
k− ∑

j∈ s[0]
x0 j

)2

,

He = A

(
k− ∑

j∈ t[0]
x j0

)2

.(4.24)

A > 0 is indicative of a constant. The vector representation of the collection of

all binary decision variables xi j is

−→x = [
x(0,1), x(0,2), · · ·x(1,0), x(1,2), · · ·x(n−1,n−2)

]T .(4.25)

Using the antecedent vector, we can construct two new vectors for each node:
−→z S[i] and −→z T[i] (at the start of the section, we defined two sets for source and

target nodes, so two vectors will represent them).

−→z S[i] = x⃗ ∋ xi j = 1, xk j = 0 , k ̸= i , ∀ j,k ∈ {0, · · · ,n−1},
−→z T[i] = x⃗ ∋ x ji = 1, x jk = 0 , k ̸= i , ∀ j,k ∈ {0, · · · ,n−1}.

(4.26)

∑
j∈s[i]

xi j = z⃗T
S[i]⃗x,∑

j∈t[i]
x ji = z⃗T

T[i]⃗x.(4.27)

These vectors will contribute to the development of the QUBO model of VRP

[29, 30, 48, 49]. The QUBO model of a connected graph G = (N,V ) is specified as

follows:
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f (x)QUBO = min
x∈{0,1}(N×V )

xTQx+ gT x+ c,(4.28)

where, Q is a quadratic edge weight coefficient, g is a linear node weight coeffi-

cient, and c is a constant. To determine the coefficients in the QUBO formulations

of HV RP as shown in Eq. 4.24, the equations in Eq. 4.27 are first substituted

in terms of Hb and Hc, respectively. Subsequently, the expression of HV RP is

expanded and rearranged in accordance with Eq. 4.28.

H = A
n−1∑
i=0

[
zS[i]zT

S[i] + zT[i]zT
T[i]

]
x⃗2

+ wT x⃗−2A
n−1∑
i=1

[
zT

S[i] + zT
T[i]

]
x⃗

− 2Ak
[
zT

S[0] + zT
T[0]

]
x⃗+2A(n−1)+2Ak2.

(4.29)

Hence, in the QUBO formulation of the Eq. (4.24), the coefficients Q(n(n−1)×
n(n−1)), g(n(n−1)×1), and c are derived. The coefficients associated with the

QUBO formulation of Eq. (4.24) are shown below.

Q = A
[[

zT[0], . . . , zT[n−1]
]T [

zT[0], . . . , zT[n−1]
]

+ (In ⊗J(n−1,n−1))] ,

g = W −2Ak
(
(e0 ⊗Jn−1)+ [

zT[0]
]T

)
,

+2A (Jn ⊗Jn−1) ,

c = 2A(n−1)+2Ak2.(4.30)

J is the matrix containing all ones, I and e0 = [1,0, · · · ..,0]T are the identity

matrices. The binary decision variable xi j is converted to the spin variable si j ∈
{−1,1} using the formula xi j = (si j +1)/2.

From the aforementioned equations, we may expand Eq. (4.28) to form the

Ising Hamiltonian of VRP [29].
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HIs =−∑
i

∑
i< j

Ji jsis j −
∑

i
hisi +d.(4.31)

Following are definitions for the terms Ji j,hi, and d:

Ji j = −Q i j

2
, ∀ i < j,

hi = g i

2
+∑ Q i j

4
+ ∑ Q ji

4
,

d = c+∑
i

g i

2
+∑

i

∑
j

Q i j

4
.(4.32)

4.3.2 Analysis And Circuit Building

4.3.2.1 VRP

In the current section, we proceed to create a circuit based on gates using the

IBM gate model. The implementation of this model is carried out using the Qiskit

framework [50], enabling us to effectively execute the aforementioned formulation.

In the context of a given Vehicle Routing Problem (VRP) that incorporates qubits,

the initial state is established as |+〉⊗n(n−1). This state represents the ground state

of Hmxr, which is achieved by applying the Hadamard gate to each qubit that has

been initialized to the zero state. Subsequently, we proceed to build the subsequent

state.

|β,γ〉 = e−iHmxrβp e−iHcγp ...

...e−iHmxrβ0 e−iHcγ0 |+〉n⊗(n−1) .(4.33)

The energy E of the state |β,γ〉 is computed using the expectation of Hc from

Equation (4.18). Again based on the Ising model, the term Hc can be expressed in

terms of Pauli operators as follows:

Hc =−∑
i

∑
i< j

Ji jσ
z
i σ

z
j −

∑
i

hiσ
z
i −d.(4.34)
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Thus, the expression for a single term of state in |β,γ〉 as β0,γ0 reads:

e−iHmxrβ0 e−iHcγ0 . The first term Hc can be expanded to following,

eiJi jγ0σiσ j = cos Ji jγ0I + i sin Ji jγ0σiσ j,

= eiJi jγ0 |00〉〈00|+ e−iJi jγ0 |01〉〈01|+ e−iJi jγ0 |10〉〈10|+ eiJi jγ0 |11〉〈11| ,
= M(4.35)

It can be noted that by the application of CNOT(CX ) gate before and after ‘M’,

the diagonal elements of the above matrix can be swapped.

CX (M)CX = eiJi jγ0 |00〉〈00|− e−iJi jγ0 |01〉〈01|+ e−iJi jγ0 |10〉〈10|− eiJi jγ0 |11〉〈11| ,
(4.36)

Expanding the matrix and observing the upper and lower blocks we can rewrite,

[
1 0

0 1

]
⊗

[
eiJi jγ0 0

0 e−iJi jγ0

]
= I ⊗ eiJi jγ0

[
1 0

0 e−2iJi jγ0

]
.

(4.37)[
1 0

0 e−2iJi jγ0

]
is a phase gate. Looking at the 2nd term of Hc we get,

Hc = ∑
i

hiσ
z
i ,

eihiσi = coshiγoI + isinγ0σi,

= coshiγo

[
1 0

0 1

]
+ isinhiγ0

[
1 0

0 −1

]
,

=
[

eihiγ0 0

0 e−ihiγ0

]
.(4.38)

Fig. 4.2(a) picturizes the fundamental circuit with two qubits and gate selections

for Hc. Similarly, Hmxr is merely a rotation along the X axis, as depicted by the U
gate in Fig. 4.2(b), Fig. 4.2(a).
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The above sample circuits can be used for the solution of VRP combined with the

VQE and QAOA approach. However, in this paper, we are focusing on a machine-

learning solution of VRP by use of QSVM; thus we need to construct a QSVM

circuit using various encoding schemes. Simple interpretation and implementation

of encoding schemes are described in upcoming subsections.

H U(θ, ϕ, λ) U(θ, ϕ, λ)

H • •
(a)

H U(θ, ϕ, λ) U(θ, ϕ, λ) U(θ, ϕ, λ)

H • •

(b)

Figure 4.2: (a) Circuit example illustrating gate operations for Hc. (b) Circuit
example displaying gate selections with an additional u gate for Hmxr.

4.3.2.2 Amplitude Encoding

As we look into AE, a single qubit state is represented by

|ψ〉 (θ)= cos(θ/2) |0〉+sin(θ/2) |1〉 ,(4.39)

for two qubits

|ψ(θ)〉 =α|00〉+β|01〉+γ|10〉+δ|11〉,
= |0〉(α|0〉+β|1〉)+|1〉(γ|0〉+δ|1〉),

= |0〉
√(

α2 +β2
) (

α|0〉+β|1〉√
α2 +β2

)

+|1〉
√

γ2 +δ2 γ|0〉+δ|1〉√
γ2 +δ2

.(4.40)
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Now applying Ctrl U and Anti-CTRL U on the above state we achieve

|0〉
√

α2 +β2 |0〉+ |1〉
√

γ2 +δ2 |0〉

=
(√

α2 +β2 |0〉+
√

γ2 +δ2 |1〉
)
|0〉.(4.41)

Here θ1 = tan−1
p

γ2+δ2p
α2+β2

, θ2 = tan−1 δ
γ

, θ3 = tan−1 β

α
Combining VRP and ampli-

tude encoding circuit eliminates the need for Hadamard gates and Hmxr compo-

nents and we end up with the following skeleton circuits Figure ??.

4.3.2.3 Angle Encoding

For a 2-qubit scenario, angle encoding translates to the following example. We

define the Ry gate as follows

Ry(θ) = e−iYθ/2 = cos
θ

2
− isinθ/2Y ,

=
[

cosθ/2 −sinθ/2

sinθ/2 cosθ/2

]
.(4.42)

|00〉
Ry(θ1)−−−−→
Ry(θ2)

(
cos

θ1

2
|0〉+sin

θ1

2
|1〉

)(
cos

θ2

2
|0〉+sin

θ2

2
|1〉

)
,

= cos
θ1

2
·cos

θ2

2
|00〉+cos

θ1

2
·sin

θ2

2
|01〉

+ sin
θ1

2
·cos

θ2

2
|10〉+sin

θ1

2
sin

θ2

2
|11〉

CNOT−−−−−→ cos
θ1

2
·cos

θ2

2
|00〉+cos

θ1

2
·sin

θ2

2
|01〉

+sin
θ1

2
·cos

θ2

2
|11〉+sin

θ1

2
sin

θ2

2
|10〉.(4.43)
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4.3.2.4 Higher Order Encoding

For a 2qubit scenario, HO encoding translates to the following We define the Ry

gate as follows

Ry(θ) = e−iYθ/2 = cos
θ

2
− isinθ/2Y ,

=
[

cosθ/2 −sinθ/2

sinθ/2 cosθ/2

]
.(4.44)

(4.45)

|00〉
Ry(θ1)−−−−→
Ry(θ2)

(
cos

θ1

2
|0〉+sin

θ1

2
|1〉

)(
cos

θ2

2
|0〉+sin

θ2

2
|1〉

)
,

= cos
θ1

2
·cos

θ2

2
|00〉+cos

θ1

2
·sin

θ2

2
|01〉

+sin
θ1

2
·cos

θ2

2
|10〉+sin

θ1

2
sin

θ2

2
|11〉

CNOT−−−−−−→
Ry(θ1.θ2)

cos
θ1

2
·cos

θ2

2
|0〉

(
cos

θ1 ·θ2

2
|0〉+sin

θ1 ·θ2

2
|1〉

)
+cos

θ1

2
·sin

θ2

2
|0〉

(
−sin

θ1 ·θ2

2
|0〉+cos

θ1 ·θ2

2
|1〉

)
+sin

θ1

2
cos

θ2

2
|1〉

(
cos

θ1 ·θ2

2
|0〉+sin

θ1 ·θ2

2
|1〉

)
+sin

θ1

2
·sin

θ2

2
|1〉

(
−sin

θ1 ·θ2

2
|0〉+cos

θ1 ·θ2

2
|1〉

)
.
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4.3.2.5 IQP Encoding

For a 2qubit scenario IqpE translates to the following

(4.46)

|00〉 H1H2−−−−→ |++〉,

= 1
2

(|00〉+ |01〉+ |10〉+ |11〉),
RZ (θ1)−−−−→
RZ (θ2)

1
2

(
|00〉+ eiθ2 |01〉+ eiθ1 |10〉+ ei(θ1+θ2)|11〉

)
CNOT−→ 1

2
(|00〉+ eiθ2 |01〉+ eiθ1 |11〉+ ei(θ1+θ2)|10〉

)
RZ (θ1.θ2)−−−−−−→ 1

2
(|00〉+ eiθ2(1+θ1)|01〉+ eiθ1(1+θ2)|11〉

+ eiθ1(1+θ2)|10〉+ ei(θ1+θ2)|11〉).

U(θ1, 0, 0) • X • X

U(θ2, 0, 0) U(θ3, 0, 0)

(a)

Ry(θ1) •

Ry(θ2)

(b)

Ry(θ1) •

Ry(θ2) Ry(θ1.θ2)

(c)

H R (θ1)
R  

H R (θ2)

(d)

Figure 4.3: Plot illustrating different encoding methods for two qubits. (a) Ampli-
tude encoding, (b) angle encoding, (c) Higher order encoding, (d) IQP encoding.
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4.4 Results

4.4.1 VQE Simulation of QSVM and VRP

We build the Hamiltonian with a uniform distribution of weights between 0 and 1,

and then run it along with the ansatz via IBM’s three available VQE optimizers

(COBYLA, L_BFGS_B, and SLSQP). We run the circuit up to two layers and gather

data using all of the available optimizers. We run the experiment again with a

fixed Hamiltonian and, subsequently, a set of variable Hamiltonians to see whether

the QSVM and encoding approach can effectively reach the classical minimum.

Our results indicate that COBYLA is the most efficient optimizer, followed by

SLSQP and L BFGS B. In the sections that follow, we’ll have a look at the results

obtained using various QSVM encoding schemes. We define two terms‚ÄîAccuracy

and Error‚Äîin the context of outcomes’ interpretability. An error occurs when

the solution deviates from the classical minimum more often than it reaches it,

whereas accuracy is defined as the number of times the solution reaches the

classical minimum. Percentages based on the distribution of the outcomes are used

to evaluate both terms.

Acc = N
T

,

Err = T −N
T

.(4.47)

T = Total number of Simulation runs

N = Total number of times solution reaches classical minimum

4.4.1.1 Amplitude Encoding

With a large number of gates, the AE circuit has proven to be the most complex of

all encoding circuits. We can simulate no more than six qubit computations due

to this complexity. Despite its complexity, AE has a high, nearly perfect accuracy

rate (100%) and a very low error rate (0%) for 50-iteration fixed Hamiltonian

simulations. The trend is present in both the first and second layers. The first

layer accuracy for a variable Hamiltonian simulation is 96%, and the second
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layer accuracy is 94% across all optimizers. Figures 4.4depicts the results of 50

iterations of simulating SVM with amplitude encoding on a VRP circuit with fixed

and variable Hamiltonian. The decline in accuracy, however, can be attributed to

simulation or computational errors, as all the errors are greater than 100 percent

and are therefore considered aberrations. Most likely, the simulation hardware

cannot accommodate the VQE procedure.

(a)

(b)

Figure 4.4: Plot illustrating Amplitude encoding results for QSVM solution of VRP.
(a) Amplitude encoding 6 qubits Fix Hamiltonian, (b) Amplitude encoding 6 qubits
Variable hamiltonian
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4.4.1.2 Angle Encoding

Angle encoding is the second encoding, following amplitude encoding; we have

experimented with SVM VRP simulation, which yields high accuracy and low error

rates. Observing tables I and II, and 4.5 angle encoding is the second most precise

encoding employed in our investigations. For fixed Hamiltonian simulations over

50 iterations with 6 qubits angle encoding, the first layer, including all optimizers,

achieves 100 percent accuracy and zero percent error. In the 2nd layer simulation

(over 50 iterations), the accuracy decreases to 98% for COBYLA, 96% for SLSQP,

and 86% for L_BGFS_B, which is a greater decrease than the other two. These

declines are attributable to optimizer-dependent statistical errors. Similarly, for

12 qubit simulations of SVM VRP, the accuracy rates are higher in the first layer,

which consists of COBYLA at 100%, SLSQP at 92%, and L_BGFS_B at 88%,

reiterating that the accuracy is highly dependent on the optimizer. As we move

to the second layer of 12 qubit simulations on Fixed hamiltonian, we observe a

decline in precision as the level of optimization rises. In this case, COBYLA winds

up with 80%, L_BGFS_B with 70%, and SLSQP with 84%. Here, SLSQP’s accuracy

loss is less than that of the other two optimizers. The variable Hamiltonian with

12 qubits demonstrates a comparable trend. On the initial layer, we observe high

accuracy with COBYLA at 96%, L_BGFS_B at 86%, and SLSQP at 90%. Moving

to the second stratum, the accuracy figures drop significantly, with COBYLA at

76% and L_BGFS_B at 62%, while SLSQP maintains excellent accuracy at 86%.

In every scenario of our investigation, it is evident that over-optimization reduces

accuracy rates.
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(a)

(b)

(c)

(d)

Figure 4.5: Plot illustrating angle encoding results for QSVM solution of VRP.
(a) Angle encoding 6 qubits Fix hamiltonian, (b) Angle encoding 12 qubits Fix
hamiltonian, (c) Angle encoding 6 qubits Variable hamiltonian, (d) Angle encoding
12 qubits Variable hamiltonian.
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4.4.1.3 Higher Order Encoding

After Amplitude and Angle Encoding, Higher Order Encoding is the third most

prevalent encoding in our SVM VRP simulation experiment. This is also the

third most accurate encoding in our experiment. For both 6 qubit and 12 qubit

simulations, HO encoding yields moderately accurate results; however, as the

number of circuit layers is increased, the accuracy of the HO encoding scheme

deteriorates, rendering it inappropriate. Figure 4.6 depicts the statistics of the

HO encoding scheme for fixed and variable hamiltonian simulations of SVM VRP

circuits over 50 iterations for both 6 qubit and 12 qubit simulations. COBYLA

achieves 78% accuracy for a 6-qubit HO encoding circuit on a fixed Hamiltonian,

while L_BGFS_B achieves 66% accuracy and SLSQP achieves 70% accuracy. As we

proceed to the second layer, the accuracy considerably decreases, with COBYLA at

34% and SLSQP, L_BGFS_B at 16%, respectively. Similar trends can be observed in

variable Hamiltonian simulations of HO encoding with 6 qubits, with COBYLA at

76%, SLSQP at 62%, and L_BGFS_B at 58% for the first layer; for the second layer,

the accuracy drops to 36%, 34%, and 36% for COBYLA, L_BGFS_B, and SLSQP,

respectively. The 12 qubit simulation yields superior results than the 6 qubit

simulation and improves COBYLA’s accuracy. For fixed hamiltonian simulations,

COBYLA achieves an accuracy of 92%, compared to 78% for 6qubit. For variable

hamiltonian simulations, COBYLA stores 76% for 6 qubit in the first layer, and

92% for 12 qubit in the first layer. The tendencies for L_BGFS_B and SLSQP

are ambiguous for both cases (fixed and variable hamiltonian simulations); it

is reassuring to conclude that an increase in layer decreases accuracy and that

COBYLA outperforms the other two optimizers and ensures stable performance.
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(a)

(b)

(c)

(d)

Figure 4.6: Plot illustrating Higherorder encoding results for QSVM solution of
VRP. (a) Higherorder encoding 6 qubits Fix hamiltonian, (b) Higherorder encoding
12 qubits Fix hamiltonian, (c) Higherorder encoding 6 qubits Variable hamiltonian,
(d) Higherorder encoding 12 qubits Variable hamiltonian.
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4.4.1.4 IQP Encoding

IQP encoding is the last and least accurate encoding in our experiment to simulate

an SVM VRP circuit. The results are plotted in Figures 4.7 and in tables 4.1 and

tables 4.2. As we can see from the figures and tables that accuracy is consistently

poor for fixed and variable hamiltonian simulations in both 6 qubit and 12 qubit

circuits. The accuracy further declines as layers increase. Hence this encoding is

unsuitable in our experiment of SVM VRP circuits.
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(a)

(b)

(c)

(d)

Figure 4.7: Plot illustrating IQP encoding results for QSVM solution of VRP. (a)
IQP encoding 6 qubits Fix hamiltonian, (b) IQP encoding 12 qubits Fix hamiltonian,
(c) IQP encoding 6 qubits Variable hamiltonian, (d) IQP encoding 12 qubits Variable
hamiltonian.
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Qubits 6 12

Encoding Optimizer Layers Iterations No Devn. With Devn Acc Err No Devn. With Devn Acc Err

Amplitude Enc. COBYLA 1 50 50 0 100% 0%

L_BGFS_B 1 50 50 0 100% 0%

SLSQP 1 50 50 0 100% 0%

COBYLA 2 50 50 0 100% 0%

L_BGFS_B 2 50 50 0 100% 0%

SLSQP 2 50 50 0 100% 0%

Angle Enc. COBYLA 1 50 50 0 100% 0% 50 0 100% 0%

L_BGFS_B 1 50 50 0 100% 0% 44 6 88% 12%

SLSQP 1 50 50 0 100% 0% 46 4 92% 8%

COBYLA 2 50 49 1 98% 2% 40 10 80% 20%

L_BGFS_B 2 50 43 7 86% 14% 35 15 70% 30%

SLSQP 2 50 48 2 96% 4% 42 8 84% 16%

HO Enc. COBYLA 1 50 39 11 78% 22% 45 5 90% 10%

L_BGFS_B 1 50 33 17 66% 34% 32 18 64% 36%

SLSQP 1 50 35 15 70% 30% 31 19 62% 38%

COBYLA 2 50 17 33 34% 66% 10 40 20% 80%

L_BGFS_B 2 50 8 42 16% 84% 12 38 24% 76%

SLSQP 2 50 8 42 16% 84% 17 33 34% 66%

IQP Enc. COBYLA 1 50 11 39 22% 78% 10 40 20% 80%

L_BGFS_B 1 50 8 42 16% 84% 7 43 14% 86%

SLSQP 1 50 12 38 24% 76% 11 49 22% 98%

COBYLA 2 50 8 42 16% 84% 6 44 12% 88%

L_BGFS_B 2 50 6 44 12% 88% 4 46 8% 92%

SLSQP 2 50 6 44 12% 88% 4 46 8% 92%

Table 4.1: For 6 and 12 qubit VRP circuits using SVM with 2 layers, the table
above shows the Accuracy and Error with reference to classical minimum (over
50 iterations) for VQE simulations over a fixed Hamiltonian; utilizing Amplitude,
Angle, Higher-Order, and IQP encoding schemes, Over the use of COBYLA, SLSQP
and L_BGFS_B optimizers.
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Qubits 6 12

Encoding Optimizer Layers Iterations No Devn. With Devn Acc Err No Devn. With Devn Acc Err

Amplitude Enc. COBYLA 1 50 48 2 96% 4%

L_BGFS_B 1 50 48 2 96% 4%

SLSQP 1 50 48 2 96% 4%

COBYLA 2 50 47 3 94% 6%

L_BGFS_B 2 50 47 3 94% 6%

SLSQP 2 50 47 3 94% 6%

Angle Enc. COBYLA 1 50 48 2 96% 4% 48 2 96% 4%

L_BGFS_B 1 50 46 4 92% 8% 43 7 86% 14%

SLSQP 1 50 46 4 92% 8% 45 5 90% 10%

COBYLA 2 50 44 6 88% 12% 38 12 76% 24%

L_BGFS_B 2 50 43 7 86% 14% 31 19 62% 38%

SLSQP 2 50 42 8 84% 16% 42 8 84% 16%

HO Enc. COBYLA 1 50 38 12 76% 24% 46 4 92% 8%

L_BGFS_B 1 50 29 21 58% 42% 34 16 68% 32%

SLSQP 1 50 31 19 62% 38% 36 14 72% 28%

COBYLA 2 50 18 32 36% 64% 21 29 42% 58%

L_BGFS_B 2 50 17 33 34% 66% 17 33 34% 66%

SLSQP 2 50 18 32 36% 64% 15 35 30% 70%

IQP Enc. COBYLA 1 50 27 23 54% 46% 22 28 44% 56%

L_BGFS_B 1 50 21 29 42% 58% 18 32 36% 64%

SLSQP 1 50 25 25 50% 50% 22 28 44% 56%

COBYLA 2 50 10 40 20% 80% 10 40 20% 80%

L_BGFS_B 2 50 14 36 28% 72% 13 37 26% 74%

SLSQP 2 50 20 30 40% 60% 13 37 26% 74%

Table 4.2: For 6 and 12 qubit VRP circuits using SVM on with 2 layers, the table
above shows the Accuracy and Error with reference to classical minimum (over
50 iterations) for VQE simulations on variable hamiltonians utilizing Amplitude,
Angle, Higher-Order, and IQP encoding schemes, Over the use of COBYLA, SLSQP
and L_BGFS_B optimizers.

4.4.2 Inferences from Simulation

As we scan through the results of SVM VRP simulations across the encoding

schemes we observe some clear and distinct trends regarding the experiment. The

tables 4.1 and 4.2 summarize the results obtained from the plots of all the encoding

schemes used in this experiment. We list these trends as our outcomes of this

experiment in the below points,

• The approach to solving VRP using machine learning is successful and is
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capable of accomplishing the same or a superior result than the conventional

approach using VQE and QAOA.

• The use of encoding/decoding schemes can serve the purpose of creating

superposition and entanglement and eliminate the additional effort required

to construct the mixer hamiltonian when solving the VRP using the standard

approach of QAOA and VQE.

• While the standard approach to solving VRP or any combinatorial optimiza-

tion problem requires a few layers of circuit depth (2 in most cases), we are

able to achieve the same on the first layer itself with this approach, proving

that it is more efficient than the standard approach.

• We also observe a distinct trend that as the number of layers increases,

the accuracy decreases, which can be used to determine where to limit the

optimization depth.

• Encoding/decoding schemes reduce the number of optimization layers but

increase the circuit’s complexity by introducing more gates. Therefore, when

selecting an encoding scheme, we must take into account the complexity

of the generated circuit and the number of required gates, as well as the

number of classical resources (memory, CPU) it will require. There must be a

trade-off between circuit complexity and the desired problem accuracy.

• Despite the fact that amplitude encoding provided the greatest accuracy,

it could not be used to simulate a 12-qubit VRP scenario due to the large

number of gates required. Angel encoding, on the other hand, was found

to be much simpler due to a significantly smaller number of gates, as well

as providing excellent accuracy (96% for COBYLA, and 92% for SLSQP

and L_BGFS_B in variable hamiltonian simulation) across all the available

optimizers. This again demonstrates that the complexity of circuits and the

number of gates used are the most important considerations when choosing

an encoding/decoding scheme.

• It can be noticed that AgE performs the best in terms of circuit complexity

and accuracy rates due to the formation of a single layer of superposition. In
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other encodings (HO, IqpE), we observe multi-layered complex superposition

structures, which is the reason for fluctuations or error rates. Also in the

fact that increasing layers also increases the superposition structures and

therefore decreases the accuracy.

• Using COBYLA as an optimizer, HO encoding yielded intriguing results

with reduced accuracy in circuits with fewer qubits (6 qubits) and higher

accuracy in circuits with more qubits (12 qubits) for both fixed and variable

hamiltonian simulations. The trend is disregarded by SLSQP and L_BGFS_B.

This demonstrates that the algorithm’s performance is extremely dependent

on the optimizer; therefore, when evaluating the algorithm’s performance,

the most efficient optimizer should be selected by comparing the available

optimizers.

• The IQP encoding scheme performed the worst in this experiment, with the

lowest accuracy and highest error rates among all other encodings used for

1-layer, 2-layer, fixed, and variable Hamiltonians simulations. Therefore, the

IqpE method cannot be used to solve VRP using QSVM.

• All of the optimizers used in the experiments performed well across AE, AgE,

and HO encodings; however, COBYLA outperformed the other two due to its

consistently high level of accuracy, but SLSQP is more resistant to accuracy

fluctuations caused by an increase in optimization depth or in the presence

of multi-layered circuits.

4.4.3 Complexity and Cost Considerations

Along with the inferences and observation, we want to touch upon the complexity of

the quantum circuits particularly the number of qubits, quantum cost and circuit

depth in this section. Here, we compare the SVM VRP solution with the standard

VQE solution that is described in our previous work [60].

In order to compare we have listed the quantum cost and circuit depth of stan-

dard VQE implementation with that of SVM VRP implementation each consisting

of 6 and 12 qubits with 1 and 2 layers (Table 4.3). We can broadly derive the

following observations from Table 4.3.
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• Transitioning from the conventional VQE method for VRP to using a Quan-

tum Support Vector Machine results in a rise in the number of gates, elevating

quantum depth and cost.

• The rise in quantum cost and depth is not linear and varies depending upon

the encoding scheme employed when comparing different encoding schemes

with the conventional VQE implementation of VRP.

• Increasing the number of layers and qubits in various techniques consistently

leads to a rise in quantum depth and quantum cost. The extent of this

increase varies based on the encoding method used.

• For the VQE standard, amplitude encoding, and angle encoding, there is

a proportionate rise in depth and cost, roughly doubling as we go through

layers and qubits.

• Higher order encoding (HO) and IQP encoding exhibit a much smaller rise

in cost and depth over layers and qubits compared to Amplitude and Angle

encoding.

• As the number of qubits increases from 6 to 12, the depth and cost rise by

almost four times compared to the 6-qubit scenario; however, the increase is

somewhat less than four times for HO and IQP encodings.

• Based on the depth and cost analysis, it is evident that HO and IQP provide

lower costs and circuit depths compared to Amplitude and angle encoding,

but their findings are less precise. Amplitude and angle encoding provide

the highest level of precision. This helps in determining the balance between

cost and accuracy when choosing encoding techniques for QSVM.

4.4.4 Experimental Setup, data gathering, and statistics

This experiment is conducted within the ambit of the QISKIT framework. While

performing the experiment, we used a quantum instance object, and the ansatz

runs inside the quantum instance object. A random seed is added to the quantum
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Layer 1 2Method Qubit depth cost depth cost
6 48 63 95 120VQE Standard

12 201 234 401 456
6 400 693 800 1386Amplitude Encoding

12 NA NA NA NA
6 58 73 116 146Angel Encoding

12 223 256 446 512
6 73 113 95 145HO Encoding

12 256 410 302 478
6 65 85 79 119IQP Encoding

12 236 280 262 350

Table 4.3: Table consisting of Quantum Depth and Quantum Cost of Various
Encoding Schemes compared with Standard VQE implementation of VRP.

instance to stabilize VQE results. All the experiments have been run 50+50 times,

one with a fixed Hamiltonian matrix and the other by varying the Hamiltonian

matrix. The objective of the experiments is to ensure that the results of experiments

are just not dependent on a single Hamiltonian. This is also to ensure that the

used circuits achieve classical minimum or near classical minimum regardless of

the hamiltonian used. Thus apart from the plots, the tables 4.1, 4.2 become the

figure of merit. In addition to the many hours of testing and debugging, it is to

be noted that the results reported here amounted to 150 hours of CPU time on a

24-core AMD workstation using Qiskit’s built-in simulators [50].

4.5 Conclusion

In this paper, we presented a novel technique for solving VRP through the use of

a 6 and 12-qubit circuit-based quantum support vector machine (QSVM) with a

variational quantum eigensolver for both fixed and variable Hamiltonians. In the

experiment, multiple encoding strategies were used to convert the VRP formulation

into a QSVM and solve it. In addition, we utilized multiple classical optimizers
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available within the QISKIT framework to measure the output variation and

accuracy rates. Consequently, our machine learning-based approach to resolving

VRP has proven fruitful thus far. Using a QSVM to implement a gate-based

simulation of a 3-city or 4-city VRP on a 6-qubit or 12-qubit system accomplishes

the goal. The method not only resolves VRP, but also outperforms the conventional

method of resolving VRP via multiple Optimization phases involving only VQE and

QAOA. In addition, selecting appropriate encoding methods establishes the optimal

balance between circuit complexity and optimization depth, thereby enabling

multiple approaches to solve CO problems using machine learning techniques.
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5
A QUANTUM APPROACH TO SYNTHETIC MINORITY

OVERSAMPLING TECHNIQUE (SMOTE)

Abstract

The paper proposes the Quantum-SMOTE method, a novel solution that

uses quantum computing techniques to solve the prevalent problem of class

imbalance in machine learning datasets. Quantum-SMOTE, inspired by the

Synthetic Minority Oversampling Technique (SMOTE), generates synthetic

data points using quantum processes such as swap tests and quantum ro-

tation. The process varies from the conventional SMOTE algorithm’s usage

of K-Nearest Neighbors (KNN) and Euclidean distances, enabling synthetic

instances to be generated from minority class data points without relying on

neighbor proximity. The algorithm asserts greater control over the synthetic

data generation process by introducing hyperparameters such as rotation

angle, minority percentage, and splitting factor, which allow for customization

to specific dataset requirements. The approach is tested on a public dataset

of TelecomChurn and evaluated alongside two prominent classification algo-

rithms, Random Forest and Logistic Regression, to determine its impact along

with varying proportions of synthetic data.
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5.1 Introduction

5.1.1 Unbalanced Classification

Unbalanced classification is a prevalent problem in machine learning [70, 71],

especially when the classes in a dataset are not represented evenly. Due to this

imbalance, models may be biased towards the dominant class, frequently at the

price of adequately forecasting the minority class. Such scenarios are common in

real-world applications such as fraud detection in banking, insurance, and retail

industries, detecting spam in email content, and predicting customer churn in

Telecom, where the class of interest is usually underrepresented. To mitigate the

problem of unbalanced classes, multiple techniques are used across industries, out

of which Synthetic Minority Oversampling Techniques (SMOTE) [72, 73] are quite

popular.

5.1.2 Overview of SMOTE

SMOTE is a statistical method used to augment the number of instances in a

dataset in a balanced manner. The technique was first presented by Chawla et al.

[73], whose main objective is to tackle the issue of imbalanced datasets, namely

in the realm of classification. Imbalanced datasets are common in many real-

world circumstances, where the frequency of instances belonging to a certain

class is much lower than the others. The disparity may result in unsatisfactory

performance of classification models since they have a tendency to exhibit bias

towards the dominant class. SMOTE resolves this problem by generating artificial

samples from the underrepresented class.

5.1.3 Existing works on SMOTE

During our study and implementation of the SMOTE technique and its modifica-

tions, we have come across academic papers authored by other researchers that

explore the progress and real-world uses of this algorithm [74–76]. Research on the

incorporation of SMOTE into ensemble learning approaches has been a substantial

focus. The combination seeks to use the advantages of both techniques in order
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to enhance the classification performance on datasets with uneven distribution.

The use of SMOTEBoost [77], and RusBoost highlights the significance of SMOTE

in ensemble learning techniques. Moreover, current research is underway in the

domain of image classification with a specific emphasis on the use of SMOTE [78].

5.1.4 Purpose and Scope

Since SMOTE is a widely used technique in machine learning to address unbal-

anced classification, we believe that a quantum computing approach will greatly

enhance its efficiency in quantum machine learning applications. Since quantum

computing is greatly useful in problems related to high dimensional datasets, A

SMOTE algorithm in quantum machine Learning will be of significant value. In

this paper, we propose a novel method of generating synthetic data points by using

the quantum swap test and quantum rotations, which can be used to increase the

number of minority class representatives in a large dataset and help reduce bias

in classification models. We have also applied the method to a publicly available

dataset named Telco Customer Churn [79] used for telecom churn classification

and recorded the results.

5.1.5 Organization

The paper is structured in the following manner. Section 5.2 explores the core

mathematical principles, including the Basic Concept, several versions of the

SMOTE algorithm, and the K-Means Clustering technique. Section 5.3 presents an

examination of the development of SMOTE utilizing quantum techniques, namely

the use of the swap test and rotation principles. This is followed by analyzing the

outcomes obtained by applying these concepts to actual data. Section 5.4 involves

the application of the quantum SMOTE algorithm to a real-world dataset. This

process comprises data preparation, clustering, and the production of synthetic data

using the SMOTE method. We utilize the SMOTE technique on the telecom data,

varying the proportions of the minority class to 30%, 40%, and 50%, respectively.

In Section 5.4.2, we provide a summary of the results and model parameters of the

classification Models, which elucidate the effects of Quantum SMOTE.
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5.2 Background

5.2.1 Basic Concept of SMOTE

SMOTE was proposed way back in 2002 by Chawla et al. [73] as a way to address

issues with unbalanced classification. The primary objective of the SMOTE algo-

rithm is to generate Synthetic data points from minority classes using K Nearest

neighbors and Euclidean distances. The synthetic data points, in turn, increase

the population of the minority class in the population, which counters the bias

towards the majority class in a classification scenario. SMOTE is widely used and

accepted, and since then, multiple variants of SMOTE have been proposed by

various researchers. In the below subsections, we will cover the working of the

SMOTE algorithm and its Variants.

5.2.2 How SMOTE Works

SMOTE [73] is an over-sampling technique that addresses imbalanced datasets by

generating synthetic instances for the minority class instead of just duplicating

existing examples. To address the imbalance in class distribution, the minority class

is augmented by generating synthetic samples along the line segments connecting

the K nearest neighbors of each minority class sample. Neighbors are randomly

selected from the K nearest neighbors, based on the desired level of over-sampling.

The initial approach used a set of five closest neighbors. For example, when the

required over-sampling quantity is 300%, only three neighbors are selected from

the five nearest neighbors, and one sample is created in the direction of each

selected neighbor.

Synthetic samples are produced as follows:

1. Find the feature vector’s closest neighbor and compute the difference between

the two.

2. Pick a uniformly random number between 0 and 1 and multiply it by this

difference.

3. Add the resulting number to the original feature vector.
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The result is the random creation of a synthetic point along the line segment

between two feature vectors. This method broadens the minority group’s density

and resolves the decision boundary.
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Algorithm 2 SMOTE(N, A,m)
1: Input:
2: N = number of samples in the minority class.
3: A = the percentage of SMOTE to be applied.
4: m = number of nearest neighbors to be considered.
5: Output:
6: Generate (N/100)× A artificial samples for the minority class.
7: procedure SMOTE(N, A,m)
8: if Proportion of class A < 100% then
9: Randomly choose a percentage of the minority class samples to be

SMOTEd.
10: end if
11: if A < 100 then
12: N ← (A/100)×N
13: A ← 100
14: end if
15: A ← int(A/100)
16: numattrs ← total count of attributes
17: Sample[][]← array containing the original minority class samples
18: newindex ← 0
19: Synthetic[][]← array for creating artificial samples
20: for i = 1 to N do
21: Compute m closest neighbours for i and save indices in nnarray
22: Fill array A with values from nnarray starting at index i
23: end for
24: POPULATE(A, i,nnarray)
25: while A ̸= 0 do
26: Select a random integer from 1 to m as nn
27: for attr = 1 to numattrs do
28: di f f ← Sample[nnarray[nn]][attr]−Sample[i][attr]
29: gap ← random number between 0 and 1
30: Synthetic[newindex][attr]← Sample[i][attr]+ gap×di f f
31: end for
32: newindex ← newindex+1
33: A ← A−1
34: end while
35: return “End of Populate”
36: end procedure
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5.2.3 Variants of SMOTE

As the SMOTE algorithm became popular, multiple variations have been proposed.

For the sake of reference, we mention some of them in this section.

Borderline-SMOTE:

Borderline-SMOTE specifically targets the minority class samples that are in

close proximity to the boundary with the majority class. The objective is to produce

artificial samples at close proximity to the boundary rather than over the whole of

the distribution of the minority class [80].

ADASYN (Adaptive Synthetic Sampling):

ADASYN specifically aims to generate synthetic samples for the minority class.

However, unlike SMOTE, ADASYN adjusts its approach based on the unique

properties of the dataset. It produces additional synthetic data for minority class

samples that are more challenging to learn (i.e., those that are incorrectly cate-

gorized using the K-Nearest Neighbor method) in contrast to those that are less

difficult. The number of artificial samples to be generated for each underrepre-

sented sample is contingent upon the complexity of learning that particular sample

[81].

SMOTE-ENN (SMOTE with Edited Nearest Neighbors):

SMOTE-ENN [82] is a hybrid technique that integrates the concepts of over-

sampling and under-sampling to tackle the problem of class imbalance in machine

learning. The SMOTE method is used to oversample the minority class, whereas

the ENN rule is used for undersampling. SMOTE algorithm creates new samples

in the minority class by selecting the K-nearest neighbors from the same class and

creating interpolations between the original sample and its neighbors.

Each instance in the dataset undergoes testing by comparing it with its three

closest neighbors. If the majority of the neighbors do not have the same class as

the instance, the instance is removed. This mostly pertains to the dominant class

within skewed datasets.

The implementation of SMOTE-ENN involves the following steps:

Initial Step: Utilise SMOTE technique to oversample the minority class and gener-

ate synthetic instances, hence achieving a balanced distribution of classes.

Next, implement the ENN rule on the dataset that has been oversampled. ENN
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will exclude instances from both the majority and minority classes that are deemed

to be noisy or are located on the boundary between the two classes.

Result: This integrated method not only resolves the disparity by augmenting

the number of instances in the underrepresented category but also enhances the

dataset’s quality, resulting in a more distinct and less susceptible decision border

between the classes, reducing overfitting. This helps in cleaning the space between

the majority and minority classes.

SMOTE-Tomek Links:

SMOTE-Tomek Links is a hybrid method that combines the Synthetic Minority

Over-sampling Technique (SMOTE) with Tomek Links, an under-sampling tech-

nique. This combination is used to mitigate class imbalance in machine learning

datasets. A pair of examples belonging to contrasting classes are classified as a

Tomek Link if they are the closest neighbors of each other. Essentially, they are

closely related points, but belong to separate classes. The objective is to eliminate

these Tomek Links in order to enhance the clarity of the class boundaries. Usu-

ally, the instance belonging to the majority class in each pair of Tomek Links is

eliminated, which helps in minimising the overlap between classes [73, 83].

SVMSMOTE: SVMSMOTE (Support Vector Machine Synthetic Minority Over-

sampling Technique) [84] integrates ideas from Support Vector Machines (SVMs)

into SMOTE. SVMSMOTE uses SVMs to detect support vectors among the samples

of the minority class. Support vectors are often defined as the data points that are

in close proximity to the decision border separating different classes. Within the

framework of class imbalance, these minority class samples are often the most

crucial ones to prioritize for over-sampling. SVMSMOTE creates synthetic samples

in the proximity of the detected support vectors rather than distributing them

randomly throughout the whole space of the minority class. The objective of this

strategy is to enhance the decision border region where the classifier is prone to

uncertainty.

5.2.4 K-Means Clustering

K-means clustering [? ] is a widely used unsupervised machine learning approach

that divides a dataset into K separate and non-overlapping groups. The main
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goal of the K-means algorithm is to categorize data points into clusters, where

each point is assigned to the cluster with the closest average value, which acts

as the center or centroid of the cluster. The technique sequentially allocates data

points to the centroid that is closest to them and updates the locations of the

centroids by calculating the mean of the points in each cluster. This procedure

iterates until convergence, which is achieved when the locations of the centroids no

longer exhibit substantial changes or when a predetermined number of iterations

is reached. The k-means algorithm is very susceptible to the starting position of

centroids, which might result in convergence to local optima. Therefore, it is crucial

to do numerous iterations of the algorithm with various initializations to ensure

accurate results. Although K-means is computationally fast and easy to implement,

its main strengths lie in its ability to uncover patterns in data, cluster comparable

observations, and assist in exploratory data analysis in many domains, such as

picture segmentation, customer segmentation, and pattern identification.

5.2.5 ROC Curve

The Receiver Operating Characteristic (ROC) is a commonly used graphical plot

to assess the effectiveness of a binary classifier system while the discrimination

threshold is adjusted. It is especially advantageous in scenarios where there is a

requirement to strike a balance between a true positive rate and a false positive

rate.

The True Positive Rate (TPR), often referred to as Sensitivity, Recall, or Proba-

bility of Detection, is determined by the formula TPR = TP/(TP +FN), where TP
represents the count of true positives and FN represents the count of false nega-

tives. The False Positive Rate (FPR), often referred to as the Probability of False

Alarm, is determined by the formula FPR = FP/(FP +TN), where FP represents

the count of false positives and TN represents the count of true negatives.

An ROC curve illustrates the relationship between the true positive rate (TPR)

and the false positive rate (FPR) across different threshold values. The x-axis

corresponds to the False Positive Rate, while the y-axis corresponds to the True

Positive Rate.

The AUC, or Area Under the Curve, is a metric that quantifies a classifier’s
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capacity to differentiate between classes. It serves as a concise representation of

the ROC curve. A model with a higher AUC value indicates superior performance.

5.3 Emulating SMOTE Using Quantum

Upon examining the SMOTE algorithm and its modifications as presented by [73],

we have adopted a distinct method for oversampling the minority class by using

quantum approaches. It is often seen in real-world datasets that the minority class

is unevenly distributed in the population. Therefore, producing synthetic data

uniformly throughout all distribution zones may not effectively address the issue

of bias. Our method entails dynamically segmenting the whole population using

clustering methods and thereafter creating synthetic data inside each cluster to

achieve the desired minority proportion. The target minority percentage is the

overall percentage of minorities in the population following the introduction of

synthetic data.

Synthetic data creation requires using quantum rotation to manipulate in-

dividual data points from the minority class. This is done by representing each

data point as a multidimensional vector and rotating it along the X (or Y or Z)

direction. In the next part, we will get into the specifics of selecting X rotations. The

rotation angle is computed as the angle formed between the vector of the minority

data point and the centroid vector of the cluster it belongs to. It is important to

mention that while determining the angle slice, a relatively tiny angle is used to

reduce sudden departures from the initial minority class data point. If there are

many synthetic data points to be created, the remaining synthetic data points are

obtained by incrementing the angle from the starting value.

The objective of this strategy is to ensure that the created synthetic data points

remain within the statistical bounds of their respective cluster, while also boosting

the density of the minority class. In the following sections, we will provide a

comprehensive analysis of the algorithm, rotation, and data creation process.

The figures 5.1 illustrate fundamental differences in Classical and Quantum

SMOTE procedures
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(a) (b)

Figure 5.1: Plot illustrating different SMOTE mechanisms. (a) Classical SMOTE,
(b) Quantum SMOTE.

5.3.1 Swap Test

The quantum swap test is a quantum procedure used to ascertain the degree of

similarity between two quantum states, ψ and φ. The test result quantifies the

degree of overlap between the two states, which is directly linked to their inner

product 〈ψ|φ〉. Usually, we tackle the swap test in the following manner.

Setup: Commence by using a control qubit, normally in the state |0〉, together

with two quantum registers that are in the respective states ψ and φ.

Hadamard Transformation: Perform a Hadamard gate operation on the control

qubit. This results in the creation of a superposition state, where the control qubit

is in a state that is proportional to the sum of |0〉 and |1〉.
Controlled Swap: Execute a regulated exchange (or Fredkin gate) using the

control qubit. When the control qubit is in the state |1〉, it performs a swap operation

on the two quantum registers. Alternatively, it does not alter them.

Second Hadamard: Apply a second Hadamard gate to the control qubit.

Measurement: Conduct a measurement on the control qubit. If the two quantum

states |ψ〉 and |φ〉 are indistinguishable, the control qubit will consistently be seen

in the state |0〉. The likelihood of seeing the state |0〉 diminishes as the states grow

more different.
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Outcome: The chance of seeing the control qubit in the state |0〉 after the

swap test provides information on the similarity of the two quantum states. More

precisely, the likelihood is proportional to the square of the magnitude of their

inner product. The mathematical expression for the probability P(0) of measuring

the state |0〉 is,

P0 = 1
2

(1+|〈ψ|φ〉 |2).(5.1)

From this above expression, 〈ψ|φ〉 can be determined as,

〈ψ|φ〉 =
√

2P0 −1(5.2)

Fig. 5.2 circuit illustrates the basic swap test.

|0〉 H • H

|ψ〉 ×

|φ〉 ×
Figure 5.2: Swap test circuit.

The swap test probability can be defined as,

swap_test_probability= 1−2p0 + p1(5.3)

where p0 and p1 are probabilities of the states |0〉 and |1〉 respectively.

5.3.1.1 Compact Swaptest

For the purpose of this paper, we have adopted a modified version of the swap test

to find the inner product of our two vectors, namely the centroid and an arbitrary

minority data point within the cluster. The procedure is already discussed in

the articles [85, 86]. Though the article describes the procedure as a dissimilarity

measure and uses it to calculate Euclidian distance, we have used it to calculate the
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inner product of quantum states and thereby the angular distance. The advantage

of this procedure is that it requires less number of qubits

n = log2(M)+1

where n is the number of qubits and M is the classical data encoded by amplitude

embedding. The procedure is as follows,

We amplitude encode two vectors C (Centroid) and M (Minority) by

C −→ |C〉 = 1
|C|

∑
i

Ci |qi〉(5.4)

M −→ |M〉 = 1
|M|

∑
i

Mi |qi〉(5.5)

We define the quantum states |ψ〉 and |φ〉 as:

|ψ〉 = |0〉⊗ |C〉+ |1〉⊗ |M〉p
2

|φ〉 = |C||0〉− |M||1〉p
Z

Z = |C|2 +|M|2(5.6)

Let’s divulge into the details of this circuit

(5.7)

|0〉|φ〉|ψ〉

=|+〉
(
(C|0〉−M|1〉)p

Z

)( |0〉|C〉+ |1〉|M〉p
2

)
=

( |0〉+ |1〉p
2

)(
C|0〉−M|1〉p

Z

)( |0〉|C〉+ |1〉|M〉p
2

)
= 1

2
p

Z
[|0〉(C|0〉−M|1〉)(|0〉|C〉+ |1〉|M〉)

+|1〉(C|0〉−M|1〉)(|0〉|C〉+ |1〉|M〉)]

= 1

2
p

Z
[|0〉(C|0〉|0〉|C〉+C|0〉|1〉|M〉−M|1〉|0〉|C〉−M|1〉|1〉|M〉)

+|1〉(C|0〉|0〉|C〉+C|0〉|1〉|M〉−M|1〉|0〉|C〉−M|1〉|1〉|M〉)]
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Applying a controlled swap operation

= 1

2
p

Z
[|0〉(C|0〉|0〉|C〉+C|0〉|1〉|M〉−M|1〉|0〉|C〉−M|1〉|1〉|M〉)

+ |1〉(C|0〉|0〉|C〉+C|1〉|0〉|M〉−M|0〉|1〉|C〉−M|1〉|1〉|M〉](5.8)

Applying Hadamard

= 1

2
p

Z
[|+〉(C|0〉|0〉|C〉+C|0〉|1〉|M〉−M|1〉|0〉|C〉−M|1〉|1〉|M〉)

+ |−〉(C|0〉|0〉|C〉+C|1〉|0〉|M〉−M|0〉|1〉|C〉−M|1〉|1〉|M〉]
= 1

2
p

2Z
[(|0〉+ |1〉)(C|0〉|0〉|C〉+C|0〉|1〉|M〉−M|1〉|0〉|C〉−M|1〉|1〉|M〉)

+ (|0〉− |1〉)(C|0〉|0〉|C〉+C|1〉|0〉|M〉−M|0〉|1〉|C〉−M|1〉|1〉|M〉]
= 1

2
p

2Z
[|0〉(2C|0〉|0〉|C〉+ (C|0〉|1〉|M〉−M|0〉|1〉|C〉)+ (C|1〉|0〉|M〉

− M|1〉|0〉|C〉)−2M|1〉|1〉|M〉)
+ |1〉(C|0〉|1〉|M〉+M|0〉|1〉|C〉−M|1〉|0〉|C〉−C|1〉|0〉|M〉](5.9)
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The probability of 0 can be calculated as,

P0 = 1
8Z

|(2C|0〉|0〉|C〉+ (C|0〉|1〉|M〉−M|0〉|1〉|C〉)
+ (C|1〉|0〉|M〉−M|1〉|0〉|C〉)−2M|1〉|1〉|M〉)|2

= 1
8Z

|(2C|0〉|0〉|C〉+ |0〉|1〉(C|M〉−M|C〉)
+ |1〉|0〉(C|M〉−M|C〉)−2M|1〉|1〉|M〉)|2

= 1
8Z

|(2C|0〉|0〉|C〉+ (|0〉|1〉+ |1〉|0〉)(C|M〉−M|C〉)−2M|1〉|1〉|M〉)|2

= 1
8Z

|(2C|0〉|0〉|C〉−2M|1〉|1〉|M〉)+ (|0〉|1〉+ |1〉|0〉)(C|M〉−M|C〉)|2

= 1
8Z

(|2C|0〉|0〉|C〉−2M|1〉|1〉|M〉|2 +||0〉|1〉+ |1〉|0〉|2|C|M〉−M|C〉|2)

= 1
8Z

(4C2 +4M2 +||0〉|1〉+ |1〉|0〉|2|C|M〉−M|C〉|2)

= 1
8Z

(4Z+2(C2 +M2 −2CM 〈M|C〉))

= 1
8Z

(4Z+2(Z−2CM 〈M|C〉))

= 1
4Z

(2Z+ (Z−2CM 〈M|C〉))

= 1
4Z

(3Z−2CM 〈M|C〉)

=⇒ 〈M|C〉 = (3−4P0)Z
2CM

(5.10)

The above equation 5.10 states that after measurement, from the probability

of 0, we obtain the inner product between the centroid and minority. In a slightly

different perspective, let us calculate the inner product of ψ and φ,

〈φ |ψ〉 =
(〈C|⊗〈0|−〈M|⊗〈1|p

Z

)( |0〉⊗ |C〉+ |1〉⊗ |M〉p
2

)
(5.11)

Expanding the inner product:

〈φ |ψ〉 = 1p
Z

1p
2

(〈C|⊗〈0|(|0〉⊗ |C〉)+〈C|⊗〈0|(|1〉⊗ |M〉)
− 〈M|⊗〈1|(|0〉⊗ |C〉)−〈M|⊗〈1|(|1〉⊗ |M〉))(5.12)
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Simplifying each term:

〈C|⊗〈
0|(|0〉⊗ |C〉)= 〈C | C〉⊗〈0 | 0〉 = |C|2

〈C|⊗〈0|(|1〉⊗ |M〉)= 0

〈M|⊗〈1|(|0〉⊗ |C〉)= 0

〈M|⊗〈
1|(|1〉⊗ |M〉)= 〈M | M〉⊗〈1 | 1〉 = |M|2(5.13)

So, the inner product simplifies to:

〈φ |ψ〉 = 1p
Z

1p
2

(|C|2 −|M|2)
〈φ |ψ〉 = |C|2 −|M|2p

2Z
(5.14)

Calculating |〈φ |ψ〉|2 :

|〈φ |ψ〉|2 =
( |C|2 −|M|2p

2Z

)2

=
(|C|2 −|M|2)2

2Z
(5.15)

2Z|〈φ |ψ〉|2 = 2Z

((|C|2 −|M|2)2

2Z

)
(5.16)

simplifying:

2Z|〈φ |ψ〉|2 = (|C|2 −|M|2)2
(5.17)

Assuming

2Z|〈φ |ψ〉|2 = D2

=⇒ D2 = 2Z|〈φ |ψ〉|2(5.18)

The term D refers to the Euclidean distance [86], and the inner product of 〈φ |ψ〉
represents the swaptest probability.
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|0〉 H • H

q1 |φ〉 ×

q2

|ψ〉

×
q3

q4

q5

q6

q7

C
Figure 5.3: Compact Swap test circuit.

Based on this, we define the angle between two vectors or angular distance as

angular_distance= 2cos−1(
√

swap_test_probability )(5.19)

The above angular distance or the angle between two vectors will be used to rotate

the minority class data point, which we will describe subsequently.

5.3.2 Applying Rotation to data point

After calculating the angle (angular distance) between two vectors, we rotate the

actual minority data point by an angle less than the calculated angle to create a

synthetic data point. We choose to minimize the angle of rotation to prevent abrupt

fluctuation of values in the minority data point. We perform rotations along the X,

Y, and Z axes to analyze their impact on the minority data points.

As the angle of rotation is minimal for the minority data point vector, we have

derived the angle of rotation with the below logic.

split_ f actor is the factor by which we want to divide the generated angle, we

have experimented with 2, 5, 10 and 100 for various rotations mentioned above

and will outline the result of rotation for a sample containing 10 data points.
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Algorithm 3 Angle of rotation calculation logic
sf: split_factor
if angular_distance> π

2 then
angle← ∣∣π

2 −angular_distance
∣∣ /sf

else if angular_distance< 0 then
angle← ∣∣(π

2 −angular_distance
)×random(0.5,1)

∣∣ /sf
else

angle← random(0,angular_distance)/sf
end if

The aforementioned figures illustrate the influence of rotation on data points.

Initially, we selected a subset of data points from the minority class and visually

represented them in Figure 5.4. This figure displays a scatter plot of the data

points. Subsequently, we have performed X, Y, and Z rotations on these data points,

using the split_ f actor as a basis. We conducted experiments by incrementally

increasing the split factor and evaluating the resulting effects on rotations.

X Rotation: X Rotation refers to the rotation of a data point in relation to the X

axis. We conducted experiments with split factors of 2, 5, and 10. Upon increasing

the split factor from 2 to 10, we see that the synthetic data points created by each

split factor exhibit a greater proximity to the original data points. When the split

factor 2 is used for X rotation, the resulting data points are located at a certain

distance from the original location. As we go from 5 to 10, the freshly created data

points get increasingly closer together. At 10, the synthetic data point is the closest

among the three dividing factors.

Y Rotation: Y Rotation refers to the rotational movement of data points around

the Y axis. From the analysis of figure 5.6, it is evident that the newly created data

points exhibit a high sensitivity to Y rotations. Additionally, these data points need

the generation of extremely tiny angles in order to be positioned in close proximity

to the Source(the minority sample). It is evident that as the splitting factor (100)

increases, resulting in extremely tiny angles, the created data point is closest to

the source. Conversely, small splitting factors (5) yield data points that deviate

significantly from the nature of the data point sample.

Z Rotation: Z rotation refers to the rotation of data points around the Z axis.

Based on the evidence shown in Figure 5.9, we can confidently infer that the
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behavior of Z rotation is similar to that of X rotation. Additionally, it is evident

that using splitting factors of 5 and 10 results in the generation of additional data

points that are in close proximity to the source.

In general, it can be confidently said that all rotations have the ability to

generate synthetic data points. However, the Y rotation is more sensitive, but the

X and Z rotations provide similar outcomes.

Figure 5.4: Plot representing Sample data points of Minority class from population
without any rotation
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(a)

(b)

(c)

Figure 5.5: Plot illustrating impact of X Rotation on Sample data points of Minority
class. (a) X Rotation with split_ f actor = 2, (b) X Rotation with split_ f actor = 5,
(c) X Rotation with split_ f actor = 10.
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(a)

(b)

Figure 5.6: Plot illustrating impact of Y Rotation on Sample data points of Minority
class. (a) Y Rotation with split_ f actor = 5, (b) Y Rotation with split_ f actor = 100
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(a)

(b)

Figure 5.7: Plot illustrating impact of Z Rotation on Sample data points of Minority
class. (a) Z Rotation with split_ f actor = 5, (b) Z Rotation with split_ f actor = 10

5.3.3 Quantum SMOTE Algorithm

We now introduce QuantumSMOTE. Broadly, our algorithm proceeds in two steps:

clustering of the population and generating synthetic data points by the swap test

and rotation of minority class data points. We believe clustering is an essential
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pre-step to synthetic data generation. Though we can use any clustering method

that produces clusters in data, we have used K-Means Clustering in our research

with a minimum of 3 clusters, and we recommend the same for further research on

this topic.

Post clustering, we proceed with synthetic data generation, and for the purpose

of simplicity, we name this part the QuantumSMOTE function. The pseudocode

of this is described in the section below. Generally, it comprises four distinct

parts: Data preparation for the swap test, application of the swap test, rotation

of synthetic data points, and generation of synthetic data points for each cluster

based on the target.

Algorithm 4 Preparation for Swap Test
1: function PREPSWAP TEST(data_point1, data_point2)
2: norm_data_point1← 0
3: norm_data_point2← 0
4: Dist ← 0
5: for i ← 0 to length(data_point1)−1 do
6: norm_data_point1← norm_data_point1+data_point1[i]2

7: norm_data_point2← norm_data_point2+data_point2[i]2

8: Dist ← Dist+ (data_point1[i]+data_point2[i])2

9: end for
10: Dist ←p

Dist
11: data_point1_norm ←√

norm_data_point1
12: data_point2_norm ←√

norm_data_point2
13: Z ← round(data_point1_norm2 +data_point2_norm2)
14: φ← [round(data_point1_norm/

p
Z ,3),−round(data_point2_norm/

p
Z ,3)]

15: Initialize array ψ

16: for i ← 0 to length(data_point1)−1 do
17: ψ.append(round(data_point1[i]/(data_point1_norm×p

2 ),3))
18: ψ.append(round(data_point2[i]/(data_point2_norm×p

2 ),3))
19: end for
20: return φ,ψ
21: end function
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Algorithm 5 Swap Test
1: function SWAP TESTV1(ψ, φ)
2: Initialize Quantum Register q1 with 1 qubit
3: Initialize Quantum Register q2 with n+2 qubits
4: Initialize Classical Register c with 1 bit
5: Create Quantum Circuit with q1, q2, and c

States initialization
6: Initialize q2[0] with state φ

7: Initialize q2[1 : n+2] with state ψ

The swap test operator
8: Apply Pauli-X Gate to q2[1]

Swap Test
9: Apply Hadamard Gate to q1[0]

10: Apply Controlled SWAP Gate on q1[0], q2[0], and q2[1]
11: Apply Hadamard Gate to q1[0]
12: Measure q1 into classical register c

Simulation and result collection
13: Set up quantum simulator
14: Execute the quantum circuit on the simulator
15: Collect the result into a variable result
16: Extract measurement counts from result

Calculate the Swap Test probability
17: p0← counts.get(’0’, 0)

total_shots

18: p1← counts.get(’1’, 0)
total_shots

19: swap_test_probability← 1−2× p0+ p1
20: Print swap_test_probability

Calculate the angular distance
21: angular_distance ← 2×arccos(

√
swap_test_probability )

22: Print angular_distance
23: return swap_test_probability, angular_distance
24: end function
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Algorithm 6 Normalize Array
1: function NORMALIZEARRAY(arr) Calculate the sum of squares of the

elements in the array
2: sum_of _squares ← SUMOFSQUARES(arr)

Check if the sum of squares is already very close to 1
3: if ISCLOSE(sum_of _squares, 1.0, rtol= 1e−6) then
4: return arr
5: end if

Calculate the scaling factor to make the sum of squares equal to 1
6: scaling_ f actor ← 1.0/

√
sum_of _squares

Normalize the array by multiplying each element by the scaling
factor

7: normalized_arr ← arr× scaling_ f actor
8: return normalized_arr
9: end function
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Algorithm 7 Create Synthetic Data
1: ad : angular_distance
2: s f : split_ f actor
3: function CREATESYNDATA(n, loop_ctr, angle_increment, ad,s f ,

data_point1, data_point2)
4: data_point1← NORMALIZEARRAY(data_point1)
5: data_point2← NORMALIZEARRAY(data_point2)
6: Initialize Quantum Circuit circuit with n qubits
7: circuit.INITIALIZE(data_point1)
8: if ad > π

2 then
9: angle ← ∣∣π

2 −angular_distance
∣∣ /s f

10: else if ad < 0 then
11: angle ← ∣∣π

2 −ad
∣∣×RANDOMUNIFORM(0.5,1)/s f

12: else
13: angle ← RANDOMUNIFORM(0,ad)/s f
14: end if
15: Print "rotation angle", angle
16: angle ← angle+angle_increment
17: for l ← 0 to n−1 do
18: Apply RX gate to circuit at qubit l with angle angle
19: end for

Simulate the quantum circuit
20: Set up quantum simulator
21: Execute circuit on the simulator and store result in job
22: result ← job.result()
23: statevector ← result.get_statevector()

Extract the final data point from the statevector
24: new_data_point ← REAL(statevector)
25: return new_data_point
26: end function
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Algorithm 8 Quantum Synthetic Minority Over-sampling Technique
1: function QUANTUMSMOTE(Data, Target_pct, cluster_centroids)
2: Initialize an empty DataFrame syn_dataf rame
3: Set target_synthetic_percent to 30
4: for each cluster clus_idx in centroid_d f do
5: Calculate minority_count_in_cluster and total_count_in_cluster
6: minority_percent ← Calculate minority percentage
7: Print minority percentage for cluster clus_idx
8: Calculate required synthetic iterations: synthetic_loop_itr
9: Print "Needed synthetic datapoint iterations =", synthetic_loop_itr

10: if synthetic_loop_itr in (0,1) then
11: Set synthetic_loop_itr1← 1
12: else if synthetic_loop_itr > 1 then
13: synthetic_loop_itr1← CEIL(synthetic_loop_itr)
14: f raction_part ← synthetic_loop_itr1 −

FLOOR(synthetic_loop_itr)
15: else
16: synthetic_loop_itr1←−1
17: end if
18: if synthetic_loop_itr1≥ 0 then
19: for syn_loop ← 0 to synthetic_loop_itr1−1 do
20: Choose centroid_temp and minority_temp appropriately
21: Flatten centroid_temp to centroid_dp_tmp
22: for each minority_dp_temp in minority_temp do
23: Prepare phi and psi for swap test
24: Calculate probabilities and angles for swap test
25: Calculate number of iterations and angle increment
26: Generate synthetic data and create DataFrame syn_d f _temp
27: Append syn_d f _temp to syn_dataf rame
28: end for
29: end for
30: else if synthetic_loop_itr1< 0 then
31: Print "Cluster clus_idx has sufficient minority percentage."
32: else
33: Print "No processing required."
34: end if
35: end for
36: return syn_dataf rame
37: end function
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5.4 Case Study and Results

To test the QuantumSMOTE algorithm, we analyse the publicly available dataset

of telecom churn [79]. This dataset is widely used to experiment and test various

models for customer retention and is quite useful in comparing classical models

with the models post-induction of synthetic data by the quantum SMOTE algorithm.

In the following subsections, we will describe data behavior, data preparation for

modeling, and applying QuantumSMOTE to the data.

5.4.1 Improving Telecom Churn Prediction Using SMOTE

The telecom churn dataset is purposefully developed to predict customer behavior

and help in generating customer retention programs. Each row in the dataset rep-

resents an individual consumer, with each column representing different attributes

of these customers. Notably, the dataset has such characteristics as:

Churn Indicator: This column identifies customers who have terminated their

service during the previous month.

Subscribed Services: A detailed list of all services that each customer has

signed up for, such as phone service, multiple lines, internet, online security, online

backup, device protection, tech support, and streaming TV and movies.

Account Information: comprises of how long they have been a client for, the

terms of the contract they entered into with their company, and which method they

would prefer to use when making payments so as to keep track of their spending

habits effectively through electronic means like electronic mail that may save on

transaction costs like envelope usage, monthly expenditure and cumulative costs

incurred so far.

Demographic Information: It provides information about the customer’s gen-

der, age group, whether or not they are married, and whether they have dependent

children.

5.4.1.1 Preparing Data For Quantum SMOTE

The Telco churn dataset is amenable to a usual data preparation process, which

broadly includes the following phases.
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Missing Value Tearment: Inspect the telco churn dataset for null values and

adapt a strategy to handle them. Since we found a very small percentage of records

(11, to be precise) that have missing values across multiple columns, we proceeded

with dropping them.

Removing Irrelevant Data: Identify and remove any columns that are not rel-

evant to churn prediction, such as customer IDs that are unique and not predictive

of churn.

Data Type Convertion: To ensure that each column is of the appropriate

data type, we have converted multiple columns with text data as to category. These

included columns such as PhoneService, MultipleLines, InternetService, Onli-

neSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, Stream-

ingMovies, Contract, PaperlessBilling, PaymentMethod, gender, SeniorCitizen,

Partner and Dependents. We also converted the numerical columns such as To-

talCharges, tenure and MonthlyCharges to float to avoid any of them being treated

as text due to import issues.

Exploratory Data Analysis (EDA): EDA was performed to understand the

distribution and relationship of variables. We applied various univariate, and

bivariate analyses to understand the behavior of data, particularly numeric vari-

ables, which are essential for creating models. The variables TotalCharges, tenure,

and MonthlyCharges are particularly important since the distribution of these

variables later will be used to verify the effect of the SMOTE procedure.

Label Encoding: For the sake of better visualization and correlation analysis

with the target variable, we performed label encoding of multiple categorical

variables.

Correlation Analysis: We conducted a correlation analysis of numerical

variables to eliminate multicollinearity. Also, we conducted a correlation analysis

of all the variables with the target to select the best-fit variables for modeling. Post

correlation analysis, we are able to drop multiple variables that are not relevant

for the purpose of modeling.

Onehot Encoding: Post selection of features, we converted all the categorical

variables to Onehot encoding, thereby creating multiple numerical columns for

each categorical value.

Feature Scaling: Since Onehot encoding created multiple numerical columns
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with values 0 and 1, the continuous variables such as TotalCharges, tenure and

MonthlyCharges are scaled by minmax scaling to lie between 0 and 1.

5.4.1.2 Clustering

As we have indicated earlier, the Quantum SMOTE algorithm relies on unique

customer segments to calculate the angle between the segment centroid (mean)

and minority data point; we have used the K-Means clustering method approach to

derive segments. The approach for identifying inherent groupings among customers

is based on their attributes, which can further assist in understanding customer

behavior and improving retention strategies. For the sake of our experiment, we

have identified 3 clusters using the K-Means approach to generate new data and

highlight the achievements. The outcome of the clustering approach is at least

3 clusters (datasets that are dynamically segmented) with different majority-

minority populations. These are useful when deriving angles based on which

minority population across clusters will be most valuable for the SMOTE algorithm.

5.4.1.3 Quantum SMOTE and Synthetic Data

After applying the Clustering algorithm to the Telecom Churn dataset and process-

ing the data, we proceeded to apply the Quantum SMOTE Algorithm (8) to each

cluster. The goal was to enhance the representation of the minority population

to a certain percentage of the overall dataset. The procedure used two primary

approaches previously mentioned, namely the swap test (Algo. 5) and rotation

(Algo. 7).

Swap Test: The fundamental operation of the swap test has been previously

explained in the preceding sections. We use the swap test in a modified manner

to compute the angular distance between the vector representing the minority

data point and the vector representing the centroid. The procedure is effectively

executed in Ref. [85]. The swap test requires two inputs, denoted as φ and ψ. The

state φ is determined by computing the norms of the inputs, which consist of the

centroid and minority data points. On the other hand, the state ψ is obtained

by concatenating the normalized components of the inputs. The execution of this
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Figure 5.8: Data point rotation circuit.

preparation is shown in the auxiliary function 4. The circuit that is obtained is

rendered in Fig. 5.3.

The main purpose of using this technique to swap test is to minimize the

required number of qubits in constructing the swap test circuit, which becomes

particularly advantageous as the dataset dimension expands. After performing

feature selection and Onehot encoding, we obtained a final count of 32 columns.

Consequently, our swap test circuit necessitates the use of 8 qubits and a classical

register. Nevertheless, using a traditional methodology may have resulted in the

use of 65 qubits. The swap test circuit facilitates the calculation of the angular

distance between the cluster centroid and the minority data point.

Rotation: After performing the swap test, it is necessary to rotate the minority

data point by an angle that represents a minute fraction of the total angular

distance. The rotation circuit executes the rotation of the normalized minority data

point vector. In the preceding section 5.3.2, we have provided a detailed explanation

of the different rotations of X, Y, and Z. In this experiment, we applied X rotations

to all of the minority data points. To account for numerous interactions or repeated

rotations of a single minority data point, we have adjusted the rotation angle

by 0.0174, which corresponds to the conversion from radians to degrees. We are

attempting to adjust the angle of the minority data point using angular degrees,
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even though the angular distance generated by the swap test is in radians. The

rotation circuit comprises the state vector of the normalized data point and rotation

gates (Fig. 5.8). By rotating minority data points, synthetic data points that closely

resemble the original data points are created, thanks to the use of modest rotation

angles. When the synthetic data points are included in the original dataset, it leads

to an increase in the total density of the minority class. The scatter distribution of

synthetic data points in the population is shown in Fig. 5.9. The data illustrates the

distribution of classes (majority, minority, and synthetic minority) as the proportion

of the minority class increases from 30% to 50%.

5.4.1.4 Observation from generated data

Following the generation of synthetic data points by rotation, our next step is to

examine the general distribution of important variables throughout the whole

population. The objective is to assess if the introduction of artificial data points

has caused any significant statistical deviation in the distribution of the variable.

The figures 5.10, 5.11, 5.12, and 5.13 illustrate the distribution of three impor-

tant variables in the dataset: Tenure, MonthlyCharges, and Total charges. The

distribution before the induction of synthetic data points is shown in Fig. 5.10.

The distributions following the induction of synthetic data points, resulting in

total minority percentages of 30, 40, and 50, are shown in figures 5.11, 5.12, and

5.13 accordingly. After applying SMOTE, we can confidently state that there is

a little distortion to the distribution of variables, but the bins have increased in

size. The use of relatively modest angles during rotation prevents any significant

deformation to the geometry of the distribution. By comparing the charts depicting

the variables after using the SMOTE technique, we see a progressive rise in the

values within each category, ranging from 30% to 50%. This confirms the successful

use of the SMOTE method.

5.4.1.5 Applying Classification Models

In order to comprehensively evaluate the effectiveness of the Synthetic Minority

Over-sampling Technique (SMOTE) in addressing class imbalances, our research

used two classification models, namely Random Forest and Logistic Regression,
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(a) data points with no synthetic

(b) 30% synthetic

(c) 40% synthetic

(d) 50% synthetic

Figure 5.9: Plot illustrating impact of synthetic data generation on Sample data
points of Minority class. (a) data points with no synthetic, (b) 30% synthetic, (c)
40% synthetic, (d) 50% synthetic.
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(a)

(b)

(c)

Figure 5.10: Plot illustrating distribution of 3 columns: (a) Tenure, (b) Monthly-
Charges, and (c) TotalCharges.
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(a)

(b)

(c)

Figure 5.11: Plot illustrating distribution of 3 columns with induction of synthetic
datapoints with overall 30% minority : (a) Tenure, (b) MonthlyCharges, and (c)
TotalCharges.
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(a)

(b)

(c)

Figure 5.12: Plot illustrating distribution of 3 columns with induction of synthetic
data points with overall 40% minority: (a) Tenure, (b) MonthlyCharges, and (c)
TotalCharges.
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(a)

(b)

(c)

Figure 5.13: Plot illustrating distribution of 3 columns with induction of synthetic
data points with overall 50% minority : (a) Tenure, (b) MonthlyCharges, and (c)
TotalCharges.
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on the Telecom Churn Dataset. The selection of these models was made to assess

the influence of using SMOTE on the performance of the models, particularly

in situations characterized by an imbalance in class distribution. The Random

Forest algorithm is well recognized for its ability to efficiently handle skewed

datasets. This model utilizes ensemble learning by creating multiple decision trees

and aggregating their predictions to mitigate overfitting. The algorithm natively

addresses class imbalances by using techniques such as bootstrap sampling and

adjusting its class weights parameter to enhance sensitivity towards the minority

class. This eliminates the requirement for external interventions like SMOTE [87].

On the other hand, Logistic Regression, a model well regarded for its simplicity

and effectiveness in situations where binary classification is needed, was selected

to provide a contrasting analytical viewpoint. The classification strategy of Logistic

Regression, which entails estimating the likelihood that a certain data point be-

longs to a specific class, does not inherently tackle the issue of class imbalance [88].

This attribute makes it a perfect contender for evaluating the immediate impacts of

SMOTE on model efficacy, providing valuable observations on how SMOTE might

augment a model’s capacity to identify the underrepresented class in unbalanced

datasets. The research seeks to evaluate the efficiency of the SMOTE method across

various modeling techniques by comparing the performances of these models before

and after their deployment. An investigation of SMOTE’s adaptability in enhancing

classification results is crucial, especially for models such as Logistic Regression

that lack inherent methods for addressing data imbalances [73] . To evaluate the

model, we have used the Confusion Matrix, Accuracy, Precision, Recall, F1-Score,

and the Area Under the Receiver Operating Characteristic Curve (AUC-ROC).

Below are the model evaluation charts for the Random Forest Model followed by

the Logistic Regression Model.
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(a) (b)

(c) (d)

Figure 5.14: Plot illustrating Model Charts for random forest model with out
SMOTE. (a) Confusion Matrix Random Forest Model, (b) Normalized Confusion
Matrix Random Forest Model, (c) AUC-ROC Random Foerest Model, (d) Precision
Recall Curve Random Forest Model.
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(a) (b)

(c) (d)

Figure 5.15: Plot illustrating Model Charts for logistic regression model without
SMOTE. (a) Confusion Matrix Logistic Regression Model, (b) Normalized Confusion
Matrix Logistic Regression Model, (c) AUC-ROC Logistic Regression Model, (d)
Precision Recall Curve Logistic Regression Model.
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(a) (b)

(c) (d)

Figure 5.16: Plot illustrating Confusion Matrix for random forest model with and
without smote for comparison. (a) Confusion Matrix Random Forest Model without
smote, (b) Confusion Matrix Random Forest Model with smote and 30% Minority,
(c) Confusion Matrix Random Forest Model with smote and 40% Minority, (d)
Confusion Matrix Random Forest Model with smote and 50% Minority.
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(a) (b)

(c) (d)

Figure 5.17: Plot illustrating Normalized Confusion Matrix for random forest model
with and without smote for comparison. (a) Normalized Confusion Matrix Random
Forest Model without smote, (b) Normalized Confusion Matrix Random Forest
Model with smote and 30% Minority, (c) Normalized Confusion Matrix Random
Forest Model with smote and 40% Minority, (d) Normalized Confusion Matrix
Random Forest Model with smote and 50% Minority.
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(a) (b)

(c) (d)

Figure 5.18: Plot illustrating Area Under Receiver Operating Characteristic Curve
(AUC-ROC) for random forest model with and without smote for comparison. (a)
AUC-ROC Random Forest Model without smote, (b) AUC-ROC Random Forest
Model with smote and 30% Minority, (c) AUC-ROC Random Forest Model with
smote and 40% Minority, (d) AUC-ROC Random Forest Model with smote and 50%
Minority.
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(a) (b)

(c) (d)

Figure 5.19: Plot illustrating Precision-Recall Curve (AUC) for random forest model
with and without smote for comparison. (a) Precision-Recall Curve (AUC) Random
Forest Model without smote, (b) Precision-Recall Curve (AUC) Random Forest
Model with smote and 30% Minority, (c) Precision-Recall Curve (AUC) Random
Forest Model with smote and 40% Minority, (d) Precision-Recall Curve (AUC)
Random Forest Model with smote and 50% Minority.
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(a) (b)

(c) (d)

Figure 5.20: Plot illustrating Confusion Matrix for Logistic Regression model with
and without smote for comparison. (a) Confusion Matrix Logistic Regression Model
without smote, (b) Confusion Matrix Logistic Regression Model with smote and
30% Minority, (c) Confusion Matrix Logistic Regression Model with smote and 40%
Minority, (d) Confusion Matrix Logistic Regression Model with smote and 50%
Minority.

161



CHAPTER 5. A QUANTUM APPROACH TO SYNTHETIC MINORITY
OVERSAMPLING TECHNIQUE (SMOTE)

(a) (b)

(c) (d)

Figure 5.21: Plot illustrating Normalized Confusion Matrix for Logistic Regression
model with and without smote for comparison. (a) Normalized Confusion Matrix
Logistic Regression Model without smote, (b) Normalized Confusion Matrix Logistic
Regression Model with smote and 30% Minority, (c) Normalized Confusion Matrix
Logistic Regression Model with smote and 40% Minority, (d) Normalized Confusion
Matrix Logistic Regression Model with smote and 50% Minority.
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(a) (b)

(c) (d)

Figure 5.22: Plot illustrating Area Under Receiver Operating Characteristic Curve
(AUC-ROC) for Logistic Regression model with and without smote for comparison.
(a) AUC-ROC Logistic Regression Model without smote, (b) AUC-ROC Logistic
Regression Model with smote and 30% Minority, (c) AUC-ROC Logistic Regression
Model with smote and 40% Minority, (d) AUC-ROC Logistic Regression Model with
smote and 50% Minority.
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Figure 5.23: Plot illustrating Precision-Recall Curve (AUC) for Logistic Regression
model with and without smote for comparison. (a) Precision-Recall Curve (AUC)
Logistic Regression Model without smote, (b) Precision-Recall Curve (AUC) Logistic
Regression Model with smote and 30% Minority, (c) Precision-Recall Curve (AUC)
Logistic Regression Model with smote and 40% Minority, (d) Precision-Recall Curve
(AUC) Logistic Regression Model with smote and 50% Minority.

In the next section, we will describe the impact of SMOTE on the above evalua-

tion charts.

5.4.1.6 Impact of Quantum SMOTE on Model Statistics

As we applied SMOTE on our two chosen models, we observed different behaviors

of the models post-application of QuantumSMOTE.

Random Forest:
The Random Forest model excels in effectively addressing the Telecom Churn

Dataset, particularly when dealing with imbalances in class distribution. The

model’s intrinsic advantages, together with its performance improvements using
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the SMOTE, provide a detailed analysis of its impact in tricky classification sce-

narios. As we walk through the model’s performance parameters of Confusion

matrices (Figs. 5.16 and 5.17), Receiver Operating Characteristic Curve (AUC-

ROC) (Fig. 5.18), Precision Recall Curve (AUC) (Fig. 5.19) we can see gradual

improvements with induction of synthetic samples using SMOTE. We discuss the

overall improvements in the points below.

• Performance Without Synthetic Data

The introduction of SMOTE to the dataset led to observable improvements

across various performance measures. Notably, as the percentage of synthetic

minority increased, both test accuracy and F1 scores saw visible improve-

ments. These improvements highlight the synergy between Random Forest’s

ensemble methodology and the balanced class distribution achieved through

SMOTE. The model’s adaptability to handle more balanced datasets and

improve in predictive accuracy and precision recall underscores its versatility

and effectiveness in handling imbalanced data scenarios.

• Effects of Varying Degrees of Synthetic Data Augmentation on Performance

30% Minority with Synthetic Data:

Test accuracy and F1 scores started to rise at this augmentation level, sig-

naling the start of performance gains. With no change to the training data,

the model achieved a test accuracy of 0.800813 and an F1 score improvement

of 0.6343. Both the PR and ROC AUCs increased, reaching 0.757604 and

0.854414, respectively.

40% and 50% Minority with Synthetic Data:

The test accuracy (0.822183) and F1 score (0.764202) were significantly im-

proved by 40% Minority using Synthetic Data. PR had an AUC of 0.888143

and ROC had an AUC of 0.905165. The test accuracy increased to 0.846306

and the F1 score to 0.834755 with 50% Minority using Synthetic Data. At

their peak, PR and ROC AUC values were 0.940063 and 0.928649, respec-

tively. Both the 40% and 50% SMOTE augmentation levels improved the

model more, but the 50% augmentation level was when it really shone. Re-

sults showing significant improvements in test accuracy, F1 scores, and AUC
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scores for PR and ROC show that the model is better at identifying the

minority class and can generalize more effectively.

Logistic Regression: Performance in the analysis of the Logistic Regression

model depicts its ability to handle class imbalance, especially when augmented

with the SMOTE. We describe the behavior of Logistic Regression and its outcomes

across different scenarios in following sections based on Confusion matrices (Figs.

5.20 and 5.21), Receiver Operating Characteristic Curve (AUC-ROC) (Fig. 5.22),

Precision-Recall Curve (AUC) (Fig. 5.23).

• Performance Without Synthetic Data: Initially, the Logistic Regression model

showed decent performance with a test accuracy of 0.796622, indicating its

ability to accurately predict outcomes in over 80% of cases.

Nevertheless, the F1 score, which is calculated as the harmonic mean of

accuracy and recall, had a relatively low value of 0.523878. This suggests

that while the model was usually reliable, it had challenges in achieving

a trade-off between accuracy and recall, especially in correctly identifying

the minority class. The Precision-Recall (PR) and Receiver Operating Char-

acteristic(ROC) obtained Area Under the Curve (AUC) scores of 0.60415

and 0.814921, respectively. These scores indicate a reasonable potential to

differentiate between classes, while there is potential for improvement in

managing unbalanced data.

• 30% Minority with Synthetic: By inducing synthetic data to constitute 30% of

the minority class, the test accuracy saw a slight decline to 0.759485. This

reduction implies that while the synthetic data was intended to balance

the distribution of classes, it could have contributed to the complexity of

class distribution that somewhat affected the general accuracy of predic-

tions. However, the F1 score saw a small rise to 0.537158, suggesting that

the model’s capacity to maintain a balance between accuracy and recall

improved under somewhat more equitable class settings. The AUC scores

for PR (Precision-Recall) and ROC (Receiver Operating Characteristic) saw

marginal enhancements to 0.632638 and 0.81238, respectively. These gains
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indicate a minor boost in the model’s ability to differentiate between the

classes when synthetic data is employed.

• 40% Minority with Synthetic: With the percentage of synthetic data was

increased to 40%,the test accuracy decreased to 0.700469. However, the F1

score increased to 0.607626. This implies that while the model’s overall pre-

diction accuracy declined, its capacity to detect the minority class improved,

as shown by the higher F1 score. The area under the curve (AUC) scores

for precision-recall (PR) and receiver operating characteristic (ROC) were

0.673914 and 0.769356, respectively. These values suggest that the model’s

accuracy and recall balance improved, but there was a minor decline in its

overall discriminating power.

• 50% Minority with Synthetic: By using synthetic data to achieve a 50%

minority representation, the model demonstrated a notable improvement in

test accuracy, reaching 0.733763. Yet, the F1 score increased substantially to

0.742446. The substantial rise in the F1 score demonstrates the improved

ability of the model to properly detect the minority class due to a more

evenly balanced dataset. The area under the curve (AUC) scores for precision-

recall (PR) and receiver operating characteristic (ROC) increased to 0.778797

and 0.807275, respectively, indicating the enhanced ability of the model to

distinguish between classes in a more balanced setup.

5.4.1.7 Final thoughts on SMOTE Performance

The comparison of Logistic Regression and Random Forest models, enhanced

with SMOTE, demonstrates the intricate nature of resolving class imbalance

in machine learning. The performance enhancements of the Logistic Regression

model, particularly in achieving a balanced precision-recall trade-off with the use

of SMOTE, are consistent with the research conducted by Chawla et al. (2002). In

their study, SMOTE was presented as a method to increase classifier performance

by mitigating the issue of class imbalance via the generation of synthetic samples.

The Random Forest model demonstrates good performance, regardless of

SMOTE. This underscores the model’s intrinsic abilities in effectively dealing
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Random Forest
Scores Accuracy Score AUC Score
Data Set Type Train Test F1 Score PR ROC
Without Synthetic 1.000 0.784 0.575 0.627 0.811
30% Minority with
Synthetic

1.000 0.801 0.634 0.758 0.854

40% Minority with
Synthetic

0.996 0.822 0.764 0.888 0.905

50% Minority with
Synthetic

0.996 0.846 0.835 0.940 0.929

Logistic Regression
Without Synthetic 0.797 0.766 0.524 0.604 0.815
30% Minority with
Synthetic

0.753 0.759 0.537 0.633 0.812

40% Minority with
Synthetic

0.724 0.700 0.608 0.674 0.769

50% Minority with
Synthetic

0.732 0.734 0.742 0.779 0.807

Table 5.1: Table comparing Accuracy, F1, and AUC score of Random Forest Model
for telecom churn dataset without SMOTE, and post SMOTE with minority % as
30%, 40%, and 50%.

with class imbalances [87]. The ensemble strategy of the model, which combines

predictions from numerous decision trees, inevitably offers a degree of resilience

to imbalance, which is further strengthened by the use of SMOTE. Fernandez

et al. [74] provide evidence supporting the effectiveness of ensemble approaches

in handling unbalanced data. They propose that combining techniques such as

Random Forest with SMOTE may lead to substantial improvements in model

performance. All of the findings described in the assessment of Model performances

are summarized in the table 5.1 and the Confusion Matrix comparison table 5.2.
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Confusion Matrix Comparison

Random
Forest

W/O
Synthetic

30%
SMOTE

40%
SMOTE

50%
SMOTE

TP FP TP FP TP FP TP FP
899 114 931 96 1135 123 932 108

FN TN FN TN FN TN FN TN
202 192 189 260 236 636 192 785

Logistic
Regression

TP FP TP FP TP FP TP FP
807 116 915 112 998 260 706 334

FN TN FN TN FN TN FN TN
213 181 243 206 387 494 203 774

Table 5.2: Table comparing Confusion matrix of Random Forest and Logistic regres-
sion without SMOTE, and post SMOTE with minority% as 30%, 40%, and 50%.

5.4.2 Inferences from Simulation

In the process of creating the Quantum-SMOTE algorithm, we have come across

several conclusions that we want to outline in the points below.

• The QuantumSMOTE algorithm functions similarly to the traditional SMOTE

method but has the benefit of quantum phenomena.

• The QuantumSMOTE technique utilizes the swap test and quantum rotation,

distinguishing it from the standard SMOTE algorithm that relies on K

Nearest Neighbors (KNN) [89, 90] and Euclidean distances [73, 80, 82, 91].

• The QuantumSMOTE technique utilizes quantum rotation to eliminate neigh-

bor dependencies and create several synthetic data points from a single data

point in the minority class.

• The technique includes hyperparameters that enable users to manage var-

ious elements of synthetic data creation, such as rotation angle, minority

percentage, and splitting factor.
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• The QuantumSMOTE procedure generates synthetic data points to ensure

that the distribution of variables closely resembles the original data distribu-

tion.

• By selecting a smaller angle of rotation, the synthetic data points are po-

sitioned near the original minority data point, increasing the density of

minority data points in a sparsely populated area.

• The rotation circuit for minority data points does not encourage the use of any

entanglement process or similar gates such as CNOT, ZZ, etc. since they will

generate undesired effects on rotation and result in unexpected outcomes.

• By using the compact swap test approach, more columns may be stored in

fewer qubits. We used 5 qubits to handle 32 variables, and by scaling, we can

handle 1024 variables with just 10 qubits.

• The algorithm’s use of low-depth circuits makes it less susceptible to issues as-

sociated with lengthy circuits like noise and decoherence. It effectively show-

cases how quantum techniques may enhance traditional machine-learning

methods.

• Similar to classical SMOTE, QuantumSMOTE generates synthetic data that

enhances the Precision-Recall score of machine learning algorithms such as

Logistic Regression [88] and significantly benefits ensemble algorithms like

Random Forest [87]. This suggests its alignment with contemporary machine

learning environments and confirms its applicability in current unbalanced

classification scenarios.

5.5 Conclusion

The QuantumSMOTE technique improves conventional class imbalance correc-

tion by employing quantum computing, particularly swap tests and quantum

rotation, as opposed to classical approaches that rely on K Nearest Neighbors

(KNN) and Euclidean distances. This quantum approach allows for the direct

production of synthetic data points from minority class instances using quantum
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rotations, preventing the need for neighbor-based interpolation. QuantumSMOTE

has customisable hyperparameters such as rotation angle, minority percentage,

and splitting factor, allowing for personalized synthetic data synthesis to accurately

solve dataset imbalances.

One notable feature of QuantumSMOTE is its capacity to generate synthetic

instances that closely resemble the original data distribution, along with enhancing

the balance of minority classes in datasets. The algorithm’s use of compact swap

tests enables efficient data representation, needing fewer qubits to manage a high

number of variables, hence improving scalability and lowering quantum computing

resource needs. Furthermore, its use of low-depth circuits reduces sensitivity to

quantum noise and decoherence, making it a reliable option for quantum-enhanced

data augmentation.

QuantumSMOTE’s success is proven by its favorable influence on the Precision-

Recall scores of machine learning algorithms such as Logistic Regression and

Random Forest, highlighting its compatibility and utility in modern machine

learning procedures. This technique is a forward-thinking integration of quantum

computing with data science, providing an innovative and efficient solution to the

problem of class imbalance in machine learning datasets.
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CONCLUSION

6.1 Research Findings

In this thesis, we developed quantum machine learning based approach for solving

critical problems that include Optimization and data classification scenarios. In

this context, we have studied the impact of quantum noise on quantum algorithms

and presented an approach to quantify the impact of quantum noise. We discuss

the overall findings of the research below.

6.1.1 Chapter 3

In chapter 3 "Analysis of The Vehicle Routing Problem Solved via Hybrid
Quantum Algorithms in the Presence of Noisy Channels" the paper sheds

light on the critical influence of noise in quantum computing simulations and

outlines a path for future research that focuses on optimizing algorithms to handle

real-world quantum environments effectively. We outline the outcomes of the

research for this noise analysis under the following heads.

Chapter 3: Impact of Noise on VRP Solution
This research provides comprehensive simulation results for different noise para-

meters, comparing settings without noise to scenarios with multiple noise channels.
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It has been shown that when the noise parameters or the number of circuit layers

rise, departures from the classical minimum do not exhibit a linear trend. Notably,

there were noticeable variations in performance when comparing outcomes from

distinct circuit layers in the presence of specific noise conditions, such as the bit-flip

noise channel. The investigation verifies that various noise channels have discrete

effects on quantum circuits, while comparable patterns arise throughout a wide

range of noise values (0.05 to 0.5). This implies a consistent behavior that applies

to all forms of noise, which affects the approach to selecting noise parameters in

simulations. The COBYLA optimizer has been shown to be very successful for noisy

quantum circuits used in the VRP, surpassing other optimizers such as SPSA as

the noise levels increase. This underscores the need of selecting the appropriate

optimizer to alleviate the impact of noise in quantum calculations.

Chapter 3: Future Directions
The paper proposes an additional investigation into various optimization tech-

niques in order to understand their viability under different levels of noise. This

has the potential to result in more resilient quantum algorithms that are less sensi-

tive to interference. There is a proposal to do experiments on larger Vehicle Routing

Problem (VRP) instances utilizing tangible quantum devices. This advancement

beyond traditional simulations will help in verifying the results in real-life scenar-

ios and expand the limits of what can be simulated using conventional methods.

Future research endeavors seek to construct more extensive noise models using

empirical data obtained from actual noisy intermediate-scale quantum (NISQ)

devices. This will augment the comprehension of noise impacts and direct the

enhancement of quantum algorithms for pragmatic applications such as VRP.

6.1.2 Chapter 4

In chapter 4, "Solving The Vehicle Routing Problem via Quantum Support
Vector Machines," we have devised a novel approach to solving optimization

problems using quantum machine learning, particularly Quantum Support Vector

Machines (QSVM). We have also shown that the use of quantum encoding tech-

niques can effectively emulate the effects of superposition and entanglement and

help reduce circuit depths. We can summarise these under the following heads.
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Chapter 4:Efficiency of QSVMs
QSVMs in solving VRP have been shown to be very successful, often achieving re-

sults that are on par with or superior to traditional quantum computing approaches

like VQE (Variational Quantum Eigensolver) and QAOA (Quantum Approximate

Optimization Algorithm). This highlights the ability of machine learning models

in quantum computing to manage complex optimization challenges such as VRP

effectively. Various encoding/decoding systems are essential for the generation of

quantum superposition and entanglement, which are vital for quantum computing.

These approaches may streamline the quantum circuit by minimizing the need

to create mixer Hamiltonians, which are often used in QAOA. Unlike traditional

quantum approaches, which often need numerous layers to reach high precision,

QSVMs may achieve comparable or superior accuracy even with only the first

layer of quantum circuits. Nevertheless,the act of increasing the number of layers

has a propensity to decrease accuracy, indicating the existence of an optimum

threshold for circuit depth in order to sustain superior performance. The selection

of an optimizer, such as COBYLA, SLSQP, and L-BGFS-B, has a significant impact

on the precision of QSVM solutions. Specifically, COBYLA demonstrates excep-

tional performance in terms of consistently achieving high levels of accuracy across

different encoding methods and the complexity of quantum circuits.

Chapter 4:Future Directions for Research
We can propose that future research in the use of QSVMS should focus on in-

vestigating new or enhanced encoding and decoding methods that might effec-

tively reduce the complexity of quantum circuits while simultaneously optimizing

problem-solving accuracy. It is necessary to find a balance between the complexity

of circuits, which refers to the number of gates, and the computational resources

needed, such as classical memory and CPU. Conducting a thorough analysis and

comparison of various quantum optimizers is crucial in order to identify the most ef-

ficient ones for certain quantum machine learning tasks. The diverse performance

of various optimizers highlights the significance of their involvement in the efficacy

of QSVMs.It would be essential to test the scalability of QSVM techniques by

applying them to bigger VRP instances and more intricate routing difficulties. This

involves deploying these models on physical quantum hardware to evaluate their

practical viability and effectiveness in real-life situations. An in-depth analysis
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of QSVMs in contrast to classic quantum computing systems such as VQE and

QAOA, focusing on quantum cost, circuit depth, and overall efficiency, might pro-

vide valuable insights into their respective strengths and limits. Further empirical

research is required to comprehensively comprehend the complete influence of

various encoding strategies on the efficiency of QSVMs, particularly in the presence

of diverse quantum circuit conditions and degrees of noise. This could possibly

result in more resilient, efficient, and practical quantum computing systems.

6.1.3 Chapter 5

In Chapter 5, the article titled "A Quantum Approach to Synthetic Minority
Oversampling Technique (SMOTE)" presents the Quantum SMOTE algorithm,

which is a quantum computing adaptation of the traditional SMOTE approach. The

system is designed to tackle class imbalances in datasets, and the study discusses

its development and consequences. We will provide a concise overview of the main

findings and implications of the study, as well as suggest possible avenues for

further research.

Chapter 5: Overall Findings
Quantum SMOTE uses quantum rotation and swap tests, which sets it apart from

regular SMOTE, which depends on KNN and Euclidean distances to generate

synthetic data points. This quantum methodology enables the direct generation

of synthetic data points from instances belonging to the minority class, thereby

removing the need for interpolation based on neighbouring data points. The tech-

nique has customizable hyperparameters, such as the rotation angle, minority

percentage, and splitting factor, which enable users to fine-tune the production

of synthetic data in order to accurately replicate the distribution of the original

data and efficiently mitigate imbalances in the dataset. Quantum SMOTE exhibits

efficacy in data representation and scalability. The technique employs a compact

swap test approach, which enables the management of a substantial number of

variables using a relatively small number of qubits. For example, it can effectively

handle 1024 variables with only 10 qubits, demonstrating a substantial decrease

in quantum resource needs. Quantum SMOTE uses low-depth quantum circuits to

mitigate the typical challenges of noise and decoherence in quantum computing.
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This approach enhances the dependability of data augmentation using quantum

technology.

The approach has shown a beneficial impact on the precision-recall scores of

several machine learning algorithms, such as Logistic Regression and Random For-

est. This compatibility is shown in modern machine-learning scenarios, including

coping with imbalances in class distribution.

chapter 5: Future directions
Future research should aim to optimize the Quantum SMOTE algorithm by inves-

tigating more quantum phenomena or using more advanced quantum operations to

improve the production of synthetic data points and increase its efficiency. Conduct-

ing experiments using Quantum SMOTE on a wider range of datasets, including

bigger ones, would provide more evidence to support its efficacy and resilience.

Additionally, it would be advantageous to assess its effectiveness using other ma-

chine learning models, especially ones that are not often linked to issues of class

imbalance. By combining Quantum SMOTE with other quantum computing ap-

proaches or hybrid quantum-classical machine learning frameworks, it is possible

to create even more potent tools for addressing intricate data science challenges. An

in-depth examination of quantum resource allocation for the management of high-

dimensional data might provide valuable insights for enhancing the accessibility

and practicality of quantum machine learning in a wide range of applications.

Quantum SMOTE is a potential fusion of quantum computing with data science

that offers a creative solution to the ongoing issue of class imbalance in machine

learning. The development of this technology creates new opportunities to use

quantum phenomena in practical applications of data science in the real world.

6.2 Concluding Remarks

It is important to note that this thesis makes a substantial contribution to the

integration of quantum computing with data science, especially in terms of tackling

optimization issues and class imbalances in datasets. The developed quantum

machine learning techniques enhance the effectiveness of tackling such issues

and pave the way for utilizing quantum phenomena in practical data science

applications. The ongoing development of these quantum approaches is anticipated
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to result in quantum computing systems that are more robust, efficient, and

practical. These systems have the potential to outperform classical methods in a

variety of areas of data processing and optimization.
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